1 /* 2 * Copyright (c) 2002, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/vmreg.inline.hpp" 27 #include "compiler/oopMap.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/compile.hpp" 32 #include "opto/machnode.hpp" 33 #include "opto/matcher.hpp" 34 #include "opto/output.hpp" 35 #include "opto/phase.hpp" 36 #include "opto/regalloc.hpp" 37 #include "opto/rootnode.hpp" 38 #include "utilities/align.hpp" 39 40 // The functions in this file builds OopMaps after all scheduling is done. 41 // 42 // OopMaps contain a list of all registers and stack-slots containing oops (so 43 // they can be updated by GC). OopMaps also contain a list of derived-pointer 44 // base-pointer pairs. When the base is moved, the derived pointer moves to 45 // follow it. Finally, any registers holding callee-save values are also 46 // recorded. These might contain oops, but only the caller knows. 47 // 48 // BuildOopMaps implements a simple forward reaching-defs solution. At each 49 // GC point we'll have the reaching-def Nodes. If the reaching Nodes are 50 // typed as pointers (no offset), then they are oops. Pointers+offsets are 51 // derived pointers, and bases can be found from them. Finally, we'll also 52 // track reaching callee-save values. Note that a copy of a callee-save value 53 // "kills" it's source, so that only 1 copy of a callee-save value is alive at 54 // a time. 55 // 56 // We run a simple bitvector liveness pass to help trim out dead oops. Due to 57 // irreducible loops, we can have a reaching def of an oop that only reaches 58 // along one path and no way to know if it's valid or not on the other path. 59 // The bitvectors are quite dense and the liveness pass is fast. 60 // 61 // At GC points, we consult this information to build OopMaps. All reaching 62 // defs typed as oops are added to the OopMap. Only 1 instance of a 63 // callee-save register can be recorded. For derived pointers, we'll have to 64 // find and record the register holding the base. 65 // 66 // The reaching def's is a simple 1-pass worklist approach. I tried a clever 67 // breadth-first approach but it was worse (showed O(n^2) in the 68 // pick-next-block code). 69 // 70 // The relevant data is kept in a struct of arrays (it could just as well be 71 // an array of structs, but the struct-of-arrays is generally a little more 72 // efficient). The arrays are indexed by register number (including 73 // stack-slots as registers) and so is bounded by 200 to 300 elements in 74 // practice. One array will map to a reaching def Node (or null for 75 // conflict/dead). The other array will map to a callee-saved register or 76 // OptoReg::Bad for not-callee-saved. 77 78 79 // Structure to pass around 80 struct OopFlow : public ArenaObj { 81 short *_callees; // Array mapping register to callee-saved 82 Node **_defs; // array mapping register to reaching def 83 // or null if dead/conflict 84 // OopFlow structs, when not being actively modified, describe the _end_ of 85 // this block. 86 Block *_b; // Block for this struct 87 OopFlow *_next; // Next free OopFlow 88 // or null if dead/conflict 89 Compile* C; 90 91 OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs), 92 _b(nullptr), _next(nullptr), C(c) { } 93 94 // Given reaching-defs for this block start, compute it for this block end 95 void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ); 96 97 // Merge these two OopFlows into the 'this' pointer. 98 void merge( OopFlow *flow, int max_reg ); 99 100 // Copy a 'flow' over an existing flow 101 void clone( OopFlow *flow, int max_size); 102 103 // Make a new OopFlow from scratch 104 static OopFlow *make( Arena *A, int max_size, Compile* C ); 105 106 // Build an oopmap from the current flow info 107 OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ); 108 }; 109 110 // Given reaching-defs for this block start, compute it for this block end 111 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) { 112 113 for( uint i=0; i<_b->number_of_nodes(); i++ ) { 114 Node *n = _b->get_node(i); 115 116 if( n->jvms() ) { // Build an OopMap here? 117 JVMState *jvms = n->jvms(); 118 // no map needed for leaf calls 119 if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) { 120 int *live = (int*) (*safehash)[n]; 121 assert( live, "must find live" ); 122 n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) ); 123 } 124 } 125 126 // Assign new reaching def's. 127 // Note that I padded the _defs and _callees arrays so it's legal 128 // to index at _defs[OptoReg::Bad]. 129 OptoReg::Name first = regalloc->get_reg_first(n); 130 OptoReg::Name second = regalloc->get_reg_second(n); 131 _defs[first] = n; 132 _defs[second] = n; 133 134 // Pass callee-save info around copies 135 int idx = n->is_Copy(); 136 if( idx ) { // Copies move callee-save info 137 OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx)); 138 OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx)); 139 int tmp_first = _callees[old_first]; 140 int tmp_second = _callees[old_second]; 141 _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location 142 _callees[old_second] = OptoReg::Bad; 143 _callees[first] = tmp_first; 144 _callees[second] = tmp_second; 145 } else if( n->is_Phi() ) { // Phis do not mod callee-saves 146 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" ); 147 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" ); 148 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" ); 149 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" ); 150 } else { 151 _callees[first] = OptoReg::Bad; // No longer holding a callee-save value 152 _callees[second] = OptoReg::Bad; 153 154 // Find base case for callee saves 155 if( n->is_Proj() && n->in(0)->is_Start() ) { 156 if( OptoReg::is_reg(first) && 157 regalloc->_matcher.is_save_on_entry(first) ) 158 _callees[first] = first; 159 if( OptoReg::is_reg(second) && 160 regalloc->_matcher.is_save_on_entry(second) ) 161 _callees[second] = second; 162 } 163 } 164 } 165 } 166 167 // Merge the given flow into the 'this' flow 168 void OopFlow::merge( OopFlow *flow, int max_reg ) { 169 assert( _b == nullptr, "merging into a happy flow" ); 170 assert( flow->_b, "this flow is still alive" ); 171 assert( flow != this, "no self flow" ); 172 173 // Do the merge. If there are any differences, drop to 'bottom' which 174 // is OptoReg::Bad or null depending. 175 for( int i=0; i<max_reg; i++ ) { 176 // Merge the callee-save's 177 if( _callees[i] != flow->_callees[i] ) 178 _callees[i] = OptoReg::Bad; 179 // Merge the reaching defs 180 if( _defs[i] != flow->_defs[i] ) 181 _defs[i] = nullptr; 182 } 183 184 } 185 186 void OopFlow::clone( OopFlow *flow, int max_size ) { 187 _b = flow->_b; 188 memcpy( _callees, flow->_callees, sizeof(short)*max_size); 189 memcpy( _defs , flow->_defs , sizeof(Node*)*max_size); 190 } 191 192 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) { 193 short *callees = NEW_ARENA_ARRAY(A,short,max_size+1); 194 Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1); 195 debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) ); 196 OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C); 197 assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" ); 198 assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" ); 199 return flow; 200 } 201 202 static int get_live_bit( int *live, int reg ) { 203 return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); } 204 static void set_live_bit( int *live, int reg ) { 205 live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); } 206 static void clr_live_bit( int *live, int reg ) { 207 live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); } 208 209 // Build an oopmap from the current flow info 210 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) { 211 int framesize = regalloc->_framesize; 212 int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP); 213 debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0()); 214 memset(dup_check,0,OptoReg::stack0()) ); 215 216 OopMap *omap = new OopMap( framesize, max_inarg_slot ); 217 MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : nullptr; 218 JVMState* jvms = n->jvms(); 219 220 // For all registers do... 221 for( int reg=0; reg<max_reg; reg++ ) { 222 if( get_live_bit(live,reg) == 0 ) 223 continue; // Ignore if not live 224 225 // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit 226 // register in that case we'll get an non-concrete register for the second 227 // half. We only need to tell the map the register once! 228 // 229 // However for the moment we disable this change and leave things as they 230 // were. 231 232 VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot); 233 234 // See if dead (no reaching def). 235 Node *def = _defs[reg]; // Get reaching def 236 assert( def, "since live better have reaching def" ); 237 238 if (def->is_MachTemp()) { 239 assert(!def->bottom_type()->isa_oop_ptr(), 240 "ADLC only assigns OOP types to MachTemp defs corresponding to xRegN operands"); 241 // Exclude MachTemp definitions even if they are typed as oops. 242 continue; 243 } 244 245 // Classify the reaching def as oop, derived, callee-save, dead, or other 246 const Type *t = def->bottom_type(); 247 if( t->isa_oop_ptr() ) { // Oop or derived? 248 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" ); 249 #ifdef _LP64 250 // 64-bit pointers record oop-ishness on 2 aligned adjacent registers. 251 // Make sure both are record from the same reaching def, but do not 252 // put both into the oopmap. 253 if( (reg&1) == 1 ) { // High half of oop-pair? 254 assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" ); 255 continue; // Do not record high parts in oopmap 256 } 257 #endif 258 259 // Check for a legal reg name in the oopMap and bailout if it is not. 260 if (!omap->legal_vm_reg_name(r)) { 261 stringStream ss; 262 ss.print("illegal oopMap register name: "); 263 r->print_on(&ss); 264 assert(false, "%s", ss.as_string()); 265 regalloc->C->record_method_not_compilable(ss.as_string()); 266 continue; 267 } 268 if (t->is_ptr()->offset() == 0) { // Not derived? 269 if( mcall ) { 270 // Outgoing argument GC mask responsibility belongs to the callee, 271 // not the caller. Inspect the inputs to the call, to see if 272 // this live-range is one of them. 273 uint cnt = mcall->tf()->domain_cc()->cnt(); 274 uint j; 275 for( j = TypeFunc::Parms; j < cnt; j++) 276 if( mcall->in(j) == def ) 277 break; // reaching def is an argument oop 278 if( j < cnt ) // arg oops dont go in GC map 279 continue; // Continue on to the next register 280 } 281 omap->set_oop(r); 282 } else { // Else it's derived. 283 // Find the base of the derived value. 284 uint i; 285 // Fast, common case, scan 286 for( i = jvms->oopoff(); i < n->req(); i+=2 ) 287 if( n->in(i) == def ) break; // Common case 288 if( i == n->req() ) { // Missed, try a more generous scan 289 // Scan again, but this time peek through copies 290 for( i = jvms->oopoff(); i < n->req(); i+=2 ) { 291 Node *m = n->in(i); // Get initial derived value 292 while( 1 ) { 293 Node *d = def; // Get initial reaching def 294 while( 1 ) { // Follow copies of reaching def to end 295 if( m == d ) goto found; // breaks 3 loops 296 int idx = d->is_Copy(); 297 if( !idx ) break; 298 d = d->in(idx); // Link through copy 299 } 300 int idx = m->is_Copy(); 301 if( !idx ) break; 302 m = m->in(idx); 303 } 304 } 305 guarantee( 0, "must find derived/base pair" ); 306 } 307 found: ; 308 Node *base = n->in(i+1); // Base is other half of pair 309 int breg = regalloc->get_reg_first(base); 310 VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot); 311 312 // I record liveness at safepoints BEFORE I make the inputs 313 // live. This is because argument oops are NOT live at a 314 // safepoint (or at least they cannot appear in the oopmap). 315 // Thus bases of base/derived pairs might not be in the 316 // liveness data but they need to appear in the oopmap. 317 if( get_live_bit(live,breg) == 0 ) {// Not live? 318 // Flag it, so next derived pointer won't re-insert into oopmap 319 set_live_bit(live,breg); 320 // Already missed our turn? 321 if( breg < reg ) { 322 omap->set_oop(b); 323 } 324 } 325 omap->set_derived_oop(r, b); 326 } 327 328 } else if( t->isa_narrowoop() ) { 329 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" ); 330 // Check for a legal reg name in the oopMap and bailout if it is not. 331 if (!omap->legal_vm_reg_name(r)) { 332 stringStream ss; 333 ss.print("illegal oopMap register name: "); 334 r->print_on(&ss); 335 assert(false, "%s", ss.as_string()); 336 regalloc->C->record_method_not_compilable(ss.as_string()); 337 continue; 338 } 339 if( mcall ) { 340 // Outgoing argument GC mask responsibility belongs to the callee, 341 // not the caller. Inspect the inputs to the call, to see if 342 // this live-range is one of them. 343 uint cnt = mcall->tf()->domain_cc()->cnt(); 344 uint j; 345 for( j = TypeFunc::Parms; j < cnt; j++) 346 if( mcall->in(j) == def ) 347 break; // reaching def is an argument oop 348 if( j < cnt ) // arg oops dont go in GC map 349 continue; // Continue on to the next register 350 } 351 omap->set_narrowoop(r); 352 } else if( OptoReg::is_valid(_callees[reg])) { // callee-save? 353 // It's a callee-save value 354 assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" ); 355 debug_only( dup_check[_callees[reg]]=1; ) 356 VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg])); 357 omap->set_callee_saved(r, callee); 358 359 } else { 360 // Other - some reaching non-oop value 361 #ifdef ASSERT 362 if (t->isa_rawptr()) { 363 ResourceMark rm; 364 Unique_Node_List worklist; 365 worklist.push(def); 366 for (uint i = 0; i < worklist.size(); i++) { 367 Node* m = worklist.at(i); 368 if (C->cfg()->_raw_oops.member(m)) { 369 def->dump(); 370 m->dump(); 371 n->dump(); 372 assert(false, "there should be an oop in OopMap instead of a live raw oop at safepoint"); 373 } 374 // Check users as well because def might be spilled 375 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 376 Node* u = m->fast_out(j); 377 if ((u->is_SpillCopy() && u->in(1) == m) || u->is_Phi()) { 378 worklist.push(u); 379 } 380 } 381 } 382 } 383 #endif 384 } 385 386 } 387 388 #ifdef ASSERT 389 /* Nice, Intel-only assert 390 int cnt_callee_saves=0; 391 int reg2 = 0; 392 while (OptoReg::is_reg(reg2)) { 393 if( dup_check[reg2] != 0) cnt_callee_saves++; 394 assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" ); 395 reg2++; 396 } 397 */ 398 #endif 399 400 #ifdef ASSERT 401 bool has_derived_oops = false; 402 for( OopMapStream oms1(omap); !oms1.is_done(); oms1.next()) { 403 OopMapValue omv1 = oms1.current(); 404 if (omv1.type() != OopMapValue::derived_oop_value) { 405 continue; 406 } 407 has_derived_oops = true; 408 bool found = false; 409 for( OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) { 410 OopMapValue omv2 = oms2.current(); 411 if (omv2.type() != OopMapValue::oop_value) { 412 continue; 413 } 414 if( omv1.content_reg() == omv2.reg() ) { 415 found = true; 416 break; 417 } 418 } 419 assert(has_derived_oops == omap->has_derived_oops(), ""); 420 assert( found, "derived with no base in oopmap" ); 421 } 422 423 int num_oops = 0; 424 for (OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) { 425 OopMapValue omv = oms2.current(); 426 if (omv.type() == OopMapValue::oop_value || omv.type() == OopMapValue::narrowoop_value) { 427 num_oops++; 428 } 429 } 430 assert(num_oops == omap->num_oops(), "num_oops: %d omap->num_oops(): %d", num_oops, omap->num_oops()); 431 #endif 432 433 return omap; 434 } 435 436 // Compute backwards liveness on registers 437 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) { 438 int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints); 439 int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints]; 440 Node* root = cfg->get_root_node(); 441 // On CISC platforms, get the node representing the stack pointer that regalloc 442 // used for spills 443 Node *fp = NodeSentinel; 444 if (UseCISCSpill && root->req() > 1) { 445 fp = root->in(1)->in(TypeFunc::FramePtr); 446 } 447 memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt)); 448 // Push preds onto worklist 449 for (uint i = 1; i < root->req(); i++) { 450 Block* block = cfg->get_block_for_node(root->in(i)); 451 worklist->push(block); 452 } 453 454 // ZKM.jar includes tiny infinite loops which are unreached from below. 455 // If we missed any blocks, we'll retry here after pushing all missed 456 // blocks on the worklist. Normally this outer loop never trips more 457 // than once. 458 while (1) { 459 460 while( worklist->size() ) { // Standard worklist algorithm 461 Block *b = worklist->rpop(); 462 463 // Copy first successor into my tmp_live space 464 int s0num = b->_succs[0]->_pre_order; 465 int *t = &live[s0num*max_reg_ints]; 466 for( int i=0; i<max_reg_ints; i++ ) 467 tmp_live[i] = t[i]; 468 469 // OR in the remaining live registers 470 for( uint j=1; j<b->_num_succs; j++ ) { 471 uint sjnum = b->_succs[j]->_pre_order; 472 int *t = &live[sjnum*max_reg_ints]; 473 for( int i=0; i<max_reg_ints; i++ ) 474 tmp_live[i] |= t[i]; 475 } 476 477 // Now walk tmp_live up the block backwards, computing live 478 for( int k=b->number_of_nodes()-1; k>=0; k-- ) { 479 Node *n = b->get_node(k); 480 // KILL def'd bits 481 int first = regalloc->get_reg_first(n); 482 int second = regalloc->get_reg_second(n); 483 if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first); 484 if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second); 485 486 MachNode *m = n->is_Mach() ? n->as_Mach() : nullptr; 487 488 // Check if m is potentially a CISC alternate instruction (i.e, possibly 489 // synthesized by RegAlloc from a conventional instruction and a 490 // spilled input) 491 bool is_cisc_alternate = false; 492 if (UseCISCSpill && m) { 493 is_cisc_alternate = m->is_cisc_alternate(); 494 } 495 496 // GEN use'd bits 497 for( uint l=1; l<n->req(); l++ ) { 498 Node *def = n->in(l); 499 assert(def != nullptr, "input edge required"); 500 int first = regalloc->get_reg_first(def); 501 int second = regalloc->get_reg_second(def); 502 //If peephole had removed the node,do not set live bit for it. 503 if (!(def->is_Mach() && def->as_Mach()->get_removed())) { 504 if (OptoReg::is_valid(first)) set_live_bit(tmp_live,first); 505 if (OptoReg::is_valid(second)) set_live_bit(tmp_live,second); 506 } 507 // If we use the stack pointer in a cisc-alternative instruction, 508 // check for use as a memory operand. Then reconstruct the RegName 509 // for this stack location, and set the appropriate bit in the 510 // live vector 4987749. 511 if (is_cisc_alternate && def == fp) { 512 const TypePtr *adr_type = nullptr; 513 intptr_t offset; 514 const Node* base = m->get_base_and_disp(offset, adr_type); 515 if (base == NodeSentinel) { 516 // Machnode has multiple memory inputs. We are unable to reason 517 // with these, but are presuming (with trepidation) that not any of 518 // them are oops. This can be fixed by making get_base_and_disp() 519 // look at a specific input instead of all inputs. 520 assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input"); 521 } else if (base != fp || offset == Type::OffsetBot) { 522 // Do nothing: the fp operand is either not from a memory use 523 // (base == nullptr) OR the fp is used in a non-memory context 524 // (base is some other register) OR the offset is not constant, 525 // so it is not a stack slot. 526 } else { 527 assert(offset >= 0, "unexpected negative offset"); 528 offset -= (offset % jintSize); // count the whole word 529 int stack_reg = regalloc->offset2reg(offset); 530 if (OptoReg::is_stack(stack_reg)) { 531 set_live_bit(tmp_live, stack_reg); 532 } else { 533 assert(false, "stack_reg not on stack?"); 534 } 535 } 536 } 537 } 538 539 if( n->jvms() ) { // Record liveness at safepoint 540 541 // This placement of this stanza means inputs to calls are 542 // considered live at the callsite's OopMap. Argument oops are 543 // hence live, but NOT included in the oopmap. See cutout in 544 // build_oop_map. Debug oops are live (and in OopMap). 545 int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints); 546 for( int l=0; l<max_reg_ints; l++ ) 547 n_live[l] = tmp_live[l]; 548 safehash->Insert(n,n_live); 549 } 550 551 } 552 553 // Now at block top, see if we have any changes. If so, propagate 554 // to prior blocks. 555 int *old_live = &live[b->_pre_order*max_reg_ints]; 556 int l; 557 for( l=0; l<max_reg_ints; l++ ) 558 if( tmp_live[l] != old_live[l] ) 559 break; 560 if( l<max_reg_ints ) { // Change! 561 // Copy in new value 562 for( l=0; l<max_reg_ints; l++ ) 563 old_live[l] = tmp_live[l]; 564 // Push preds onto worklist 565 for (l = 1; l < (int)b->num_preds(); l++) { 566 Block* block = cfg->get_block_for_node(b->pred(l)); 567 worklist->push(block); 568 } 569 } 570 } 571 572 // Scan for any missing safepoints. Happens to infinite loops 573 // ala ZKM.jar 574 uint i; 575 for (i = 1; i < cfg->number_of_blocks(); i++) { 576 Block* block = cfg->get_block(i); 577 uint j; 578 for (j = 1; j < block->number_of_nodes(); j++) { 579 if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == nullptr) { 580 break; 581 } 582 } 583 if (j < block->number_of_nodes()) { 584 break; 585 } 586 } 587 if (i == cfg->number_of_blocks()) { 588 break; // Got 'em all 589 } 590 591 if (PrintOpto && Verbose) { 592 tty->print_cr("retripping live calc"); 593 } 594 595 // Force the issue (expensively): recheck everybody 596 for (i = 1; i < cfg->number_of_blocks(); i++) { 597 worklist->push(cfg->get_block(i)); 598 } 599 } 600 } 601 602 // Collect GC mask info - where are all the OOPs? 603 void PhaseOutput::BuildOopMaps() { 604 Compile::TracePhase tp("bldOopMaps", &timers[_t_buildOopMaps]); 605 // Can't resource-mark because I need to leave all those OopMaps around, 606 // or else I need to resource-mark some arena other than the default. 607 // ResourceMark rm; // Reclaim all OopFlows when done 608 int max_reg = C->regalloc()->_max_reg; // Current array extent 609 610 Arena *A = Thread::current()->resource_area(); 611 Block_List worklist; // Worklist of pending blocks 612 613 int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt; 614 Dict *safehash = nullptr; // Used for assert only 615 // Compute a backwards liveness per register. Needs a bitarray of 616 // #blocks x (#registers, rounded up to ints) 617 safehash = new Dict(cmpkey,hashkey,A); 618 do_liveness( C->regalloc(), C->cfg(), &worklist, max_reg_ints, A, safehash ); 619 OopFlow *free_list = nullptr; // Free, unused 620 621 // Array mapping blocks to completed oopflows 622 OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, C->cfg()->number_of_blocks()); 623 memset( flows, 0, C->cfg()->number_of_blocks() * sizeof(OopFlow*) ); 624 625 626 // Do the first block 'by hand' to prime the worklist 627 Block *entry = C->cfg()->get_block(1); 628 OopFlow *rootflow = OopFlow::make(A,max_reg,C); 629 // Initialize to 'bottom' (not 'top') 630 memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) ); 631 memset( rootflow->_defs , 0, max_reg*sizeof(Node*) ); 632 flows[entry->_pre_order] = rootflow; 633 634 // Do the first block 'by hand' to prime the worklist 635 rootflow->_b = entry; 636 rootflow->compute_reach( C->regalloc(), max_reg, safehash ); 637 for( uint i=0; i<entry->_num_succs; i++ ) 638 worklist.push(entry->_succs[i]); 639 640 // Now worklist contains blocks which have some, but perhaps not all, 641 // predecessors visited. 642 while( worklist.size() ) { 643 // Scan for a block with all predecessors visited, or any randoms slob 644 // otherwise. All-preds-visited order allows me to recycle OopFlow 645 // structures rapidly and cut down on the memory footprint. 646 // Note: not all predecessors might be visited yet (must happen for 647 // irreducible loops). This is OK, since every live value must have the 648 // SAME reaching def for the block, so any reaching def is OK. 649 uint i; 650 651 Block *b = worklist.pop(); 652 // Ignore root block 653 if (b == C->cfg()->get_root_block()) { 654 continue; 655 } 656 // Block is already done? Happens if block has several predecessors, 657 // he can get on the worklist more than once. 658 if( flows[b->_pre_order] ) continue; 659 660 // If this block has a visited predecessor AND that predecessor has this 661 // last block as his only undone child, we can move the OopFlow from the 662 // pred to this block. Otherwise we have to grab a new OopFlow. 663 OopFlow *flow = nullptr; // Flag for finding optimized flow 664 Block *pred = (Block*)((intptr_t)0xdeadbeef); 665 // Scan this block's preds to find a done predecessor 666 for (uint j = 1; j < b->num_preds(); j++) { 667 Block* p = C->cfg()->get_block_for_node(b->pred(j)); 668 OopFlow *p_flow = flows[p->_pre_order]; 669 if( p_flow ) { // Predecessor is done 670 assert( p_flow->_b == p, "cross check" ); 671 pred = p; // Record some predecessor 672 // If all successors of p are done except for 'b', then we can carry 673 // p_flow forward to 'b' without copying, otherwise we have to draw 674 // from the free_list and clone data. 675 uint k; 676 for( k=0; k<p->_num_succs; k++ ) 677 if( !flows[p->_succs[k]->_pre_order] && 678 p->_succs[k] != b ) 679 break; 680 681 // Either carry-forward the now-unused OopFlow for b's use 682 // or draw a new one from the free list 683 if( k==p->_num_succs ) { 684 flow = p_flow; 685 break; // Found an ideal pred, use him 686 } 687 } 688 } 689 690 if( flow ) { 691 // We have an OopFlow that's the last-use of a predecessor. 692 // Carry it forward. 693 } else { // Draw a new OopFlow from the freelist 694 if( !free_list ) 695 free_list = OopFlow::make(A,max_reg,C); 696 flow = free_list; 697 assert( flow->_b == nullptr, "oopFlow is not free" ); 698 free_list = flow->_next; 699 flow->_next = nullptr; 700 701 // Copy/clone over the data 702 flow->clone(flows[pred->_pre_order], max_reg); 703 } 704 705 // Mark flow for block. Blocks can only be flowed over once, 706 // because after the first time they are guarded from entering 707 // this code again. 708 assert( flow->_b == pred, "have some prior flow" ); 709 flow->_b = nullptr; 710 711 // Now push flow forward 712 flows[b->_pre_order] = flow;// Mark flow for this block 713 flow->_b = b; 714 flow->compute_reach( C->regalloc(), max_reg, safehash ); 715 716 // Now push children onto worklist 717 for( i=0; i<b->_num_succs; i++ ) 718 worklist.push(b->_succs[i]); 719 720 } 721 }