1 /*
  2  * Copyright (c) 2002, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "code/vmreg.inline.hpp"
 26 #include "compiler/oopMap.hpp"
 27 #include "memory/resourceArea.hpp"
 28 #include "opto/addnode.hpp"
 29 #include "opto/callnode.hpp"
 30 #include "opto/compile.hpp"
 31 #include "opto/machnode.hpp"
 32 #include "opto/matcher.hpp"
 33 #include "opto/output.hpp"
 34 #include "opto/phase.hpp"
 35 #include "opto/regalloc.hpp"
 36 #include "opto/rootnode.hpp"
 37 #include "utilities/align.hpp"
 38 
 39 // The functions in this file builds OopMaps after all scheduling is done.
 40 //
 41 // OopMaps contain a list of all registers and stack-slots containing oops (so
 42 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
 43 // base-pointer pairs.  When the base is moved, the derived pointer moves to
 44 // follow it.  Finally, any registers holding callee-save values are also
 45 // recorded.  These might contain oops, but only the caller knows.
 46 //
 47 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
 48 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
 49 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
 50 // derived pointers, and bases can be found from them.  Finally, we'll also
 51 // track reaching callee-save values.  Note that a copy of a callee-save value
 52 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
 53 // a time.
 54 //
 55 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
 56 // irreducible loops, we can have a reaching def of an oop that only reaches
 57 // along one path and no way to know if it's valid or not on the other path.
 58 // The bitvectors are quite dense and the liveness pass is fast.
 59 //
 60 // At GC points, we consult this information to build OopMaps.  All reaching
 61 // defs typed as oops are added to the OopMap.  Only 1 instance of a
 62 // callee-save register can be recorded.  For derived pointers, we'll have to
 63 // find and record the register holding the base.
 64 //
 65 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
 66 // breadth-first approach but it was worse (showed O(n^2) in the
 67 // pick-next-block code).
 68 //
 69 // The relevant data is kept in a struct of arrays (it could just as well be
 70 // an array of structs, but the struct-of-arrays is generally a little more
 71 // efficient).  The arrays are indexed by register number (including
 72 // stack-slots as registers) and so is bounded by 200 to 300 elements in
 73 // practice.  One array will map to a reaching def Node (or null for
 74 // conflict/dead).  The other array will map to a callee-saved register or
 75 // OptoReg::Bad for not-callee-saved.
 76 
 77 
 78 // Structure to pass around
 79 struct OopFlow : public ArenaObj {
 80   short *_callees;              // Array mapping register to callee-saved
 81   Node **_defs;                 // array mapping register to reaching def
 82                                 // or null if dead/conflict
 83   // OopFlow structs, when not being actively modified, describe the _end_ of
 84   // this block.
 85   Block *_b;                    // Block for this struct
 86   OopFlow *_next;               // Next free OopFlow
 87                                 // or null if dead/conflict
 88   Compile* C;
 89 
 90   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
 91     _b(nullptr), _next(nullptr), C(c) { }
 92 
 93   // Given reaching-defs for this block start, compute it for this block end
 94   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
 95 
 96   // Merge these two OopFlows into the 'this' pointer.
 97   void merge( OopFlow *flow, int max_reg );
 98 
 99   // Copy a 'flow' over an existing flow
100   void clone( OopFlow *flow, int max_size);
101 
102   // Make a new OopFlow from scratch
103   static OopFlow *make( Arena *A, int max_size, Compile* C );
104 
105   // Build an oopmap from the current flow info
106   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
107 };
108 
109 // Given reaching-defs for this block start, compute it for this block end
110 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
111 
112   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
113     Node *n = _b->get_node(i);
114 
115     if( n->jvms() ) {           // Build an OopMap here?
116       JVMState *jvms = n->jvms();
117       // no map needed for leaf calls
118       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
119         int *live = (int*) (*safehash)[n];
120         assert( live, "must find live" );
121         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
122       }
123     }
124 
125     // Assign new reaching def's.
126     // Note that I padded the _defs and _callees arrays so it's legal
127     // to index at _defs[OptoReg::Bad].
128     OptoReg::Name first = regalloc->get_reg_first(n);
129     OptoReg::Name second = regalloc->get_reg_second(n);
130     _defs[first] = n;
131     _defs[second] = n;
132 
133     // Pass callee-save info around copies
134     int idx = n->is_Copy();
135     if( idx ) {                 // Copies move callee-save info
136       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
137       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
138       int tmp_first = _callees[old_first];
139       int tmp_second = _callees[old_second];
140       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
141       _callees[old_second] = OptoReg::Bad;
142       _callees[first] = tmp_first;
143       _callees[second] = tmp_second;
144     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
145       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
146       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
147       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
148       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
149     } else {
150       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
151       _callees[second] = OptoReg::Bad;
152 
153       // Find base case for callee saves
154       if( n->is_Proj() && n->in(0)->is_Start() ) {
155         if( OptoReg::is_reg(first) &&
156             regalloc->_matcher.is_save_on_entry(first) )
157           _callees[first] = first;
158         if( OptoReg::is_reg(second) &&
159             regalloc->_matcher.is_save_on_entry(second) )
160           _callees[second] = second;
161       }
162     }
163   }
164 }
165 
166 // Merge the given flow into the 'this' flow
167 void OopFlow::merge( OopFlow *flow, int max_reg ) {
168   assert( _b == nullptr, "merging into a happy flow" );
169   assert( flow->_b, "this flow is still alive" );
170   assert( flow != this, "no self flow" );
171 
172   // Do the merge.  If there are any differences, drop to 'bottom' which
173   // is OptoReg::Bad or null depending.
174   for( int i=0; i<max_reg; i++ ) {
175     // Merge the callee-save's
176     if( _callees[i] != flow->_callees[i] )
177       _callees[i] = OptoReg::Bad;
178     // Merge the reaching defs
179     if( _defs[i] != flow->_defs[i] )
180       _defs[i] = nullptr;
181   }
182 
183 }
184 
185 void OopFlow::clone( OopFlow *flow, int max_size ) {
186   _b = flow->_b;
187   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
188   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
189 }
190 
191 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
192   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
193   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
194   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
195   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
196   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
197   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
198   return flow;
199 }
200 
201 static int get_live_bit( int *live, int reg ) {
202   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
203 static void set_live_bit( int *live, int reg ) {
204          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
205 static void clr_live_bit( int *live, int reg ) {
206          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
207 
208 // Build an oopmap from the current flow info
209 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
210   int framesize = regalloc->_framesize;
211   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
212   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
213               memset(dup_check,0,OptoReg::stack0()) );
214 
215   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
216   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : nullptr;
217   JVMState* jvms = n->jvms();
218 
219   // For all registers do...
220   for( int reg=0; reg<max_reg; reg++ ) {
221     if( get_live_bit(live,reg) == 0 )
222       continue;                 // Ignore if not live
223 
224     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
225     // register in that case we'll get an non-concrete register for the second
226     // half. We only need to tell the map the register once!
227     //
228     // However for the moment we disable this change and leave things as they
229     // were.
230 
231     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
232 
233     // See if dead (no reaching def).
234     Node *def = _defs[reg];     // Get reaching def
235     assert( def, "since live better have reaching def" );
236 
237     if (def->is_MachTemp()) {
238       assert(!def->bottom_type()->isa_oop_ptr(),
239              "ADLC only assigns OOP types to MachTemp defs corresponding to xRegN operands");
240       // Exclude MachTemp definitions even if they are typed as oops.
241       continue;
242     }
243 
244     // Classify the reaching def as oop, derived, callee-save, dead, or other
245     const Type *t = def->bottom_type();
246     if( t->isa_oop_ptr() ) {    // Oop or derived?
247       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
248 #ifdef _LP64
249       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
250       // Make sure both are record from the same reaching def, but do not
251       // put both into the oopmap.
252       if( (reg&1) == 1 ) {      // High half of oop-pair?
253         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
254         continue;               // Do not record high parts in oopmap
255       }
256 #endif
257 
258       // Check for a legal reg name in the oopMap and bailout if it is not.
259       if (!omap->legal_vm_reg_name(r)) {
260         stringStream ss;
261         ss.print("illegal oopMap register name: ");
262         r->print_on(&ss);
263         assert(false, "%s", ss.as_string());
264         regalloc->C->record_method_not_compilable(ss.as_string());
265         continue;
266       }
267       if (t->is_ptr()->offset() == 0) { // Not derived?
268         if( mcall ) {
269           // Outgoing argument GC mask responsibility belongs to the callee,
270           // not the caller.  Inspect the inputs to the call, to see if
271           // this live-range is one of them.
272           uint cnt = mcall->tf()->domain_cc()->cnt();
273           uint j;
274           for( j = TypeFunc::Parms; j < cnt; j++)
275             if( mcall->in(j) == def )
276               break;            // reaching def is an argument oop
277           if( j < cnt )         // arg oops dont go in GC map
278             continue;           // Continue on to the next register
279         }
280         omap->set_oop(r);
281       } else {                  // Else it's derived.
282         // Find the base of the derived value.
283         uint i;
284         // Fast, common case, scan
285         for( i = jvms->oopoff(); i < n->req(); i+=2 )
286           if( n->in(i) == def ) break; // Common case
287         if( i == n->req() ) {   // Missed, try a more generous scan
288           // Scan again, but this time peek through copies
289           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
290             Node *m = n->in(i); // Get initial derived value
291             while( 1 ) {
292               Node *d = def;    // Get initial reaching def
293               while( 1 ) {      // Follow copies of reaching def to end
294                 if( m == d ) goto found; // breaks 3 loops
295                 int idx = d->is_Copy();
296                 if( !idx ) break;
297                 d = d->in(idx);     // Link through copy
298               }
299               int idx = m->is_Copy();
300               if( !idx ) break;
301               m = m->in(idx);
302             }
303           }
304           guarantee( 0, "must find derived/base pair" );
305         }
306       found: ;
307         Node *base = n->in(i+1); // Base is other half of pair
308         int breg = regalloc->get_reg_first(base);
309         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
310 
311         // I record liveness at safepoints BEFORE I make the inputs
312         // live.  This is because argument oops are NOT live at a
313         // safepoint (or at least they cannot appear in the oopmap).
314         // Thus bases of base/derived pairs might not be in the
315         // liveness data but they need to appear in the oopmap.
316         if( get_live_bit(live,breg) == 0 ) {// Not live?
317           // Flag it, so next derived pointer won't re-insert into oopmap
318           set_live_bit(live,breg);
319           // Already missed our turn?
320           if( breg < reg ) {
321             omap->set_oop(b);
322           }
323         }
324         omap->set_derived_oop(r, b);
325       }
326 
327     } else if( t->isa_narrowoop() ) {
328       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
329       // Check for a legal reg name in the oopMap and bailout if it is not.
330       if (!omap->legal_vm_reg_name(r)) {
331         stringStream ss;
332         ss.print("illegal oopMap register name: ");
333         r->print_on(&ss);
334         assert(false, "%s", ss.as_string());
335         regalloc->C->record_method_not_compilable(ss.as_string());
336         continue;
337       }
338       if( mcall ) {
339           // Outgoing argument GC mask responsibility belongs to the callee,
340           // not the caller.  Inspect the inputs to the call, to see if
341           // this live-range is one of them.
342         uint cnt = mcall->tf()->domain_cc()->cnt();
343         uint j;
344         for( j = TypeFunc::Parms; j < cnt; j++)
345           if( mcall->in(j) == def )
346             break;            // reaching def is an argument oop
347         if( j < cnt )         // arg oops dont go in GC map
348           continue;           // Continue on to the next register
349       }
350       omap->set_narrowoop(r);
351     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
352       // It's a callee-save value
353       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
354       debug_only( dup_check[_callees[reg]]=1; )
355       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
356       omap->set_callee_saved(r, callee);
357 
358     } else {
359       // Other - some reaching non-oop value
360 #ifdef ASSERT
361       if (t->isa_rawptr()) {
362         ResourceMark rm;
363         Unique_Node_List worklist;
364         worklist.push(def);
365         for (uint i = 0; i < worklist.size(); i++) {
366           Node* m = worklist.at(i);
367           if (C->cfg()->_raw_oops.member(m)) {
368             def->dump();
369             m->dump();
370             n->dump();
371             assert(false, "there should be an oop in OopMap instead of a live raw oop at safepoint");
372           }
373           // Check users as well because def might be spilled
374           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
375             Node* u = m->fast_out(j);
376             if ((u->is_SpillCopy() && u->in(1) == m) || u->is_Phi()) {
377               worklist.push(u);
378             }
379           }
380         }
381       }
382 #endif
383     }
384 
385   }
386 
387 #ifdef ASSERT
388   /* Nice, Intel-only assert
389   int cnt_callee_saves=0;
390   int reg2 = 0;
391   while (OptoReg::is_reg(reg2)) {
392     if( dup_check[reg2] != 0) cnt_callee_saves++;
393     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
394     reg2++;
395   }
396   */
397 #endif
398 
399 #ifdef ASSERT
400   bool has_derived_oops = false;
401   for( OopMapStream oms1(omap); !oms1.is_done(); oms1.next()) {
402     OopMapValue omv1 = oms1.current();
403     if (omv1.type() != OopMapValue::derived_oop_value) {
404       continue;
405     }
406     has_derived_oops = true;
407     bool found = false;
408     for( OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) {
409       OopMapValue omv2 = oms2.current();
410       if (omv2.type() != OopMapValue::oop_value) {
411         continue;
412       }
413       if( omv1.content_reg() == omv2.reg() ) {
414         found = true;
415         break;
416       }
417     }
418     assert(has_derived_oops == omap->has_derived_oops(), "");
419     assert( found, "derived with no base in oopmap" );
420   }
421 
422   int num_oops = 0;
423   for (OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) {
424     OopMapValue omv = oms2.current();
425     if (omv.type() == OopMapValue::oop_value || omv.type() == OopMapValue::narrowoop_value) {
426       num_oops++;
427     }
428   }
429   assert(num_oops == omap->num_oops(), "num_oops: %d omap->num_oops(): %d", num_oops, omap->num_oops());
430 #endif
431 
432   return omap;
433 }
434 
435 // Compute backwards liveness on registers
436 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
437   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
438   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
439   Node* root = cfg->get_root_node();
440   // On CISC platforms, get the node representing the stack pointer  that regalloc
441   // used for spills
442   Node *fp = NodeSentinel;
443   if (UseCISCSpill && root->req() > 1) {
444     fp = root->in(1)->in(TypeFunc::FramePtr);
445   }
446   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
447   // Push preds onto worklist
448   for (uint i = 1; i < root->req(); i++) {
449     Block* block = cfg->get_block_for_node(root->in(i));
450     worklist->push(block);
451   }
452 
453   // ZKM.jar includes tiny infinite loops which are unreached from below.
454   // If we missed any blocks, we'll retry here after pushing all missed
455   // blocks on the worklist.  Normally this outer loop never trips more
456   // than once.
457   while (1) {
458 
459     while( worklist->size() ) { // Standard worklist algorithm
460       Block *b = worklist->rpop();
461 
462       // Copy first successor into my tmp_live space
463       int s0num = b->_succs[0]->_pre_order;
464       int *t = &live[s0num*max_reg_ints];
465       for( int i=0; i<max_reg_ints; i++ )
466         tmp_live[i] = t[i];
467 
468       // OR in the remaining live registers
469       for( uint j=1; j<b->_num_succs; j++ ) {
470         uint sjnum = b->_succs[j]->_pre_order;
471         int *t = &live[sjnum*max_reg_ints];
472         for( int i=0; i<max_reg_ints; i++ )
473           tmp_live[i] |= t[i];
474       }
475 
476       // Now walk tmp_live up the block backwards, computing live
477       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
478         Node *n = b->get_node(k);
479         // KILL def'd bits
480         int first = regalloc->get_reg_first(n);
481         int second = regalloc->get_reg_second(n);
482         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
483         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
484 
485         MachNode *m = n->is_Mach() ? n->as_Mach() : nullptr;
486 
487         // Check if m is potentially a CISC alternate instruction (i.e, possibly
488         // synthesized by RegAlloc from a conventional instruction and a
489         // spilled input)
490         bool is_cisc_alternate = false;
491         if (UseCISCSpill && m) {
492           is_cisc_alternate = m->is_cisc_alternate();
493         }
494 
495         // GEN use'd bits
496         for( uint l=1; l<n->req(); l++ ) {
497           Node *def = n->in(l);
498           assert(def != nullptr, "input edge required");
499           int first = regalloc->get_reg_first(def);
500           int second = regalloc->get_reg_second(def);
501           //If peephole had removed the node,do not set live bit for it.
502           if (!(def->is_Mach() && def->as_Mach()->get_removed())) {
503             if (OptoReg::is_valid(first)) set_live_bit(tmp_live,first);
504             if (OptoReg::is_valid(second)) set_live_bit(tmp_live,second);
505           }
506           // If we use the stack pointer in a cisc-alternative instruction,
507           // check for use as a memory operand.  Then reconstruct the RegName
508           // for this stack location, and set the appropriate bit in the
509           // live vector 4987749.
510           if (is_cisc_alternate && def == fp) {
511             const TypePtr *adr_type = nullptr;
512             intptr_t offset;
513             const Node* base = m->get_base_and_disp(offset, adr_type);
514             if (base == NodeSentinel) {
515               // Machnode has multiple memory inputs. We are unable to reason
516               // with these, but are presuming (with trepidation) that not any of
517               // them are oops. This can be fixed by making get_base_and_disp()
518               // look at a specific input instead of all inputs.
519               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
520             } else if (base != fp || offset == Type::OffsetBot) {
521               // Do nothing: the fp operand is either not from a memory use
522               // (base == nullptr) OR the fp is used in a non-memory context
523               // (base is some other register) OR the offset is not constant,
524               // so it is not a stack slot.
525             } else {
526               assert(offset >= 0, "unexpected negative offset");
527               offset -= (offset % jintSize);  // count the whole word
528               int stack_reg = regalloc->offset2reg(offset);
529               if (OptoReg::is_stack(stack_reg)) {
530                 set_live_bit(tmp_live, stack_reg);
531               } else {
532                 assert(false, "stack_reg not on stack?");
533               }
534             }
535           }
536         }
537 
538         if( n->jvms() ) {       // Record liveness at safepoint
539 
540           // This placement of this stanza means inputs to calls are
541           // considered live at the callsite's OopMap.  Argument oops are
542           // hence live, but NOT included in the oopmap.  See cutout in
543           // build_oop_map.  Debug oops are live (and in OopMap).
544           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
545           for( int l=0; l<max_reg_ints; l++ )
546             n_live[l] = tmp_live[l];
547           safehash->Insert(n,n_live);
548         }
549 
550       }
551 
552       // Now at block top, see if we have any changes.  If so, propagate
553       // to prior blocks.
554       int *old_live = &live[b->_pre_order*max_reg_ints];
555       int l;
556       for( l=0; l<max_reg_ints; l++ )
557         if( tmp_live[l] != old_live[l] )
558           break;
559       if( l<max_reg_ints ) {     // Change!
560         // Copy in new value
561         for( l=0; l<max_reg_ints; l++ )
562           old_live[l] = tmp_live[l];
563         // Push preds onto worklist
564         for (l = 1; l < (int)b->num_preds(); l++) {
565           Block* block = cfg->get_block_for_node(b->pred(l));
566           worklist->push(block);
567         }
568       }
569     }
570 
571     // Scan for any missing safepoints.  Happens to infinite loops
572     // ala ZKM.jar
573     uint i;
574     for (i = 1; i < cfg->number_of_blocks(); i++) {
575       Block* block = cfg->get_block(i);
576       uint j;
577       for (j = 1; j < block->number_of_nodes(); j++) {
578         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == nullptr) {
579            break;
580         }
581       }
582       if (j < block->number_of_nodes()) {
583         break;
584       }
585     }
586     if (i == cfg->number_of_blocks()) {
587       break;                    // Got 'em all
588     }
589 
590     if (PrintOpto && Verbose) {
591       tty->print_cr("retripping live calc");
592     }
593 
594     // Force the issue (expensively): recheck everybody
595     for (i = 1; i < cfg->number_of_blocks(); i++) {
596       worklist->push(cfg->get_block(i));
597     }
598   }
599 }
600 
601 // Collect GC mask info - where are all the OOPs?
602 void PhaseOutput::BuildOopMaps() {
603   Compile::TracePhase tp(_t_buildOopMaps);
604   // Can't resource-mark because I need to leave all those OopMaps around,
605   // or else I need to resource-mark some arena other than the default.
606   // ResourceMark rm;              // Reclaim all OopFlows when done
607   int max_reg = C->regalloc()->_max_reg; // Current array extent
608 
609   Arena *A = Thread::current()->resource_area();
610   Block_List worklist;          // Worklist of pending blocks
611 
612   int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt;
613   Dict *safehash = nullptr;        // Used for assert only
614   // Compute a backwards liveness per register.  Needs a bitarray of
615   // #blocks x (#registers, rounded up to ints)
616   safehash = new Dict(cmpkey,hashkey,A);
617   do_liveness( C->regalloc(), C->cfg(), &worklist, max_reg_ints, A, safehash );
618   OopFlow *free_list = nullptr;    // Free, unused
619 
620   // Array mapping blocks to completed oopflows
621   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, C->cfg()->number_of_blocks());
622   memset( flows, 0, C->cfg()->number_of_blocks() * sizeof(OopFlow*) );
623 
624 
625   // Do the first block 'by hand' to prime the worklist
626   Block *entry = C->cfg()->get_block(1);
627   OopFlow *rootflow = OopFlow::make(A,max_reg,C);
628   // Initialize to 'bottom' (not 'top')
629   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
630   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
631   flows[entry->_pre_order] = rootflow;
632 
633   // Do the first block 'by hand' to prime the worklist
634   rootflow->_b = entry;
635   rootflow->compute_reach( C->regalloc(), max_reg, safehash );
636   for( uint i=0; i<entry->_num_succs; i++ )
637     worklist.push(entry->_succs[i]);
638 
639   // Now worklist contains blocks which have some, but perhaps not all,
640   // predecessors visited.
641   while( worklist.size() ) {
642     // Scan for a block with all predecessors visited, or any randoms slob
643     // otherwise.  All-preds-visited order allows me to recycle OopFlow
644     // structures rapidly and cut down on the memory footprint.
645     // Note: not all predecessors might be visited yet (must happen for
646     // irreducible loops).  This is OK, since every live value must have the
647     // SAME reaching def for the block, so any reaching def is OK.
648     uint i;
649 
650     Block *b = worklist.pop();
651     // Ignore root block
652     if (b == C->cfg()->get_root_block()) {
653       continue;
654     }
655     // Block is already done?  Happens if block has several predecessors,
656     // he can get on the worklist more than once.
657     if( flows[b->_pre_order] ) continue;
658 
659     // If this block has a visited predecessor AND that predecessor has this
660     // last block as his only undone child, we can move the OopFlow from the
661     // pred to this block.  Otherwise we have to grab a new OopFlow.
662     OopFlow *flow = nullptr;       // Flag for finding optimized flow
663     Block *pred = (Block*)((intptr_t)0xdeadbeef);
664     // Scan this block's preds to find a done predecessor
665     for (uint j = 1; j < b->num_preds(); j++) {
666       Block* p = C->cfg()->get_block_for_node(b->pred(j));
667       OopFlow *p_flow = flows[p->_pre_order];
668       if( p_flow ) {            // Predecessor is done
669         assert( p_flow->_b == p, "cross check" );
670         pred = p;               // Record some predecessor
671         // If all successors of p are done except for 'b', then we can carry
672         // p_flow forward to 'b' without copying, otherwise we have to draw
673         // from the free_list and clone data.
674         uint k;
675         for( k=0; k<p->_num_succs; k++ )
676           if( !flows[p->_succs[k]->_pre_order] &&
677               p->_succs[k] != b )
678             break;
679 
680         // Either carry-forward the now-unused OopFlow for b's use
681         // or draw a new one from the free list
682         if( k==p->_num_succs ) {
683           flow = p_flow;
684           break;                // Found an ideal pred, use him
685         }
686       }
687     }
688 
689     if( flow ) {
690       // We have an OopFlow that's the last-use of a predecessor.
691       // Carry it forward.
692     } else {                    // Draw a new OopFlow from the freelist
693       if( !free_list )
694         free_list = OopFlow::make(A,max_reg,C);
695       flow = free_list;
696       assert( flow->_b == nullptr, "oopFlow is not free" );
697       free_list = flow->_next;
698       flow->_next = nullptr;
699 
700       // Copy/clone over the data
701       flow->clone(flows[pred->_pre_order], max_reg);
702     }
703 
704     // Mark flow for block.  Blocks can only be flowed over once,
705     // because after the first time they are guarded from entering
706     // this code again.
707     assert( flow->_b == pred, "have some prior flow" );
708     flow->_b = nullptr;
709 
710     // Now push flow forward
711     flows[b->_pre_order] = flow;// Mark flow for this block
712     flow->_b = b;
713     flow->compute_reach( C->regalloc(), max_reg, safehash );
714 
715     // Now push children onto worklist
716     for( i=0; i<b->_num_succs; i++ )
717       worklist.push(b->_succs[i]);
718 
719   }
720 }