1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "code/vmreg.hpp"
  28 #include "compiler/compileLog.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/inlinetypenode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/regalloc.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 // Portions of code courtesy of Clifford Click
  52 
  53 // Optimization - Graph Style
  54 
  55 //=============================================================================
  56 uint StartNode::size_of() const { return sizeof(*this); }
  57 bool StartNode::cmp( const Node &n ) const
  58 { return _domain == ((StartNode&)n)._domain; }
  59 const Type *StartNode::bottom_type() const { return _domain; }
  60 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  61 #ifndef PRODUCT
  62 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  63 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  64 #endif
  65 
  66 //------------------------------Ideal------------------------------------------
  67 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  68   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  69 }
  70 
  71 //------------------------------calling_convention-----------------------------
  72 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  73   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  74 }
  75 
  76 //------------------------------Registers--------------------------------------
  77 const RegMask &StartNode::in_RegMask(uint) const {
  78   return RegMask::Empty;
  79 }
  80 
  81 //------------------------------match------------------------------------------
  82 // Construct projections for incoming parameters, and their RegMask info
  83 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  84   switch (proj->_con) {
  85   case TypeFunc::Control:
  86   case TypeFunc::I_O:
  87   case TypeFunc::Memory:
  88     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  89   case TypeFunc::FramePtr:
  90     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  91   case TypeFunc::ReturnAdr:
  92     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  93   case TypeFunc::Parms:
  94   default: {
  95       uint parm_num = proj->_con - TypeFunc::Parms;
  96       const Type *t = _domain->field_at(proj->_con);
  97       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  98         return new ConNode(Type::TOP);
  99       uint ideal_reg = t->ideal_reg();
 100       RegMask &rm = match->_calling_convention_mask[parm_num];
 101       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 102     }
 103   }
 104   return nullptr;
 105 }
 106 
 107 //=============================================================================
 108 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 109   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 110 };
 111 
 112 #ifndef PRODUCT
 113 void ParmNode::dump_spec(outputStream *st) const {
 114   if( _con < TypeFunc::Parms ) {
 115     st->print("%s", names[_con]);
 116   } else {
 117     st->print("Parm%d: ",_con-TypeFunc::Parms);
 118     // Verbose and WizardMode dump bottom_type for all nodes
 119     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 120   }
 121 }
 122 
 123 void ParmNode::dump_compact_spec(outputStream *st) const {
 124   if (_con < TypeFunc::Parms) {
 125     st->print("%s", names[_con]);
 126   } else {
 127     st->print("%d:", _con-TypeFunc::Parms);
 128     // unconditionally dump bottom_type
 129     bottom_type()->dump_on(st);
 130   }
 131 }
 132 #endif
 133 
 134 uint ParmNode::ideal_reg() const {
 135   switch( _con ) {
 136   case TypeFunc::Control  : // fall through
 137   case TypeFunc::I_O      : // fall through
 138   case TypeFunc::Memory   : return 0;
 139   case TypeFunc::FramePtr : // fall through
 140   case TypeFunc::ReturnAdr: return Op_RegP;
 141   default                 : assert( _con > TypeFunc::Parms, "" );
 142     // fall through
 143   case TypeFunc::Parms    : {
 144     // Type of argument being passed
 145     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 146     return t->ideal_reg();
 147   }
 148   }
 149   ShouldNotReachHere();
 150   return 0;
 151 }
 152 
 153 //=============================================================================
 154 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 155   init_req(TypeFunc::Control,cntrl);
 156   init_req(TypeFunc::I_O,i_o);
 157   init_req(TypeFunc::Memory,memory);
 158   init_req(TypeFunc::FramePtr,frameptr);
 159   init_req(TypeFunc::ReturnAdr,retadr);
 160 }
 161 
 162 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 163   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 164 }
 165 
 166 const Type* ReturnNode::Value(PhaseGVN* phase) const {
 167   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 168     ? Type::TOP
 169     : Type::BOTTOM;
 170 }
 171 
 172 // Do we Match on this edge index or not?  No edges on return nodes
 173 uint ReturnNode::match_edge(uint idx) const {
 174   return 0;
 175 }
 176 
 177 
 178 #ifndef PRODUCT
 179 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
 180   // Dump the required inputs, after printing "returns"
 181   uint i;                       // Exit value of loop
 182   for (i = 0; i < req(); i++) {    // For all required inputs
 183     if (i == TypeFunc::Parms) st->print("returns ");
 184     Node* p = in(i);
 185     if (p != nullptr) {
 186       p->dump_idx(false, st, dc);
 187       st->print(" ");
 188     } else {
 189       st->print("_ ");
 190     }
 191   }
 192 }
 193 #endif
 194 
 195 //=============================================================================
 196 RethrowNode::RethrowNode(
 197   Node* cntrl,
 198   Node* i_o,
 199   Node* memory,
 200   Node* frameptr,
 201   Node* ret_adr,
 202   Node* exception
 203 ) : Node(TypeFunc::Parms + 1) {
 204   init_req(TypeFunc::Control  , cntrl    );
 205   init_req(TypeFunc::I_O      , i_o      );
 206   init_req(TypeFunc::Memory   , memory   );
 207   init_req(TypeFunc::FramePtr , frameptr );
 208   init_req(TypeFunc::ReturnAdr, ret_adr);
 209   init_req(TypeFunc::Parms    , exception);
 210 }
 211 
 212 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 213   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 214 }
 215 
 216 const Type* RethrowNode::Value(PhaseGVN* phase) const {
 217   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 218     ? Type::TOP
 219     : Type::BOTTOM;
 220 }
 221 
 222 uint RethrowNode::match_edge(uint idx) const {
 223   return 0;
 224 }
 225 
 226 #ifndef PRODUCT
 227 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
 228   // Dump the required inputs, after printing "exception"
 229   uint i;                       // Exit value of loop
 230   for (i = 0; i < req(); i++) {    // For all required inputs
 231     if (i == TypeFunc::Parms) st->print("exception ");
 232     Node* p = in(i);
 233     if (p != nullptr) {
 234       p->dump_idx(false, st, dc);
 235       st->print(" ");
 236     } else {
 237       st->print("_ ");
 238     }
 239   }
 240 }
 241 #endif
 242 
 243 //=============================================================================
 244 // Do we Match on this edge index or not?  Match only target address & method
 245 uint TailCallNode::match_edge(uint idx) const {
 246   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 247 }
 248 
 249 //=============================================================================
 250 // Do we Match on this edge index or not?  Match only target address & oop
 251 uint TailJumpNode::match_edge(uint idx) const {
 252   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 253 }
 254 
 255 //=============================================================================
 256 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 257   _method(method),
 258   _receiver_info(nullptr) {
 259   assert(method != nullptr, "must be valid call site");
 260   _bci = InvocationEntryBci;
 261   _reexecute = Reexecute_Undefined;
 262   DEBUG_ONLY(_bci = -99);  // random garbage value
 263   DEBUG_ONLY(_map = (SafePointNode*)-1);
 264   _caller = caller;
 265   _depth  = 1 + (caller == nullptr ? 0 : caller->depth());
 266   _locoff = TypeFunc::Parms;
 267   _stkoff = _locoff + _method->max_locals();
 268   _monoff = _stkoff + _method->max_stack();
 269   _scloff = _monoff;
 270   _endoff = _monoff;
 271   _sp = 0;
 272 }
 273 JVMState::JVMState(int stack_size) :
 274   _method(nullptr),
 275   _receiver_info(nullptr) {
 276   _bci = InvocationEntryBci;
 277   _reexecute = Reexecute_Undefined;
 278   DEBUG_ONLY(_map = (SafePointNode*)-1);
 279   _caller = nullptr;
 280   _depth  = 1;
 281   _locoff = TypeFunc::Parms;
 282   _stkoff = _locoff;
 283   _monoff = _stkoff + stack_size;
 284   _scloff = _monoff;
 285   _endoff = _monoff;
 286   _sp = 0;
 287 }
 288 
 289 //--------------------------------of_depth-------------------------------------
 290 JVMState* JVMState::of_depth(int d) const {
 291   const JVMState* jvmp = this;
 292   assert(0 < d && (uint)d <= depth(), "oob");
 293   for (int skip = depth() - d; skip > 0; skip--) {
 294     jvmp = jvmp->caller();
 295   }
 296   assert(jvmp->depth() == (uint)d, "found the right one");
 297   return (JVMState*)jvmp;
 298 }
 299 
 300 //-----------------------------same_calls_as-----------------------------------
 301 bool JVMState::same_calls_as(const JVMState* that) const {
 302   if (this == that)                    return true;
 303   if (this->depth() != that->depth())  return false;
 304   const JVMState* p = this;
 305   const JVMState* q = that;
 306   for (;;) {
 307     if (p->_method != q->_method)    return false;
 308     if (p->_method == nullptr)       return true;   // bci is irrelevant
 309     if (p->_bci    != q->_bci)       return false;
 310     if (p->_reexecute != q->_reexecute)  return false;
 311     p = p->caller();
 312     q = q->caller();
 313     if (p == q)                      return true;
 314     assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
 315   }
 316 }
 317 
 318 //------------------------------debug_start------------------------------------
 319 uint JVMState::debug_start()  const {
 320   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 321   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 322   return of_depth(1)->locoff();
 323 }
 324 
 325 //-------------------------------debug_end-------------------------------------
 326 uint JVMState::debug_end() const {
 327   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 328   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 329   return endoff();
 330 }
 331 
 332 //------------------------------debug_depth------------------------------------
 333 uint JVMState::debug_depth() const {
 334   uint total = 0;
 335   for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
 336     total += jvmp->debug_size();
 337   }
 338   return total;
 339 }
 340 
 341 #ifndef PRODUCT
 342 
 343 //------------------------------format_helper----------------------------------
 344 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 345 // any defined value or not.  If it does, print out the register or constant.
 346 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 347   if (n == nullptr) { st->print(" null"); return; }
 348   if (n->is_SafePointScalarObject()) {
 349     // Scalar replacement.
 350     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 351     scobjs->append_if_missing(spobj);
 352     int sco_n = scobjs->find(spobj);
 353     assert(sco_n >= 0, "");
 354     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 355     return;
 356   }
 357   if (regalloc->node_regs_max_index() > 0 &&
 358       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 359     char buf[50];
 360     regalloc->dump_register(n,buf,sizeof(buf));
 361     st->print(" %s%d]=%s",msg,i,buf);
 362   } else {                      // No register, but might be constant
 363     const Type *t = n->bottom_type();
 364     switch (t->base()) {
 365     case Type::Int:
 366       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
 367       break;
 368     case Type::AnyPtr:
 369       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 370       st->print(" %s%d]=#null",msg,i);
 371       break;
 372     case Type::AryPtr:
 373     case Type::InstPtr:
 374       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 375       break;
 376     case Type::KlassPtr:
 377     case Type::AryKlassPtr:
 378     case Type::InstKlassPtr:
 379       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
 380       break;
 381     case Type::MetadataPtr:
 382       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 383       break;
 384     case Type::NarrowOop:
 385       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 386       break;
 387     case Type::RawPtr:
 388       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 389       break;
 390     case Type::DoubleCon:
 391       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 392       break;
 393     case Type::FloatCon:
 394       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 395       break;
 396     case Type::Long:
 397       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 398       break;
 399     case Type::Half:
 400     case Type::Top:
 401       st->print(" %s%d]=_",msg,i);
 402       break;
 403     default: ShouldNotReachHere();
 404     }
 405   }
 406 }
 407 
 408 //---------------------print_method_with_lineno--------------------------------
 409 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
 410   if (show_name) _method->print_short_name(st);
 411 
 412   int lineno = _method->line_number_from_bci(_bci);
 413   if (lineno != -1) {
 414     st->print(" @ bci:%d (line %d)", _bci, lineno);
 415   } else {
 416     st->print(" @ bci:%d", _bci);
 417   }
 418 }
 419 
 420 //------------------------------format-----------------------------------------
 421 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 422   st->print("        #");
 423   if (_method) {
 424     print_method_with_lineno(st, true);
 425   } else {
 426     st->print_cr(" runtime stub ");
 427     return;
 428   }
 429   if (n->is_MachSafePoint()) {
 430     GrowableArray<SafePointScalarObjectNode*> scobjs;
 431     MachSafePointNode *mcall = n->as_MachSafePoint();
 432     uint i;
 433     // Print locals
 434     for (i = 0; i < (uint)loc_size(); i++)
 435       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 436     // Print stack
 437     for (i = 0; i < (uint)stk_size(); i++) {
 438       if ((uint)(_stkoff + i) >= mcall->len())
 439         st->print(" oob ");
 440       else
 441        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 442     }
 443     for (i = 0; (int)i < nof_monitors(); i++) {
 444       Node *box = mcall->monitor_box(this, i);
 445       Node *obj = mcall->monitor_obj(this, i);
 446       if (regalloc->node_regs_max_index() > 0 &&
 447           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 448         box = BoxLockNode::box_node(box);
 449         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 450       } else {
 451         OptoReg::Name box_reg = BoxLockNode::reg(box);
 452         st->print(" MON-BOX%d=%s+%d",
 453                    i,
 454                    OptoReg::regname(OptoReg::c_frame_pointer),
 455                    regalloc->reg2offset(box_reg));
 456       }
 457       const char* obj_msg = "MON-OBJ[";
 458       if (EliminateLocks) {
 459         if (BoxLockNode::box_node(box)->is_eliminated())
 460           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 461       }
 462       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 463     }
 464 
 465     for (i = 0; i < (uint)scobjs.length(); i++) {
 466       // Scalar replaced objects.
 467       st->cr();
 468       st->print("        # ScObj" INT32_FORMAT " ", i);
 469       SafePointScalarObjectNode* spobj = scobjs.at(i);
 470       ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
 471       assert(cik->is_instance_klass() ||
 472              cik->is_array_klass(), "Not supported allocation.");
 473       ciInstanceKlass *iklass = nullptr;
 474       if (cik->is_instance_klass()) {
 475         cik->print_name_on(st);
 476         iklass = cik->as_instance_klass();
 477       } else if (cik->is_type_array_klass()) {
 478         cik->as_array_klass()->base_element_type()->print_name_on(st);
 479         st->print("[%d]", spobj->n_fields());
 480       } else if (cik->is_obj_array_klass()) {
 481         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 482         if (cie->is_instance_klass()) {
 483           cie->print_name_on(st);
 484         } else if (cie->is_type_array_klass()) {
 485           cie->as_array_klass()->base_element_type()->print_name_on(st);
 486         } else {
 487           ShouldNotReachHere();
 488         }
 489         st->print("[%d]", spobj->n_fields());
 490         int ndim = cik->as_array_klass()->dimension() - 1;
 491         while (ndim-- > 0) {
 492           st->print("[]");
 493         }
 494       } else if (cik->is_flat_array_klass()) {
 495         ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
 496         cie->print_name_on(st);
 497         st->print("[%d]", spobj->n_fields());
 498         int ndim = cik->as_array_klass()->dimension() - 1;
 499         while (ndim-- > 0) {
 500           st->print("[]");
 501         }
 502       }
 503       st->print("={");
 504       uint nf = spobj->n_fields();
 505       if (nf > 0) {
 506         uint first_ind = spobj->first_index(mcall->jvms());
 507         if (iklass != nullptr && iklass->is_inlinetype()) {
 508           Node* null_marker = mcall->in(first_ind++);
 509           if (!null_marker->is_top()) {
 510             st->print(" [null marker");
 511             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 512           }
 513         }
 514         Node* fld_node = mcall->in(first_ind);
 515         if (iklass != nullptr) {
 516           st->print(" [");
 517           iklass->nonstatic_field_at(0)->print_name_on(st);
 518           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 519         } else {
 520           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 521         }
 522         for (uint j = 1; j < nf; j++) {
 523           fld_node = mcall->in(first_ind+j);
 524           if (iklass != nullptr) {
 525             st->print(", [");
 526             iklass->nonstatic_field_at(j)->print_name_on(st);
 527             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 528           } else {
 529             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 530           }
 531         }
 532       }
 533       st->print(" }");
 534     }
 535   }
 536   st->cr();
 537   if (caller() != nullptr) caller()->format(regalloc, n, st);
 538 }
 539 
 540 
 541 void JVMState::dump_spec(outputStream *st) const {
 542   if (_method != nullptr) {
 543     bool printed = false;
 544     if (!Verbose) {
 545       // The JVMS dumps make really, really long lines.
 546       // Take out the most boring parts, which are the package prefixes.
 547       char buf[500];
 548       stringStream namest(buf, sizeof(buf));
 549       _method->print_short_name(&namest);
 550       if (namest.count() < sizeof(buf)) {
 551         const char* name = namest.base();
 552         if (name[0] == ' ')  ++name;
 553         const char* endcn = strchr(name, ':');  // end of class name
 554         if (endcn == nullptr)  endcn = strchr(name, '(');
 555         if (endcn == nullptr)  endcn = name + strlen(name);
 556         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 557           --endcn;
 558         st->print(" %s", endcn);
 559         printed = true;
 560       }
 561     }
 562     print_method_with_lineno(st, !printed);
 563     if(_reexecute == Reexecute_True)
 564       st->print(" reexecute");
 565   } else {
 566     st->print(" runtime stub");
 567   }
 568   if (caller() != nullptr)  caller()->dump_spec(st);
 569 }
 570 
 571 
 572 void JVMState::dump_on(outputStream* st) const {
 573   bool print_map = _map && !((uintptr_t)_map & 1) &&
 574                   ((caller() == nullptr) || (caller()->map() != _map));
 575   if (print_map) {
 576     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 577       Node* ex = _map->in(_map->req());  // _map->next_exception()
 578       // skip the first one; it's already being printed
 579       while (ex != nullptr && ex->len() > ex->req()) {
 580         ex = ex->in(ex->req());  // ex->next_exception()
 581         ex->dump(1);
 582       }
 583     }
 584     _map->dump(Verbose ? 2 : 1);
 585   }
 586   if (caller() != nullptr) {
 587     caller()->dump_on(st);
 588   }
 589   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 590              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 591   if (_method == nullptr) {
 592     st->print_cr("(none)");
 593   } else {
 594     _method->print_name(st);
 595     st->cr();
 596     if (bci() >= 0 && bci() < _method->code_size()) {
 597       st->print("    bc: ");
 598       _method->print_codes_on(bci(), bci()+1, st);
 599     }
 600   }
 601 }
 602 
 603 // Extra way to dump a jvms from the debugger,
 604 // to avoid a bug with C++ member function calls.
 605 void dump_jvms(JVMState* jvms) {
 606   jvms->dump();
 607 }
 608 #endif
 609 
 610 //--------------------------clone_shallow--------------------------------------
 611 JVMState* JVMState::clone_shallow(Compile* C) const {
 612   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 613   n->set_bci(_bci);
 614   n->_reexecute = _reexecute;
 615   n->set_locoff(_locoff);
 616   n->set_stkoff(_stkoff);
 617   n->set_monoff(_monoff);
 618   n->set_scloff(_scloff);
 619   n->set_endoff(_endoff);
 620   n->set_sp(_sp);
 621   n->set_map(_map);
 622   n->set_receiver_info(_receiver_info);
 623   return n;
 624 }
 625 
 626 //---------------------------clone_deep----------------------------------------
 627 JVMState* JVMState::clone_deep(Compile* C) const {
 628   JVMState* n = clone_shallow(C);
 629   for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
 630     p->_caller = p->_caller->clone_shallow(C);
 631   }
 632   assert(n->depth() == depth(), "sanity");
 633   assert(n->debug_depth() == debug_depth(), "sanity");
 634   return n;
 635 }
 636 
 637 /**
 638  * Reset map for all callers
 639  */
 640 void JVMState::set_map_deep(SafePointNode* map) {
 641   for (JVMState* p = this; p != nullptr; p = p->_caller) {
 642     p->set_map(map);
 643   }
 644 }
 645 
 646 // unlike set_map(), this is two-way setting.
 647 void JVMState::bind_map(SafePointNode* map) {
 648   set_map(map);
 649   _map->set_jvms(this);
 650 }
 651 
 652 // Adapt offsets in in-array after adding or removing an edge.
 653 // Prerequisite is that the JVMState is used by only one node.
 654 void JVMState::adapt_position(int delta) {
 655   for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
 656     jvms->set_locoff(jvms->locoff() + delta);
 657     jvms->set_stkoff(jvms->stkoff() + delta);
 658     jvms->set_monoff(jvms->monoff() + delta);
 659     jvms->set_scloff(jvms->scloff() + delta);
 660     jvms->set_endoff(jvms->endoff() + delta);
 661   }
 662 }
 663 
 664 // Mirror the stack size calculation in the deopt code
 665 // How much stack space would we need at this point in the program in
 666 // case of deoptimization?
 667 int JVMState::interpreter_frame_size() const {
 668   const JVMState* jvms = this;
 669   int size = 0;
 670   int callee_parameters = 0;
 671   int callee_locals = 0;
 672   int extra_args = method()->max_stack() - stk_size();
 673 
 674   while (jvms != nullptr) {
 675     int locks = jvms->nof_monitors();
 676     int temps = jvms->stk_size();
 677     bool is_top_frame = (jvms == this);
 678     ciMethod* method = jvms->method();
 679 
 680     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 681                                                                  temps + callee_parameters,
 682                                                                  extra_args,
 683                                                                  locks,
 684                                                                  callee_parameters,
 685                                                                  callee_locals,
 686                                                                  is_top_frame);
 687     size += frame_size;
 688 
 689     callee_parameters = method->size_of_parameters();
 690     callee_locals = method->max_locals();
 691     extra_args = 0;
 692     jvms = jvms->caller();
 693   }
 694   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 695 }
 696 
 697 // Compute receiver info for a compiled lambda form at call site.
 698 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
 699   assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
 700   if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
 701     Node* recv = map()->argument(this, 0);
 702     assert(recv != nullptr, "");
 703     const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
 704     if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
 705       return recv_toop->const_oop()->as_instance();
 706     }
 707   }
 708   return nullptr;
 709 }
 710 
 711 //=============================================================================
 712 bool CallNode::cmp( const Node &n ) const
 713 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 714 #ifndef PRODUCT
 715 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
 716   // Dump the required inputs, enclosed in '(' and ')'
 717   uint i;                       // Exit value of loop
 718   for (i = 0; i < req(); i++) {    // For all required inputs
 719     if (i == TypeFunc::Parms) st->print("(");
 720     Node* p = in(i);
 721     if (p != nullptr) {
 722       p->dump_idx(false, st, dc);
 723       st->print(" ");
 724     } else {
 725       st->print("_ ");
 726     }
 727   }
 728   st->print(")");
 729 }
 730 
 731 void CallNode::dump_spec(outputStream *st) const {
 732   st->print(" ");
 733   if (tf() != nullptr)  tf()->dump_on(st);
 734   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 735   if (jvms() != nullptr)  jvms()->dump_spec(st);
 736 }
 737 
 738 void AllocateNode::dump_spec(outputStream* st) const {
 739   st->print(" ");
 740   if (tf() != nullptr) {
 741     tf()->dump_on(st);
 742   }
 743   if (_cnt != COUNT_UNKNOWN) {
 744     st->print(" C=%f", _cnt);
 745   }
 746   const Node* const klass_node = in(KlassNode);
 747   if (klass_node != nullptr) {
 748     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 749 
 750     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 751       st->print(" allocationKlass:");
 752       klass_ptr->exact_klass()->print_name_on(st);
 753     }
 754   }
 755   if (jvms() != nullptr) {
 756     jvms()->dump_spec(st);
 757   }
 758 }
 759 #endif
 760 
 761 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 762 const Type* CallNode::Value(PhaseGVN* phase) const {
 763   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 764     return Type::TOP;
 765   }
 766   return tf()->range_cc();
 767 }
 768 
 769 //------------------------------calling_convention-----------------------------
 770 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 771   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 772     // The call to that stub is a special case: its inputs are
 773     // multiple values returned from a call and so it should follow
 774     // the return convention.
 775     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 776     return;
 777   }
 778   // Use the standard compiler calling convention
 779   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 780 }
 781 
 782 
 783 //------------------------------match------------------------------------------
 784 // Construct projections for control, I/O, memory-fields, ..., and
 785 // return result(s) along with their RegMask info
 786 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 787   uint con = proj->_con;
 788   const TypeTuple* range_cc = tf()->range_cc();
 789   if (con >= TypeFunc::Parms) {
 790     if (tf()->returns_inline_type_as_fields()) {
 791       // The call returns multiple values (inline type fields): we
 792       // create one projection per returned value.
 793       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 794       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 795       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 796     } else {
 797       if (con == TypeFunc::Parms) {
 798         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 799         OptoRegPair regs = Opcode() == Op_CallLeafVector
 800           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 801           : match->c_return_value(ideal_reg);
 802         RegMask rm = RegMask(regs.first());
 803 
 804         if (Opcode() == Op_CallLeafVector) {
 805           // If the return is in vector, compute appropriate regmask taking into account the whole range
 806           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 807             if(OptoReg::is_valid(regs.second())) {
 808               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 809                 rm.Insert(r);
 810               }
 811             }
 812           }
 813         }
 814 
 815         if (OptoReg::is_valid(regs.second())) {
 816           rm.Insert(regs.second());
 817         }
 818         return new MachProjNode(this,con,rm,ideal_reg);
 819       } else {
 820         assert(con == TypeFunc::Parms+1, "only one return value");
 821         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 822         return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad);
 823       }
 824     }
 825   }
 826 
 827   switch (con) {
 828   case TypeFunc::Control:
 829   case TypeFunc::I_O:
 830   case TypeFunc::Memory:
 831     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 832 
 833   case TypeFunc::ReturnAdr:
 834   case TypeFunc::FramePtr:
 835   default:
 836     ShouldNotReachHere();
 837   }
 838   return nullptr;
 839 }
 840 
 841 // Do we Match on this edge index or not?  Match no edges
 842 uint CallNode::match_edge(uint idx) const {
 843   return 0;
 844 }
 845 
 846 //
 847 // Determine whether the call could modify the field of the specified
 848 // instance at the specified offset.
 849 //
 850 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 851   assert((t_oop != nullptr), "sanity");
 852   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 853     const TypeTuple* args = _tf->domain_sig();
 854     Node* dest = nullptr;
 855     // Stubs that can be called once an ArrayCopyNode is expanded have
 856     // different signatures. Look for the second pointer argument,
 857     // that is the destination of the copy.
 858     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 859       if (args->field_at(i)->isa_ptr()) {
 860         j++;
 861         if (j == 2) {
 862           dest = in(i);
 863           break;
 864         }
 865       }
 866     }
 867     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 868     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 869       return true;
 870     }
 871     return false;
 872   }
 873   if (t_oop->is_known_instance()) {
 874     // The instance_id is set only for scalar-replaceable allocations which
 875     // are not passed as arguments according to Escape Analysis.
 876     return false;
 877   }
 878   if (t_oop->is_ptr_to_boxed_value()) {
 879     ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
 880     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 881       // Skip unrelated boxing methods.
 882       Node* proj = proj_out_or_null(TypeFunc::Parms);
 883       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 884         return false;
 885       }
 886     }
 887     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 888       ciMethod* meth = as_CallJava()->method();
 889       if (meth->is_getter()) {
 890         return false;
 891       }
 892       // May modify (by reflection) if an boxing object is passed
 893       // as argument or returned.
 894       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 895       if (proj != nullptr) {
 896         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 897         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 898                                    (inst_t->instance_klass() == boxing_klass))) {
 899           return true;
 900         }
 901       }
 902       const TypeTuple* d = tf()->domain_cc();
 903       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 904         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 905         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 906                                  (inst_t->instance_klass() == boxing_klass))) {
 907           return true;
 908         }
 909       }
 910       return false;
 911     }
 912   }
 913   return true;
 914 }
 915 
 916 // Does this call have a direct reference to n other than debug information?
 917 bool CallNode::has_non_debug_use(Node* n) {
 918   const TypeTuple* d = tf()->domain_cc();
 919   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 920     if (in(i) == n) {
 921       return true;
 922     }
 923   }
 924   return false;
 925 }
 926 
 927 bool CallNode::has_debug_use(Node* n) {
 928   if (jvms() != nullptr) {
 929     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 930       if (in(i) == n) {
 931         return true;
 932       }
 933     }
 934   }
 935   return false;
 936 }
 937 
 938 // Returns the unique CheckCastPP of a call
 939 // or 'this' if there are several CheckCastPP or unexpected uses
 940 // or returns null if there is no one.
 941 Node *CallNode::result_cast() {
 942   Node *cast = nullptr;
 943 
 944   Node *p = proj_out_or_null(TypeFunc::Parms);
 945   if (p == nullptr)
 946     return nullptr;
 947 
 948   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 949     Node *use = p->fast_out(i);
 950     if (use->is_CheckCastPP()) {
 951       if (cast != nullptr) {
 952         return this;  // more than 1 CheckCastPP
 953       }
 954       cast = use;
 955     } else if (!use->is_Initialize() &&
 956                !use->is_AddP() &&
 957                use->Opcode() != Op_MemBarStoreStore) {
 958       // Expected uses are restricted to a CheckCastPP, an Initialize
 959       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 960       // encounter any other use (a Phi node can be seen in rare
 961       // cases) return this to prevent incorrect optimizations.
 962       return this;
 963     }
 964   }
 965   return cast;
 966 }
 967 
 968 
 969 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 970   uint max_res = TypeFunc::Parms-1;
 971   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 972     ProjNode *pn = fast_out(i)->as_Proj();
 973     max_res = MAX2(max_res, pn->_con);
 974   }
 975 
 976   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 977 
 978   uint projs_size = sizeof(CallProjections);
 979   if (max_res > TypeFunc::Parms) {
 980     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 981   }
 982   char* projs_storage = resource_allocate_bytes(projs_size);
 983   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 984 
 985   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 986     ProjNode *pn = fast_out(i)->as_Proj();
 987     if (pn->outcnt() == 0) continue;
 988     switch (pn->_con) {
 989     case TypeFunc::Control:
 990       {
 991         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 992         projs->fallthrough_proj = pn;
 993         const Node* cn = pn->unique_ctrl_out_or_null();
 994         if (cn != nullptr && cn->is_Catch()) {
 995           ProjNode *cpn = nullptr;
 996           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 997             cpn = cn->fast_out(k)->as_Proj();
 998             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 999             if (cpn->_con == CatchProjNode::fall_through_index)
1000               projs->fallthrough_catchproj = cpn;
1001             else {
1002               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1003               projs->catchall_catchproj = cpn;
1004             }
1005           }
1006         }
1007         break;
1008       }
1009     case TypeFunc::I_O:
1010       if (pn->_is_io_use)
1011         projs->catchall_ioproj = pn;
1012       else
1013         projs->fallthrough_ioproj = pn;
1014       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1015         Node* e = pn->out(j);
1016         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1017           assert(projs->exobj == nullptr, "only one");
1018           projs->exobj = e;
1019         }
1020       }
1021       break;
1022     case TypeFunc::Memory:
1023       if (pn->_is_io_use)
1024         projs->catchall_memproj = pn;
1025       else
1026         projs->fallthrough_memproj = pn;
1027       break;
1028     case TypeFunc::Parms:
1029       projs->resproj[0] = pn;
1030       break;
1031     default:
1032       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1033       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1034       break;
1035     }
1036   }
1037 
1038   // The resproj may not exist because the result could be ignored
1039   // and the exception object may not exist if an exception handler
1040   // swallows the exception but all the other must exist and be found.
1041   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1042   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1043   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1044   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1045   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1046   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1047   if (separate_io_proj) {
1048     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1049     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1050   }
1051   return projs;
1052 }
1053 
1054 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1055 #ifdef ASSERT
1056   // Validate attached generator
1057   CallGenerator* cg = generator();
1058   if (cg != nullptr) {
1059     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1060            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1061   }
1062 #endif // ASSERT
1063   return SafePointNode::Ideal(phase, can_reshape);
1064 }
1065 
1066 bool CallNode::is_call_to_arraycopystub() const {
1067   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1068     return true;
1069   }
1070   return false;
1071 }
1072 
1073 //=============================================================================
1074 uint CallJavaNode::size_of() const { return sizeof(*this); }
1075 bool CallJavaNode::cmp( const Node &n ) const {
1076   CallJavaNode &call = (CallJavaNode&)n;
1077   return CallNode::cmp(call) && _method == call._method &&
1078          _override_symbolic_info == call._override_symbolic_info;
1079 }
1080 
1081 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1082   // Copy debug information and adjust JVMState information
1083   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1084   uint new_dbg_start = tf()->domain_sig()->cnt();
1085   int jvms_adj  = new_dbg_start - old_dbg_start;
1086   assert (new_dbg_start == req(), "argument count mismatch");
1087   Compile* C = phase->C;
1088 
1089   // SafePointScalarObject node could be referenced several times in debug info.
1090   // Use Dict to record cloned nodes.
1091   Dict* sosn_map = new Dict(cmpkey,hashkey);
1092   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1093     Node* old_in = sfpt->in(i);
1094     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1095     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1096       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1097       bool new_node;
1098       Node* new_in = old_sosn->clone(sosn_map, new_node);
1099       if (new_node) { // New node?
1100         new_in->set_req(0, C->root()); // reset control edge
1101         new_in = phase->transform(new_in); // Register new node.
1102       }
1103       old_in = new_in;
1104     }
1105     add_req(old_in);
1106   }
1107 
1108   // JVMS may be shared so clone it before we modify it
1109   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1110   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1111     jvms->set_map(this);
1112     jvms->set_locoff(jvms->locoff()+jvms_adj);
1113     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1114     jvms->set_monoff(jvms->monoff()+jvms_adj);
1115     jvms->set_scloff(jvms->scloff()+jvms_adj);
1116     jvms->set_endoff(jvms->endoff()+jvms_adj);
1117   }
1118 }
1119 
1120 #ifdef ASSERT
1121 bool CallJavaNode::validate_symbolic_info() const {
1122   if (method() == nullptr) {
1123     return true; // call into runtime or uncommon trap
1124   }
1125   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1126   if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1127     return true;
1128   }
1129   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1130   ciMethod* callee = method();
1131   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1132     assert(override_symbolic_info(), "should be set");
1133   }
1134   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1135   return true;
1136 }
1137 #endif
1138 
1139 #ifndef PRODUCT
1140 void CallJavaNode::dump_spec(outputStream* st) const {
1141   if( _method ) _method->print_short_name(st);
1142   CallNode::dump_spec(st);
1143 }
1144 
1145 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1146   if (_method) {
1147     _method->print_short_name(st);
1148   } else {
1149     st->print("<?>");
1150   }
1151 }
1152 #endif
1153 
1154 void CallJavaNode::register_for_late_inline() {
1155   if (generator() != nullptr) {
1156     Compile::current()->prepend_late_inline(generator());
1157     set_generator(nullptr);
1158   } else {
1159     assert(false, "repeated inline attempt");
1160   }
1161 }
1162 
1163 //=============================================================================
1164 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1165 bool CallStaticJavaNode::cmp( const Node &n ) const {
1166   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1167   return CallJavaNode::cmp(call);
1168 }
1169 
1170 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1171   if (can_reshape && uncommon_trap_request() != 0) {
1172     PhaseIterGVN* igvn = phase->is_IterGVN();
1173     if (remove_unknown_flat_array_load(igvn, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) {
1174       if (!in(0)->is_Region()) {
1175         igvn->replace_input_of(this, 0, phase->C->top());
1176       }
1177       return this;
1178     }
1179   }
1180 
1181   CallGenerator* cg = generator();
1182   if (can_reshape && cg != nullptr) {
1183     if (cg->is_mh_late_inline()) {
1184       assert(IncrementalInlineMH, "required");
1185       assert(cg->call_node() == this, "mismatch");
1186       assert(cg->method()->is_method_handle_intrinsic(), "required");
1187 
1188       // Check whether this MH handle call becomes a candidate for inlining.
1189       ciMethod* callee = cg->method();
1190       vmIntrinsics::ID iid = callee->intrinsic_id();
1191       if (iid == vmIntrinsics::_invokeBasic) {
1192         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1193           register_for_late_inline();
1194         }
1195       } else if (iid == vmIntrinsics::_linkToNative) {
1196         // never retry
1197       } else {
1198         assert(callee->has_member_arg(), "wrong type of call?");
1199         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1200           register_for_late_inline();
1201           phase->C->inc_number_of_mh_late_inlines();
1202         }
1203       }
1204     } else {
1205       assert(IncrementalInline, "required");
1206       assert(!cg->method()->is_method_handle_intrinsic(), "required");
1207       if (phase->C->print_inlining()) {
1208         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1209           "static call node changed: trying again");
1210       }
1211       register_for_late_inline();
1212     }
1213   }
1214   return CallNode::Ideal(phase, can_reshape);
1215 }
1216 
1217 //----------------------------is_uncommon_trap----------------------------
1218 // Returns true if this is an uncommon trap.
1219 bool CallStaticJavaNode::is_uncommon_trap() const {
1220   return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1221 }
1222 
1223 //----------------------------uncommon_trap_request----------------------------
1224 // If this is an uncommon trap, return the request code, else zero.
1225 int CallStaticJavaNode::uncommon_trap_request() const {
1226   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1227 }
1228 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1229 #ifndef PRODUCT
1230   if (!(call->req() > TypeFunc::Parms &&
1231         call->in(TypeFunc::Parms) != nullptr &&
1232         call->in(TypeFunc::Parms)->is_Con() &&
1233         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1234     assert(in_dump() != 0, "OK if dumping");
1235     tty->print("[bad uncommon trap]");
1236     return 0;
1237   }
1238 #endif
1239   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1240 }
1241 
1242 // Split if can cause the flat array branch of an array load with unknown type (see
1243 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1244 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1245 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1246   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1247     return false;
1248   }
1249   if (ctl->is_Region()) {
1250     bool res = false;
1251     for (uint i = 1; i < ctl->req(); i++) {
1252       MergeMemNode* mm = mem->clone()->as_MergeMem();
1253       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1254         Node* m = mms.memory();
1255         if (m->is_Phi() && m->in(0) == ctl) {
1256           mms.set_memory(m->in(i));
1257         }
1258       }
1259       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1260         res = true;
1261         if (!ctl->in(i)->is_Region()) {
1262           igvn->replace_input_of(ctl, i, igvn->C->top());
1263         }
1264       }
1265       igvn->remove_dead_node(mm);
1266     }
1267     return res;
1268   }
1269   // Verify the control flow is ok
1270   Node* call = ctl;
1271   MemBarNode* membar = nullptr;
1272   for (;;) {
1273     if (call == nullptr || call->is_top()) {
1274       return false;
1275     }
1276     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1277       call = call->in(0);
1278     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1279                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1280       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1281       membar = call->in(0)->in(0)->as_MemBar();
1282       break;
1283     } else {
1284       return false;
1285     }
1286   }
1287 
1288   JVMState* jvms = call->jvms();
1289   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1290     return false;
1291   }
1292 
1293   Node* call_mem = call->in(TypeFunc::Memory);
1294   if (call_mem == nullptr || call_mem->is_top()) {
1295     return false;
1296   }
1297   if (!call_mem->is_MergeMem()) {
1298     call_mem = MergeMemNode::make(call_mem);
1299     igvn->register_new_node_with_optimizer(call_mem);
1300   }
1301 
1302   // Verify that there's no unexpected side effect
1303   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1304     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1305     Node* m2 = mms2.memory2();
1306 
1307     for (uint i = 0; i < 100; i++) {
1308       if (m1 == m2) {
1309         break;
1310       } else if (m1->is_Proj()) {
1311         m1 = m1->in(0);
1312       } else if (m1->is_MemBar()) {
1313         m1 = m1->in(TypeFunc::Memory);
1314       } else if (m1->Opcode() == Op_CallStaticJava &&
1315                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1316         if (m1 != call) {
1317           return false;
1318         }
1319         break;
1320       } else if (m1->is_MergeMem()) {
1321         MergeMemNode* mm = m1->as_MergeMem();
1322         int idx = mms2.alias_idx();
1323         if (idx == Compile::AliasIdxBot) {
1324           m1 = mm->base_memory();
1325         } else {
1326           m1 = mm->memory_at(idx);
1327         }
1328       } else {
1329         return false;
1330       }
1331     }
1332   }
1333   if (call_mem->outcnt() == 0) {
1334     igvn->remove_dead_node(call_mem);
1335   }
1336 
1337   // Remove membar preceding the call
1338   membar->remove(igvn);
1339 
1340   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1341   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1342   unc->init_req(TypeFunc::Control, call->in(0));
1343   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1344   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1345   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1346   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1347   unc->init_req(TypeFunc::Parms+0, unc_arg);
1348   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1349   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1350 
1351   // Replace the call with an uncommon trap
1352   igvn->replace_input_of(call, 0, igvn->C->top());
1353 
1354   igvn->register_new_node_with_optimizer(unc);
1355 
1356   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1357   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1358   igvn->add_input_to(igvn->C->root(), halt);
1359 
1360   return true;
1361 }
1362 
1363 
1364 #ifndef PRODUCT
1365 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1366   st->print("# Static ");
1367   if (_name != nullptr) {
1368     st->print("%s", _name);
1369     int trap_req = uncommon_trap_request();
1370     if (trap_req != 0) {
1371       char buf[100];
1372       st->print("(%s)",
1373                  Deoptimization::format_trap_request(buf, sizeof(buf),
1374                                                      trap_req));
1375     }
1376     st->print(" ");
1377   }
1378   CallJavaNode::dump_spec(st);
1379 }
1380 
1381 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1382   if (_method) {
1383     _method->print_short_name(st);
1384   } else if (_name) {
1385     st->print("%s", _name);
1386   } else {
1387     st->print("<?>");
1388   }
1389 }
1390 #endif
1391 
1392 //=============================================================================
1393 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1394 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1395   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1396   return CallJavaNode::cmp(call);
1397 }
1398 
1399 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1400   CallGenerator* cg = generator();
1401   if (can_reshape && cg != nullptr) {
1402     if (cg->is_virtual_late_inline()) {
1403       assert(IncrementalInlineVirtual, "required");
1404       assert(cg->call_node() == this, "mismatch");
1405 
1406       if (cg->callee_method() == nullptr) {
1407         // Recover symbolic info for method resolution.
1408         ciMethod* caller = jvms()->method();
1409         ciBytecodeStream iter(caller);
1410         iter.force_bci(jvms()->bci());
1411 
1412         bool             not_used1;
1413         ciSignature*     not_used2;
1414         ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1415         ciKlass*         holder       = iter.get_declared_method_holder();
1416         if (orig_callee->is_method_handle_intrinsic()) {
1417           assert(_override_symbolic_info, "required");
1418           orig_callee = method();
1419           holder = method()->holder();
1420         }
1421 
1422         ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1423 
1424         Node* receiver_node = in(TypeFunc::Parms);
1425         const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1426 
1427         int  not_used3;
1428         bool call_does_dispatch;
1429         ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1430                                                            call_does_dispatch, not_used3);  // out-parameters
1431         if (!call_does_dispatch) {
1432           cg->set_callee_method(callee);
1433         }
1434       }
1435       if (cg->callee_method() != nullptr) {
1436         // Register for late inlining.
1437         register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1438       }
1439     } else {
1440       assert(IncrementalInline, "required");
1441       if (phase->C->print_inlining()) {
1442         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1443           "dynamic call node changed: trying again");
1444       }
1445       register_for_late_inline();
1446     }
1447   }
1448   return CallNode::Ideal(phase, can_reshape);
1449 }
1450 
1451 #ifndef PRODUCT
1452 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1453   st->print("# Dynamic ");
1454   CallJavaNode::dump_spec(st);
1455 }
1456 #endif
1457 
1458 //=============================================================================
1459 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1460 bool CallRuntimeNode::cmp( const Node &n ) const {
1461   CallRuntimeNode &call = (CallRuntimeNode&)n;
1462   return CallNode::cmp(call) && !strcmp(_name,call._name);
1463 }
1464 #ifndef PRODUCT
1465 void CallRuntimeNode::dump_spec(outputStream *st) const {
1466   st->print("# ");
1467   st->print("%s", _name);
1468   CallNode::dump_spec(st);
1469 }
1470 #endif
1471 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1472 bool CallLeafVectorNode::cmp( const Node &n ) const {
1473   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1474   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1475 }
1476 
1477 //------------------------------calling_convention-----------------------------
1478 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1479   if (_entry_point == nullptr) {
1480     // The call to that stub is a special case: its inputs are
1481     // multiple values returned from a call and so it should follow
1482     // the return convention.
1483     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1484     return;
1485   }
1486   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1487 }
1488 
1489 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1490 #ifdef ASSERT
1491   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1492          "return vector size must match");
1493   const TypeTuple* d = tf()->domain_sig();
1494   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1495     Node* arg = in(i);
1496     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1497            "vector argument size must match");
1498   }
1499 #endif
1500 
1501   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1502 }
1503 
1504 //=============================================================================
1505 //------------------------------calling_convention-----------------------------
1506 
1507 
1508 //=============================================================================
1509 bool CallLeafPureNode::is_unused() const {
1510   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1511 }
1512 
1513 bool CallLeafPureNode::is_dead() const {
1514   return proj_out_or_null(TypeFunc::Control) == nullptr;
1515 }
1516 
1517 /* We make a tuple of the global input state + TOP for the output values.
1518  * We use this to delete a pure function that is not used: by replacing the call with
1519  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1520  * pure call, so jumping over it, and effectively, removing the call from the graph.
1521  * This avoids doing the graph surgery manually, but leaves that to IGVN
1522  * that is specialized for doing that right. We need also tuple components for output
1523  * values of the function to respect the return arity, and in case there is a projection
1524  * that would pick an output (which shouldn't happen at the moment).
1525  */
1526 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1527   // Transparently propagate input state but parameters
1528   TupleNode* tuple = TupleNode::make(
1529       tf()->range_cc(),
1530       in(TypeFunc::Control),
1531       in(TypeFunc::I_O),
1532       in(TypeFunc::Memory),
1533       in(TypeFunc::FramePtr),
1534       in(TypeFunc::ReturnAdr));
1535 
1536   // And add TOPs for the return values
1537   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1538     tuple->set_req(i, C->top());
1539   }
1540 
1541   return tuple;
1542 }
1543 
1544 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1545   if (is_dead()) {
1546     return nullptr;
1547   }
1548 
1549   // We need to wait until IGVN because during parsing, usages might still be missing
1550   // and we would remove the call immediately.
1551   if (can_reshape && is_unused()) {
1552     // The result is not used. We remove the call by replacing it with a tuple, that
1553     // is later disintegrated by the projections.
1554     return make_tuple_of_input_state_and_top_return_values(phase->C);
1555   }
1556 
1557   return CallRuntimeNode::Ideal(phase, can_reshape);
1558 }
1559 
1560 #ifndef PRODUCT
1561 void CallLeafNode::dump_spec(outputStream *st) const {
1562   st->print("# ");
1563   st->print("%s", _name);
1564   CallNode::dump_spec(st);
1565 }
1566 #endif
1567 
1568 uint CallLeafNoFPNode::match_edge(uint idx) const {
1569   // Null entry point is a special case for which the target is in a
1570   // register. Need to match that edge.
1571   return entry_point() == nullptr && idx == TypeFunc::Parms;
1572 }
1573 
1574 //=============================================================================
1575 
1576 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1577   assert(verify_jvms(jvms), "jvms must match");
1578   int loc = jvms->locoff() + idx;
1579   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1580     // If current local idx is top then local idx - 1 could
1581     // be a long/double that needs to be killed since top could
1582     // represent the 2nd half of the long/double.
1583     uint ideal = in(loc -1)->ideal_reg();
1584     if (ideal == Op_RegD || ideal == Op_RegL) {
1585       // set other (low index) half to top
1586       set_req(loc - 1, in(loc));
1587     }
1588   }
1589   set_req(loc, c);
1590 }
1591 
1592 uint SafePointNode::size_of() const { return sizeof(*this); }
1593 bool SafePointNode::cmp( const Node &n ) const {
1594   return (&n == this);          // Always fail except on self
1595 }
1596 
1597 //-------------------------set_next_exception----------------------------------
1598 void SafePointNode::set_next_exception(SafePointNode* n) {
1599   assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1600   if (len() == req()) {
1601     if (n != nullptr)  add_prec(n);
1602   } else {
1603     set_prec(req(), n);
1604   }
1605 }
1606 
1607 
1608 //----------------------------next_exception-----------------------------------
1609 SafePointNode* SafePointNode::next_exception() const {
1610   if (len() == req()) {
1611     return nullptr;
1612   } else {
1613     Node* n = in(req());
1614     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1615     return (SafePointNode*) n;
1616   }
1617 }
1618 
1619 
1620 //------------------------------Ideal------------------------------------------
1621 // Skip over any collapsed Regions
1622 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1623   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1624   if (remove_dead_region(phase, can_reshape)) {
1625     return this;
1626   }
1627   // Scalarize inline types in safepoint debug info.
1628   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1629   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1630     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1631       Node* n = in(i)->uncast();
1632       if (n->is_InlineType()) {
1633         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1634       }
1635     }
1636   }
1637   return nullptr;
1638 }
1639 
1640 //------------------------------Identity---------------------------------------
1641 // Remove obviously duplicate safepoints
1642 Node* SafePointNode::Identity(PhaseGVN* phase) {
1643 
1644   // If you have back to back safepoints, remove one
1645   if (in(TypeFunc::Control)->is_SafePoint()) {
1646     Node* out_c = unique_ctrl_out_or_null();
1647     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1648     // outer loop's safepoint could confuse removal of the outer loop.
1649     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1650       return in(TypeFunc::Control);
1651     }
1652   }
1653 
1654   // Transforming long counted loops requires a safepoint node. Do not
1655   // eliminate a safepoint until loop opts are over.
1656   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1657     Node *n0 = in(0)->in(0);
1658     // Check if he is a call projection (except Leaf Call)
1659     if( n0->is_Catch() ) {
1660       n0 = n0->in(0)->in(0);
1661       assert( n0->is_Call(), "expect a call here" );
1662     }
1663     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1664       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1665       // If the loop dies, they will be removed together.
1666       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1667         return this;
1668       }
1669       // Useless Safepoint, so remove it
1670       return in(TypeFunc::Control);
1671     }
1672   }
1673 
1674   return this;
1675 }
1676 
1677 //------------------------------Value------------------------------------------
1678 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1679   if (phase->type(in(0)) == Type::TOP) {
1680     return Type::TOP;
1681   }
1682   if (in(0) == this) {
1683     return Type::TOP; // Dead infinite loop
1684   }
1685   return Type::CONTROL;
1686 }
1687 
1688 #ifndef PRODUCT
1689 void SafePointNode::dump_spec(outputStream *st) const {
1690   st->print(" SafePoint ");
1691   _replaced_nodes.dump(st);
1692 }
1693 #endif
1694 
1695 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1696   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1697   // Values outside the domain represent debug info
1698   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1699 }
1700 const RegMask &SafePointNode::out_RegMask() const {
1701   return RegMask::Empty;
1702 }
1703 
1704 
1705 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1706   assert((int)grow_by > 0, "sanity");
1707   int monoff = jvms->monoff();
1708   int scloff = jvms->scloff();
1709   int endoff = jvms->endoff();
1710   assert(endoff == (int)req(), "no other states or debug info after me");
1711   Node* top = Compile::current()->top();
1712   for (uint i = 0; i < grow_by; i++) {
1713     ins_req(monoff, top);
1714   }
1715   jvms->set_monoff(monoff + grow_by);
1716   jvms->set_scloff(scloff + grow_by);
1717   jvms->set_endoff(endoff + grow_by);
1718 }
1719 
1720 void SafePointNode::push_monitor(const FastLockNode *lock) {
1721   // Add a LockNode, which points to both the original BoxLockNode (the
1722   // stack space for the monitor) and the Object being locked.
1723   const int MonitorEdges = 2;
1724   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1725   assert(req() == jvms()->endoff(), "correct sizing");
1726   int nextmon = jvms()->scloff();
1727   ins_req(nextmon,   lock->box_node());
1728   ins_req(nextmon+1, lock->obj_node());
1729   jvms()->set_scloff(nextmon + MonitorEdges);
1730   jvms()->set_endoff(req());
1731 }
1732 
1733 void SafePointNode::pop_monitor() {
1734   // Delete last monitor from debug info
1735   DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1736   const int MonitorEdges = 2;
1737   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1738   int scloff = jvms()->scloff();
1739   int endoff = jvms()->endoff();
1740   int new_scloff = scloff - MonitorEdges;
1741   int new_endoff = endoff - MonitorEdges;
1742   jvms()->set_scloff(new_scloff);
1743   jvms()->set_endoff(new_endoff);
1744   while (scloff > new_scloff)  del_req_ordered(--scloff);
1745   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1746 }
1747 
1748 Node *SafePointNode::peek_monitor_box() const {
1749   int mon = jvms()->nof_monitors() - 1;
1750   assert(mon >= 0, "must have a monitor");
1751   return monitor_box(jvms(), mon);
1752 }
1753 
1754 Node *SafePointNode::peek_monitor_obj() const {
1755   int mon = jvms()->nof_monitors() - 1;
1756   assert(mon >= 0, "must have a monitor");
1757   return monitor_obj(jvms(), mon);
1758 }
1759 
1760 Node* SafePointNode::peek_operand(uint off) const {
1761   assert(jvms()->sp() > 0, "must have an operand");
1762   assert(off < jvms()->sp(), "off is out-of-range");
1763   return stack(jvms(), jvms()->sp() - off - 1);
1764 }
1765 
1766 // Do we Match on this edge index or not?  Match no edges
1767 uint SafePointNode::match_edge(uint idx) const {
1768   return (TypeFunc::Parms == idx);
1769 }
1770 
1771 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1772   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1773   int nb = igvn->C->root()->find_prec_edge(this);
1774   if (nb != -1) {
1775     igvn->delete_precedence_of(igvn->C->root(), nb);
1776   }
1777 }
1778 
1779 //==============  SafePointScalarObjectNode  ==============
1780 
1781 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1782   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1783   _first_index(first_index),
1784   _depth(depth),
1785   _n_fields(n_fields),
1786   _alloc(alloc)
1787 {
1788 #ifdef ASSERT
1789   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1790     alloc->dump();
1791     assert(false, "unexpected call node");
1792   }
1793 #endif
1794   init_class_id(Class_SafePointScalarObject);
1795 }
1796 
1797 // Do not allow value-numbering for SafePointScalarObject node.
1798 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1799 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1800   return (&n == this); // Always fail except on self
1801 }
1802 
1803 uint SafePointScalarObjectNode::ideal_reg() const {
1804   return 0; // No matching to machine instruction
1805 }
1806 
1807 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1808   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1809 }
1810 
1811 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1812   return RegMask::Empty;
1813 }
1814 
1815 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1816   return 0;
1817 }
1818 
1819 SafePointScalarObjectNode*
1820 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1821   void* cached = (*sosn_map)[(void*)this];
1822   if (cached != nullptr) {
1823     new_node = false;
1824     return (SafePointScalarObjectNode*)cached;
1825   }
1826   new_node = true;
1827   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1828   sosn_map->Insert((void*)this, (void*)res);
1829   return res;
1830 }
1831 
1832 
1833 #ifndef PRODUCT
1834 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1835   st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1836 }
1837 #endif
1838 
1839 //==============  SafePointScalarMergeNode  ==============
1840 
1841 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1842   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1843   _merge_pointer_idx(merge_pointer_idx)
1844 {
1845   init_class_id(Class_SafePointScalarMerge);
1846 }
1847 
1848 // Do not allow value-numbering for SafePointScalarMerge node.
1849 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1850 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1851   return (&n == this); // Always fail except on self
1852 }
1853 
1854 uint SafePointScalarMergeNode::ideal_reg() const {
1855   return 0; // No matching to machine instruction
1856 }
1857 
1858 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1859   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1860 }
1861 
1862 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1863   return RegMask::Empty;
1864 }
1865 
1866 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1867   return 0;
1868 }
1869 
1870 SafePointScalarMergeNode*
1871 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1872   void* cached = (*sosn_map)[(void*)this];
1873   if (cached != nullptr) {
1874     new_node = false;
1875     return (SafePointScalarMergeNode*)cached;
1876   }
1877   new_node = true;
1878   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1879   sosn_map->Insert((void*)this, (void*)res);
1880   return res;
1881 }
1882 
1883 #ifndef PRODUCT
1884 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1885   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1886 }
1887 #endif
1888 
1889 //=============================================================================
1890 uint AllocateNode::size_of() const { return sizeof(*this); }
1891 
1892 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1893                            Node *ctrl, Node *mem, Node *abio,
1894                            Node *size, Node *klass_node,
1895                            Node* initial_test,
1896                            InlineTypeNode* inline_type_node)
1897   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1898 {
1899   init_class_id(Class_Allocate);
1900   init_flags(Flag_is_macro);
1901   _is_scalar_replaceable = false;
1902   _is_non_escaping = false;
1903   _is_allocation_MemBar_redundant = false;
1904   _larval = false;
1905   Node *topnode = C->top();
1906 
1907   init_req( TypeFunc::Control  , ctrl );
1908   init_req( TypeFunc::I_O      , abio );
1909   init_req( TypeFunc::Memory   , mem );
1910   init_req( TypeFunc::ReturnAdr, topnode );
1911   init_req( TypeFunc::FramePtr , topnode );
1912   init_req( AllocSize          , size);
1913   init_req( KlassNode          , klass_node);
1914   init_req( InitialTest        , initial_test);
1915   init_req( ALength            , topnode);
1916   init_req( ValidLengthTest    , topnode);
1917   init_req( InlineType     , inline_type_node);
1918   // DefaultValue defaults to nullptr
1919   // RawDefaultValue defaults to nullptr
1920   C->add_macro_node(this);
1921 }
1922 
1923 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1924 {
1925   assert(initializer != nullptr &&
1926          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1927          "unexpected initializer method");
1928   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1929   if (analyzer == nullptr) {
1930     return;
1931   }
1932 
1933   // Allocation node is first parameter in its initializer
1934   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1935     _is_allocation_MemBar_redundant = true;
1936   }
1937 }
1938 
1939 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1940   Node* mark_node = nullptr;
1941   if (UseCompactObjectHeaders || EnableValhalla) {
1942     Node* klass_node = in(AllocateNode::KlassNode);
1943     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1944     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1945     if (EnableValhalla) {
1946       mark_node = phase->transform(mark_node);
1947       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
1948       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
1949     }
1950     return mark_node;
1951   } else {
1952     return phase->MakeConX(markWord::prototype().value());
1953   }
1954 }
1955 
1956 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1957 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1958 // a CastII is appropriate, return null.
1959 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1960   Node *length = in(AllocateNode::ALength);
1961   assert(length != nullptr, "length is not null");
1962 
1963   const TypeInt* length_type = phase->find_int_type(length);
1964   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1965 
1966   if (ary_type != nullptr && length_type != nullptr) {
1967     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1968     if (narrow_length_type != length_type) {
1969       // Assert one of:
1970       //   - the narrow_length is 0
1971       //   - the narrow_length is not wider than length
1972       assert(narrow_length_type == TypeInt::ZERO ||
1973              (length_type->is_con() && narrow_length_type->is_con() &&
1974               (narrow_length_type->_hi <= length_type->_lo)) ||
1975              (narrow_length_type->_hi <= length_type->_hi &&
1976               narrow_length_type->_lo >= length_type->_lo),
1977              "narrow type must be narrower than length type");
1978 
1979       // Return null if new nodes are not allowed
1980       if (!allow_new_nodes) {
1981         return nullptr;
1982       }
1983       // Create a cast which is control dependent on the initialization to
1984       // propagate the fact that the array length must be positive.
1985       InitializeNode* init = initialization();
1986       if (init != nullptr) {
1987         length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
1988       }
1989     }
1990   }
1991 
1992   return length;
1993 }
1994 
1995 //=============================================================================
1996 const TypeFunc* LockNode::_lock_type_Type = nullptr;
1997 
1998 uint LockNode::size_of() const { return sizeof(*this); }
1999 
2000 // Redundant lock elimination
2001 //
2002 // There are various patterns of locking where we release and
2003 // immediately reacquire a lock in a piece of code where no operations
2004 // occur in between that would be observable.  In those cases we can
2005 // skip releasing and reacquiring the lock without violating any
2006 // fairness requirements.  Doing this around a loop could cause a lock
2007 // to be held for a very long time so we concentrate on non-looping
2008 // control flow.  We also require that the operations are fully
2009 // redundant meaning that we don't introduce new lock operations on
2010 // some paths so to be able to eliminate it on others ala PRE.  This
2011 // would probably require some more extensive graph manipulation to
2012 // guarantee that the memory edges were all handled correctly.
2013 //
2014 // Assuming p is a simple predicate which can't trap in any way and s
2015 // is a synchronized method consider this code:
2016 //
2017 //   s();
2018 //   if (p)
2019 //     s();
2020 //   else
2021 //     s();
2022 //   s();
2023 //
2024 // 1. The unlocks of the first call to s can be eliminated if the
2025 // locks inside the then and else branches are eliminated.
2026 //
2027 // 2. The unlocks of the then and else branches can be eliminated if
2028 // the lock of the final call to s is eliminated.
2029 //
2030 // Either of these cases subsumes the simple case of sequential control flow
2031 //
2032 // Additionally we can eliminate versions without the else case:
2033 //
2034 //   s();
2035 //   if (p)
2036 //     s();
2037 //   s();
2038 //
2039 // 3. In this case we eliminate the unlock of the first s, the lock
2040 // and unlock in the then case and the lock in the final s.
2041 //
2042 // Note also that in all these cases the then/else pieces don't have
2043 // to be trivial as long as they begin and end with synchronization
2044 // operations.
2045 //
2046 //   s();
2047 //   if (p)
2048 //     s();
2049 //     f();
2050 //     s();
2051 //   s();
2052 //
2053 // The code will work properly for this case, leaving in the unlock
2054 // before the call to f and the relock after it.
2055 //
2056 // A potentially interesting case which isn't handled here is when the
2057 // locking is partially redundant.
2058 //
2059 //   s();
2060 //   if (p)
2061 //     s();
2062 //
2063 // This could be eliminated putting unlocking on the else case and
2064 // eliminating the first unlock and the lock in the then side.
2065 // Alternatively the unlock could be moved out of the then side so it
2066 // was after the merge and the first unlock and second lock
2067 // eliminated.  This might require less manipulation of the memory
2068 // state to get correct.
2069 //
2070 // Additionally we might allow work between a unlock and lock before
2071 // giving up eliminating the locks.  The current code disallows any
2072 // conditional control flow between these operations.  A formulation
2073 // similar to partial redundancy elimination computing the
2074 // availability of unlocking and the anticipatability of locking at a
2075 // program point would allow detection of fully redundant locking with
2076 // some amount of work in between.  I'm not sure how often I really
2077 // think that would occur though.  Most of the cases I've seen
2078 // indicate it's likely non-trivial work would occur in between.
2079 // There may be other more complicated constructs where we could
2080 // eliminate locking but I haven't seen any others appear as hot or
2081 // interesting.
2082 //
2083 // Locking and unlocking have a canonical form in ideal that looks
2084 // roughly like this:
2085 //
2086 //              <obj>
2087 //                | \\------+
2088 //                |  \       \
2089 //                | BoxLock   \
2090 //                |  |   |     \
2091 //                |  |    \     \
2092 //                |  |   FastLock
2093 //                |  |   /
2094 //                |  |  /
2095 //                |  |  |
2096 //
2097 //               Lock
2098 //                |
2099 //            Proj #0
2100 //                |
2101 //            MembarAcquire
2102 //                |
2103 //            Proj #0
2104 //
2105 //            MembarRelease
2106 //                |
2107 //            Proj #0
2108 //                |
2109 //              Unlock
2110 //                |
2111 //            Proj #0
2112 //
2113 //
2114 // This code proceeds by processing Lock nodes during PhaseIterGVN
2115 // and searching back through its control for the proper code
2116 // patterns.  Once it finds a set of lock and unlock operations to
2117 // eliminate they are marked as eliminatable which causes the
2118 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2119 //
2120 //=============================================================================
2121 
2122 //
2123 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
2124 //   - copy regions.  (These may not have been optimized away yet.)
2125 //   - eliminated locking nodes
2126 //
2127 static Node *next_control(Node *ctrl) {
2128   if (ctrl == nullptr)
2129     return nullptr;
2130   while (1) {
2131     if (ctrl->is_Region()) {
2132       RegionNode *r = ctrl->as_Region();
2133       Node *n = r->is_copy();
2134       if (n == nullptr)
2135         break;  // hit a region, return it
2136       else
2137         ctrl = n;
2138     } else if (ctrl->is_Proj()) {
2139       Node *in0 = ctrl->in(0);
2140       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2141         ctrl = in0->in(0);
2142       } else {
2143         break;
2144       }
2145     } else {
2146       break; // found an interesting control
2147     }
2148   }
2149   return ctrl;
2150 }
2151 //
2152 // Given a control, see if it's the control projection of an Unlock which
2153 // operating on the same object as lock.
2154 //
2155 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2156                                             GrowableArray<AbstractLockNode*> &lock_ops) {
2157   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2158   if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2159     Node *n = ctrl_proj->in(0);
2160     if (n != nullptr && n->is_Unlock()) {
2161       UnlockNode *unlock = n->as_Unlock();
2162       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2163       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2164       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2165       if (lock_obj->eqv_uncast(unlock_obj) &&
2166           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2167           !unlock->is_eliminated()) {
2168         lock_ops.append(unlock);
2169         return true;
2170       }
2171     }
2172   }
2173   return false;
2174 }
2175 
2176 //
2177 // Find the lock matching an unlock.  Returns null if a safepoint
2178 // or complicated control is encountered first.
2179 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2180   LockNode *lock_result = nullptr;
2181   // find the matching lock, or an intervening safepoint
2182   Node *ctrl = next_control(unlock->in(0));
2183   while (1) {
2184     assert(ctrl != nullptr, "invalid control graph");
2185     assert(!ctrl->is_Start(), "missing lock for unlock");
2186     if (ctrl->is_top()) break;  // dead control path
2187     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2188     if (ctrl->is_SafePoint()) {
2189         break;  // found a safepoint (may be the lock we are searching for)
2190     } else if (ctrl->is_Region()) {
2191       // Check for a simple diamond pattern.  Punt on anything more complicated
2192       if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2193         Node *in1 = next_control(ctrl->in(1));
2194         Node *in2 = next_control(ctrl->in(2));
2195         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2196              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2197           ctrl = next_control(in1->in(0)->in(0));
2198         } else {
2199           break;
2200         }
2201       } else {
2202         break;
2203       }
2204     } else {
2205       ctrl = next_control(ctrl->in(0));  // keep searching
2206     }
2207   }
2208   if (ctrl->is_Lock()) {
2209     LockNode *lock = ctrl->as_Lock();
2210     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2211     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2212     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2213     if (lock_obj->eqv_uncast(unlock_obj) &&
2214         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2215       lock_result = lock;
2216     }
2217   }
2218   return lock_result;
2219 }
2220 
2221 // This code corresponds to case 3 above.
2222 
2223 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2224                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
2225   Node* if_node = node->in(0);
2226   bool  if_true = node->is_IfTrue();
2227 
2228   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2229     Node *lock_ctrl = next_control(if_node->in(0));
2230     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2231       Node* lock1_node = nullptr;
2232       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2233       if (if_true) {
2234         if (proj->is_IfFalse() && proj->outcnt() == 1) {
2235           lock1_node = proj->unique_out();
2236         }
2237       } else {
2238         if (proj->is_IfTrue() && proj->outcnt() == 1) {
2239           lock1_node = proj->unique_out();
2240         }
2241       }
2242       if (lock1_node != nullptr && lock1_node->is_Lock()) {
2243         LockNode *lock1 = lock1_node->as_Lock();
2244         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2245         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2246         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2247         if (lock_obj->eqv_uncast(lock1_obj) &&
2248             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2249             !lock1->is_eliminated()) {
2250           lock_ops.append(lock1);
2251           return true;
2252         }
2253       }
2254     }
2255   }
2256 
2257   lock_ops.trunc_to(0);
2258   return false;
2259 }
2260 
2261 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2262                                GrowableArray<AbstractLockNode*> &lock_ops) {
2263   // check each control merging at this point for a matching unlock.
2264   // in(0) should be self edge so skip it.
2265   for (int i = 1; i < (int)region->req(); i++) {
2266     Node *in_node = next_control(region->in(i));
2267     if (in_node != nullptr) {
2268       if (find_matching_unlock(in_node, lock, lock_ops)) {
2269         // found a match so keep on checking.
2270         continue;
2271       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2272         continue;
2273       }
2274 
2275       // If we fall through to here then it was some kind of node we
2276       // don't understand or there wasn't a matching unlock, so give
2277       // up trying to merge locks.
2278       lock_ops.trunc_to(0);
2279       return false;
2280     }
2281   }
2282   return true;
2283 
2284 }
2285 
2286 // Check that all locks/unlocks associated with object come from balanced regions.
2287 bool AbstractLockNode::is_balanced() {
2288   Node* obj = obj_node();
2289   for (uint j = 0; j < obj->outcnt(); j++) {
2290     Node* n = obj->raw_out(j);
2291     if (n->is_AbstractLock() &&
2292         n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2293       BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2294       if (n_box->is_unbalanced()) {
2295         return false;
2296       }
2297     }
2298   }
2299   return true;
2300 }
2301 
2302 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2303 
2304 const char * AbstractLockNode::kind_as_string() const {
2305   return _kind_names[_kind];
2306 }
2307 
2308 #ifndef PRODUCT
2309 //
2310 // Create a counter which counts the number of times this lock is acquired
2311 //
2312 void AbstractLockNode::create_lock_counter(JVMState* state) {
2313   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2314 }
2315 
2316 void AbstractLockNode::set_eliminated_lock_counter() {
2317   if (_counter) {
2318     // Update the counter to indicate that this lock was eliminated.
2319     // The counter update code will stay around even though the
2320     // optimizer will eliminate the lock operation itself.
2321     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2322   }
2323 }
2324 
2325 void AbstractLockNode::dump_spec(outputStream* st) const {
2326   st->print("%s ", _kind_names[_kind]);
2327   CallNode::dump_spec(st);
2328 }
2329 
2330 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2331   st->print("%s", _kind_names[_kind]);
2332 }
2333 #endif
2334 
2335 //=============================================================================
2336 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2337 
2338   // perform any generic optimizations first (returns 'this' or null)
2339   Node *result = SafePointNode::Ideal(phase, can_reshape);
2340   if (result != nullptr)  return result;
2341   // Don't bother trying to transform a dead node
2342   if (in(0) && in(0)->is_top())  return nullptr;
2343 
2344   // Now see if we can optimize away this lock.  We don't actually
2345   // remove the locking here, we simply set the _eliminate flag which
2346   // prevents macro expansion from expanding the lock.  Since we don't
2347   // modify the graph, the value returned from this function is the
2348   // one computed above.
2349   const Type* obj_type = phase->type(obj_node());
2350   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2351     //
2352     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2353     //
2354     ConnectionGraph *cgr = phase->C->congraph();
2355     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2356       assert(!is_eliminated() || is_coarsened(), "sanity");
2357       // The lock could be marked eliminated by lock coarsening
2358       // code during first IGVN before EA. Replace coarsened flag
2359       // to eliminate all associated locks/unlocks.
2360 #ifdef ASSERT
2361       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2362 #endif
2363       this->set_non_esc_obj();
2364       return result;
2365     }
2366 
2367     if (!phase->C->do_locks_coarsening()) {
2368       return result; // Compiling without locks coarsening
2369     }
2370     //
2371     // Try lock coarsening
2372     //
2373     PhaseIterGVN* iter = phase->is_IterGVN();
2374     if (iter != nullptr && !is_eliminated()) {
2375 
2376       GrowableArray<AbstractLockNode*>   lock_ops;
2377 
2378       Node *ctrl = next_control(in(0));
2379 
2380       // now search back for a matching Unlock
2381       if (find_matching_unlock(ctrl, this, lock_ops)) {
2382         // found an unlock directly preceding this lock.  This is the
2383         // case of single unlock directly control dependent on a
2384         // single lock which is the trivial version of case 1 or 2.
2385       } else if (ctrl->is_Region() ) {
2386         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2387         // found lock preceded by multiple unlocks along all paths
2388         // joining at this point which is case 3 in description above.
2389         }
2390       } else {
2391         // see if this lock comes from either half of an if and the
2392         // predecessors merges unlocks and the other half of the if
2393         // performs a lock.
2394         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2395           // found unlock splitting to an if with locks on both branches.
2396         }
2397       }
2398 
2399       if (lock_ops.length() > 0) {
2400         // add ourselves to the list of locks to be eliminated.
2401         lock_ops.append(this);
2402 
2403   #ifndef PRODUCT
2404         if (PrintEliminateLocks) {
2405           int locks = 0;
2406           int unlocks = 0;
2407           if (Verbose) {
2408             tty->print_cr("=== Locks coarsening ===");
2409             tty->print("Obj: ");
2410             obj_node()->dump();
2411           }
2412           for (int i = 0; i < lock_ops.length(); i++) {
2413             AbstractLockNode* lock = lock_ops.at(i);
2414             if (lock->Opcode() == Op_Lock)
2415               locks++;
2416             else
2417               unlocks++;
2418             if (Verbose) {
2419               tty->print("Box %d: ", i);
2420               box_node()->dump();
2421               tty->print(" %d: ", i);
2422               lock->dump();
2423             }
2424           }
2425           tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2426         }
2427   #endif
2428 
2429         // for each of the identified locks, mark them
2430         // as eliminatable
2431         for (int i = 0; i < lock_ops.length(); i++) {
2432           AbstractLockNode* lock = lock_ops.at(i);
2433 
2434           // Mark it eliminated by coarsening and update any counters
2435 #ifdef ASSERT
2436           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2437 #endif
2438           lock->set_coarsened();
2439         }
2440         // Record this coarsened group.
2441         phase->C->add_coarsened_locks(lock_ops);
2442       } else if (ctrl->is_Region() &&
2443                  iter->_worklist.member(ctrl)) {
2444         // We weren't able to find any opportunities but the region this
2445         // lock is control dependent on hasn't been processed yet so put
2446         // this lock back on the worklist so we can check again once any
2447         // region simplification has occurred.
2448         iter->_worklist.push(this);
2449       }
2450     }
2451   }
2452 
2453   return result;
2454 }
2455 
2456 //=============================================================================
2457 bool LockNode::is_nested_lock_region() {
2458   return is_nested_lock_region(nullptr);
2459 }
2460 
2461 // p is used for access to compilation log; no logging if null
2462 bool LockNode::is_nested_lock_region(Compile * c) {
2463   BoxLockNode* box = box_node()->as_BoxLock();
2464   int stk_slot = box->stack_slot();
2465   if (stk_slot <= 0) {
2466 #ifdef ASSERT
2467     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2468 #endif
2469     return false; // External lock or it is not Box (Phi node).
2470   }
2471 
2472   // Ignore complex cases: merged locks or multiple locks.
2473   Node* obj = obj_node();
2474   LockNode* unique_lock = nullptr;
2475   Node* bad_lock = nullptr;
2476   if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2477 #ifdef ASSERT
2478     this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2479 #endif
2480     return false;
2481   }
2482   if (unique_lock != this) {
2483 #ifdef ASSERT
2484     this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2485     if (PrintEliminateLocks && Verbose) {
2486       tty->print_cr("=============== unique_lock != this ============");
2487       tty->print(" this: ");
2488       this->dump();
2489       tty->print(" box: ");
2490       box->dump();
2491       tty->print(" obj: ");
2492       obj->dump();
2493       if (unique_lock != nullptr) {
2494         tty->print(" unique_lock: ");
2495         unique_lock->dump();
2496       }
2497       if (bad_lock != nullptr) {
2498         tty->print(" bad_lock: ");
2499         bad_lock->dump();
2500       }
2501       tty->print_cr("===============");
2502     }
2503 #endif
2504     return false;
2505   }
2506 
2507   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2508   obj = bs->step_over_gc_barrier(obj);
2509   // Look for external lock for the same object.
2510   SafePointNode* sfn = this->as_SafePoint();
2511   JVMState* youngest_jvms = sfn->jvms();
2512   int max_depth = youngest_jvms->depth();
2513   for (int depth = 1; depth <= max_depth; depth++) {
2514     JVMState* jvms = youngest_jvms->of_depth(depth);
2515     int num_mon  = jvms->nof_monitors();
2516     // Loop over monitors
2517     for (int idx = 0; idx < num_mon; idx++) {
2518       Node* obj_node = sfn->monitor_obj(jvms, idx);
2519       obj_node = bs->step_over_gc_barrier(obj_node);
2520       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2521       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2522         box->set_nested();
2523         return true;
2524       }
2525     }
2526   }
2527 #ifdef ASSERT
2528   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2529 #endif
2530   return false;
2531 }
2532 
2533 //=============================================================================
2534 uint UnlockNode::size_of() const { return sizeof(*this); }
2535 
2536 //=============================================================================
2537 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2538 
2539   // perform any generic optimizations first (returns 'this' or null)
2540   Node *result = SafePointNode::Ideal(phase, can_reshape);
2541   if (result != nullptr)  return result;
2542   // Don't bother trying to transform a dead node
2543   if (in(0) && in(0)->is_top())  return nullptr;
2544 
2545   // Now see if we can optimize away this unlock.  We don't actually
2546   // remove the unlocking here, we simply set the _eliminate flag which
2547   // prevents macro expansion from expanding the unlock.  Since we don't
2548   // modify the graph, the value returned from this function is the
2549   // one computed above.
2550   // Escape state is defined after Parse phase.
2551   const Type* obj_type = phase->type(obj_node());
2552   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2553     //
2554     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2555     //
2556     ConnectionGraph *cgr = phase->C->congraph();
2557     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2558       assert(!is_eliminated() || is_coarsened(), "sanity");
2559       // The lock could be marked eliminated by lock coarsening
2560       // code during first IGVN before EA. Replace coarsened flag
2561       // to eliminate all associated locks/unlocks.
2562 #ifdef ASSERT
2563       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2564 #endif
2565       this->set_non_esc_obj();
2566     }
2567   }
2568   return result;
2569 }
2570 
2571 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2572   if (C == nullptr) {
2573     return;
2574   }
2575   CompileLog* log = C->log();
2576   if (log != nullptr) {
2577     Node* box = box_node();
2578     Node* obj = obj_node();
2579     int box_id = box != nullptr ? box->_idx : -1;
2580     int obj_id = obj != nullptr ? obj->_idx : -1;
2581 
2582     log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2583           tag, C->compile_id(), this->_idx,
2584           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2585           kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2586     log->stamp();
2587     log->end_head();
2588     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2589     while (p != nullptr) {
2590       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2591       p = p->caller();
2592     }
2593     log->tail(tag);
2594   }
2595 }
2596 
2597 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2598   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2599     return dest_t->instance_id() == t_oop->instance_id();
2600   }
2601 
2602   if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2603     // clone
2604     if (t_oop->isa_aryptr()) {
2605       return false;
2606     }
2607     if (!t_oop->isa_instptr()) {
2608       return true;
2609     }
2610     if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2611       return true;
2612     }
2613     // unrelated
2614     return false;
2615   }
2616 
2617   if (dest_t->isa_aryptr()) {
2618     // arraycopy or array clone
2619     if (t_oop->isa_instptr()) {
2620       return false;
2621     }
2622     if (!t_oop->isa_aryptr()) {
2623       return true;
2624     }
2625 
2626     const Type* elem = dest_t->is_aryptr()->elem();
2627     if (elem == Type::BOTTOM) {
2628       // An array but we don't know what elements are
2629       return true;
2630     }
2631 
2632     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2633     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2634     uint dest_alias = phase->C->get_alias_index(dest_t);
2635     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2636 
2637     return dest_alias == t_oop_alias;
2638   }
2639 
2640   return true;
2641 }