1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/bcEscapeAnalyzer.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/escape.hpp" 37 #include "opto/inlinetypenode.hpp" 38 #include "opto/locknode.hpp" 39 #include "opto/machnode.hpp" 40 #include "opto/matcher.hpp" 41 #include "opto/parse.hpp" 42 #include "opto/regalloc.hpp" 43 #include "opto/regmask.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 #include "code/vmreg.hpp" 50 51 // Portions of code courtesy of Clifford Click 52 53 // Optimization - Graph Style 54 55 //============================================================================= 56 uint StartNode::size_of() const { return sizeof(*this); } 57 bool StartNode::cmp( const Node &n ) const 58 { return _domain == ((StartNode&)n)._domain; } 59 const Type *StartNode::bottom_type() const { return _domain; } 60 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } 61 #ifndef PRODUCT 62 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 63 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } 64 #endif 65 66 //------------------------------Ideal------------------------------------------ 67 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 68 return remove_dead_region(phase, can_reshape) ? this : nullptr; 69 } 70 71 //------------------------------calling_convention----------------------------- 72 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 73 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 74 } 75 76 //------------------------------Registers-------------------------------------- 77 const RegMask &StartNode::in_RegMask(uint) const { 78 return RegMask::Empty; 79 } 80 81 //------------------------------match------------------------------------------ 82 // Construct projections for incoming parameters, and their RegMask info 83 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) { 84 switch (proj->_con) { 85 case TypeFunc::Control: 86 case TypeFunc::I_O: 87 case TypeFunc::Memory: 88 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 89 case TypeFunc::FramePtr: 90 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 91 case TypeFunc::ReturnAdr: 92 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 93 case TypeFunc::Parms: 94 default: { 95 uint parm_num = proj->_con - TypeFunc::Parms; 96 const Type *t = _domain->field_at(proj->_con); 97 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 98 return new ConNode(Type::TOP); 99 uint ideal_reg = t->ideal_reg(); 100 RegMask &rm = match->_calling_convention_mask[parm_num]; 101 return new MachProjNode(this,proj->_con,rm,ideal_reg); 102 } 103 } 104 return nullptr; 105 } 106 107 //============================================================================= 108 const char * const ParmNode::names[TypeFunc::Parms+1] = { 109 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 110 }; 111 112 #ifndef PRODUCT 113 void ParmNode::dump_spec(outputStream *st) const { 114 if( _con < TypeFunc::Parms ) { 115 st->print("%s", names[_con]); 116 } else { 117 st->print("Parm%d: ",_con-TypeFunc::Parms); 118 // Verbose and WizardMode dump bottom_type for all nodes 119 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 120 } 121 } 122 123 void ParmNode::dump_compact_spec(outputStream *st) const { 124 if (_con < TypeFunc::Parms) { 125 st->print("%s", names[_con]); 126 } else { 127 st->print("%d:", _con-TypeFunc::Parms); 128 // unconditionally dump bottom_type 129 bottom_type()->dump_on(st); 130 } 131 } 132 #endif 133 134 uint ParmNode::ideal_reg() const { 135 switch( _con ) { 136 case TypeFunc::Control : // fall through 137 case TypeFunc::I_O : // fall through 138 case TypeFunc::Memory : return 0; 139 case TypeFunc::FramePtr : // fall through 140 case TypeFunc::ReturnAdr: return Op_RegP; 141 default : assert( _con > TypeFunc::Parms, "" ); 142 // fall through 143 case TypeFunc::Parms : { 144 // Type of argument being passed 145 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 146 return t->ideal_reg(); 147 } 148 } 149 ShouldNotReachHere(); 150 return 0; 151 } 152 153 //============================================================================= 154 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 155 init_req(TypeFunc::Control,cntrl); 156 init_req(TypeFunc::I_O,i_o); 157 init_req(TypeFunc::Memory,memory); 158 init_req(TypeFunc::FramePtr,frameptr); 159 init_req(TypeFunc::ReturnAdr,retadr); 160 } 161 162 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 163 return remove_dead_region(phase, can_reshape) ? this : nullptr; 164 } 165 166 const Type* ReturnNode::Value(PhaseGVN* phase) const { 167 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 168 ? Type::TOP 169 : Type::BOTTOM; 170 } 171 172 // Do we Match on this edge index or not? No edges on return nodes 173 uint ReturnNode::match_edge(uint idx) const { 174 return 0; 175 } 176 177 178 #ifndef PRODUCT 179 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const { 180 // Dump the required inputs, after printing "returns" 181 uint i; // Exit value of loop 182 for (i = 0; i < req(); i++) { // For all required inputs 183 if (i == TypeFunc::Parms) st->print("returns "); 184 Node* p = in(i); 185 if (p != nullptr) { 186 p->dump_idx(false, st, dc); 187 st->print(" "); 188 } else { 189 st->print("_ "); 190 } 191 } 192 } 193 #endif 194 195 //============================================================================= 196 RethrowNode::RethrowNode( 197 Node* cntrl, 198 Node* i_o, 199 Node* memory, 200 Node* frameptr, 201 Node* ret_adr, 202 Node* exception 203 ) : Node(TypeFunc::Parms + 1) { 204 init_req(TypeFunc::Control , cntrl ); 205 init_req(TypeFunc::I_O , i_o ); 206 init_req(TypeFunc::Memory , memory ); 207 init_req(TypeFunc::FramePtr , frameptr ); 208 init_req(TypeFunc::ReturnAdr, ret_adr); 209 init_req(TypeFunc::Parms , exception); 210 } 211 212 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 213 return remove_dead_region(phase, can_reshape) ? this : nullptr; 214 } 215 216 const Type* RethrowNode::Value(PhaseGVN* phase) const { 217 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 218 ? Type::TOP 219 : Type::BOTTOM; 220 } 221 222 uint RethrowNode::match_edge(uint idx) const { 223 return 0; 224 } 225 226 #ifndef PRODUCT 227 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const { 228 // Dump the required inputs, after printing "exception" 229 uint i; // Exit value of loop 230 for (i = 0; i < req(); i++) { // For all required inputs 231 if (i == TypeFunc::Parms) st->print("exception "); 232 Node* p = in(i); 233 if (p != nullptr) { 234 p->dump_idx(false, st, dc); 235 st->print(" "); 236 } else { 237 st->print("_ "); 238 } 239 } 240 } 241 #endif 242 243 //============================================================================= 244 // Do we Match on this edge index or not? Match only target address & method 245 uint TailCallNode::match_edge(uint idx) const { 246 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 247 } 248 249 //============================================================================= 250 // Do we Match on this edge index or not? Match only target address & oop 251 uint TailJumpNode::match_edge(uint idx) const { 252 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 253 } 254 255 //============================================================================= 256 JVMState::JVMState(ciMethod* method, JVMState* caller) : 257 _method(method) { 258 assert(method != nullptr, "must be valid call site"); 259 _bci = InvocationEntryBci; 260 _reexecute = Reexecute_Undefined; 261 debug_only(_bci = -99); // random garbage value 262 debug_only(_map = (SafePointNode*)-1); 263 _caller = caller; 264 _depth = 1 + (caller == nullptr ? 0 : caller->depth()); 265 _locoff = TypeFunc::Parms; 266 _stkoff = _locoff + _method->max_locals(); 267 _monoff = _stkoff + _method->max_stack(); 268 _scloff = _monoff; 269 _endoff = _monoff; 270 _sp = 0; 271 } 272 JVMState::JVMState(int stack_size) : 273 _method(nullptr) { 274 _bci = InvocationEntryBci; 275 _reexecute = Reexecute_Undefined; 276 debug_only(_map = (SafePointNode*)-1); 277 _caller = nullptr; 278 _depth = 1; 279 _locoff = TypeFunc::Parms; 280 _stkoff = _locoff; 281 _monoff = _stkoff + stack_size; 282 _scloff = _monoff; 283 _endoff = _monoff; 284 _sp = 0; 285 } 286 287 //--------------------------------of_depth------------------------------------- 288 JVMState* JVMState::of_depth(int d) const { 289 const JVMState* jvmp = this; 290 assert(0 < d && (uint)d <= depth(), "oob"); 291 for (int skip = depth() - d; skip > 0; skip--) { 292 jvmp = jvmp->caller(); 293 } 294 assert(jvmp->depth() == (uint)d, "found the right one"); 295 return (JVMState*)jvmp; 296 } 297 298 //-----------------------------same_calls_as----------------------------------- 299 bool JVMState::same_calls_as(const JVMState* that) const { 300 if (this == that) return true; 301 if (this->depth() != that->depth()) return false; 302 const JVMState* p = this; 303 const JVMState* q = that; 304 for (;;) { 305 if (p->_method != q->_method) return false; 306 if (p->_method == nullptr) return true; // bci is irrelevant 307 if (p->_bci != q->_bci) return false; 308 if (p->_reexecute != q->_reexecute) return false; 309 p = p->caller(); 310 q = q->caller(); 311 if (p == q) return true; 312 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end"); 313 } 314 } 315 316 //------------------------------debug_start------------------------------------ 317 uint JVMState::debug_start() const { 318 debug_only(JVMState* jvmroot = of_depth(1)); 319 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 320 return of_depth(1)->locoff(); 321 } 322 323 //-------------------------------debug_end------------------------------------- 324 uint JVMState::debug_end() const { 325 debug_only(JVMState* jvmroot = of_depth(1)); 326 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 327 return endoff(); 328 } 329 330 //------------------------------debug_depth------------------------------------ 331 uint JVMState::debug_depth() const { 332 uint total = 0; 333 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) { 334 total += jvmp->debug_size(); 335 } 336 return total; 337 } 338 339 #ifndef PRODUCT 340 341 //------------------------------format_helper---------------------------------- 342 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 343 // any defined value or not. If it does, print out the register or constant. 344 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 345 if (n == nullptr) { st->print(" null"); return; } 346 if (n->is_SafePointScalarObject()) { 347 // Scalar replacement. 348 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 349 scobjs->append_if_missing(spobj); 350 int sco_n = scobjs->find(spobj); 351 assert(sco_n >= 0, ""); 352 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 353 return; 354 } 355 if (regalloc->node_regs_max_index() > 0 && 356 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 357 char buf[50]; 358 regalloc->dump_register(n,buf,sizeof(buf)); 359 st->print(" %s%d]=%s",msg,i,buf); 360 } else { // No register, but might be constant 361 const Type *t = n->bottom_type(); 362 switch (t->base()) { 363 case Type::Int: 364 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); 365 break; 366 case Type::AnyPtr: 367 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 368 st->print(" %s%d]=#null",msg,i); 369 break; 370 case Type::AryPtr: 371 case Type::InstPtr: 372 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 373 break; 374 case Type::KlassPtr: 375 case Type::AryKlassPtr: 376 case Type::InstKlassPtr: 377 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass())); 378 break; 379 case Type::MetadataPtr: 380 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 381 break; 382 case Type::NarrowOop: 383 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 384 break; 385 case Type::RawPtr: 386 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 387 break; 388 case Type::DoubleCon: 389 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 390 break; 391 case Type::FloatCon: 392 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 393 break; 394 case Type::Long: 395 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 396 break; 397 case Type::Half: 398 case Type::Top: 399 st->print(" %s%d]=_",msg,i); 400 break; 401 default: ShouldNotReachHere(); 402 } 403 } 404 } 405 406 //---------------------print_method_with_lineno-------------------------------- 407 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const { 408 if (show_name) _method->print_short_name(st); 409 410 int lineno = _method->line_number_from_bci(_bci); 411 if (lineno != -1) { 412 st->print(" @ bci:%d (line %d)", _bci, lineno); 413 } else { 414 st->print(" @ bci:%d", _bci); 415 } 416 } 417 418 //------------------------------format----------------------------------------- 419 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 420 st->print(" #"); 421 if (_method) { 422 print_method_with_lineno(st, true); 423 } else { 424 st->print_cr(" runtime stub "); 425 return; 426 } 427 if (n->is_MachSafePoint()) { 428 GrowableArray<SafePointScalarObjectNode*> scobjs; 429 MachSafePointNode *mcall = n->as_MachSafePoint(); 430 uint i; 431 // Print locals 432 for (i = 0; i < (uint)loc_size(); i++) 433 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 434 // Print stack 435 for (i = 0; i < (uint)stk_size(); i++) { 436 if ((uint)(_stkoff + i) >= mcall->len()) 437 st->print(" oob "); 438 else 439 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 440 } 441 for (i = 0; (int)i < nof_monitors(); i++) { 442 Node *box = mcall->monitor_box(this, i); 443 Node *obj = mcall->monitor_obj(this, i); 444 if (regalloc->node_regs_max_index() > 0 && 445 OptoReg::is_valid(regalloc->get_reg_first(box))) { 446 box = BoxLockNode::box_node(box); 447 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 448 } else { 449 OptoReg::Name box_reg = BoxLockNode::reg(box); 450 st->print(" MON-BOX%d=%s+%d", 451 i, 452 OptoReg::regname(OptoReg::c_frame_pointer), 453 regalloc->reg2offset(box_reg)); 454 } 455 const char* obj_msg = "MON-OBJ["; 456 if (EliminateLocks) { 457 if (BoxLockNode::box_node(box)->is_eliminated()) 458 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 459 } 460 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 461 } 462 463 for (i = 0; i < (uint)scobjs.length(); i++) { 464 // Scalar replaced objects. 465 st->cr(); 466 st->print(" # ScObj" INT32_FORMAT " ", i); 467 SafePointScalarObjectNode* spobj = scobjs.at(i); 468 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass(); 469 assert(cik->is_instance_klass() || 470 cik->is_array_klass(), "Not supported allocation."); 471 ciInstanceKlass *iklass = nullptr; 472 if (cik->is_instance_klass()) { 473 cik->print_name_on(st); 474 iklass = cik->as_instance_klass(); 475 } else if (cik->is_type_array_klass()) { 476 cik->as_array_klass()->base_element_type()->print_name_on(st); 477 st->print("[%d]", spobj->n_fields()); 478 } else if (cik->is_obj_array_klass()) { 479 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 480 if (cie->is_instance_klass()) { 481 cie->print_name_on(st); 482 } else if (cie->is_type_array_klass()) { 483 cie->as_array_klass()->base_element_type()->print_name_on(st); 484 } else { 485 ShouldNotReachHere(); 486 } 487 st->print("[%d]", spobj->n_fields()); 488 int ndim = cik->as_array_klass()->dimension() - 1; 489 while (ndim-- > 0) { 490 st->print("[]"); 491 } 492 } else if (cik->is_flat_array_klass()) { 493 ciKlass* cie = cik->as_flat_array_klass()->base_element_klass(); 494 cie->print_name_on(st); 495 st->print("[%d]", spobj->n_fields()); 496 int ndim = cik->as_array_klass()->dimension() - 1; 497 while (ndim-- > 0) { 498 st->print("[]"); 499 } 500 } 501 st->print("={"); 502 uint nf = spobj->n_fields(); 503 if (nf > 0) { 504 uint first_ind = spobj->first_index(mcall->jvms()); 505 if (iklass != nullptr && iklass->is_inlinetype()) { 506 Node* init_node = mcall->in(first_ind++); 507 if (!init_node->is_top()) { 508 st->print(" [is_init"); 509 format_helper(regalloc, st, init_node, ":", -1, nullptr); 510 } 511 } 512 Node* fld_node = mcall->in(first_ind); 513 if (iklass != nullptr) { 514 st->print(" ["); 515 iklass->nonstatic_field_at(0)->print_name_on(st); 516 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 517 } else { 518 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 519 } 520 for (uint j = 1; j < nf; j++) { 521 fld_node = mcall->in(first_ind+j); 522 if (iklass != nullptr) { 523 st->print(", ["); 524 iklass->nonstatic_field_at(j)->print_name_on(st); 525 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 526 } else { 527 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 528 } 529 } 530 } 531 st->print(" }"); 532 } 533 } 534 st->cr(); 535 if (caller() != nullptr) caller()->format(regalloc, n, st); 536 } 537 538 539 void JVMState::dump_spec(outputStream *st) const { 540 if (_method != nullptr) { 541 bool printed = false; 542 if (!Verbose) { 543 // The JVMS dumps make really, really long lines. 544 // Take out the most boring parts, which are the package prefixes. 545 char buf[500]; 546 stringStream namest(buf, sizeof(buf)); 547 _method->print_short_name(&namest); 548 if (namest.count() < sizeof(buf)) { 549 const char* name = namest.base(); 550 if (name[0] == ' ') ++name; 551 const char* endcn = strchr(name, ':'); // end of class name 552 if (endcn == nullptr) endcn = strchr(name, '('); 553 if (endcn == nullptr) endcn = name + strlen(name); 554 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 555 --endcn; 556 st->print(" %s", endcn); 557 printed = true; 558 } 559 } 560 print_method_with_lineno(st, !printed); 561 if(_reexecute == Reexecute_True) 562 st->print(" reexecute"); 563 } else { 564 st->print(" runtime stub"); 565 } 566 if (caller() != nullptr) caller()->dump_spec(st); 567 } 568 569 570 void JVMState::dump_on(outputStream* st) const { 571 bool print_map = _map && !((uintptr_t)_map & 1) && 572 ((caller() == nullptr) || (caller()->map() != _map)); 573 if (print_map) { 574 if (_map->len() > _map->req()) { // _map->has_exceptions() 575 Node* ex = _map->in(_map->req()); // _map->next_exception() 576 // skip the first one; it's already being printed 577 while (ex != nullptr && ex->len() > ex->req()) { 578 ex = ex->in(ex->req()); // ex->next_exception() 579 ex->dump(1); 580 } 581 } 582 _map->dump(Verbose ? 2 : 1); 583 } 584 if (caller() != nullptr) { 585 caller()->dump_on(st); 586 } 587 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 588 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 589 if (_method == nullptr) { 590 st->print_cr("(none)"); 591 } else { 592 _method->print_name(st); 593 st->cr(); 594 if (bci() >= 0 && bci() < _method->code_size()) { 595 st->print(" bc: "); 596 _method->print_codes_on(bci(), bci()+1, st); 597 } 598 } 599 } 600 601 // Extra way to dump a jvms from the debugger, 602 // to avoid a bug with C++ member function calls. 603 void dump_jvms(JVMState* jvms) { 604 jvms->dump(); 605 } 606 #endif 607 608 //--------------------------clone_shallow-------------------------------------- 609 JVMState* JVMState::clone_shallow(Compile* C) const { 610 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 611 n->set_bci(_bci); 612 n->_reexecute = _reexecute; 613 n->set_locoff(_locoff); 614 n->set_stkoff(_stkoff); 615 n->set_monoff(_monoff); 616 n->set_scloff(_scloff); 617 n->set_endoff(_endoff); 618 n->set_sp(_sp); 619 n->set_map(_map); 620 return n; 621 } 622 623 //---------------------------clone_deep---------------------------------------- 624 JVMState* JVMState::clone_deep(Compile* C) const { 625 JVMState* n = clone_shallow(C); 626 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) { 627 p->_caller = p->_caller->clone_shallow(C); 628 } 629 assert(n->depth() == depth(), "sanity"); 630 assert(n->debug_depth() == debug_depth(), "sanity"); 631 return n; 632 } 633 634 /** 635 * Reset map for all callers 636 */ 637 void JVMState::set_map_deep(SafePointNode* map) { 638 for (JVMState* p = this; p != nullptr; p = p->_caller) { 639 p->set_map(map); 640 } 641 } 642 643 // unlike set_map(), this is two-way setting. 644 void JVMState::bind_map(SafePointNode* map) { 645 set_map(map); 646 _map->set_jvms(this); 647 } 648 649 // Adapt offsets in in-array after adding or removing an edge. 650 // Prerequisite is that the JVMState is used by only one node. 651 void JVMState::adapt_position(int delta) { 652 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) { 653 jvms->set_locoff(jvms->locoff() + delta); 654 jvms->set_stkoff(jvms->stkoff() + delta); 655 jvms->set_monoff(jvms->monoff() + delta); 656 jvms->set_scloff(jvms->scloff() + delta); 657 jvms->set_endoff(jvms->endoff() + delta); 658 } 659 } 660 661 // Mirror the stack size calculation in the deopt code 662 // How much stack space would we need at this point in the program in 663 // case of deoptimization? 664 int JVMState::interpreter_frame_size() const { 665 const JVMState* jvms = this; 666 int size = 0; 667 int callee_parameters = 0; 668 int callee_locals = 0; 669 int extra_args = method()->max_stack() - stk_size(); 670 671 while (jvms != nullptr) { 672 int locks = jvms->nof_monitors(); 673 int temps = jvms->stk_size(); 674 bool is_top_frame = (jvms == this); 675 ciMethod* method = jvms->method(); 676 677 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 678 temps + callee_parameters, 679 extra_args, 680 locks, 681 callee_parameters, 682 callee_locals, 683 is_top_frame); 684 size += frame_size; 685 686 callee_parameters = method->size_of_parameters(); 687 callee_locals = method->max_locals(); 688 extra_args = 0; 689 jvms = jvms->caller(); 690 } 691 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 692 } 693 694 //============================================================================= 695 bool CallNode::cmp( const Node &n ) const 696 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 697 #ifndef PRODUCT 698 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const { 699 // Dump the required inputs, enclosed in '(' and ')' 700 uint i; // Exit value of loop 701 for (i = 0; i < req(); i++) { // For all required inputs 702 if (i == TypeFunc::Parms) st->print("("); 703 Node* p = in(i); 704 if (p != nullptr) { 705 p->dump_idx(false, st, dc); 706 st->print(" "); 707 } else { 708 st->print("_ "); 709 } 710 } 711 st->print(")"); 712 } 713 714 void CallNode::dump_spec(outputStream *st) const { 715 st->print(" "); 716 if (tf() != nullptr) tf()->dump_on(st); 717 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 718 if (jvms() != nullptr) jvms()->dump_spec(st); 719 } 720 721 void AllocateNode::dump_spec(outputStream* st) const { 722 st->print(" "); 723 if (tf() != nullptr) { 724 tf()->dump_on(st); 725 } 726 if (_cnt != COUNT_UNKNOWN) { 727 st->print(" C=%f", _cnt); 728 } 729 const Node* const klass_node = in(KlassNode); 730 if (klass_node != nullptr) { 731 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr(); 732 733 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) { 734 st->print(" allocationKlass:"); 735 klass_ptr->exact_klass()->print_name_on(st); 736 } 737 } 738 if (jvms() != nullptr) { 739 jvms()->dump_spec(st); 740 } 741 } 742 #endif 743 744 const Type *CallNode::bottom_type() const { return tf()->range_cc(); } 745 const Type* CallNode::Value(PhaseGVN* phase) const { 746 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 747 return Type::TOP; 748 } 749 return tf()->range_cc(); 750 } 751 752 //------------------------------calling_convention----------------------------- 753 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 754 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) { 755 // The call to that stub is a special case: its inputs are 756 // multiple values returned from a call and so it should follow 757 // the return convention. 758 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt); 759 return; 760 } 761 // Use the standard compiler calling convention 762 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 763 } 764 765 766 //------------------------------match------------------------------------------ 767 // Construct projections for control, I/O, memory-fields, ..., and 768 // return result(s) along with their RegMask info 769 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) { 770 uint con = proj->_con; 771 const TypeTuple* range_cc = tf()->range_cc(); 772 if (con >= TypeFunc::Parms) { 773 if (tf()->returns_inline_type_as_fields()) { 774 // The call returns multiple values (inline type fields): we 775 // create one projection per returned value. 776 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return"); 777 uint ideal_reg = range_cc->field_at(con)->ideal_reg(); 778 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg); 779 } else { 780 if (con == TypeFunc::Parms) { 781 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg(); 782 OptoRegPair regs = Opcode() == Op_CallLeafVector 783 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine 784 : match->c_return_value(ideal_reg); 785 RegMask rm = RegMask(regs.first()); 786 787 if (Opcode() == Op_CallLeafVector) { 788 // If the return is in vector, compute appropriate regmask taking into account the whole range 789 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) { 790 if(OptoReg::is_valid(regs.second())) { 791 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) { 792 rm.Insert(r); 793 } 794 } 795 } 796 } 797 798 if (OptoReg::is_valid(regs.second())) { 799 rm.Insert(regs.second()); 800 } 801 return new MachProjNode(this,con,rm,ideal_reg); 802 } else { 803 assert(con == TypeFunc::Parms+1, "only one return value"); 804 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 805 return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad); 806 } 807 } 808 } 809 810 switch (con) { 811 case TypeFunc::Control: 812 case TypeFunc::I_O: 813 case TypeFunc::Memory: 814 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 815 816 case TypeFunc::ReturnAdr: 817 case TypeFunc::FramePtr: 818 default: 819 ShouldNotReachHere(); 820 } 821 return nullptr; 822 } 823 824 // Do we Match on this edge index or not? Match no edges 825 uint CallNode::match_edge(uint idx) const { 826 return 0; 827 } 828 829 // 830 // Determine whether the call could modify the field of the specified 831 // instance at the specified offset. 832 // 833 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { 834 assert((t_oop != nullptr), "sanity"); 835 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { 836 const TypeTuple* args = _tf->domain_sig(); 837 Node* dest = nullptr; 838 // Stubs that can be called once an ArrayCopyNode is expanded have 839 // different signatures. Look for the second pointer argument, 840 // that is the destination of the copy. 841 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { 842 if (args->field_at(i)->isa_ptr()) { 843 j++; 844 if (j == 2) { 845 dest = in(i); 846 break; 847 } 848 } 849 } 850 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!"); 851 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { 852 return true; 853 } 854 return false; 855 } 856 if (t_oop->is_known_instance()) { 857 // The instance_id is set only for scalar-replaceable allocations which 858 // are not passed as arguments according to Escape Analysis. 859 return false; 860 } 861 if (t_oop->is_ptr_to_boxed_value()) { 862 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass(); 863 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 864 // Skip unrelated boxing methods. 865 Node* proj = proj_out_or_null(TypeFunc::Parms); 866 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) { 867 return false; 868 } 869 } 870 if (is_CallJava() && as_CallJava()->method() != nullptr) { 871 ciMethod* meth = as_CallJava()->method(); 872 if (meth->is_getter()) { 873 return false; 874 } 875 // May modify (by reflection) if an boxing object is passed 876 // as argument or returned. 877 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr; 878 if (proj != nullptr) { 879 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 880 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 881 (inst_t->instance_klass() == boxing_klass))) { 882 return true; 883 } 884 } 885 const TypeTuple* d = tf()->domain_cc(); 886 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 887 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 888 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 889 (inst_t->instance_klass() == boxing_klass))) { 890 return true; 891 } 892 } 893 return false; 894 } 895 } 896 return true; 897 } 898 899 // Does this call have a direct reference to n other than debug information? 900 bool CallNode::has_non_debug_use(Node* n) { 901 const TypeTuple* d = tf()->domain_cc(); 902 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 903 if (in(i) == n) { 904 return true; 905 } 906 } 907 return false; 908 } 909 910 bool CallNode::has_debug_use(Node* n) { 911 if (jvms() != nullptr) { 912 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 913 if (in(i) == n) { 914 return true; 915 } 916 } 917 } 918 return false; 919 } 920 921 // Returns the unique CheckCastPP of a call 922 // or 'this' if there are several CheckCastPP or unexpected uses 923 // or returns null if there is no one. 924 Node *CallNode::result_cast() { 925 Node *cast = nullptr; 926 927 Node *p = proj_out_or_null(TypeFunc::Parms); 928 if (p == nullptr) 929 return nullptr; 930 931 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 932 Node *use = p->fast_out(i); 933 if (use->is_CheckCastPP()) { 934 if (cast != nullptr) { 935 return this; // more than 1 CheckCastPP 936 } 937 cast = use; 938 } else if (!use->is_Initialize() && 939 !use->is_AddP() && 940 use->Opcode() != Op_MemBarStoreStore) { 941 // Expected uses are restricted to a CheckCastPP, an Initialize 942 // node, a MemBarStoreStore (clone) and AddP nodes. If we 943 // encounter any other use (a Phi node can be seen in rare 944 // cases) return this to prevent incorrect optimizations. 945 return this; 946 } 947 } 948 return cast; 949 } 950 951 952 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) { 953 uint max_res = TypeFunc::Parms-1; 954 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 955 ProjNode *pn = fast_out(i)->as_Proj(); 956 max_res = MAX2(max_res, pn->_con); 957 } 958 959 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds"); 960 961 uint projs_size = sizeof(CallProjections); 962 if (max_res > TypeFunc::Parms) { 963 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*); 964 } 965 char* projs_storage = resource_allocate_bytes(projs_size); 966 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1); 967 968 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 969 ProjNode *pn = fast_out(i)->as_Proj(); 970 if (pn->outcnt() == 0) continue; 971 switch (pn->_con) { 972 case TypeFunc::Control: 973 { 974 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 975 projs->fallthrough_proj = pn; 976 const Node* cn = pn->unique_ctrl_out_or_null(); 977 if (cn != nullptr && cn->is_Catch()) { 978 ProjNode *cpn = nullptr; 979 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 980 cpn = cn->fast_out(k)->as_Proj(); 981 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 982 if (cpn->_con == CatchProjNode::fall_through_index) 983 projs->fallthrough_catchproj = cpn; 984 else { 985 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 986 projs->catchall_catchproj = cpn; 987 } 988 } 989 } 990 break; 991 } 992 case TypeFunc::I_O: 993 if (pn->_is_io_use) 994 projs->catchall_ioproj = pn; 995 else 996 projs->fallthrough_ioproj = pn; 997 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 998 Node* e = pn->out(j); 999 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 1000 assert(projs->exobj == nullptr, "only one"); 1001 projs->exobj = e; 1002 } 1003 } 1004 break; 1005 case TypeFunc::Memory: 1006 if (pn->_is_io_use) 1007 projs->catchall_memproj = pn; 1008 else 1009 projs->fallthrough_memproj = pn; 1010 break; 1011 case TypeFunc::Parms: 1012 projs->resproj[0] = pn; 1013 break; 1014 default: 1015 assert(pn->_con <= max_res, "unexpected projection from allocation node."); 1016 projs->resproj[pn->_con-TypeFunc::Parms] = pn; 1017 break; 1018 } 1019 } 1020 1021 // The resproj may not exist because the result could be ignored 1022 // and the exception object may not exist if an exception handler 1023 // swallows the exception but all the other must exist and be found. 1024 do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); 1025 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found"); 1026 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found"); 1027 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found"); 1028 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found"); 1029 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found"); 1030 if (separate_io_proj) { 1031 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found"); 1032 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found"); 1033 } 1034 return projs; 1035 } 1036 1037 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1038 #ifdef ASSERT 1039 // Validate attached generator 1040 CallGenerator* cg = generator(); 1041 if (cg != nullptr) { 1042 assert((is_CallStaticJava() && cg->is_mh_late_inline()) || 1043 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch"); 1044 } 1045 #endif // ASSERT 1046 return SafePointNode::Ideal(phase, can_reshape); 1047 } 1048 1049 bool CallNode::is_call_to_arraycopystub() const { 1050 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) { 1051 return true; 1052 } 1053 return false; 1054 } 1055 1056 //============================================================================= 1057 uint CallJavaNode::size_of() const { return sizeof(*this); } 1058 bool CallJavaNode::cmp( const Node &n ) const { 1059 CallJavaNode &call = (CallJavaNode&)n; 1060 return CallNode::cmp(call) && _method == call._method && 1061 _override_symbolic_info == call._override_symbolic_info; 1062 } 1063 1064 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) { 1065 // Copy debug information and adjust JVMState information 1066 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1; 1067 uint new_dbg_start = tf()->domain_sig()->cnt(); 1068 int jvms_adj = new_dbg_start - old_dbg_start; 1069 assert (new_dbg_start == req(), "argument count mismatch"); 1070 Compile* C = phase->C; 1071 1072 // SafePointScalarObject node could be referenced several times in debug info. 1073 // Use Dict to record cloned nodes. 1074 Dict* sosn_map = new Dict(cmpkey,hashkey); 1075 for (uint i = old_dbg_start; i < sfpt->req(); i++) { 1076 Node* old_in = sfpt->in(i); 1077 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 1078 if (old_in != nullptr && old_in->is_SafePointScalarObject()) { 1079 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 1080 bool new_node; 1081 Node* new_in = old_sosn->clone(sosn_map, new_node); 1082 if (new_node) { // New node? 1083 new_in->set_req(0, C->root()); // reset control edge 1084 new_in = phase->transform(new_in); // Register new node. 1085 } 1086 old_in = new_in; 1087 } 1088 add_req(old_in); 1089 } 1090 1091 // JVMS may be shared so clone it before we modify it 1092 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr); 1093 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1094 jvms->set_map(this); 1095 jvms->set_locoff(jvms->locoff()+jvms_adj); 1096 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 1097 jvms->set_monoff(jvms->monoff()+jvms_adj); 1098 jvms->set_scloff(jvms->scloff()+jvms_adj); 1099 jvms->set_endoff(jvms->endoff()+jvms_adj); 1100 } 1101 } 1102 1103 #ifdef ASSERT 1104 bool CallJavaNode::validate_symbolic_info() const { 1105 if (method() == nullptr) { 1106 return true; // call into runtime or uncommon trap 1107 } 1108 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci()); 1109 if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) { 1110 return true; 1111 } 1112 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci()); 1113 ciMethod* callee = method(); 1114 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) { 1115 assert(override_symbolic_info(), "should be set"); 1116 } 1117 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info"); 1118 return true; 1119 } 1120 #endif 1121 1122 #ifndef PRODUCT 1123 void CallJavaNode::dump_spec(outputStream* st) const { 1124 if( _method ) _method->print_short_name(st); 1125 CallNode::dump_spec(st); 1126 } 1127 1128 void CallJavaNode::dump_compact_spec(outputStream* st) const { 1129 if (_method) { 1130 _method->print_short_name(st); 1131 } else { 1132 st->print("<?>"); 1133 } 1134 } 1135 #endif 1136 1137 void CallJavaNode::register_for_late_inline() { 1138 if (generator() != nullptr) { 1139 Compile::current()->prepend_late_inline(generator()); 1140 set_generator(nullptr); 1141 } else { 1142 assert(false, "repeated inline attempt"); 1143 } 1144 } 1145 1146 //============================================================================= 1147 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 1148 bool CallStaticJavaNode::cmp( const Node &n ) const { 1149 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 1150 return CallJavaNode::cmp(call); 1151 } 1152 1153 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1154 if (can_reshape && uncommon_trap_request() != 0) { 1155 PhaseIterGVN* igvn = phase->is_IterGVN(); 1156 if (remove_unknown_flat_array_load(igvn, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) { 1157 if (!in(0)->is_Region()) { 1158 igvn->replace_input_of(this, 0, phase->C->top()); 1159 } 1160 return this; 1161 } 1162 } 1163 1164 CallGenerator* cg = generator(); 1165 if (can_reshape && cg != nullptr) { 1166 if (cg->is_mh_late_inline()) { 1167 assert(IncrementalInlineMH, "required"); 1168 assert(cg->call_node() == this, "mismatch"); 1169 assert(cg->method()->is_method_handle_intrinsic(), "required"); 1170 1171 // Check whether this MH handle call becomes a candidate for inlining. 1172 ciMethod* callee = cg->method(); 1173 vmIntrinsics::ID iid = callee->intrinsic_id(); 1174 if (iid == vmIntrinsics::_invokeBasic) { 1175 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 1176 register_for_late_inline(); 1177 } 1178 } else if (iid == vmIntrinsics::_linkToNative) { 1179 // never retry 1180 } else { 1181 assert(callee->has_member_arg(), "wrong type of call?"); 1182 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 1183 register_for_late_inline(); 1184 phase->C->inc_number_of_mh_late_inlines(); 1185 } 1186 } 1187 } else { 1188 assert(IncrementalInline, "required"); 1189 assert(!cg->method()->is_method_handle_intrinsic(), "required"); 1190 if (phase->C->print_inlining()) { 1191 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, 1192 "static call node changed: trying again"); 1193 } 1194 register_for_late_inline(); 1195 } 1196 } 1197 return CallNode::Ideal(phase, can_reshape); 1198 } 1199 1200 //----------------------------is_uncommon_trap---------------------------- 1201 // Returns true if this is an uncommon trap. 1202 bool CallStaticJavaNode::is_uncommon_trap() const { 1203 return (_name != nullptr && !strcmp(_name, "uncommon_trap")); 1204 } 1205 1206 //----------------------------uncommon_trap_request---------------------------- 1207 // If this is an uncommon trap, return the request code, else zero. 1208 int CallStaticJavaNode::uncommon_trap_request() const { 1209 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0; 1210 } 1211 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 1212 #ifndef PRODUCT 1213 if (!(call->req() > TypeFunc::Parms && 1214 call->in(TypeFunc::Parms) != nullptr && 1215 call->in(TypeFunc::Parms)->is_Con() && 1216 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 1217 assert(in_dump() != 0, "OK if dumping"); 1218 tty->print("[bad uncommon trap]"); 1219 return 0; 1220 } 1221 #endif 1222 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 1223 } 1224 1225 // Split if can cause the flat array branch of an array load with unknown type (see 1226 // Parse::array_load) to end in an uncommon trap. In that case, the call to 1227 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState. 1228 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) { 1229 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) { 1230 return false; 1231 } 1232 if (ctl->is_Region()) { 1233 bool res = false; 1234 for (uint i = 1; i < ctl->req(); i++) { 1235 MergeMemNode* mm = mem->clone()->as_MergeMem(); 1236 for (MergeMemStream mms(mm); mms.next_non_empty(); ) { 1237 Node* m = mms.memory(); 1238 if (m->is_Phi() && m->in(0) == ctl) { 1239 mms.set_memory(m->in(i)); 1240 } 1241 } 1242 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) { 1243 res = true; 1244 if (!ctl->in(i)->is_Region()) { 1245 igvn->replace_input_of(ctl, i, igvn->C->top()); 1246 } 1247 } 1248 igvn->remove_dead_node(mm); 1249 } 1250 return res; 1251 } 1252 // Verify the control flow is ok 1253 Node* call = ctl; 1254 MemBarNode* membar = nullptr; 1255 for (;;) { 1256 if (call == nullptr || call->is_top()) { 1257 return false; 1258 } 1259 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) { 1260 call = call->in(0); 1261 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() && 1262 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) { 1263 assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar"); 1264 membar = call->in(0)->in(0)->as_MemBar(); 1265 break; 1266 } else { 1267 return false; 1268 } 1269 } 1270 1271 JVMState* jvms = call->jvms(); 1272 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) { 1273 return false; 1274 } 1275 1276 Node* call_mem = call->in(TypeFunc::Memory); 1277 if (call_mem == nullptr || call_mem->is_top()) { 1278 return false; 1279 } 1280 if (!call_mem->is_MergeMem()) { 1281 call_mem = MergeMemNode::make(call_mem); 1282 igvn->register_new_node_with_optimizer(call_mem); 1283 } 1284 1285 // Verify that there's no unexpected side effect 1286 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) { 1287 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory(); 1288 Node* m2 = mms2.memory2(); 1289 1290 for (uint i = 0; i < 100; i++) { 1291 if (m1 == m2) { 1292 break; 1293 } else if (m1->is_Proj()) { 1294 m1 = m1->in(0); 1295 } else if (m1->is_MemBar()) { 1296 m1 = m1->in(TypeFunc::Memory); 1297 } else if (m1->Opcode() == Op_CallStaticJava && 1298 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) { 1299 if (m1 != call) { 1300 return false; 1301 } 1302 break; 1303 } else if (m1->is_MergeMem()) { 1304 MergeMemNode* mm = m1->as_MergeMem(); 1305 int idx = mms2.alias_idx(); 1306 if (idx == Compile::AliasIdxBot) { 1307 m1 = mm->base_memory(); 1308 } else { 1309 m1 = mm->memory_at(idx); 1310 } 1311 } else { 1312 return false; 1313 } 1314 } 1315 } 1316 if (call_mem->outcnt() == 0) { 1317 igvn->remove_dead_node(call_mem); 1318 } 1319 1320 // Remove membar preceding the call 1321 membar->remove(igvn); 1322 1323 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 1324 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr); 1325 unc->init_req(TypeFunc::Control, call->in(0)); 1326 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O)); 1327 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory)); 1328 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 1329 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 1330 unc->init_req(TypeFunc::Parms+0, unc_arg); 1331 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 1332 unc->copy_call_debug_info(igvn, call->as_CallStaticJava()); 1333 1334 // Replace the call with an uncommon trap 1335 igvn->replace_input_of(call, 0, igvn->C->top()); 1336 1337 igvn->register_new_node_with_optimizer(unc); 1338 1339 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control)); 1340 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen")); 1341 igvn->add_input_to(igvn->C->root(), halt); 1342 1343 return true; 1344 } 1345 1346 1347 #ifndef PRODUCT 1348 void CallStaticJavaNode::dump_spec(outputStream *st) const { 1349 st->print("# Static "); 1350 if (_name != nullptr) { 1351 st->print("%s", _name); 1352 int trap_req = uncommon_trap_request(); 1353 if (trap_req != 0) { 1354 char buf[100]; 1355 st->print("(%s)", 1356 Deoptimization::format_trap_request(buf, sizeof(buf), 1357 trap_req)); 1358 } 1359 st->print(" "); 1360 } 1361 CallJavaNode::dump_spec(st); 1362 } 1363 1364 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { 1365 if (_method) { 1366 _method->print_short_name(st); 1367 } else if (_name) { 1368 st->print("%s", _name); 1369 } else { 1370 st->print("<?>"); 1371 } 1372 } 1373 #endif 1374 1375 //============================================================================= 1376 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 1377 bool CallDynamicJavaNode::cmp( const Node &n ) const { 1378 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 1379 return CallJavaNode::cmp(call); 1380 } 1381 1382 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1383 CallGenerator* cg = generator(); 1384 if (can_reshape && cg != nullptr) { 1385 if (cg->is_virtual_late_inline()) { 1386 assert(IncrementalInlineVirtual, "required"); 1387 assert(cg->call_node() == this, "mismatch"); 1388 1389 // Recover symbolic info for method resolution. 1390 ciMethod* caller = jvms()->method(); 1391 ciBytecodeStream iter(caller); 1392 iter.force_bci(jvms()->bci()); 1393 1394 bool not_used1; 1395 ciSignature* not_used2; 1396 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode 1397 ciKlass* holder = iter.get_declared_method_holder(); 1398 if (orig_callee->is_method_handle_intrinsic()) { 1399 assert(_override_symbolic_info, "required"); 1400 orig_callee = method(); 1401 holder = method()->holder(); 1402 } 1403 1404 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 1405 1406 Node* receiver_node = in(TypeFunc::Parms); 1407 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr(); 1408 1409 int not_used3; 1410 bool call_does_dispatch; 1411 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/, 1412 call_does_dispatch, not_used3); // out-parameters 1413 if (!call_does_dispatch) { 1414 // Register for late inlining. 1415 cg->set_callee_method(callee); 1416 register_for_late_inline(); // MH late inlining prepends to the list, so do the same 1417 } 1418 } else { 1419 assert(IncrementalInline, "required"); 1420 if (phase->C->print_inlining()) { 1421 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, 1422 "dynamic call node changed: trying again"); 1423 } 1424 register_for_late_inline(); 1425 } 1426 } 1427 return CallNode::Ideal(phase, can_reshape); 1428 } 1429 1430 #ifndef PRODUCT 1431 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 1432 st->print("# Dynamic "); 1433 CallJavaNode::dump_spec(st); 1434 } 1435 #endif 1436 1437 //============================================================================= 1438 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 1439 bool CallRuntimeNode::cmp( const Node &n ) const { 1440 CallRuntimeNode &call = (CallRuntimeNode&)n; 1441 return CallNode::cmp(call) && !strcmp(_name,call._name); 1442 } 1443 #ifndef PRODUCT 1444 void CallRuntimeNode::dump_spec(outputStream *st) const { 1445 st->print("# "); 1446 st->print("%s", _name); 1447 CallNode::dump_spec(st); 1448 } 1449 #endif 1450 uint CallLeafVectorNode::size_of() const { return sizeof(*this); } 1451 bool CallLeafVectorNode::cmp( const Node &n ) const { 1452 CallLeafVectorNode &call = (CallLeafVectorNode&)n; 1453 return CallLeafNode::cmp(call) && _num_bits == call._num_bits; 1454 } 1455 1456 //------------------------------calling_convention----------------------------- 1457 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 1458 if (_entry_point == nullptr) { 1459 // The call to that stub is a special case: its inputs are 1460 // multiple values returned from a call and so it should follow 1461 // the return convention. 1462 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt); 1463 return; 1464 } 1465 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt); 1466 } 1467 1468 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1469 #ifdef ASSERT 1470 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1471 "return vector size must match"); 1472 const TypeTuple* d = tf()->domain_sig(); 1473 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1474 Node* arg = in(i); 1475 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1476 "vector argument size must match"); 1477 } 1478 #endif 1479 1480 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt); 1481 } 1482 1483 //============================================================================= 1484 //------------------------------calling_convention----------------------------- 1485 1486 1487 //============================================================================= 1488 #ifndef PRODUCT 1489 void CallLeafNode::dump_spec(outputStream *st) const { 1490 st->print("# "); 1491 st->print("%s", _name); 1492 CallNode::dump_spec(st); 1493 } 1494 #endif 1495 1496 uint CallLeafNoFPNode::match_edge(uint idx) const { 1497 // Null entry point is a special case for which the target is in a 1498 // register. Need to match that edge. 1499 return entry_point() == nullptr && idx == TypeFunc::Parms; 1500 } 1501 1502 //============================================================================= 1503 1504 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { 1505 assert(verify_jvms(jvms), "jvms must match"); 1506 int loc = jvms->locoff() + idx; 1507 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1508 // If current local idx is top then local idx - 1 could 1509 // be a long/double that needs to be killed since top could 1510 // represent the 2nd half of the long/double. 1511 uint ideal = in(loc -1)->ideal_reg(); 1512 if (ideal == Op_RegD || ideal == Op_RegL) { 1513 // set other (low index) half to top 1514 set_req(loc - 1, in(loc)); 1515 } 1516 } 1517 set_req(loc, c); 1518 } 1519 1520 uint SafePointNode::size_of() const { return sizeof(*this); } 1521 bool SafePointNode::cmp( const Node &n ) const { 1522 return (&n == this); // Always fail except on self 1523 } 1524 1525 //-------------------------set_next_exception---------------------------------- 1526 void SafePointNode::set_next_exception(SafePointNode* n) { 1527 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1528 if (len() == req()) { 1529 if (n != nullptr) add_prec(n); 1530 } else { 1531 set_prec(req(), n); 1532 } 1533 } 1534 1535 1536 //----------------------------next_exception----------------------------------- 1537 SafePointNode* SafePointNode::next_exception() const { 1538 if (len() == req()) { 1539 return nullptr; 1540 } else { 1541 Node* n = in(req()); 1542 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1543 return (SafePointNode*) n; 1544 } 1545 } 1546 1547 1548 //------------------------------Ideal------------------------------------------ 1549 // Skip over any collapsed Regions 1550 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1551 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState"); 1552 if (remove_dead_region(phase, can_reshape)) { 1553 return this; 1554 } 1555 // Scalarize inline types in safepoint debug info. 1556 // Delay this until all inlining is over to avoid getting inconsistent debug info. 1557 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) { 1558 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 1559 Node* n = in(i)->uncast(); 1560 if (n->is_InlineType()) { 1561 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN()); 1562 } 1563 } 1564 } 1565 return nullptr; 1566 } 1567 1568 //------------------------------Identity--------------------------------------- 1569 // Remove obviously duplicate safepoints 1570 Node* SafePointNode::Identity(PhaseGVN* phase) { 1571 1572 // If you have back to back safepoints, remove one 1573 if (in(TypeFunc::Control)->is_SafePoint()) { 1574 Node* out_c = unique_ctrl_out_or_null(); 1575 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the 1576 // outer loop's safepoint could confuse removal of the outer loop. 1577 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) { 1578 return in(TypeFunc::Control); 1579 } 1580 } 1581 1582 // Transforming long counted loops requires a safepoint node. Do not 1583 // eliminate a safepoint until loop opts are over. 1584 if (in(0)->is_Proj() && !phase->C->major_progress()) { 1585 Node *n0 = in(0)->in(0); 1586 // Check if he is a call projection (except Leaf Call) 1587 if( n0->is_Catch() ) { 1588 n0 = n0->in(0)->in(0); 1589 assert( n0->is_Call(), "expect a call here" ); 1590 } 1591 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1592 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode. 1593 // If the loop dies, they will be removed together. 1594 if (has_out_with(Op_OuterStripMinedLoopEnd)) { 1595 return this; 1596 } 1597 // Useless Safepoint, so remove it 1598 return in(TypeFunc::Control); 1599 } 1600 } 1601 1602 return this; 1603 } 1604 1605 //------------------------------Value------------------------------------------ 1606 const Type* SafePointNode::Value(PhaseGVN* phase) const { 1607 if (phase->type(in(0)) == Type::TOP) { 1608 return Type::TOP; 1609 } 1610 if (in(0) == this) { 1611 return Type::TOP; // Dead infinite loop 1612 } 1613 return Type::CONTROL; 1614 } 1615 1616 #ifndef PRODUCT 1617 void SafePointNode::dump_spec(outputStream *st) const { 1618 st->print(" SafePoint "); 1619 _replaced_nodes.dump(st); 1620 } 1621 #endif 1622 1623 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1624 if( idx < TypeFunc::Parms ) return RegMask::Empty; 1625 // Values outside the domain represent debug info 1626 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1627 } 1628 const RegMask &SafePointNode::out_RegMask() const { 1629 return RegMask::Empty; 1630 } 1631 1632 1633 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1634 assert((int)grow_by > 0, "sanity"); 1635 int monoff = jvms->monoff(); 1636 int scloff = jvms->scloff(); 1637 int endoff = jvms->endoff(); 1638 assert(endoff == (int)req(), "no other states or debug info after me"); 1639 Node* top = Compile::current()->top(); 1640 for (uint i = 0; i < grow_by; i++) { 1641 ins_req(monoff, top); 1642 } 1643 jvms->set_monoff(monoff + grow_by); 1644 jvms->set_scloff(scloff + grow_by); 1645 jvms->set_endoff(endoff + grow_by); 1646 } 1647 1648 void SafePointNode::push_monitor(const FastLockNode *lock) { 1649 // Add a LockNode, which points to both the original BoxLockNode (the 1650 // stack space for the monitor) and the Object being locked. 1651 const int MonitorEdges = 2; 1652 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1653 assert(req() == jvms()->endoff(), "correct sizing"); 1654 int nextmon = jvms()->scloff(); 1655 if (GenerateSynchronizationCode) { 1656 ins_req(nextmon, lock->box_node()); 1657 ins_req(nextmon+1, lock->obj_node()); 1658 } else { 1659 Node* top = Compile::current()->top(); 1660 ins_req(nextmon, top); 1661 ins_req(nextmon, top); 1662 } 1663 jvms()->set_scloff(nextmon + MonitorEdges); 1664 jvms()->set_endoff(req()); 1665 } 1666 1667 void SafePointNode::pop_monitor() { 1668 // Delete last monitor from debug info 1669 debug_only(int num_before_pop = jvms()->nof_monitors()); 1670 const int MonitorEdges = 2; 1671 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1672 int scloff = jvms()->scloff(); 1673 int endoff = jvms()->endoff(); 1674 int new_scloff = scloff - MonitorEdges; 1675 int new_endoff = endoff - MonitorEdges; 1676 jvms()->set_scloff(new_scloff); 1677 jvms()->set_endoff(new_endoff); 1678 while (scloff > new_scloff) del_req_ordered(--scloff); 1679 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1680 } 1681 1682 Node *SafePointNode::peek_monitor_box() const { 1683 int mon = jvms()->nof_monitors() - 1; 1684 assert(mon >= 0, "must have a monitor"); 1685 return monitor_box(jvms(), mon); 1686 } 1687 1688 Node *SafePointNode::peek_monitor_obj() const { 1689 int mon = jvms()->nof_monitors() - 1; 1690 assert(mon >= 0, "must have a monitor"); 1691 return monitor_obj(jvms(), mon); 1692 } 1693 1694 Node* SafePointNode::peek_operand(uint off) const { 1695 assert(jvms()->sp() > 0, "must have an operand"); 1696 assert(off < jvms()->sp(), "off is out-of-range"); 1697 return stack(jvms(), jvms()->sp() - off - 1); 1698 } 1699 1700 // Do we Match on this edge index or not? Match no edges 1701 uint SafePointNode::match_edge(uint idx) const { 1702 return (TypeFunc::Parms == idx); 1703 } 1704 1705 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) { 1706 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops"); 1707 int nb = igvn->C->root()->find_prec_edge(this); 1708 if (nb != -1) { 1709 igvn->delete_precedence_of(igvn->C->root(), nb); 1710 } 1711 } 1712 1713 //============== SafePointScalarObjectNode ============== 1714 1715 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) : 1716 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1717 _first_index(first_index), 1718 _depth(depth), 1719 _n_fields(n_fields), 1720 _alloc(alloc) 1721 { 1722 #ifdef ASSERT 1723 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) { 1724 alloc->dump(); 1725 assert(false, "unexpected call node"); 1726 } 1727 #endif 1728 init_class_id(Class_SafePointScalarObject); 1729 } 1730 1731 // Do not allow value-numbering for SafePointScalarObject node. 1732 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1733 bool SafePointScalarObjectNode::cmp( const Node &n ) const { 1734 return (&n == this); // Always fail except on self 1735 } 1736 1737 uint SafePointScalarObjectNode::ideal_reg() const { 1738 return 0; // No matching to machine instruction 1739 } 1740 1741 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1742 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1743 } 1744 1745 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1746 return RegMask::Empty; 1747 } 1748 1749 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1750 return 0; 1751 } 1752 1753 SafePointScalarObjectNode* 1754 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const { 1755 void* cached = (*sosn_map)[(void*)this]; 1756 if (cached != nullptr) { 1757 new_node = false; 1758 return (SafePointScalarObjectNode*)cached; 1759 } 1760 new_node = true; 1761 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1762 sosn_map->Insert((void*)this, (void*)res); 1763 return res; 1764 } 1765 1766 1767 #ifndef PRODUCT 1768 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1769 st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1); 1770 } 1771 #endif 1772 1773 //============== SafePointScalarMergeNode ============== 1774 1775 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) : 1776 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1777 _merge_pointer_idx(merge_pointer_idx) 1778 { 1779 init_class_id(Class_SafePointScalarMerge); 1780 } 1781 1782 // Do not allow value-numbering for SafePointScalarMerge node. 1783 uint SafePointScalarMergeNode::hash() const { return NO_HASH; } 1784 bool SafePointScalarMergeNode::cmp( const Node &n ) const { 1785 return (&n == this); // Always fail except on self 1786 } 1787 1788 uint SafePointScalarMergeNode::ideal_reg() const { 1789 return 0; // No matching to machine instruction 1790 } 1791 1792 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const { 1793 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1794 } 1795 1796 const RegMask &SafePointScalarMergeNode::out_RegMask() const { 1797 return RegMask::Empty; 1798 } 1799 1800 uint SafePointScalarMergeNode::match_edge(uint idx) const { 1801 return 0; 1802 } 1803 1804 SafePointScalarMergeNode* 1805 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const { 1806 void* cached = (*sosn_map)[(void*)this]; 1807 if (cached != nullptr) { 1808 new_node = false; 1809 return (SafePointScalarMergeNode*)cached; 1810 } 1811 new_node = true; 1812 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone(); 1813 sosn_map->Insert((void*)this, (void*)res); 1814 return res; 1815 } 1816 1817 #ifndef PRODUCT 1818 void SafePointScalarMergeNode::dump_spec(outputStream *st) const { 1819 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1); 1820 } 1821 #endif 1822 1823 //============================================================================= 1824 uint AllocateNode::size_of() const { return sizeof(*this); } 1825 1826 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1827 Node *ctrl, Node *mem, Node *abio, 1828 Node *size, Node *klass_node, 1829 Node* initial_test, 1830 InlineTypeNode* inline_type_node) 1831 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM) 1832 { 1833 init_class_id(Class_Allocate); 1834 init_flags(Flag_is_macro); 1835 _is_scalar_replaceable = false; 1836 _is_non_escaping = false; 1837 _is_allocation_MemBar_redundant = false; 1838 _larval = false; 1839 Node *topnode = C->top(); 1840 1841 init_req( TypeFunc::Control , ctrl ); 1842 init_req( TypeFunc::I_O , abio ); 1843 init_req( TypeFunc::Memory , mem ); 1844 init_req( TypeFunc::ReturnAdr, topnode ); 1845 init_req( TypeFunc::FramePtr , topnode ); 1846 init_req( AllocSize , size); 1847 init_req( KlassNode , klass_node); 1848 init_req( InitialTest , initial_test); 1849 init_req( ALength , topnode); 1850 init_req( ValidLengthTest , topnode); 1851 init_req( InlineType , inline_type_node); 1852 // DefaultValue defaults to nullptr 1853 // RawDefaultValue defaults to nullptr 1854 C->add_macro_node(this); 1855 } 1856 1857 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) 1858 { 1859 assert(initializer != nullptr && 1860 (initializer->is_object_constructor() || initializer->is_class_initializer()), 1861 "unexpected initializer method"); 1862 BCEscapeAnalyzer* analyzer = initializer->get_bcea(); 1863 if (analyzer == nullptr) { 1864 return; 1865 } 1866 1867 // Allocation node is first parameter in its initializer 1868 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { 1869 _is_allocation_MemBar_redundant = true; 1870 } 1871 } 1872 1873 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) { 1874 Node* mark_node = nullptr; 1875 if (UseCompactObjectHeaders || EnableValhalla) { 1876 Node* klass_node = in(AllocateNode::KlassNode); 1877 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset())))); 1878 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 1879 if (EnableValhalla) { 1880 mark_node = phase->transform(mark_node); 1881 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal 1882 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0)); 1883 } 1884 return mark_node; 1885 } else { 1886 return phase->MakeConX(markWord::prototype().value()); 1887 } 1888 } 1889 1890 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 1891 // CastII, if appropriate. If we are not allowed to create new nodes, and 1892 // a CastII is appropriate, return null. 1893 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) { 1894 Node *length = in(AllocateNode::ALength); 1895 assert(length != nullptr, "length is not null"); 1896 1897 const TypeInt* length_type = phase->find_int_type(length); 1898 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 1899 1900 if (ary_type != nullptr && length_type != nullptr) { 1901 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 1902 if (narrow_length_type != length_type) { 1903 // Assert one of: 1904 // - the narrow_length is 0 1905 // - the narrow_length is not wider than length 1906 assert(narrow_length_type == TypeInt::ZERO || 1907 (length_type->is_con() && narrow_length_type->is_con() && 1908 (narrow_length_type->_hi <= length_type->_lo)) || 1909 (narrow_length_type->_hi <= length_type->_hi && 1910 narrow_length_type->_lo >= length_type->_lo), 1911 "narrow type must be narrower than length type"); 1912 1913 // Return null if new nodes are not allowed 1914 if (!allow_new_nodes) { 1915 return nullptr; 1916 } 1917 // Create a cast which is control dependent on the initialization to 1918 // propagate the fact that the array length must be positive. 1919 InitializeNode* init = initialization(); 1920 if (init != nullptr) { 1921 length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type); 1922 } 1923 } 1924 } 1925 1926 return length; 1927 } 1928 1929 //============================================================================= 1930 const TypeFunc* LockNode::_lock_type_Type = nullptr; 1931 1932 uint LockNode::size_of() const { return sizeof(*this); } 1933 1934 // Redundant lock elimination 1935 // 1936 // There are various patterns of locking where we release and 1937 // immediately reacquire a lock in a piece of code where no operations 1938 // occur in between that would be observable. In those cases we can 1939 // skip releasing and reacquiring the lock without violating any 1940 // fairness requirements. Doing this around a loop could cause a lock 1941 // to be held for a very long time so we concentrate on non-looping 1942 // control flow. We also require that the operations are fully 1943 // redundant meaning that we don't introduce new lock operations on 1944 // some paths so to be able to eliminate it on others ala PRE. This 1945 // would probably require some more extensive graph manipulation to 1946 // guarantee that the memory edges were all handled correctly. 1947 // 1948 // Assuming p is a simple predicate which can't trap in any way and s 1949 // is a synchronized method consider this code: 1950 // 1951 // s(); 1952 // if (p) 1953 // s(); 1954 // else 1955 // s(); 1956 // s(); 1957 // 1958 // 1. The unlocks of the first call to s can be eliminated if the 1959 // locks inside the then and else branches are eliminated. 1960 // 1961 // 2. The unlocks of the then and else branches can be eliminated if 1962 // the lock of the final call to s is eliminated. 1963 // 1964 // Either of these cases subsumes the simple case of sequential control flow 1965 // 1966 // Additionally we can eliminate versions without the else case: 1967 // 1968 // s(); 1969 // if (p) 1970 // s(); 1971 // s(); 1972 // 1973 // 3. In this case we eliminate the unlock of the first s, the lock 1974 // and unlock in the then case and the lock in the final s. 1975 // 1976 // Note also that in all these cases the then/else pieces don't have 1977 // to be trivial as long as they begin and end with synchronization 1978 // operations. 1979 // 1980 // s(); 1981 // if (p) 1982 // s(); 1983 // f(); 1984 // s(); 1985 // s(); 1986 // 1987 // The code will work properly for this case, leaving in the unlock 1988 // before the call to f and the relock after it. 1989 // 1990 // A potentially interesting case which isn't handled here is when the 1991 // locking is partially redundant. 1992 // 1993 // s(); 1994 // if (p) 1995 // s(); 1996 // 1997 // This could be eliminated putting unlocking on the else case and 1998 // eliminating the first unlock and the lock in the then side. 1999 // Alternatively the unlock could be moved out of the then side so it 2000 // was after the merge and the first unlock and second lock 2001 // eliminated. This might require less manipulation of the memory 2002 // state to get correct. 2003 // 2004 // Additionally we might allow work between a unlock and lock before 2005 // giving up eliminating the locks. The current code disallows any 2006 // conditional control flow between these operations. A formulation 2007 // similar to partial redundancy elimination computing the 2008 // availability of unlocking and the anticipatability of locking at a 2009 // program point would allow detection of fully redundant locking with 2010 // some amount of work in between. I'm not sure how often I really 2011 // think that would occur though. Most of the cases I've seen 2012 // indicate it's likely non-trivial work would occur in between. 2013 // There may be other more complicated constructs where we could 2014 // eliminate locking but I haven't seen any others appear as hot or 2015 // interesting. 2016 // 2017 // Locking and unlocking have a canonical form in ideal that looks 2018 // roughly like this: 2019 // 2020 // <obj> 2021 // | \\------+ 2022 // | \ \ 2023 // | BoxLock \ 2024 // | | | \ 2025 // | | \ \ 2026 // | | FastLock 2027 // | | / 2028 // | | / 2029 // | | | 2030 // 2031 // Lock 2032 // | 2033 // Proj #0 2034 // | 2035 // MembarAcquire 2036 // | 2037 // Proj #0 2038 // 2039 // MembarRelease 2040 // | 2041 // Proj #0 2042 // | 2043 // Unlock 2044 // | 2045 // Proj #0 2046 // 2047 // 2048 // This code proceeds by processing Lock nodes during PhaseIterGVN 2049 // and searching back through its control for the proper code 2050 // patterns. Once it finds a set of lock and unlock operations to 2051 // eliminate they are marked as eliminatable which causes the 2052 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 2053 // 2054 //============================================================================= 2055 2056 // 2057 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 2058 // - copy regions. (These may not have been optimized away yet.) 2059 // - eliminated locking nodes 2060 // 2061 static Node *next_control(Node *ctrl) { 2062 if (ctrl == nullptr) 2063 return nullptr; 2064 while (1) { 2065 if (ctrl->is_Region()) { 2066 RegionNode *r = ctrl->as_Region(); 2067 Node *n = r->is_copy(); 2068 if (n == nullptr) 2069 break; // hit a region, return it 2070 else 2071 ctrl = n; 2072 } else if (ctrl->is_Proj()) { 2073 Node *in0 = ctrl->in(0); 2074 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 2075 ctrl = in0->in(0); 2076 } else { 2077 break; 2078 } 2079 } else { 2080 break; // found an interesting control 2081 } 2082 } 2083 return ctrl; 2084 } 2085 // 2086 // Given a control, see if it's the control projection of an Unlock which 2087 // operating on the same object as lock. 2088 // 2089 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 2090 GrowableArray<AbstractLockNode*> &lock_ops) { 2091 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr; 2092 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) { 2093 Node *n = ctrl_proj->in(0); 2094 if (n != nullptr && n->is_Unlock()) { 2095 UnlockNode *unlock = n->as_Unlock(); 2096 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2097 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2098 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 2099 if (lock_obj->eqv_uncast(unlock_obj) && 2100 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 2101 !unlock->is_eliminated()) { 2102 lock_ops.append(unlock); 2103 return true; 2104 } 2105 } 2106 } 2107 return false; 2108 } 2109 2110 // 2111 // Find the lock matching an unlock. Returns null if a safepoint 2112 // or complicated control is encountered first. 2113 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 2114 LockNode *lock_result = nullptr; 2115 // find the matching lock, or an intervening safepoint 2116 Node *ctrl = next_control(unlock->in(0)); 2117 while (1) { 2118 assert(ctrl != nullptr, "invalid control graph"); 2119 assert(!ctrl->is_Start(), "missing lock for unlock"); 2120 if (ctrl->is_top()) break; // dead control path 2121 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 2122 if (ctrl->is_SafePoint()) { 2123 break; // found a safepoint (may be the lock we are searching for) 2124 } else if (ctrl->is_Region()) { 2125 // Check for a simple diamond pattern. Punt on anything more complicated 2126 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) { 2127 Node *in1 = next_control(ctrl->in(1)); 2128 Node *in2 = next_control(ctrl->in(2)); 2129 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 2130 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 2131 ctrl = next_control(in1->in(0)->in(0)); 2132 } else { 2133 break; 2134 } 2135 } else { 2136 break; 2137 } 2138 } else { 2139 ctrl = next_control(ctrl->in(0)); // keep searching 2140 } 2141 } 2142 if (ctrl->is_Lock()) { 2143 LockNode *lock = ctrl->as_Lock(); 2144 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2145 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2146 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 2147 if (lock_obj->eqv_uncast(unlock_obj) && 2148 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 2149 lock_result = lock; 2150 } 2151 } 2152 return lock_result; 2153 } 2154 2155 // This code corresponds to case 3 above. 2156 2157 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 2158 GrowableArray<AbstractLockNode*> &lock_ops) { 2159 Node* if_node = node->in(0); 2160 bool if_true = node->is_IfTrue(); 2161 2162 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 2163 Node *lock_ctrl = next_control(if_node->in(0)); 2164 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 2165 Node* lock1_node = nullptr; 2166 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 2167 if (if_true) { 2168 if (proj->is_IfFalse() && proj->outcnt() == 1) { 2169 lock1_node = proj->unique_out(); 2170 } 2171 } else { 2172 if (proj->is_IfTrue() && proj->outcnt() == 1) { 2173 lock1_node = proj->unique_out(); 2174 } 2175 } 2176 if (lock1_node != nullptr && lock1_node->is_Lock()) { 2177 LockNode *lock1 = lock1_node->as_Lock(); 2178 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2179 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2180 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node()); 2181 if (lock_obj->eqv_uncast(lock1_obj) && 2182 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 2183 !lock1->is_eliminated()) { 2184 lock_ops.append(lock1); 2185 return true; 2186 } 2187 } 2188 } 2189 } 2190 2191 lock_ops.trunc_to(0); 2192 return false; 2193 } 2194 2195 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 2196 GrowableArray<AbstractLockNode*> &lock_ops) { 2197 // check each control merging at this point for a matching unlock. 2198 // in(0) should be self edge so skip it. 2199 for (int i = 1; i < (int)region->req(); i++) { 2200 Node *in_node = next_control(region->in(i)); 2201 if (in_node != nullptr) { 2202 if (find_matching_unlock(in_node, lock, lock_ops)) { 2203 // found a match so keep on checking. 2204 continue; 2205 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 2206 continue; 2207 } 2208 2209 // If we fall through to here then it was some kind of node we 2210 // don't understand or there wasn't a matching unlock, so give 2211 // up trying to merge locks. 2212 lock_ops.trunc_to(0); 2213 return false; 2214 } 2215 } 2216 return true; 2217 2218 } 2219 2220 // Check that all locks/unlocks associated with object come from balanced regions. 2221 bool AbstractLockNode::is_balanced() { 2222 Node* obj = obj_node(); 2223 for (uint j = 0; j < obj->outcnt(); j++) { 2224 Node* n = obj->raw_out(j); 2225 if (n->is_AbstractLock() && 2226 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2227 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock(); 2228 if (n_box->is_unbalanced()) { 2229 return false; 2230 } 2231 } 2232 } 2233 return true; 2234 } 2235 2236 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; 2237 2238 const char * AbstractLockNode::kind_as_string() const { 2239 return _kind_names[_kind]; 2240 } 2241 2242 #ifndef PRODUCT 2243 // 2244 // Create a counter which counts the number of times this lock is acquired 2245 // 2246 void AbstractLockNode::create_lock_counter(JVMState* state) { 2247 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 2248 } 2249 2250 void AbstractLockNode::set_eliminated_lock_counter() { 2251 if (_counter) { 2252 // Update the counter to indicate that this lock was eliminated. 2253 // The counter update code will stay around even though the 2254 // optimizer will eliminate the lock operation itself. 2255 _counter->set_tag(NamedCounter::EliminatedLockCounter); 2256 } 2257 } 2258 2259 void AbstractLockNode::dump_spec(outputStream* st) const { 2260 st->print("%s ", _kind_names[_kind]); 2261 CallNode::dump_spec(st); 2262 } 2263 2264 void AbstractLockNode::dump_compact_spec(outputStream* st) const { 2265 st->print("%s", _kind_names[_kind]); 2266 } 2267 #endif 2268 2269 //============================================================================= 2270 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2271 2272 // perform any generic optimizations first (returns 'this' or null) 2273 Node *result = SafePointNode::Ideal(phase, can_reshape); 2274 if (result != nullptr) return result; 2275 // Don't bother trying to transform a dead node 2276 if (in(0) && in(0)->is_top()) return nullptr; 2277 2278 // Now see if we can optimize away this lock. We don't actually 2279 // remove the locking here, we simply set the _eliminate flag which 2280 // prevents macro expansion from expanding the lock. Since we don't 2281 // modify the graph, the value returned from this function is the 2282 // one computed above. 2283 const Type* obj_type = phase->type(obj_node()); 2284 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) { 2285 // 2286 // If we are locking an non-escaped object, the lock/unlock is unnecessary 2287 // 2288 ConnectionGraph *cgr = phase->C->congraph(); 2289 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 2290 assert(!is_eliminated() || is_coarsened(), "sanity"); 2291 // The lock could be marked eliminated by lock coarsening 2292 // code during first IGVN before EA. Replace coarsened flag 2293 // to eliminate all associated locks/unlocks. 2294 #ifdef ASSERT 2295 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); 2296 #endif 2297 this->set_non_esc_obj(); 2298 return result; 2299 } 2300 2301 if (!phase->C->do_locks_coarsening()) { 2302 return result; // Compiling without locks coarsening 2303 } 2304 // 2305 // Try lock coarsening 2306 // 2307 PhaseIterGVN* iter = phase->is_IterGVN(); 2308 if (iter != nullptr && !is_eliminated()) { 2309 2310 GrowableArray<AbstractLockNode*> lock_ops; 2311 2312 Node *ctrl = next_control(in(0)); 2313 2314 // now search back for a matching Unlock 2315 if (find_matching_unlock(ctrl, this, lock_ops)) { 2316 // found an unlock directly preceding this lock. This is the 2317 // case of single unlock directly control dependent on a 2318 // single lock which is the trivial version of case 1 or 2. 2319 } else if (ctrl->is_Region() ) { 2320 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 2321 // found lock preceded by multiple unlocks along all paths 2322 // joining at this point which is case 3 in description above. 2323 } 2324 } else { 2325 // see if this lock comes from either half of an if and the 2326 // predecessors merges unlocks and the other half of the if 2327 // performs a lock. 2328 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 2329 // found unlock splitting to an if with locks on both branches. 2330 } 2331 } 2332 2333 if (lock_ops.length() > 0) { 2334 // add ourselves to the list of locks to be eliminated. 2335 lock_ops.append(this); 2336 2337 #ifndef PRODUCT 2338 if (PrintEliminateLocks) { 2339 int locks = 0; 2340 int unlocks = 0; 2341 if (Verbose) { 2342 tty->print_cr("=== Locks coarsening ==="); 2343 tty->print("Obj: "); 2344 obj_node()->dump(); 2345 } 2346 for (int i = 0; i < lock_ops.length(); i++) { 2347 AbstractLockNode* lock = lock_ops.at(i); 2348 if (lock->Opcode() == Op_Lock) 2349 locks++; 2350 else 2351 unlocks++; 2352 if (Verbose) { 2353 tty->print("Box %d: ", i); 2354 box_node()->dump(); 2355 tty->print(" %d: ", i); 2356 lock->dump(); 2357 } 2358 } 2359 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks); 2360 } 2361 #endif 2362 2363 // for each of the identified locks, mark them 2364 // as eliminatable 2365 for (int i = 0; i < lock_ops.length(); i++) { 2366 AbstractLockNode* lock = lock_ops.at(i); 2367 2368 // Mark it eliminated by coarsening and update any counters 2369 #ifdef ASSERT 2370 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); 2371 #endif 2372 lock->set_coarsened(); 2373 } 2374 // Record this coarsened group. 2375 phase->C->add_coarsened_locks(lock_ops); 2376 } else if (ctrl->is_Region() && 2377 iter->_worklist.member(ctrl)) { 2378 // We weren't able to find any opportunities but the region this 2379 // lock is control dependent on hasn't been processed yet so put 2380 // this lock back on the worklist so we can check again once any 2381 // region simplification has occurred. 2382 iter->_worklist.push(this); 2383 } 2384 } 2385 } 2386 2387 return result; 2388 } 2389 2390 //============================================================================= 2391 bool LockNode::is_nested_lock_region() { 2392 return is_nested_lock_region(nullptr); 2393 } 2394 2395 // p is used for access to compilation log; no logging if null 2396 bool LockNode::is_nested_lock_region(Compile * c) { 2397 BoxLockNode* box = box_node()->as_BoxLock(); 2398 int stk_slot = box->stack_slot(); 2399 if (stk_slot <= 0) { 2400 #ifdef ASSERT 2401 this->log_lock_optimization(c, "eliminate_lock_INLR_1"); 2402 #endif 2403 return false; // External lock or it is not Box (Phi node). 2404 } 2405 2406 // Ignore complex cases: merged locks or multiple locks. 2407 Node* obj = obj_node(); 2408 LockNode* unique_lock = nullptr; 2409 Node* bad_lock = nullptr; 2410 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) { 2411 #ifdef ASSERT 2412 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock); 2413 #endif 2414 return false; 2415 } 2416 if (unique_lock != this) { 2417 #ifdef ASSERT 2418 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock)); 2419 if (PrintEliminateLocks && Verbose) { 2420 tty->print_cr("=============== unique_lock != this ============"); 2421 tty->print(" this: "); 2422 this->dump(); 2423 tty->print(" box: "); 2424 box->dump(); 2425 tty->print(" obj: "); 2426 obj->dump(); 2427 if (unique_lock != nullptr) { 2428 tty->print(" unique_lock: "); 2429 unique_lock->dump(); 2430 } 2431 if (bad_lock != nullptr) { 2432 tty->print(" bad_lock: "); 2433 bad_lock->dump(); 2434 } 2435 tty->print_cr("==============="); 2436 } 2437 #endif 2438 return false; 2439 } 2440 2441 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2442 obj = bs->step_over_gc_barrier(obj); 2443 // Look for external lock for the same object. 2444 SafePointNode* sfn = this->as_SafePoint(); 2445 JVMState* youngest_jvms = sfn->jvms(); 2446 int max_depth = youngest_jvms->depth(); 2447 for (int depth = 1; depth <= max_depth; depth++) { 2448 JVMState* jvms = youngest_jvms->of_depth(depth); 2449 int num_mon = jvms->nof_monitors(); 2450 // Loop over monitors 2451 for (int idx = 0; idx < num_mon; idx++) { 2452 Node* obj_node = sfn->monitor_obj(jvms, idx); 2453 obj_node = bs->step_over_gc_barrier(obj_node); 2454 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 2455 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 2456 box->set_nested(); 2457 return true; 2458 } 2459 } 2460 } 2461 #ifdef ASSERT 2462 this->log_lock_optimization(c, "eliminate_lock_INLR_3"); 2463 #endif 2464 return false; 2465 } 2466 2467 //============================================================================= 2468 uint UnlockNode::size_of() const { return sizeof(*this); } 2469 2470 //============================================================================= 2471 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2472 2473 // perform any generic optimizations first (returns 'this' or null) 2474 Node *result = SafePointNode::Ideal(phase, can_reshape); 2475 if (result != nullptr) return result; 2476 // Don't bother trying to transform a dead node 2477 if (in(0) && in(0)->is_top()) return nullptr; 2478 2479 // Now see if we can optimize away this unlock. We don't actually 2480 // remove the unlocking here, we simply set the _eliminate flag which 2481 // prevents macro expansion from expanding the unlock. Since we don't 2482 // modify the graph, the value returned from this function is the 2483 // one computed above. 2484 // Escape state is defined after Parse phase. 2485 const Type* obj_type = phase->type(obj_node()); 2486 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) { 2487 // 2488 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary. 2489 // 2490 ConnectionGraph *cgr = phase->C->congraph(); 2491 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 2492 assert(!is_eliminated() || is_coarsened(), "sanity"); 2493 // The lock could be marked eliminated by lock coarsening 2494 // code during first IGVN before EA. Replace coarsened flag 2495 // to eliminate all associated locks/unlocks. 2496 #ifdef ASSERT 2497 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); 2498 #endif 2499 this->set_non_esc_obj(); 2500 } 2501 } 2502 return result; 2503 } 2504 2505 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const { 2506 if (C == nullptr) { 2507 return; 2508 } 2509 CompileLog* log = C->log(); 2510 if (log != nullptr) { 2511 Node* box = box_node(); 2512 Node* obj = obj_node(); 2513 int box_id = box != nullptr ? box->_idx : -1; 2514 int obj_id = obj != nullptr ? obj->_idx : -1; 2515 2516 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'", 2517 tag, C->compile_id(), this->_idx, 2518 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 2519 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1)); 2520 log->stamp(); 2521 log->end_head(); 2522 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 2523 while (p != nullptr) { 2524 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 2525 p = p->caller(); 2526 } 2527 log->tail(tag); 2528 } 2529 } 2530 2531 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) { 2532 if (dest_t->is_known_instance() && t_oop->is_known_instance()) { 2533 return dest_t->instance_id() == t_oop->instance_id(); 2534 } 2535 2536 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) { 2537 // clone 2538 if (t_oop->isa_aryptr()) { 2539 return false; 2540 } 2541 if (!t_oop->isa_instptr()) { 2542 return true; 2543 } 2544 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) { 2545 return true; 2546 } 2547 // unrelated 2548 return false; 2549 } 2550 2551 if (dest_t->isa_aryptr()) { 2552 // arraycopy or array clone 2553 if (t_oop->isa_instptr()) { 2554 return false; 2555 } 2556 if (!t_oop->isa_aryptr()) { 2557 return true; 2558 } 2559 2560 const Type* elem = dest_t->is_aryptr()->elem(); 2561 if (elem == Type::BOTTOM) { 2562 // An array but we don't know what elements are 2563 return true; 2564 } 2565 2566 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr(); 2567 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot); 2568 uint dest_alias = phase->C->get_alias_index(dest_t); 2569 uint t_oop_alias = phase->C->get_alias_index(t_oop); 2570 2571 return dest_alias == t_oop_alias; 2572 } 2573 2574 return true; 2575 }