1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "code/vmreg.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "compiler/oopMap.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "gc/shared/c2/barrierSetC2.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "opto/callGenerator.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/inlinetypenode.hpp"
40 #include "opto/locknode.hpp"
41 #include "opto/machnode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/movenode.hpp"
44 #include "opto/parse.hpp"
45 #include "opto/regalloc.hpp"
46 #include "opto/regmask.hpp"
47 #include "opto/rootnode.hpp"
48 #include "opto/runtime.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "utilities/powerOfTwo.hpp"
53
54 // Portions of code courtesy of Clifford Click
55
56 // Optimization - Graph Style
57
58 //=============================================================================
59 uint StartNode::size_of() const { return sizeof(*this); }
60 bool StartNode::cmp( const Node &n ) const
61 { return _domain == ((StartNode&)n)._domain; }
62 const Type *StartNode::bottom_type() const { return _domain; }
63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
64 #ifndef PRODUCT
65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
67 #endif
68
69 //------------------------------Ideal------------------------------------------
70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
71 return remove_dead_region(phase, can_reshape) ? this : nullptr;
72 }
73
74 //------------------------------calling_convention-----------------------------
75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
76 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
77 }
78
79 //------------------------------Registers--------------------------------------
80 const RegMask &StartNode::in_RegMask(uint) const {
81 return RegMask::EMPTY;
82 }
83
84 //------------------------------match------------------------------------------
85 // Construct projections for incoming parameters, and their RegMask info
86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
87 switch (proj->_con) {
88 case TypeFunc::Control:
89 case TypeFunc::I_O:
90 case TypeFunc::Memory:
91 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
92 case TypeFunc::FramePtr:
93 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
94 case TypeFunc::ReturnAdr:
95 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
96 case TypeFunc::Parms:
97 default: {
98 uint parm_num = proj->_con - TypeFunc::Parms;
99 const Type *t = _domain->field_at(proj->_con);
100 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
101 return new ConNode(Type::TOP);
102 uint ideal_reg = t->ideal_reg();
103 RegMask &rm = match->_calling_convention_mask[parm_num];
104 return new MachProjNode(this,proj->_con,rm,ideal_reg);
105 }
106 }
107 return nullptr;
108 }
109
110 //=============================================================================
111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
112 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
113 };
114
115 #ifndef PRODUCT
116 void ParmNode::dump_spec(outputStream *st) const {
117 if( _con < TypeFunc::Parms ) {
118 st->print("%s", names[_con]);
119 } else {
120 st->print("Parm%d: ",_con-TypeFunc::Parms);
121 // Verbose and WizardMode dump bottom_type for all nodes
122 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
123 }
124 }
125
126 void ParmNode::dump_compact_spec(outputStream *st) const {
127 if (_con < TypeFunc::Parms) {
128 st->print("%s", names[_con]);
129 } else {
130 st->print("%d:", _con-TypeFunc::Parms);
131 // unconditionally dump bottom_type
132 bottom_type()->dump_on(st);
133 }
134 }
135 #endif
136
137 uint ParmNode::ideal_reg() const {
138 switch( _con ) {
139 case TypeFunc::Control : // fall through
140 case TypeFunc::I_O : // fall through
141 case TypeFunc::Memory : return 0;
142 case TypeFunc::FramePtr : // fall through
143 case TypeFunc::ReturnAdr: return Op_RegP;
144 default : assert( _con > TypeFunc::Parms, "" );
145 // fall through
146 case TypeFunc::Parms : {
147 // Type of argument being passed
148 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
149 return t->ideal_reg();
150 }
151 }
152 ShouldNotReachHere();
153 return 0;
154 }
155
156 //=============================================================================
157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
158 init_req(TypeFunc::Control,cntrl);
159 init_req(TypeFunc::I_O,i_o);
160 init_req(TypeFunc::Memory,memory);
161 init_req(TypeFunc::FramePtr,frameptr);
162 init_req(TypeFunc::ReturnAdr,retadr);
163 }
164
165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
166 return remove_dead_region(phase, can_reshape) ? this : nullptr;
167 }
168
169 const Type* ReturnNode::Value(PhaseGVN* phase) const {
170 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
171 ? Type::TOP
172 : Type::BOTTOM;
173 }
174
175 // Do we Match on this edge index or not? No edges on return nodes
176 uint ReturnNode::match_edge(uint idx) const {
177 return 0;
178 }
179
180
181 #ifndef PRODUCT
182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
183 // Dump the required inputs, after printing "returns"
184 uint i; // Exit value of loop
185 for (i = 0; i < req(); i++) { // For all required inputs
186 if (i == TypeFunc::Parms) st->print("returns ");
187 Node* p = in(i);
188 if (p != nullptr) {
189 p->dump_idx(false, st, dc);
190 st->print(" ");
191 } else {
192 st->print("_ ");
193 }
194 }
195 }
196 #endif
197
198 //=============================================================================
199 RethrowNode::RethrowNode(
200 Node* cntrl,
201 Node* i_o,
202 Node* memory,
203 Node* frameptr,
204 Node* ret_adr,
205 Node* exception
206 ) : Node(TypeFunc::Parms + 1) {
207 init_req(TypeFunc::Control , cntrl );
208 init_req(TypeFunc::I_O , i_o );
209 init_req(TypeFunc::Memory , memory );
210 init_req(TypeFunc::FramePtr , frameptr );
211 init_req(TypeFunc::ReturnAdr, ret_adr);
212 init_req(TypeFunc::Parms , exception);
213 }
214
215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
216 return remove_dead_region(phase, can_reshape) ? this : nullptr;
217 }
218
219 const Type* RethrowNode::Value(PhaseGVN* phase) const {
220 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
221 ? Type::TOP
222 : Type::BOTTOM;
223 }
224
225 uint RethrowNode::match_edge(uint idx) const {
226 return 0;
227 }
228
229 #ifndef PRODUCT
230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
231 // Dump the required inputs, after printing "exception"
232 uint i; // Exit value of loop
233 for (i = 0; i < req(); i++) { // For all required inputs
234 if (i == TypeFunc::Parms) st->print("exception ");
235 Node* p = in(i);
236 if (p != nullptr) {
237 p->dump_idx(false, st, dc);
238 st->print(" ");
239 } else {
240 st->print("_ ");
241 }
242 }
243 }
244 #endif
245
246 //=============================================================================
247 // Do we Match on this edge index or not? Match only target address & method
248 uint TailCallNode::match_edge(uint idx) const {
249 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
250 }
251
252 //=============================================================================
253 // Do we Match on this edge index or not? Match only target address & oop
254 uint TailJumpNode::match_edge(uint idx) const {
255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
256 }
257
258 //=============================================================================
259 JVMState::JVMState(ciMethod* method, JVMState* caller) :
260 _method(method),
261 _receiver_info(nullptr) {
262 assert(method != nullptr, "must be valid call site");
263 _bci = InvocationEntryBci;
264 _reexecute = Reexecute_Undefined;
265 DEBUG_ONLY(_bci = -99); // random garbage value
266 DEBUG_ONLY(_map = (SafePointNode*)-1);
267 _caller = caller;
268 _depth = 1 + (caller == nullptr ? 0 : caller->depth());
269 _locoff = TypeFunc::Parms;
270 _stkoff = _locoff + _method->max_locals();
271 _monoff = _stkoff + _method->max_stack();
272 _scloff = _monoff;
273 _endoff = _monoff;
274 _sp = 0;
275 }
276 JVMState::JVMState(int stack_size) :
277 _method(nullptr),
278 _receiver_info(nullptr) {
279 _bci = InvocationEntryBci;
280 _reexecute = Reexecute_Undefined;
281 DEBUG_ONLY(_map = (SafePointNode*)-1);
282 _caller = nullptr;
283 _depth = 1;
284 _locoff = TypeFunc::Parms;
285 _stkoff = _locoff;
286 _monoff = _stkoff + stack_size;
287 _scloff = _monoff;
288 _endoff = _monoff;
289 _sp = 0;
290 }
291
292 //--------------------------------of_depth-------------------------------------
293 JVMState* JVMState::of_depth(int d) const {
294 const JVMState* jvmp = this;
295 assert(0 < d && (uint)d <= depth(), "oob");
296 for (int skip = depth() - d; skip > 0; skip--) {
297 jvmp = jvmp->caller();
298 }
299 assert(jvmp->depth() == (uint)d, "found the right one");
300 return (JVMState*)jvmp;
301 }
302
303 //-----------------------------same_calls_as-----------------------------------
304 bool JVMState::same_calls_as(const JVMState* that) const {
305 if (this == that) return true;
306 if (this->depth() != that->depth()) return false;
307 const JVMState* p = this;
308 const JVMState* q = that;
309 for (;;) {
310 if (p->_method != q->_method) return false;
311 if (p->_method == nullptr) return true; // bci is irrelevant
312 if (p->_bci != q->_bci) return false;
313 if (p->_reexecute != q->_reexecute) return false;
314 p = p->caller();
315 q = q->caller();
316 if (p == q) return true;
317 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
318 }
319 }
320
321 //------------------------------debug_start------------------------------------
322 uint JVMState::debug_start() const {
323 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
324 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
325 return of_depth(1)->locoff();
326 }
327
328 //-------------------------------debug_end-------------------------------------
329 uint JVMState::debug_end() const {
330 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
331 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
332 return endoff();
333 }
334
335 //------------------------------debug_depth------------------------------------
336 uint JVMState::debug_depth() const {
337 uint total = 0;
338 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
339 total += jvmp->debug_size();
340 }
341 return total;
342 }
343
344 #ifndef PRODUCT
345
346 //------------------------------format_helper----------------------------------
347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
348 // any defined value or not. If it does, print out the register or constant.
349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
350 if (n == nullptr) { st->print(" null"); return; }
351 if (n->is_SafePointScalarObject()) {
352 // Scalar replacement.
353 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
354 scobjs->append_if_missing(spobj);
355 int sco_n = scobjs->find(spobj);
356 assert(sco_n >= 0, "");
357 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
358 return;
359 }
360 if (regalloc->node_regs_max_index() > 0 &&
361 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
362 char buf[50];
363 regalloc->dump_register(n,buf,sizeof(buf));
364 st->print(" %s%d]=%s",msg,i,buf);
365 } else { // No register, but might be constant
366 const Type *t = n->bottom_type();
367 switch (t->base()) {
368 case Type::Int:
369 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
370 break;
371 case Type::AnyPtr:
372 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
373 st->print(" %s%d]=#null",msg,i);
374 break;
375 case Type::AryPtr:
376 case Type::InstPtr:
377 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
378 break;
379 case Type::KlassPtr:
380 case Type::AryKlassPtr:
381 case Type::InstKlassPtr:
382 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
383 break;
384 case Type::MetadataPtr:
385 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
386 break;
387 case Type::NarrowOop:
388 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
389 break;
390 case Type::RawPtr:
391 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
392 break;
393 case Type::DoubleCon:
394 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
395 break;
396 case Type::FloatCon:
397 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
398 break;
399 case Type::Long:
400 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
401 break;
402 case Type::Half:
403 case Type::Top:
404 st->print(" %s%d]=_",msg,i);
405 break;
406 default: ShouldNotReachHere();
407 }
408 }
409 }
410
411 //---------------------print_method_with_lineno--------------------------------
412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
413 if (show_name) _method->print_short_name(st);
414
415 int lineno = _method->line_number_from_bci(_bci);
416 if (lineno != -1) {
417 st->print(" @ bci:%d (line %d)", _bci, lineno);
418 } else {
419 st->print(" @ bci:%d", _bci);
420 }
421 }
422
423 //------------------------------format-----------------------------------------
424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
425 st->print(" #");
426 if (_method) {
427 print_method_with_lineno(st, true);
428 } else {
429 st->print_cr(" runtime stub ");
430 return;
431 }
432 if (n->is_MachSafePoint()) {
433 GrowableArray<SafePointScalarObjectNode*> scobjs;
434 MachSafePointNode *mcall = n->as_MachSafePoint();
435 uint i;
436 // Print locals
437 for (i = 0; i < (uint)loc_size(); i++)
438 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
439 // Print stack
440 for (i = 0; i < (uint)stk_size(); i++) {
441 if ((uint)(_stkoff + i) >= mcall->len())
442 st->print(" oob ");
443 else
444 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
445 }
446 for (i = 0; (int)i < nof_monitors(); i++) {
447 Node *box = mcall->monitor_box(this, i);
448 Node *obj = mcall->monitor_obj(this, i);
449 if (regalloc->node_regs_max_index() > 0 &&
450 OptoReg::is_valid(regalloc->get_reg_first(box))) {
451 box = BoxLockNode::box_node(box);
452 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
453 } else {
454 OptoReg::Name box_reg = BoxLockNode::reg(box);
455 st->print(" MON-BOX%d=%s+%d",
456 i,
457 OptoReg::regname(OptoReg::c_frame_pointer),
458 regalloc->reg2offset(box_reg));
459 }
460 const char* obj_msg = "MON-OBJ[";
461 if (EliminateLocks) {
462 if (BoxLockNode::box_node(box)->is_eliminated())
463 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
464 }
465 format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
466 }
467
468 for (i = 0; i < (uint)scobjs.length(); i++) {
469 // Scalar replaced objects.
470 st->cr();
471 st->print(" # ScObj" INT32_FORMAT " ", i);
472 SafePointScalarObjectNode* spobj = scobjs.at(i);
473 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
474 assert(cik->is_instance_klass() ||
475 cik->is_array_klass(), "Not supported allocation.");
476 ciInstanceKlass *iklass = nullptr;
477 if (cik->is_instance_klass()) {
478 cik->print_name_on(st);
479 iklass = cik->as_instance_klass();
480 } else if (cik->is_type_array_klass()) {
481 cik->as_array_klass()->base_element_type()->print_name_on(st);
482 st->print("[%d]", spobj->n_fields());
483 } else if (cik->is_obj_array_klass()) {
484 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
485 if (cie->is_instance_klass()) {
486 cie->print_name_on(st);
487 } else if (cie->is_type_array_klass()) {
488 cie->as_array_klass()->base_element_type()->print_name_on(st);
489 } else {
490 ShouldNotReachHere();
491 }
492 st->print("[%d]", spobj->n_fields());
493 int ndim = cik->as_array_klass()->dimension() - 1;
494 while (ndim-- > 0) {
495 st->print("[]");
496 }
497 } else if (cik->is_flat_array_klass()) {
498 ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
499 cie->print_name_on(st);
500 st->print("[%d]", spobj->n_fields());
501 int ndim = cik->as_array_klass()->dimension() - 1;
502 while (ndim-- > 0) {
503 st->print("[]");
504 }
505 }
506 st->print("={");
507 uint nf = spobj->n_fields();
508 if (nf > 0) {
509 uint first_ind = spobj->first_index(mcall->jvms());
510 if (iklass != nullptr && iklass->is_inlinetype()) {
511 Node* null_marker = mcall->in(first_ind++);
512 if (!null_marker->is_top()) {
513 st->print(" [null marker");
514 format_helper(regalloc, st, null_marker, ":", -1, nullptr);
515 }
516 }
517 Node* fld_node = mcall->in(first_ind);
518 if (iklass != nullptr) {
519 st->print(" [");
520 iklass->nonstatic_field_at(0)->print_name_on(st);
521 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
522 } else {
523 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
524 }
525 for (uint j = 1; j < nf; j++) {
526 fld_node = mcall->in(first_ind+j);
527 if (iklass != nullptr) {
528 st->print(", [");
529 iklass->nonstatic_field_at(j)->print_name_on(st);
530 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
531 } else {
532 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
533 }
534 }
535 }
536 st->print(" }");
537 }
538 }
539 st->cr();
540 if (caller() != nullptr) caller()->format(regalloc, n, st);
541 }
542
543
544 void JVMState::dump_spec(outputStream *st) const {
545 if (_method != nullptr) {
546 bool printed = false;
547 if (!Verbose) {
548 // The JVMS dumps make really, really long lines.
549 // Take out the most boring parts, which are the package prefixes.
550 char buf[500];
551 stringStream namest(buf, sizeof(buf));
552 _method->print_short_name(&namest);
553 if (namest.count() < sizeof(buf)) {
554 const char* name = namest.base();
555 if (name[0] == ' ') ++name;
556 const char* endcn = strchr(name, ':'); // end of class name
557 if (endcn == nullptr) endcn = strchr(name, '(');
558 if (endcn == nullptr) endcn = name + strlen(name);
559 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
560 --endcn;
561 st->print(" %s", endcn);
562 printed = true;
563 }
564 }
565 print_method_with_lineno(st, !printed);
566 if(_reexecute == Reexecute_True)
567 st->print(" reexecute");
568 } else {
569 st->print(" runtime stub");
570 }
571 if (caller() != nullptr) caller()->dump_spec(st);
572 }
573
574
575 void JVMState::dump_on(outputStream* st) const {
576 bool print_map = _map && !((uintptr_t)_map & 1) &&
577 ((caller() == nullptr) || (caller()->map() != _map));
578 if (print_map) {
579 if (_map->len() > _map->req()) { // _map->has_exceptions()
580 Node* ex = _map->in(_map->req()); // _map->next_exception()
581 // skip the first one; it's already being printed
582 while (ex != nullptr && ex->len() > ex->req()) {
583 ex = ex->in(ex->req()); // ex->next_exception()
584 ex->dump(1);
585 }
586 }
587 _map->dump(Verbose ? 2 : 1);
588 }
589 if (caller() != nullptr) {
590 caller()->dump_on(st);
591 }
592 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
593 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
594 if (_method == nullptr) {
595 st->print_cr("(none)");
596 } else {
597 _method->print_name(st);
598 st->cr();
599 if (bci() >= 0 && bci() < _method->code_size()) {
600 st->print(" bc: ");
601 _method->print_codes_on(bci(), bci()+1, st);
602 }
603 }
604 }
605
606 // Extra way to dump a jvms from the debugger,
607 // to avoid a bug with C++ member function calls.
608 void dump_jvms(JVMState* jvms) {
609 jvms->dump();
610 }
611 #endif
612
613 //--------------------------clone_shallow--------------------------------------
614 JVMState* JVMState::clone_shallow(Compile* C) const {
615 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
616 n->set_bci(_bci);
617 n->_reexecute = _reexecute;
618 n->set_locoff(_locoff);
619 n->set_stkoff(_stkoff);
620 n->set_monoff(_monoff);
621 n->set_scloff(_scloff);
622 n->set_endoff(_endoff);
623 n->set_sp(_sp);
624 n->set_map(_map);
625 n->set_receiver_info(_receiver_info);
626 return n;
627 }
628
629 //---------------------------clone_deep----------------------------------------
630 JVMState* JVMState::clone_deep(Compile* C) const {
631 JVMState* n = clone_shallow(C);
632 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
633 p->_caller = p->_caller->clone_shallow(C);
634 }
635 assert(n->depth() == depth(), "sanity");
636 assert(n->debug_depth() == debug_depth(), "sanity");
637 return n;
638 }
639
640 /**
641 * Reset map for all callers
642 */
643 void JVMState::set_map_deep(SafePointNode* map) {
644 for (JVMState* p = this; p != nullptr; p = p->_caller) {
645 p->set_map(map);
646 }
647 }
648
649 // unlike set_map(), this is two-way setting.
650 void JVMState::bind_map(SafePointNode* map) {
651 set_map(map);
652 _map->set_jvms(this);
653 }
654
655 // Adapt offsets in in-array after adding or removing an edge.
656 // Prerequisite is that the JVMState is used by only one node.
657 void JVMState::adapt_position(int delta) {
658 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
659 jvms->set_locoff(jvms->locoff() + delta);
660 jvms->set_stkoff(jvms->stkoff() + delta);
661 jvms->set_monoff(jvms->monoff() + delta);
662 jvms->set_scloff(jvms->scloff() + delta);
663 jvms->set_endoff(jvms->endoff() + delta);
664 }
665 }
666
667 // Mirror the stack size calculation in the deopt code
668 // How much stack space would we need at this point in the program in
669 // case of deoptimization?
670 int JVMState::interpreter_frame_size() const {
671 const JVMState* jvms = this;
672 int size = 0;
673 int callee_parameters = 0;
674 int callee_locals = 0;
675 int extra_args = method()->max_stack() - stk_size();
676
677 while (jvms != nullptr) {
678 int locks = jvms->nof_monitors();
679 int temps = jvms->stk_size();
680 bool is_top_frame = (jvms == this);
681 ciMethod* method = jvms->method();
682
683 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
684 temps + callee_parameters,
685 extra_args,
686 locks,
687 callee_parameters,
688 callee_locals,
689 is_top_frame);
690 size += frame_size;
691
692 callee_parameters = method->size_of_parameters();
693 callee_locals = method->max_locals();
694 extra_args = 0;
695 jvms = jvms->caller();
696 }
697 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
698 }
699
700 // Compute receiver info for a compiled lambda form at call site.
701 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
702 assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
703 if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
704 Node* recv = map()->argument(this, 0);
705 assert(recv != nullptr, "");
706 const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
707 if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
708 return recv_toop->const_oop()->as_instance();
709 }
710 }
711 return nullptr;
712 }
713
714 //=============================================================================
715 bool CallNode::cmp( const Node &n ) const
716 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
717 #ifndef PRODUCT
718 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
719 // Dump the required inputs, enclosed in '(' and ')'
720 uint i; // Exit value of loop
721 for (i = 0; i < req(); i++) { // For all required inputs
722 if (i == TypeFunc::Parms) st->print("(");
723 Node* p = in(i);
724 if (p != nullptr) {
725 p->dump_idx(false, st, dc);
726 st->print(" ");
727 } else {
728 st->print("_ ");
729 }
730 }
731 st->print(")");
732 }
733
734 void CallNode::dump_spec(outputStream *st) const {
735 st->print(" ");
736 if (tf() != nullptr) tf()->dump_on(st);
737 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
738 if (jvms() != nullptr) jvms()->dump_spec(st);
739 }
740
741 void AllocateNode::dump_spec(outputStream* st) const {
742 st->print(" ");
743 if (tf() != nullptr) {
744 tf()->dump_on(st);
745 }
746 if (_cnt != COUNT_UNKNOWN) {
747 st->print(" C=%f", _cnt);
748 }
749 const Node* const klass_node = in(KlassNode);
750 if (klass_node != nullptr) {
751 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
752
753 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
754 st->print(" allocationKlass:");
755 klass_ptr->exact_klass()->print_name_on(st);
756 }
757 }
758 if (jvms() != nullptr) {
759 jvms()->dump_spec(st);
760 }
761 }
762 #endif
763
764 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
765 const Type* CallNode::Value(PhaseGVN* phase) const {
766 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
767 return Type::TOP;
768 }
769 return tf()->range_cc();
770 }
771
772 //------------------------------calling_convention-----------------------------
773 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
774 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
775 // The call to that stub is a special case: its inputs are
776 // multiple values returned from a call and so it should follow
777 // the return convention.
778 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
779 return;
780 }
781 // Use the standard compiler calling convention
782 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
783 }
784
785
786 //------------------------------match------------------------------------------
787 // Construct projections for control, I/O, memory-fields, ..., and
788 // return result(s) along with their RegMask info
789 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
790 uint con = proj->_con;
791 const TypeTuple* range_cc = tf()->range_cc();
792 if (con >= TypeFunc::Parms) {
793 if (tf()->returns_inline_type_as_fields()) {
794 // The call returns multiple values (inline type fields): we
795 // create one projection per returned value.
796 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
797 uint ideal_reg = range_cc->field_at(con)->ideal_reg();
798 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
799 } else {
800 if (con == TypeFunc::Parms) {
801 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
802 OptoRegPair regs = Opcode() == Op_CallLeafVector
803 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
804 : match->c_return_value(ideal_reg);
805 RegMask rm = RegMask(regs.first());
806
807 if (Opcode() == Op_CallLeafVector) {
808 // If the return is in vector, compute appropriate regmask taking into account the whole range
809 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
810 if(OptoReg::is_valid(regs.second())) {
811 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
812 rm.insert(r);
813 }
814 }
815 }
816 }
817
818 if (OptoReg::is_valid(regs.second())) {
819 rm.insert(regs.second());
820 }
821 return new MachProjNode(this,con,rm,ideal_reg);
822 } else {
823 assert(con == TypeFunc::Parms+1, "only one return value");
824 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
825 return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
826 }
827 }
828 }
829
830 switch (con) {
831 case TypeFunc::Control:
832 case TypeFunc::I_O:
833 case TypeFunc::Memory:
834 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
835
836 case TypeFunc::ReturnAdr:
837 case TypeFunc::FramePtr:
838 default:
839 ShouldNotReachHere();
840 }
841 return nullptr;
842 }
843
844 // Do we Match on this edge index or not? Match no edges
845 uint CallNode::match_edge(uint idx) const {
846 return 0;
847 }
848
849 //
850 // Determine whether the call could modify the field of the specified
851 // instance at the specified offset.
852 //
853 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
854 assert((t_oop != nullptr), "sanity");
855 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
856 const TypeTuple* args = _tf->domain_sig();
857 Node* dest = nullptr;
858 // Stubs that can be called once an ArrayCopyNode is expanded have
859 // different signatures. Look for the second pointer argument,
860 // that is the destination of the copy.
861 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
862 if (args->field_at(i)->isa_ptr()) {
863 j++;
864 if (j == 2) {
865 dest = in(i);
866 break;
867 }
868 }
869 }
870 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
871 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
872 return true;
873 }
874 return false;
875 }
876 if (t_oop->is_known_instance()) {
877 // The instance_id is set only for scalar-replaceable allocations which
878 // are not passed as arguments according to Escape Analysis.
879 return false;
880 }
881 if (t_oop->is_ptr_to_boxed_value()) {
882 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
883 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
884 // Skip unrelated boxing methods.
885 Node* proj = proj_out_or_null(TypeFunc::Parms);
886 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
887 return false;
888 }
889 }
890 if (is_CallJava() && as_CallJava()->method() != nullptr) {
891 ciMethod* meth = as_CallJava()->method();
892 if (meth->is_getter()) {
893 return false;
894 }
895 // May modify (by reflection) if an boxing object is passed
896 // as argument or returned.
897 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
898 if (proj != nullptr) {
899 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
900 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
901 (inst_t->instance_klass() == boxing_klass))) {
902 return true;
903 }
904 }
905 const TypeTuple* d = tf()->domain_cc();
906 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
907 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
908 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
909 (inst_t->instance_klass() == boxing_klass))) {
910 return true;
911 }
912 }
913 return false;
914 }
915 }
916 return true;
917 }
918
919 // Does this call have a direct reference to n other than debug information?
920 bool CallNode::has_non_debug_use(Node* n) {
921 const TypeTuple* d = tf()->domain_cc();
922 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
923 if (in(i) == n) {
924 return true;
925 }
926 }
927 return false;
928 }
929
930 bool CallNode::has_debug_use(Node* n) {
931 if (jvms() != nullptr) {
932 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
933 if (in(i) == n) {
934 return true;
935 }
936 }
937 }
938 return false;
939 }
940
941 // Returns the unique CheckCastPP of a call
942 // or 'this' if there are several CheckCastPP or unexpected uses
943 // or returns null if there is no one.
944 Node *CallNode::result_cast() {
945 Node *cast = nullptr;
946
947 Node *p = proj_out_or_null(TypeFunc::Parms);
948 if (p == nullptr)
949 return nullptr;
950
951 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
952 Node *use = p->fast_out(i);
953 if (use->is_CheckCastPP()) {
954 if (cast != nullptr) {
955 return this; // more than 1 CheckCastPP
956 }
957 cast = use;
958 } else if (!use->is_Initialize() &&
959 !use->is_AddP() &&
960 use->Opcode() != Op_MemBarStoreStore) {
961 // Expected uses are restricted to a CheckCastPP, an Initialize
962 // node, a MemBarStoreStore (clone) and AddP nodes. If we
963 // encounter any other use (a Phi node can be seen in rare
964 // cases) return this to prevent incorrect optimizations.
965 return this;
966 }
967 }
968 return cast;
969 }
970
971
972 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
973 uint max_res = TypeFunc::Parms-1;
974 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
975 ProjNode *pn = fast_out(i)->as_Proj();
976 max_res = MAX2(max_res, pn->_con);
977 }
978
979 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
980
981 uint projs_size = sizeof(CallProjections);
982 if (max_res > TypeFunc::Parms) {
983 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
984 }
985 char* projs_storage = resource_allocate_bytes(projs_size);
986 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
987
988 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
989 ProjNode *pn = fast_out(i)->as_Proj();
990 if (pn->outcnt() == 0) continue;
991 switch (pn->_con) {
992 case TypeFunc::Control:
993 {
994 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
995 projs->fallthrough_proj = pn;
996 const Node* cn = pn->unique_ctrl_out_or_null();
997 if (cn != nullptr && cn->is_Catch()) {
998 ProjNode *cpn = nullptr;
999 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
1000 cpn = cn->fast_out(k)->as_Proj();
1001 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
1002 if (cpn->_con == CatchProjNode::fall_through_index)
1003 projs->fallthrough_catchproj = cpn;
1004 else {
1005 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1006 projs->catchall_catchproj = cpn;
1007 }
1008 }
1009 }
1010 break;
1011 }
1012 case TypeFunc::I_O:
1013 if (pn->_is_io_use)
1014 projs->catchall_ioproj = pn;
1015 else
1016 projs->fallthrough_ioproj = pn;
1017 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1018 Node* e = pn->out(j);
1019 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1020 assert(projs->exobj == nullptr, "only one");
1021 projs->exobj = e;
1022 }
1023 }
1024 break;
1025 case TypeFunc::Memory:
1026 if (pn->_is_io_use)
1027 projs->catchall_memproj = pn;
1028 else
1029 projs->fallthrough_memproj = pn;
1030 break;
1031 case TypeFunc::Parms:
1032 projs->resproj[0] = pn;
1033 break;
1034 default:
1035 assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1036 projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1037 break;
1038 }
1039 }
1040
1041 // The resproj may not exist because the result could be ignored
1042 // and the exception object may not exist if an exception handler
1043 // swallows the exception but all the other must exist and be found.
1044 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1045 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found");
1046 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1047 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1048 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1049 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1050 if (separate_io_proj) {
1051 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1052 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1053 }
1054 return projs;
1055 }
1056
1057 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1058 #ifdef ASSERT
1059 // Validate attached generator
1060 CallGenerator* cg = generator();
1061 if (cg != nullptr) {
1062 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1063 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1064 }
1065 #endif // ASSERT
1066 return SafePointNode::Ideal(phase, can_reshape);
1067 }
1068
1069 bool CallNode::is_call_to_arraycopystub() const {
1070 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1071 return true;
1072 }
1073 return false;
1074 }
1075
1076 //=============================================================================
1077 uint CallJavaNode::size_of() const { return sizeof(*this); }
1078 bool CallJavaNode::cmp( const Node &n ) const {
1079 CallJavaNode &call = (CallJavaNode&)n;
1080 return CallNode::cmp(call) && _method == call._method &&
1081 _override_symbolic_info == call._override_symbolic_info;
1082 }
1083
1084 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1085 // Copy debug information and adjust JVMState information
1086 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1087 uint new_dbg_start = tf()->domain_sig()->cnt();
1088 int jvms_adj = new_dbg_start - old_dbg_start;
1089 assert (new_dbg_start == req(), "argument count mismatch");
1090 Compile* C = phase->C;
1091
1092 // SafePointScalarObject node could be referenced several times in debug info.
1093 // Use Dict to record cloned nodes.
1094 Dict* sosn_map = new Dict(cmpkey,hashkey);
1095 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1096 Node* old_in = sfpt->in(i);
1097 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1098 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1099 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1100 bool new_node;
1101 Node* new_in = old_sosn->clone(sosn_map, new_node);
1102 if (new_node) { // New node?
1103 new_in->set_req(0, C->root()); // reset control edge
1104 new_in = phase->transform(new_in); // Register new node.
1105 }
1106 old_in = new_in;
1107 }
1108 add_req(old_in);
1109 }
1110
1111 // JVMS may be shared so clone it before we modify it
1112 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1113 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1114 jvms->set_map(this);
1115 jvms->set_locoff(jvms->locoff()+jvms_adj);
1116 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1117 jvms->set_monoff(jvms->monoff()+jvms_adj);
1118 jvms->set_scloff(jvms->scloff()+jvms_adj);
1119 jvms->set_endoff(jvms->endoff()+jvms_adj);
1120 }
1121 }
1122
1123 #ifdef ASSERT
1124 bool CallJavaNode::validate_symbolic_info() const {
1125 if (method() == nullptr) {
1126 return true; // call into runtime or uncommon trap
1127 }
1128 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1129 if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1130 return true;
1131 }
1132 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1133 ciMethod* callee = method();
1134 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1135 assert(override_symbolic_info(), "should be set");
1136 }
1137 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1138 return true;
1139 }
1140 #endif
1141
1142 #ifndef PRODUCT
1143 void CallJavaNode::dump_spec(outputStream* st) const {
1144 if( _method ) _method->print_short_name(st);
1145 CallNode::dump_spec(st);
1146 }
1147
1148 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1149 if (_method) {
1150 _method->print_short_name(st);
1151 } else {
1152 st->print("<?>");
1153 }
1154 }
1155 #endif
1156
1157 void CallJavaNode::register_for_late_inline() {
1158 if (generator() != nullptr) {
1159 Compile::current()->prepend_late_inline(generator());
1160 set_generator(nullptr);
1161 } else {
1162 assert(false, "repeated inline attempt");
1163 }
1164 }
1165
1166 //=============================================================================
1167 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1168 bool CallStaticJavaNode::cmp( const Node &n ) const {
1169 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1170 return CallJavaNode::cmp(call);
1171 }
1172
1173 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1174 if (can_reshape && uncommon_trap_request() != 0) {
1175 PhaseIterGVN* igvn = phase->is_IterGVN();
1176 if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1177 if (!control()->is_Region()) {
1178 igvn->replace_input_of(this, 0, phase->C->top());
1179 }
1180 return this;
1181 }
1182 }
1183
1184 // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1185 if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1186 (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1187 Node* left = in(TypeFunc::Parms);
1188 Node* right = in(TypeFunc::Parms + 1);
1189 if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1190 if (!left->is_InlineType()) {
1191 swap(left, right);
1192 }
1193 InlineTypeNode* vt = left->as_InlineType();
1194
1195 // Check if the field layout can be optimized
1196 if (vt->can_emit_substitutability_check(right)) {
1197 PhaseIterGVN* igvn = phase->is_IterGVN();
1198
1199 Node* ctrl = control();
1200 RegionNode* region = new RegionNode(1);
1201 Node* phi = new PhiNode(region, TypeInt::POS);
1202
1203 Node* base = right;
1204 Node* ptr = right;
1205 if (!base->is_InlineType()) {
1206 // Parse time checks guarantee that both operands are non-null and have the same type
1207 base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1208 ptr = base;
1209 }
1210 // Emit IR for field-wise comparison
1211 vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1212
1213 // Equals
1214 region->add_req(ctrl);
1215 phi->add_req(igvn->intcon(1));
1216
1217 ctrl = igvn->register_new_node_with_optimizer(region);
1218 Node* res = igvn->register_new_node_with_optimizer(phi);
1219
1220 // Kill exception projections and return a tuple that will replace the call
1221 CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1222 if (projs->fallthrough_catchproj != nullptr) {
1223 igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1224 }
1225 if (projs->catchall_memproj != nullptr) {
1226 igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1227 }
1228 if (projs->catchall_ioproj != nullptr) {
1229 igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1230 }
1231 if (projs->catchall_catchproj != nullptr) {
1232 igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1233 }
1234 return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1235 }
1236 }
1237 }
1238
1239 CallGenerator* cg = generator();
1240 if (can_reshape && cg != nullptr) {
1241 if (cg->is_mh_late_inline()) {
1242 assert(IncrementalInlineMH, "required");
1243 assert(cg->call_node() == this, "mismatch");
1244 assert(cg->method()->is_method_handle_intrinsic(), "required");
1245
1246 // Check whether this MH handle call becomes a candidate for inlining.
1247 ciMethod* callee = cg->method();
1248 vmIntrinsics::ID iid = callee->intrinsic_id();
1249 if (iid == vmIntrinsics::_invokeBasic) {
1250 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1251 register_for_late_inline();
1252 }
1253 } else if (iid == vmIntrinsics::_linkToNative) {
1254 // never retry
1255 } else {
1256 assert(callee->has_member_arg(), "wrong type of call?");
1257 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1258 register_for_late_inline();
1259 }
1260 }
1261 } else {
1262 assert(IncrementalInline, "required");
1263 assert(!cg->method()->is_method_handle_intrinsic(), "required");
1264 if (phase->C->print_inlining()) {
1265 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1266 "static call node changed: trying again");
1267 }
1268 register_for_late_inline();
1269 }
1270 }
1271 return CallNode::Ideal(phase, can_reshape);
1272 }
1273
1274 //----------------------------is_uncommon_trap----------------------------
1275 // Returns true if this is an uncommon trap.
1276 bool CallStaticJavaNode::is_uncommon_trap() const {
1277 return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1278 }
1279
1280 //----------------------------uncommon_trap_request----------------------------
1281 // If this is an uncommon trap, return the request code, else zero.
1282 int CallStaticJavaNode::uncommon_trap_request() const {
1283 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1284 }
1285 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1286 #ifndef PRODUCT
1287 if (!(call->req() > TypeFunc::Parms &&
1288 call->in(TypeFunc::Parms) != nullptr &&
1289 call->in(TypeFunc::Parms)->is_Con() &&
1290 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1291 assert(in_dump() != 0, "OK if dumping");
1292 tty->print("[bad uncommon trap]");
1293 return 0;
1294 }
1295 #endif
1296 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1297 }
1298
1299 // Split if can cause the flat array branch of an array load with unknown type (see
1300 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1301 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1302 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1303 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1304 return false;
1305 }
1306 if (ctl->is_Region()) {
1307 bool res = false;
1308 for (uint i = 1; i < ctl->req(); i++) {
1309 MergeMemNode* mm = mem->clone()->as_MergeMem();
1310 for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1311 Node* m = mms.memory();
1312 if (m->is_Phi() && m->in(0) == ctl) {
1313 mms.set_memory(m->in(i));
1314 }
1315 }
1316 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1317 res = true;
1318 if (!ctl->in(i)->is_Region()) {
1319 igvn->replace_input_of(ctl, i, igvn->C->top());
1320 }
1321 }
1322 igvn->remove_dead_node(mm);
1323 }
1324 return res;
1325 }
1326 // Verify the control flow is ok
1327 Node* call = ctl;
1328 MemBarNode* membar = nullptr;
1329 for (;;) {
1330 if (call == nullptr || call->is_top()) {
1331 return false;
1332 }
1333 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1334 call = call->in(0);
1335 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1336 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1337 assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1338 membar = call->in(0)->in(0)->as_MemBar();
1339 break;
1340 } else {
1341 return false;
1342 }
1343 }
1344
1345 JVMState* jvms = call->jvms();
1346 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1347 return false;
1348 }
1349
1350 Node* call_mem = call->in(TypeFunc::Memory);
1351 if (call_mem == nullptr || call_mem->is_top()) {
1352 return false;
1353 }
1354 if (!call_mem->is_MergeMem()) {
1355 call_mem = MergeMemNode::make(call_mem);
1356 igvn->register_new_node_with_optimizer(call_mem);
1357 }
1358
1359 // Verify that there's no unexpected side effect
1360 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1361 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1362 Node* m2 = mms2.memory2();
1363
1364 for (uint i = 0; i < 100; i++) {
1365 if (m1 == m2) {
1366 break;
1367 } else if (m1->is_Proj()) {
1368 m1 = m1->in(0);
1369 } else if (m1->is_MemBar()) {
1370 m1 = m1->in(TypeFunc::Memory);
1371 } else if (m1->Opcode() == Op_CallStaticJava &&
1372 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1373 if (m1 != call) {
1374 return false;
1375 }
1376 break;
1377 } else if (m1->is_MergeMem()) {
1378 MergeMemNode* mm = m1->as_MergeMem();
1379 int idx = mms2.alias_idx();
1380 if (idx == Compile::AliasIdxBot) {
1381 m1 = mm->base_memory();
1382 } else {
1383 m1 = mm->memory_at(idx);
1384 }
1385 } else {
1386 return false;
1387 }
1388 }
1389 }
1390 if (call_mem->outcnt() == 0) {
1391 igvn->remove_dead_node(call_mem);
1392 }
1393
1394 // Remove membar preceding the call
1395 membar->remove(igvn);
1396
1397 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1398 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1399 unc->init_req(TypeFunc::Control, call->in(0));
1400 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1401 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1402 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
1403 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1404 unc->init_req(TypeFunc::Parms+0, unc_arg);
1405 unc->set_cnt(PROB_UNLIKELY_MAG(4));
1406 unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1407
1408 // Replace the call with an uncommon trap
1409 igvn->replace_input_of(call, 0, igvn->C->top());
1410
1411 igvn->register_new_node_with_optimizer(unc);
1412
1413 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1414 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1415 igvn->add_input_to(igvn->C->root(), halt);
1416
1417 return true;
1418 }
1419
1420
1421 #ifndef PRODUCT
1422 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1423 st->print("# Static ");
1424 if (_name != nullptr) {
1425 st->print("%s", _name);
1426 int trap_req = uncommon_trap_request();
1427 if (trap_req != 0) {
1428 char buf[100];
1429 st->print("(%s)",
1430 Deoptimization::format_trap_request(buf, sizeof(buf),
1431 trap_req));
1432 }
1433 st->print(" ");
1434 }
1435 CallJavaNode::dump_spec(st);
1436 }
1437
1438 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1439 if (_method) {
1440 _method->print_short_name(st);
1441 } else if (_name) {
1442 st->print("%s", _name);
1443 } else {
1444 st->print("<?>");
1445 }
1446 }
1447 #endif
1448
1449 //=============================================================================
1450 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1451 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1452 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1453 return CallJavaNode::cmp(call);
1454 }
1455
1456 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1457 CallGenerator* cg = generator();
1458 if (can_reshape && cg != nullptr) {
1459 if (cg->is_virtual_late_inline()) {
1460 assert(IncrementalInlineVirtual, "required");
1461 assert(cg->call_node() == this, "mismatch");
1462
1463 if (cg->callee_method() == nullptr) {
1464 // Recover symbolic info for method resolution.
1465 ciMethod* caller = jvms()->method();
1466 ciBytecodeStream iter(caller);
1467 iter.force_bci(jvms()->bci());
1468
1469 bool not_used1;
1470 ciSignature* not_used2;
1471 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode
1472 ciKlass* holder = iter.get_declared_method_holder();
1473 if (orig_callee->is_method_handle_intrinsic()) {
1474 assert(_override_symbolic_info, "required");
1475 orig_callee = method();
1476 holder = method()->holder();
1477 }
1478
1479 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1480
1481 Node* receiver_node = in(TypeFunc::Parms);
1482 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1483
1484 int not_used3;
1485 bool call_does_dispatch;
1486 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1487 call_does_dispatch, not_used3); // out-parameters
1488 if (!call_does_dispatch) {
1489 cg->set_callee_method(callee);
1490 }
1491 }
1492 if (cg->callee_method() != nullptr) {
1493 // Register for late inlining.
1494 register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1495 }
1496 } else {
1497 assert(IncrementalInline, "required");
1498 if (phase->C->print_inlining()) {
1499 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1500 "dynamic call node changed: trying again");
1501 }
1502 register_for_late_inline();
1503 }
1504 }
1505 return CallNode::Ideal(phase, can_reshape);
1506 }
1507
1508 #ifndef PRODUCT
1509 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1510 st->print("# Dynamic ");
1511 CallJavaNode::dump_spec(st);
1512 }
1513 #endif
1514
1515 //=============================================================================
1516 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1517 bool CallRuntimeNode::cmp( const Node &n ) const {
1518 CallRuntimeNode &call = (CallRuntimeNode&)n;
1519 return CallNode::cmp(call) && !strcmp(_name,call._name);
1520 }
1521 #ifndef PRODUCT
1522 void CallRuntimeNode::dump_spec(outputStream *st) const {
1523 st->print("# ");
1524 st->print("%s", _name);
1525 CallNode::dump_spec(st);
1526 }
1527 #endif
1528 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1529 bool CallLeafVectorNode::cmp( const Node &n ) const {
1530 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1531 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1532 }
1533
1534 //------------------------------calling_convention-----------------------------
1535 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1536 if (_entry_point == nullptr) {
1537 // The call to that stub is a special case: its inputs are
1538 // multiple values returned from a call and so it should follow
1539 // the return convention.
1540 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1541 return;
1542 }
1543 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1544 }
1545
1546 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1547 #ifdef ASSERT
1548 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1549 "return vector size must match");
1550 const TypeTuple* d = tf()->domain_sig();
1551 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1552 Node* arg = in(i);
1553 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1554 "vector argument size must match");
1555 }
1556 #endif
1557
1558 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1559 }
1560
1561 //=============================================================================
1562 //------------------------------calling_convention-----------------------------
1563
1564
1565 //=============================================================================
1566 bool CallLeafPureNode::is_unused() const {
1567 return proj_out_or_null(TypeFunc::Parms) == nullptr;
1568 }
1569
1570 bool CallLeafPureNode::is_dead() const {
1571 return proj_out_or_null(TypeFunc::Control) == nullptr;
1572 }
1573
1574 /* We make a tuple of the global input state + TOP for the output values.
1575 * We use this to delete a pure function that is not used: by replacing the call with
1576 * such a tuple, we let output Proj's idealization pick the corresponding input of the
1577 * pure call, so jumping over it, and effectively, removing the call from the graph.
1578 * This avoids doing the graph surgery manually, but leaves that to IGVN
1579 * that is specialized for doing that right. We need also tuple components for output
1580 * values of the function to respect the return arity, and in case there is a projection
1581 * that would pick an output (which shouldn't happen at the moment).
1582 */
1583 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1584 // Transparently propagate input state but parameters
1585 TupleNode* tuple = TupleNode::make(
1586 tf()->range_cc(),
1587 in(TypeFunc::Control),
1588 in(TypeFunc::I_O),
1589 in(TypeFunc::Memory),
1590 in(TypeFunc::FramePtr),
1591 in(TypeFunc::ReturnAdr));
1592
1593 // And add TOPs for the return values
1594 for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1595 tuple->set_req(i, C->top());
1596 }
1597
1598 return tuple;
1599 }
1600
1601 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1602 if (is_dead()) {
1603 return nullptr;
1604 }
1605
1606 // We need to wait until IGVN because during parsing, usages might still be missing
1607 // and we would remove the call immediately.
1608 if (can_reshape && is_unused()) {
1609 // The result is not used. We remove the call by replacing it with a tuple, that
1610 // is later disintegrated by the projections.
1611 return make_tuple_of_input_state_and_top_return_values(phase->C);
1612 }
1613
1614 return CallRuntimeNode::Ideal(phase, can_reshape);
1615 }
1616
1617 #ifndef PRODUCT
1618 void CallLeafNode::dump_spec(outputStream *st) const {
1619 st->print("# ");
1620 st->print("%s", _name);
1621 CallNode::dump_spec(st);
1622 }
1623 #endif
1624
1625 uint CallLeafNoFPNode::match_edge(uint idx) const {
1626 // Null entry point is a special case for which the target is in a
1627 // register. Need to match that edge.
1628 return entry_point() == nullptr && idx == TypeFunc::Parms;
1629 }
1630
1631 //=============================================================================
1632
1633 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1634 assert(verify_jvms(jvms), "jvms must match");
1635 int loc = jvms->locoff() + idx;
1636 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1637 // If current local idx is top then local idx - 1 could
1638 // be a long/double that needs to be killed since top could
1639 // represent the 2nd half of the long/double.
1640 uint ideal = in(loc -1)->ideal_reg();
1641 if (ideal == Op_RegD || ideal == Op_RegL) {
1642 // set other (low index) half to top
1643 set_req(loc - 1, in(loc));
1644 }
1645 }
1646 set_req(loc, c);
1647 }
1648
1649 uint SafePointNode::size_of() const { return sizeof(*this); }
1650 bool SafePointNode::cmp( const Node &n ) const {
1651 return (&n == this); // Always fail except on self
1652 }
1653
1654 //-------------------------set_next_exception----------------------------------
1655 void SafePointNode::set_next_exception(SafePointNode* n) {
1656 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1657 if (len() == req()) {
1658 if (n != nullptr) add_prec(n);
1659 } else {
1660 set_prec(req(), n);
1661 }
1662 }
1663
1664
1665 //----------------------------next_exception-----------------------------------
1666 SafePointNode* SafePointNode::next_exception() const {
1667 if (len() == req()) {
1668 return nullptr;
1669 } else {
1670 Node* n = in(req());
1671 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1672 return (SafePointNode*) n;
1673 }
1674 }
1675
1676
1677 //------------------------------Ideal------------------------------------------
1678 // Skip over any collapsed Regions
1679 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1680 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1681 if (remove_dead_region(phase, can_reshape)) {
1682 return this;
1683 }
1684 // Scalarize inline types in safepoint debug info.
1685 // Delay this until all inlining is over to avoid getting inconsistent debug info.
1686 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1687 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1688 Node* n = in(i)->uncast();
1689 if (n->is_InlineType()) {
1690 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1691 }
1692 }
1693 }
1694 return nullptr;
1695 }
1696
1697 //------------------------------Identity---------------------------------------
1698 // Remove obviously duplicate safepoints
1699 Node* SafePointNode::Identity(PhaseGVN* phase) {
1700
1701 // If you have back to back safepoints, remove one
1702 if (in(TypeFunc::Control)->is_SafePoint()) {
1703 Node* out_c = unique_ctrl_out_or_null();
1704 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1705 // outer loop's safepoint could confuse removal of the outer loop.
1706 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1707 return in(TypeFunc::Control);
1708 }
1709 }
1710
1711 // Transforming long counted loops requires a safepoint node. Do not
1712 // eliminate a safepoint until loop opts are over.
1713 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1714 Node *n0 = in(0)->in(0);
1715 // Check if he is a call projection (except Leaf Call)
1716 if( n0->is_Catch() ) {
1717 n0 = n0->in(0)->in(0);
1718 assert( n0->is_Call(), "expect a call here" );
1719 }
1720 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1721 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1722 // If the loop dies, they will be removed together.
1723 if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1724 return this;
1725 }
1726 // Useless Safepoint, so remove it
1727 return in(TypeFunc::Control);
1728 }
1729 }
1730
1731 return this;
1732 }
1733
1734 //------------------------------Value------------------------------------------
1735 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1736 if (phase->type(in(0)) == Type::TOP) {
1737 return Type::TOP;
1738 }
1739 if (in(0) == this) {
1740 return Type::TOP; // Dead infinite loop
1741 }
1742 return Type::CONTROL;
1743 }
1744
1745 #ifndef PRODUCT
1746 void SafePointNode::dump_spec(outputStream *st) const {
1747 st->print(" SafePoint ");
1748 _replaced_nodes.dump(st);
1749 }
1750 #endif
1751
1752 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1753 if (idx < TypeFunc::Parms) {
1754 return RegMask::EMPTY;
1755 }
1756 // Values outside the domain represent debug info
1757 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1758 }
1759 const RegMask &SafePointNode::out_RegMask() const {
1760 return RegMask::EMPTY;
1761 }
1762
1763
1764 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1765 assert((int)grow_by > 0, "sanity");
1766 int monoff = jvms->monoff();
1767 int scloff = jvms->scloff();
1768 int endoff = jvms->endoff();
1769 assert(endoff == (int)req(), "no other states or debug info after me");
1770 Node* top = Compile::current()->top();
1771 for (uint i = 0; i < grow_by; i++) {
1772 ins_req(monoff, top);
1773 }
1774 jvms->set_monoff(monoff + grow_by);
1775 jvms->set_scloff(scloff + grow_by);
1776 jvms->set_endoff(endoff + grow_by);
1777 }
1778
1779 void SafePointNode::push_monitor(const FastLockNode *lock) {
1780 // Add a LockNode, which points to both the original BoxLockNode (the
1781 // stack space for the monitor) and the Object being locked.
1782 const int MonitorEdges = 2;
1783 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1784 assert(req() == jvms()->endoff(), "correct sizing");
1785 int nextmon = jvms()->scloff();
1786 ins_req(nextmon, lock->box_node());
1787 ins_req(nextmon+1, lock->obj_node());
1788 jvms()->set_scloff(nextmon + MonitorEdges);
1789 jvms()->set_endoff(req());
1790 }
1791
1792 void SafePointNode::pop_monitor() {
1793 // Delete last monitor from debug info
1794 DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1795 const int MonitorEdges = 2;
1796 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1797 int scloff = jvms()->scloff();
1798 int endoff = jvms()->endoff();
1799 int new_scloff = scloff - MonitorEdges;
1800 int new_endoff = endoff - MonitorEdges;
1801 jvms()->set_scloff(new_scloff);
1802 jvms()->set_endoff(new_endoff);
1803 while (scloff > new_scloff) del_req_ordered(--scloff);
1804 assert(jvms()->nof_monitors() == num_before_pop-1, "");
1805 }
1806
1807 Node *SafePointNode::peek_monitor_box() const {
1808 int mon = jvms()->nof_monitors() - 1;
1809 assert(mon >= 0, "must have a monitor");
1810 return monitor_box(jvms(), mon);
1811 }
1812
1813 Node *SafePointNode::peek_monitor_obj() const {
1814 int mon = jvms()->nof_monitors() - 1;
1815 assert(mon >= 0, "must have a monitor");
1816 return monitor_obj(jvms(), mon);
1817 }
1818
1819 Node* SafePointNode::peek_operand(uint off) const {
1820 assert(jvms()->sp() > 0, "must have an operand");
1821 assert(off < jvms()->sp(), "off is out-of-range");
1822 return stack(jvms(), jvms()->sp() - off - 1);
1823 }
1824
1825 // Do we Match on this edge index or not? Match no edges
1826 uint SafePointNode::match_edge(uint idx) const {
1827 return (TypeFunc::Parms == idx);
1828 }
1829
1830 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1831 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1832 int nb = igvn->C->root()->find_prec_edge(this);
1833 if (nb != -1) {
1834 igvn->delete_precedence_of(igvn->C->root(), nb);
1835 }
1836 }
1837
1838 //============== SafePointScalarObjectNode ==============
1839
1840 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1841 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1842 _first_index(first_index),
1843 _depth(depth),
1844 _n_fields(n_fields),
1845 _alloc(alloc)
1846 {
1847 #ifdef ASSERT
1848 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1849 alloc->dump();
1850 assert(false, "unexpected call node");
1851 }
1852 #endif
1853 init_class_id(Class_SafePointScalarObject);
1854 }
1855
1856 // Do not allow value-numbering for SafePointScalarObject node.
1857 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1858 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1859 return (&n == this); // Always fail except on self
1860 }
1861
1862 uint SafePointScalarObjectNode::ideal_reg() const {
1863 return 0; // No matching to machine instruction
1864 }
1865
1866 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1867 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1868 }
1869
1870 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1871 return RegMask::EMPTY;
1872 }
1873
1874 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1875 return 0;
1876 }
1877
1878 SafePointScalarObjectNode*
1879 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1880 void* cached = (*sosn_map)[(void*)this];
1881 if (cached != nullptr) {
1882 new_node = false;
1883 return (SafePointScalarObjectNode*)cached;
1884 }
1885 new_node = true;
1886 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1887 sosn_map->Insert((void*)this, (void*)res);
1888 return res;
1889 }
1890
1891
1892 #ifndef PRODUCT
1893 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1894 st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1895 }
1896 #endif
1897
1898 //============== SafePointScalarMergeNode ==============
1899
1900 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1901 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1902 _merge_pointer_idx(merge_pointer_idx)
1903 {
1904 init_class_id(Class_SafePointScalarMerge);
1905 }
1906
1907 // Do not allow value-numbering for SafePointScalarMerge node.
1908 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1909 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1910 return (&n == this); // Always fail except on self
1911 }
1912
1913 uint SafePointScalarMergeNode::ideal_reg() const {
1914 return 0; // No matching to machine instruction
1915 }
1916
1917 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1918 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1919 }
1920
1921 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1922 return RegMask::EMPTY;
1923 }
1924
1925 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1926 return 0;
1927 }
1928
1929 SafePointScalarMergeNode*
1930 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1931 void* cached = (*sosn_map)[(void*)this];
1932 if (cached != nullptr) {
1933 new_node = false;
1934 return (SafePointScalarMergeNode*)cached;
1935 }
1936 new_node = true;
1937 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1938 sosn_map->Insert((void*)this, (void*)res);
1939 return res;
1940 }
1941
1942 #ifndef PRODUCT
1943 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1944 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1945 }
1946 #endif
1947
1948 //=============================================================================
1949 uint AllocateNode::size_of() const { return sizeof(*this); }
1950
1951 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1952 Node *ctrl, Node *mem, Node *abio,
1953 Node *size, Node *klass_node,
1954 Node* initial_test,
1955 InlineTypeNode* inline_type_node)
1956 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1957 {
1958 init_class_id(Class_Allocate);
1959 init_flags(Flag_is_macro);
1960 _is_scalar_replaceable = false;
1961 _is_non_escaping = false;
1962 _is_allocation_MemBar_redundant = false;
1963 _larval = false;
1964 Node *topnode = C->top();
1965
1966 init_req( TypeFunc::Control , ctrl );
1967 init_req( TypeFunc::I_O , abio );
1968 init_req( TypeFunc::Memory , mem );
1969 init_req( TypeFunc::ReturnAdr, topnode );
1970 init_req( TypeFunc::FramePtr , topnode );
1971 init_req( AllocSize , size);
1972 init_req( KlassNode , klass_node);
1973 init_req( InitialTest , initial_test);
1974 init_req( ALength , topnode);
1975 init_req( ValidLengthTest , topnode);
1976 init_req( InlineType , inline_type_node);
1977 // DefaultValue defaults to nullptr
1978 // RawDefaultValue defaults to nullptr
1979 C->add_macro_node(this);
1980 }
1981
1982 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1983 {
1984 assert(initializer != nullptr &&
1985 (initializer->is_object_constructor() || initializer->is_class_initializer()),
1986 "unexpected initializer method");
1987 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1988 if (analyzer == nullptr) {
1989 return;
1990 }
1991
1992 // Allocation node is first parameter in its initializer
1993 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1994 _is_allocation_MemBar_redundant = true;
1995 }
1996 }
1997
1998 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1999 Node* mark_node = nullptr;
2000 if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2001 Node* klass_node = in(AllocateNode::KlassNode);
2002 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2003 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2004 if (Arguments::is_valhalla_enabled()) {
2005 mark_node = phase->transform(mark_node);
2006 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2007 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2008 }
2009 return mark_node;
2010 } else {
2011 return phase->MakeConX(markWord::prototype().value());
2012 }
2013 }
2014
2015 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2016 // CastII, if appropriate. If we are not allowed to create new nodes, and
2017 // a CastII is appropriate, return null.
2018 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2019 Node *length = in(AllocateNode::ALength);
2020 assert(length != nullptr, "length is not null");
2021
2022 const TypeInt* length_type = phase->find_int_type(length);
2023 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2024
2025 if (ary_type != nullptr && length_type != nullptr) {
2026 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2027 if (narrow_length_type != length_type) {
2028 // Assert one of:
2029 // - the narrow_length is 0
2030 // - the narrow_length is not wider than length
2031 assert(narrow_length_type == TypeInt::ZERO ||
2032 (length_type->is_con() && narrow_length_type->is_con() &&
2033 (narrow_length_type->_hi <= length_type->_lo)) ||
2034 (narrow_length_type->_hi <= length_type->_hi &&
2035 narrow_length_type->_lo >= length_type->_lo),
2036 "narrow type must be narrower than length type");
2037
2038 // Return null if new nodes are not allowed
2039 if (!allow_new_nodes) {
2040 return nullptr;
2041 }
2042 // Create a cast which is control dependent on the initialization to
2043 // propagate the fact that the array length must be positive.
2044 InitializeNode* init = initialization();
2045 if (init != nullptr) {
2046 length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
2047 }
2048 }
2049 }
2050
2051 return length;
2052 }
2053
2054 //=============================================================================
2055 const TypeFunc* LockNode::_lock_type_Type = nullptr;
2056
2057 uint LockNode::size_of() const { return sizeof(*this); }
2058
2059 // Redundant lock elimination
2060 //
2061 // There are various patterns of locking where we release and
2062 // immediately reacquire a lock in a piece of code where no operations
2063 // occur in between that would be observable. In those cases we can
2064 // skip releasing and reacquiring the lock without violating any
2065 // fairness requirements. Doing this around a loop could cause a lock
2066 // to be held for a very long time so we concentrate on non-looping
2067 // control flow. We also require that the operations are fully
2068 // redundant meaning that we don't introduce new lock operations on
2069 // some paths so to be able to eliminate it on others ala PRE. This
2070 // would probably require some more extensive graph manipulation to
2071 // guarantee that the memory edges were all handled correctly.
2072 //
2073 // Assuming p is a simple predicate which can't trap in any way and s
2074 // is a synchronized method consider this code:
2075 //
2076 // s();
2077 // if (p)
2078 // s();
2079 // else
2080 // s();
2081 // s();
2082 //
2083 // 1. The unlocks of the first call to s can be eliminated if the
2084 // locks inside the then and else branches are eliminated.
2085 //
2086 // 2. The unlocks of the then and else branches can be eliminated if
2087 // the lock of the final call to s is eliminated.
2088 //
2089 // Either of these cases subsumes the simple case of sequential control flow
2090 //
2091 // Additionally we can eliminate versions without the else case:
2092 //
2093 // s();
2094 // if (p)
2095 // s();
2096 // s();
2097 //
2098 // 3. In this case we eliminate the unlock of the first s, the lock
2099 // and unlock in the then case and the lock in the final s.
2100 //
2101 // Note also that in all these cases the then/else pieces don't have
2102 // to be trivial as long as they begin and end with synchronization
2103 // operations.
2104 //
2105 // s();
2106 // if (p)
2107 // s();
2108 // f();
2109 // s();
2110 // s();
2111 //
2112 // The code will work properly for this case, leaving in the unlock
2113 // before the call to f and the relock after it.
2114 //
2115 // A potentially interesting case which isn't handled here is when the
2116 // locking is partially redundant.
2117 //
2118 // s();
2119 // if (p)
2120 // s();
2121 //
2122 // This could be eliminated putting unlocking on the else case and
2123 // eliminating the first unlock and the lock in the then side.
2124 // Alternatively the unlock could be moved out of the then side so it
2125 // was after the merge and the first unlock and second lock
2126 // eliminated. This might require less manipulation of the memory
2127 // state to get correct.
2128 //
2129 // Additionally we might allow work between a unlock and lock before
2130 // giving up eliminating the locks. The current code disallows any
2131 // conditional control flow between these operations. A formulation
2132 // similar to partial redundancy elimination computing the
2133 // availability of unlocking and the anticipatability of locking at a
2134 // program point would allow detection of fully redundant locking with
2135 // some amount of work in between. I'm not sure how often I really
2136 // think that would occur though. Most of the cases I've seen
2137 // indicate it's likely non-trivial work would occur in between.
2138 // There may be other more complicated constructs where we could
2139 // eliminate locking but I haven't seen any others appear as hot or
2140 // interesting.
2141 //
2142 // Locking and unlocking have a canonical form in ideal that looks
2143 // roughly like this:
2144 //
2145 // <obj>
2146 // | \\------+
2147 // | \ \
2148 // | BoxLock \
2149 // | | | \
2150 // | | \ \
2151 // | | FastLock
2152 // | | /
2153 // | | /
2154 // | | |
2155 //
2156 // Lock
2157 // |
2158 // Proj #0
2159 // |
2160 // MembarAcquire
2161 // |
2162 // Proj #0
2163 //
2164 // MembarRelease
2165 // |
2166 // Proj #0
2167 // |
2168 // Unlock
2169 // |
2170 // Proj #0
2171 //
2172 //
2173 // This code proceeds by processing Lock nodes during PhaseIterGVN
2174 // and searching back through its control for the proper code
2175 // patterns. Once it finds a set of lock and unlock operations to
2176 // eliminate they are marked as eliminatable which causes the
2177 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2178 //
2179 //=============================================================================
2180
2181 //
2182 // Utility function to skip over uninteresting control nodes. Nodes skipped are:
2183 // - copy regions. (These may not have been optimized away yet.)
2184 // - eliminated locking nodes
2185 //
2186 static Node *next_control(Node *ctrl) {
2187 if (ctrl == nullptr)
2188 return nullptr;
2189 while (1) {
2190 if (ctrl->is_Region()) {
2191 RegionNode *r = ctrl->as_Region();
2192 Node *n = r->is_copy();
2193 if (n == nullptr)
2194 break; // hit a region, return it
2195 else
2196 ctrl = n;
2197 } else if (ctrl->is_Proj()) {
2198 Node *in0 = ctrl->in(0);
2199 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2200 ctrl = in0->in(0);
2201 } else {
2202 break;
2203 }
2204 } else {
2205 break; // found an interesting control
2206 }
2207 }
2208 return ctrl;
2209 }
2210 //
2211 // Given a control, see if it's the control projection of an Unlock which
2212 // operating on the same object as lock.
2213 //
2214 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2215 GrowableArray<AbstractLockNode*> &lock_ops) {
2216 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2217 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2218 Node *n = ctrl_proj->in(0);
2219 if (n != nullptr && n->is_Unlock()) {
2220 UnlockNode *unlock = n->as_Unlock();
2221 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2222 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2223 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2224 if (lock_obj->eqv_uncast(unlock_obj) &&
2225 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2226 !unlock->is_eliminated()) {
2227 lock_ops.append(unlock);
2228 return true;
2229 }
2230 }
2231 }
2232 return false;
2233 }
2234
2235 //
2236 // Find the lock matching an unlock. Returns null if a safepoint
2237 // or complicated control is encountered first.
2238 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2239 LockNode *lock_result = nullptr;
2240 // find the matching lock, or an intervening safepoint
2241 Node *ctrl = next_control(unlock->in(0));
2242 while (1) {
2243 assert(ctrl != nullptr, "invalid control graph");
2244 assert(!ctrl->is_Start(), "missing lock for unlock");
2245 if (ctrl->is_top()) break; // dead control path
2246 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2247 if (ctrl->is_SafePoint()) {
2248 break; // found a safepoint (may be the lock we are searching for)
2249 } else if (ctrl->is_Region()) {
2250 // Check for a simple diamond pattern. Punt on anything more complicated
2251 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2252 Node *in1 = next_control(ctrl->in(1));
2253 Node *in2 = next_control(ctrl->in(2));
2254 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2255 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2256 ctrl = next_control(in1->in(0)->in(0));
2257 } else {
2258 break;
2259 }
2260 } else {
2261 break;
2262 }
2263 } else {
2264 ctrl = next_control(ctrl->in(0)); // keep searching
2265 }
2266 }
2267 if (ctrl->is_Lock()) {
2268 LockNode *lock = ctrl->as_Lock();
2269 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2270 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2271 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2272 if (lock_obj->eqv_uncast(unlock_obj) &&
2273 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2274 lock_result = lock;
2275 }
2276 }
2277 return lock_result;
2278 }
2279
2280 // This code corresponds to case 3 above.
2281
2282 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2283 GrowableArray<AbstractLockNode*> &lock_ops) {
2284 Node* if_node = node->in(0);
2285 bool if_true = node->is_IfTrue();
2286
2287 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2288 Node *lock_ctrl = next_control(if_node->in(0));
2289 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2290 Node* lock1_node = nullptr;
2291 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2292 if (if_true) {
2293 if (proj->is_IfFalse() && proj->outcnt() == 1) {
2294 lock1_node = proj->unique_out();
2295 }
2296 } else {
2297 if (proj->is_IfTrue() && proj->outcnt() == 1) {
2298 lock1_node = proj->unique_out();
2299 }
2300 }
2301 if (lock1_node != nullptr && lock1_node->is_Lock()) {
2302 LockNode *lock1 = lock1_node->as_Lock();
2303 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2304 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2305 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2306 if (lock_obj->eqv_uncast(lock1_obj) &&
2307 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2308 !lock1->is_eliminated()) {
2309 lock_ops.append(lock1);
2310 return true;
2311 }
2312 }
2313 }
2314 }
2315
2316 lock_ops.trunc_to(0);
2317 return false;
2318 }
2319
2320 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2321 GrowableArray<AbstractLockNode*> &lock_ops) {
2322 // check each control merging at this point for a matching unlock.
2323 // in(0) should be self edge so skip it.
2324 for (int i = 1; i < (int)region->req(); i++) {
2325 Node *in_node = next_control(region->in(i));
2326 if (in_node != nullptr) {
2327 if (find_matching_unlock(in_node, lock, lock_ops)) {
2328 // found a match so keep on checking.
2329 continue;
2330 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2331 continue;
2332 }
2333
2334 // If we fall through to here then it was some kind of node we
2335 // don't understand or there wasn't a matching unlock, so give
2336 // up trying to merge locks.
2337 lock_ops.trunc_to(0);
2338 return false;
2339 }
2340 }
2341 return true;
2342
2343 }
2344
2345 // Check that all locks/unlocks associated with object come from balanced regions.
2346 bool AbstractLockNode::is_balanced() {
2347 Node* obj = obj_node();
2348 for (uint j = 0; j < obj->outcnt(); j++) {
2349 Node* n = obj->raw_out(j);
2350 if (n->is_AbstractLock() &&
2351 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2352 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2353 if (n_box->is_unbalanced()) {
2354 return false;
2355 }
2356 }
2357 }
2358 return true;
2359 }
2360
2361 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2362
2363 const char * AbstractLockNode::kind_as_string() const {
2364 return _kind_names[_kind];
2365 }
2366
2367 #ifndef PRODUCT
2368 //
2369 // Create a counter which counts the number of times this lock is acquired
2370 //
2371 void AbstractLockNode::create_lock_counter(JVMState* state) {
2372 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2373 }
2374
2375 void AbstractLockNode::set_eliminated_lock_counter() {
2376 if (_counter) {
2377 // Update the counter to indicate that this lock was eliminated.
2378 // The counter update code will stay around even though the
2379 // optimizer will eliminate the lock operation itself.
2380 _counter->set_tag(NamedCounter::EliminatedLockCounter);
2381 }
2382 }
2383
2384 void AbstractLockNode::dump_spec(outputStream* st) const {
2385 st->print("%s ", _kind_names[_kind]);
2386 CallNode::dump_spec(st);
2387 }
2388
2389 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2390 st->print("%s", _kind_names[_kind]);
2391 }
2392 #endif
2393
2394 //=============================================================================
2395 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2396
2397 // perform any generic optimizations first (returns 'this' or null)
2398 Node *result = SafePointNode::Ideal(phase, can_reshape);
2399 if (result != nullptr) return result;
2400 // Don't bother trying to transform a dead node
2401 if (in(0) && in(0)->is_top()) return nullptr;
2402
2403 // Now see if we can optimize away this lock. We don't actually
2404 // remove the locking here, we simply set the _eliminate flag which
2405 // prevents macro expansion from expanding the lock. Since we don't
2406 // modify the graph, the value returned from this function is the
2407 // one computed above.
2408 const Type* obj_type = phase->type(obj_node());
2409 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2410 //
2411 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2412 //
2413 ConnectionGraph *cgr = phase->C->congraph();
2414 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2415 assert(!is_eliminated() || is_coarsened(), "sanity");
2416 // The lock could be marked eliminated by lock coarsening
2417 // code during first IGVN before EA. Replace coarsened flag
2418 // to eliminate all associated locks/unlocks.
2419 #ifdef ASSERT
2420 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2421 #endif
2422 this->set_non_esc_obj();
2423 return result;
2424 }
2425
2426 if (!phase->C->do_locks_coarsening()) {
2427 return result; // Compiling without locks coarsening
2428 }
2429 //
2430 // Try lock coarsening
2431 //
2432 PhaseIterGVN* iter = phase->is_IterGVN();
2433 if (iter != nullptr && !is_eliminated()) {
2434
2435 GrowableArray<AbstractLockNode*> lock_ops;
2436
2437 Node *ctrl = next_control(in(0));
2438
2439 // now search back for a matching Unlock
2440 if (find_matching_unlock(ctrl, this, lock_ops)) {
2441 // found an unlock directly preceding this lock. This is the
2442 // case of single unlock directly control dependent on a
2443 // single lock which is the trivial version of case 1 or 2.
2444 } else if (ctrl->is_Region() ) {
2445 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2446 // found lock preceded by multiple unlocks along all paths
2447 // joining at this point which is case 3 in description above.
2448 }
2449 } else {
2450 // see if this lock comes from either half of an if and the
2451 // predecessors merges unlocks and the other half of the if
2452 // performs a lock.
2453 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2454 // found unlock splitting to an if with locks on both branches.
2455 }
2456 }
2457
2458 if (lock_ops.length() > 0) {
2459 // add ourselves to the list of locks to be eliminated.
2460 lock_ops.append(this);
2461
2462 #ifndef PRODUCT
2463 if (PrintEliminateLocks) {
2464 int locks = 0;
2465 int unlocks = 0;
2466 if (Verbose) {
2467 tty->print_cr("=== Locks coarsening ===");
2468 tty->print("Obj: ");
2469 obj_node()->dump();
2470 }
2471 for (int i = 0; i < lock_ops.length(); i++) {
2472 AbstractLockNode* lock = lock_ops.at(i);
2473 if (lock->Opcode() == Op_Lock)
2474 locks++;
2475 else
2476 unlocks++;
2477 if (Verbose) {
2478 tty->print("Box %d: ", i);
2479 box_node()->dump();
2480 tty->print(" %d: ", i);
2481 lock->dump();
2482 }
2483 }
2484 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2485 }
2486 #endif
2487
2488 // for each of the identified locks, mark them
2489 // as eliminatable
2490 for (int i = 0; i < lock_ops.length(); i++) {
2491 AbstractLockNode* lock = lock_ops.at(i);
2492
2493 // Mark it eliminated by coarsening and update any counters
2494 #ifdef ASSERT
2495 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2496 #endif
2497 lock->set_coarsened();
2498 }
2499 // Record this coarsened group.
2500 phase->C->add_coarsened_locks(lock_ops);
2501 } else if (ctrl->is_Region() &&
2502 iter->_worklist.member(ctrl)) {
2503 // We weren't able to find any opportunities but the region this
2504 // lock is control dependent on hasn't been processed yet so put
2505 // this lock back on the worklist so we can check again once any
2506 // region simplification has occurred.
2507 iter->_worklist.push(this);
2508 }
2509 }
2510 }
2511
2512 return result;
2513 }
2514
2515 //=============================================================================
2516 bool LockNode::is_nested_lock_region() {
2517 return is_nested_lock_region(nullptr);
2518 }
2519
2520 // p is used for access to compilation log; no logging if null
2521 bool LockNode::is_nested_lock_region(Compile * c) {
2522 BoxLockNode* box = box_node()->as_BoxLock();
2523 int stk_slot = box->stack_slot();
2524 if (stk_slot <= 0) {
2525 #ifdef ASSERT
2526 this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2527 #endif
2528 return false; // External lock or it is not Box (Phi node).
2529 }
2530
2531 // Ignore complex cases: merged locks or multiple locks.
2532 Node* obj = obj_node();
2533 LockNode* unique_lock = nullptr;
2534 Node* bad_lock = nullptr;
2535 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2536 #ifdef ASSERT
2537 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2538 #endif
2539 return false;
2540 }
2541 if (unique_lock != this) {
2542 #ifdef ASSERT
2543 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2544 if (PrintEliminateLocks && Verbose) {
2545 tty->print_cr("=============== unique_lock != this ============");
2546 tty->print(" this: ");
2547 this->dump();
2548 tty->print(" box: ");
2549 box->dump();
2550 tty->print(" obj: ");
2551 obj->dump();
2552 if (unique_lock != nullptr) {
2553 tty->print(" unique_lock: ");
2554 unique_lock->dump();
2555 }
2556 if (bad_lock != nullptr) {
2557 tty->print(" bad_lock: ");
2558 bad_lock->dump();
2559 }
2560 tty->print_cr("===============");
2561 }
2562 #endif
2563 return false;
2564 }
2565
2566 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2567 obj = bs->step_over_gc_barrier(obj);
2568 // Look for external lock for the same object.
2569 SafePointNode* sfn = this->as_SafePoint();
2570 JVMState* youngest_jvms = sfn->jvms();
2571 int max_depth = youngest_jvms->depth();
2572 for (int depth = 1; depth <= max_depth; depth++) {
2573 JVMState* jvms = youngest_jvms->of_depth(depth);
2574 int num_mon = jvms->nof_monitors();
2575 // Loop over monitors
2576 for (int idx = 0; idx < num_mon; idx++) {
2577 Node* obj_node = sfn->monitor_obj(jvms, idx);
2578 obj_node = bs->step_over_gc_barrier(obj_node);
2579 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2580 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2581 box->set_nested();
2582 return true;
2583 }
2584 }
2585 }
2586 #ifdef ASSERT
2587 this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2588 #endif
2589 return false;
2590 }
2591
2592 //=============================================================================
2593 uint UnlockNode::size_of() const { return sizeof(*this); }
2594
2595 //=============================================================================
2596 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2597
2598 // perform any generic optimizations first (returns 'this' or null)
2599 Node *result = SafePointNode::Ideal(phase, can_reshape);
2600 if (result != nullptr) return result;
2601 // Don't bother trying to transform a dead node
2602 if (in(0) && in(0)->is_top()) return nullptr;
2603
2604 // Now see if we can optimize away this unlock. We don't actually
2605 // remove the unlocking here, we simply set the _eliminate flag which
2606 // prevents macro expansion from expanding the unlock. Since we don't
2607 // modify the graph, the value returned from this function is the
2608 // one computed above.
2609 // Escape state is defined after Parse phase.
2610 const Type* obj_type = phase->type(obj_node());
2611 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2612 //
2613 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2614 //
2615 ConnectionGraph *cgr = phase->C->congraph();
2616 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2617 assert(!is_eliminated() || is_coarsened(), "sanity");
2618 // The lock could be marked eliminated by lock coarsening
2619 // code during first IGVN before EA. Replace coarsened flag
2620 // to eliminate all associated locks/unlocks.
2621 #ifdef ASSERT
2622 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2623 #endif
2624 this->set_non_esc_obj();
2625 }
2626 }
2627 return result;
2628 }
2629
2630 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2631 if (C == nullptr) {
2632 return;
2633 }
2634 CompileLog* log = C->log();
2635 if (log != nullptr) {
2636 Node* box = box_node();
2637 Node* obj = obj_node();
2638 int box_id = box != nullptr ? box->_idx : -1;
2639 int obj_id = obj != nullptr ? obj->_idx : -1;
2640
2641 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2642 tag, C->compile_id(), this->_idx,
2643 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2644 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2645 log->stamp();
2646 log->end_head();
2647 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2648 while (p != nullptr) {
2649 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2650 p = p->caller();
2651 }
2652 log->tail(tag);
2653 }
2654 }
2655
2656 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2657 if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2658 return dest_t->instance_id() == t_oop->instance_id();
2659 }
2660
2661 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2662 // clone
2663 if (t_oop->isa_aryptr()) {
2664 return false;
2665 }
2666 if (!t_oop->isa_instptr()) {
2667 return true;
2668 }
2669 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2670 return true;
2671 }
2672 // unrelated
2673 return false;
2674 }
2675
2676 if (dest_t->isa_aryptr()) {
2677 // arraycopy or array clone
2678 if (t_oop->isa_instptr()) {
2679 return false;
2680 }
2681 if (!t_oop->isa_aryptr()) {
2682 return true;
2683 }
2684
2685 const Type* elem = dest_t->is_aryptr()->elem();
2686 if (elem == Type::BOTTOM) {
2687 // An array but we don't know what elements are
2688 return true;
2689 }
2690
2691 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2692 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2693 uint dest_alias = phase->C->get_alias_index(dest_t);
2694 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2695
2696 return dest_alias == t_oop_alias;
2697 }
2698
2699 return true;
2700 }