1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "code/vmreg.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/regalloc.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 // Portions of code courtesy of Clifford Click
  55 
  56 // Optimization - Graph Style
  57 
  58 //=============================================================================
  59 uint StartNode::size_of() const { return sizeof(*this); }
  60 bool StartNode::cmp( const Node &n ) const
  61 { return _domain == ((StartNode&)n)._domain; }
  62 const Type *StartNode::bottom_type() const { return _domain; }
  63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  64 #ifndef PRODUCT
  65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  67 #endif
  68 
  69 //------------------------------Ideal------------------------------------------
  70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  71   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  72 }
  73 
  74 //------------------------------calling_convention-----------------------------
  75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  76   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  77 }
  78 
  79 //------------------------------Registers--------------------------------------
  80 const RegMask &StartNode::in_RegMask(uint) const {
  81   return RegMask::EMPTY;
  82 }
  83 
  84 //------------------------------match------------------------------------------
  85 // Construct projections for incoming parameters, and their RegMask info
  86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  87   switch (proj->_con) {
  88   case TypeFunc::Control:
  89   case TypeFunc::I_O:
  90   case TypeFunc::Memory:
  91     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  92   case TypeFunc::FramePtr:
  93     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  94   case TypeFunc::ReturnAdr:
  95     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  96   case TypeFunc::Parms:
  97   default: {
  98       uint parm_num = proj->_con - TypeFunc::Parms;
  99       const Type *t = _domain->field_at(proj->_con);
 100       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
 101         return new ConNode(Type::TOP);
 102       uint ideal_reg = t->ideal_reg();
 103       RegMask &rm = match->_calling_convention_mask[parm_num];
 104       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 105     }
 106   }
 107   return nullptr;
 108 }
 109 
 110 //=============================================================================
 111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ParmNode::dump_spec(outputStream *st) const {
 117   if( _con < TypeFunc::Parms ) {
 118     st->print("%s", names[_con]);
 119   } else {
 120     st->print("Parm%d: ",_con-TypeFunc::Parms);
 121     // Verbose and WizardMode dump bottom_type for all nodes
 122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 123   }
 124 }
 125 
 126 void ParmNode::dump_compact_spec(outputStream *st) const {
 127   if (_con < TypeFunc::Parms) {
 128     st->print("%s", names[_con]);
 129   } else {
 130     st->print("%d:", _con-TypeFunc::Parms);
 131     // unconditionally dump bottom_type
 132     bottom_type()->dump_on(st);
 133   }
 134 }
 135 #endif
 136 
 137 uint ParmNode::ideal_reg() const {
 138   switch( _con ) {
 139   case TypeFunc::Control  : // fall through
 140   case TypeFunc::I_O      : // fall through
 141   case TypeFunc::Memory   : return 0;
 142   case TypeFunc::FramePtr : // fall through
 143   case TypeFunc::ReturnAdr: return Op_RegP;
 144   default                 : assert( _con > TypeFunc::Parms, "" );
 145     // fall through
 146   case TypeFunc::Parms    : {
 147     // Type of argument being passed
 148     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 149     return t->ideal_reg();
 150   }
 151   }
 152   ShouldNotReachHere();
 153   return 0;
 154 }
 155 
 156 //=============================================================================
 157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 158   init_req(TypeFunc::Control,cntrl);
 159   init_req(TypeFunc::I_O,i_o);
 160   init_req(TypeFunc::Memory,memory);
 161   init_req(TypeFunc::FramePtr,frameptr);
 162   init_req(TypeFunc::ReturnAdr,retadr);
 163 }
 164 
 165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 166   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 167 }
 168 
 169 const Type* ReturnNode::Value(PhaseGVN* phase) const {
 170   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 171     ? Type::TOP
 172     : Type::BOTTOM;
 173 }
 174 
 175 // Do we Match on this edge index or not?  No edges on return nodes
 176 uint ReturnNode::match_edge(uint idx) const {
 177   return 0;
 178 }
 179 
 180 
 181 #ifndef PRODUCT
 182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
 183   // Dump the required inputs, after printing "returns"
 184   uint i;                       // Exit value of loop
 185   for (i = 0; i < req(); i++) {    // For all required inputs
 186     if (i == TypeFunc::Parms) st->print("returns ");
 187     Node* p = in(i);
 188     if (p != nullptr) {
 189       p->dump_idx(false, st, dc);
 190       st->print(" ");
 191     } else {
 192       st->print("_ ");
 193     }
 194   }
 195 }
 196 #endif
 197 
 198 //=============================================================================
 199 RethrowNode::RethrowNode(
 200   Node* cntrl,
 201   Node* i_o,
 202   Node* memory,
 203   Node* frameptr,
 204   Node* ret_adr,
 205   Node* exception
 206 ) : Node(TypeFunc::Parms + 1) {
 207   init_req(TypeFunc::Control  , cntrl    );
 208   init_req(TypeFunc::I_O      , i_o      );
 209   init_req(TypeFunc::Memory   , memory   );
 210   init_req(TypeFunc::FramePtr , frameptr );
 211   init_req(TypeFunc::ReturnAdr, ret_adr);
 212   init_req(TypeFunc::Parms    , exception);
 213 }
 214 
 215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 216   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 217 }
 218 
 219 const Type* RethrowNode::Value(PhaseGVN* phase) const {
 220   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 221     ? Type::TOP
 222     : Type::BOTTOM;
 223 }
 224 
 225 uint RethrowNode::match_edge(uint idx) const {
 226   return 0;
 227 }
 228 
 229 #ifndef PRODUCT
 230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
 231   // Dump the required inputs, after printing "exception"
 232   uint i;                       // Exit value of loop
 233   for (i = 0; i < req(); i++) {    // For all required inputs
 234     if (i == TypeFunc::Parms) st->print("exception ");
 235     Node* p = in(i);
 236     if (p != nullptr) {
 237       p->dump_idx(false, st, dc);
 238       st->print(" ");
 239     } else {
 240       st->print("_ ");
 241     }
 242   }
 243 }
 244 #endif
 245 
 246 //=============================================================================
 247 // Do we Match on this edge index or not?  Match only target address & method
 248 uint TailCallNode::match_edge(uint idx) const {
 249   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 250 }
 251 
 252 //=============================================================================
 253 // Do we Match on this edge index or not?  Match only target address & oop
 254 uint TailJumpNode::match_edge(uint idx) const {
 255   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 256 }
 257 
 258 //=============================================================================
 259 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 260   _method(method),
 261   _receiver_info(nullptr) {
 262   assert(method != nullptr, "must be valid call site");
 263   _bci = InvocationEntryBci;
 264   _reexecute = Reexecute_Undefined;
 265   DEBUG_ONLY(_bci = -99);  // random garbage value
 266   DEBUG_ONLY(_map = (SafePointNode*)-1);
 267   _caller = caller;
 268   _depth  = 1 + (caller == nullptr ? 0 : caller->depth());
 269   _locoff = TypeFunc::Parms;
 270   _stkoff = _locoff + _method->max_locals();
 271   _monoff = _stkoff + _method->max_stack();
 272   _scloff = _monoff;
 273   _endoff = _monoff;
 274   _sp = 0;
 275 }
 276 JVMState::JVMState(int stack_size) :
 277   _method(nullptr),
 278   _receiver_info(nullptr) {
 279   _bci = InvocationEntryBci;
 280   _reexecute = Reexecute_Undefined;
 281   DEBUG_ONLY(_map = (SafePointNode*)-1);
 282   _caller = nullptr;
 283   _depth  = 1;
 284   _locoff = TypeFunc::Parms;
 285   _stkoff = _locoff;
 286   _monoff = _stkoff + stack_size;
 287   _scloff = _monoff;
 288   _endoff = _monoff;
 289   _sp = 0;
 290 }
 291 
 292 //--------------------------------of_depth-------------------------------------
 293 JVMState* JVMState::of_depth(int d) const {
 294   const JVMState* jvmp = this;
 295   assert(0 < d && (uint)d <= depth(), "oob");
 296   for (int skip = depth() - d; skip > 0; skip--) {
 297     jvmp = jvmp->caller();
 298   }
 299   assert(jvmp->depth() == (uint)d, "found the right one");
 300   return (JVMState*)jvmp;
 301 }
 302 
 303 //-----------------------------same_calls_as-----------------------------------
 304 bool JVMState::same_calls_as(const JVMState* that) const {
 305   if (this == that)                    return true;
 306   if (this->depth() != that->depth())  return false;
 307   const JVMState* p = this;
 308   const JVMState* q = that;
 309   for (;;) {
 310     if (p->_method != q->_method)    return false;
 311     if (p->_method == nullptr)       return true;   // bci is irrelevant
 312     if (p->_bci    != q->_bci)       return false;
 313     if (p->_reexecute != q->_reexecute)  return false;
 314     p = p->caller();
 315     q = q->caller();
 316     if (p == q)                      return true;
 317     assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
 318   }
 319 }
 320 
 321 //------------------------------debug_start------------------------------------
 322 uint JVMState::debug_start()  const {
 323   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 324   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 325   return of_depth(1)->locoff();
 326 }
 327 
 328 //-------------------------------debug_end-------------------------------------
 329 uint JVMState::debug_end() const {
 330   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 331   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 332   return endoff();
 333 }
 334 
 335 //------------------------------debug_depth------------------------------------
 336 uint JVMState::debug_depth() const {
 337   uint total = 0;
 338   for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
 339     total += jvmp->debug_size();
 340   }
 341   return total;
 342 }
 343 
 344 #ifndef PRODUCT
 345 
 346 //------------------------------format_helper----------------------------------
 347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 348 // any defined value or not.  If it does, print out the register or constant.
 349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 350   if (n == nullptr) { st->print(" null"); return; }
 351   if (n->is_SafePointScalarObject()) {
 352     // Scalar replacement.
 353     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 354     scobjs->append_if_missing(spobj);
 355     int sco_n = scobjs->find(spobj);
 356     assert(sco_n >= 0, "");
 357     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 358     return;
 359   }
 360   if (regalloc->node_regs_max_index() > 0 &&
 361       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 362     char buf[50];
 363     regalloc->dump_register(n,buf,sizeof(buf));
 364     st->print(" %s%d]=%s",msg,i,buf);
 365   } else {                      // No register, but might be constant
 366     const Type *t = n->bottom_type();
 367     switch (t->base()) {
 368     case Type::Int:
 369       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
 370       break;
 371     case Type::AnyPtr:
 372       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 373       st->print(" %s%d]=#null",msg,i);
 374       break;
 375     case Type::AryPtr:
 376     case Type::InstPtr:
 377       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 378       break;
 379     case Type::KlassPtr:
 380     case Type::AryKlassPtr:
 381     case Type::InstKlassPtr:
 382       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
 383       break;
 384     case Type::MetadataPtr:
 385       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 386       break;
 387     case Type::NarrowOop:
 388       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 389       break;
 390     case Type::RawPtr:
 391       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 392       break;
 393     case Type::DoubleCon:
 394       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 395       break;
 396     case Type::FloatCon:
 397       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 398       break;
 399     case Type::Long:
 400       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 401       break;
 402     case Type::Half:
 403     case Type::Top:
 404       st->print(" %s%d]=_",msg,i);
 405       break;
 406     default: ShouldNotReachHere();
 407     }
 408   }
 409 }
 410 
 411 //---------------------print_method_with_lineno--------------------------------
 412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
 413   if (show_name) _method->print_short_name(st);
 414 
 415   int lineno = _method->line_number_from_bci(_bci);
 416   if (lineno != -1) {
 417     st->print(" @ bci:%d (line %d)", _bci, lineno);
 418   } else {
 419     st->print(" @ bci:%d", _bci);
 420   }
 421 }
 422 
 423 //------------------------------format-----------------------------------------
 424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 425   st->print("        #");
 426   if (_method) {
 427     print_method_with_lineno(st, true);
 428   } else {
 429     st->print_cr(" runtime stub ");
 430     return;
 431   }
 432   if (n->is_MachSafePoint()) {
 433     GrowableArray<SafePointScalarObjectNode*> scobjs;
 434     MachSafePointNode *mcall = n->as_MachSafePoint();
 435     uint i;
 436     // Print locals
 437     for (i = 0; i < (uint)loc_size(); i++)
 438       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 439     // Print stack
 440     for (i = 0; i < (uint)stk_size(); i++) {
 441       if ((uint)(_stkoff + i) >= mcall->len())
 442         st->print(" oob ");
 443       else
 444        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 445     }
 446     for (i = 0; (int)i < nof_monitors(); i++) {
 447       Node *box = mcall->monitor_box(this, i);
 448       Node *obj = mcall->monitor_obj(this, i);
 449       if (regalloc->node_regs_max_index() > 0 &&
 450           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 451         box = BoxLockNode::box_node(box);
 452         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 453       } else {
 454         OptoReg::Name box_reg = BoxLockNode::reg(box);
 455         st->print(" MON-BOX%d=%s+%d",
 456                    i,
 457                    OptoReg::regname(OptoReg::c_frame_pointer),
 458                    regalloc->reg2offset(box_reg));
 459       }
 460       const char* obj_msg = "MON-OBJ[";
 461       if (EliminateLocks) {
 462         if (BoxLockNode::box_node(box)->is_eliminated())
 463           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 464       }
 465       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 466     }
 467 
 468     for (i = 0; i < (uint)scobjs.length(); i++) {
 469       // Scalar replaced objects.
 470       st->cr();
 471       st->print("        # ScObj" INT32_FORMAT " ", i);
 472       SafePointScalarObjectNode* spobj = scobjs.at(i);
 473       ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
 474       assert(cik->is_instance_klass() ||
 475              cik->is_array_klass(), "Not supported allocation.");
 476       ciInstanceKlass *iklass = nullptr;
 477       if (cik->is_instance_klass()) {
 478         cik->print_name_on(st);
 479         iklass = cik->as_instance_klass();
 480       } else if (cik->is_type_array_klass()) {
 481         cik->as_array_klass()->base_element_type()->print_name_on(st);
 482         st->print("[%d]", spobj->n_fields());
 483       } else if (cik->is_obj_array_klass()) {
 484         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 485         if (cie->is_instance_klass()) {
 486           cie->print_name_on(st);
 487         } else if (cie->is_type_array_klass()) {
 488           cie->as_array_klass()->base_element_type()->print_name_on(st);
 489         } else {
 490           ShouldNotReachHere();
 491         }
 492         st->print("[%d]", spobj->n_fields());
 493         int ndim = cik->as_array_klass()->dimension() - 1;
 494         while (ndim-- > 0) {
 495           st->print("[]");
 496         }
 497       } else {
 498         assert(false, "unexpected type %s", cik->name()->as_utf8());
 499       }
 500       st->print("={");
 501       uint nf = spobj->n_fields();
 502       if (nf > 0) {
 503         uint first_ind = spobj->first_index(mcall->jvms());
 504         if (iklass != nullptr && iklass->is_inlinetype()) {
 505           Node* null_marker = mcall->in(first_ind++);
 506           if (!null_marker->is_top()) {
 507             st->print(" [null marker");
 508             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 509           }
 510         }
 511         Node* fld_node = mcall->in(first_ind);
 512         if (iklass != nullptr) {
 513           st->print(" [");
 514           iklass->nonstatic_field_at(0)->print_name_on(st);
 515           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 516         } else {
 517           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 518         }
 519         for (uint j = 1; j < nf; j++) {
 520           fld_node = mcall->in(first_ind+j);
 521           if (iklass != nullptr) {
 522             st->print(", [");
 523             iklass->nonstatic_field_at(j)->print_name_on(st);
 524             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 525           } else {
 526             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 527           }
 528         }
 529       }
 530       st->print(" }");
 531     }
 532   }
 533   st->cr();
 534   if (caller() != nullptr) caller()->format(regalloc, n, st);
 535 }
 536 
 537 
 538 void JVMState::dump_spec(outputStream *st) const {
 539   if (_method != nullptr) {
 540     bool printed = false;
 541     if (!Verbose) {
 542       // The JVMS dumps make really, really long lines.
 543       // Take out the most boring parts, which are the package prefixes.
 544       char buf[500];
 545       stringStream namest(buf, sizeof(buf));
 546       _method->print_short_name(&namest);
 547       if (namest.count() < sizeof(buf)) {
 548         const char* name = namest.base();
 549         if (name[0] == ' ')  ++name;
 550         const char* endcn = strchr(name, ':');  // end of class name
 551         if (endcn == nullptr)  endcn = strchr(name, '(');
 552         if (endcn == nullptr)  endcn = name + strlen(name);
 553         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 554           --endcn;
 555         st->print(" %s", endcn);
 556         printed = true;
 557       }
 558     }
 559     print_method_with_lineno(st, !printed);
 560     if(_reexecute == Reexecute_True)
 561       st->print(" reexecute");
 562   } else {
 563     st->print(" runtime stub");
 564   }
 565   if (caller() != nullptr)  caller()->dump_spec(st);
 566 }
 567 
 568 
 569 void JVMState::dump_on(outputStream* st) const {
 570   bool print_map = _map && !((uintptr_t)_map & 1) &&
 571                   ((caller() == nullptr) || (caller()->map() != _map));
 572   if (print_map) {
 573     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 574       Node* ex = _map->in(_map->req());  // _map->next_exception()
 575       // skip the first one; it's already being printed
 576       while (ex != nullptr && ex->len() > ex->req()) {
 577         ex = ex->in(ex->req());  // ex->next_exception()
 578         ex->dump(1);
 579       }
 580     }
 581     _map->dump(Verbose ? 2 : 1);
 582   }
 583   if (caller() != nullptr) {
 584     caller()->dump_on(st);
 585   }
 586   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 587              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 588   if (_method == nullptr) {
 589     st->print_cr("(none)");
 590   } else {
 591     _method->print_name(st);
 592     st->cr();
 593     if (bci() >= 0 && bci() < _method->code_size()) {
 594       st->print("    bc: ");
 595       _method->print_codes_on(bci(), bci()+1, st);
 596     }
 597   }
 598 }
 599 
 600 // Extra way to dump a jvms from the debugger,
 601 // to avoid a bug with C++ member function calls.
 602 void dump_jvms(JVMState* jvms) {
 603   jvms->dump();
 604 }
 605 #endif
 606 
 607 //--------------------------clone_shallow--------------------------------------
 608 JVMState* JVMState::clone_shallow(Compile* C) const {
 609   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 610   n->set_bci(_bci);
 611   n->_reexecute = _reexecute;
 612   n->set_locoff(_locoff);
 613   n->set_stkoff(_stkoff);
 614   n->set_monoff(_monoff);
 615   n->set_scloff(_scloff);
 616   n->set_endoff(_endoff);
 617   n->set_sp(_sp);
 618   n->set_map(_map);
 619   n->set_receiver_info(_receiver_info);
 620   return n;
 621 }
 622 
 623 //---------------------------clone_deep----------------------------------------
 624 JVMState* JVMState::clone_deep(Compile* C) const {
 625   JVMState* n = clone_shallow(C);
 626   for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
 627     p->_caller = p->_caller->clone_shallow(C);
 628   }
 629   assert(n->depth() == depth(), "sanity");
 630   assert(n->debug_depth() == debug_depth(), "sanity");
 631   return n;
 632 }
 633 
 634 /**
 635  * Reset map for all callers
 636  */
 637 void JVMState::set_map_deep(SafePointNode* map) {
 638   for (JVMState* p = this; p != nullptr; p = p->_caller) {
 639     p->set_map(map);
 640   }
 641 }
 642 
 643 // unlike set_map(), this is two-way setting.
 644 void JVMState::bind_map(SafePointNode* map) {
 645   set_map(map);
 646   _map->set_jvms(this);
 647 }
 648 
 649 // Adapt offsets in in-array after adding or removing an edge.
 650 // Prerequisite is that the JVMState is used by only one node.
 651 void JVMState::adapt_position(int delta) {
 652   for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
 653     jvms->set_locoff(jvms->locoff() + delta);
 654     jvms->set_stkoff(jvms->stkoff() + delta);
 655     jvms->set_monoff(jvms->monoff() + delta);
 656     jvms->set_scloff(jvms->scloff() + delta);
 657     jvms->set_endoff(jvms->endoff() + delta);
 658   }
 659 }
 660 
 661 // Mirror the stack size calculation in the deopt code
 662 // How much stack space would we need at this point in the program in
 663 // case of deoptimization?
 664 int JVMState::interpreter_frame_size() const {
 665   const JVMState* jvms = this;
 666   int size = 0;
 667   int callee_parameters = 0;
 668   int callee_locals = 0;
 669   int extra_args = method()->max_stack() - stk_size();
 670 
 671   while (jvms != nullptr) {
 672     int locks = jvms->nof_monitors();
 673     int temps = jvms->stk_size();
 674     bool is_top_frame = (jvms == this);
 675     ciMethod* method = jvms->method();
 676 
 677     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 678                                                                  temps + callee_parameters,
 679                                                                  extra_args,
 680                                                                  locks,
 681                                                                  callee_parameters,
 682                                                                  callee_locals,
 683                                                                  is_top_frame);
 684     size += frame_size;
 685 
 686     callee_parameters = method->size_of_parameters();
 687     callee_locals = method->max_locals();
 688     extra_args = 0;
 689     jvms = jvms->caller();
 690   }
 691   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 692 }
 693 
 694 // Compute receiver info for a compiled lambda form at call site.
 695 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
 696   assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
 697   if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
 698     Node* recv = map()->argument(this, 0);
 699     assert(recv != nullptr, "");
 700     const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
 701     if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
 702       return recv_toop->const_oop()->as_instance();
 703     }
 704   }
 705   return nullptr;
 706 }
 707 
 708 //=============================================================================
 709 bool CallNode::cmp( const Node &n ) const
 710 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 711 #ifndef PRODUCT
 712 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
 713   // Dump the required inputs, enclosed in '(' and ')'
 714   uint i;                       // Exit value of loop
 715   for (i = 0; i < req(); i++) {    // For all required inputs
 716     if (i == TypeFunc::Parms) st->print("(");
 717     Node* p = in(i);
 718     if (p != nullptr) {
 719       p->dump_idx(false, st, dc);
 720       st->print(" ");
 721     } else {
 722       st->print("_ ");
 723     }
 724   }
 725   st->print(")");
 726 }
 727 
 728 void CallNode::dump_spec(outputStream *st) const {
 729   st->print(" ");
 730   if (tf() != nullptr)  tf()->dump_on(st);
 731   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 732   if (jvms() != nullptr)  jvms()->dump_spec(st);
 733 }
 734 
 735 void AllocateNode::dump_spec(outputStream* st) const {
 736   st->print(" ");
 737   if (tf() != nullptr) {
 738     tf()->dump_on(st);
 739   }
 740   if (_cnt != COUNT_UNKNOWN) {
 741     st->print(" C=%f", _cnt);
 742   }
 743   const Node* const klass_node = in(KlassNode);
 744   if (klass_node != nullptr) {
 745     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 746 
 747     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 748       st->print(" allocationKlass:");
 749       klass_ptr->exact_klass()->print_name_on(st);
 750     }
 751   }
 752   if (jvms() != nullptr) {
 753     jvms()->dump_spec(st);
 754   }
 755 }
 756 #endif
 757 
 758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 759 const Type* CallNode::Value(PhaseGVN* phase) const {
 760   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 761     return Type::TOP;
 762   }
 763   return tf()->range_cc();
 764 }
 765 
 766 //------------------------------calling_convention-----------------------------
 767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 768   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 769     // The call to that stub is a special case: its inputs are
 770     // multiple values returned from a call and so it should follow
 771     // the return convention.
 772     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 773     return;
 774   }
 775   // Use the standard compiler calling convention
 776   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 777 }
 778 
 779 
 780 //------------------------------match------------------------------------------
 781 // Construct projections for control, I/O, memory-fields, ..., and
 782 // return result(s) along with their RegMask info
 783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 784   uint con = proj->_con;
 785   const TypeTuple* range_cc = tf()->range_cc();
 786   if (con >= TypeFunc::Parms) {
 787     if (tf()->returns_inline_type_as_fields()) {
 788       // The call returns multiple values (inline type fields): we
 789       // create one projection per returned value.
 790       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 791       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 792       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 793     } else {
 794       if (con == TypeFunc::Parms) {
 795         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 796         OptoRegPair regs = Opcode() == Op_CallLeafVector
 797           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 798           : match->c_return_value(ideal_reg);
 799         RegMask rm = RegMask(regs.first());
 800 
 801         if (Opcode() == Op_CallLeafVector) {
 802           // If the return is in vector, compute appropriate regmask taking into account the whole range
 803           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 804             if(OptoReg::is_valid(regs.second())) {
 805               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 806                 rm.insert(r);
 807               }
 808             }
 809           }
 810         }
 811 
 812         if (OptoReg::is_valid(regs.second())) {
 813           rm.insert(regs.second());
 814         }
 815         return new MachProjNode(this,con,rm,ideal_reg);
 816       } else {
 817         assert(con == TypeFunc::Parms+1, "only one return value");
 818         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 819         return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
 820       }
 821     }
 822   }
 823 
 824   switch (con) {
 825   case TypeFunc::Control:
 826   case TypeFunc::I_O:
 827   case TypeFunc::Memory:
 828     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 829 
 830   case TypeFunc::ReturnAdr:
 831   case TypeFunc::FramePtr:
 832   default:
 833     ShouldNotReachHere();
 834   }
 835   return nullptr;
 836 }
 837 
 838 // Do we Match on this edge index or not?  Match no edges
 839 uint CallNode::match_edge(uint idx) const {
 840   return 0;
 841 }
 842 
 843 //
 844 // Determine whether the call could modify the field of the specified
 845 // instance at the specified offset.
 846 //
 847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 848   assert((t_oop != nullptr), "sanity");
 849   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 850     const TypeTuple* args = _tf->domain_sig();
 851     Node* dest = nullptr;
 852     // Stubs that can be called once an ArrayCopyNode is expanded have
 853     // different signatures. Look for the second pointer argument,
 854     // that is the destination of the copy.
 855     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 856       if (args->field_at(i)->isa_ptr()) {
 857         j++;
 858         if (j == 2) {
 859           dest = in(i);
 860           break;
 861         }
 862       }
 863     }
 864     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 865     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 866       return true;
 867     }
 868     return false;
 869   }
 870   if (t_oop->is_known_instance()) {
 871     // The instance_id is set only for scalar-replaceable allocations which
 872     // are not passed as arguments according to Escape Analysis.
 873     return false;
 874   }
 875   if (t_oop->is_ptr_to_boxed_value()) {
 876     ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
 877     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 878       // Skip unrelated boxing methods.
 879       Node* proj = proj_out_or_null(TypeFunc::Parms);
 880       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 881         return false;
 882       }
 883     }
 884     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 885       ciMethod* meth = as_CallJava()->method();
 886       if (meth->is_getter()) {
 887         return false;
 888       }
 889       // May modify (by reflection) if an boxing object is passed
 890       // as argument or returned.
 891       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 892       if (proj != nullptr) {
 893         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 894         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 895                                    (inst_t->instance_klass() == boxing_klass))) {
 896           return true;
 897         }
 898       }
 899       const TypeTuple* d = tf()->domain_cc();
 900       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 901         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 902         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 903                                  (inst_t->instance_klass() == boxing_klass))) {
 904           return true;
 905         }
 906       }
 907       return false;
 908     }
 909   }
 910   return true;
 911 }
 912 
 913 // Does this call have a direct reference to n other than debug information?
 914 bool CallNode::has_non_debug_use(Node* n) {
 915   const TypeTuple* d = tf()->domain_cc();
 916   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 917     if (in(i) == n) {
 918       return true;
 919     }
 920   }
 921   return false;
 922 }
 923 
 924 bool CallNode::has_debug_use(Node* n) {
 925   if (jvms() != nullptr) {
 926     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 927       if (in(i) == n) {
 928         return true;
 929       }
 930     }
 931   }
 932   return false;
 933 }
 934 
 935 // Returns the unique CheckCastPP of a call
 936 // or 'this' if there are several CheckCastPP or unexpected uses
 937 // or returns null if there is no one.
 938 Node *CallNode::result_cast() {
 939   Node *cast = nullptr;
 940 
 941   Node *p = proj_out_or_null(TypeFunc::Parms);
 942   if (p == nullptr)
 943     return nullptr;
 944 
 945   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 946     Node *use = p->fast_out(i);
 947     if (use->is_CheckCastPP()) {
 948       if (cast != nullptr) {
 949         return this;  // more than 1 CheckCastPP
 950       }
 951       cast = use;
 952     } else if (!use->is_Initialize() &&
 953                !use->is_AddP() &&
 954                use->Opcode() != Op_MemBarStoreStore) {
 955       // Expected uses are restricted to a CheckCastPP, an Initialize
 956       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 957       // encounter any other use (a Phi node can be seen in rare
 958       // cases) return this to prevent incorrect optimizations.
 959       return this;
 960     }
 961   }
 962   return cast;
 963 }
 964 
 965 
 966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 967   uint max_res = TypeFunc::Parms-1;
 968   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 969     ProjNode *pn = fast_out(i)->as_Proj();
 970     max_res = MAX2(max_res, pn->_con);
 971   }
 972 
 973   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 974 
 975   uint projs_size = sizeof(CallProjections);
 976   if (max_res > TypeFunc::Parms) {
 977     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 978   }
 979   char* projs_storage = resource_allocate_bytes(projs_size);
 980   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 981 
 982   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 983     ProjNode *pn = fast_out(i)->as_Proj();
 984     if (pn->outcnt() == 0) continue;
 985     switch (pn->_con) {
 986     case TypeFunc::Control:
 987       {
 988         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 989         projs->fallthrough_proj = pn;
 990         const Node* cn = pn->unique_ctrl_out_or_null();
 991         if (cn != nullptr && cn->is_Catch()) {
 992           ProjNode *cpn = nullptr;
 993           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 994             cpn = cn->fast_out(k)->as_Proj();
 995             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 996             if (cpn->_con == CatchProjNode::fall_through_index)
 997               projs->fallthrough_catchproj = cpn;
 998             else {
 999               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000               projs->catchall_catchproj = cpn;
1001             }
1002           }
1003         }
1004         break;
1005       }
1006     case TypeFunc::I_O:
1007       if (pn->_is_io_use)
1008         projs->catchall_ioproj = pn;
1009       else
1010         projs->fallthrough_ioproj = pn;
1011       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012         Node* e = pn->out(j);
1013         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014           assert(projs->exobj == nullptr, "only one");
1015           projs->exobj = e;
1016         }
1017       }
1018       break;
1019     case TypeFunc::Memory:
1020       if (pn->_is_io_use)
1021         projs->catchall_memproj = pn;
1022       else
1023         projs->fallthrough_memproj = pn;
1024       break;
1025     case TypeFunc::Parms:
1026       projs->resproj[0] = pn;
1027       break;
1028     default:
1029       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031       break;
1032     }
1033   }
1034 
1035   // The resproj may not exist because the result could be ignored
1036   // and the exception object may not exist if an exception handler
1037   // swallows the exception but all the other must exist and be found.
1038   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1040   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1042   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1043   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1044   if (separate_io_proj) {
1045     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1046     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1047   }
1048   return projs;
1049 }
1050 
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053   // Validate attached generator
1054   CallGenerator* cg = generator();
1055   if (cg != nullptr) {
1056     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1057            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058   }
1059 #endif // ASSERT
1060   return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062 
1063 bool CallNode::is_call_to_arraycopystub() const {
1064   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065     return true;
1066   }
1067   return false;
1068 }
1069 
1070 //=============================================================================
1071 uint CallJavaNode::size_of() const { return sizeof(*this); }
1072 bool CallJavaNode::cmp( const Node &n ) const {
1073   CallJavaNode &call = (CallJavaNode&)n;
1074   return CallNode::cmp(call) && _method == call._method &&
1075          _override_symbolic_info == call._override_symbolic_info;
1076 }
1077 
1078 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1079   // Copy debug information and adjust JVMState information
1080   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1081   uint new_dbg_start = tf()->domain_sig()->cnt();
1082   int jvms_adj  = new_dbg_start - old_dbg_start;
1083   assert (new_dbg_start == req(), "argument count mismatch");
1084   Compile* C = phase->C;
1085 
1086   // SafePointScalarObject node could be referenced several times in debug info.
1087   // Use Dict to record cloned nodes.
1088   Dict* sosn_map = new Dict(cmpkey,hashkey);
1089   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1090     Node* old_in = sfpt->in(i);
1091     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1092     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1093       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1094       bool new_node;
1095       Node* new_in = old_sosn->clone(sosn_map, new_node);
1096       if (new_node) { // New node?
1097         new_in->set_req(0, C->root()); // reset control edge
1098         new_in = phase->transform(new_in); // Register new node.
1099       }
1100       old_in = new_in;
1101     }
1102     add_req(old_in);
1103   }
1104 
1105   // JVMS may be shared so clone it before we modify it
1106   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1107   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1108     jvms->set_map(this);
1109     jvms->set_locoff(jvms->locoff()+jvms_adj);
1110     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1111     jvms->set_monoff(jvms->monoff()+jvms_adj);
1112     jvms->set_scloff(jvms->scloff()+jvms_adj);
1113     jvms->set_endoff(jvms->endoff()+jvms_adj);
1114   }
1115 }
1116 
1117 #ifdef ASSERT
1118 bool CallJavaNode::validate_symbolic_info() const {
1119   if (method() == nullptr) {
1120     return true; // call into runtime or uncommon trap
1121   }
1122   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1123   if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1124     return true;
1125   }
1126   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1127   ciMethod* callee = method();
1128   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1129     assert(override_symbolic_info(), "should be set");
1130   }
1131   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1132   return true;
1133 }
1134 #endif
1135 
1136 #ifndef PRODUCT
1137 void CallJavaNode::dump_spec(outputStream* st) const {
1138   if( _method ) _method->print_short_name(st);
1139   CallNode::dump_spec(st);
1140 }
1141 
1142 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1143   if (_method) {
1144     _method->print_short_name(st);
1145   } else {
1146     st->print("<?>");
1147   }
1148 }
1149 #endif
1150 
1151 void CallJavaNode::register_for_late_inline() {
1152   if (generator() != nullptr) {
1153     Compile::current()->prepend_late_inline(generator());
1154     set_generator(nullptr);
1155   } else {
1156     assert(false, "repeated inline attempt");
1157   }
1158 }
1159 
1160 //=============================================================================
1161 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1162 bool CallStaticJavaNode::cmp( const Node &n ) const {
1163   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1164   return CallJavaNode::cmp(call);
1165 }
1166 
1167 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1168   if (can_reshape && uncommon_trap_request() != 0) {
1169     PhaseIterGVN* igvn = phase->is_IterGVN();
1170     if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1171       if (!control()->is_Region()) {
1172         igvn->replace_input_of(this, 0, phase->C->top());
1173       }
1174       return this;
1175     }
1176   }
1177 
1178   // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1179   if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1180       (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1181     Node* left = in(TypeFunc::Parms);
1182     Node* right = in(TypeFunc::Parms + 1);
1183     if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1184       if (!left->is_InlineType()) {
1185         swap(left, right);
1186       }
1187       InlineTypeNode* vt = left->as_InlineType();
1188 
1189       // Check if the field layout can be optimized
1190       if (vt->can_emit_substitutability_check(right)) {
1191         PhaseIterGVN* igvn = phase->is_IterGVN();
1192 
1193         Node* ctrl = control();
1194         RegionNode* region = new RegionNode(1);
1195         Node* phi = new PhiNode(region, TypeInt::POS);
1196 
1197         Node* base = right;
1198         Node* ptr = right;
1199         if (!base->is_InlineType()) {
1200           // Parse time checks guarantee that both operands are non-null and have the same type
1201           base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1202           ptr = base;
1203         }
1204         // Emit IR for field-wise comparison
1205         vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1206 
1207         // Equals
1208         region->add_req(ctrl);
1209         phi->add_req(igvn->intcon(1));
1210 
1211         ctrl = igvn->register_new_node_with_optimizer(region);
1212         Node* res = igvn->register_new_node_with_optimizer(phi);
1213 
1214         // Kill exception projections and return a tuple that will replace the call
1215         CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1216         if (projs->fallthrough_catchproj != nullptr) {
1217           igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1218         }
1219         if (projs->catchall_memproj != nullptr) {
1220           igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1221         }
1222         if (projs->catchall_ioproj != nullptr) {
1223           igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1224         }
1225         if (projs->catchall_catchproj != nullptr) {
1226           igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1227         }
1228         return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1229       }
1230     }
1231   }
1232 
1233   CallGenerator* cg = generator();
1234   if (can_reshape && cg != nullptr) {
1235     if (cg->is_mh_late_inline()) {
1236       assert(IncrementalInlineMH, "required");
1237       assert(cg->call_node() == this, "mismatch");
1238       assert(cg->method()->is_method_handle_intrinsic(), "required");
1239 
1240       // Check whether this MH handle call becomes a candidate for inlining.
1241       ciMethod* callee = cg->method();
1242       vmIntrinsics::ID iid = callee->intrinsic_id();
1243       if (iid == vmIntrinsics::_invokeBasic) {
1244         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1245           register_for_late_inline();
1246         }
1247       } else if (iid == vmIntrinsics::_linkToNative) {
1248         // never retry
1249       } else {
1250         assert(callee->has_member_arg(), "wrong type of call?");
1251         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1252           register_for_late_inline();
1253         }
1254       }
1255     } else {
1256       assert(IncrementalInline, "required");
1257       assert(!cg->method()->is_method_handle_intrinsic(), "required");
1258       if (phase->C->print_inlining()) {
1259         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1260           "static call node changed: trying again");
1261       }
1262       register_for_late_inline();
1263     }
1264   }
1265   return CallNode::Ideal(phase, can_reshape);
1266 }
1267 
1268 //----------------------------is_uncommon_trap----------------------------
1269 // Returns true if this is an uncommon trap.
1270 bool CallStaticJavaNode::is_uncommon_trap() const {
1271   return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1272 }
1273 
1274 //----------------------------uncommon_trap_request----------------------------
1275 // If this is an uncommon trap, return the request code, else zero.
1276 int CallStaticJavaNode::uncommon_trap_request() const {
1277   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1278 }
1279 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1280 #ifndef PRODUCT
1281   if (!(call->req() > TypeFunc::Parms &&
1282         call->in(TypeFunc::Parms) != nullptr &&
1283         call->in(TypeFunc::Parms)->is_Con() &&
1284         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1285     assert(in_dump() != 0, "OK if dumping");
1286     tty->print("[bad uncommon trap]");
1287     return 0;
1288   }
1289 #endif
1290   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1291 }
1292 
1293 // Split if can cause the flat array branch of an array load with unknown type (see
1294 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1295 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1296 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1297   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1298     return false;
1299   }
1300   if (ctl->is_Region()) {
1301     bool res = false;
1302     for (uint i = 1; i < ctl->req(); i++) {
1303       MergeMemNode* mm = mem->clone()->as_MergeMem();
1304       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1305         Node* m = mms.memory();
1306         if (m->is_Phi() && m->in(0) == ctl) {
1307           mms.set_memory(m->in(i));
1308         }
1309       }
1310       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1311         res = true;
1312         if (!ctl->in(i)->is_Region()) {
1313           igvn->replace_input_of(ctl, i, igvn->C->top());
1314         }
1315       }
1316       igvn->remove_dead_node(mm);
1317     }
1318     return res;
1319   }
1320   // Verify the control flow is ok
1321   Node* call = ctl;
1322   MemBarNode* membar = nullptr;
1323   for (;;) {
1324     if (call == nullptr || call->is_top()) {
1325       return false;
1326     }
1327     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1328       call = call->in(0);
1329     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1330                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1331       // If there is no explicit flat array accesses in the compilation unit, there would be no
1332       // membar here
1333       if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1334         membar = call->in(0)->in(0)->as_MemBar();
1335       }
1336       break;
1337     } else {
1338       return false;
1339     }
1340   }
1341 
1342   JVMState* jvms = call->jvms();
1343   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1344     return false;
1345   }
1346 
1347   Node* call_mem = call->in(TypeFunc::Memory);
1348   if (call_mem == nullptr || call_mem->is_top()) {
1349     return false;
1350   }
1351   if (!call_mem->is_MergeMem()) {
1352     call_mem = MergeMemNode::make(call_mem);
1353     igvn->register_new_node_with_optimizer(call_mem);
1354   }
1355 
1356   // Verify that there's no unexpected side effect
1357   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1358     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1359     Node* m2 = mms2.memory2();
1360 
1361     for (uint i = 0; i < 100; i++) {
1362       if (m1 == m2) {
1363         break;
1364       } else if (m1->is_Proj()) {
1365         m1 = m1->in(0);
1366       } else if (m1->is_MemBar()) {
1367         m1 = m1->in(TypeFunc::Memory);
1368       } else if (m1->Opcode() == Op_CallStaticJava &&
1369                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1370         if (m1 != call) {
1371           return false;
1372         }
1373         break;
1374       } else if (m1->is_MergeMem()) {
1375         MergeMemNode* mm = m1->as_MergeMem();
1376         int idx = mms2.alias_idx();
1377         if (idx == Compile::AliasIdxBot) {
1378           m1 = mm->base_memory();
1379         } else {
1380           m1 = mm->memory_at(idx);
1381         }
1382       } else {
1383         return false;
1384       }
1385     }
1386   }
1387   if (call_mem->outcnt() == 0) {
1388     igvn->remove_dead_node(call_mem);
1389   }
1390 
1391   // Remove membar preceding the call
1392   if (membar != nullptr) {
1393     membar->remove(igvn);
1394   }
1395 
1396   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1397   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1398   unc->init_req(TypeFunc::Control, call->in(0));
1399   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1400   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1401   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1402   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1403   unc->init_req(TypeFunc::Parms+0, unc_arg);
1404   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1405   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1406 
1407   // Replace the call with an uncommon trap
1408   igvn->replace_input_of(call, 0, igvn->C->top());
1409 
1410   igvn->register_new_node_with_optimizer(unc);
1411 
1412   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1413   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1414   igvn->add_input_to(igvn->C->root(), halt);
1415 
1416   return true;
1417 }
1418 
1419 
1420 #ifndef PRODUCT
1421 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1422   st->print("# Static ");
1423   if (_name != nullptr) {
1424     st->print("%s", _name);
1425     int trap_req = uncommon_trap_request();
1426     if (trap_req != 0) {
1427       char buf[100];
1428       st->print("(%s)",
1429                  Deoptimization::format_trap_request(buf, sizeof(buf),
1430                                                      trap_req));
1431     }
1432     st->print(" ");
1433   }
1434   CallJavaNode::dump_spec(st);
1435 }
1436 
1437 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1438   if (_method) {
1439     _method->print_short_name(st);
1440   } else if (_name) {
1441     st->print("%s", _name);
1442   } else {
1443     st->print("<?>");
1444   }
1445 }
1446 #endif
1447 
1448 //=============================================================================
1449 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1450 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1451   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1452   return CallJavaNode::cmp(call);
1453 }
1454 
1455 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1456   CallGenerator* cg = generator();
1457   if (can_reshape && cg != nullptr) {
1458     if (cg->is_virtual_late_inline()) {
1459       assert(IncrementalInlineVirtual, "required");
1460       assert(cg->call_node() == this, "mismatch");
1461 
1462       if (cg->callee_method() == nullptr) {
1463         // Recover symbolic info for method resolution.
1464         ciMethod* caller = jvms()->method();
1465         ciBytecodeStream iter(caller);
1466         iter.force_bci(jvms()->bci());
1467 
1468         bool             not_used1;
1469         ciSignature*     not_used2;
1470         ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1471         ciKlass*         holder       = iter.get_declared_method_holder();
1472         if (orig_callee->is_method_handle_intrinsic()) {
1473           assert(_override_symbolic_info, "required");
1474           orig_callee = method();
1475           holder = method()->holder();
1476         }
1477 
1478         ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1479 
1480         Node* receiver_node = in(TypeFunc::Parms);
1481         const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1482 
1483         int  not_used3;
1484         bool call_does_dispatch;
1485         ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1486                                                            call_does_dispatch, not_used3);  // out-parameters
1487         if (!call_does_dispatch) {
1488           cg->set_callee_method(callee);
1489         }
1490       }
1491       if (cg->callee_method() != nullptr) {
1492         // Register for late inlining.
1493         register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1494       }
1495     } else {
1496       assert(IncrementalInline, "required");
1497       if (phase->C->print_inlining()) {
1498         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1499           "dynamic call node changed: trying again");
1500       }
1501       register_for_late_inline();
1502     }
1503   }
1504   return CallNode::Ideal(phase, can_reshape);
1505 }
1506 
1507 #ifndef PRODUCT
1508 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1509   st->print("# Dynamic ");
1510   CallJavaNode::dump_spec(st);
1511 }
1512 #endif
1513 
1514 //=============================================================================
1515 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1516 bool CallRuntimeNode::cmp( const Node &n ) const {
1517   CallRuntimeNode &call = (CallRuntimeNode&)n;
1518   return CallNode::cmp(call) && !strcmp(_name,call._name);
1519 }
1520 #ifndef PRODUCT
1521 void CallRuntimeNode::dump_spec(outputStream *st) const {
1522   st->print("# ");
1523   st->print("%s", _name);
1524   CallNode::dump_spec(st);
1525 }
1526 #endif
1527 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1528 bool CallLeafVectorNode::cmp( const Node &n ) const {
1529   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1530   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1531 }
1532 
1533 //------------------------------calling_convention-----------------------------
1534 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1535   if (_entry_point == nullptr) {
1536     // The call to that stub is a special case: its inputs are
1537     // multiple values returned from a call and so it should follow
1538     // the return convention.
1539     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1540     return;
1541   }
1542   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1543 }
1544 
1545 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1546 #ifdef ASSERT
1547   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1548          "return vector size must match");
1549   const TypeTuple* d = tf()->domain_sig();
1550   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1551     Node* arg = in(i);
1552     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1553            "vector argument size must match");
1554   }
1555 #endif
1556 
1557   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1558 }
1559 
1560 //=============================================================================
1561 //------------------------------calling_convention-----------------------------
1562 
1563 
1564 //=============================================================================
1565 bool CallLeafPureNode::is_unused() const {
1566   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1567 }
1568 
1569 bool CallLeafPureNode::is_dead() const {
1570   return proj_out_or_null(TypeFunc::Control) == nullptr;
1571 }
1572 
1573 /* We make a tuple of the global input state + TOP for the output values.
1574  * We use this to delete a pure function that is not used: by replacing the call with
1575  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1576  * pure call, so jumping over it, and effectively, removing the call from the graph.
1577  * This avoids doing the graph surgery manually, but leaves that to IGVN
1578  * that is specialized for doing that right. We need also tuple components for output
1579  * values of the function to respect the return arity, and in case there is a projection
1580  * that would pick an output (which shouldn't happen at the moment).
1581  */
1582 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1583   // Transparently propagate input state but parameters
1584   TupleNode* tuple = TupleNode::make(
1585       tf()->range_cc(),
1586       in(TypeFunc::Control),
1587       in(TypeFunc::I_O),
1588       in(TypeFunc::Memory),
1589       in(TypeFunc::FramePtr),
1590       in(TypeFunc::ReturnAdr));
1591 
1592   // And add TOPs for the return values
1593   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1594     tuple->set_req(i, C->top());
1595   }
1596 
1597   return tuple;
1598 }
1599 
1600 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1601   if (is_dead()) {
1602     return nullptr;
1603   }
1604 
1605   // We need to wait until IGVN because during parsing, usages might still be missing
1606   // and we would remove the call immediately.
1607   if (can_reshape && is_unused()) {
1608     // The result is not used. We remove the call by replacing it with a tuple, that
1609     // is later disintegrated by the projections.
1610     return make_tuple_of_input_state_and_top_return_values(phase->C);
1611   }
1612 
1613   return CallRuntimeNode::Ideal(phase, can_reshape);
1614 }
1615 
1616 #ifndef PRODUCT
1617 void CallLeafNode::dump_spec(outputStream *st) const {
1618   st->print("# ");
1619   st->print("%s", _name);
1620   CallNode::dump_spec(st);
1621 }
1622 #endif
1623 
1624 uint CallLeafNoFPNode::match_edge(uint idx) const {
1625   // Null entry point is a special case for which the target is in a
1626   // register. Need to match that edge.
1627   return entry_point() == nullptr && idx == TypeFunc::Parms;
1628 }
1629 
1630 //=============================================================================
1631 
1632 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1633   assert(verify_jvms(jvms), "jvms must match");
1634   int loc = jvms->locoff() + idx;
1635   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1636     // If current local idx is top then local idx - 1 could
1637     // be a long/double that needs to be killed since top could
1638     // represent the 2nd half of the long/double.
1639     uint ideal = in(loc -1)->ideal_reg();
1640     if (ideal == Op_RegD || ideal == Op_RegL) {
1641       // set other (low index) half to top
1642       set_req(loc - 1, in(loc));
1643     }
1644   }
1645   set_req(loc, c);
1646 }
1647 
1648 uint SafePointNode::size_of() const { return sizeof(*this); }
1649 bool SafePointNode::cmp( const Node &n ) const {
1650   return (&n == this);          // Always fail except on self
1651 }
1652 
1653 //-------------------------set_next_exception----------------------------------
1654 void SafePointNode::set_next_exception(SafePointNode* n) {
1655   assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1656   if (len() == req()) {
1657     if (n != nullptr)  add_prec(n);
1658   } else {
1659     set_prec(req(), n);
1660   }
1661 }
1662 
1663 
1664 //----------------------------next_exception-----------------------------------
1665 SafePointNode* SafePointNode::next_exception() const {
1666   if (len() == req()) {
1667     return nullptr;
1668   } else {
1669     Node* n = in(req());
1670     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1671     return (SafePointNode*) n;
1672   }
1673 }
1674 
1675 
1676 //------------------------------Ideal------------------------------------------
1677 // Skip over any collapsed Regions
1678 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1679   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1680   if (remove_dead_region(phase, can_reshape)) {
1681     return this;
1682   }
1683   // Scalarize inline types in safepoint debug info.
1684   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1685   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1686     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1687       Node* n = in(i)->uncast();
1688       if (n->is_InlineType()) {
1689         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1690       }
1691     }
1692   }
1693   return nullptr;
1694 }
1695 
1696 //------------------------------Identity---------------------------------------
1697 // Remove obviously duplicate safepoints
1698 Node* SafePointNode::Identity(PhaseGVN* phase) {
1699 
1700   // If you have back to back safepoints, remove one
1701   if (in(TypeFunc::Control)->is_SafePoint()) {
1702     Node* out_c = unique_ctrl_out_or_null();
1703     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1704     // outer loop's safepoint could confuse removal of the outer loop.
1705     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1706       return in(TypeFunc::Control);
1707     }
1708   }
1709 
1710   // Transforming long counted loops requires a safepoint node. Do not
1711   // eliminate a safepoint until loop opts are over.
1712   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1713     Node *n0 = in(0)->in(0);
1714     // Check if he is a call projection (except Leaf Call)
1715     if( n0->is_Catch() ) {
1716       n0 = n0->in(0)->in(0);
1717       assert( n0->is_Call(), "expect a call here" );
1718     }
1719     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1720       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1721       // If the loop dies, they will be removed together.
1722       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1723         return this;
1724       }
1725       // Useless Safepoint, so remove it
1726       return in(TypeFunc::Control);
1727     }
1728   }
1729 
1730   return this;
1731 }
1732 
1733 //------------------------------Value------------------------------------------
1734 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1735   if (phase->type(in(0)) == Type::TOP) {
1736     return Type::TOP;
1737   }
1738   if (in(0) == this) {
1739     return Type::TOP; // Dead infinite loop
1740   }
1741   return Type::CONTROL;
1742 }
1743 
1744 #ifndef PRODUCT
1745 void SafePointNode::dump_spec(outputStream *st) const {
1746   st->print(" SafePoint ");
1747   _replaced_nodes.dump(st);
1748 }
1749 #endif
1750 
1751 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1752   if (idx < TypeFunc::Parms) {
1753     return RegMask::EMPTY;
1754   }
1755   // Values outside the domain represent debug info
1756   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1757 }
1758 const RegMask &SafePointNode::out_RegMask() const {
1759   return RegMask::EMPTY;
1760 }
1761 
1762 
1763 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1764   assert((int)grow_by > 0, "sanity");
1765   int monoff = jvms->monoff();
1766   int scloff = jvms->scloff();
1767   int endoff = jvms->endoff();
1768   assert(endoff == (int)req(), "no other states or debug info after me");
1769   Node* top = Compile::current()->top();
1770   for (uint i = 0; i < grow_by; i++) {
1771     ins_req(monoff, top);
1772   }
1773   jvms->set_monoff(monoff + grow_by);
1774   jvms->set_scloff(scloff + grow_by);
1775   jvms->set_endoff(endoff + grow_by);
1776 }
1777 
1778 void SafePointNode::push_monitor(const FastLockNode *lock) {
1779   // Add a LockNode, which points to both the original BoxLockNode (the
1780   // stack space for the monitor) and the Object being locked.
1781   const int MonitorEdges = 2;
1782   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1783   assert(req() == jvms()->endoff(), "correct sizing");
1784   int nextmon = jvms()->scloff();
1785   ins_req(nextmon,   lock->box_node());
1786   ins_req(nextmon+1, lock->obj_node());
1787   jvms()->set_scloff(nextmon + MonitorEdges);
1788   jvms()->set_endoff(req());
1789 }
1790 
1791 void SafePointNode::pop_monitor() {
1792   // Delete last monitor from debug info
1793   DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1794   const int MonitorEdges = 2;
1795   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1796   int scloff = jvms()->scloff();
1797   int endoff = jvms()->endoff();
1798   int new_scloff = scloff - MonitorEdges;
1799   int new_endoff = endoff - MonitorEdges;
1800   jvms()->set_scloff(new_scloff);
1801   jvms()->set_endoff(new_endoff);
1802   while (scloff > new_scloff)  del_req_ordered(--scloff);
1803   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1804 }
1805 
1806 Node *SafePointNode::peek_monitor_box() const {
1807   int mon = jvms()->nof_monitors() - 1;
1808   assert(mon >= 0, "must have a monitor");
1809   return monitor_box(jvms(), mon);
1810 }
1811 
1812 Node *SafePointNode::peek_monitor_obj() const {
1813   int mon = jvms()->nof_monitors() - 1;
1814   assert(mon >= 0, "must have a monitor");
1815   return monitor_obj(jvms(), mon);
1816 }
1817 
1818 Node* SafePointNode::peek_operand(uint off) const {
1819   assert(jvms()->sp() > 0, "must have an operand");
1820   assert(off < jvms()->sp(), "off is out-of-range");
1821   return stack(jvms(), jvms()->sp() - off - 1);
1822 }
1823 
1824 // Do we Match on this edge index or not?  Match no edges
1825 uint SafePointNode::match_edge(uint idx) const {
1826   return (TypeFunc::Parms == idx);
1827 }
1828 
1829 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1830   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1831   int nb = igvn->C->root()->find_prec_edge(this);
1832   if (nb != -1) {
1833     igvn->delete_precedence_of(igvn->C->root(), nb);
1834   }
1835 }
1836 
1837 //==============  SafePointScalarObjectNode  ==============
1838 
1839 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1840   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1841   _first_index(first_index),
1842   _depth(depth),
1843   _n_fields(n_fields),
1844   _alloc(alloc)
1845 {
1846 #ifdef ASSERT
1847   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1848     alloc->dump();
1849     assert(false, "unexpected call node");
1850   }
1851 #endif
1852   init_class_id(Class_SafePointScalarObject);
1853 }
1854 
1855 // Do not allow value-numbering for SafePointScalarObject node.
1856 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1857 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1858   return (&n == this); // Always fail except on self
1859 }
1860 
1861 uint SafePointScalarObjectNode::ideal_reg() const {
1862   return 0; // No matching to machine instruction
1863 }
1864 
1865 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1866   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1867 }
1868 
1869 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1870   return RegMask::EMPTY;
1871 }
1872 
1873 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1874   return 0;
1875 }
1876 
1877 SafePointScalarObjectNode*
1878 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1879   void* cached = (*sosn_map)[(void*)this];
1880   if (cached != nullptr) {
1881     new_node = false;
1882     return (SafePointScalarObjectNode*)cached;
1883   }
1884   new_node = true;
1885   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1886   sosn_map->Insert((void*)this, (void*)res);
1887   return res;
1888 }
1889 
1890 
1891 #ifndef PRODUCT
1892 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1893   st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1894 }
1895 #endif
1896 
1897 //==============  SafePointScalarMergeNode  ==============
1898 
1899 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1900   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1901   _merge_pointer_idx(merge_pointer_idx)
1902 {
1903   init_class_id(Class_SafePointScalarMerge);
1904 }
1905 
1906 // Do not allow value-numbering for SafePointScalarMerge node.
1907 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1908 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1909   return (&n == this); // Always fail except on self
1910 }
1911 
1912 uint SafePointScalarMergeNode::ideal_reg() const {
1913   return 0; // No matching to machine instruction
1914 }
1915 
1916 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1917   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1918 }
1919 
1920 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1921   return RegMask::EMPTY;
1922 }
1923 
1924 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1925   return 0;
1926 }
1927 
1928 SafePointScalarMergeNode*
1929 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1930   void* cached = (*sosn_map)[(void*)this];
1931   if (cached != nullptr) {
1932     new_node = false;
1933     return (SafePointScalarMergeNode*)cached;
1934   }
1935   new_node = true;
1936   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1937   sosn_map->Insert((void*)this, (void*)res);
1938   return res;
1939 }
1940 
1941 #ifndef PRODUCT
1942 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1943   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1944 }
1945 #endif
1946 
1947 //=============================================================================
1948 uint AllocateNode::size_of() const { return sizeof(*this); }
1949 
1950 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1951                            Node *ctrl, Node *mem, Node *abio,
1952                            Node *size, Node *klass_node,
1953                            Node* initial_test,
1954                            InlineTypeNode* inline_type_node)
1955   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1956 {
1957   init_class_id(Class_Allocate);
1958   init_flags(Flag_is_macro);
1959   _is_scalar_replaceable = false;
1960   _is_non_escaping = false;
1961   _is_allocation_MemBar_redundant = false;
1962   _larval = false;
1963   Node *topnode = C->top();
1964 
1965   init_req( TypeFunc::Control  , ctrl );
1966   init_req( TypeFunc::I_O      , abio );
1967   init_req( TypeFunc::Memory   , mem );
1968   init_req( TypeFunc::ReturnAdr, topnode );
1969   init_req( TypeFunc::FramePtr , topnode );
1970   init_req( AllocSize          , size);
1971   init_req( KlassNode          , klass_node);
1972   init_req( InitialTest        , initial_test);
1973   init_req( ALength            , topnode);
1974   init_req( ValidLengthTest    , topnode);
1975   init_req( InlineType     , inline_type_node);
1976   // DefaultValue defaults to nullptr
1977   // RawDefaultValue defaults to nullptr
1978   C->add_macro_node(this);
1979 }
1980 
1981 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1982 {
1983   assert(initializer != nullptr &&
1984          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1985          "unexpected initializer method");
1986   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1987   if (analyzer == nullptr) {
1988     return;
1989   }
1990 
1991   // Allocation node is first parameter in its initializer
1992   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1993     _is_allocation_MemBar_redundant = true;
1994   }
1995 }
1996 
1997 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1998   Node* mark_node = nullptr;
1999   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2000     Node* klass_node = in(AllocateNode::KlassNode);
2001     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2002     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2003     if (Arguments::is_valhalla_enabled()) {
2004       mark_node = phase->transform(mark_node);
2005       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2006       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2007     }
2008     return mark_node;
2009   } else {
2010     return phase->MakeConX(markWord::prototype().value());
2011   }
2012 }
2013 
2014 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2015 // CastII, if appropriate.  If we are not allowed to create new nodes, and
2016 // a CastII is appropriate, return null.
2017 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2018   Node *length = in(AllocateNode::ALength);
2019   assert(length != nullptr, "length is not null");
2020 
2021   const TypeInt* length_type = phase->find_int_type(length);
2022   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2023 
2024   if (ary_type != nullptr && length_type != nullptr) {
2025     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2026     if (narrow_length_type != length_type) {
2027       // Assert one of:
2028       //   - the narrow_length is 0
2029       //   - the narrow_length is not wider than length
2030       assert(narrow_length_type == TypeInt::ZERO ||
2031              (length_type->is_con() && narrow_length_type->is_con() &&
2032               (narrow_length_type->_hi <= length_type->_lo)) ||
2033              (narrow_length_type->_hi <= length_type->_hi &&
2034               narrow_length_type->_lo >= length_type->_lo),
2035              "narrow type must be narrower than length type");
2036 
2037       // Return null if new nodes are not allowed
2038       if (!allow_new_nodes) {
2039         return nullptr;
2040       }
2041       // Create a cast which is control dependent on the initialization to
2042       // propagate the fact that the array length must be positive.
2043       InitializeNode* init = initialization();
2044       if (init != nullptr) {
2045         length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
2046       }
2047     }
2048   }
2049 
2050   return length;
2051 }
2052 
2053 //=============================================================================
2054 const TypeFunc* LockNode::_lock_type_Type = nullptr;
2055 
2056 uint LockNode::size_of() const { return sizeof(*this); }
2057 
2058 // Redundant lock elimination
2059 //
2060 // There are various patterns of locking where we release and
2061 // immediately reacquire a lock in a piece of code where no operations
2062 // occur in between that would be observable.  In those cases we can
2063 // skip releasing and reacquiring the lock without violating any
2064 // fairness requirements.  Doing this around a loop could cause a lock
2065 // to be held for a very long time so we concentrate on non-looping
2066 // control flow.  We also require that the operations are fully
2067 // redundant meaning that we don't introduce new lock operations on
2068 // some paths so to be able to eliminate it on others ala PRE.  This
2069 // would probably require some more extensive graph manipulation to
2070 // guarantee that the memory edges were all handled correctly.
2071 //
2072 // Assuming p is a simple predicate which can't trap in any way and s
2073 // is a synchronized method consider this code:
2074 //
2075 //   s();
2076 //   if (p)
2077 //     s();
2078 //   else
2079 //     s();
2080 //   s();
2081 //
2082 // 1. The unlocks of the first call to s can be eliminated if the
2083 // locks inside the then and else branches are eliminated.
2084 //
2085 // 2. The unlocks of the then and else branches can be eliminated if
2086 // the lock of the final call to s is eliminated.
2087 //
2088 // Either of these cases subsumes the simple case of sequential control flow
2089 //
2090 // Additionally we can eliminate versions without the else case:
2091 //
2092 //   s();
2093 //   if (p)
2094 //     s();
2095 //   s();
2096 //
2097 // 3. In this case we eliminate the unlock of the first s, the lock
2098 // and unlock in the then case and the lock in the final s.
2099 //
2100 // Note also that in all these cases the then/else pieces don't have
2101 // to be trivial as long as they begin and end with synchronization
2102 // operations.
2103 //
2104 //   s();
2105 //   if (p)
2106 //     s();
2107 //     f();
2108 //     s();
2109 //   s();
2110 //
2111 // The code will work properly for this case, leaving in the unlock
2112 // before the call to f and the relock after it.
2113 //
2114 // A potentially interesting case which isn't handled here is when the
2115 // locking is partially redundant.
2116 //
2117 //   s();
2118 //   if (p)
2119 //     s();
2120 //
2121 // This could be eliminated putting unlocking on the else case and
2122 // eliminating the first unlock and the lock in the then side.
2123 // Alternatively the unlock could be moved out of the then side so it
2124 // was after the merge and the first unlock and second lock
2125 // eliminated.  This might require less manipulation of the memory
2126 // state to get correct.
2127 //
2128 // Additionally we might allow work between a unlock and lock before
2129 // giving up eliminating the locks.  The current code disallows any
2130 // conditional control flow between these operations.  A formulation
2131 // similar to partial redundancy elimination computing the
2132 // availability of unlocking and the anticipatability of locking at a
2133 // program point would allow detection of fully redundant locking with
2134 // some amount of work in between.  I'm not sure how often I really
2135 // think that would occur though.  Most of the cases I've seen
2136 // indicate it's likely non-trivial work would occur in between.
2137 // There may be other more complicated constructs where we could
2138 // eliminate locking but I haven't seen any others appear as hot or
2139 // interesting.
2140 //
2141 // Locking and unlocking have a canonical form in ideal that looks
2142 // roughly like this:
2143 //
2144 //              <obj>
2145 //                | \\------+
2146 //                |  \       \
2147 //                | BoxLock   \
2148 //                |  |   |     \
2149 //                |  |    \     \
2150 //                |  |   FastLock
2151 //                |  |   /
2152 //                |  |  /
2153 //                |  |  |
2154 //
2155 //               Lock
2156 //                |
2157 //            Proj #0
2158 //                |
2159 //            MembarAcquire
2160 //                |
2161 //            Proj #0
2162 //
2163 //            MembarRelease
2164 //                |
2165 //            Proj #0
2166 //                |
2167 //              Unlock
2168 //                |
2169 //            Proj #0
2170 //
2171 //
2172 // This code proceeds by processing Lock nodes during PhaseIterGVN
2173 // and searching back through its control for the proper code
2174 // patterns.  Once it finds a set of lock and unlock operations to
2175 // eliminate they are marked as eliminatable which causes the
2176 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2177 //
2178 //=============================================================================
2179 
2180 //
2181 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
2182 //   - copy regions.  (These may not have been optimized away yet.)
2183 //   - eliminated locking nodes
2184 //
2185 static Node *next_control(Node *ctrl) {
2186   if (ctrl == nullptr)
2187     return nullptr;
2188   while (1) {
2189     if (ctrl->is_Region()) {
2190       RegionNode *r = ctrl->as_Region();
2191       Node *n = r->is_copy();
2192       if (n == nullptr)
2193         break;  // hit a region, return it
2194       else
2195         ctrl = n;
2196     } else if (ctrl->is_Proj()) {
2197       Node *in0 = ctrl->in(0);
2198       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2199         ctrl = in0->in(0);
2200       } else {
2201         break;
2202       }
2203     } else {
2204       break; // found an interesting control
2205     }
2206   }
2207   return ctrl;
2208 }
2209 //
2210 // Given a control, see if it's the control projection of an Unlock which
2211 // operating on the same object as lock.
2212 //
2213 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2214                                             GrowableArray<AbstractLockNode*> &lock_ops) {
2215   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2216   if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2217     Node *n = ctrl_proj->in(0);
2218     if (n != nullptr && n->is_Unlock()) {
2219       UnlockNode *unlock = n->as_Unlock();
2220       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2221       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2222       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2223       if (lock_obj->eqv_uncast(unlock_obj) &&
2224           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2225           !unlock->is_eliminated()) {
2226         lock_ops.append(unlock);
2227         return true;
2228       }
2229     }
2230   }
2231   return false;
2232 }
2233 
2234 //
2235 // Find the lock matching an unlock.  Returns null if a safepoint
2236 // or complicated control is encountered first.
2237 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2238   LockNode *lock_result = nullptr;
2239   // find the matching lock, or an intervening safepoint
2240   Node *ctrl = next_control(unlock->in(0));
2241   while (1) {
2242     assert(ctrl != nullptr, "invalid control graph");
2243     assert(!ctrl->is_Start(), "missing lock for unlock");
2244     if (ctrl->is_top()) break;  // dead control path
2245     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2246     if (ctrl->is_SafePoint()) {
2247         break;  // found a safepoint (may be the lock we are searching for)
2248     } else if (ctrl->is_Region()) {
2249       // Check for a simple diamond pattern.  Punt on anything more complicated
2250       if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2251         Node *in1 = next_control(ctrl->in(1));
2252         Node *in2 = next_control(ctrl->in(2));
2253         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2254              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2255           ctrl = next_control(in1->in(0)->in(0));
2256         } else {
2257           break;
2258         }
2259       } else {
2260         break;
2261       }
2262     } else {
2263       ctrl = next_control(ctrl->in(0));  // keep searching
2264     }
2265   }
2266   if (ctrl->is_Lock()) {
2267     LockNode *lock = ctrl->as_Lock();
2268     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2269     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2270     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2271     if (lock_obj->eqv_uncast(unlock_obj) &&
2272         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2273       lock_result = lock;
2274     }
2275   }
2276   return lock_result;
2277 }
2278 
2279 // This code corresponds to case 3 above.
2280 
2281 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2282                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
2283   Node* if_node = node->in(0);
2284   bool  if_true = node->is_IfTrue();
2285 
2286   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2287     Node *lock_ctrl = next_control(if_node->in(0));
2288     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2289       Node* lock1_node = nullptr;
2290       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2291       if (if_true) {
2292         if (proj->is_IfFalse() && proj->outcnt() == 1) {
2293           lock1_node = proj->unique_out();
2294         }
2295       } else {
2296         if (proj->is_IfTrue() && proj->outcnt() == 1) {
2297           lock1_node = proj->unique_out();
2298         }
2299       }
2300       if (lock1_node != nullptr && lock1_node->is_Lock()) {
2301         LockNode *lock1 = lock1_node->as_Lock();
2302         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2303         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2304         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2305         if (lock_obj->eqv_uncast(lock1_obj) &&
2306             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2307             !lock1->is_eliminated()) {
2308           lock_ops.append(lock1);
2309           return true;
2310         }
2311       }
2312     }
2313   }
2314 
2315   lock_ops.trunc_to(0);
2316   return false;
2317 }
2318 
2319 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2320                                GrowableArray<AbstractLockNode*> &lock_ops) {
2321   // check each control merging at this point for a matching unlock.
2322   // in(0) should be self edge so skip it.
2323   for (int i = 1; i < (int)region->req(); i++) {
2324     Node *in_node = next_control(region->in(i));
2325     if (in_node != nullptr) {
2326       if (find_matching_unlock(in_node, lock, lock_ops)) {
2327         // found a match so keep on checking.
2328         continue;
2329       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2330         continue;
2331       }
2332 
2333       // If we fall through to here then it was some kind of node we
2334       // don't understand or there wasn't a matching unlock, so give
2335       // up trying to merge locks.
2336       lock_ops.trunc_to(0);
2337       return false;
2338     }
2339   }
2340   return true;
2341 
2342 }
2343 
2344 // Check that all locks/unlocks associated with object come from balanced regions.
2345 bool AbstractLockNode::is_balanced() {
2346   Node* obj = obj_node();
2347   for (uint j = 0; j < obj->outcnt(); j++) {
2348     Node* n = obj->raw_out(j);
2349     if (n->is_AbstractLock() &&
2350         n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2351       BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2352       if (n_box->is_unbalanced()) {
2353         return false;
2354       }
2355     }
2356   }
2357   return true;
2358 }
2359 
2360 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2361 
2362 const char * AbstractLockNode::kind_as_string() const {
2363   return _kind_names[_kind];
2364 }
2365 
2366 #ifndef PRODUCT
2367 //
2368 // Create a counter which counts the number of times this lock is acquired
2369 //
2370 void AbstractLockNode::create_lock_counter(JVMState* state) {
2371   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2372 }
2373 
2374 void AbstractLockNode::set_eliminated_lock_counter() {
2375   if (_counter) {
2376     // Update the counter to indicate that this lock was eliminated.
2377     // The counter update code will stay around even though the
2378     // optimizer will eliminate the lock operation itself.
2379     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2380   }
2381 }
2382 
2383 void AbstractLockNode::dump_spec(outputStream* st) const {
2384   st->print("%s ", _kind_names[_kind]);
2385   CallNode::dump_spec(st);
2386 }
2387 
2388 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2389   st->print("%s", _kind_names[_kind]);
2390 }
2391 #endif
2392 
2393 //=============================================================================
2394 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2395 
2396   // perform any generic optimizations first (returns 'this' or null)
2397   Node *result = SafePointNode::Ideal(phase, can_reshape);
2398   if (result != nullptr)  return result;
2399   // Don't bother trying to transform a dead node
2400   if (in(0) && in(0)->is_top())  return nullptr;
2401 
2402   // Now see if we can optimize away this lock.  We don't actually
2403   // remove the locking here, we simply set the _eliminate flag which
2404   // prevents macro expansion from expanding the lock.  Since we don't
2405   // modify the graph, the value returned from this function is the
2406   // one computed above.
2407   const Type* obj_type = phase->type(obj_node());
2408   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2409     //
2410     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2411     //
2412     ConnectionGraph *cgr = phase->C->congraph();
2413     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2414       assert(!is_eliminated() || is_coarsened(), "sanity");
2415       // The lock could be marked eliminated by lock coarsening
2416       // code during first IGVN before EA. Replace coarsened flag
2417       // to eliminate all associated locks/unlocks.
2418 #ifdef ASSERT
2419       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2420 #endif
2421       this->set_non_esc_obj();
2422       return result;
2423     }
2424 
2425     if (!phase->C->do_locks_coarsening()) {
2426       return result; // Compiling without locks coarsening
2427     }
2428     //
2429     // Try lock coarsening
2430     //
2431     PhaseIterGVN* iter = phase->is_IterGVN();
2432     if (iter != nullptr && !is_eliminated()) {
2433 
2434       GrowableArray<AbstractLockNode*>   lock_ops;
2435 
2436       Node *ctrl = next_control(in(0));
2437 
2438       // now search back for a matching Unlock
2439       if (find_matching_unlock(ctrl, this, lock_ops)) {
2440         // found an unlock directly preceding this lock.  This is the
2441         // case of single unlock directly control dependent on a
2442         // single lock which is the trivial version of case 1 or 2.
2443       } else if (ctrl->is_Region() ) {
2444         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2445         // found lock preceded by multiple unlocks along all paths
2446         // joining at this point which is case 3 in description above.
2447         }
2448       } else {
2449         // see if this lock comes from either half of an if and the
2450         // predecessors merges unlocks and the other half of the if
2451         // performs a lock.
2452         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2453           // found unlock splitting to an if with locks on both branches.
2454         }
2455       }
2456 
2457       if (lock_ops.length() > 0) {
2458         // add ourselves to the list of locks to be eliminated.
2459         lock_ops.append(this);
2460 
2461   #ifndef PRODUCT
2462         if (PrintEliminateLocks) {
2463           int locks = 0;
2464           int unlocks = 0;
2465           if (Verbose) {
2466             tty->print_cr("=== Locks coarsening ===");
2467             tty->print("Obj: ");
2468             obj_node()->dump();
2469           }
2470           for (int i = 0; i < lock_ops.length(); i++) {
2471             AbstractLockNode* lock = lock_ops.at(i);
2472             if (lock->Opcode() == Op_Lock)
2473               locks++;
2474             else
2475               unlocks++;
2476             if (Verbose) {
2477               tty->print("Box %d: ", i);
2478               box_node()->dump();
2479               tty->print(" %d: ", i);
2480               lock->dump();
2481             }
2482           }
2483           tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2484         }
2485   #endif
2486 
2487         // for each of the identified locks, mark them
2488         // as eliminatable
2489         for (int i = 0; i < lock_ops.length(); i++) {
2490           AbstractLockNode* lock = lock_ops.at(i);
2491 
2492           // Mark it eliminated by coarsening and update any counters
2493 #ifdef ASSERT
2494           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2495 #endif
2496           lock->set_coarsened();
2497         }
2498         // Record this coarsened group.
2499         phase->C->add_coarsened_locks(lock_ops);
2500       } else if (ctrl->is_Region() &&
2501                  iter->_worklist.member(ctrl)) {
2502         // We weren't able to find any opportunities but the region this
2503         // lock is control dependent on hasn't been processed yet so put
2504         // this lock back on the worklist so we can check again once any
2505         // region simplification has occurred.
2506         iter->_worklist.push(this);
2507       }
2508     }
2509   }
2510 
2511   return result;
2512 }
2513 
2514 //=============================================================================
2515 bool LockNode::is_nested_lock_region() {
2516   return is_nested_lock_region(nullptr);
2517 }
2518 
2519 // p is used for access to compilation log; no logging if null
2520 bool LockNode::is_nested_lock_region(Compile * c) {
2521   BoxLockNode* box = box_node()->as_BoxLock();
2522   int stk_slot = box->stack_slot();
2523   if (stk_slot <= 0) {
2524 #ifdef ASSERT
2525     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2526 #endif
2527     return false; // External lock or it is not Box (Phi node).
2528   }
2529 
2530   // Ignore complex cases: merged locks or multiple locks.
2531   Node* obj = obj_node();
2532   LockNode* unique_lock = nullptr;
2533   Node* bad_lock = nullptr;
2534   if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2535 #ifdef ASSERT
2536     this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2537 #endif
2538     return false;
2539   }
2540   if (unique_lock != this) {
2541 #ifdef ASSERT
2542     this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2543     if (PrintEliminateLocks && Verbose) {
2544       tty->print_cr("=============== unique_lock != this ============");
2545       tty->print(" this: ");
2546       this->dump();
2547       tty->print(" box: ");
2548       box->dump();
2549       tty->print(" obj: ");
2550       obj->dump();
2551       if (unique_lock != nullptr) {
2552         tty->print(" unique_lock: ");
2553         unique_lock->dump();
2554       }
2555       if (bad_lock != nullptr) {
2556         tty->print(" bad_lock: ");
2557         bad_lock->dump();
2558       }
2559       tty->print_cr("===============");
2560     }
2561 #endif
2562     return false;
2563   }
2564 
2565   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2566   obj = bs->step_over_gc_barrier(obj);
2567   // Look for external lock for the same object.
2568   SafePointNode* sfn = this->as_SafePoint();
2569   JVMState* youngest_jvms = sfn->jvms();
2570   int max_depth = youngest_jvms->depth();
2571   for (int depth = 1; depth <= max_depth; depth++) {
2572     JVMState* jvms = youngest_jvms->of_depth(depth);
2573     int num_mon  = jvms->nof_monitors();
2574     // Loop over monitors
2575     for (int idx = 0; idx < num_mon; idx++) {
2576       Node* obj_node = sfn->monitor_obj(jvms, idx);
2577       obj_node = bs->step_over_gc_barrier(obj_node);
2578       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2579       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2580         box->set_nested();
2581         return true;
2582       }
2583     }
2584   }
2585 #ifdef ASSERT
2586   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2587 #endif
2588   return false;
2589 }
2590 
2591 //=============================================================================
2592 uint UnlockNode::size_of() const { return sizeof(*this); }
2593 
2594 //=============================================================================
2595 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2596 
2597   // perform any generic optimizations first (returns 'this' or null)
2598   Node *result = SafePointNode::Ideal(phase, can_reshape);
2599   if (result != nullptr)  return result;
2600   // Don't bother trying to transform a dead node
2601   if (in(0) && in(0)->is_top())  return nullptr;
2602 
2603   // Now see if we can optimize away this unlock.  We don't actually
2604   // remove the unlocking here, we simply set the _eliminate flag which
2605   // prevents macro expansion from expanding the unlock.  Since we don't
2606   // modify the graph, the value returned from this function is the
2607   // one computed above.
2608   // Escape state is defined after Parse phase.
2609   const Type* obj_type = phase->type(obj_node());
2610   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2611     //
2612     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2613     //
2614     ConnectionGraph *cgr = phase->C->congraph();
2615     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2616       assert(!is_eliminated() || is_coarsened(), "sanity");
2617       // The lock could be marked eliminated by lock coarsening
2618       // code during first IGVN before EA. Replace coarsened flag
2619       // to eliminate all associated locks/unlocks.
2620 #ifdef ASSERT
2621       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2622 #endif
2623       this->set_non_esc_obj();
2624     }
2625   }
2626   return result;
2627 }
2628 
2629 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2630   if (C == nullptr) {
2631     return;
2632   }
2633   CompileLog* log = C->log();
2634   if (log != nullptr) {
2635     Node* box = box_node();
2636     Node* obj = obj_node();
2637     int box_id = box != nullptr ? box->_idx : -1;
2638     int obj_id = obj != nullptr ? obj->_idx : -1;
2639 
2640     log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2641           tag, C->compile_id(), this->_idx,
2642           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2643           kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2644     log->stamp();
2645     log->end_head();
2646     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2647     while (p != nullptr) {
2648       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2649       p = p->caller();
2650     }
2651     log->tail(tag);
2652   }
2653 }
2654 
2655 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2656   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2657     return dest_t->instance_id() == t_oop->instance_id();
2658   }
2659 
2660   if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2661     // clone
2662     if (t_oop->isa_aryptr()) {
2663       return false;
2664     }
2665     if (!t_oop->isa_instptr()) {
2666       return true;
2667     }
2668     if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2669       return true;
2670     }
2671     // unrelated
2672     return false;
2673   }
2674 
2675   if (dest_t->isa_aryptr()) {
2676     // arraycopy or array clone
2677     if (t_oop->isa_instptr()) {
2678       return false;
2679     }
2680     if (!t_oop->isa_aryptr()) {
2681       return true;
2682     }
2683 
2684     const Type* elem = dest_t->is_aryptr()->elem();
2685     if (elem == Type::BOTTOM) {
2686       // An array but we don't know what elements are
2687       return true;
2688     }
2689 
2690     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2691     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2692     uint dest_alias = phase->C->get_alias_index(dest_t);
2693     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2694 
2695     return dest_alias == t_oop_alias;
2696   }
2697 
2698   return true;
2699 }