1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "code/vmreg.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "compiler/oopMap.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "gc/shared/c2/barrierSetC2.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "opto/callGenerator.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/inlinetypenode.hpp"
40 #include "opto/locknode.hpp"
41 #include "opto/machnode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/movenode.hpp"
44 #include "opto/parse.hpp"
45 #include "opto/regalloc.hpp"
46 #include "opto/regmask.hpp"
47 #include "opto/rootnode.hpp"
48 #include "opto/runtime.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "utilities/powerOfTwo.hpp"
53
54 // Portions of code courtesy of Clifford Click
55
56 // Optimization - Graph Style
57
58 //=============================================================================
59 uint StartNode::size_of() const { return sizeof(*this); }
60 bool StartNode::cmp( const Node &n ) const
61 { return _domain == ((StartNode&)n)._domain; }
62 const Type *StartNode::bottom_type() const { return _domain; }
63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
64 #ifndef PRODUCT
65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
67 #endif
68
69 //------------------------------Ideal------------------------------------------
70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
71 return remove_dead_region(phase, can_reshape) ? this : nullptr;
72 }
73
74 //------------------------------calling_convention-----------------------------
75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
76 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
77 }
78
79 //------------------------------Registers--------------------------------------
80 const RegMask &StartNode::in_RegMask(uint) const {
81 return RegMask::EMPTY;
82 }
83
84 //------------------------------match------------------------------------------
85 // Construct projections for incoming parameters, and their RegMask info
86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
87 switch (proj->_con) {
88 case TypeFunc::Control:
89 case TypeFunc::I_O:
90 case TypeFunc::Memory:
91 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
92 case TypeFunc::FramePtr:
93 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
94 case TypeFunc::ReturnAdr:
95 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
96 case TypeFunc::Parms:
97 default: {
98 uint parm_num = proj->_con - TypeFunc::Parms;
99 const Type *t = _domain->field_at(proj->_con);
100 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
101 return new ConNode(Type::TOP);
102 uint ideal_reg = t->ideal_reg();
103 RegMask &rm = match->_calling_convention_mask[parm_num];
104 return new MachProjNode(this,proj->_con,rm,ideal_reg);
105 }
106 }
107 return nullptr;
108 }
109
110 //=============================================================================
111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
112 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
113 };
114
115 #ifndef PRODUCT
116 void ParmNode::dump_spec(outputStream *st) const {
117 if( _con < TypeFunc::Parms ) {
118 st->print("%s", names[_con]);
119 } else {
120 st->print("Parm%d: ",_con-TypeFunc::Parms);
121 // Verbose and WizardMode dump bottom_type for all nodes
122 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
123 }
124 }
125
126 void ParmNode::dump_compact_spec(outputStream *st) const {
127 if (_con < TypeFunc::Parms) {
128 st->print("%s", names[_con]);
129 } else {
130 st->print("%d:", _con-TypeFunc::Parms);
131 // unconditionally dump bottom_type
132 bottom_type()->dump_on(st);
133 }
134 }
135 #endif
136
137 uint ParmNode::ideal_reg() const {
138 switch( _con ) {
139 case TypeFunc::Control : // fall through
140 case TypeFunc::I_O : // fall through
141 case TypeFunc::Memory : return 0;
142 case TypeFunc::FramePtr : // fall through
143 case TypeFunc::ReturnAdr: return Op_RegP;
144 default : assert( _con > TypeFunc::Parms, "" );
145 // fall through
146 case TypeFunc::Parms : {
147 // Type of argument being passed
148 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
149 return t->ideal_reg();
150 }
151 }
152 ShouldNotReachHere();
153 return 0;
154 }
155
156 //=============================================================================
157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
158 init_req(TypeFunc::Control,cntrl);
159 init_req(TypeFunc::I_O,i_o);
160 init_req(TypeFunc::Memory,memory);
161 init_req(TypeFunc::FramePtr,frameptr);
162 init_req(TypeFunc::ReturnAdr,retadr);
163 }
164
165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
166 return remove_dead_region(phase, can_reshape) ? this : nullptr;
167 }
168
169 const Type* ReturnNode::Value(PhaseGVN* phase) const {
170 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
171 ? Type::TOP
172 : Type::BOTTOM;
173 }
174
175 // Do we Match on this edge index or not? No edges on return nodes
176 uint ReturnNode::match_edge(uint idx) const {
177 return 0;
178 }
179
180
181 #ifndef PRODUCT
182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
183 // Dump the required inputs, after printing "returns"
184 uint i; // Exit value of loop
185 for (i = 0; i < req(); i++) { // For all required inputs
186 if (i == TypeFunc::Parms) st->print("returns ");
187 Node* p = in(i);
188 if (p != nullptr) {
189 p->dump_idx(false, st, dc);
190 st->print(" ");
191 } else {
192 st->print("_ ");
193 }
194 }
195 }
196 #endif
197
198 //=============================================================================
199 RethrowNode::RethrowNode(
200 Node* cntrl,
201 Node* i_o,
202 Node* memory,
203 Node* frameptr,
204 Node* ret_adr,
205 Node* exception
206 ) : Node(TypeFunc::Parms + 1) {
207 init_req(TypeFunc::Control , cntrl );
208 init_req(TypeFunc::I_O , i_o );
209 init_req(TypeFunc::Memory , memory );
210 init_req(TypeFunc::FramePtr , frameptr );
211 init_req(TypeFunc::ReturnAdr, ret_adr);
212 init_req(TypeFunc::Parms , exception);
213 }
214
215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
216 return remove_dead_region(phase, can_reshape) ? this : nullptr;
217 }
218
219 const Type* RethrowNode::Value(PhaseGVN* phase) const {
220 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
221 ? Type::TOP
222 : Type::BOTTOM;
223 }
224
225 uint RethrowNode::match_edge(uint idx) const {
226 return 0;
227 }
228
229 #ifndef PRODUCT
230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
231 // Dump the required inputs, after printing "exception"
232 uint i; // Exit value of loop
233 for (i = 0; i < req(); i++) { // For all required inputs
234 if (i == TypeFunc::Parms) st->print("exception ");
235 Node* p = in(i);
236 if (p != nullptr) {
237 p->dump_idx(false, st, dc);
238 st->print(" ");
239 } else {
240 st->print("_ ");
241 }
242 }
243 }
244 #endif
245
246 //=============================================================================
247 // Do we Match on this edge index or not? Match only target address & method
248 uint TailCallNode::match_edge(uint idx) const {
249 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
250 }
251
252 //=============================================================================
253 // Do we Match on this edge index or not? Match only target address & oop
254 uint TailJumpNode::match_edge(uint idx) const {
255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
256 }
257
258 //=============================================================================
259 JVMState::JVMState(ciMethod* method, JVMState* caller) :
260 _method(method),
261 _receiver_info(nullptr) {
262 assert(method != nullptr, "must be valid call site");
263 _bci = InvocationEntryBci;
264 _reexecute = Reexecute_Undefined;
265 DEBUG_ONLY(_bci = -99); // random garbage value
266 DEBUG_ONLY(_map = (SafePointNode*)-1);
267 _caller = caller;
268 _depth = 1 + (caller == nullptr ? 0 : caller->depth());
269 _locoff = TypeFunc::Parms;
270 _stkoff = _locoff + _method->max_locals();
271 _monoff = _stkoff + _method->max_stack();
272 _scloff = _monoff;
273 _endoff = _monoff;
274 _sp = 0;
275 }
276 JVMState::JVMState(int stack_size) :
277 _method(nullptr),
278 _receiver_info(nullptr) {
279 _bci = InvocationEntryBci;
280 _reexecute = Reexecute_Undefined;
281 DEBUG_ONLY(_map = (SafePointNode*)-1);
282 _caller = nullptr;
283 _depth = 1;
284 _locoff = TypeFunc::Parms;
285 _stkoff = _locoff;
286 _monoff = _stkoff + stack_size;
287 _scloff = _monoff;
288 _endoff = _monoff;
289 _sp = 0;
290 }
291
292 //--------------------------------of_depth-------------------------------------
293 JVMState* JVMState::of_depth(int d) const {
294 const JVMState* jvmp = this;
295 assert(0 < d && (uint)d <= depth(), "oob");
296 for (int skip = depth() - d; skip > 0; skip--) {
297 jvmp = jvmp->caller();
298 }
299 assert(jvmp->depth() == (uint)d, "found the right one");
300 return (JVMState*)jvmp;
301 }
302
303 //-----------------------------same_calls_as-----------------------------------
304 bool JVMState::same_calls_as(const JVMState* that) const {
305 if (this == that) return true;
306 if (this->depth() != that->depth()) return false;
307 const JVMState* p = this;
308 const JVMState* q = that;
309 for (;;) {
310 if (p->_method != q->_method) return false;
311 if (p->_method == nullptr) return true; // bci is irrelevant
312 if (p->_bci != q->_bci) return false;
313 if (p->_reexecute != q->_reexecute) return false;
314 p = p->caller();
315 q = q->caller();
316 if (p == q) return true;
317 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
318 }
319 }
320
321 //------------------------------debug_start------------------------------------
322 uint JVMState::debug_start() const {
323 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
324 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
325 return of_depth(1)->locoff();
326 }
327
328 //-------------------------------debug_end-------------------------------------
329 uint JVMState::debug_end() const {
330 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
331 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
332 return endoff();
333 }
334
335 //------------------------------debug_depth------------------------------------
336 uint JVMState::debug_depth() const {
337 uint total = 0;
338 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
339 total += jvmp->debug_size();
340 }
341 return total;
342 }
343
344 #ifndef PRODUCT
345
346 //------------------------------format_helper----------------------------------
347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
348 // any defined value or not. If it does, print out the register or constant.
349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
350 if (n == nullptr) { st->print(" null"); return; }
351 if (n->is_SafePointScalarObject()) {
352 // Scalar replacement.
353 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
354 scobjs->append_if_missing(spobj);
355 int sco_n = scobjs->find(spobj);
356 assert(sco_n >= 0, "");
357 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
358 return;
359 }
360 if (regalloc->node_regs_max_index() > 0 &&
361 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
362 char buf[50];
363 regalloc->dump_register(n,buf,sizeof(buf));
364 st->print(" %s%d]=%s",msg,i,buf);
365 } else { // No register, but might be constant
366 const Type *t = n->bottom_type();
367 switch (t->base()) {
368 case Type::Int:
369 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
370 break;
371 case Type::AnyPtr:
372 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
373 st->print(" %s%d]=#null",msg,i);
374 break;
375 case Type::AryPtr:
376 case Type::InstPtr:
377 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
378 break;
379 case Type::KlassPtr:
380 case Type::AryKlassPtr:
381 case Type::InstKlassPtr:
382 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
383 break;
384 case Type::MetadataPtr:
385 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
386 break;
387 case Type::NarrowOop:
388 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
389 break;
390 case Type::RawPtr:
391 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
392 break;
393 case Type::DoubleCon:
394 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
395 break;
396 case Type::FloatCon:
397 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
398 break;
399 case Type::Long:
400 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
401 break;
402 case Type::Half:
403 case Type::Top:
404 st->print(" %s%d]=_",msg,i);
405 break;
406 default: ShouldNotReachHere();
407 }
408 }
409 }
410
411 //---------------------print_method_with_lineno--------------------------------
412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
413 if (show_name) _method->print_short_name(st);
414
415 int lineno = _method->line_number_from_bci(_bci);
416 if (lineno != -1) {
417 st->print(" @ bci:%d (line %d)", _bci, lineno);
418 } else {
419 st->print(" @ bci:%d", _bci);
420 }
421 }
422
423 //------------------------------format-----------------------------------------
424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
425 st->print(" #");
426 if (_method) {
427 print_method_with_lineno(st, true);
428 } else {
429 st->print_cr(" runtime stub ");
430 return;
431 }
432 if (n->is_MachSafePoint()) {
433 GrowableArray<SafePointScalarObjectNode*> scobjs;
434 MachSafePointNode *mcall = n->as_MachSafePoint();
435 uint i;
436 // Print locals
437 for (i = 0; i < (uint)loc_size(); i++)
438 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
439 // Print stack
440 for (i = 0; i < (uint)stk_size(); i++) {
441 if ((uint)(_stkoff + i) >= mcall->len())
442 st->print(" oob ");
443 else
444 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
445 }
446 for (i = 0; (int)i < nof_monitors(); i++) {
447 Node *box = mcall->monitor_box(this, i);
448 Node *obj = mcall->monitor_obj(this, i);
449 if (regalloc->node_regs_max_index() > 0 &&
450 OptoReg::is_valid(regalloc->get_reg_first(box))) {
451 box = BoxLockNode::box_node(box);
452 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
453 } else {
454 OptoReg::Name box_reg = BoxLockNode::reg(box);
455 st->print(" MON-BOX%d=%s+%d",
456 i,
457 OptoReg::regname(OptoReg::c_frame_pointer),
458 regalloc->reg2offset(box_reg));
459 }
460 const char* obj_msg = "MON-OBJ[";
461 if (EliminateLocks) {
462 if (BoxLockNode::box_node(box)->is_eliminated())
463 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
464 }
465 format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
466 }
467
468 for (i = 0; i < (uint)scobjs.length(); i++) {
469 // Scalar replaced objects.
470 st->cr();
471 st->print(" # ScObj" INT32_FORMAT " ", i);
472 SafePointScalarObjectNode* spobj = scobjs.at(i);
473 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
474 assert(cik->is_instance_klass() ||
475 cik->is_array_klass(), "Not supported allocation.");
476 ciInstanceKlass *iklass = nullptr;
477 if (cik->is_instance_klass()) {
478 cik->print_name_on(st);
479 iklass = cik->as_instance_klass();
480 } else if (cik->is_type_array_klass()) {
481 cik->as_array_klass()->base_element_type()->print_name_on(st);
482 st->print("[%d]", spobj->n_fields());
483 } else if (cik->is_obj_array_klass()) {
484 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
485 if (cie->is_instance_klass()) {
486 cie->print_name_on(st);
487 } else if (cie->is_type_array_klass()) {
488 cie->as_array_klass()->base_element_type()->print_name_on(st);
489 } else {
490 ShouldNotReachHere();
491 }
492 st->print("[%d]", spobj->n_fields());
493 int ndim = cik->as_array_klass()->dimension() - 1;
494 while (ndim-- > 0) {
495 st->print("[]");
496 }
497 } else {
498 assert(false, "unexpected type %s", cik->name()->as_utf8());
499 }
500 st->print("={");
501 uint nf = spobj->n_fields();
502 if (nf > 0) {
503 uint first_ind = spobj->first_index(mcall->jvms());
504 if (iklass != nullptr && iklass->is_inlinetype()) {
505 Node* null_marker = mcall->in(first_ind++);
506 if (!null_marker->is_top()) {
507 st->print(" [null marker");
508 format_helper(regalloc, st, null_marker, ":", -1, nullptr);
509 }
510 }
511 Node* fld_node = mcall->in(first_ind);
512 if (iklass != nullptr) {
513 st->print(" [");
514 iklass->nonstatic_field_at(0)->print_name_on(st);
515 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
516 } else {
517 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
518 }
519 for (uint j = 1; j < nf; j++) {
520 fld_node = mcall->in(first_ind+j);
521 if (iklass != nullptr) {
522 st->print(", [");
523 iklass->nonstatic_field_at(j)->print_name_on(st);
524 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
525 } else {
526 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
527 }
528 }
529 }
530 st->print(" }");
531 }
532 }
533 st->cr();
534 if (caller() != nullptr) caller()->format(regalloc, n, st);
535 }
536
537
538 void JVMState::dump_spec(outputStream *st) const {
539 if (_method != nullptr) {
540 bool printed = false;
541 if (!Verbose) {
542 // The JVMS dumps make really, really long lines.
543 // Take out the most boring parts, which are the package prefixes.
544 char buf[500];
545 stringStream namest(buf, sizeof(buf));
546 _method->print_short_name(&namest);
547 if (namest.count() < sizeof(buf)) {
548 const char* name = namest.base();
549 if (name[0] == ' ') ++name;
550 const char* endcn = strchr(name, ':'); // end of class name
551 if (endcn == nullptr) endcn = strchr(name, '(');
552 if (endcn == nullptr) endcn = name + strlen(name);
553 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
554 --endcn;
555 st->print(" %s", endcn);
556 printed = true;
557 }
558 }
559 print_method_with_lineno(st, !printed);
560 if(_reexecute == Reexecute_True)
561 st->print(" reexecute");
562 } else {
563 st->print(" runtime stub");
564 }
565 if (caller() != nullptr) caller()->dump_spec(st);
566 }
567
568
569 void JVMState::dump_on(outputStream* st) const {
570 bool print_map = _map && !((uintptr_t)_map & 1) &&
571 ((caller() == nullptr) || (caller()->map() != _map));
572 if (print_map) {
573 if (_map->len() > _map->req()) { // _map->has_exceptions()
574 Node* ex = _map->in(_map->req()); // _map->next_exception()
575 // skip the first one; it's already being printed
576 while (ex != nullptr && ex->len() > ex->req()) {
577 ex = ex->in(ex->req()); // ex->next_exception()
578 ex->dump(1);
579 }
580 }
581 _map->dump(Verbose ? 2 : 1);
582 }
583 if (caller() != nullptr) {
584 caller()->dump_on(st);
585 }
586 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
587 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
588 if (_method == nullptr) {
589 st->print_cr("(none)");
590 } else {
591 _method->print_name(st);
592 st->cr();
593 if (bci() >= 0 && bci() < _method->code_size()) {
594 st->print(" bc: ");
595 _method->print_codes_on(bci(), bci()+1, st);
596 }
597 }
598 }
599
600 // Extra way to dump a jvms from the debugger,
601 // to avoid a bug with C++ member function calls.
602 void dump_jvms(JVMState* jvms) {
603 jvms->dump();
604 }
605 #endif
606
607 //--------------------------clone_shallow--------------------------------------
608 JVMState* JVMState::clone_shallow(Compile* C) const {
609 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
610 n->set_bci(_bci);
611 n->_reexecute = _reexecute;
612 n->set_locoff(_locoff);
613 n->set_stkoff(_stkoff);
614 n->set_monoff(_monoff);
615 n->set_scloff(_scloff);
616 n->set_endoff(_endoff);
617 n->set_sp(_sp);
618 n->set_map(_map);
619 n->set_receiver_info(_receiver_info);
620 return n;
621 }
622
623 //---------------------------clone_deep----------------------------------------
624 JVMState* JVMState::clone_deep(Compile* C) const {
625 JVMState* n = clone_shallow(C);
626 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
627 p->_caller = p->_caller->clone_shallow(C);
628 }
629 assert(n->depth() == depth(), "sanity");
630 assert(n->debug_depth() == debug_depth(), "sanity");
631 return n;
632 }
633
634 /**
635 * Reset map for all callers
636 */
637 void JVMState::set_map_deep(SafePointNode* map) {
638 for (JVMState* p = this; p != nullptr; p = p->_caller) {
639 p->set_map(map);
640 }
641 }
642
643 // unlike set_map(), this is two-way setting.
644 void JVMState::bind_map(SafePointNode* map) {
645 set_map(map);
646 _map->set_jvms(this);
647 }
648
649 // Adapt offsets in in-array after adding or removing an edge.
650 // Prerequisite is that the JVMState is used by only one node.
651 void JVMState::adapt_position(int delta) {
652 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
653 jvms->set_locoff(jvms->locoff() + delta);
654 jvms->set_stkoff(jvms->stkoff() + delta);
655 jvms->set_monoff(jvms->monoff() + delta);
656 jvms->set_scloff(jvms->scloff() + delta);
657 jvms->set_endoff(jvms->endoff() + delta);
658 }
659 }
660
661 // Mirror the stack size calculation in the deopt code
662 // How much stack space would we need at this point in the program in
663 // case of deoptimization?
664 int JVMState::interpreter_frame_size() const {
665 const JVMState* jvms = this;
666 int size = 0;
667 int callee_parameters = 0;
668 int callee_locals = 0;
669 int extra_args = method()->max_stack() - stk_size();
670
671 while (jvms != nullptr) {
672 int locks = jvms->nof_monitors();
673 int temps = jvms->stk_size();
674 bool is_top_frame = (jvms == this);
675 ciMethod* method = jvms->method();
676
677 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
678 temps + callee_parameters,
679 extra_args,
680 locks,
681 callee_parameters,
682 callee_locals,
683 is_top_frame);
684 size += frame_size;
685
686 callee_parameters = method->size_of_parameters();
687 callee_locals = method->max_locals();
688 extra_args = 0;
689 jvms = jvms->caller();
690 }
691 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
692 }
693
694 // Compute receiver info for a compiled lambda form at call site.
695 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
696 assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
697 if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
698 Node* recv = map()->argument(this, 0);
699 assert(recv != nullptr, "");
700 const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
701 if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
702 return recv_toop->const_oop()->as_instance();
703 }
704 }
705 return nullptr;
706 }
707
708 //=============================================================================
709 bool CallNode::cmp( const Node &n ) const
710 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
711 #ifndef PRODUCT
712 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
713 // Dump the required inputs, enclosed in '(' and ')'
714 uint i; // Exit value of loop
715 for (i = 0; i < req(); i++) { // For all required inputs
716 if (i == TypeFunc::Parms) st->print("(");
717 Node* p = in(i);
718 if (p != nullptr) {
719 p->dump_idx(false, st, dc);
720 st->print(" ");
721 } else {
722 st->print("_ ");
723 }
724 }
725 st->print(")");
726 }
727
728 void CallNode::dump_spec(outputStream *st) const {
729 st->print(" ");
730 if (tf() != nullptr) tf()->dump_on(st);
731 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
732 if (jvms() != nullptr) jvms()->dump_spec(st);
733 }
734
735 void AllocateNode::dump_spec(outputStream* st) const {
736 st->print(" ");
737 if (tf() != nullptr) {
738 tf()->dump_on(st);
739 }
740 if (_cnt != COUNT_UNKNOWN) {
741 st->print(" C=%f", _cnt);
742 }
743 const Node* const klass_node = in(KlassNode);
744 if (klass_node != nullptr) {
745 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
746
747 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
748 st->print(" allocationKlass:");
749 klass_ptr->exact_klass()->print_name_on(st);
750 }
751 }
752 if (jvms() != nullptr) {
753 jvms()->dump_spec(st);
754 }
755 }
756 #endif
757
758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
759 const Type* CallNode::Value(PhaseGVN* phase) const {
760 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
761 return Type::TOP;
762 }
763 return tf()->range_cc();
764 }
765
766 //------------------------------calling_convention-----------------------------
767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
768 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
769 // The call to that stub is a special case: its inputs are
770 // multiple values returned from a call and so it should follow
771 // the return convention.
772 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
773 return;
774 }
775 // Use the standard compiler calling convention
776 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
777 }
778
779
780 //------------------------------match------------------------------------------
781 // Construct projections for control, I/O, memory-fields, ..., and
782 // return result(s) along with their RegMask info
783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
784 uint con = proj->_con;
785 const TypeTuple* range_cc = tf()->range_cc();
786 if (con >= TypeFunc::Parms) {
787 if (tf()->returns_inline_type_as_fields()) {
788 // The call returns multiple values (inline type fields): we
789 // create one projection per returned value.
790 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
791 uint ideal_reg = range_cc->field_at(con)->ideal_reg();
792 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
793 } else {
794 if (con == TypeFunc::Parms) {
795 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
796 OptoRegPair regs = Opcode() == Op_CallLeafVector
797 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
798 : match->c_return_value(ideal_reg);
799 RegMask rm = RegMask(regs.first());
800
801 if (Opcode() == Op_CallLeafVector) {
802 // If the return is in vector, compute appropriate regmask taking into account the whole range
803 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
804 if(OptoReg::is_valid(regs.second())) {
805 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
806 rm.insert(r);
807 }
808 }
809 }
810 }
811
812 if (OptoReg::is_valid(regs.second())) {
813 rm.insert(regs.second());
814 }
815 return new MachProjNode(this,con,rm,ideal_reg);
816 } else {
817 assert(con == TypeFunc::Parms+1, "only one return value");
818 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
819 return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
820 }
821 }
822 }
823
824 switch (con) {
825 case TypeFunc::Control:
826 case TypeFunc::I_O:
827 case TypeFunc::Memory:
828 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
829
830 case TypeFunc::ReturnAdr:
831 case TypeFunc::FramePtr:
832 default:
833 ShouldNotReachHere();
834 }
835 return nullptr;
836 }
837
838 // Do we Match on this edge index or not? Match no edges
839 uint CallNode::match_edge(uint idx) const {
840 return 0;
841 }
842
843 //
844 // Determine whether the call could modify the field of the specified
845 // instance at the specified offset.
846 //
847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
848 assert((t_oop != nullptr), "sanity");
849 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
850 const TypeTuple* args = _tf->domain_sig();
851 Node* dest = nullptr;
852 // Stubs that can be called once an ArrayCopyNode is expanded have
853 // different signatures. Look for the second pointer argument,
854 // that is the destination of the copy.
855 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
856 if (args->field_at(i)->isa_ptr()) {
857 j++;
858 if (j == 2) {
859 dest = in(i);
860 break;
861 }
862 }
863 }
864 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
865 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
866 return true;
867 }
868 return false;
869 }
870 if (t_oop->is_known_instance()) {
871 // The instance_id is set only for scalar-replaceable allocations which
872 // are not passed as arguments according to Escape Analysis.
873 return false;
874 }
875 if (t_oop->is_ptr_to_boxed_value()) {
876 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
877 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
878 // Skip unrelated boxing methods.
879 Node* proj = proj_out_or_null(TypeFunc::Parms);
880 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
881 return false;
882 }
883 }
884 if (is_CallJava() && as_CallJava()->method() != nullptr) {
885 ciMethod* meth = as_CallJava()->method();
886 if (meth->is_getter()) {
887 return false;
888 }
889 // May modify (by reflection) if an boxing object is passed
890 // as argument or returned.
891 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
892 if (proj != nullptr) {
893 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
894 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
895 (inst_t->instance_klass() == boxing_klass))) {
896 return true;
897 }
898 }
899 const TypeTuple* d = tf()->domain_cc();
900 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
901 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
902 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
903 (inst_t->instance_klass() == boxing_klass))) {
904 return true;
905 }
906 }
907 return false;
908 }
909 }
910 return true;
911 }
912
913 // Does this call have a direct reference to n other than debug information?
914 bool CallNode::has_non_debug_use(Node* n) {
915 const TypeTuple* d = tf()->domain_cc();
916 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
917 if (in(i) == n) {
918 return true;
919 }
920 }
921 return false;
922 }
923
924 bool CallNode::has_debug_use(Node* n) {
925 if (jvms() != nullptr) {
926 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
927 if (in(i) == n) {
928 return true;
929 }
930 }
931 }
932 return false;
933 }
934
935 // Returns the unique CheckCastPP of a call
936 // or 'this' if there are several CheckCastPP or unexpected uses
937 // or returns null if there is no one.
938 Node *CallNode::result_cast() {
939 Node *cast = nullptr;
940
941 Node *p = proj_out_or_null(TypeFunc::Parms);
942 if (p == nullptr)
943 return nullptr;
944
945 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
946 Node *use = p->fast_out(i);
947 if (use->is_CheckCastPP()) {
948 if (cast != nullptr) {
949 return this; // more than 1 CheckCastPP
950 }
951 cast = use;
952 } else if (!use->is_Initialize() &&
953 !use->is_AddP() &&
954 use->Opcode() != Op_MemBarStoreStore) {
955 // Expected uses are restricted to a CheckCastPP, an Initialize
956 // node, a MemBarStoreStore (clone) and AddP nodes. If we
957 // encounter any other use (a Phi node can be seen in rare
958 // cases) return this to prevent incorrect optimizations.
959 return this;
960 }
961 }
962 return cast;
963 }
964
965
966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
967 uint max_res = TypeFunc::Parms-1;
968 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
969 ProjNode *pn = fast_out(i)->as_Proj();
970 max_res = MAX2(max_res, pn->_con);
971 }
972
973 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
974
975 uint projs_size = sizeof(CallProjections);
976 if (max_res > TypeFunc::Parms) {
977 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
978 }
979 char* projs_storage = resource_allocate_bytes(projs_size);
980 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
981
982 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
983 ProjNode *pn = fast_out(i)->as_Proj();
984 if (pn->outcnt() == 0) continue;
985 switch (pn->_con) {
986 case TypeFunc::Control:
987 {
988 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
989 projs->fallthrough_proj = pn;
990 const Node* cn = pn->unique_ctrl_out_or_null();
991 if (cn != nullptr && cn->is_Catch()) {
992 ProjNode *cpn = nullptr;
993 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
994 cpn = cn->fast_out(k)->as_Proj();
995 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
996 if (cpn->_con == CatchProjNode::fall_through_index)
997 projs->fallthrough_catchproj = cpn;
998 else {
999 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000 projs->catchall_catchproj = cpn;
1001 }
1002 }
1003 }
1004 break;
1005 }
1006 case TypeFunc::I_O:
1007 if (pn->_is_io_use)
1008 projs->catchall_ioproj = pn;
1009 else
1010 projs->fallthrough_ioproj = pn;
1011 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012 Node* e = pn->out(j);
1013 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014 assert(projs->exobj == nullptr, "only one");
1015 projs->exobj = e;
1016 }
1017 }
1018 break;
1019 case TypeFunc::Memory:
1020 if (pn->_is_io_use)
1021 projs->catchall_memproj = pn;
1022 else
1023 projs->fallthrough_memproj = pn;
1024 break;
1025 case TypeFunc::Parms:
1026 projs->resproj[0] = pn;
1027 break;
1028 default:
1029 assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030 projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031 break;
1032 }
1033 }
1034
1035 // The resproj may not exist because the result could be ignored
1036 // and the exception object may not exist if an exception handler
1037 // swallows the exception but all the other must exist and be found.
1038 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found");
1040 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1042 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1043 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1044 if (separate_io_proj) {
1045 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1046 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1047 }
1048 return projs;
1049 }
1050
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053 // Validate attached generator
1054 CallGenerator* cg = generator();
1055 if (cg != nullptr) {
1056 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1057 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058 }
1059 #endif // ASSERT
1060 return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062
1063 bool CallNode::is_call_to_arraycopystub() const {
1064 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 //=============================================================================
1071 uint CallJavaNode::size_of() const { return sizeof(*this); }
1072 bool CallJavaNode::cmp( const Node &n ) const {
1073 CallJavaNode &call = (CallJavaNode&)n;
1074 return CallNode::cmp(call) && _method == call._method &&
1075 _override_symbolic_info == call._override_symbolic_info;
1076 }
1077
1078 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1079 // Copy debug information and adjust JVMState information
1080 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1081 uint new_dbg_start = tf()->domain_sig()->cnt();
1082 int jvms_adj = new_dbg_start - old_dbg_start;
1083 assert (new_dbg_start == req(), "argument count mismatch");
1084 Compile* C = phase->C;
1085
1086 // SafePointScalarObject node could be referenced several times in debug info.
1087 // Use Dict to record cloned nodes.
1088 Dict* sosn_map = new Dict(cmpkey,hashkey);
1089 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1090 Node* old_in = sfpt->in(i);
1091 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1092 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1093 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1094 bool new_node;
1095 Node* new_in = old_sosn->clone(sosn_map, new_node);
1096 if (new_node) { // New node?
1097 new_in->set_req(0, C->root()); // reset control edge
1098 new_in = phase->transform(new_in); // Register new node.
1099 }
1100 old_in = new_in;
1101 }
1102 add_req(old_in);
1103 }
1104
1105 // JVMS may be shared so clone it before we modify it
1106 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1107 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1108 jvms->set_map(this);
1109 jvms->set_locoff(jvms->locoff()+jvms_adj);
1110 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1111 jvms->set_monoff(jvms->monoff()+jvms_adj);
1112 jvms->set_scloff(jvms->scloff()+jvms_adj);
1113 jvms->set_endoff(jvms->endoff()+jvms_adj);
1114 }
1115 }
1116
1117 #ifdef ASSERT
1118 bool CallJavaNode::validate_symbolic_info() const {
1119 if (method() == nullptr) {
1120 return true; // call into runtime or uncommon trap
1121 }
1122 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1123 if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1124 return true;
1125 }
1126 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1127 ciMethod* callee = method();
1128 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1129 assert(override_symbolic_info(), "should be set");
1130 }
1131 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1132 return true;
1133 }
1134 #endif
1135
1136 #ifndef PRODUCT
1137 void CallJavaNode::dump_spec(outputStream* st) const {
1138 if( _method ) _method->print_short_name(st);
1139 CallNode::dump_spec(st);
1140 }
1141
1142 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1143 if (_method) {
1144 _method->print_short_name(st);
1145 } else {
1146 st->print("<?>");
1147 }
1148 }
1149 #endif
1150
1151 void CallJavaNode::register_for_late_inline() {
1152 if (generator() != nullptr) {
1153 Compile::current()->prepend_late_inline(generator());
1154 set_generator(nullptr);
1155 } else {
1156 assert(false, "repeated inline attempt");
1157 }
1158 }
1159
1160 //=============================================================================
1161 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1162 bool CallStaticJavaNode::cmp( const Node &n ) const {
1163 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1164 return CallJavaNode::cmp(call);
1165 }
1166
1167 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1168 if (can_reshape && uncommon_trap_request() != 0) {
1169 PhaseIterGVN* igvn = phase->is_IterGVN();
1170 if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1171 if (!control()->is_Region()) {
1172 igvn->replace_input_of(this, 0, phase->C->top());
1173 }
1174 return this;
1175 }
1176 }
1177
1178 // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1179 if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1180 (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1181 Node* left = in(TypeFunc::Parms);
1182 Node* right = in(TypeFunc::Parms + 1);
1183 if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1184 if (!left->is_InlineType()) {
1185 swap(left, right);
1186 }
1187 InlineTypeNode* vt = left->as_InlineType();
1188
1189 // Check if the field layout can be optimized
1190 if (vt->can_emit_substitutability_check(right)) {
1191 PhaseIterGVN* igvn = phase->is_IterGVN();
1192
1193 Node* ctrl = control();
1194 RegionNode* region = new RegionNode(1);
1195 Node* phi = new PhiNode(region, TypeInt::POS);
1196
1197 Node* base = right;
1198 Node* ptr = right;
1199 if (!base->is_InlineType()) {
1200 // Parse time checks guarantee that both operands are non-null and have the same type
1201 base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1202 ptr = base;
1203 }
1204 // Emit IR for field-wise comparison
1205 vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1206
1207 // Equals
1208 region->add_req(ctrl);
1209 phi->add_req(igvn->intcon(1));
1210
1211 ctrl = igvn->register_new_node_with_optimizer(region);
1212 Node* res = igvn->register_new_node_with_optimizer(phi);
1213
1214 // Kill exception projections and return a tuple that will replace the call
1215 CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1216 if (projs->fallthrough_catchproj != nullptr) {
1217 igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1218 }
1219 if (projs->catchall_memproj != nullptr) {
1220 igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1221 }
1222 if (projs->catchall_ioproj != nullptr) {
1223 igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1224 }
1225 if (projs->catchall_catchproj != nullptr) {
1226 igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1227 }
1228 return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1229 }
1230 }
1231 }
1232
1233 CallGenerator* cg = generator();
1234 if (can_reshape && cg != nullptr) {
1235 if (cg->is_mh_late_inline()) {
1236 assert(IncrementalInlineMH, "required");
1237 assert(cg->call_node() == this, "mismatch");
1238 assert(cg->method()->is_method_handle_intrinsic(), "required");
1239
1240 // Check whether this MH handle call becomes a candidate for inlining.
1241 ciMethod* callee = cg->method();
1242 vmIntrinsics::ID iid = callee->intrinsic_id();
1243 if (iid == vmIntrinsics::_invokeBasic) {
1244 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1245 register_for_late_inline();
1246 }
1247 } else if (iid == vmIntrinsics::_linkToNative) {
1248 // never retry
1249 } else {
1250 assert(callee->has_member_arg(), "wrong type of call?");
1251 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1252 register_for_late_inline();
1253 }
1254 }
1255 } else {
1256 assert(IncrementalInline, "required");
1257 assert(!cg->method()->is_method_handle_intrinsic(), "required");
1258 if (phase->C->print_inlining()) {
1259 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1260 "static call node changed: trying again");
1261 }
1262 register_for_late_inline();
1263 }
1264 }
1265 return CallNode::Ideal(phase, can_reshape);
1266 }
1267
1268 //----------------------------is_uncommon_trap----------------------------
1269 // Returns true if this is an uncommon trap.
1270 bool CallStaticJavaNode::is_uncommon_trap() const {
1271 return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1272 }
1273
1274 //----------------------------uncommon_trap_request----------------------------
1275 // If this is an uncommon trap, return the request code, else zero.
1276 int CallStaticJavaNode::uncommon_trap_request() const {
1277 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1278 }
1279 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1280 #ifndef PRODUCT
1281 if (!(call->req() > TypeFunc::Parms &&
1282 call->in(TypeFunc::Parms) != nullptr &&
1283 call->in(TypeFunc::Parms)->is_Con() &&
1284 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1285 assert(in_dump() != 0, "OK if dumping");
1286 tty->print("[bad uncommon trap]");
1287 return 0;
1288 }
1289 #endif
1290 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1291 }
1292
1293 // Split if can cause the flat array branch of an array load with unknown type (see
1294 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1295 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1296 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1297 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1298 return false;
1299 }
1300 if (ctl->is_Region()) {
1301 bool res = false;
1302 for (uint i = 1; i < ctl->req(); i++) {
1303 MergeMemNode* mm = mem->clone()->as_MergeMem();
1304 for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1305 Node* m = mms.memory();
1306 if (m->is_Phi() && m->in(0) == ctl) {
1307 mms.set_memory(m->in(i));
1308 }
1309 }
1310 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1311 res = true;
1312 if (!ctl->in(i)->is_Region()) {
1313 igvn->replace_input_of(ctl, i, igvn->C->top());
1314 }
1315 }
1316 igvn->remove_dead_node(mm);
1317 }
1318 return res;
1319 }
1320 // Verify the control flow is ok
1321 Node* call = ctl;
1322 MemBarNode* membar = nullptr;
1323 for (;;) {
1324 if (call == nullptr || call->is_top()) {
1325 return false;
1326 }
1327 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1328 call = call->in(0);
1329 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1330 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1331 // If there is no explicit flat array accesses in the compilation unit, there would be no
1332 // membar here
1333 if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1334 membar = call->in(0)->in(0)->as_MemBar();
1335 }
1336 break;
1337 } else {
1338 return false;
1339 }
1340 }
1341
1342 JVMState* jvms = call->jvms();
1343 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1344 return false;
1345 }
1346
1347 Node* call_mem = call->in(TypeFunc::Memory);
1348 if (call_mem == nullptr || call_mem->is_top()) {
1349 return false;
1350 }
1351 if (!call_mem->is_MergeMem()) {
1352 call_mem = MergeMemNode::make(call_mem);
1353 igvn->register_new_node_with_optimizer(call_mem);
1354 }
1355
1356 // Verify that there's no unexpected side effect
1357 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1358 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1359 Node* m2 = mms2.memory2();
1360
1361 for (uint i = 0; i < 100; i++) {
1362 if (m1 == m2) {
1363 break;
1364 } else if (m1->is_Proj()) {
1365 m1 = m1->in(0);
1366 } else if (m1->is_MemBar()) {
1367 m1 = m1->in(TypeFunc::Memory);
1368 } else if (m1->Opcode() == Op_CallStaticJava &&
1369 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1370 if (m1 != call) {
1371 return false;
1372 }
1373 break;
1374 } else if (m1->is_MergeMem()) {
1375 MergeMemNode* mm = m1->as_MergeMem();
1376 int idx = mms2.alias_idx();
1377 if (idx == Compile::AliasIdxBot) {
1378 m1 = mm->base_memory();
1379 } else {
1380 m1 = mm->memory_at(idx);
1381 }
1382 } else {
1383 return false;
1384 }
1385 }
1386 }
1387 if (call_mem->outcnt() == 0) {
1388 igvn->remove_dead_node(call_mem);
1389 }
1390
1391 // Remove membar preceding the call
1392 if (membar != nullptr) {
1393 membar->remove(igvn);
1394 }
1395
1396 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1397 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1398 unc->init_req(TypeFunc::Control, call->in(0));
1399 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1400 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1401 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
1402 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1403 unc->init_req(TypeFunc::Parms+0, unc_arg);
1404 unc->set_cnt(PROB_UNLIKELY_MAG(4));
1405 unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1406
1407 // Replace the call with an uncommon trap
1408 igvn->replace_input_of(call, 0, igvn->C->top());
1409
1410 igvn->register_new_node_with_optimizer(unc);
1411
1412 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1413 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1414 igvn->add_input_to(igvn->C->root(), halt);
1415
1416 return true;
1417 }
1418
1419
1420 #ifndef PRODUCT
1421 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1422 st->print("# Static ");
1423 if (_name != nullptr) {
1424 st->print("%s", _name);
1425 int trap_req = uncommon_trap_request();
1426 if (trap_req != 0) {
1427 char buf[100];
1428 st->print("(%s)",
1429 Deoptimization::format_trap_request(buf, sizeof(buf),
1430 trap_req));
1431 }
1432 st->print(" ");
1433 }
1434 CallJavaNode::dump_spec(st);
1435 }
1436
1437 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1438 if (_method) {
1439 _method->print_short_name(st);
1440 } else if (_name) {
1441 st->print("%s", _name);
1442 } else {
1443 st->print("<?>");
1444 }
1445 }
1446 #endif
1447
1448 //=============================================================================
1449 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1450 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1451 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1452 return CallJavaNode::cmp(call);
1453 }
1454
1455 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1456 CallGenerator* cg = generator();
1457 if (can_reshape && cg != nullptr) {
1458 if (cg->is_virtual_late_inline()) {
1459 assert(IncrementalInlineVirtual, "required");
1460 assert(cg->call_node() == this, "mismatch");
1461
1462 if (cg->callee_method() == nullptr) {
1463 // Recover symbolic info for method resolution.
1464 ciMethod* caller = jvms()->method();
1465 ciBytecodeStream iter(caller);
1466 iter.force_bci(jvms()->bci());
1467
1468 bool not_used1;
1469 ciSignature* not_used2;
1470 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode
1471 ciKlass* holder = iter.get_declared_method_holder();
1472 if (orig_callee->is_method_handle_intrinsic()) {
1473 assert(_override_symbolic_info, "required");
1474 orig_callee = method();
1475 holder = method()->holder();
1476 }
1477
1478 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1479
1480 Node* receiver_node = in(TypeFunc::Parms);
1481 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1482
1483 int not_used3;
1484 bool call_does_dispatch;
1485 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1486 call_does_dispatch, not_used3); // out-parameters
1487 if (!call_does_dispatch) {
1488 cg->set_callee_method(callee);
1489 }
1490 }
1491 if (cg->callee_method() != nullptr) {
1492 // Register for late inlining.
1493 register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1494 }
1495 } else {
1496 assert(IncrementalInline, "required");
1497 if (phase->C->print_inlining()) {
1498 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1499 "dynamic call node changed: trying again");
1500 }
1501 register_for_late_inline();
1502 }
1503 }
1504 return CallNode::Ideal(phase, can_reshape);
1505 }
1506
1507 #ifndef PRODUCT
1508 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1509 st->print("# Dynamic ");
1510 CallJavaNode::dump_spec(st);
1511 }
1512 #endif
1513
1514 //=============================================================================
1515 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1516 bool CallRuntimeNode::cmp( const Node &n ) const {
1517 CallRuntimeNode &call = (CallRuntimeNode&)n;
1518 return CallNode::cmp(call) && !strcmp(_name,call._name);
1519 }
1520 #ifndef PRODUCT
1521 void CallRuntimeNode::dump_spec(outputStream *st) const {
1522 st->print("# ");
1523 st->print("%s", _name);
1524 CallNode::dump_spec(st);
1525 }
1526 #endif
1527 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1528 bool CallLeafVectorNode::cmp( const Node &n ) const {
1529 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1530 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1531 }
1532
1533 //------------------------------calling_convention-----------------------------
1534 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1535 if (_entry_point == nullptr) {
1536 // The call to that stub is a special case: its inputs are
1537 // multiple values returned from a call and so it should follow
1538 // the return convention.
1539 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1540 return;
1541 }
1542 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1543 }
1544
1545 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1546 #ifdef ASSERT
1547 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1548 "return vector size must match");
1549 const TypeTuple* d = tf()->domain_sig();
1550 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1551 Node* arg = in(i);
1552 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1553 "vector argument size must match");
1554 }
1555 #endif
1556
1557 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1558 }
1559
1560 //=============================================================================
1561 //------------------------------calling_convention-----------------------------
1562
1563
1564 //=============================================================================
1565 bool CallLeafPureNode::is_unused() const {
1566 return proj_out_or_null(TypeFunc::Parms) == nullptr;
1567 }
1568
1569 bool CallLeafPureNode::is_dead() const {
1570 return proj_out_or_null(TypeFunc::Control) == nullptr;
1571 }
1572
1573 /* We make a tuple of the global input state + TOP for the output values.
1574 * We use this to delete a pure function that is not used: by replacing the call with
1575 * such a tuple, we let output Proj's idealization pick the corresponding input of the
1576 * pure call, so jumping over it, and effectively, removing the call from the graph.
1577 * This avoids doing the graph surgery manually, but leaves that to IGVN
1578 * that is specialized for doing that right. We need also tuple components for output
1579 * values of the function to respect the return arity, and in case there is a projection
1580 * that would pick an output (which shouldn't happen at the moment).
1581 */
1582 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1583 // Transparently propagate input state but parameters
1584 TupleNode* tuple = TupleNode::make(
1585 tf()->range_cc(),
1586 in(TypeFunc::Control),
1587 in(TypeFunc::I_O),
1588 in(TypeFunc::Memory),
1589 in(TypeFunc::FramePtr),
1590 in(TypeFunc::ReturnAdr));
1591
1592 // And add TOPs for the return values
1593 for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1594 tuple->set_req(i, C->top());
1595 }
1596
1597 return tuple;
1598 }
1599
1600 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1601 if (is_dead()) {
1602 return nullptr;
1603 }
1604
1605 // We need to wait until IGVN because during parsing, usages might still be missing
1606 // and we would remove the call immediately.
1607 if (can_reshape && is_unused()) {
1608 // The result is not used. We remove the call by replacing it with a tuple, that
1609 // is later disintegrated by the projections.
1610 return make_tuple_of_input_state_and_top_return_values(phase->C);
1611 }
1612
1613 return CallRuntimeNode::Ideal(phase, can_reshape);
1614 }
1615
1616 #ifndef PRODUCT
1617 void CallLeafNode::dump_spec(outputStream *st) const {
1618 st->print("# ");
1619 st->print("%s", _name);
1620 CallNode::dump_spec(st);
1621 }
1622 #endif
1623
1624 uint CallLeafNoFPNode::match_edge(uint idx) const {
1625 // Null entry point is a special case for which the target is in a
1626 // register. Need to match that edge.
1627 return entry_point() == nullptr && idx == TypeFunc::Parms;
1628 }
1629
1630 //=============================================================================
1631
1632 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1633 assert(verify_jvms(jvms), "jvms must match");
1634 int loc = jvms->locoff() + idx;
1635 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1636 // If current local idx is top then local idx - 1 could
1637 // be a long/double that needs to be killed since top could
1638 // represent the 2nd half of the long/double.
1639 uint ideal = in(loc -1)->ideal_reg();
1640 if (ideal == Op_RegD || ideal == Op_RegL) {
1641 // set other (low index) half to top
1642 set_req(loc - 1, in(loc));
1643 }
1644 }
1645 set_req(loc, c);
1646 }
1647
1648 uint SafePointNode::size_of() const { return sizeof(*this); }
1649 bool SafePointNode::cmp( const Node &n ) const {
1650 return (&n == this); // Always fail except on self
1651 }
1652
1653 //-------------------------set_next_exception----------------------------------
1654 void SafePointNode::set_next_exception(SafePointNode* n) {
1655 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1656 if (len() == req()) {
1657 if (n != nullptr) add_prec(n);
1658 } else {
1659 set_prec(req(), n);
1660 }
1661 }
1662
1663
1664 //----------------------------next_exception-----------------------------------
1665 SafePointNode* SafePointNode::next_exception() const {
1666 if (len() == req()) {
1667 return nullptr;
1668 } else {
1669 Node* n = in(req());
1670 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1671 return (SafePointNode*) n;
1672 }
1673 }
1674
1675
1676 //------------------------------Ideal------------------------------------------
1677 // Skip over any collapsed Regions
1678 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1679 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1680 if (remove_dead_region(phase, can_reshape)) {
1681 return this;
1682 }
1683 // Scalarize inline types in safepoint debug info.
1684 // Delay this until all inlining is over to avoid getting inconsistent debug info.
1685 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1686 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1687 Node* n = in(i)->uncast();
1688 if (n->is_InlineType()) {
1689 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1690 }
1691 }
1692 }
1693 return nullptr;
1694 }
1695
1696 //------------------------------Identity---------------------------------------
1697 // Remove obviously duplicate safepoints
1698 Node* SafePointNode::Identity(PhaseGVN* phase) {
1699
1700 // If you have back to back safepoints, remove one
1701 if (in(TypeFunc::Control)->is_SafePoint()) {
1702 Node* out_c = unique_ctrl_out_or_null();
1703 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1704 // outer loop's safepoint could confuse removal of the outer loop.
1705 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1706 return in(TypeFunc::Control);
1707 }
1708 }
1709
1710 // Transforming long counted loops requires a safepoint node. Do not
1711 // eliminate a safepoint until loop opts are over.
1712 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1713 Node *n0 = in(0)->in(0);
1714 // Check if he is a call projection (except Leaf Call)
1715 if( n0->is_Catch() ) {
1716 n0 = n0->in(0)->in(0);
1717 assert( n0->is_Call(), "expect a call here" );
1718 }
1719 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1720 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1721 // If the loop dies, they will be removed together.
1722 if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1723 return this;
1724 }
1725 // Useless Safepoint, so remove it
1726 return in(TypeFunc::Control);
1727 }
1728 }
1729
1730 return this;
1731 }
1732
1733 //------------------------------Value------------------------------------------
1734 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1735 if (phase->type(in(0)) == Type::TOP) {
1736 return Type::TOP;
1737 }
1738 if (in(0) == this) {
1739 return Type::TOP; // Dead infinite loop
1740 }
1741 return Type::CONTROL;
1742 }
1743
1744 #ifndef PRODUCT
1745 void SafePointNode::dump_spec(outputStream *st) const {
1746 st->print(" SafePoint ");
1747 _replaced_nodes.dump(st);
1748 }
1749 #endif
1750
1751 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1752 if (idx < TypeFunc::Parms) {
1753 return RegMask::EMPTY;
1754 }
1755 // Values outside the domain represent debug info
1756 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1757 }
1758 const RegMask &SafePointNode::out_RegMask() const {
1759 return RegMask::EMPTY;
1760 }
1761
1762
1763 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1764 assert((int)grow_by > 0, "sanity");
1765 int monoff = jvms->monoff();
1766 int scloff = jvms->scloff();
1767 int endoff = jvms->endoff();
1768 assert(endoff == (int)req(), "no other states or debug info after me");
1769 Node* top = Compile::current()->top();
1770 for (uint i = 0; i < grow_by; i++) {
1771 ins_req(monoff, top);
1772 }
1773 jvms->set_monoff(monoff + grow_by);
1774 jvms->set_scloff(scloff + grow_by);
1775 jvms->set_endoff(endoff + grow_by);
1776 }
1777
1778 void SafePointNode::push_monitor(const FastLockNode *lock) {
1779 // Add a LockNode, which points to both the original BoxLockNode (the
1780 // stack space for the monitor) and the Object being locked.
1781 const int MonitorEdges = 2;
1782 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1783 assert(req() == jvms()->endoff(), "correct sizing");
1784 int nextmon = jvms()->scloff();
1785 ins_req(nextmon, lock->box_node());
1786 ins_req(nextmon+1, lock->obj_node());
1787 jvms()->set_scloff(nextmon + MonitorEdges);
1788 jvms()->set_endoff(req());
1789 }
1790
1791 void SafePointNode::pop_monitor() {
1792 // Delete last monitor from debug info
1793 DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1794 const int MonitorEdges = 2;
1795 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1796 int scloff = jvms()->scloff();
1797 int endoff = jvms()->endoff();
1798 int new_scloff = scloff - MonitorEdges;
1799 int new_endoff = endoff - MonitorEdges;
1800 jvms()->set_scloff(new_scloff);
1801 jvms()->set_endoff(new_endoff);
1802 while (scloff > new_scloff) del_req_ordered(--scloff);
1803 assert(jvms()->nof_monitors() == num_before_pop-1, "");
1804 }
1805
1806 Node *SafePointNode::peek_monitor_box() const {
1807 int mon = jvms()->nof_monitors() - 1;
1808 assert(mon >= 0, "must have a monitor");
1809 return monitor_box(jvms(), mon);
1810 }
1811
1812 Node *SafePointNode::peek_monitor_obj() const {
1813 int mon = jvms()->nof_monitors() - 1;
1814 assert(mon >= 0, "must have a monitor");
1815 return monitor_obj(jvms(), mon);
1816 }
1817
1818 Node* SafePointNode::peek_operand(uint off) const {
1819 assert(jvms()->sp() > 0, "must have an operand");
1820 assert(off < jvms()->sp(), "off is out-of-range");
1821 return stack(jvms(), jvms()->sp() - off - 1);
1822 }
1823
1824 // Do we Match on this edge index or not? Match no edges
1825 uint SafePointNode::match_edge(uint idx) const {
1826 return (TypeFunc::Parms == idx);
1827 }
1828
1829 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1830 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1831 int nb = igvn->C->root()->find_prec_edge(this);
1832 if (nb != -1) {
1833 igvn->delete_precedence_of(igvn->C->root(), nb);
1834 }
1835 }
1836
1837 //============== SafePointScalarObjectNode ==============
1838
1839 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1840 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1841 _first_index(first_index),
1842 _depth(depth),
1843 _n_fields(n_fields),
1844 _alloc(alloc)
1845 {
1846 #ifdef ASSERT
1847 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1848 alloc->dump();
1849 assert(false, "unexpected call node");
1850 }
1851 #endif
1852 init_class_id(Class_SafePointScalarObject);
1853 }
1854
1855 // Do not allow value-numbering for SafePointScalarObject node.
1856 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1857 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1858 return (&n == this); // Always fail except on self
1859 }
1860
1861 uint SafePointScalarObjectNode::ideal_reg() const {
1862 return 0; // No matching to machine instruction
1863 }
1864
1865 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1866 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1867 }
1868
1869 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1870 return RegMask::EMPTY;
1871 }
1872
1873 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1874 return 0;
1875 }
1876
1877 SafePointScalarObjectNode*
1878 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1879 void* cached = (*sosn_map)[(void*)this];
1880 if (cached != nullptr) {
1881 new_node = false;
1882 return (SafePointScalarObjectNode*)cached;
1883 }
1884 new_node = true;
1885 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1886 sosn_map->Insert((void*)this, (void*)res);
1887 return res;
1888 }
1889
1890
1891 #ifndef PRODUCT
1892 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1893 st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1894 }
1895 #endif
1896
1897 //============== SafePointScalarMergeNode ==============
1898
1899 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1900 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1901 _merge_pointer_idx(merge_pointer_idx)
1902 {
1903 init_class_id(Class_SafePointScalarMerge);
1904 }
1905
1906 // Do not allow value-numbering for SafePointScalarMerge node.
1907 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1908 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1909 return (&n == this); // Always fail except on self
1910 }
1911
1912 uint SafePointScalarMergeNode::ideal_reg() const {
1913 return 0; // No matching to machine instruction
1914 }
1915
1916 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1917 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1918 }
1919
1920 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1921 return RegMask::EMPTY;
1922 }
1923
1924 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1925 return 0;
1926 }
1927
1928 SafePointScalarMergeNode*
1929 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1930 void* cached = (*sosn_map)[(void*)this];
1931 if (cached != nullptr) {
1932 new_node = false;
1933 return (SafePointScalarMergeNode*)cached;
1934 }
1935 new_node = true;
1936 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1937 sosn_map->Insert((void*)this, (void*)res);
1938 return res;
1939 }
1940
1941 #ifndef PRODUCT
1942 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1943 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1944 }
1945 #endif
1946
1947 //=============================================================================
1948 uint AllocateNode::size_of() const { return sizeof(*this); }
1949
1950 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1951 Node *ctrl, Node *mem, Node *abio,
1952 Node *size, Node *klass_node,
1953 Node* initial_test,
1954 InlineTypeNode* inline_type_node)
1955 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1956 {
1957 init_class_id(Class_Allocate);
1958 init_flags(Flag_is_macro);
1959 _is_scalar_replaceable = false;
1960 _is_non_escaping = false;
1961 _is_allocation_MemBar_redundant = false;
1962 _larval = false;
1963 Node *topnode = C->top();
1964
1965 init_req( TypeFunc::Control , ctrl );
1966 init_req( TypeFunc::I_O , abio );
1967 init_req( TypeFunc::Memory , mem );
1968 init_req( TypeFunc::ReturnAdr, topnode );
1969 init_req( TypeFunc::FramePtr , topnode );
1970 init_req( AllocSize , size);
1971 init_req( KlassNode , klass_node);
1972 init_req( InitialTest , initial_test);
1973 init_req( ALength , topnode);
1974 init_req( ValidLengthTest , topnode);
1975 init_req( InlineType , inline_type_node);
1976 // DefaultValue defaults to nullptr
1977 // RawDefaultValue defaults to nullptr
1978 C->add_macro_node(this);
1979 }
1980
1981 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1982 {
1983 assert(initializer != nullptr &&
1984 (initializer->is_object_constructor() || initializer->is_class_initializer()),
1985 "unexpected initializer method");
1986 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1987 if (analyzer == nullptr) {
1988 return;
1989 }
1990
1991 // Allocation node is first parameter in its initializer
1992 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1993 _is_allocation_MemBar_redundant = true;
1994 }
1995 }
1996
1997 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1998 Node* mark_node = nullptr;
1999 if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2000 Node* klass_node = in(AllocateNode::KlassNode);
2001 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2002 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2003 if (Arguments::is_valhalla_enabled()) {
2004 mark_node = phase->transform(mark_node);
2005 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2006 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2007 }
2008 return mark_node;
2009 } else {
2010 return phase->MakeConX(markWord::prototype().value());
2011 }
2012 }
2013
2014 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2015 // CastII, if appropriate. If we are not allowed to create new nodes, and
2016 // a CastII is appropriate, return null.
2017 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2018 Node *length = in(AllocateNode::ALength);
2019 assert(length != nullptr, "length is not null");
2020
2021 const TypeInt* length_type = phase->find_int_type(length);
2022 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2023
2024 if (ary_type != nullptr && length_type != nullptr) {
2025 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2026 if (narrow_length_type != length_type) {
2027 // Assert one of:
2028 // - the narrow_length is 0
2029 // - the narrow_length is not wider than length
2030 assert(narrow_length_type == TypeInt::ZERO ||
2031 (length_type->is_con() && narrow_length_type->is_con() &&
2032 (narrow_length_type->_hi <= length_type->_lo)) ||
2033 (narrow_length_type->_hi <= length_type->_hi &&
2034 narrow_length_type->_lo >= length_type->_lo),
2035 "narrow type must be narrower than length type");
2036
2037 // Return null if new nodes are not allowed
2038 if (!allow_new_nodes) {
2039 return nullptr;
2040 }
2041 // Create a cast which is control dependent on the initialization to
2042 // propagate the fact that the array length must be positive.
2043 InitializeNode* init = initialization();
2044 if (init != nullptr) {
2045 length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
2046 }
2047 }
2048 }
2049
2050 return length;
2051 }
2052
2053 //=============================================================================
2054 const TypeFunc* LockNode::_lock_type_Type = nullptr;
2055
2056 uint LockNode::size_of() const { return sizeof(*this); }
2057
2058 // Redundant lock elimination
2059 //
2060 // There are various patterns of locking where we release and
2061 // immediately reacquire a lock in a piece of code where no operations
2062 // occur in between that would be observable. In those cases we can
2063 // skip releasing and reacquiring the lock without violating any
2064 // fairness requirements. Doing this around a loop could cause a lock
2065 // to be held for a very long time so we concentrate on non-looping
2066 // control flow. We also require that the operations are fully
2067 // redundant meaning that we don't introduce new lock operations on
2068 // some paths so to be able to eliminate it on others ala PRE. This
2069 // would probably require some more extensive graph manipulation to
2070 // guarantee that the memory edges were all handled correctly.
2071 //
2072 // Assuming p is a simple predicate which can't trap in any way and s
2073 // is a synchronized method consider this code:
2074 //
2075 // s();
2076 // if (p)
2077 // s();
2078 // else
2079 // s();
2080 // s();
2081 //
2082 // 1. The unlocks of the first call to s can be eliminated if the
2083 // locks inside the then and else branches are eliminated.
2084 //
2085 // 2. The unlocks of the then and else branches can be eliminated if
2086 // the lock of the final call to s is eliminated.
2087 //
2088 // Either of these cases subsumes the simple case of sequential control flow
2089 //
2090 // Additionally we can eliminate versions without the else case:
2091 //
2092 // s();
2093 // if (p)
2094 // s();
2095 // s();
2096 //
2097 // 3. In this case we eliminate the unlock of the first s, the lock
2098 // and unlock in the then case and the lock in the final s.
2099 //
2100 // Note also that in all these cases the then/else pieces don't have
2101 // to be trivial as long as they begin and end with synchronization
2102 // operations.
2103 //
2104 // s();
2105 // if (p)
2106 // s();
2107 // f();
2108 // s();
2109 // s();
2110 //
2111 // The code will work properly for this case, leaving in the unlock
2112 // before the call to f and the relock after it.
2113 //
2114 // A potentially interesting case which isn't handled here is when the
2115 // locking is partially redundant.
2116 //
2117 // s();
2118 // if (p)
2119 // s();
2120 //
2121 // This could be eliminated putting unlocking on the else case and
2122 // eliminating the first unlock and the lock in the then side.
2123 // Alternatively the unlock could be moved out of the then side so it
2124 // was after the merge and the first unlock and second lock
2125 // eliminated. This might require less manipulation of the memory
2126 // state to get correct.
2127 //
2128 // Additionally we might allow work between a unlock and lock before
2129 // giving up eliminating the locks. The current code disallows any
2130 // conditional control flow between these operations. A formulation
2131 // similar to partial redundancy elimination computing the
2132 // availability of unlocking and the anticipatability of locking at a
2133 // program point would allow detection of fully redundant locking with
2134 // some amount of work in between. I'm not sure how often I really
2135 // think that would occur though. Most of the cases I've seen
2136 // indicate it's likely non-trivial work would occur in between.
2137 // There may be other more complicated constructs where we could
2138 // eliminate locking but I haven't seen any others appear as hot or
2139 // interesting.
2140 //
2141 // Locking and unlocking have a canonical form in ideal that looks
2142 // roughly like this:
2143 //
2144 // <obj>
2145 // | \\------+
2146 // | \ \
2147 // | BoxLock \
2148 // | | | \
2149 // | | \ \
2150 // | | FastLock
2151 // | | /
2152 // | | /
2153 // | | |
2154 //
2155 // Lock
2156 // |
2157 // Proj #0
2158 // |
2159 // MembarAcquire
2160 // |
2161 // Proj #0
2162 //
2163 // MembarRelease
2164 // |
2165 // Proj #0
2166 // |
2167 // Unlock
2168 // |
2169 // Proj #0
2170 //
2171 //
2172 // This code proceeds by processing Lock nodes during PhaseIterGVN
2173 // and searching back through its control for the proper code
2174 // patterns. Once it finds a set of lock and unlock operations to
2175 // eliminate they are marked as eliminatable which causes the
2176 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2177 //
2178 //=============================================================================
2179
2180 //
2181 // Utility function to skip over uninteresting control nodes. Nodes skipped are:
2182 // - copy regions. (These may not have been optimized away yet.)
2183 // - eliminated locking nodes
2184 //
2185 static Node *next_control(Node *ctrl) {
2186 if (ctrl == nullptr)
2187 return nullptr;
2188 while (1) {
2189 if (ctrl->is_Region()) {
2190 RegionNode *r = ctrl->as_Region();
2191 Node *n = r->is_copy();
2192 if (n == nullptr)
2193 break; // hit a region, return it
2194 else
2195 ctrl = n;
2196 } else if (ctrl->is_Proj()) {
2197 Node *in0 = ctrl->in(0);
2198 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2199 ctrl = in0->in(0);
2200 } else {
2201 break;
2202 }
2203 } else {
2204 break; // found an interesting control
2205 }
2206 }
2207 return ctrl;
2208 }
2209 //
2210 // Given a control, see if it's the control projection of an Unlock which
2211 // operating on the same object as lock.
2212 //
2213 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2214 GrowableArray<AbstractLockNode*> &lock_ops) {
2215 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2216 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2217 Node *n = ctrl_proj->in(0);
2218 if (n != nullptr && n->is_Unlock()) {
2219 UnlockNode *unlock = n->as_Unlock();
2220 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2221 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2222 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2223 if (lock_obj->eqv_uncast(unlock_obj) &&
2224 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2225 !unlock->is_eliminated()) {
2226 lock_ops.append(unlock);
2227 return true;
2228 }
2229 }
2230 }
2231 return false;
2232 }
2233
2234 //
2235 // Find the lock matching an unlock. Returns null if a safepoint
2236 // or complicated control is encountered first.
2237 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2238 LockNode *lock_result = nullptr;
2239 // find the matching lock, or an intervening safepoint
2240 Node *ctrl = next_control(unlock->in(0));
2241 while (1) {
2242 assert(ctrl != nullptr, "invalid control graph");
2243 assert(!ctrl->is_Start(), "missing lock for unlock");
2244 if (ctrl->is_top()) break; // dead control path
2245 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2246 if (ctrl->is_SafePoint()) {
2247 break; // found a safepoint (may be the lock we are searching for)
2248 } else if (ctrl->is_Region()) {
2249 // Check for a simple diamond pattern. Punt on anything more complicated
2250 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2251 Node *in1 = next_control(ctrl->in(1));
2252 Node *in2 = next_control(ctrl->in(2));
2253 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2254 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2255 ctrl = next_control(in1->in(0)->in(0));
2256 } else {
2257 break;
2258 }
2259 } else {
2260 break;
2261 }
2262 } else {
2263 ctrl = next_control(ctrl->in(0)); // keep searching
2264 }
2265 }
2266 if (ctrl->is_Lock()) {
2267 LockNode *lock = ctrl->as_Lock();
2268 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2269 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2270 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2271 if (lock_obj->eqv_uncast(unlock_obj) &&
2272 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2273 lock_result = lock;
2274 }
2275 }
2276 return lock_result;
2277 }
2278
2279 // This code corresponds to case 3 above.
2280
2281 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2282 GrowableArray<AbstractLockNode*> &lock_ops) {
2283 Node* if_node = node->in(0);
2284 bool if_true = node->is_IfTrue();
2285
2286 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2287 Node *lock_ctrl = next_control(if_node->in(0));
2288 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2289 Node* lock1_node = nullptr;
2290 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2291 if (if_true) {
2292 if (proj->is_IfFalse() && proj->outcnt() == 1) {
2293 lock1_node = proj->unique_out();
2294 }
2295 } else {
2296 if (proj->is_IfTrue() && proj->outcnt() == 1) {
2297 lock1_node = proj->unique_out();
2298 }
2299 }
2300 if (lock1_node != nullptr && lock1_node->is_Lock()) {
2301 LockNode *lock1 = lock1_node->as_Lock();
2302 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2303 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2304 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2305 if (lock_obj->eqv_uncast(lock1_obj) &&
2306 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2307 !lock1->is_eliminated()) {
2308 lock_ops.append(lock1);
2309 return true;
2310 }
2311 }
2312 }
2313 }
2314
2315 lock_ops.trunc_to(0);
2316 return false;
2317 }
2318
2319 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2320 GrowableArray<AbstractLockNode*> &lock_ops) {
2321 // check each control merging at this point for a matching unlock.
2322 // in(0) should be self edge so skip it.
2323 for (int i = 1; i < (int)region->req(); i++) {
2324 Node *in_node = next_control(region->in(i));
2325 if (in_node != nullptr) {
2326 if (find_matching_unlock(in_node, lock, lock_ops)) {
2327 // found a match so keep on checking.
2328 continue;
2329 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2330 continue;
2331 }
2332
2333 // If we fall through to here then it was some kind of node we
2334 // don't understand or there wasn't a matching unlock, so give
2335 // up trying to merge locks.
2336 lock_ops.trunc_to(0);
2337 return false;
2338 }
2339 }
2340 return true;
2341
2342 }
2343
2344 // Check that all locks/unlocks associated with object come from balanced regions.
2345 bool AbstractLockNode::is_balanced() {
2346 Node* obj = obj_node();
2347 for (uint j = 0; j < obj->outcnt(); j++) {
2348 Node* n = obj->raw_out(j);
2349 if (n->is_AbstractLock() &&
2350 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2351 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2352 if (n_box->is_unbalanced()) {
2353 return false;
2354 }
2355 }
2356 }
2357 return true;
2358 }
2359
2360 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2361
2362 const char * AbstractLockNode::kind_as_string() const {
2363 return _kind_names[_kind];
2364 }
2365
2366 #ifndef PRODUCT
2367 //
2368 // Create a counter which counts the number of times this lock is acquired
2369 //
2370 void AbstractLockNode::create_lock_counter(JVMState* state) {
2371 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2372 }
2373
2374 void AbstractLockNode::set_eliminated_lock_counter() {
2375 if (_counter) {
2376 // Update the counter to indicate that this lock was eliminated.
2377 // The counter update code will stay around even though the
2378 // optimizer will eliminate the lock operation itself.
2379 _counter->set_tag(NamedCounter::EliminatedLockCounter);
2380 }
2381 }
2382
2383 void AbstractLockNode::dump_spec(outputStream* st) const {
2384 st->print("%s ", _kind_names[_kind]);
2385 CallNode::dump_spec(st);
2386 }
2387
2388 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2389 st->print("%s", _kind_names[_kind]);
2390 }
2391 #endif
2392
2393 //=============================================================================
2394 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2395
2396 // perform any generic optimizations first (returns 'this' or null)
2397 Node *result = SafePointNode::Ideal(phase, can_reshape);
2398 if (result != nullptr) return result;
2399 // Don't bother trying to transform a dead node
2400 if (in(0) && in(0)->is_top()) return nullptr;
2401
2402 // Now see if we can optimize away this lock. We don't actually
2403 // remove the locking here, we simply set the _eliminate flag which
2404 // prevents macro expansion from expanding the lock. Since we don't
2405 // modify the graph, the value returned from this function is the
2406 // one computed above.
2407 const Type* obj_type = phase->type(obj_node());
2408 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2409 //
2410 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2411 //
2412 ConnectionGraph *cgr = phase->C->congraph();
2413 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2414 assert(!is_eliminated() || is_coarsened(), "sanity");
2415 // The lock could be marked eliminated by lock coarsening
2416 // code during first IGVN before EA. Replace coarsened flag
2417 // to eliminate all associated locks/unlocks.
2418 #ifdef ASSERT
2419 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2420 #endif
2421 this->set_non_esc_obj();
2422 return result;
2423 }
2424
2425 if (!phase->C->do_locks_coarsening()) {
2426 return result; // Compiling without locks coarsening
2427 }
2428 //
2429 // Try lock coarsening
2430 //
2431 PhaseIterGVN* iter = phase->is_IterGVN();
2432 if (iter != nullptr && !is_eliminated()) {
2433
2434 GrowableArray<AbstractLockNode*> lock_ops;
2435
2436 Node *ctrl = next_control(in(0));
2437
2438 // now search back for a matching Unlock
2439 if (find_matching_unlock(ctrl, this, lock_ops)) {
2440 // found an unlock directly preceding this lock. This is the
2441 // case of single unlock directly control dependent on a
2442 // single lock which is the trivial version of case 1 or 2.
2443 } else if (ctrl->is_Region() ) {
2444 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2445 // found lock preceded by multiple unlocks along all paths
2446 // joining at this point which is case 3 in description above.
2447 }
2448 } else {
2449 // see if this lock comes from either half of an if and the
2450 // predecessors merges unlocks and the other half of the if
2451 // performs a lock.
2452 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2453 // found unlock splitting to an if with locks on both branches.
2454 }
2455 }
2456
2457 if (lock_ops.length() > 0) {
2458 // add ourselves to the list of locks to be eliminated.
2459 lock_ops.append(this);
2460
2461 #ifndef PRODUCT
2462 if (PrintEliminateLocks) {
2463 int locks = 0;
2464 int unlocks = 0;
2465 if (Verbose) {
2466 tty->print_cr("=== Locks coarsening ===");
2467 tty->print("Obj: ");
2468 obj_node()->dump();
2469 }
2470 for (int i = 0; i < lock_ops.length(); i++) {
2471 AbstractLockNode* lock = lock_ops.at(i);
2472 if (lock->Opcode() == Op_Lock)
2473 locks++;
2474 else
2475 unlocks++;
2476 if (Verbose) {
2477 tty->print("Box %d: ", i);
2478 box_node()->dump();
2479 tty->print(" %d: ", i);
2480 lock->dump();
2481 }
2482 }
2483 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2484 }
2485 #endif
2486
2487 // for each of the identified locks, mark them
2488 // as eliminatable
2489 for (int i = 0; i < lock_ops.length(); i++) {
2490 AbstractLockNode* lock = lock_ops.at(i);
2491
2492 // Mark it eliminated by coarsening and update any counters
2493 #ifdef ASSERT
2494 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2495 #endif
2496 lock->set_coarsened();
2497 }
2498 // Record this coarsened group.
2499 phase->C->add_coarsened_locks(lock_ops);
2500 } else if (ctrl->is_Region() &&
2501 iter->_worklist.member(ctrl)) {
2502 // We weren't able to find any opportunities but the region this
2503 // lock is control dependent on hasn't been processed yet so put
2504 // this lock back on the worklist so we can check again once any
2505 // region simplification has occurred.
2506 iter->_worklist.push(this);
2507 }
2508 }
2509 }
2510
2511 return result;
2512 }
2513
2514 //=============================================================================
2515 bool LockNode::is_nested_lock_region() {
2516 return is_nested_lock_region(nullptr);
2517 }
2518
2519 // p is used for access to compilation log; no logging if null
2520 bool LockNode::is_nested_lock_region(Compile * c) {
2521 BoxLockNode* box = box_node()->as_BoxLock();
2522 int stk_slot = box->stack_slot();
2523 if (stk_slot <= 0) {
2524 #ifdef ASSERT
2525 this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2526 #endif
2527 return false; // External lock or it is not Box (Phi node).
2528 }
2529
2530 // Ignore complex cases: merged locks or multiple locks.
2531 Node* obj = obj_node();
2532 LockNode* unique_lock = nullptr;
2533 Node* bad_lock = nullptr;
2534 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2535 #ifdef ASSERT
2536 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2537 #endif
2538 return false;
2539 }
2540 if (unique_lock != this) {
2541 #ifdef ASSERT
2542 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2543 if (PrintEliminateLocks && Verbose) {
2544 tty->print_cr("=============== unique_lock != this ============");
2545 tty->print(" this: ");
2546 this->dump();
2547 tty->print(" box: ");
2548 box->dump();
2549 tty->print(" obj: ");
2550 obj->dump();
2551 if (unique_lock != nullptr) {
2552 tty->print(" unique_lock: ");
2553 unique_lock->dump();
2554 }
2555 if (bad_lock != nullptr) {
2556 tty->print(" bad_lock: ");
2557 bad_lock->dump();
2558 }
2559 tty->print_cr("===============");
2560 }
2561 #endif
2562 return false;
2563 }
2564
2565 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2566 obj = bs->step_over_gc_barrier(obj);
2567 // Look for external lock for the same object.
2568 SafePointNode* sfn = this->as_SafePoint();
2569 JVMState* youngest_jvms = sfn->jvms();
2570 int max_depth = youngest_jvms->depth();
2571 for (int depth = 1; depth <= max_depth; depth++) {
2572 JVMState* jvms = youngest_jvms->of_depth(depth);
2573 int num_mon = jvms->nof_monitors();
2574 // Loop over monitors
2575 for (int idx = 0; idx < num_mon; idx++) {
2576 Node* obj_node = sfn->monitor_obj(jvms, idx);
2577 obj_node = bs->step_over_gc_barrier(obj_node);
2578 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2579 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2580 box->set_nested();
2581 return true;
2582 }
2583 }
2584 }
2585 #ifdef ASSERT
2586 this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2587 #endif
2588 return false;
2589 }
2590
2591 //=============================================================================
2592 uint UnlockNode::size_of() const { return sizeof(*this); }
2593
2594 //=============================================================================
2595 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2596
2597 // perform any generic optimizations first (returns 'this' or null)
2598 Node *result = SafePointNode::Ideal(phase, can_reshape);
2599 if (result != nullptr) return result;
2600 // Don't bother trying to transform a dead node
2601 if (in(0) && in(0)->is_top()) return nullptr;
2602
2603 // Now see if we can optimize away this unlock. We don't actually
2604 // remove the unlocking here, we simply set the _eliminate flag which
2605 // prevents macro expansion from expanding the unlock. Since we don't
2606 // modify the graph, the value returned from this function is the
2607 // one computed above.
2608 // Escape state is defined after Parse phase.
2609 const Type* obj_type = phase->type(obj_node());
2610 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2611 //
2612 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2613 //
2614 ConnectionGraph *cgr = phase->C->congraph();
2615 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2616 assert(!is_eliminated() || is_coarsened(), "sanity");
2617 // The lock could be marked eliminated by lock coarsening
2618 // code during first IGVN before EA. Replace coarsened flag
2619 // to eliminate all associated locks/unlocks.
2620 #ifdef ASSERT
2621 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2622 #endif
2623 this->set_non_esc_obj();
2624 }
2625 }
2626 return result;
2627 }
2628
2629 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2630 if (C == nullptr) {
2631 return;
2632 }
2633 CompileLog* log = C->log();
2634 if (log != nullptr) {
2635 Node* box = box_node();
2636 Node* obj = obj_node();
2637 int box_id = box != nullptr ? box->_idx : -1;
2638 int obj_id = obj != nullptr ? obj->_idx : -1;
2639
2640 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2641 tag, C->compile_id(), this->_idx,
2642 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2643 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2644 log->stamp();
2645 log->end_head();
2646 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2647 while (p != nullptr) {
2648 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2649 p = p->caller();
2650 }
2651 log->tail(tag);
2652 }
2653 }
2654
2655 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2656 if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2657 return dest_t->instance_id() == t_oop->instance_id();
2658 }
2659
2660 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2661 // clone
2662 if (t_oop->isa_aryptr()) {
2663 return false;
2664 }
2665 if (!t_oop->isa_instptr()) {
2666 return true;
2667 }
2668 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2669 return true;
2670 }
2671 // unrelated
2672 return false;
2673 }
2674
2675 if (dest_t->isa_aryptr()) {
2676 // arraycopy or array clone
2677 if (t_oop->isa_instptr()) {
2678 return false;
2679 }
2680 if (!t_oop->isa_aryptr()) {
2681 return true;
2682 }
2683
2684 const Type* elem = dest_t->is_aryptr()->elem();
2685 if (elem == Type::BOTTOM) {
2686 // An array but we don't know what elements are
2687 return true;
2688 }
2689
2690 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2691 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2692 uint dest_alias = phase->C->get_alias_index(dest_t);
2693 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2694
2695 return dest_alias == t_oop_alias;
2696 }
2697
2698 return true;
2699 }