1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "code/vmreg.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "compiler/oopMap.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "gc/shared/c2/barrierSetC2.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "opto/callGenerator.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/inlinetypenode.hpp"
40 #include "opto/locknode.hpp"
41 #include "opto/machnode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/movenode.hpp"
44 #include "opto/parse.hpp"
45 #include "opto/regalloc.hpp"
46 #include "opto/regmask.hpp"
47 #include "opto/rootnode.hpp"
48 #include "opto/runtime.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "utilities/powerOfTwo.hpp"
53
54 // Portions of code courtesy of Clifford Click
55
56 // Optimization - Graph Style
57
58 //=============================================================================
59 uint StartNode::size_of() const { return sizeof(*this); }
60 bool StartNode::cmp( const Node &n ) const
61 { return _domain == ((StartNode&)n)._domain; }
62 const Type *StartNode::bottom_type() const { return _domain; }
63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
64 #ifndef PRODUCT
65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
67 #endif
68
69 //------------------------------Ideal------------------------------------------
70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
71 return remove_dead_region(phase, can_reshape) ? this : nullptr;
72 }
73
74 //------------------------------calling_convention-----------------------------
75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
76 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
77 }
78
79 //------------------------------Registers--------------------------------------
80 const RegMask &StartNode::in_RegMask(uint) const {
81 return RegMask::EMPTY;
82 }
83
84 //------------------------------match------------------------------------------
85 // Construct projections for incoming parameters, and their RegMask info
86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
87 switch (proj->_con) {
88 case TypeFunc::Control:
89 case TypeFunc::I_O:
90 case TypeFunc::Memory:
91 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
92 case TypeFunc::FramePtr:
93 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
94 case TypeFunc::ReturnAdr:
95 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
96 case TypeFunc::Parms:
97 default: {
98 uint parm_num = proj->_con - TypeFunc::Parms;
99 const Type *t = _domain->field_at(proj->_con);
100 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
101 return new ConNode(Type::TOP);
102 uint ideal_reg = t->ideal_reg();
103 RegMask &rm = match->_calling_convention_mask[parm_num];
104 return new MachProjNode(this,proj->_con,rm,ideal_reg);
105 }
106 }
107 return nullptr;
108 }
109
110 //=============================================================================
111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
112 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
113 };
114
115 #ifndef PRODUCT
116 void ParmNode::dump_spec(outputStream *st) const {
117 if( _con < TypeFunc::Parms ) {
118 st->print("%s", names[_con]);
119 } else {
120 st->print("Parm%d: ",_con-TypeFunc::Parms);
121 // Verbose and WizardMode dump bottom_type for all nodes
122 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
123 }
124 }
125
126 void ParmNode::dump_compact_spec(outputStream *st) const {
127 if (_con < TypeFunc::Parms) {
128 st->print("%s", names[_con]);
129 } else {
130 st->print("%d:", _con-TypeFunc::Parms);
131 // unconditionally dump bottom_type
132 bottom_type()->dump_on(st);
133 }
134 }
135 #endif
136
137 uint ParmNode::ideal_reg() const {
138 switch( _con ) {
139 case TypeFunc::Control : // fall through
140 case TypeFunc::I_O : // fall through
141 case TypeFunc::Memory : return 0;
142 case TypeFunc::FramePtr : // fall through
143 case TypeFunc::ReturnAdr: return Op_RegP;
144 default : assert( _con > TypeFunc::Parms, "" );
145 // fall through
146 case TypeFunc::Parms : {
147 // Type of argument being passed
148 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
149 return t->ideal_reg();
150 }
151 }
152 ShouldNotReachHere();
153 return 0;
154 }
155
156 //=============================================================================
157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
158 init_req(TypeFunc::Control,cntrl);
159 init_req(TypeFunc::I_O,i_o);
160 init_req(TypeFunc::Memory,memory);
161 init_req(TypeFunc::FramePtr,frameptr);
162 init_req(TypeFunc::ReturnAdr,retadr);
163 }
164
165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
166 return remove_dead_region(phase, can_reshape) ? this : nullptr;
167 }
168
169 const Type* ReturnNode::Value(PhaseGVN* phase) const {
170 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
171 ? Type::TOP
172 : Type::BOTTOM;
173 }
174
175 // Do we Match on this edge index or not? No edges on return nodes
176 uint ReturnNode::match_edge(uint idx) const {
177 return 0;
178 }
179
180
181 #ifndef PRODUCT
182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
183 // Dump the required inputs, after printing "returns"
184 uint i; // Exit value of loop
185 for (i = 0; i < req(); i++) { // For all required inputs
186 if (i == TypeFunc::Parms) st->print("returns ");
187 Node* p = in(i);
188 if (p != nullptr) {
189 p->dump_idx(false, st, dc);
190 st->print(" ");
191 } else {
192 st->print("_ ");
193 }
194 }
195 }
196 #endif
197
198 //=============================================================================
199 RethrowNode::RethrowNode(
200 Node* cntrl,
201 Node* i_o,
202 Node* memory,
203 Node* frameptr,
204 Node* ret_adr,
205 Node* exception
206 ) : Node(TypeFunc::Parms + 1) {
207 init_req(TypeFunc::Control , cntrl );
208 init_req(TypeFunc::I_O , i_o );
209 init_req(TypeFunc::Memory , memory );
210 init_req(TypeFunc::FramePtr , frameptr );
211 init_req(TypeFunc::ReturnAdr, ret_adr);
212 init_req(TypeFunc::Parms , exception);
213 }
214
215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
216 return remove_dead_region(phase, can_reshape) ? this : nullptr;
217 }
218
219 const Type* RethrowNode::Value(PhaseGVN* phase) const {
220 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
221 ? Type::TOP
222 : Type::BOTTOM;
223 }
224
225 uint RethrowNode::match_edge(uint idx) const {
226 return 0;
227 }
228
229 #ifndef PRODUCT
230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
231 // Dump the required inputs, after printing "exception"
232 uint i; // Exit value of loop
233 for (i = 0; i < req(); i++) { // For all required inputs
234 if (i == TypeFunc::Parms) st->print("exception ");
235 Node* p = in(i);
236 if (p != nullptr) {
237 p->dump_idx(false, st, dc);
238 st->print(" ");
239 } else {
240 st->print("_ ");
241 }
242 }
243 }
244 #endif
245
246 //=============================================================================
247 // Do we Match on this edge index or not? Match only target address & method
248 uint TailCallNode::match_edge(uint idx) const {
249 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
250 }
251
252 //=============================================================================
253 // Do we Match on this edge index or not? Match only target address & oop
254 uint TailJumpNode::match_edge(uint idx) const {
255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
256 }
257
258 //=============================================================================
259 JVMState::JVMState(ciMethod* method, JVMState* caller) :
260 _method(method),
261 _receiver_info(nullptr) {
262 assert(method != nullptr, "must be valid call site");
263 _bci = InvocationEntryBci;
264 _reexecute = Reexecute_Undefined;
265 DEBUG_ONLY(_bci = -99); // random garbage value
266 DEBUG_ONLY(_map = (SafePointNode*)-1);
267 _caller = caller;
268 _depth = 1 + (caller == nullptr ? 0 : caller->depth());
269 _locoff = TypeFunc::Parms;
270 _stkoff = _locoff + _method->max_locals();
271 _monoff = _stkoff + _method->max_stack();
272 _scloff = _monoff;
273 _endoff = _monoff;
274 _sp = 0;
275 }
276 JVMState::JVMState(int stack_size) :
277 _method(nullptr),
278 _receiver_info(nullptr) {
279 _bci = InvocationEntryBci;
280 _reexecute = Reexecute_Undefined;
281 DEBUG_ONLY(_map = (SafePointNode*)-1);
282 _caller = nullptr;
283 _depth = 1;
284 _locoff = TypeFunc::Parms;
285 _stkoff = _locoff;
286 _monoff = _stkoff + stack_size;
287 _scloff = _monoff;
288 _endoff = _monoff;
289 _sp = 0;
290 }
291
292 //--------------------------------of_depth-------------------------------------
293 JVMState* JVMState::of_depth(int d) const {
294 const JVMState* jvmp = this;
295 assert(0 < d && (uint)d <= depth(), "oob");
296 for (int skip = depth() - d; skip > 0; skip--) {
297 jvmp = jvmp->caller();
298 }
299 assert(jvmp->depth() == (uint)d, "found the right one");
300 return (JVMState*)jvmp;
301 }
302
303 //-----------------------------same_calls_as-----------------------------------
304 bool JVMState::same_calls_as(const JVMState* that) const {
305 if (this == that) return true;
306 if (this->depth() != that->depth()) return false;
307 const JVMState* p = this;
308 const JVMState* q = that;
309 for (;;) {
310 if (p->_method != q->_method) return false;
311 if (p->_method == nullptr) return true; // bci is irrelevant
312 if (p->_bci != q->_bci) return false;
313 if (p->_reexecute != q->_reexecute) return false;
314 p = p->caller();
315 q = q->caller();
316 if (p == q) return true;
317 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
318 }
319 }
320
321 //------------------------------debug_start------------------------------------
322 uint JVMState::debug_start() const {
323 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
324 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
325 return of_depth(1)->locoff();
326 }
327
328 //-------------------------------debug_end-------------------------------------
329 uint JVMState::debug_end() const {
330 DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
331 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
332 return endoff();
333 }
334
335 //------------------------------debug_depth------------------------------------
336 uint JVMState::debug_depth() const {
337 uint total = 0;
338 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
339 total += jvmp->debug_size();
340 }
341 return total;
342 }
343
344 #ifndef PRODUCT
345
346 //------------------------------format_helper----------------------------------
347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
348 // any defined value or not. If it does, print out the register or constant.
349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
350 if (n == nullptr) { st->print(" null"); return; }
351 if (n->is_SafePointScalarObject()) {
352 // Scalar replacement.
353 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
354 scobjs->append_if_missing(spobj);
355 int sco_n = scobjs->find(spobj);
356 assert(sco_n >= 0, "");
357 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
358 return;
359 }
360 if (regalloc->node_regs_max_index() > 0 &&
361 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
362 char buf[50];
363 regalloc->dump_register(n,buf,sizeof(buf));
364 st->print(" %s%d]=%s",msg,i,buf);
365 } else { // No register, but might be constant
366 const Type *t = n->bottom_type();
367 switch (t->base()) {
368 case Type::Int:
369 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
370 break;
371 case Type::AnyPtr:
372 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
373 st->print(" %s%d]=#null",msg,i);
374 break;
375 case Type::AryPtr:
376 case Type::InstPtr:
377 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
378 break;
379 case Type::KlassPtr:
380 case Type::AryKlassPtr:
381 case Type::InstKlassPtr:
382 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
383 break;
384 case Type::MetadataPtr:
385 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
386 break;
387 case Type::NarrowOop:
388 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
389 break;
390 case Type::RawPtr:
391 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
392 break;
393 case Type::DoubleCon:
394 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
395 break;
396 case Type::FloatCon:
397 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
398 break;
399 case Type::Long:
400 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
401 break;
402 case Type::Half:
403 case Type::Top:
404 st->print(" %s%d]=_",msg,i);
405 break;
406 default: ShouldNotReachHere();
407 }
408 }
409 }
410
411 //---------------------print_method_with_lineno--------------------------------
412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
413 if (show_name) _method->print_short_name(st);
414
415 int lineno = _method->line_number_from_bci(_bci);
416 if (lineno != -1) {
417 st->print(" @ bci:%d (line %d)", _bci, lineno);
418 } else {
419 st->print(" @ bci:%d", _bci);
420 }
421 }
422
423 //------------------------------format-----------------------------------------
424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
425 st->print(" #");
426 if (_method) {
427 print_method_with_lineno(st, true);
428 } else {
429 st->print_cr(" runtime stub ");
430 return;
431 }
432 if (n->is_MachSafePoint()) {
433 GrowableArray<SafePointScalarObjectNode*> scobjs;
434 MachSafePointNode *mcall = n->as_MachSafePoint();
435 uint i;
436 // Print locals
437 for (i = 0; i < (uint)loc_size(); i++)
438 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
439 // Print stack
440 for (i = 0; i < (uint)stk_size(); i++) {
441 if ((uint)(_stkoff + i) >= mcall->len())
442 st->print(" oob ");
443 else
444 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
445 }
446 for (i = 0; (int)i < nof_monitors(); i++) {
447 Node *box = mcall->monitor_box(this, i);
448 Node *obj = mcall->monitor_obj(this, i);
449 if (regalloc->node_regs_max_index() > 0 &&
450 OptoReg::is_valid(regalloc->get_reg_first(box))) {
451 box = BoxLockNode::box_node(box);
452 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
453 } else {
454 OptoReg::Name box_reg = BoxLockNode::reg(box);
455 st->print(" MON-BOX%d=%s+%d",
456 i,
457 OptoReg::regname(OptoReg::c_frame_pointer),
458 regalloc->reg2offset(box_reg));
459 }
460 const char* obj_msg = "MON-OBJ[";
461 if (EliminateLocks) {
462 if (BoxLockNode::box_node(box)->is_eliminated())
463 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
464 }
465 format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
466 }
467
468 for (i = 0; i < (uint)scobjs.length(); i++) {
469 // Scalar replaced objects.
470 st->cr();
471 st->print(" # ScObj" INT32_FORMAT " ", i);
472 SafePointScalarObjectNode* spobj = scobjs.at(i);
473 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
474 assert(cik->is_instance_klass() ||
475 cik->is_array_klass(), "Not supported allocation.");
476 ciInstanceKlass *iklass = nullptr;
477 if (cik->is_instance_klass()) {
478 cik->print_name_on(st);
479 iklass = cik->as_instance_klass();
480 } else if (cik->is_type_array_klass()) {
481 cik->as_array_klass()->base_element_type()->print_name_on(st);
482 st->print("[%d]", spobj->n_fields());
483 } else if (cik->is_obj_array_klass()) {
484 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
485 if (cie->is_instance_klass()) {
486 cie->print_name_on(st);
487 } else if (cie->is_type_array_klass()) {
488 cie->as_array_klass()->base_element_type()->print_name_on(st);
489 } else {
490 ShouldNotReachHere();
491 }
492 st->print("[%d]", spobj->n_fields());
493 int ndim = cik->as_array_klass()->dimension() - 1;
494 while (ndim-- > 0) {
495 st->print("[]");
496 }
497 } else {
498 assert(false, "unexpected type %s", cik->name()->as_utf8());
499 }
500 st->print("={");
501 uint nf = spobj->n_fields();
502 if (nf > 0) {
503 uint first_ind = spobj->first_index(mcall->jvms());
504 if (iklass != nullptr && iklass->is_inlinetype()) {
505 Node* null_marker = mcall->in(first_ind++);
506 if (!null_marker->is_top()) {
507 st->print(" [null marker");
508 format_helper(regalloc, st, null_marker, ":", -1, nullptr);
509 }
510 }
511 Node* fld_node = mcall->in(first_ind);
512 if (iklass != nullptr) {
513 st->print(" [");
514 iklass->nonstatic_field_at(0)->print_name_on(st);
515 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
516 } else {
517 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
518 }
519 for (uint j = 1; j < nf; j++) {
520 fld_node = mcall->in(first_ind+j);
521 if (iklass != nullptr) {
522 st->print(", [");
523 iklass->nonstatic_field_at(j)->print_name_on(st);
524 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
525 } else {
526 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
527 }
528 }
529 }
530 st->print(" }");
531 }
532 }
533 st->cr();
534 if (caller() != nullptr) caller()->format(regalloc, n, st);
535 }
536
537
538 void JVMState::dump_spec(outputStream *st) const {
539 if (_method != nullptr) {
540 bool printed = false;
541 if (!Verbose) {
542 // The JVMS dumps make really, really long lines.
543 // Take out the most boring parts, which are the package prefixes.
544 char buf[500];
545 stringStream namest(buf, sizeof(buf));
546 _method->print_short_name(&namest);
547 if (namest.count() < sizeof(buf)) {
548 const char* name = namest.base();
549 if (name[0] == ' ') ++name;
550 const char* endcn = strchr(name, ':'); // end of class name
551 if (endcn == nullptr) endcn = strchr(name, '(');
552 if (endcn == nullptr) endcn = name + strlen(name);
553 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
554 --endcn;
555 st->print(" %s", endcn);
556 printed = true;
557 }
558 }
559 print_method_with_lineno(st, !printed);
560 if(_reexecute == Reexecute_True)
561 st->print(" reexecute");
562 } else {
563 st->print(" runtime stub");
564 }
565 if (caller() != nullptr) caller()->dump_spec(st);
566 }
567
568
569 void JVMState::dump_on(outputStream* st) const {
570 bool print_map = _map && !((uintptr_t)_map & 1) &&
571 ((caller() == nullptr) || (caller()->map() != _map));
572 if (print_map) {
573 if (_map->len() > _map->req()) { // _map->has_exceptions()
574 Node* ex = _map->in(_map->req()); // _map->next_exception()
575 // skip the first one; it's already being printed
576 while (ex != nullptr && ex->len() > ex->req()) {
577 ex = ex->in(ex->req()); // ex->next_exception()
578 ex->dump(1);
579 }
580 }
581 _map->dump(Verbose ? 2 : 1);
582 }
583 if (caller() != nullptr) {
584 caller()->dump_on(st);
585 }
586 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
587 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
588 if (_method == nullptr) {
589 st->print_cr("(none)");
590 } else {
591 _method->print_name(st);
592 st->cr();
593 if (bci() >= 0 && bci() < _method->code_size()) {
594 st->print(" bc: ");
595 _method->print_codes_on(bci(), bci()+1, st);
596 }
597 }
598 }
599
600 // Extra way to dump a jvms from the debugger,
601 // to avoid a bug with C++ member function calls.
602 void dump_jvms(JVMState* jvms) {
603 jvms->dump();
604 }
605 #endif
606
607 //--------------------------clone_shallow--------------------------------------
608 JVMState* JVMState::clone_shallow(Compile* C) const {
609 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
610 n->set_bci(_bci);
611 n->_reexecute = _reexecute;
612 n->set_locoff(_locoff);
613 n->set_stkoff(_stkoff);
614 n->set_monoff(_monoff);
615 n->set_scloff(_scloff);
616 n->set_endoff(_endoff);
617 n->set_sp(_sp);
618 n->set_map(_map);
619 n->set_receiver_info(_receiver_info);
620 return n;
621 }
622
623 //---------------------------clone_deep----------------------------------------
624 JVMState* JVMState::clone_deep(Compile* C) const {
625 JVMState* n = clone_shallow(C);
626 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
627 p->_caller = p->_caller->clone_shallow(C);
628 }
629 assert(n->depth() == depth(), "sanity");
630 assert(n->debug_depth() == debug_depth(), "sanity");
631 return n;
632 }
633
634 /**
635 * Reset map for all callers
636 */
637 void JVMState::set_map_deep(SafePointNode* map) {
638 for (JVMState* p = this; p != nullptr; p = p->_caller) {
639 p->set_map(map);
640 }
641 }
642
643 // unlike set_map(), this is two-way setting.
644 void JVMState::bind_map(SafePointNode* map) {
645 set_map(map);
646 _map->set_jvms(this);
647 }
648
649 // Adapt offsets in in-array after adding or removing an edge.
650 // Prerequisite is that the JVMState is used by only one node.
651 void JVMState::adapt_position(int delta) {
652 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
653 jvms->set_locoff(jvms->locoff() + delta);
654 jvms->set_stkoff(jvms->stkoff() + delta);
655 jvms->set_monoff(jvms->monoff() + delta);
656 jvms->set_scloff(jvms->scloff() + delta);
657 jvms->set_endoff(jvms->endoff() + delta);
658 }
659 }
660
661 // Mirror the stack size calculation in the deopt code
662 // How much stack space would we need at this point in the program in
663 // case of deoptimization?
664 int JVMState::interpreter_frame_size() const {
665 const JVMState* jvms = this;
666 int size = 0;
667 int callee_parameters = 0;
668 int callee_locals = 0;
669 int extra_args = method()->max_stack() - stk_size();
670
671 while (jvms != nullptr) {
672 int locks = jvms->nof_monitors();
673 int temps = jvms->stk_size();
674 bool is_top_frame = (jvms == this);
675 ciMethod* method = jvms->method();
676
677 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
678 temps + callee_parameters,
679 extra_args,
680 locks,
681 callee_parameters,
682 callee_locals,
683 is_top_frame);
684 size += frame_size;
685
686 callee_parameters = method->size_of_parameters();
687 callee_locals = method->max_locals();
688 extra_args = 0;
689 jvms = jvms->caller();
690 }
691 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
692 }
693
694 // Compute receiver info for a compiled lambda form at call site.
695 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
696 assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
697 if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
698 Node* recv = map()->argument(this, 0);
699 assert(recv != nullptr, "");
700 const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
701 if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
702 return recv_toop->const_oop()->as_instance();
703 }
704 }
705 return nullptr;
706 }
707
708 //=============================================================================
709 bool CallNode::cmp( const Node &n ) const
710 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
711 #ifndef PRODUCT
712 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
713 // Dump the required inputs, enclosed in '(' and ')'
714 uint i; // Exit value of loop
715 for (i = 0; i < req(); i++) { // For all required inputs
716 if (i == TypeFunc::Parms) st->print("(");
717 Node* p = in(i);
718 if (p != nullptr) {
719 p->dump_idx(false, st, dc);
720 st->print(" ");
721 } else {
722 st->print("_ ");
723 }
724 }
725 st->print(")");
726 }
727
728 void CallNode::dump_spec(outputStream *st) const {
729 st->print(" ");
730 if (tf() != nullptr) tf()->dump_on(st);
731 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
732 if (jvms() != nullptr) jvms()->dump_spec(st);
733 }
734
735 void AllocateNode::dump_spec(outputStream* st) const {
736 st->print(" ");
737 if (tf() != nullptr) {
738 tf()->dump_on(st);
739 }
740 if (_cnt != COUNT_UNKNOWN) {
741 st->print(" C=%f", _cnt);
742 }
743 const Node* const klass_node = in(KlassNode);
744 if (klass_node != nullptr) {
745 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
746
747 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
748 st->print(" allocationKlass:");
749 klass_ptr->exact_klass()->print_name_on(st);
750 }
751 }
752 if (jvms() != nullptr) {
753 jvms()->dump_spec(st);
754 }
755 }
756 #endif
757
758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
759 const Type* CallNode::Value(PhaseGVN* phase) const {
760 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
761 return Type::TOP;
762 }
763 return tf()->range_cc();
764 }
765
766 //------------------------------calling_convention-----------------------------
767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
768 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
769 // The call to that stub is a special case: its inputs are
770 // multiple values returned from a call and so it should follow
771 // the return convention.
772 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
773 return;
774 }
775 // Use the standard compiler calling convention
776 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
777 }
778
779
780 //------------------------------match------------------------------------------
781 // Construct projections for control, I/O, memory-fields, ..., and
782 // return result(s) along with their RegMask info
783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
784 uint con = proj->_con;
785 const TypeTuple* range_cc = tf()->range_cc();
786 if (con >= TypeFunc::Parms) {
787 if (tf()->returns_inline_type_as_fields()) {
788 // The call returns multiple values (inline type fields): we
789 // create one projection per returned value.
790 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
791 uint ideal_reg = range_cc->field_at(con)->ideal_reg();
792 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
793 } else {
794 if (con == TypeFunc::Parms) {
795 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
796 OptoRegPair regs = Opcode() == Op_CallLeafVector
797 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
798 : match->c_return_value(ideal_reg);
799 RegMask rm = RegMask(regs.first());
800
801 if (Opcode() == Op_CallLeafVector) {
802 // If the return is in vector, compute appropriate regmask taking into account the whole range
803 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
804 if(OptoReg::is_valid(regs.second())) {
805 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
806 rm.insert(r);
807 }
808 }
809 }
810 }
811
812 if (OptoReg::is_valid(regs.second())) {
813 rm.insert(regs.second());
814 }
815 return new MachProjNode(this,con,rm,ideal_reg);
816 } else {
817 assert(con == TypeFunc::Parms+1, "only one return value");
818 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
819 return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
820 }
821 }
822 }
823
824 switch (con) {
825 case TypeFunc::Control:
826 case TypeFunc::I_O:
827 case TypeFunc::Memory:
828 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
829
830 case TypeFunc::ReturnAdr:
831 case TypeFunc::FramePtr:
832 default:
833 ShouldNotReachHere();
834 }
835 return nullptr;
836 }
837
838 // Do we Match on this edge index or not? Match no edges
839 uint CallNode::match_edge(uint idx) const {
840 return 0;
841 }
842
843 //
844 // Determine whether the call could modify the field of the specified
845 // instance at the specified offset.
846 //
847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
848 assert((t_oop != nullptr), "sanity");
849 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
850 const TypeTuple* args = _tf->domain_sig();
851 Node* dest = nullptr;
852 // Stubs that can be called once an ArrayCopyNode is expanded have
853 // different signatures. Look for the second pointer argument,
854 // that is the destination of the copy.
855 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
856 if (args->field_at(i)->isa_ptr()) {
857 j++;
858 if (j == 2) {
859 dest = in(i);
860 break;
861 }
862 }
863 }
864 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
865 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
866 return true;
867 }
868 return false;
869 }
870 if (t_oop->is_known_instance()) {
871 // The instance_id is set only for scalar-replaceable allocations which
872 // are not passed as arguments according to Escape Analysis.
873 return false;
874 }
875 if (t_oop->is_ptr_to_boxed_value()) {
876 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
877 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
878 // Skip unrelated boxing methods.
879 Node* proj = proj_out_or_null(TypeFunc::Parms);
880 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
881 return false;
882 }
883 }
884 if (is_CallJava() && as_CallJava()->method() != nullptr) {
885 ciMethod* meth = as_CallJava()->method();
886 if (meth->is_getter()) {
887 return false;
888 }
889 // May modify (by reflection) if an boxing object is passed
890 // as argument or returned.
891 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
892 if (proj != nullptr) {
893 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
894 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
895 (inst_t->instance_klass() == boxing_klass))) {
896 return true;
897 }
898 }
899 const TypeTuple* d = tf()->domain_cc();
900 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
901 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
902 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
903 (inst_t->instance_klass() == boxing_klass))) {
904 return true;
905 }
906 }
907 return false;
908 }
909 }
910 return true;
911 }
912
913 // Does this call have a direct reference to n other than debug information?
914 bool CallNode::has_non_debug_use(Node* n) {
915 const TypeTuple* d = tf()->domain_cc();
916 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
917 if (in(i) == n) {
918 return true;
919 }
920 }
921 return false;
922 }
923
924 bool CallNode::has_debug_use(Node* n) {
925 if (jvms() != nullptr) {
926 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
927 if (in(i) == n) {
928 return true;
929 }
930 }
931 }
932 return false;
933 }
934
935 // Returns the unique CheckCastPP of a call
936 // or 'this' if there are several CheckCastPP or unexpected uses
937 // or returns null if there is no one.
938 Node *CallNode::result_cast() {
939 Node *cast = nullptr;
940
941 Node *p = proj_out_or_null(TypeFunc::Parms);
942 if (p == nullptr)
943 return nullptr;
944
945 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
946 Node *use = p->fast_out(i);
947 if (use->is_CheckCastPP()) {
948 if (cast != nullptr) {
949 return this; // more than 1 CheckCastPP
950 }
951 cast = use;
952 } else if (!use->is_Initialize() &&
953 !use->is_AddP() &&
954 use->Opcode() != Op_MemBarStoreStore) {
955 // Expected uses are restricted to a CheckCastPP, an Initialize
956 // node, a MemBarStoreStore (clone) and AddP nodes. If we
957 // encounter any other use (a Phi node can be seen in rare
958 // cases) return this to prevent incorrect optimizations.
959 return this;
960 }
961 }
962 return cast;
963 }
964
965
966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
967 uint max_res = TypeFunc::Parms-1;
968 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
969 ProjNode *pn = fast_out(i)->as_Proj();
970 max_res = MAX2(max_res, pn->_con);
971 }
972
973 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
974
975 uint projs_size = sizeof(CallProjections);
976 if (max_res > TypeFunc::Parms) {
977 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
978 }
979 char* projs_storage = resource_allocate_bytes(projs_size);
980 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
981
982 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
983 ProjNode *pn = fast_out(i)->as_Proj();
984 if (pn->outcnt() == 0) continue;
985 switch (pn->_con) {
986 case TypeFunc::Control:
987 {
988 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
989 projs->fallthrough_proj = pn;
990 const Node* cn = pn->unique_ctrl_out_or_null();
991 if (cn != nullptr && cn->is_Catch()) {
992 ProjNode *cpn = nullptr;
993 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
994 cpn = cn->fast_out(k)->as_Proj();
995 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
996 if (cpn->_con == CatchProjNode::fall_through_index)
997 projs->fallthrough_catchproj = cpn;
998 else {
999 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000 projs->catchall_catchproj = cpn;
1001 }
1002 }
1003 }
1004 break;
1005 }
1006 case TypeFunc::I_O:
1007 if (pn->_is_io_use)
1008 projs->catchall_ioproj = pn;
1009 else
1010 projs->fallthrough_ioproj = pn;
1011 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012 Node* e = pn->out(j);
1013 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014 assert(projs->exobj == nullptr, "only one");
1015 projs->exobj = e;
1016 }
1017 }
1018 break;
1019 case TypeFunc::Memory:
1020 if (pn->_is_io_use)
1021 projs->catchall_memproj = pn;
1022 else
1023 projs->fallthrough_memproj = pn;
1024 break;
1025 case TypeFunc::Parms:
1026 projs->resproj[0] = pn;
1027 break;
1028 default:
1029 assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030 projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031 break;
1032 }
1033 }
1034
1035 // The resproj may not exist because the result could be ignored
1036 // and the exception object may not exist if an exception handler
1037 // swallows the exception but all the other must exist and be found.
1038 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found");
1040 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1042 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1043 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1044 if (separate_io_proj) {
1045 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1046 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1047 }
1048 return projs;
1049 }
1050
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053 // Validate attached generator
1054 CallGenerator* cg = generator();
1055 if (cg != nullptr) {
1056 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1057 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058 }
1059 #endif // ASSERT
1060 return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062
1063 bool CallNode::is_call_to_arraycopystub() const {
1064 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 bool CallNode::is_call_to_multianewarray_stub() const {
1071 if (_name != nullptr &&
1072 strstr(_name, "multianewarray") != nullptr &&
1073 strstr(_name, "C2 runtime") != nullptr) {
1074 return true;
1075 }
1076 return false;
1077 }
1078
1079 //=============================================================================
1080 uint CallJavaNode::size_of() const { return sizeof(*this); }
1081 bool CallJavaNode::cmp( const Node &n ) const {
1082 CallJavaNode &call = (CallJavaNode&)n;
1083 return CallNode::cmp(call) && _method == call._method &&
1084 _override_symbolic_info == call._override_symbolic_info;
1085 }
1086
1087 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1088 // Copy debug information and adjust JVMState information
1089 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1090 uint new_dbg_start = tf()->domain_sig()->cnt();
1091 int jvms_adj = new_dbg_start - old_dbg_start;
1092 assert (new_dbg_start == req(), "argument count mismatch");
1093 Compile* C = phase->C;
1094
1095 // SafePointScalarObject node could be referenced several times in debug info.
1096 // Use Dict to record cloned nodes.
1097 Dict* sosn_map = new Dict(cmpkey,hashkey);
1098 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1099 Node* old_in = sfpt->in(i);
1100 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1101 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1102 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1103 bool new_node;
1104 Node* new_in = old_sosn->clone(sosn_map, new_node);
1105 if (new_node) { // New node?
1106 new_in->set_req(0, C->root()); // reset control edge
1107 new_in = phase->transform(new_in); // Register new node.
1108 }
1109 old_in = new_in;
1110 }
1111 add_req(old_in);
1112 }
1113
1114 // JVMS may be shared so clone it before we modify it
1115 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1116 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1117 jvms->set_map(this);
1118 jvms->set_locoff(jvms->locoff()+jvms_adj);
1119 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1120 jvms->set_monoff(jvms->monoff()+jvms_adj);
1121 jvms->set_scloff(jvms->scloff()+jvms_adj);
1122 jvms->set_endoff(jvms->endoff()+jvms_adj);
1123 }
1124 }
1125
1126 #ifdef ASSERT
1127 bool CallJavaNode::validate_symbolic_info() const {
1128 if (method() == nullptr) {
1129 return true; // call into runtime or uncommon trap
1130 }
1131 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1132 if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1133 return true;
1134 }
1135 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1136 ciMethod* callee = method();
1137 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1138 assert(override_symbolic_info(), "should be set");
1139 }
1140 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1141 return true;
1142 }
1143 #endif
1144
1145 #ifndef PRODUCT
1146 void CallJavaNode::dump_spec(outputStream* st) const {
1147 if( _method ) _method->print_short_name(st);
1148 CallNode::dump_spec(st);
1149 }
1150
1151 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1152 if (_method) {
1153 _method->print_short_name(st);
1154 } else {
1155 st->print("<?>");
1156 }
1157 }
1158 #endif
1159
1160 void CallJavaNode::register_for_late_inline() {
1161 if (generator() != nullptr) {
1162 Compile::current()->prepend_late_inline(generator());
1163 set_generator(nullptr);
1164 } else {
1165 assert(false, "repeated inline attempt");
1166 }
1167 }
1168
1169 //=============================================================================
1170 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1171 bool CallStaticJavaNode::cmp( const Node &n ) const {
1172 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1173 return CallJavaNode::cmp(call);
1174 }
1175
1176 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1177 if (can_reshape && uncommon_trap_request() != 0) {
1178 PhaseIterGVN* igvn = phase->is_IterGVN();
1179 if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1180 if (!control()->is_Region()) {
1181 igvn->replace_input_of(this, 0, phase->C->top());
1182 }
1183 return this;
1184 }
1185 }
1186
1187 // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1188 if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1189 (method()->name() == ciSymbols::isSubstitutable_name())) {
1190 Node* left = in(TypeFunc::Parms);
1191 Node* right = in(TypeFunc::Parms + 1);
1192 if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1193 if (!left->is_InlineType()) {
1194 swap(left, right);
1195 }
1196 InlineTypeNode* vt = left->as_InlineType();
1197
1198 // Check if the field layout can be optimized
1199 if (vt->can_emit_substitutability_check(right)) {
1200 PhaseIterGVN* igvn = phase->is_IterGVN();
1201
1202 Node* ctrl = control();
1203 RegionNode* region = new RegionNode(1);
1204 Node* phi = new PhiNode(region, TypeInt::POS);
1205
1206 Node* base = right;
1207 Node* ptr = right;
1208 if (!base->is_InlineType()) {
1209 // Parse time checks guarantee that both operands are non-null and have the same type
1210 base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1211 ptr = base;
1212 }
1213 // Emit IR for field-wise comparison
1214 vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1215
1216 // Equals
1217 region->add_req(ctrl);
1218 phi->add_req(igvn->intcon(1));
1219
1220 ctrl = igvn->register_new_node_with_optimizer(region);
1221 Node* res = igvn->register_new_node_with_optimizer(phi);
1222
1223 // Kill exception projections and return a tuple that will replace the call
1224 CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1225 if (projs->fallthrough_catchproj != nullptr) {
1226 igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1227 }
1228 if (projs->catchall_memproj != nullptr) {
1229 igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1230 }
1231 if (projs->catchall_ioproj != nullptr) {
1232 igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1233 }
1234 if (projs->catchall_catchproj != nullptr) {
1235 igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1236 }
1237 return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1238 }
1239 }
1240 }
1241
1242 CallGenerator* cg = generator();
1243 if (can_reshape && cg != nullptr) {
1244 if (cg->is_mh_late_inline()) {
1245 assert(IncrementalInlineMH, "required");
1246 assert(cg->call_node() == this, "mismatch");
1247 assert(cg->method()->is_method_handle_intrinsic(), "required");
1248
1249 // Check whether this MH handle call becomes a candidate for inlining.
1250 ciMethod* callee = cg->method();
1251 vmIntrinsics::ID iid = callee->intrinsic_id();
1252 if (iid == vmIntrinsics::_invokeBasic) {
1253 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1254 register_for_late_inline();
1255 }
1256 } else if (iid == vmIntrinsics::_linkToNative) {
1257 // never retry
1258 } else {
1259 assert(callee->has_member_arg(), "wrong type of call?");
1260 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1261 register_for_late_inline();
1262 }
1263 }
1264 } else {
1265 assert(IncrementalInline, "required");
1266 assert(!cg->method()->is_method_handle_intrinsic(), "required");
1267 if (phase->C->print_inlining()) {
1268 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1269 "static call node changed: trying again");
1270 }
1271 register_for_late_inline();
1272 }
1273 }
1274 return CallNode::Ideal(phase, can_reshape);
1275 }
1276
1277 //----------------------------is_uncommon_trap----------------------------
1278 // Returns true if this is an uncommon trap.
1279 bool CallStaticJavaNode::is_uncommon_trap() const {
1280 return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1281 }
1282
1283 //----------------------------uncommon_trap_request----------------------------
1284 // If this is an uncommon trap, return the request code, else zero.
1285 int CallStaticJavaNode::uncommon_trap_request() const {
1286 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1287 }
1288 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1289 #ifndef PRODUCT
1290 if (!(call->req() > TypeFunc::Parms &&
1291 call->in(TypeFunc::Parms) != nullptr &&
1292 call->in(TypeFunc::Parms)->is_Con() &&
1293 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1294 assert(in_dump() != 0, "OK if dumping");
1295 tty->print("[bad uncommon trap]");
1296 return 0;
1297 }
1298 #endif
1299 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1300 }
1301
1302 // Split if can cause the flat array branch of an array load with unknown type (see
1303 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1304 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1305 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1306 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1307 return false;
1308 }
1309 if (ctl->is_Region()) {
1310 bool res = false;
1311 for (uint i = 1; i < ctl->req(); i++) {
1312 MergeMemNode* mm = mem->clone()->as_MergeMem();
1313 for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1314 Node* m = mms.memory();
1315 if (m->is_Phi() && m->in(0) == ctl) {
1316 mms.set_memory(m->in(i));
1317 }
1318 }
1319 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1320 res = true;
1321 if (!ctl->in(i)->is_Region()) {
1322 igvn->replace_input_of(ctl, i, igvn->C->top());
1323 }
1324 }
1325 igvn->remove_dead_node(mm);
1326 }
1327 return res;
1328 }
1329 // Verify the control flow is ok
1330 Node* call = ctl;
1331 MemBarNode* membar = nullptr;
1332 for (;;) {
1333 if (call == nullptr || call->is_top()) {
1334 return false;
1335 }
1336 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1337 call = call->in(0);
1338 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1339 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1340 // If there is no explicit flat array accesses in the compilation unit, there would be no
1341 // membar here
1342 if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1343 membar = call->in(0)->in(0)->as_MemBar();
1344 }
1345 break;
1346 } else {
1347 return false;
1348 }
1349 }
1350
1351 JVMState* jvms = call->jvms();
1352 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1353 return false;
1354 }
1355
1356 Node* call_mem = call->in(TypeFunc::Memory);
1357 if (call_mem == nullptr || call_mem->is_top()) {
1358 return false;
1359 }
1360 if (!call_mem->is_MergeMem()) {
1361 call_mem = MergeMemNode::make(call_mem);
1362 igvn->register_new_node_with_optimizer(call_mem);
1363 }
1364
1365 // Verify that there's no unexpected side effect
1366 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1367 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1368 Node* m2 = mms2.memory2();
1369
1370 for (uint i = 0; i < 100; i++) {
1371 if (m1 == m2) {
1372 break;
1373 } else if (m1->is_Proj()) {
1374 m1 = m1->in(0);
1375 } else if (m1->is_MemBar()) {
1376 m1 = m1->in(TypeFunc::Memory);
1377 } else if (m1->Opcode() == Op_CallStaticJava &&
1378 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1379 if (m1 != call) {
1380 return false;
1381 }
1382 break;
1383 } else if (m1->is_MergeMem()) {
1384 MergeMemNode* mm = m1->as_MergeMem();
1385 int idx = mms2.alias_idx();
1386 if (idx == Compile::AliasIdxBot) {
1387 m1 = mm->base_memory();
1388 } else {
1389 m1 = mm->memory_at(idx);
1390 }
1391 } else {
1392 return false;
1393 }
1394 }
1395 }
1396 if (call_mem->outcnt() == 0) {
1397 igvn->remove_dead_node(call_mem);
1398 }
1399
1400 // Remove membar preceding the call
1401 if (membar != nullptr) {
1402 membar->remove(igvn);
1403 }
1404
1405 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1406 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1407 unc->init_req(TypeFunc::Control, call->in(0));
1408 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1409 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1410 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
1411 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1412 unc->init_req(TypeFunc::Parms+0, unc_arg);
1413 unc->set_cnt(PROB_UNLIKELY_MAG(4));
1414 unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1415
1416 // Replace the call with an uncommon trap
1417 igvn->replace_input_of(call, 0, igvn->C->top());
1418
1419 igvn->register_new_node_with_optimizer(unc);
1420
1421 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1422 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1423 igvn->add_input_to(igvn->C->root(), halt);
1424
1425 return true;
1426 }
1427
1428
1429 #ifndef PRODUCT
1430 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1431 st->print("# Static ");
1432 if (_name != nullptr) {
1433 st->print("%s", _name);
1434 int trap_req = uncommon_trap_request();
1435 if (trap_req != 0) {
1436 char buf[100];
1437 st->print("(%s)",
1438 Deoptimization::format_trap_request(buf, sizeof(buf),
1439 trap_req));
1440 }
1441 st->print(" ");
1442 }
1443 CallJavaNode::dump_spec(st);
1444 }
1445
1446 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1447 if (_method) {
1448 _method->print_short_name(st);
1449 } else if (_name) {
1450 st->print("%s", _name);
1451 } else {
1452 st->print("<?>");
1453 }
1454 }
1455 #endif
1456
1457 //=============================================================================
1458 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1459 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1460 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1461 return CallJavaNode::cmp(call);
1462 }
1463
1464 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1465 CallGenerator* cg = generator();
1466 if (can_reshape && cg != nullptr) {
1467 if (cg->is_virtual_late_inline()) {
1468 assert(IncrementalInlineVirtual, "required");
1469 assert(cg->call_node() == this, "mismatch");
1470
1471 if (cg->callee_method() == nullptr) {
1472 // Recover symbolic info for method resolution.
1473 ciMethod* caller = jvms()->method();
1474 ciBytecodeStream iter(caller);
1475 iter.force_bci(jvms()->bci());
1476
1477 bool not_used1;
1478 ciSignature* not_used2;
1479 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode
1480 ciKlass* holder = iter.get_declared_method_holder();
1481 if (orig_callee->is_method_handle_intrinsic()) {
1482 assert(_override_symbolic_info, "required");
1483 orig_callee = method();
1484 holder = method()->holder();
1485 }
1486
1487 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1488
1489 Node* receiver_node = in(TypeFunc::Parms);
1490 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1491
1492 int not_used3;
1493 bool call_does_dispatch;
1494 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1495 call_does_dispatch, not_used3); // out-parameters
1496 if (!call_does_dispatch) {
1497 cg->set_callee_method(callee);
1498 }
1499 }
1500 if (cg->callee_method() != nullptr) {
1501 // Register for late inlining.
1502 register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1503 }
1504 } else {
1505 assert(IncrementalInline, "required");
1506 if (phase->C->print_inlining()) {
1507 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1508 "dynamic call node changed: trying again");
1509 }
1510 register_for_late_inline();
1511 }
1512 }
1513 return CallNode::Ideal(phase, can_reshape);
1514 }
1515
1516 #ifndef PRODUCT
1517 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1518 st->print("# Dynamic ");
1519 CallJavaNode::dump_spec(st);
1520 }
1521 #endif
1522
1523 //=============================================================================
1524 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1525 bool CallRuntimeNode::cmp( const Node &n ) const {
1526 CallRuntimeNode &call = (CallRuntimeNode&)n;
1527 return CallNode::cmp(call) && !strcmp(_name,call._name);
1528 }
1529 #ifndef PRODUCT
1530 void CallRuntimeNode::dump_spec(outputStream *st) const {
1531 st->print("# ");
1532 st->print("%s", _name);
1533 CallNode::dump_spec(st);
1534 }
1535 #endif
1536 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1537 bool CallLeafVectorNode::cmp( const Node &n ) const {
1538 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1539 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1540 }
1541
1542 //------------------------------calling_convention-----------------------------
1543 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1544 if (_entry_point == nullptr) {
1545 // The call to that stub is a special case: its inputs are
1546 // multiple values returned from a call and so it should follow
1547 // the return convention.
1548 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1549 return;
1550 }
1551 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1552 }
1553
1554 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1555 #ifdef ASSERT
1556 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1557 "return vector size must match");
1558 const TypeTuple* d = tf()->domain_sig();
1559 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1560 Node* arg = in(i);
1561 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1562 "vector argument size must match");
1563 }
1564 #endif
1565
1566 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1567 }
1568
1569 //=============================================================================
1570 //------------------------------calling_convention-----------------------------
1571
1572
1573 //=============================================================================
1574 bool CallLeafPureNode::is_unused() const {
1575 return proj_out_or_null(TypeFunc::Parms) == nullptr;
1576 }
1577
1578 bool CallLeafPureNode::is_dead() const {
1579 return proj_out_or_null(TypeFunc::Control) == nullptr;
1580 }
1581
1582 /* We make a tuple of the global input state + TOP for the output values.
1583 * We use this to delete a pure function that is not used: by replacing the call with
1584 * such a tuple, we let output Proj's idealization pick the corresponding input of the
1585 * pure call, so jumping over it, and effectively, removing the call from the graph.
1586 * This avoids doing the graph surgery manually, but leaves that to IGVN
1587 * that is specialized for doing that right. We need also tuple components for output
1588 * values of the function to respect the return arity, and in case there is a projection
1589 * that would pick an output (which shouldn't happen at the moment).
1590 */
1591 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1592 // Transparently propagate input state but parameters
1593 TupleNode* tuple = TupleNode::make(
1594 tf()->range_cc(),
1595 in(TypeFunc::Control),
1596 in(TypeFunc::I_O),
1597 in(TypeFunc::Memory),
1598 in(TypeFunc::FramePtr),
1599 in(TypeFunc::ReturnAdr));
1600
1601 // And add TOPs for the return values
1602 for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1603 tuple->set_req(i, C->top());
1604 }
1605
1606 return tuple;
1607 }
1608
1609 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1610 if (is_dead()) {
1611 return nullptr;
1612 }
1613
1614 // We need to wait until IGVN because during parsing, usages might still be missing
1615 // and we would remove the call immediately.
1616 if (can_reshape && is_unused()) {
1617 // The result is not used. We remove the call by replacing it with a tuple, that
1618 // is later disintegrated by the projections.
1619 return make_tuple_of_input_state_and_top_return_values(phase->C);
1620 }
1621
1622 return CallRuntimeNode::Ideal(phase, can_reshape);
1623 }
1624
1625 #ifndef PRODUCT
1626 void CallLeafNode::dump_spec(outputStream *st) const {
1627 st->print("# ");
1628 st->print("%s", _name);
1629 CallNode::dump_spec(st);
1630 }
1631 #endif
1632
1633 uint CallLeafNoFPNode::match_edge(uint idx) const {
1634 // Null entry point is a special case for which the target is in a
1635 // register. Need to match that edge.
1636 return entry_point() == nullptr && idx == TypeFunc::Parms;
1637 }
1638
1639 //=============================================================================
1640
1641 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1642 assert(verify_jvms(jvms), "jvms must match");
1643 int loc = jvms->locoff() + idx;
1644 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1645 // If current local idx is top then local idx - 1 could
1646 // be a long/double that needs to be killed since top could
1647 // represent the 2nd half of the long/double.
1648 uint ideal = in(loc -1)->ideal_reg();
1649 if (ideal == Op_RegD || ideal == Op_RegL) {
1650 // set other (low index) half to top
1651 set_req(loc - 1, in(loc));
1652 }
1653 }
1654 set_req(loc, c);
1655 }
1656
1657 uint SafePointNode::size_of() const { return sizeof(*this); }
1658 bool SafePointNode::cmp( const Node &n ) const {
1659 return (&n == this); // Always fail except on self
1660 }
1661
1662 //-------------------------set_next_exception----------------------------------
1663 void SafePointNode::set_next_exception(SafePointNode* n) {
1664 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1665 if (len() == req()) {
1666 if (n != nullptr) add_prec(n);
1667 } else {
1668 set_prec(req(), n);
1669 }
1670 }
1671
1672
1673 //----------------------------next_exception-----------------------------------
1674 SafePointNode* SafePointNode::next_exception() const {
1675 if (len() == req()) {
1676 return nullptr;
1677 } else {
1678 Node* n = in(req());
1679 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1680 return (SafePointNode*) n;
1681 }
1682 }
1683
1684
1685 //------------------------------Ideal------------------------------------------
1686 // Skip over any collapsed Regions
1687 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1688 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1689 if (remove_dead_region(phase, can_reshape)) {
1690 return this;
1691 }
1692 // Scalarize inline types in safepoint debug info.
1693 // Delay this until all inlining is over to avoid getting inconsistent debug info.
1694 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1695 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1696 Node* n = in(i)->uncast();
1697 if (n->is_InlineType()) {
1698 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1699 }
1700 }
1701 }
1702 return nullptr;
1703 }
1704
1705 //------------------------------Identity---------------------------------------
1706 // Remove obviously duplicate safepoints
1707 Node* SafePointNode::Identity(PhaseGVN* phase) {
1708
1709 // If you have back to back safepoints, remove one
1710 if (in(TypeFunc::Control)->is_SafePoint()) {
1711 Node* out_c = unique_ctrl_out_or_null();
1712 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1713 // outer loop's safepoint could confuse removal of the outer loop.
1714 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1715 return in(TypeFunc::Control);
1716 }
1717 }
1718
1719 // Transforming long counted loops requires a safepoint node. Do not
1720 // eliminate a safepoint until loop opts are over.
1721 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1722 Node *n0 = in(0)->in(0);
1723 // Check if he is a call projection (except Leaf Call)
1724 if( n0->is_Catch() ) {
1725 n0 = n0->in(0)->in(0);
1726 assert( n0->is_Call(), "expect a call here" );
1727 }
1728 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1729 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1730 // If the loop dies, they will be removed together.
1731 if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1732 return this;
1733 }
1734 // Useless Safepoint, so remove it
1735 return in(TypeFunc::Control);
1736 }
1737 }
1738
1739 return this;
1740 }
1741
1742 //------------------------------Value------------------------------------------
1743 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1744 if (phase->type(in(0)) == Type::TOP) {
1745 return Type::TOP;
1746 }
1747 if (in(0) == this) {
1748 return Type::TOP; // Dead infinite loop
1749 }
1750 return Type::CONTROL;
1751 }
1752
1753 #ifndef PRODUCT
1754 void SafePointNode::dump_spec(outputStream *st) const {
1755 st->print(" SafePoint ");
1756 _replaced_nodes.dump(st);
1757 }
1758 #endif
1759
1760 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1761 if (idx < TypeFunc::Parms) {
1762 return RegMask::EMPTY;
1763 }
1764 // Values outside the domain represent debug info
1765 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1766 }
1767 const RegMask &SafePointNode::out_RegMask() const {
1768 return RegMask::EMPTY;
1769 }
1770
1771
1772 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1773 assert((int)grow_by > 0, "sanity");
1774 int monoff = jvms->monoff();
1775 int scloff = jvms->scloff();
1776 int endoff = jvms->endoff();
1777 assert(endoff == (int)req(), "no other states or debug info after me");
1778 Node* top = Compile::current()->top();
1779 for (uint i = 0; i < grow_by; i++) {
1780 ins_req(monoff, top);
1781 }
1782 jvms->set_monoff(monoff + grow_by);
1783 jvms->set_scloff(scloff + grow_by);
1784 jvms->set_endoff(endoff + grow_by);
1785 }
1786
1787 void SafePointNode::push_monitor(const FastLockNode *lock) {
1788 // Add a LockNode, which points to both the original BoxLockNode (the
1789 // stack space for the monitor) and the Object being locked.
1790 const int MonitorEdges = 2;
1791 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1792 assert(req() == jvms()->endoff(), "correct sizing");
1793 int nextmon = jvms()->scloff();
1794 ins_req(nextmon, lock->box_node());
1795 ins_req(nextmon+1, lock->obj_node());
1796 jvms()->set_scloff(nextmon + MonitorEdges);
1797 jvms()->set_endoff(req());
1798 }
1799
1800 void SafePointNode::pop_monitor() {
1801 // Delete last monitor from debug info
1802 DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1803 const int MonitorEdges = 2;
1804 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1805 int scloff = jvms()->scloff();
1806 int endoff = jvms()->endoff();
1807 int new_scloff = scloff - MonitorEdges;
1808 int new_endoff = endoff - MonitorEdges;
1809 jvms()->set_scloff(new_scloff);
1810 jvms()->set_endoff(new_endoff);
1811 while (scloff > new_scloff) del_req_ordered(--scloff);
1812 assert(jvms()->nof_monitors() == num_before_pop-1, "");
1813 }
1814
1815 Node *SafePointNode::peek_monitor_box() const {
1816 int mon = jvms()->nof_monitors() - 1;
1817 assert(mon >= 0, "must have a monitor");
1818 return monitor_box(jvms(), mon);
1819 }
1820
1821 Node *SafePointNode::peek_monitor_obj() const {
1822 int mon = jvms()->nof_monitors() - 1;
1823 assert(mon >= 0, "must have a monitor");
1824 return monitor_obj(jvms(), mon);
1825 }
1826
1827 Node* SafePointNode::peek_operand(uint off) const {
1828 assert(jvms()->sp() > 0, "must have an operand");
1829 assert(off < jvms()->sp(), "off is out-of-range");
1830 return stack(jvms(), jvms()->sp() - off - 1);
1831 }
1832
1833 // Do we Match on this edge index or not? Match no edges
1834 uint SafePointNode::match_edge(uint idx) const {
1835 return (TypeFunc::Parms == idx);
1836 }
1837
1838 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1839 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1840 int nb = igvn->C->root()->find_prec_edge(this);
1841 if (nb != -1) {
1842 igvn->delete_precedence_of(igvn->C->root(), nb);
1843 }
1844 }
1845
1846 //============== SafePointScalarObjectNode ==============
1847
1848 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1849 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1850 _first_index(first_index),
1851 _depth(depth),
1852 _n_fields(n_fields),
1853 _alloc(alloc)
1854 {
1855 #ifdef ASSERT
1856 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1857 alloc->dump();
1858 assert(false, "unexpected call node");
1859 }
1860 #endif
1861 init_class_id(Class_SafePointScalarObject);
1862 }
1863
1864 // Do not allow value-numbering for SafePointScalarObject node.
1865 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1866 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1867 return (&n == this); // Always fail except on self
1868 }
1869
1870 uint SafePointScalarObjectNode::ideal_reg() const {
1871 return 0; // No matching to machine instruction
1872 }
1873
1874 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1875 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1876 }
1877
1878 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1879 return RegMask::EMPTY;
1880 }
1881
1882 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1883 return 0;
1884 }
1885
1886 SafePointScalarObjectNode*
1887 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1888 void* cached = (*sosn_map)[(void*)this];
1889 if (cached != nullptr) {
1890 new_node = false;
1891 return (SafePointScalarObjectNode*)cached;
1892 }
1893 new_node = true;
1894 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1895 sosn_map->Insert((void*)this, (void*)res);
1896 return res;
1897 }
1898
1899
1900 #ifndef PRODUCT
1901 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1902 st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1903 }
1904 #endif
1905
1906 //============== SafePointScalarMergeNode ==============
1907
1908 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1909 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1910 _merge_pointer_idx(merge_pointer_idx)
1911 {
1912 init_class_id(Class_SafePointScalarMerge);
1913 }
1914
1915 // Do not allow value-numbering for SafePointScalarMerge node.
1916 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1917 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1918 return (&n == this); // Always fail except on self
1919 }
1920
1921 uint SafePointScalarMergeNode::ideal_reg() const {
1922 return 0; // No matching to machine instruction
1923 }
1924
1925 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1926 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1927 }
1928
1929 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1930 return RegMask::EMPTY;
1931 }
1932
1933 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1934 return 0;
1935 }
1936
1937 SafePointScalarMergeNode*
1938 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1939 void* cached = (*sosn_map)[(void*)this];
1940 if (cached != nullptr) {
1941 new_node = false;
1942 return (SafePointScalarMergeNode*)cached;
1943 }
1944 new_node = true;
1945 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1946 sosn_map->Insert((void*)this, (void*)res);
1947 return res;
1948 }
1949
1950 #ifndef PRODUCT
1951 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1952 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1953 }
1954 #endif
1955
1956 //=============================================================================
1957 uint AllocateNode::size_of() const { return sizeof(*this); }
1958
1959 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1960 Node *ctrl, Node *mem, Node *abio,
1961 Node *size, Node *klass_node,
1962 Node* initial_test,
1963 InlineTypeNode* inline_type_node)
1964 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1965 {
1966 init_class_id(Class_Allocate);
1967 init_flags(Flag_is_macro);
1968 _is_scalar_replaceable = false;
1969 _is_non_escaping = false;
1970 _is_allocation_MemBar_redundant = false;
1971 _larval = false;
1972 Node *topnode = C->top();
1973
1974 init_req( TypeFunc::Control , ctrl );
1975 init_req( TypeFunc::I_O , abio );
1976 init_req( TypeFunc::Memory , mem );
1977 init_req( TypeFunc::ReturnAdr, topnode );
1978 init_req( TypeFunc::FramePtr , topnode );
1979 init_req( AllocSize , size);
1980 init_req( KlassNode , klass_node);
1981 init_req( InitialTest , initial_test);
1982 init_req( ALength , topnode);
1983 init_req( ValidLengthTest , topnode);
1984 init_req( InlineType , inline_type_node);
1985 // DefaultValue defaults to nullptr
1986 // RawDefaultValue defaults to nullptr
1987 C->add_macro_node(this);
1988 }
1989
1990 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1991 {
1992 assert(initializer != nullptr &&
1993 (initializer->is_object_constructor() || initializer->is_class_initializer()),
1994 "unexpected initializer method");
1995 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1996 if (analyzer == nullptr) {
1997 return;
1998 }
1999
2000 // Allocation node is first parameter in its initializer
2001 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
2002 _is_allocation_MemBar_redundant = true;
2003 }
2004 }
2005
2006 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
2007 Node* mark_node = nullptr;
2008 if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2009 Node* klass_node = in(AllocateNode::KlassNode);
2010 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2011 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2012 if (Arguments::is_valhalla_enabled()) {
2013 mark_node = phase->transform(mark_node);
2014 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2015 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2016 }
2017 return mark_node;
2018 } else {
2019 return phase->MakeConX(markWord::prototype().value());
2020 }
2021 }
2022
2023 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2024 // CastII, if appropriate. If we are not allowed to create new nodes, and
2025 // a CastII is appropriate, return null.
2026 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2027 Node *length = in(AllocateNode::ALength);
2028 assert(length != nullptr, "length is not null");
2029
2030 const TypeInt* length_type = phase->find_int_type(length);
2031 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2032
2033 if (ary_type != nullptr && length_type != nullptr) {
2034 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2035 if (narrow_length_type != length_type) {
2036 // Assert one of:
2037 // - the narrow_length is 0
2038 // - the narrow_length is not wider than length
2039 assert(narrow_length_type == TypeInt::ZERO ||
2040 (length_type->is_con() && narrow_length_type->is_con() &&
2041 (narrow_length_type->_hi <= length_type->_lo)) ||
2042 (narrow_length_type->_hi <= length_type->_hi &&
2043 narrow_length_type->_lo >= length_type->_lo),
2044 "narrow type must be narrower than length type");
2045
2046 // Return null if new nodes are not allowed
2047 if (!allow_new_nodes) {
2048 return nullptr;
2049 }
2050 // Create a cast which is control dependent on the initialization to
2051 // propagate the fact that the array length must be positive.
2052 InitializeNode* init = initialization();
2053 if (init != nullptr) {
2054 length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
2055 }
2056 }
2057 }
2058
2059 return length;
2060 }
2061
2062 //=============================================================================
2063 const TypeFunc* LockNode::_lock_type_Type = nullptr;
2064
2065 uint LockNode::size_of() const { return sizeof(*this); }
2066
2067 // Redundant lock elimination
2068 //
2069 // There are various patterns of locking where we release and
2070 // immediately reacquire a lock in a piece of code where no operations
2071 // occur in between that would be observable. In those cases we can
2072 // skip releasing and reacquiring the lock without violating any
2073 // fairness requirements. Doing this around a loop could cause a lock
2074 // to be held for a very long time so we concentrate on non-looping
2075 // control flow. We also require that the operations are fully
2076 // redundant meaning that we don't introduce new lock operations on
2077 // some paths so to be able to eliminate it on others ala PRE. This
2078 // would probably require some more extensive graph manipulation to
2079 // guarantee that the memory edges were all handled correctly.
2080 //
2081 // Assuming p is a simple predicate which can't trap in any way and s
2082 // is a synchronized method consider this code:
2083 //
2084 // s();
2085 // if (p)
2086 // s();
2087 // else
2088 // s();
2089 // s();
2090 //
2091 // 1. The unlocks of the first call to s can be eliminated if the
2092 // locks inside the then and else branches are eliminated.
2093 //
2094 // 2. The unlocks of the then and else branches can be eliminated if
2095 // the lock of the final call to s is eliminated.
2096 //
2097 // Either of these cases subsumes the simple case of sequential control flow
2098 //
2099 // Additionally we can eliminate versions without the else case:
2100 //
2101 // s();
2102 // if (p)
2103 // s();
2104 // s();
2105 //
2106 // 3. In this case we eliminate the unlock of the first s, the lock
2107 // and unlock in the then case and the lock in the final s.
2108 //
2109 // Note also that in all these cases the then/else pieces don't have
2110 // to be trivial as long as they begin and end with synchronization
2111 // operations.
2112 //
2113 // s();
2114 // if (p)
2115 // s();
2116 // f();
2117 // s();
2118 // s();
2119 //
2120 // The code will work properly for this case, leaving in the unlock
2121 // before the call to f and the relock after it.
2122 //
2123 // A potentially interesting case which isn't handled here is when the
2124 // locking is partially redundant.
2125 //
2126 // s();
2127 // if (p)
2128 // s();
2129 //
2130 // This could be eliminated putting unlocking on the else case and
2131 // eliminating the first unlock and the lock in the then side.
2132 // Alternatively the unlock could be moved out of the then side so it
2133 // was after the merge and the first unlock and second lock
2134 // eliminated. This might require less manipulation of the memory
2135 // state to get correct.
2136 //
2137 // Additionally we might allow work between a unlock and lock before
2138 // giving up eliminating the locks. The current code disallows any
2139 // conditional control flow between these operations. A formulation
2140 // similar to partial redundancy elimination computing the
2141 // availability of unlocking and the anticipatability of locking at a
2142 // program point would allow detection of fully redundant locking with
2143 // some amount of work in between. I'm not sure how often I really
2144 // think that would occur though. Most of the cases I've seen
2145 // indicate it's likely non-trivial work would occur in between.
2146 // There may be other more complicated constructs where we could
2147 // eliminate locking but I haven't seen any others appear as hot or
2148 // interesting.
2149 //
2150 // Locking and unlocking have a canonical form in ideal that looks
2151 // roughly like this:
2152 //
2153 // <obj>
2154 // | \\------+
2155 // | \ \
2156 // | BoxLock \
2157 // | | | \
2158 // | | \ \
2159 // | | FastLock
2160 // | | /
2161 // | | /
2162 // | | |
2163 //
2164 // Lock
2165 // |
2166 // Proj #0
2167 // |
2168 // MembarAcquire
2169 // |
2170 // Proj #0
2171 //
2172 // MembarRelease
2173 // |
2174 // Proj #0
2175 // |
2176 // Unlock
2177 // |
2178 // Proj #0
2179 //
2180 //
2181 // This code proceeds by processing Lock nodes during PhaseIterGVN
2182 // and searching back through its control for the proper code
2183 // patterns. Once it finds a set of lock and unlock operations to
2184 // eliminate they are marked as eliminatable which causes the
2185 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2186 //
2187 //=============================================================================
2188
2189 //
2190 // Utility function to skip over uninteresting control nodes. Nodes skipped are:
2191 // - copy regions. (These may not have been optimized away yet.)
2192 // - eliminated locking nodes
2193 //
2194 static Node *next_control(Node *ctrl) {
2195 if (ctrl == nullptr)
2196 return nullptr;
2197 while (1) {
2198 if (ctrl->is_Region()) {
2199 RegionNode *r = ctrl->as_Region();
2200 Node *n = r->is_copy();
2201 if (n == nullptr)
2202 break; // hit a region, return it
2203 else
2204 ctrl = n;
2205 } else if (ctrl->is_Proj()) {
2206 Node *in0 = ctrl->in(0);
2207 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2208 ctrl = in0->in(0);
2209 } else {
2210 break;
2211 }
2212 } else {
2213 break; // found an interesting control
2214 }
2215 }
2216 return ctrl;
2217 }
2218 //
2219 // Given a control, see if it's the control projection of an Unlock which
2220 // operating on the same object as lock.
2221 //
2222 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2223 GrowableArray<AbstractLockNode*> &lock_ops) {
2224 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2225 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2226 Node *n = ctrl_proj->in(0);
2227 if (n != nullptr && n->is_Unlock()) {
2228 UnlockNode *unlock = n->as_Unlock();
2229 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2230 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2231 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2232 if (lock_obj->eqv_uncast(unlock_obj) &&
2233 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2234 !unlock->is_eliminated()) {
2235 lock_ops.append(unlock);
2236 return true;
2237 }
2238 }
2239 }
2240 return false;
2241 }
2242
2243 //
2244 // Find the lock matching an unlock. Returns null if a safepoint
2245 // or complicated control is encountered first.
2246 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2247 LockNode *lock_result = nullptr;
2248 // find the matching lock, or an intervening safepoint
2249 Node *ctrl = next_control(unlock->in(0));
2250 while (1) {
2251 assert(ctrl != nullptr, "invalid control graph");
2252 assert(!ctrl->is_Start(), "missing lock for unlock");
2253 if (ctrl->is_top()) break; // dead control path
2254 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2255 if (ctrl->is_SafePoint()) {
2256 break; // found a safepoint (may be the lock we are searching for)
2257 } else if (ctrl->is_Region()) {
2258 // Check for a simple diamond pattern. Punt on anything more complicated
2259 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2260 Node *in1 = next_control(ctrl->in(1));
2261 Node *in2 = next_control(ctrl->in(2));
2262 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2263 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2264 ctrl = next_control(in1->in(0)->in(0));
2265 } else {
2266 break;
2267 }
2268 } else {
2269 break;
2270 }
2271 } else {
2272 ctrl = next_control(ctrl->in(0)); // keep searching
2273 }
2274 }
2275 if (ctrl->is_Lock()) {
2276 LockNode *lock = ctrl->as_Lock();
2277 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2278 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2279 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2280 if (lock_obj->eqv_uncast(unlock_obj) &&
2281 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2282 lock_result = lock;
2283 }
2284 }
2285 return lock_result;
2286 }
2287
2288 // This code corresponds to case 3 above.
2289
2290 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2291 GrowableArray<AbstractLockNode*> &lock_ops) {
2292 Node* if_node = node->in(0);
2293 bool if_true = node->is_IfTrue();
2294
2295 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2296 Node *lock_ctrl = next_control(if_node->in(0));
2297 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2298 Node* lock1_node = nullptr;
2299 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2300 if (if_true) {
2301 if (proj->is_IfFalse() && proj->outcnt() == 1) {
2302 lock1_node = proj->unique_out();
2303 }
2304 } else {
2305 if (proj->is_IfTrue() && proj->outcnt() == 1) {
2306 lock1_node = proj->unique_out();
2307 }
2308 }
2309 if (lock1_node != nullptr && lock1_node->is_Lock()) {
2310 LockNode *lock1 = lock1_node->as_Lock();
2311 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2312 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2313 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2314 if (lock_obj->eqv_uncast(lock1_obj) &&
2315 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2316 !lock1->is_eliminated()) {
2317 lock_ops.append(lock1);
2318 return true;
2319 }
2320 }
2321 }
2322 }
2323
2324 lock_ops.trunc_to(0);
2325 return false;
2326 }
2327
2328 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2329 GrowableArray<AbstractLockNode*> &lock_ops) {
2330 // check each control merging at this point for a matching unlock.
2331 // in(0) should be self edge so skip it.
2332 for (int i = 1; i < (int)region->req(); i++) {
2333 Node *in_node = next_control(region->in(i));
2334 if (in_node != nullptr) {
2335 if (find_matching_unlock(in_node, lock, lock_ops)) {
2336 // found a match so keep on checking.
2337 continue;
2338 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2339 continue;
2340 }
2341
2342 // If we fall through to here then it was some kind of node we
2343 // don't understand or there wasn't a matching unlock, so give
2344 // up trying to merge locks.
2345 lock_ops.trunc_to(0);
2346 return false;
2347 }
2348 }
2349 return true;
2350
2351 }
2352
2353 // Check that all locks/unlocks associated with object come from balanced regions.
2354 bool AbstractLockNode::is_balanced() {
2355 Node* obj = obj_node();
2356 for (uint j = 0; j < obj->outcnt(); j++) {
2357 Node* n = obj->raw_out(j);
2358 if (n->is_AbstractLock() &&
2359 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2360 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2361 if (n_box->is_unbalanced()) {
2362 return false;
2363 }
2364 }
2365 }
2366 return true;
2367 }
2368
2369 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2370
2371 const char * AbstractLockNode::kind_as_string() const {
2372 return _kind_names[_kind];
2373 }
2374
2375 #ifndef PRODUCT
2376 //
2377 // Create a counter which counts the number of times this lock is acquired
2378 //
2379 void AbstractLockNode::create_lock_counter(JVMState* state) {
2380 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2381 }
2382
2383 void AbstractLockNode::set_eliminated_lock_counter() {
2384 if (_counter) {
2385 // Update the counter to indicate that this lock was eliminated.
2386 // The counter update code will stay around even though the
2387 // optimizer will eliminate the lock operation itself.
2388 _counter->set_tag(NamedCounter::EliminatedLockCounter);
2389 }
2390 }
2391
2392 void AbstractLockNode::dump_spec(outputStream* st) const {
2393 st->print("%s ", _kind_names[_kind]);
2394 CallNode::dump_spec(st);
2395 }
2396
2397 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2398 st->print("%s", _kind_names[_kind]);
2399 }
2400 #endif
2401
2402 //=============================================================================
2403 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2404
2405 // perform any generic optimizations first (returns 'this' or null)
2406 Node *result = SafePointNode::Ideal(phase, can_reshape);
2407 if (result != nullptr) return result;
2408 // Don't bother trying to transform a dead node
2409 if (in(0) && in(0)->is_top()) return nullptr;
2410
2411 // Now see if we can optimize away this lock. We don't actually
2412 // remove the locking here, we simply set the _eliminate flag which
2413 // prevents macro expansion from expanding the lock. Since we don't
2414 // modify the graph, the value returned from this function is the
2415 // one computed above.
2416 const Type* obj_type = phase->type(obj_node());
2417 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2418 //
2419 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2420 //
2421 ConnectionGraph *cgr = phase->C->congraph();
2422 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2423 assert(!is_eliminated() || is_coarsened(), "sanity");
2424 // The lock could be marked eliminated by lock coarsening
2425 // code during first IGVN before EA. Replace coarsened flag
2426 // to eliminate all associated locks/unlocks.
2427 #ifdef ASSERT
2428 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2429 #endif
2430 this->set_non_esc_obj();
2431 return result;
2432 }
2433
2434 if (!phase->C->do_locks_coarsening()) {
2435 return result; // Compiling without locks coarsening
2436 }
2437 //
2438 // Try lock coarsening
2439 //
2440 PhaseIterGVN* iter = phase->is_IterGVN();
2441 if (iter != nullptr && !is_eliminated()) {
2442
2443 GrowableArray<AbstractLockNode*> lock_ops;
2444
2445 Node *ctrl = next_control(in(0));
2446
2447 // now search back for a matching Unlock
2448 if (find_matching_unlock(ctrl, this, lock_ops)) {
2449 // found an unlock directly preceding this lock. This is the
2450 // case of single unlock directly control dependent on a
2451 // single lock which is the trivial version of case 1 or 2.
2452 } else if (ctrl->is_Region() ) {
2453 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2454 // found lock preceded by multiple unlocks along all paths
2455 // joining at this point which is case 3 in description above.
2456 }
2457 } else {
2458 // see if this lock comes from either half of an if and the
2459 // predecessors merges unlocks and the other half of the if
2460 // performs a lock.
2461 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2462 // found unlock splitting to an if with locks on both branches.
2463 }
2464 }
2465
2466 if (lock_ops.length() > 0) {
2467 // add ourselves to the list of locks to be eliminated.
2468 lock_ops.append(this);
2469
2470 #ifndef PRODUCT
2471 if (PrintEliminateLocks) {
2472 int locks = 0;
2473 int unlocks = 0;
2474 if (Verbose) {
2475 tty->print_cr("=== Locks coarsening ===");
2476 tty->print("Obj: ");
2477 obj_node()->dump();
2478 }
2479 for (int i = 0; i < lock_ops.length(); i++) {
2480 AbstractLockNode* lock = lock_ops.at(i);
2481 if (lock->Opcode() == Op_Lock)
2482 locks++;
2483 else
2484 unlocks++;
2485 if (Verbose) {
2486 tty->print("Box %d: ", i);
2487 box_node()->dump();
2488 tty->print(" %d: ", i);
2489 lock->dump();
2490 }
2491 }
2492 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2493 }
2494 #endif
2495
2496 // for each of the identified locks, mark them
2497 // as eliminatable
2498 for (int i = 0; i < lock_ops.length(); i++) {
2499 AbstractLockNode* lock = lock_ops.at(i);
2500
2501 // Mark it eliminated by coarsening and update any counters
2502 #ifdef ASSERT
2503 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2504 #endif
2505 lock->set_coarsened();
2506 }
2507 // Record this coarsened group.
2508 phase->C->add_coarsened_locks(lock_ops);
2509 } else if (ctrl->is_Region() &&
2510 iter->_worklist.member(ctrl)) {
2511 // We weren't able to find any opportunities but the region this
2512 // lock is control dependent on hasn't been processed yet so put
2513 // this lock back on the worklist so we can check again once any
2514 // region simplification has occurred.
2515 iter->_worklist.push(this);
2516 }
2517 }
2518 }
2519
2520 return result;
2521 }
2522
2523 //=============================================================================
2524 bool LockNode::is_nested_lock_region() {
2525 return is_nested_lock_region(nullptr);
2526 }
2527
2528 // p is used for access to compilation log; no logging if null
2529 bool LockNode::is_nested_lock_region(Compile * c) {
2530 BoxLockNode* box = box_node()->as_BoxLock();
2531 int stk_slot = box->stack_slot();
2532 if (stk_slot <= 0) {
2533 #ifdef ASSERT
2534 this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2535 #endif
2536 return false; // External lock or it is not Box (Phi node).
2537 }
2538
2539 // Ignore complex cases: merged locks or multiple locks.
2540 Node* obj = obj_node();
2541 LockNode* unique_lock = nullptr;
2542 Node* bad_lock = nullptr;
2543 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2544 #ifdef ASSERT
2545 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2546 #endif
2547 return false;
2548 }
2549 if (unique_lock != this) {
2550 #ifdef ASSERT
2551 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2552 if (PrintEliminateLocks && Verbose) {
2553 tty->print_cr("=============== unique_lock != this ============");
2554 tty->print(" this: ");
2555 this->dump();
2556 tty->print(" box: ");
2557 box->dump();
2558 tty->print(" obj: ");
2559 obj->dump();
2560 if (unique_lock != nullptr) {
2561 tty->print(" unique_lock: ");
2562 unique_lock->dump();
2563 }
2564 if (bad_lock != nullptr) {
2565 tty->print(" bad_lock: ");
2566 bad_lock->dump();
2567 }
2568 tty->print_cr("===============");
2569 }
2570 #endif
2571 return false;
2572 }
2573
2574 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2575 obj = bs->step_over_gc_barrier(obj);
2576 // Look for external lock for the same object.
2577 SafePointNode* sfn = this->as_SafePoint();
2578 JVMState* youngest_jvms = sfn->jvms();
2579 int max_depth = youngest_jvms->depth();
2580 for (int depth = 1; depth <= max_depth; depth++) {
2581 JVMState* jvms = youngest_jvms->of_depth(depth);
2582 int num_mon = jvms->nof_monitors();
2583 // Loop over monitors
2584 for (int idx = 0; idx < num_mon; idx++) {
2585 Node* obj_node = sfn->monitor_obj(jvms, idx);
2586 obj_node = bs->step_over_gc_barrier(obj_node);
2587 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2588 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2589 box->set_nested();
2590 return true;
2591 }
2592 }
2593 }
2594 #ifdef ASSERT
2595 this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2596 #endif
2597 return false;
2598 }
2599
2600 //=============================================================================
2601 uint UnlockNode::size_of() const { return sizeof(*this); }
2602
2603 //=============================================================================
2604 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2605
2606 // perform any generic optimizations first (returns 'this' or null)
2607 Node *result = SafePointNode::Ideal(phase, can_reshape);
2608 if (result != nullptr) return result;
2609 // Don't bother trying to transform a dead node
2610 if (in(0) && in(0)->is_top()) return nullptr;
2611
2612 // Now see if we can optimize away this unlock. We don't actually
2613 // remove the unlocking here, we simply set the _eliminate flag which
2614 // prevents macro expansion from expanding the unlock. Since we don't
2615 // modify the graph, the value returned from this function is the
2616 // one computed above.
2617 // Escape state is defined after Parse phase.
2618 const Type* obj_type = phase->type(obj_node());
2619 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2620 //
2621 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2622 //
2623 ConnectionGraph *cgr = phase->C->congraph();
2624 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2625 assert(!is_eliminated() || is_coarsened(), "sanity");
2626 // The lock could be marked eliminated by lock coarsening
2627 // code during first IGVN before EA. Replace coarsened flag
2628 // to eliminate all associated locks/unlocks.
2629 #ifdef ASSERT
2630 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2631 #endif
2632 this->set_non_esc_obj();
2633 }
2634 }
2635 return result;
2636 }
2637
2638 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2639 if (C == nullptr) {
2640 return;
2641 }
2642 CompileLog* log = C->log();
2643 if (log != nullptr) {
2644 Node* box = box_node();
2645 Node* obj = obj_node();
2646 int box_id = box != nullptr ? box->_idx : -1;
2647 int obj_id = obj != nullptr ? obj->_idx : -1;
2648
2649 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2650 tag, C->compile_id(), this->_idx,
2651 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2652 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2653 log->stamp();
2654 log->end_head();
2655 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2656 while (p != nullptr) {
2657 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2658 p = p->caller();
2659 }
2660 log->tail(tag);
2661 }
2662 }
2663
2664 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2665 if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2666 return dest_t->instance_id() == t_oop->instance_id();
2667 }
2668
2669 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2670 // clone
2671 if (t_oop->isa_aryptr()) {
2672 return false;
2673 }
2674 if (!t_oop->isa_instptr()) {
2675 return true;
2676 }
2677 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2678 return true;
2679 }
2680 // unrelated
2681 return false;
2682 }
2683
2684 if (dest_t->isa_aryptr()) {
2685 // arraycopy or array clone
2686 if (t_oop->isa_instptr()) {
2687 return false;
2688 }
2689 if (!t_oop->isa_aryptr()) {
2690 return true;
2691 }
2692
2693 const Type* elem = dest_t->is_aryptr()->elem();
2694 if (elem == Type::BOTTOM) {
2695 // An array but we don't know what elements are
2696 return true;
2697 }
2698
2699 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2700 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2701 uint dest_alias = phase->C->get_alias_index(dest_t);
2702 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2703
2704 return dest_alias == t_oop_alias;
2705 }
2706
2707 return true;
2708 }