1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "code/vmreg.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/regalloc.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 // Portions of code courtesy of Clifford Click
  55 
  56 // Optimization - Graph Style
  57 
  58 //=============================================================================
  59 uint StartNode::size_of() const { return sizeof(*this); }
  60 bool StartNode::cmp( const Node &n ) const
  61 { return _domain == ((StartNode&)n)._domain; }
  62 const Type *StartNode::bottom_type() const { return _domain; }
  63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  64 #ifndef PRODUCT
  65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  67 #endif
  68 
  69 //------------------------------Ideal------------------------------------------
  70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  71   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  72 }
  73 
  74 //------------------------------calling_convention-----------------------------
  75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  76   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  77 }
  78 
  79 //------------------------------Registers--------------------------------------
  80 const RegMask &StartNode::in_RegMask(uint) const {
  81   return RegMask::EMPTY;
  82 }
  83 
  84 //------------------------------match------------------------------------------
  85 // Construct projections for incoming parameters, and their RegMask info
  86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  87   switch (proj->_con) {
  88   case TypeFunc::Control:
  89   case TypeFunc::I_O:
  90   case TypeFunc::Memory:
  91     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  92   case TypeFunc::FramePtr:
  93     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  94   case TypeFunc::ReturnAdr:
  95     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  96   case TypeFunc::Parms:
  97   default: {
  98       uint parm_num = proj->_con - TypeFunc::Parms;
  99       const Type *t = _domain->field_at(proj->_con);
 100       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
 101         return new ConNode(Type::TOP);
 102       uint ideal_reg = t->ideal_reg();
 103       RegMask &rm = match->_calling_convention_mask[parm_num];
 104       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 105     }
 106   }
 107   return nullptr;
 108 }
 109 
 110 //=============================================================================
 111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ParmNode::dump_spec(outputStream *st) const {
 117   if( _con < TypeFunc::Parms ) {
 118     st->print("%s", names[_con]);
 119   } else {
 120     st->print("Parm%d: ",_con-TypeFunc::Parms);
 121     // Verbose and WizardMode dump bottom_type for all nodes
 122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 123   }
 124 }
 125 
 126 void ParmNode::dump_compact_spec(outputStream *st) const {
 127   if (_con < TypeFunc::Parms) {
 128     st->print("%s", names[_con]);
 129   } else {
 130     st->print("%d:", _con-TypeFunc::Parms);
 131     // unconditionally dump bottom_type
 132     bottom_type()->dump_on(st);
 133   }
 134 }
 135 #endif
 136 
 137 uint ParmNode::ideal_reg() const {
 138   switch( _con ) {
 139   case TypeFunc::Control  : // fall through
 140   case TypeFunc::I_O      : // fall through
 141   case TypeFunc::Memory   : return 0;
 142   case TypeFunc::FramePtr : // fall through
 143   case TypeFunc::ReturnAdr: return Op_RegP;
 144   default                 : assert( _con > TypeFunc::Parms, "" );
 145     // fall through
 146   case TypeFunc::Parms    : {
 147     // Type of argument being passed
 148     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 149     return t->ideal_reg();
 150   }
 151   }
 152   ShouldNotReachHere();
 153   return 0;
 154 }
 155 
 156 //=============================================================================
 157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 158   init_req(TypeFunc::Control,cntrl);
 159   init_req(TypeFunc::I_O,i_o);
 160   init_req(TypeFunc::Memory,memory);
 161   init_req(TypeFunc::FramePtr,frameptr);
 162   init_req(TypeFunc::ReturnAdr,retadr);
 163 }
 164 
 165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 166   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 167 }
 168 
 169 const Type* ReturnNode::Value(PhaseGVN* phase) const {
 170   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 171     ? Type::TOP
 172     : Type::BOTTOM;
 173 }
 174 
 175 // Do we Match on this edge index or not?  No edges on return nodes
 176 uint ReturnNode::match_edge(uint idx) const {
 177   return 0;
 178 }
 179 
 180 
 181 #ifndef PRODUCT
 182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
 183   // Dump the required inputs, after printing "returns"
 184   uint i;                       // Exit value of loop
 185   for (i = 0; i < req(); i++) {    // For all required inputs
 186     if (i == TypeFunc::Parms) st->print("returns ");
 187     Node* p = in(i);
 188     if (p != nullptr) {
 189       p->dump_idx(false, st, dc);
 190       st->print(" ");
 191     } else {
 192       st->print("_ ");
 193     }
 194   }
 195 }
 196 #endif
 197 
 198 //=============================================================================
 199 RethrowNode::RethrowNode(
 200   Node* cntrl,
 201   Node* i_o,
 202   Node* memory,
 203   Node* frameptr,
 204   Node* ret_adr,
 205   Node* exception
 206 ) : Node(TypeFunc::Parms + 1) {
 207   init_req(TypeFunc::Control  , cntrl    );
 208   init_req(TypeFunc::I_O      , i_o      );
 209   init_req(TypeFunc::Memory   , memory   );
 210   init_req(TypeFunc::FramePtr , frameptr );
 211   init_req(TypeFunc::ReturnAdr, ret_adr);
 212   init_req(TypeFunc::Parms    , exception);
 213 }
 214 
 215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 216   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 217 }
 218 
 219 const Type* RethrowNode::Value(PhaseGVN* phase) const {
 220   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 221     ? Type::TOP
 222     : Type::BOTTOM;
 223 }
 224 
 225 uint RethrowNode::match_edge(uint idx) const {
 226   return 0;
 227 }
 228 
 229 #ifndef PRODUCT
 230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
 231   // Dump the required inputs, after printing "exception"
 232   uint i;                       // Exit value of loop
 233   for (i = 0; i < req(); i++) {    // For all required inputs
 234     if (i == TypeFunc::Parms) st->print("exception ");
 235     Node* p = in(i);
 236     if (p != nullptr) {
 237       p->dump_idx(false, st, dc);
 238       st->print(" ");
 239     } else {
 240       st->print("_ ");
 241     }
 242   }
 243 }
 244 #endif
 245 
 246 //=============================================================================
 247 // Do we Match on this edge index or not?  Match only target address & method
 248 uint TailCallNode::match_edge(uint idx) const {
 249   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 250 }
 251 
 252 //=============================================================================
 253 // Do we Match on this edge index or not?  Match only target address & oop
 254 uint TailJumpNode::match_edge(uint idx) const {
 255   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 256 }
 257 
 258 //=============================================================================
 259 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 260   _method(method),
 261   _receiver_info(nullptr) {
 262   assert(method != nullptr, "must be valid call site");
 263   _bci = InvocationEntryBci;
 264   _reexecute = Reexecute_Undefined;
 265   DEBUG_ONLY(_bci = -99);  // random garbage value
 266   DEBUG_ONLY(_map = (SafePointNode*)-1);
 267   _caller = caller;
 268   _depth  = 1 + (caller == nullptr ? 0 : caller->depth());
 269   _locoff = TypeFunc::Parms;
 270   _stkoff = _locoff + _method->max_locals();
 271   _monoff = _stkoff + _method->max_stack();
 272   _scloff = _monoff;
 273   _endoff = _monoff;
 274   _sp = 0;
 275 }
 276 JVMState::JVMState(int stack_size) :
 277   _method(nullptr),
 278   _receiver_info(nullptr) {
 279   _bci = InvocationEntryBci;
 280   _reexecute = Reexecute_Undefined;
 281   DEBUG_ONLY(_map = (SafePointNode*)-1);
 282   _caller = nullptr;
 283   _depth  = 1;
 284   _locoff = TypeFunc::Parms;
 285   _stkoff = _locoff;
 286   _monoff = _stkoff + stack_size;
 287   _scloff = _monoff;
 288   _endoff = _monoff;
 289   _sp = 0;
 290 }
 291 
 292 //--------------------------------of_depth-------------------------------------
 293 JVMState* JVMState::of_depth(int d) const {
 294   const JVMState* jvmp = this;
 295   assert(0 < d && (uint)d <= depth(), "oob");
 296   for (int skip = depth() - d; skip > 0; skip--) {
 297     jvmp = jvmp->caller();
 298   }
 299   assert(jvmp->depth() == (uint)d, "found the right one");
 300   return (JVMState*)jvmp;
 301 }
 302 
 303 //-----------------------------same_calls_as-----------------------------------
 304 bool JVMState::same_calls_as(const JVMState* that) const {
 305   if (this == that)                    return true;
 306   if (this->depth() != that->depth())  return false;
 307   const JVMState* p = this;
 308   const JVMState* q = that;
 309   for (;;) {
 310     if (p->_method != q->_method)    return false;
 311     if (p->_method == nullptr)       return true;   // bci is irrelevant
 312     if (p->_bci    != q->_bci)       return false;
 313     if (p->_reexecute != q->_reexecute)  return false;
 314     p = p->caller();
 315     q = q->caller();
 316     if (p == q)                      return true;
 317     assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
 318   }
 319 }
 320 
 321 //------------------------------debug_start------------------------------------
 322 uint JVMState::debug_start()  const {
 323   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 324   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 325   return of_depth(1)->locoff();
 326 }
 327 
 328 //-------------------------------debug_end-------------------------------------
 329 uint JVMState::debug_end() const {
 330   DEBUG_ONLY(JVMState* jvmroot = of_depth(1));
 331   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 332   return endoff();
 333 }
 334 
 335 //------------------------------debug_depth------------------------------------
 336 uint JVMState::debug_depth() const {
 337   uint total = 0;
 338   for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
 339     total += jvmp->debug_size();
 340   }
 341   return total;
 342 }
 343 
 344 #ifndef PRODUCT
 345 
 346 //------------------------------format_helper----------------------------------
 347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 348 // any defined value or not.  If it does, print out the register or constant.
 349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 350   if (n == nullptr) { st->print(" null"); return; }
 351   if (n->is_SafePointScalarObject()) {
 352     // Scalar replacement.
 353     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 354     scobjs->append_if_missing(spobj);
 355     int sco_n = scobjs->find(spobj);
 356     assert(sco_n >= 0, "");
 357     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 358     return;
 359   }
 360   if (regalloc->node_regs_max_index() > 0 &&
 361       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 362     char buf[50];
 363     regalloc->dump_register(n,buf,sizeof(buf));
 364     st->print(" %s%d]=%s",msg,i,buf);
 365   } else {                      // No register, but might be constant
 366     const Type *t = n->bottom_type();
 367     switch (t->base()) {
 368     case Type::Int:
 369       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
 370       break;
 371     case Type::AnyPtr:
 372       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 373       st->print(" %s%d]=#null",msg,i);
 374       break;
 375     case Type::AryPtr:
 376     case Type::InstPtr:
 377       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 378       break;
 379     case Type::KlassPtr:
 380     case Type::AryKlassPtr:
 381     case Type::InstKlassPtr:
 382       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
 383       break;
 384     case Type::MetadataPtr:
 385       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 386       break;
 387     case Type::NarrowOop:
 388       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 389       break;
 390     case Type::RawPtr:
 391       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 392       break;
 393     case Type::DoubleCon:
 394       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 395       break;
 396     case Type::FloatCon:
 397       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 398       break;
 399     case Type::Long:
 400       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 401       break;
 402     case Type::Half:
 403     case Type::Top:
 404       st->print(" %s%d]=_",msg,i);
 405       break;
 406     default: ShouldNotReachHere();
 407     }
 408   }
 409 }
 410 
 411 //---------------------print_method_with_lineno--------------------------------
 412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
 413   if (show_name) _method->print_short_name(st);
 414 
 415   int lineno = _method->line_number_from_bci(_bci);
 416   if (lineno != -1) {
 417     st->print(" @ bci:%d (line %d)", _bci, lineno);
 418   } else {
 419     st->print(" @ bci:%d", _bci);
 420   }
 421 }
 422 
 423 //------------------------------format-----------------------------------------
 424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 425   st->print("        #");
 426   if (_method) {
 427     print_method_with_lineno(st, true);
 428   } else {
 429     st->print_cr(" runtime stub ");
 430     return;
 431   }
 432   if (n->is_MachSafePoint()) {
 433     GrowableArray<SafePointScalarObjectNode*> scobjs;
 434     MachSafePointNode *mcall = n->as_MachSafePoint();
 435     uint i;
 436     // Print locals
 437     for (i = 0; i < (uint)loc_size(); i++)
 438       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 439     // Print stack
 440     for (i = 0; i < (uint)stk_size(); i++) {
 441       if ((uint)(_stkoff + i) >= mcall->len())
 442         st->print(" oob ");
 443       else
 444        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 445     }
 446     for (i = 0; (int)i < nof_monitors(); i++) {
 447       Node *box = mcall->monitor_box(this, i);
 448       Node *obj = mcall->monitor_obj(this, i);
 449       if (regalloc->node_regs_max_index() > 0 &&
 450           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 451         box = BoxLockNode::box_node(box);
 452         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 453       } else {
 454         OptoReg::Name box_reg = BoxLockNode::reg(box);
 455         st->print(" MON-BOX%d=%s+%d",
 456                    i,
 457                    OptoReg::regname(OptoReg::c_frame_pointer),
 458                    regalloc->reg2offset(box_reg));
 459       }
 460       const char* obj_msg = "MON-OBJ[";
 461       if (EliminateLocks) {
 462         if (BoxLockNode::box_node(box)->is_eliminated())
 463           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 464       }
 465       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 466     }
 467 
 468     for (i = 0; i < (uint)scobjs.length(); i++) {
 469       // Scalar replaced objects.
 470       st->cr();
 471       st->print("        # ScObj" INT32_FORMAT " ", i);
 472       SafePointScalarObjectNode* spobj = scobjs.at(i);
 473       ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
 474       assert(cik->is_instance_klass() ||
 475              cik->is_array_klass(), "Not supported allocation.");
 476       ciInstanceKlass *iklass = nullptr;
 477       if (cik->is_instance_klass()) {
 478         cik->print_name_on(st);
 479         iklass = cik->as_instance_klass();
 480       } else if (cik->is_type_array_klass()) {
 481         cik->as_array_klass()->base_element_type()->print_name_on(st);
 482         st->print("[%d]", spobj->n_fields());
 483       } else if (cik->is_obj_array_klass()) {
 484         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 485         if (cie->is_instance_klass()) {
 486           cie->print_name_on(st);
 487         } else if (cie->is_type_array_klass()) {
 488           cie->as_array_klass()->base_element_type()->print_name_on(st);
 489         } else {
 490           ShouldNotReachHere();
 491         }
 492         st->print("[%d]", spobj->n_fields());
 493         int ndim = cik->as_array_klass()->dimension() - 1;
 494         while (ndim-- > 0) {
 495           st->print("[]");
 496         }
 497       } else {
 498         assert(false, "unexpected type %s", cik->name()->as_utf8());
 499       }
 500       st->print("={");
 501       uint nf = spobj->n_fields();
 502       if (nf > 0) {
 503         uint first_ind = spobj->first_index(mcall->jvms());
 504         if (iklass != nullptr && iklass->is_inlinetype()) {
 505           Node* null_marker = mcall->in(first_ind++);
 506           if (!null_marker->is_top()) {
 507             st->print(" [null marker");
 508             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 509           }
 510         }
 511         Node* fld_node = mcall->in(first_ind);
 512         if (iklass != nullptr) {
 513           st->print(" [");
 514           iklass->nonstatic_field_at(0)->print_name_on(st);
 515           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 516         } else {
 517           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 518         }
 519         for (uint j = 1; j < nf; j++) {
 520           fld_node = mcall->in(first_ind+j);
 521           if (iklass != nullptr) {
 522             st->print(", [");
 523             iklass->nonstatic_field_at(j)->print_name_on(st);
 524             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 525           } else {
 526             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 527           }
 528         }
 529       }
 530       st->print(" }");
 531     }
 532   }
 533   st->cr();
 534   if (caller() != nullptr) caller()->format(regalloc, n, st);
 535 }
 536 
 537 
 538 void JVMState::dump_spec(outputStream *st) const {
 539   if (_method != nullptr) {
 540     bool printed = false;
 541     if (!Verbose) {
 542       // The JVMS dumps make really, really long lines.
 543       // Take out the most boring parts, which are the package prefixes.
 544       char buf[500];
 545       stringStream namest(buf, sizeof(buf));
 546       _method->print_short_name(&namest);
 547       if (namest.count() < sizeof(buf)) {
 548         const char* name = namest.base();
 549         if (name[0] == ' ')  ++name;
 550         const char* endcn = strchr(name, ':');  // end of class name
 551         if (endcn == nullptr)  endcn = strchr(name, '(');
 552         if (endcn == nullptr)  endcn = name + strlen(name);
 553         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 554           --endcn;
 555         st->print(" %s", endcn);
 556         printed = true;
 557       }
 558     }
 559     print_method_with_lineno(st, !printed);
 560     if(_reexecute == Reexecute_True)
 561       st->print(" reexecute");
 562   } else {
 563     st->print(" runtime stub");
 564   }
 565   if (caller() != nullptr)  caller()->dump_spec(st);
 566 }
 567 
 568 
 569 void JVMState::dump_on(outputStream* st) const {
 570   bool print_map = _map && !((uintptr_t)_map & 1) &&
 571                   ((caller() == nullptr) || (caller()->map() != _map));
 572   if (print_map) {
 573     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 574       Node* ex = _map->in(_map->req());  // _map->next_exception()
 575       // skip the first one; it's already being printed
 576       while (ex != nullptr && ex->len() > ex->req()) {
 577         ex = ex->in(ex->req());  // ex->next_exception()
 578         ex->dump(1);
 579       }
 580     }
 581     _map->dump(Verbose ? 2 : 1);
 582   }
 583   if (caller() != nullptr) {
 584     caller()->dump_on(st);
 585   }
 586   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 587              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 588   if (_method == nullptr) {
 589     st->print_cr("(none)");
 590   } else {
 591     _method->print_name(st);
 592     st->cr();
 593     if (bci() >= 0 && bci() < _method->code_size()) {
 594       st->print("    bc: ");
 595       _method->print_codes_on(bci(), bci()+1, st);
 596     }
 597   }
 598 }
 599 
 600 // Extra way to dump a jvms from the debugger,
 601 // to avoid a bug with C++ member function calls.
 602 void dump_jvms(JVMState* jvms) {
 603   jvms->dump();
 604 }
 605 #endif
 606 
 607 //--------------------------clone_shallow--------------------------------------
 608 JVMState* JVMState::clone_shallow(Compile* C) const {
 609   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 610   n->set_bci(_bci);
 611   n->_reexecute = _reexecute;
 612   n->set_locoff(_locoff);
 613   n->set_stkoff(_stkoff);
 614   n->set_monoff(_monoff);
 615   n->set_scloff(_scloff);
 616   n->set_endoff(_endoff);
 617   n->set_sp(_sp);
 618   n->set_map(_map);
 619   n->set_receiver_info(_receiver_info);
 620   return n;
 621 }
 622 
 623 //---------------------------clone_deep----------------------------------------
 624 JVMState* JVMState::clone_deep(Compile* C) const {
 625   JVMState* n = clone_shallow(C);
 626   for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
 627     p->_caller = p->_caller->clone_shallow(C);
 628   }
 629   assert(n->depth() == depth(), "sanity");
 630   assert(n->debug_depth() == debug_depth(), "sanity");
 631   return n;
 632 }
 633 
 634 /**
 635  * Reset map for all callers
 636  */
 637 void JVMState::set_map_deep(SafePointNode* map) {
 638   for (JVMState* p = this; p != nullptr; p = p->_caller) {
 639     p->set_map(map);
 640   }
 641 }
 642 
 643 // unlike set_map(), this is two-way setting.
 644 void JVMState::bind_map(SafePointNode* map) {
 645   set_map(map);
 646   _map->set_jvms(this);
 647 }
 648 
 649 // Adapt offsets in in-array after adding or removing an edge.
 650 // Prerequisite is that the JVMState is used by only one node.
 651 void JVMState::adapt_position(int delta) {
 652   for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
 653     jvms->set_locoff(jvms->locoff() + delta);
 654     jvms->set_stkoff(jvms->stkoff() + delta);
 655     jvms->set_monoff(jvms->monoff() + delta);
 656     jvms->set_scloff(jvms->scloff() + delta);
 657     jvms->set_endoff(jvms->endoff() + delta);
 658   }
 659 }
 660 
 661 // Mirror the stack size calculation in the deopt code
 662 // How much stack space would we need at this point in the program in
 663 // case of deoptimization?
 664 int JVMState::interpreter_frame_size() const {
 665   const JVMState* jvms = this;
 666   int size = 0;
 667   int callee_parameters = 0;
 668   int callee_locals = 0;
 669   int extra_args = method()->max_stack() - stk_size();
 670 
 671   while (jvms != nullptr) {
 672     int locks = jvms->nof_monitors();
 673     int temps = jvms->stk_size();
 674     bool is_top_frame = (jvms == this);
 675     ciMethod* method = jvms->method();
 676 
 677     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 678                                                                  temps + callee_parameters,
 679                                                                  extra_args,
 680                                                                  locks,
 681                                                                  callee_parameters,
 682                                                                  callee_locals,
 683                                                                  is_top_frame);
 684     size += frame_size;
 685 
 686     callee_parameters = method->size_of_parameters();
 687     callee_locals = method->max_locals();
 688     extra_args = 0;
 689     jvms = jvms->caller();
 690   }
 691   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 692 }
 693 
 694 // Compute receiver info for a compiled lambda form at call site.
 695 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const {
 696   assert(callee != nullptr && callee->is_compiled_lambda_form(), "");
 697   if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker
 698     Node* recv = map()->argument(this, 0);
 699     assert(recv != nullptr, "");
 700     const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr();
 701     if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) {
 702       return recv_toop->const_oop()->as_instance();
 703     }
 704   }
 705   return nullptr;
 706 }
 707 
 708 //=============================================================================
 709 bool CallNode::cmp( const Node &n ) const
 710 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 711 #ifndef PRODUCT
 712 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
 713   // Dump the required inputs, enclosed in '(' and ')'
 714   uint i;                       // Exit value of loop
 715   for (i = 0; i < req(); i++) {    // For all required inputs
 716     if (i == TypeFunc::Parms) st->print("(");
 717     Node* p = in(i);
 718     if (p != nullptr) {
 719       p->dump_idx(false, st, dc);
 720       st->print(" ");
 721     } else {
 722       st->print("_ ");
 723     }
 724   }
 725   st->print(")");
 726 }
 727 
 728 void CallNode::dump_spec(outputStream *st) const {
 729   st->print(" ");
 730   if (tf() != nullptr)  tf()->dump_on(st);
 731   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 732   if (jvms() != nullptr)  jvms()->dump_spec(st);
 733 }
 734 
 735 void AllocateNode::dump_spec(outputStream* st) const {
 736   st->print(" ");
 737   if (tf() != nullptr) {
 738     tf()->dump_on(st);
 739   }
 740   if (_cnt != COUNT_UNKNOWN) {
 741     st->print(" C=%f", _cnt);
 742   }
 743   const Node* const klass_node = in(KlassNode);
 744   if (klass_node != nullptr) {
 745     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 746 
 747     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 748       st->print(" allocationKlass:");
 749       klass_ptr->exact_klass()->print_name_on(st);
 750     }
 751   }
 752   if (jvms() != nullptr) {
 753     jvms()->dump_spec(st);
 754   }
 755 }
 756 #endif
 757 
 758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 759 const Type* CallNode::Value(PhaseGVN* phase) const {
 760   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 761     return Type::TOP;
 762   }
 763   return tf()->range_cc();
 764 }
 765 
 766 //------------------------------calling_convention-----------------------------
 767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 768   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 769     // The call to that stub is a special case: its inputs are
 770     // multiple values returned from a call and so it should follow
 771     // the return convention.
 772     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 773     return;
 774   }
 775   // Use the standard compiler calling convention
 776   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 777 }
 778 
 779 
 780 //------------------------------match------------------------------------------
 781 // Construct projections for control, I/O, memory-fields, ..., and
 782 // return result(s) along with their RegMask info
 783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 784   uint con = proj->_con;
 785   const TypeTuple* range_cc = tf()->range_cc();
 786   if (con >= TypeFunc::Parms) {
 787     if (tf()->returns_inline_type_as_fields()) {
 788       // The call returns multiple values (inline type fields): we
 789       // create one projection per returned value.
 790       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 791       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 792       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 793     } else {
 794       if (con == TypeFunc::Parms) {
 795         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 796         OptoRegPair regs = Opcode() == Op_CallLeafVector
 797           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 798           : match->c_return_value(ideal_reg);
 799         RegMask rm = RegMask(regs.first());
 800 
 801         if (Opcode() == Op_CallLeafVector) {
 802           // If the return is in vector, compute appropriate regmask taking into account the whole range
 803           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 804             if(OptoReg::is_valid(regs.second())) {
 805               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 806                 rm.insert(r);
 807               }
 808             }
 809           }
 810         }
 811 
 812         if (OptoReg::is_valid(regs.second())) {
 813           rm.insert(regs.second());
 814         }
 815         return new MachProjNode(this,con,rm,ideal_reg);
 816       } else {
 817         assert(con == TypeFunc::Parms+1, "only one return value");
 818         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 819         return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
 820       }
 821     }
 822   }
 823 
 824   switch (con) {
 825   case TypeFunc::Control:
 826   case TypeFunc::I_O:
 827   case TypeFunc::Memory:
 828     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 829 
 830   case TypeFunc::ReturnAdr:
 831   case TypeFunc::FramePtr:
 832   default:
 833     ShouldNotReachHere();
 834   }
 835   return nullptr;
 836 }
 837 
 838 // Do we Match on this edge index or not?  Match no edges
 839 uint CallNode::match_edge(uint idx) const {
 840   return 0;
 841 }
 842 
 843 //
 844 // Determine whether the call could modify the field of the specified
 845 // instance at the specified offset.
 846 //
 847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 848   assert((t_oop != nullptr), "sanity");
 849   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 850     const TypeTuple* args = _tf->domain_sig();
 851     Node* dest = nullptr;
 852     // Stubs that can be called once an ArrayCopyNode is expanded have
 853     // different signatures. Look for the second pointer argument,
 854     // that is the destination of the copy.
 855     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 856       if (args->field_at(i)->isa_ptr()) {
 857         j++;
 858         if (j == 2) {
 859           dest = in(i);
 860           break;
 861         }
 862       }
 863     }
 864     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 865     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 866       return true;
 867     }
 868     return false;
 869   }
 870   if (t_oop->is_known_instance()) {
 871     // The instance_id is set only for scalar-replaceable allocations which
 872     // are not passed as arguments according to Escape Analysis.
 873     return false;
 874   }
 875   if (t_oop->is_ptr_to_boxed_value()) {
 876     ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
 877     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 878       // Skip unrelated boxing methods.
 879       Node* proj = proj_out_or_null(TypeFunc::Parms);
 880       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 881         return false;
 882       }
 883     }
 884     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 885       ciMethod* meth = as_CallJava()->method();
 886       if (meth->is_getter()) {
 887         return false;
 888       }
 889       // May modify (by reflection) if an boxing object is passed
 890       // as argument or returned.
 891       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 892       if (proj != nullptr) {
 893         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 894         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 895                                    (inst_t->instance_klass() == boxing_klass))) {
 896           return true;
 897         }
 898       }
 899       const TypeTuple* d = tf()->domain_cc();
 900       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 901         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 902         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 903                                  (inst_t->instance_klass() == boxing_klass))) {
 904           return true;
 905         }
 906       }
 907       return false;
 908     }
 909   }
 910   return true;
 911 }
 912 
 913 // Does this call have a direct reference to n other than debug information?
 914 bool CallNode::has_non_debug_use(Node* n) {
 915   const TypeTuple* d = tf()->domain_cc();
 916   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 917     if (in(i) == n) {
 918       return true;
 919     }
 920   }
 921   return false;
 922 }
 923 
 924 bool CallNode::has_debug_use(Node* n) {
 925   if (jvms() != nullptr) {
 926     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 927       if (in(i) == n) {
 928         return true;
 929       }
 930     }
 931   }
 932   return false;
 933 }
 934 
 935 // Returns the unique CheckCastPP of a call
 936 // or 'this' if there are several CheckCastPP or unexpected uses
 937 // or returns null if there is no one.
 938 Node *CallNode::result_cast() {
 939   Node *cast = nullptr;
 940 
 941   Node *p = proj_out_or_null(TypeFunc::Parms);
 942   if (p == nullptr)
 943     return nullptr;
 944 
 945   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 946     Node *use = p->fast_out(i);
 947     if (use->is_CheckCastPP()) {
 948       if (cast != nullptr) {
 949         return this;  // more than 1 CheckCastPP
 950       }
 951       cast = use;
 952     } else if (!use->is_Initialize() &&
 953                !use->is_AddP() &&
 954                use->Opcode() != Op_MemBarStoreStore) {
 955       // Expected uses are restricted to a CheckCastPP, an Initialize
 956       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 957       // encounter any other use (a Phi node can be seen in rare
 958       // cases) return this to prevent incorrect optimizations.
 959       return this;
 960     }
 961   }
 962   return cast;
 963 }
 964 
 965 
 966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 967   uint max_res = TypeFunc::Parms-1;
 968   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 969     ProjNode *pn = fast_out(i)->as_Proj();
 970     max_res = MAX2(max_res, pn->_con);
 971   }
 972 
 973   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 974 
 975   uint projs_size = sizeof(CallProjections);
 976   if (max_res > TypeFunc::Parms) {
 977     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 978   }
 979   char* projs_storage = resource_allocate_bytes(projs_size);
 980   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 981 
 982   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 983     ProjNode *pn = fast_out(i)->as_Proj();
 984     if (pn->outcnt() == 0) continue;
 985     switch (pn->_con) {
 986     case TypeFunc::Control:
 987       {
 988         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 989         projs->fallthrough_proj = pn;
 990         const Node* cn = pn->unique_ctrl_out_or_null();
 991         if (cn != nullptr && cn->is_Catch()) {
 992           ProjNode *cpn = nullptr;
 993           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 994             cpn = cn->fast_out(k)->as_Proj();
 995             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 996             if (cpn->_con == CatchProjNode::fall_through_index)
 997               projs->fallthrough_catchproj = cpn;
 998             else {
 999               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000               projs->catchall_catchproj = cpn;
1001             }
1002           }
1003         }
1004         break;
1005       }
1006     case TypeFunc::I_O:
1007       if (pn->_is_io_use)
1008         projs->catchall_ioproj = pn;
1009       else
1010         projs->fallthrough_ioproj = pn;
1011       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012         Node* e = pn->out(j);
1013         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014           assert(projs->exobj == nullptr, "only one");
1015           projs->exobj = e;
1016         }
1017       }
1018       break;
1019     case TypeFunc::Memory:
1020       if (pn->_is_io_use)
1021         projs->catchall_memproj = pn;
1022       else
1023         projs->fallthrough_memproj = pn;
1024       break;
1025     case TypeFunc::Parms:
1026       projs->resproj[0] = pn;
1027       break;
1028     default:
1029       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031       break;
1032     }
1033   }
1034 
1035   // The resproj may not exist because the result could be ignored
1036   // and the exception object may not exist if an exception handler
1037   // swallows the exception but all the other must exist and be found.
1038   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1040   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1042   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1043   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1044   if (separate_io_proj) {
1045     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1046     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1047   }
1048   return projs;
1049 }
1050 
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053   // Validate attached generator
1054   CallGenerator* cg = generator();
1055   if (cg != nullptr) {
1056     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1057            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058   }
1059 #endif // ASSERT
1060   return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062 
1063 bool CallNode::is_call_to_arraycopystub() const {
1064   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065     return true;
1066   }
1067   return false;
1068 }
1069 
1070 bool CallNode::is_call_to_multianewarray_stub() const {
1071   if (_name != nullptr &&
1072       strstr(_name, "multianewarray") != nullptr &&
1073       strstr(_name, "C2 runtime") != nullptr) {
1074     return true;
1075   }
1076   return false;
1077 }
1078 
1079 //=============================================================================
1080 uint CallJavaNode::size_of() const { return sizeof(*this); }
1081 bool CallJavaNode::cmp( const Node &n ) const {
1082   CallJavaNode &call = (CallJavaNode&)n;
1083   return CallNode::cmp(call) && _method == call._method &&
1084          _override_symbolic_info == call._override_symbolic_info;
1085 }
1086 
1087 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1088   // Copy debug information and adjust JVMState information
1089   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1090   uint new_dbg_start = tf()->domain_sig()->cnt();
1091   int jvms_adj  = new_dbg_start - old_dbg_start;
1092   assert (new_dbg_start == req(), "argument count mismatch");
1093   Compile* C = phase->C;
1094 
1095   // SafePointScalarObject node could be referenced several times in debug info.
1096   // Use Dict to record cloned nodes.
1097   Dict* sosn_map = new Dict(cmpkey,hashkey);
1098   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1099     Node* old_in = sfpt->in(i);
1100     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1101     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1102       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1103       bool new_node;
1104       Node* new_in = old_sosn->clone(sosn_map, new_node);
1105       if (new_node) { // New node?
1106         new_in->set_req(0, C->root()); // reset control edge
1107         new_in = phase->transform(new_in); // Register new node.
1108       }
1109       old_in = new_in;
1110     }
1111     add_req(old_in);
1112   }
1113 
1114   // JVMS may be shared so clone it before we modify it
1115   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1116   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1117     jvms->set_map(this);
1118     jvms->set_locoff(jvms->locoff()+jvms_adj);
1119     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1120     jvms->set_monoff(jvms->monoff()+jvms_adj);
1121     jvms->set_scloff(jvms->scloff()+jvms_adj);
1122     jvms->set_endoff(jvms->endoff()+jvms_adj);
1123   }
1124 }
1125 
1126 #ifdef ASSERT
1127 bool CallJavaNode::validate_symbolic_info() const {
1128   if (method() == nullptr) {
1129     return true; // call into runtime or uncommon trap
1130   }
1131   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1132   if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1133     return true;
1134   }
1135   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1136   ciMethod* callee = method();
1137   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1138     assert(override_symbolic_info(), "should be set");
1139   }
1140   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1141   return true;
1142 }
1143 #endif
1144 
1145 #ifndef PRODUCT
1146 void CallJavaNode::dump_spec(outputStream* st) const {
1147   if( _method ) _method->print_short_name(st);
1148   CallNode::dump_spec(st);
1149 }
1150 
1151 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1152   if (_method) {
1153     _method->print_short_name(st);
1154   } else {
1155     st->print("<?>");
1156   }
1157 }
1158 #endif
1159 
1160 void CallJavaNode::register_for_late_inline() {
1161   if (generator() != nullptr) {
1162     Compile::current()->prepend_late_inline(generator());
1163     set_generator(nullptr);
1164   } else {
1165     assert(false, "repeated inline attempt");
1166   }
1167 }
1168 
1169 //=============================================================================
1170 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1171 bool CallStaticJavaNode::cmp( const Node &n ) const {
1172   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1173   return CallJavaNode::cmp(call);
1174 }
1175 
1176 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1177   if (can_reshape && uncommon_trap_request() != 0) {
1178     PhaseIterGVN* igvn = phase->is_IterGVN();
1179     if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1180       if (!control()->is_Region()) {
1181         igvn->replace_input_of(this, 0, phase->C->top());
1182       }
1183       return this;
1184     }
1185   }
1186 
1187   // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1188   if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1189       (method()->name() == ciSymbols::isSubstitutable_name())) {
1190     Node* left = in(TypeFunc::Parms);
1191     Node* right = in(TypeFunc::Parms + 1);
1192     if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1193       if (!left->is_InlineType()) {
1194         swap(left, right);
1195       }
1196       InlineTypeNode* vt = left->as_InlineType();
1197 
1198       // Check if the field layout can be optimized
1199       if (vt->can_emit_substitutability_check(right)) {
1200         PhaseIterGVN* igvn = phase->is_IterGVN();
1201 
1202         Node* ctrl = control();
1203         RegionNode* region = new RegionNode(1);
1204         Node* phi = new PhiNode(region, TypeInt::POS);
1205 
1206         Node* base = right;
1207         Node* ptr = right;
1208         if (!base->is_InlineType()) {
1209           // Parse time checks guarantee that both operands are non-null and have the same type
1210           base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1211           ptr = base;
1212         }
1213         // Emit IR for field-wise comparison
1214         vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1215 
1216         // Equals
1217         region->add_req(ctrl);
1218         phi->add_req(igvn->intcon(1));
1219 
1220         ctrl = igvn->register_new_node_with_optimizer(region);
1221         Node* res = igvn->register_new_node_with_optimizer(phi);
1222 
1223         // Kill exception projections and return a tuple that will replace the call
1224         CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1225         if (projs->fallthrough_catchproj != nullptr) {
1226           igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1227         }
1228         if (projs->catchall_memproj != nullptr) {
1229           igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1230         }
1231         if (projs->catchall_ioproj != nullptr) {
1232           igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1233         }
1234         if (projs->catchall_catchproj != nullptr) {
1235           igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1236         }
1237         return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1238       }
1239     }
1240   }
1241 
1242   CallGenerator* cg = generator();
1243   if (can_reshape && cg != nullptr) {
1244     if (cg->is_mh_late_inline()) {
1245       assert(IncrementalInlineMH, "required");
1246       assert(cg->call_node() == this, "mismatch");
1247       assert(cg->method()->is_method_handle_intrinsic(), "required");
1248 
1249       // Check whether this MH handle call becomes a candidate for inlining.
1250       ciMethod* callee = cg->method();
1251       vmIntrinsics::ID iid = callee->intrinsic_id();
1252       if (iid == vmIntrinsics::_invokeBasic) {
1253         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1254           register_for_late_inline();
1255         }
1256       } else if (iid == vmIntrinsics::_linkToNative) {
1257         // never retry
1258       } else {
1259         assert(callee->has_member_arg(), "wrong type of call?");
1260         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1261           register_for_late_inline();
1262         }
1263       }
1264     } else {
1265       assert(IncrementalInline, "required");
1266       assert(!cg->method()->is_method_handle_intrinsic(), "required");
1267       if (phase->C->print_inlining()) {
1268         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1269           "static call node changed: trying again");
1270       }
1271       register_for_late_inline();
1272     }
1273   }
1274   return CallNode::Ideal(phase, can_reshape);
1275 }
1276 
1277 //----------------------------is_uncommon_trap----------------------------
1278 // Returns true if this is an uncommon trap.
1279 bool CallStaticJavaNode::is_uncommon_trap() const {
1280   return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1281 }
1282 
1283 //----------------------------uncommon_trap_request----------------------------
1284 // If this is an uncommon trap, return the request code, else zero.
1285 int CallStaticJavaNode::uncommon_trap_request() const {
1286   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1287 }
1288 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1289 #ifndef PRODUCT
1290   if (!(call->req() > TypeFunc::Parms &&
1291         call->in(TypeFunc::Parms) != nullptr &&
1292         call->in(TypeFunc::Parms)->is_Con() &&
1293         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1294     assert(in_dump() != 0, "OK if dumping");
1295     tty->print("[bad uncommon trap]");
1296     return 0;
1297   }
1298 #endif
1299   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1300 }
1301 
1302 // Split if can cause the flat array branch of an array load with unknown type (see
1303 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1304 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1305 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1306   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1307     return false;
1308   }
1309   if (ctl->is_Region()) {
1310     bool res = false;
1311     for (uint i = 1; i < ctl->req(); i++) {
1312       MergeMemNode* mm = mem->clone()->as_MergeMem();
1313       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1314         Node* m = mms.memory();
1315         if (m->is_Phi() && m->in(0) == ctl) {
1316           mms.set_memory(m->in(i));
1317         }
1318       }
1319       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1320         res = true;
1321         if (!ctl->in(i)->is_Region()) {
1322           igvn->replace_input_of(ctl, i, igvn->C->top());
1323         }
1324       }
1325       igvn->remove_dead_node(mm);
1326     }
1327     return res;
1328   }
1329   // Verify the control flow is ok
1330   Node* call = ctl;
1331   MemBarNode* membar = nullptr;
1332   for (;;) {
1333     if (call == nullptr || call->is_top()) {
1334       return false;
1335     }
1336     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1337       call = call->in(0);
1338     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1339                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1340       // If there is no explicit flat array accesses in the compilation unit, there would be no
1341       // membar here
1342       if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1343         membar = call->in(0)->in(0)->as_MemBar();
1344       }
1345       break;
1346     } else {
1347       return false;
1348     }
1349   }
1350 
1351   JVMState* jvms = call->jvms();
1352   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1353     return false;
1354   }
1355 
1356   Node* call_mem = call->in(TypeFunc::Memory);
1357   if (call_mem == nullptr || call_mem->is_top()) {
1358     return false;
1359   }
1360   if (!call_mem->is_MergeMem()) {
1361     call_mem = MergeMemNode::make(call_mem);
1362     igvn->register_new_node_with_optimizer(call_mem);
1363   }
1364 
1365   // Verify that there's no unexpected side effect
1366   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1367     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1368     Node* m2 = mms2.memory2();
1369 
1370     for (uint i = 0; i < 100; i++) {
1371       if (m1 == m2) {
1372         break;
1373       } else if (m1->is_Proj()) {
1374         m1 = m1->in(0);
1375       } else if (m1->is_MemBar()) {
1376         m1 = m1->in(TypeFunc::Memory);
1377       } else if (m1->Opcode() == Op_CallStaticJava &&
1378                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1379         if (m1 != call) {
1380           return false;
1381         }
1382         break;
1383       } else if (m1->is_MergeMem()) {
1384         MergeMemNode* mm = m1->as_MergeMem();
1385         int idx = mms2.alias_idx();
1386         if (idx == Compile::AliasIdxBot) {
1387           m1 = mm->base_memory();
1388         } else {
1389           m1 = mm->memory_at(idx);
1390         }
1391       } else {
1392         return false;
1393       }
1394     }
1395   }
1396   if (call_mem->outcnt() == 0) {
1397     igvn->remove_dead_node(call_mem);
1398   }
1399 
1400   // Remove membar preceding the call
1401   if (membar != nullptr) {
1402     membar->remove(igvn);
1403   }
1404 
1405   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1406   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1407   unc->init_req(TypeFunc::Control, call->in(0));
1408   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1409   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1410   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1411   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1412   unc->init_req(TypeFunc::Parms+0, unc_arg);
1413   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1414   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1415 
1416   // Replace the call with an uncommon trap
1417   igvn->replace_input_of(call, 0, igvn->C->top());
1418 
1419   igvn->register_new_node_with_optimizer(unc);
1420 
1421   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1422   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1423   igvn->add_input_to(igvn->C->root(), halt);
1424 
1425   return true;
1426 }
1427 
1428 
1429 #ifndef PRODUCT
1430 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1431   st->print("# Static ");
1432   if (_name != nullptr) {
1433     st->print("%s", _name);
1434     int trap_req = uncommon_trap_request();
1435     if (trap_req != 0) {
1436       char buf[100];
1437       st->print("(%s)",
1438                  Deoptimization::format_trap_request(buf, sizeof(buf),
1439                                                      trap_req));
1440     }
1441     st->print(" ");
1442   }
1443   CallJavaNode::dump_spec(st);
1444 }
1445 
1446 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1447   if (_method) {
1448     _method->print_short_name(st);
1449   } else if (_name) {
1450     st->print("%s", _name);
1451   } else {
1452     st->print("<?>");
1453   }
1454 }
1455 #endif
1456 
1457 //=============================================================================
1458 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1459 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1460   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1461   return CallJavaNode::cmp(call);
1462 }
1463 
1464 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1465   CallGenerator* cg = generator();
1466   if (can_reshape && cg != nullptr) {
1467     if (cg->is_virtual_late_inline()) {
1468       assert(IncrementalInlineVirtual, "required");
1469       assert(cg->call_node() == this, "mismatch");
1470 
1471       if (cg->callee_method() == nullptr) {
1472         // Recover symbolic info for method resolution.
1473         ciMethod* caller = jvms()->method();
1474         ciBytecodeStream iter(caller);
1475         iter.force_bci(jvms()->bci());
1476 
1477         bool             not_used1;
1478         ciSignature*     not_used2;
1479         ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1480         ciKlass*         holder       = iter.get_declared_method_holder();
1481         if (orig_callee->is_method_handle_intrinsic()) {
1482           assert(_override_symbolic_info, "required");
1483           orig_callee = method();
1484           holder = method()->holder();
1485         }
1486 
1487         ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1488 
1489         Node* receiver_node = in(TypeFunc::Parms);
1490         const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1491 
1492         int  not_used3;
1493         bool call_does_dispatch;
1494         ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1495                                                            call_does_dispatch, not_used3);  // out-parameters
1496         if (!call_does_dispatch) {
1497           cg->set_callee_method(callee);
1498         }
1499       }
1500       if (cg->callee_method() != nullptr) {
1501         // Register for late inlining.
1502         register_for_late_inline(); // MH late inlining prepends to the list, so do the same
1503       }
1504     } else {
1505       assert(IncrementalInline, "required");
1506       if (phase->C->print_inlining()) {
1507         phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE,
1508           "dynamic call node changed: trying again");
1509       }
1510       register_for_late_inline();
1511     }
1512   }
1513   return CallNode::Ideal(phase, can_reshape);
1514 }
1515 
1516 #ifndef PRODUCT
1517 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1518   st->print("# Dynamic ");
1519   CallJavaNode::dump_spec(st);
1520 }
1521 #endif
1522 
1523 //=============================================================================
1524 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1525 bool CallRuntimeNode::cmp( const Node &n ) const {
1526   CallRuntimeNode &call = (CallRuntimeNode&)n;
1527   return CallNode::cmp(call) && !strcmp(_name,call._name);
1528 }
1529 #ifndef PRODUCT
1530 void CallRuntimeNode::dump_spec(outputStream *st) const {
1531   st->print("# ");
1532   st->print("%s", _name);
1533   CallNode::dump_spec(st);
1534 }
1535 #endif
1536 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1537 bool CallLeafVectorNode::cmp( const Node &n ) const {
1538   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1539   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1540 }
1541 
1542 //------------------------------calling_convention-----------------------------
1543 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1544   if (_entry_point == nullptr) {
1545     // The call to that stub is a special case: its inputs are
1546     // multiple values returned from a call and so it should follow
1547     // the return convention.
1548     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1549     return;
1550   }
1551   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1552 }
1553 
1554 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1555 #ifdef ASSERT
1556   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1557          "return vector size must match");
1558   const TypeTuple* d = tf()->domain_sig();
1559   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1560     Node* arg = in(i);
1561     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1562            "vector argument size must match");
1563   }
1564 #endif
1565 
1566   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1567 }
1568 
1569 //=============================================================================
1570 //------------------------------calling_convention-----------------------------
1571 
1572 
1573 //=============================================================================
1574 bool CallLeafPureNode::is_unused() const {
1575   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1576 }
1577 
1578 bool CallLeafPureNode::is_dead() const {
1579   return proj_out_or_null(TypeFunc::Control) == nullptr;
1580 }
1581 
1582 /* We make a tuple of the global input state + TOP for the output values.
1583  * We use this to delete a pure function that is not used: by replacing the call with
1584  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1585  * pure call, so jumping over it, and effectively, removing the call from the graph.
1586  * This avoids doing the graph surgery manually, but leaves that to IGVN
1587  * that is specialized for doing that right. We need also tuple components for output
1588  * values of the function to respect the return arity, and in case there is a projection
1589  * that would pick an output (which shouldn't happen at the moment).
1590  */
1591 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1592   // Transparently propagate input state but parameters
1593   TupleNode* tuple = TupleNode::make(
1594       tf()->range_cc(),
1595       in(TypeFunc::Control),
1596       in(TypeFunc::I_O),
1597       in(TypeFunc::Memory),
1598       in(TypeFunc::FramePtr),
1599       in(TypeFunc::ReturnAdr));
1600 
1601   // And add TOPs for the return values
1602   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1603     tuple->set_req(i, C->top());
1604   }
1605 
1606   return tuple;
1607 }
1608 
1609 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1610   if (is_dead()) {
1611     return nullptr;
1612   }
1613 
1614   // We need to wait until IGVN because during parsing, usages might still be missing
1615   // and we would remove the call immediately.
1616   if (can_reshape && is_unused()) {
1617     // The result is not used. We remove the call by replacing it with a tuple, that
1618     // is later disintegrated by the projections.
1619     return make_tuple_of_input_state_and_top_return_values(phase->C);
1620   }
1621 
1622   return CallRuntimeNode::Ideal(phase, can_reshape);
1623 }
1624 
1625 #ifndef PRODUCT
1626 void CallLeafNode::dump_spec(outputStream *st) const {
1627   st->print("# ");
1628   st->print("%s", _name);
1629   CallNode::dump_spec(st);
1630 }
1631 #endif
1632 
1633 uint CallLeafNoFPNode::match_edge(uint idx) const {
1634   // Null entry point is a special case for which the target is in a
1635   // register. Need to match that edge.
1636   return entry_point() == nullptr && idx == TypeFunc::Parms;
1637 }
1638 
1639 //=============================================================================
1640 
1641 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1642   assert(verify_jvms(jvms), "jvms must match");
1643   int loc = jvms->locoff() + idx;
1644   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1645     // If current local idx is top then local idx - 1 could
1646     // be a long/double that needs to be killed since top could
1647     // represent the 2nd half of the long/double.
1648     uint ideal = in(loc -1)->ideal_reg();
1649     if (ideal == Op_RegD || ideal == Op_RegL) {
1650       // set other (low index) half to top
1651       set_req(loc - 1, in(loc));
1652     }
1653   }
1654   set_req(loc, c);
1655 }
1656 
1657 uint SafePointNode::size_of() const { return sizeof(*this); }
1658 bool SafePointNode::cmp( const Node &n ) const {
1659   return (&n == this);          // Always fail except on self
1660 }
1661 
1662 //-------------------------set_next_exception----------------------------------
1663 void SafePointNode::set_next_exception(SafePointNode* n) {
1664   assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1665   if (len() == req()) {
1666     if (n != nullptr)  add_prec(n);
1667   } else {
1668     set_prec(req(), n);
1669   }
1670 }
1671 
1672 
1673 //----------------------------next_exception-----------------------------------
1674 SafePointNode* SafePointNode::next_exception() const {
1675   if (len() == req()) {
1676     return nullptr;
1677   } else {
1678     Node* n = in(req());
1679     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1680     return (SafePointNode*) n;
1681   }
1682 }
1683 
1684 
1685 //------------------------------Ideal------------------------------------------
1686 // Skip over any collapsed Regions
1687 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1688   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1689   if (remove_dead_region(phase, can_reshape)) {
1690     return this;
1691   }
1692   // Scalarize inline types in safepoint debug info.
1693   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1694   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1695     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1696       Node* n = in(i)->uncast();
1697       if (n->is_InlineType()) {
1698         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1699       }
1700     }
1701   }
1702   return nullptr;
1703 }
1704 
1705 //------------------------------Identity---------------------------------------
1706 // Remove obviously duplicate safepoints
1707 Node* SafePointNode::Identity(PhaseGVN* phase) {
1708 
1709   // If you have back to back safepoints, remove one
1710   if (in(TypeFunc::Control)->is_SafePoint()) {
1711     Node* out_c = unique_ctrl_out_or_null();
1712     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1713     // outer loop's safepoint could confuse removal of the outer loop.
1714     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1715       return in(TypeFunc::Control);
1716     }
1717   }
1718 
1719   // Transforming long counted loops requires a safepoint node. Do not
1720   // eliminate a safepoint until loop opts are over.
1721   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1722     Node *n0 = in(0)->in(0);
1723     // Check if he is a call projection (except Leaf Call)
1724     if( n0->is_Catch() ) {
1725       n0 = n0->in(0)->in(0);
1726       assert( n0->is_Call(), "expect a call here" );
1727     }
1728     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1729       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1730       // If the loop dies, they will be removed together.
1731       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1732         return this;
1733       }
1734       // Useless Safepoint, so remove it
1735       return in(TypeFunc::Control);
1736     }
1737   }
1738 
1739   return this;
1740 }
1741 
1742 //------------------------------Value------------------------------------------
1743 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1744   if (phase->type(in(0)) == Type::TOP) {
1745     return Type::TOP;
1746   }
1747   if (in(0) == this) {
1748     return Type::TOP; // Dead infinite loop
1749   }
1750   return Type::CONTROL;
1751 }
1752 
1753 #ifndef PRODUCT
1754 void SafePointNode::dump_spec(outputStream *st) const {
1755   st->print(" SafePoint ");
1756   _replaced_nodes.dump(st);
1757 }
1758 #endif
1759 
1760 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1761   if (idx < TypeFunc::Parms) {
1762     return RegMask::EMPTY;
1763   }
1764   // Values outside the domain represent debug info
1765   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1766 }
1767 const RegMask &SafePointNode::out_RegMask() const {
1768   return RegMask::EMPTY;
1769 }
1770 
1771 
1772 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1773   assert((int)grow_by > 0, "sanity");
1774   int monoff = jvms->monoff();
1775   int scloff = jvms->scloff();
1776   int endoff = jvms->endoff();
1777   assert(endoff == (int)req(), "no other states or debug info after me");
1778   Node* top = Compile::current()->top();
1779   for (uint i = 0; i < grow_by; i++) {
1780     ins_req(monoff, top);
1781   }
1782   jvms->set_monoff(monoff + grow_by);
1783   jvms->set_scloff(scloff + grow_by);
1784   jvms->set_endoff(endoff + grow_by);
1785 }
1786 
1787 void SafePointNode::push_monitor(const FastLockNode *lock) {
1788   // Add a LockNode, which points to both the original BoxLockNode (the
1789   // stack space for the monitor) and the Object being locked.
1790   const int MonitorEdges = 2;
1791   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1792   assert(req() == jvms()->endoff(), "correct sizing");
1793   int nextmon = jvms()->scloff();
1794   ins_req(nextmon,   lock->box_node());
1795   ins_req(nextmon+1, lock->obj_node());
1796   jvms()->set_scloff(nextmon + MonitorEdges);
1797   jvms()->set_endoff(req());
1798 }
1799 
1800 void SafePointNode::pop_monitor() {
1801   // Delete last monitor from debug info
1802   DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors());
1803   const int MonitorEdges = 2;
1804   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1805   int scloff = jvms()->scloff();
1806   int endoff = jvms()->endoff();
1807   int new_scloff = scloff - MonitorEdges;
1808   int new_endoff = endoff - MonitorEdges;
1809   jvms()->set_scloff(new_scloff);
1810   jvms()->set_endoff(new_endoff);
1811   while (scloff > new_scloff)  del_req_ordered(--scloff);
1812   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1813 }
1814 
1815 Node *SafePointNode::peek_monitor_box() const {
1816   int mon = jvms()->nof_monitors() - 1;
1817   assert(mon >= 0, "must have a monitor");
1818   return monitor_box(jvms(), mon);
1819 }
1820 
1821 Node *SafePointNode::peek_monitor_obj() const {
1822   int mon = jvms()->nof_monitors() - 1;
1823   assert(mon >= 0, "must have a monitor");
1824   return monitor_obj(jvms(), mon);
1825 }
1826 
1827 Node* SafePointNode::peek_operand(uint off) const {
1828   assert(jvms()->sp() > 0, "must have an operand");
1829   assert(off < jvms()->sp(), "off is out-of-range");
1830   return stack(jvms(), jvms()->sp() - off - 1);
1831 }
1832 
1833 // Do we Match on this edge index or not?  Match no edges
1834 uint SafePointNode::match_edge(uint idx) const {
1835   return (TypeFunc::Parms == idx);
1836 }
1837 
1838 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1839   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1840   int nb = igvn->C->root()->find_prec_edge(this);
1841   if (nb != -1) {
1842     igvn->delete_precedence_of(igvn->C->root(), nb);
1843   }
1844 }
1845 
1846 //==============  SafePointScalarObjectNode  ==============
1847 
1848 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1849   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1850   _first_index(first_index),
1851   _depth(depth),
1852   _n_fields(n_fields),
1853   _alloc(alloc)
1854 {
1855 #ifdef ASSERT
1856   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1857     alloc->dump();
1858     assert(false, "unexpected call node");
1859   }
1860 #endif
1861   init_class_id(Class_SafePointScalarObject);
1862 }
1863 
1864 // Do not allow value-numbering for SafePointScalarObject node.
1865 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1866 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1867   return (&n == this); // Always fail except on self
1868 }
1869 
1870 uint SafePointScalarObjectNode::ideal_reg() const {
1871   return 0; // No matching to machine instruction
1872 }
1873 
1874 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1875   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1876 }
1877 
1878 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1879   return RegMask::EMPTY;
1880 }
1881 
1882 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1883   return 0;
1884 }
1885 
1886 SafePointScalarObjectNode*
1887 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1888   void* cached = (*sosn_map)[(void*)this];
1889   if (cached != nullptr) {
1890     new_node = false;
1891     return (SafePointScalarObjectNode*)cached;
1892   }
1893   new_node = true;
1894   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1895   sosn_map->Insert((void*)this, (void*)res);
1896   return res;
1897 }
1898 
1899 
1900 #ifndef PRODUCT
1901 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1902   st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1903 }
1904 #endif
1905 
1906 //==============  SafePointScalarMergeNode  ==============
1907 
1908 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1909   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1910   _merge_pointer_idx(merge_pointer_idx)
1911 {
1912   init_class_id(Class_SafePointScalarMerge);
1913 }
1914 
1915 // Do not allow value-numbering for SafePointScalarMerge node.
1916 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1917 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1918   return (&n == this); // Always fail except on self
1919 }
1920 
1921 uint SafePointScalarMergeNode::ideal_reg() const {
1922   return 0; // No matching to machine instruction
1923 }
1924 
1925 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1926   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1927 }
1928 
1929 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1930   return RegMask::EMPTY;
1931 }
1932 
1933 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1934   return 0;
1935 }
1936 
1937 SafePointScalarMergeNode*
1938 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1939   void* cached = (*sosn_map)[(void*)this];
1940   if (cached != nullptr) {
1941     new_node = false;
1942     return (SafePointScalarMergeNode*)cached;
1943   }
1944   new_node = true;
1945   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1946   sosn_map->Insert((void*)this, (void*)res);
1947   return res;
1948 }
1949 
1950 #ifndef PRODUCT
1951 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1952   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1953 }
1954 #endif
1955 
1956 //=============================================================================
1957 uint AllocateNode::size_of() const { return sizeof(*this); }
1958 
1959 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1960                            Node *ctrl, Node *mem, Node *abio,
1961                            Node *size, Node *klass_node,
1962                            Node* initial_test,
1963                            InlineTypeNode* inline_type_node)
1964   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1965 {
1966   init_class_id(Class_Allocate);
1967   init_flags(Flag_is_macro);
1968   _is_scalar_replaceable = false;
1969   _is_non_escaping = false;
1970   _is_allocation_MemBar_redundant = false;
1971   _larval = false;
1972   Node *topnode = C->top();
1973 
1974   init_req( TypeFunc::Control  , ctrl );
1975   init_req( TypeFunc::I_O      , abio );
1976   init_req( TypeFunc::Memory   , mem );
1977   init_req( TypeFunc::ReturnAdr, topnode );
1978   init_req( TypeFunc::FramePtr , topnode );
1979   init_req( AllocSize          , size);
1980   init_req( KlassNode          , klass_node);
1981   init_req( InitialTest        , initial_test);
1982   init_req( ALength            , topnode);
1983   init_req( ValidLengthTest    , topnode);
1984   init_req( InlineType     , inline_type_node);
1985   // DefaultValue defaults to nullptr
1986   // RawDefaultValue defaults to nullptr
1987   C->add_macro_node(this);
1988 }
1989 
1990 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1991 {
1992   assert(initializer != nullptr &&
1993          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1994          "unexpected initializer method");
1995   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1996   if (analyzer == nullptr) {
1997     return;
1998   }
1999 
2000   // Allocation node is first parameter in its initializer
2001   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
2002     _is_allocation_MemBar_redundant = true;
2003   }
2004 }
2005 
2006 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
2007   Node* mark_node = nullptr;
2008   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2009     Node* klass_node = in(AllocateNode::KlassNode);
2010     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2011     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2012     if (Arguments::is_valhalla_enabled()) {
2013       mark_node = phase->transform(mark_node);
2014       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2015       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2016     }
2017     return mark_node;
2018   } else {
2019     return phase->MakeConX(markWord::prototype().value());
2020   }
2021 }
2022 
2023 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2024 // CastII, if appropriate.  If we are not allowed to create new nodes, and
2025 // a CastII is appropriate, return null.
2026 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2027   Node *length = in(AllocateNode::ALength);
2028   assert(length != nullptr, "length is not null");
2029 
2030   const TypeInt* length_type = phase->find_int_type(length);
2031   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2032 
2033   if (ary_type != nullptr && length_type != nullptr) {
2034     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2035     if (narrow_length_type != length_type) {
2036       // Assert one of:
2037       //   - the narrow_length is 0
2038       //   - the narrow_length is not wider than length
2039       assert(narrow_length_type == TypeInt::ZERO ||
2040              (length_type->is_con() && narrow_length_type->is_con() &&
2041               (narrow_length_type->_hi <= length_type->_lo)) ||
2042              (narrow_length_type->_hi <= length_type->_hi &&
2043               narrow_length_type->_lo >= length_type->_lo),
2044              "narrow type must be narrower than length type");
2045 
2046       // Return null if new nodes are not allowed
2047       if (!allow_new_nodes) {
2048         return nullptr;
2049       }
2050       // Create a cast which is control dependent on the initialization to
2051       // propagate the fact that the array length must be positive.
2052       InitializeNode* init = initialization();
2053       if (init != nullptr) {
2054         length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
2055       }
2056     }
2057   }
2058 
2059   return length;
2060 }
2061 
2062 //=============================================================================
2063 const TypeFunc* LockNode::_lock_type_Type = nullptr;
2064 
2065 uint LockNode::size_of() const { return sizeof(*this); }
2066 
2067 // Redundant lock elimination
2068 //
2069 // There are various patterns of locking where we release and
2070 // immediately reacquire a lock in a piece of code where no operations
2071 // occur in between that would be observable.  In those cases we can
2072 // skip releasing and reacquiring the lock without violating any
2073 // fairness requirements.  Doing this around a loop could cause a lock
2074 // to be held for a very long time so we concentrate on non-looping
2075 // control flow.  We also require that the operations are fully
2076 // redundant meaning that we don't introduce new lock operations on
2077 // some paths so to be able to eliminate it on others ala PRE.  This
2078 // would probably require some more extensive graph manipulation to
2079 // guarantee that the memory edges were all handled correctly.
2080 //
2081 // Assuming p is a simple predicate which can't trap in any way and s
2082 // is a synchronized method consider this code:
2083 //
2084 //   s();
2085 //   if (p)
2086 //     s();
2087 //   else
2088 //     s();
2089 //   s();
2090 //
2091 // 1. The unlocks of the first call to s can be eliminated if the
2092 // locks inside the then and else branches are eliminated.
2093 //
2094 // 2. The unlocks of the then and else branches can be eliminated if
2095 // the lock of the final call to s is eliminated.
2096 //
2097 // Either of these cases subsumes the simple case of sequential control flow
2098 //
2099 // Additionally we can eliminate versions without the else case:
2100 //
2101 //   s();
2102 //   if (p)
2103 //     s();
2104 //   s();
2105 //
2106 // 3. In this case we eliminate the unlock of the first s, the lock
2107 // and unlock in the then case and the lock in the final s.
2108 //
2109 // Note also that in all these cases the then/else pieces don't have
2110 // to be trivial as long as they begin and end with synchronization
2111 // operations.
2112 //
2113 //   s();
2114 //   if (p)
2115 //     s();
2116 //     f();
2117 //     s();
2118 //   s();
2119 //
2120 // The code will work properly for this case, leaving in the unlock
2121 // before the call to f and the relock after it.
2122 //
2123 // A potentially interesting case which isn't handled here is when the
2124 // locking is partially redundant.
2125 //
2126 //   s();
2127 //   if (p)
2128 //     s();
2129 //
2130 // This could be eliminated putting unlocking on the else case and
2131 // eliminating the first unlock and the lock in the then side.
2132 // Alternatively the unlock could be moved out of the then side so it
2133 // was after the merge and the first unlock and second lock
2134 // eliminated.  This might require less manipulation of the memory
2135 // state to get correct.
2136 //
2137 // Additionally we might allow work between a unlock and lock before
2138 // giving up eliminating the locks.  The current code disallows any
2139 // conditional control flow between these operations.  A formulation
2140 // similar to partial redundancy elimination computing the
2141 // availability of unlocking and the anticipatability of locking at a
2142 // program point would allow detection of fully redundant locking with
2143 // some amount of work in between.  I'm not sure how often I really
2144 // think that would occur though.  Most of the cases I've seen
2145 // indicate it's likely non-trivial work would occur in between.
2146 // There may be other more complicated constructs where we could
2147 // eliminate locking but I haven't seen any others appear as hot or
2148 // interesting.
2149 //
2150 // Locking and unlocking have a canonical form in ideal that looks
2151 // roughly like this:
2152 //
2153 //              <obj>
2154 //                | \\------+
2155 //                |  \       \
2156 //                | BoxLock   \
2157 //                |  |   |     \
2158 //                |  |    \     \
2159 //                |  |   FastLock
2160 //                |  |   /
2161 //                |  |  /
2162 //                |  |  |
2163 //
2164 //               Lock
2165 //                |
2166 //            Proj #0
2167 //                |
2168 //            MembarAcquire
2169 //                |
2170 //            Proj #0
2171 //
2172 //            MembarRelease
2173 //                |
2174 //            Proj #0
2175 //                |
2176 //              Unlock
2177 //                |
2178 //            Proj #0
2179 //
2180 //
2181 // This code proceeds by processing Lock nodes during PhaseIterGVN
2182 // and searching back through its control for the proper code
2183 // patterns.  Once it finds a set of lock and unlock operations to
2184 // eliminate they are marked as eliminatable which causes the
2185 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2186 //
2187 //=============================================================================
2188 
2189 //
2190 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
2191 //   - copy regions.  (These may not have been optimized away yet.)
2192 //   - eliminated locking nodes
2193 //
2194 static Node *next_control(Node *ctrl) {
2195   if (ctrl == nullptr)
2196     return nullptr;
2197   while (1) {
2198     if (ctrl->is_Region()) {
2199       RegionNode *r = ctrl->as_Region();
2200       Node *n = r->is_copy();
2201       if (n == nullptr)
2202         break;  // hit a region, return it
2203       else
2204         ctrl = n;
2205     } else if (ctrl->is_Proj()) {
2206       Node *in0 = ctrl->in(0);
2207       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2208         ctrl = in0->in(0);
2209       } else {
2210         break;
2211       }
2212     } else {
2213       break; // found an interesting control
2214     }
2215   }
2216   return ctrl;
2217 }
2218 //
2219 // Given a control, see if it's the control projection of an Unlock which
2220 // operating on the same object as lock.
2221 //
2222 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2223                                             GrowableArray<AbstractLockNode*> &lock_ops) {
2224   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2225   if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2226     Node *n = ctrl_proj->in(0);
2227     if (n != nullptr && n->is_Unlock()) {
2228       UnlockNode *unlock = n->as_Unlock();
2229       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2230       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2231       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2232       if (lock_obj->eqv_uncast(unlock_obj) &&
2233           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2234           !unlock->is_eliminated()) {
2235         lock_ops.append(unlock);
2236         return true;
2237       }
2238     }
2239   }
2240   return false;
2241 }
2242 
2243 //
2244 // Find the lock matching an unlock.  Returns null if a safepoint
2245 // or complicated control is encountered first.
2246 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2247   LockNode *lock_result = nullptr;
2248   // find the matching lock, or an intervening safepoint
2249   Node *ctrl = next_control(unlock->in(0));
2250   while (1) {
2251     assert(ctrl != nullptr, "invalid control graph");
2252     assert(!ctrl->is_Start(), "missing lock for unlock");
2253     if (ctrl->is_top()) break;  // dead control path
2254     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2255     if (ctrl->is_SafePoint()) {
2256         break;  // found a safepoint (may be the lock we are searching for)
2257     } else if (ctrl->is_Region()) {
2258       // Check for a simple diamond pattern.  Punt on anything more complicated
2259       if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2260         Node *in1 = next_control(ctrl->in(1));
2261         Node *in2 = next_control(ctrl->in(2));
2262         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2263              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2264           ctrl = next_control(in1->in(0)->in(0));
2265         } else {
2266           break;
2267         }
2268       } else {
2269         break;
2270       }
2271     } else {
2272       ctrl = next_control(ctrl->in(0));  // keep searching
2273     }
2274   }
2275   if (ctrl->is_Lock()) {
2276     LockNode *lock = ctrl->as_Lock();
2277     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2278     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2279     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2280     if (lock_obj->eqv_uncast(unlock_obj) &&
2281         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2282       lock_result = lock;
2283     }
2284   }
2285   return lock_result;
2286 }
2287 
2288 // This code corresponds to case 3 above.
2289 
2290 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2291                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
2292   Node* if_node = node->in(0);
2293   bool  if_true = node->is_IfTrue();
2294 
2295   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2296     Node *lock_ctrl = next_control(if_node->in(0));
2297     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2298       Node* lock1_node = nullptr;
2299       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2300       if (if_true) {
2301         if (proj->is_IfFalse() && proj->outcnt() == 1) {
2302           lock1_node = proj->unique_out();
2303         }
2304       } else {
2305         if (proj->is_IfTrue() && proj->outcnt() == 1) {
2306           lock1_node = proj->unique_out();
2307         }
2308       }
2309       if (lock1_node != nullptr && lock1_node->is_Lock()) {
2310         LockNode *lock1 = lock1_node->as_Lock();
2311         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2312         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2313         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2314         if (lock_obj->eqv_uncast(lock1_obj) &&
2315             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2316             !lock1->is_eliminated()) {
2317           lock_ops.append(lock1);
2318           return true;
2319         }
2320       }
2321     }
2322   }
2323 
2324   lock_ops.trunc_to(0);
2325   return false;
2326 }
2327 
2328 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2329                                GrowableArray<AbstractLockNode*> &lock_ops) {
2330   // check each control merging at this point for a matching unlock.
2331   // in(0) should be self edge so skip it.
2332   for (int i = 1; i < (int)region->req(); i++) {
2333     Node *in_node = next_control(region->in(i));
2334     if (in_node != nullptr) {
2335       if (find_matching_unlock(in_node, lock, lock_ops)) {
2336         // found a match so keep on checking.
2337         continue;
2338       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2339         continue;
2340       }
2341 
2342       // If we fall through to here then it was some kind of node we
2343       // don't understand or there wasn't a matching unlock, so give
2344       // up trying to merge locks.
2345       lock_ops.trunc_to(0);
2346       return false;
2347     }
2348   }
2349   return true;
2350 
2351 }
2352 
2353 // Check that all locks/unlocks associated with object come from balanced regions.
2354 bool AbstractLockNode::is_balanced() {
2355   Node* obj = obj_node();
2356   for (uint j = 0; j < obj->outcnt(); j++) {
2357     Node* n = obj->raw_out(j);
2358     if (n->is_AbstractLock() &&
2359         n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2360       BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2361       if (n_box->is_unbalanced()) {
2362         return false;
2363       }
2364     }
2365   }
2366   return true;
2367 }
2368 
2369 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2370 
2371 const char * AbstractLockNode::kind_as_string() const {
2372   return _kind_names[_kind];
2373 }
2374 
2375 #ifndef PRODUCT
2376 //
2377 // Create a counter which counts the number of times this lock is acquired
2378 //
2379 void AbstractLockNode::create_lock_counter(JVMState* state) {
2380   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2381 }
2382 
2383 void AbstractLockNode::set_eliminated_lock_counter() {
2384   if (_counter) {
2385     // Update the counter to indicate that this lock was eliminated.
2386     // The counter update code will stay around even though the
2387     // optimizer will eliminate the lock operation itself.
2388     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2389   }
2390 }
2391 
2392 void AbstractLockNode::dump_spec(outputStream* st) const {
2393   st->print("%s ", _kind_names[_kind]);
2394   CallNode::dump_spec(st);
2395 }
2396 
2397 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2398   st->print("%s", _kind_names[_kind]);
2399 }
2400 #endif
2401 
2402 //=============================================================================
2403 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2404 
2405   // perform any generic optimizations first (returns 'this' or null)
2406   Node *result = SafePointNode::Ideal(phase, can_reshape);
2407   if (result != nullptr)  return result;
2408   // Don't bother trying to transform a dead node
2409   if (in(0) && in(0)->is_top())  return nullptr;
2410 
2411   // Now see if we can optimize away this lock.  We don't actually
2412   // remove the locking here, we simply set the _eliminate flag which
2413   // prevents macro expansion from expanding the lock.  Since we don't
2414   // modify the graph, the value returned from this function is the
2415   // one computed above.
2416   const Type* obj_type = phase->type(obj_node());
2417   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2418     //
2419     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2420     //
2421     ConnectionGraph *cgr = phase->C->congraph();
2422     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2423       assert(!is_eliminated() || is_coarsened(), "sanity");
2424       // The lock could be marked eliminated by lock coarsening
2425       // code during first IGVN before EA. Replace coarsened flag
2426       // to eliminate all associated locks/unlocks.
2427 #ifdef ASSERT
2428       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2429 #endif
2430       this->set_non_esc_obj();
2431       return result;
2432     }
2433 
2434     if (!phase->C->do_locks_coarsening()) {
2435       return result; // Compiling without locks coarsening
2436     }
2437     //
2438     // Try lock coarsening
2439     //
2440     PhaseIterGVN* iter = phase->is_IterGVN();
2441     if (iter != nullptr && !is_eliminated()) {
2442 
2443       GrowableArray<AbstractLockNode*>   lock_ops;
2444 
2445       Node *ctrl = next_control(in(0));
2446 
2447       // now search back for a matching Unlock
2448       if (find_matching_unlock(ctrl, this, lock_ops)) {
2449         // found an unlock directly preceding this lock.  This is the
2450         // case of single unlock directly control dependent on a
2451         // single lock which is the trivial version of case 1 or 2.
2452       } else if (ctrl->is_Region() ) {
2453         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2454         // found lock preceded by multiple unlocks along all paths
2455         // joining at this point which is case 3 in description above.
2456         }
2457       } else {
2458         // see if this lock comes from either half of an if and the
2459         // predecessors merges unlocks and the other half of the if
2460         // performs a lock.
2461         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2462           // found unlock splitting to an if with locks on both branches.
2463         }
2464       }
2465 
2466       if (lock_ops.length() > 0) {
2467         // add ourselves to the list of locks to be eliminated.
2468         lock_ops.append(this);
2469 
2470   #ifndef PRODUCT
2471         if (PrintEliminateLocks) {
2472           int locks = 0;
2473           int unlocks = 0;
2474           if (Verbose) {
2475             tty->print_cr("=== Locks coarsening ===");
2476             tty->print("Obj: ");
2477             obj_node()->dump();
2478           }
2479           for (int i = 0; i < lock_ops.length(); i++) {
2480             AbstractLockNode* lock = lock_ops.at(i);
2481             if (lock->Opcode() == Op_Lock)
2482               locks++;
2483             else
2484               unlocks++;
2485             if (Verbose) {
2486               tty->print("Box %d: ", i);
2487               box_node()->dump();
2488               tty->print(" %d: ", i);
2489               lock->dump();
2490             }
2491           }
2492           tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2493         }
2494   #endif
2495 
2496         // for each of the identified locks, mark them
2497         // as eliminatable
2498         for (int i = 0; i < lock_ops.length(); i++) {
2499           AbstractLockNode* lock = lock_ops.at(i);
2500 
2501           // Mark it eliminated by coarsening and update any counters
2502 #ifdef ASSERT
2503           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2504 #endif
2505           lock->set_coarsened();
2506         }
2507         // Record this coarsened group.
2508         phase->C->add_coarsened_locks(lock_ops);
2509       } else if (ctrl->is_Region() &&
2510                  iter->_worklist.member(ctrl)) {
2511         // We weren't able to find any opportunities but the region this
2512         // lock is control dependent on hasn't been processed yet so put
2513         // this lock back on the worklist so we can check again once any
2514         // region simplification has occurred.
2515         iter->_worklist.push(this);
2516       }
2517     }
2518   }
2519 
2520   return result;
2521 }
2522 
2523 //=============================================================================
2524 bool LockNode::is_nested_lock_region() {
2525   return is_nested_lock_region(nullptr);
2526 }
2527 
2528 // p is used for access to compilation log; no logging if null
2529 bool LockNode::is_nested_lock_region(Compile * c) {
2530   BoxLockNode* box = box_node()->as_BoxLock();
2531   int stk_slot = box->stack_slot();
2532   if (stk_slot <= 0) {
2533 #ifdef ASSERT
2534     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2535 #endif
2536     return false; // External lock or it is not Box (Phi node).
2537   }
2538 
2539   // Ignore complex cases: merged locks or multiple locks.
2540   Node* obj = obj_node();
2541   LockNode* unique_lock = nullptr;
2542   Node* bad_lock = nullptr;
2543   if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2544 #ifdef ASSERT
2545     this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2546 #endif
2547     return false;
2548   }
2549   if (unique_lock != this) {
2550 #ifdef ASSERT
2551     this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2552     if (PrintEliminateLocks && Verbose) {
2553       tty->print_cr("=============== unique_lock != this ============");
2554       tty->print(" this: ");
2555       this->dump();
2556       tty->print(" box: ");
2557       box->dump();
2558       tty->print(" obj: ");
2559       obj->dump();
2560       if (unique_lock != nullptr) {
2561         tty->print(" unique_lock: ");
2562         unique_lock->dump();
2563       }
2564       if (bad_lock != nullptr) {
2565         tty->print(" bad_lock: ");
2566         bad_lock->dump();
2567       }
2568       tty->print_cr("===============");
2569     }
2570 #endif
2571     return false;
2572   }
2573 
2574   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2575   obj = bs->step_over_gc_barrier(obj);
2576   // Look for external lock for the same object.
2577   SafePointNode* sfn = this->as_SafePoint();
2578   JVMState* youngest_jvms = sfn->jvms();
2579   int max_depth = youngest_jvms->depth();
2580   for (int depth = 1; depth <= max_depth; depth++) {
2581     JVMState* jvms = youngest_jvms->of_depth(depth);
2582     int num_mon  = jvms->nof_monitors();
2583     // Loop over monitors
2584     for (int idx = 0; idx < num_mon; idx++) {
2585       Node* obj_node = sfn->monitor_obj(jvms, idx);
2586       obj_node = bs->step_over_gc_barrier(obj_node);
2587       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2588       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2589         box->set_nested();
2590         return true;
2591       }
2592     }
2593   }
2594 #ifdef ASSERT
2595   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2596 #endif
2597   return false;
2598 }
2599 
2600 //=============================================================================
2601 uint UnlockNode::size_of() const { return sizeof(*this); }
2602 
2603 //=============================================================================
2604 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2605 
2606   // perform any generic optimizations first (returns 'this' or null)
2607   Node *result = SafePointNode::Ideal(phase, can_reshape);
2608   if (result != nullptr)  return result;
2609   // Don't bother trying to transform a dead node
2610   if (in(0) && in(0)->is_top())  return nullptr;
2611 
2612   // Now see if we can optimize away this unlock.  We don't actually
2613   // remove the unlocking here, we simply set the _eliminate flag which
2614   // prevents macro expansion from expanding the unlock.  Since we don't
2615   // modify the graph, the value returned from this function is the
2616   // one computed above.
2617   // Escape state is defined after Parse phase.
2618   const Type* obj_type = phase->type(obj_node());
2619   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2620     //
2621     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2622     //
2623     ConnectionGraph *cgr = phase->C->congraph();
2624     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2625       assert(!is_eliminated() || is_coarsened(), "sanity");
2626       // The lock could be marked eliminated by lock coarsening
2627       // code during first IGVN before EA. Replace coarsened flag
2628       // to eliminate all associated locks/unlocks.
2629 #ifdef ASSERT
2630       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2631 #endif
2632       this->set_non_esc_obj();
2633     }
2634   }
2635   return result;
2636 }
2637 
2638 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2639   if (C == nullptr) {
2640     return;
2641   }
2642   CompileLog* log = C->log();
2643   if (log != nullptr) {
2644     Node* box = box_node();
2645     Node* obj = obj_node();
2646     int box_id = box != nullptr ? box->_idx : -1;
2647     int obj_id = obj != nullptr ? obj->_idx : -1;
2648 
2649     log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2650           tag, C->compile_id(), this->_idx,
2651           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2652           kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2653     log->stamp();
2654     log->end_head();
2655     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2656     while (p != nullptr) {
2657       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2658       p = p->caller();
2659     }
2660     log->tail(tag);
2661   }
2662 }
2663 
2664 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2665   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2666     return dest_t->instance_id() == t_oop->instance_id();
2667   }
2668 
2669   if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2670     // clone
2671     if (t_oop->isa_aryptr()) {
2672       return false;
2673     }
2674     if (!t_oop->isa_instptr()) {
2675       return true;
2676     }
2677     if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2678       return true;
2679     }
2680     // unrelated
2681     return false;
2682   }
2683 
2684   if (dest_t->isa_aryptr()) {
2685     // arraycopy or array clone
2686     if (t_oop->isa_instptr()) {
2687       return false;
2688     }
2689     if (!t_oop->isa_aryptr()) {
2690       return true;
2691     }
2692 
2693     const Type* elem = dest_t->is_aryptr()->elem();
2694     if (elem == Type::BOTTOM) {
2695       // An array but we don't know what elements are
2696       return true;
2697     }
2698 
2699     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2700     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2701     uint dest_alias = phase->C->get_alias_index(dest_t);
2702     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2703 
2704     return dest_alias == t_oop_alias;
2705   }
2706 
2707   return true;
2708 }