1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/bcEscapeAnalyzer.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/inlinetypenode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/regalloc.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 #include "code/vmreg.hpp"
  51 
  52 // Portions of code courtesy of Clifford Click
  53 
  54 // Optimization - Graph Style
  55 
  56 //=============================================================================
  57 uint StartNode::size_of() const { return sizeof(*this); }
  58 bool StartNode::cmp( const Node &n ) const
  59 { return _domain == ((StartNode&)n)._domain; }
  60 const Type *StartNode::bottom_type() const { return _domain; }
  61 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  62 #ifndef PRODUCT
  63 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  64 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  65 #endif
  66 
  67 //------------------------------Ideal------------------------------------------
  68 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  69   return remove_dead_region(phase, can_reshape) ? this : NULL;
  70 }
  71 
  72 //------------------------------calling_convention-----------------------------
  73 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  74   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  75 }
  76 
  77 //------------------------------Registers--------------------------------------
  78 const RegMask &StartNode::in_RegMask(uint) const {
  79   return RegMask::Empty;
  80 }
  81 
  82 //------------------------------match------------------------------------------
  83 // Construct projections for incoming parameters, and their RegMask info
  84 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  85   switch (proj->_con) {
  86   case TypeFunc::Control:
  87   case TypeFunc::I_O:
  88   case TypeFunc::Memory:
  89     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  90   case TypeFunc::FramePtr:
  91     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  92   case TypeFunc::ReturnAdr:
  93     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  94   case TypeFunc::Parms:
  95   default: {
  96       uint parm_num = proj->_con - TypeFunc::Parms;
  97       const Type *t = _domain->field_at(proj->_con);
  98       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  99         return new ConNode(Type::TOP);
 100       uint ideal_reg = t->ideal_reg();
 101       RegMask &rm = match->_calling_convention_mask[parm_num];
 102       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 103     }
 104   }
 105   return NULL;
 106 }
 107 
 108 //=============================================================================
 109 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 110   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 111 };
 112 
 113 #ifndef PRODUCT
 114 void ParmNode::dump_spec(outputStream *st) const {
 115   if( _con < TypeFunc::Parms ) {
 116     st->print("%s", names[_con]);
 117   } else {
 118     st->print("Parm%d: ",_con-TypeFunc::Parms);
 119     // Verbose and WizardMode dump bottom_type for all nodes
 120     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 121   }
 122 }
 123 
 124 void ParmNode::dump_compact_spec(outputStream *st) const {
 125   if (_con < TypeFunc::Parms) {
 126     st->print("%s", names[_con]);
 127   } else {
 128     st->print("%d:", _con-TypeFunc::Parms);
 129     // unconditionally dump bottom_type
 130     bottom_type()->dump_on(st);
 131   }
 132 }
 133 #endif
 134 
 135 uint ParmNode::ideal_reg() const {
 136   switch( _con ) {
 137   case TypeFunc::Control  : // fall through
 138   case TypeFunc::I_O      : // fall through
 139   case TypeFunc::Memory   : return 0;
 140   case TypeFunc::FramePtr : // fall through
 141   case TypeFunc::ReturnAdr: return Op_RegP;
 142   default                 : assert( _con > TypeFunc::Parms, "" );
 143     // fall through
 144   case TypeFunc::Parms    : {
 145     // Type of argument being passed
 146     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 147     return t->ideal_reg();
 148   }
 149   }
 150   ShouldNotReachHere();
 151   return 0;
 152 }
 153 
 154 //=============================================================================
 155 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 156   init_req(TypeFunc::Control,cntrl);
 157   init_req(TypeFunc::I_O,i_o);
 158   init_req(TypeFunc::Memory,memory);
 159   init_req(TypeFunc::FramePtr,frameptr);
 160   init_req(TypeFunc::ReturnAdr,retadr);
 161 }
 162 
 163 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 164   return remove_dead_region(phase, can_reshape) ? this : NULL;
 165 }
 166 
 167 const Type* ReturnNode::Value(PhaseGVN* phase) const {
 168   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 169     ? Type::TOP
 170     : Type::BOTTOM;
 171 }
 172 
 173 // Do we Match on this edge index or not?  No edges on return nodes
 174 uint ReturnNode::match_edge(uint idx) const {
 175   return 0;
 176 }
 177 
 178 
 179 #ifndef PRODUCT
 180 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
 181   // Dump the required inputs, after printing "returns"
 182   uint i;                       // Exit value of loop
 183   for (i = 0; i < req(); i++) {    // For all required inputs
 184     if (i == TypeFunc::Parms) st->print("returns ");
 185     Node* p = in(i);
 186     if (p != nullptr) {
 187       p->dump_idx(false, st, dc);
 188       st->print(" ");
 189     } else {
 190       st->print("_ ");
 191     }
 192   }
 193 }
 194 #endif
 195 
 196 //=============================================================================
 197 RethrowNode::RethrowNode(
 198   Node* cntrl,
 199   Node* i_o,
 200   Node* memory,
 201   Node* frameptr,
 202   Node* ret_adr,
 203   Node* exception
 204 ) : Node(TypeFunc::Parms + 1) {
 205   init_req(TypeFunc::Control  , cntrl    );
 206   init_req(TypeFunc::I_O      , i_o      );
 207   init_req(TypeFunc::Memory   , memory   );
 208   init_req(TypeFunc::FramePtr , frameptr );
 209   init_req(TypeFunc::ReturnAdr, ret_adr);
 210   init_req(TypeFunc::Parms    , exception);
 211 }
 212 
 213 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 214   return remove_dead_region(phase, can_reshape) ? this : NULL;
 215 }
 216 
 217 const Type* RethrowNode::Value(PhaseGVN* phase) const {
 218   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 219     ? Type::TOP
 220     : Type::BOTTOM;
 221 }
 222 
 223 uint RethrowNode::match_edge(uint idx) const {
 224   return 0;
 225 }
 226 
 227 #ifndef PRODUCT
 228 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
 229   // Dump the required inputs, after printing "exception"
 230   uint i;                       // Exit value of loop
 231   for (i = 0; i < req(); i++) {    // For all required inputs
 232     if (i == TypeFunc::Parms) st->print("exception ");
 233     Node* p = in(i);
 234     if (p != nullptr) {
 235       p->dump_idx(false, st, dc);
 236       st->print(" ");
 237     } else {
 238       st->print("_ ");
 239     }
 240   }
 241 }
 242 #endif
 243 
 244 //=============================================================================
 245 // Do we Match on this edge index or not?  Match only target address & method
 246 uint TailCallNode::match_edge(uint idx) const {
 247   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 248 }
 249 
 250 //=============================================================================
 251 // Do we Match on this edge index or not?  Match only target address & oop
 252 uint TailJumpNode::match_edge(uint idx) const {
 253   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 254 }
 255 
 256 //=============================================================================
 257 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 258   _method(method) {
 259   assert(method != NULL, "must be valid call site");
 260   _bci = InvocationEntryBci;
 261   _reexecute = Reexecute_Undefined;
 262   debug_only(_bci = -99);  // random garbage value
 263   debug_only(_map = (SafePointNode*)-1);
 264   _caller = caller;
 265   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 266   _locoff = TypeFunc::Parms;
 267   _stkoff = _locoff + _method->max_locals();
 268   _monoff = _stkoff + _method->max_stack();
 269   _scloff = _monoff;
 270   _endoff = _monoff;
 271   _sp = 0;
 272 }
 273 JVMState::JVMState(int stack_size) :
 274   _method(NULL) {
 275   _bci = InvocationEntryBci;
 276   _reexecute = Reexecute_Undefined;
 277   debug_only(_map = (SafePointNode*)-1);
 278   _caller = NULL;
 279   _depth  = 1;
 280   _locoff = TypeFunc::Parms;
 281   _stkoff = _locoff;
 282   _monoff = _stkoff + stack_size;
 283   _scloff = _monoff;
 284   _endoff = _monoff;
 285   _sp = 0;
 286 }
 287 
 288 //--------------------------------of_depth-------------------------------------
 289 JVMState* JVMState::of_depth(int d) const {
 290   const JVMState* jvmp = this;
 291   assert(0 < d && (uint)d <= depth(), "oob");
 292   for (int skip = depth() - d; skip > 0; skip--) {
 293     jvmp = jvmp->caller();
 294   }
 295   assert(jvmp->depth() == (uint)d, "found the right one");
 296   return (JVMState*)jvmp;
 297 }
 298 
 299 //-----------------------------same_calls_as-----------------------------------
 300 bool JVMState::same_calls_as(const JVMState* that) const {
 301   if (this == that)                    return true;
 302   if (this->depth() != that->depth())  return false;
 303   const JVMState* p = this;
 304   const JVMState* q = that;
 305   for (;;) {
 306     if (p->_method != q->_method)    return false;
 307     if (p->_method == NULL)          return true;   // bci is irrelevant
 308     if (p->_bci    != q->_bci)       return false;
 309     if (p->_reexecute != q->_reexecute)  return false;
 310     p = p->caller();
 311     q = q->caller();
 312     if (p == q)                      return true;
 313     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 314   }
 315 }
 316 
 317 //------------------------------debug_start------------------------------------
 318 uint JVMState::debug_start()  const {
 319   debug_only(JVMState* jvmroot = of_depth(1));
 320   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 321   return of_depth(1)->locoff();
 322 }
 323 
 324 //-------------------------------debug_end-------------------------------------
 325 uint JVMState::debug_end() const {
 326   debug_only(JVMState* jvmroot = of_depth(1));
 327   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 328   return endoff();
 329 }
 330 
 331 //------------------------------debug_depth------------------------------------
 332 uint JVMState::debug_depth() const {
 333   uint total = 0;
 334   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 335     total += jvmp->debug_size();
 336   }
 337   return total;
 338 }
 339 
 340 #ifndef PRODUCT
 341 
 342 //------------------------------format_helper----------------------------------
 343 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 344 // any defined value or not.  If it does, print out the register or constant.
 345 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 346   if (n == NULL) { st->print(" NULL"); return; }
 347   if (n->is_SafePointScalarObject()) {
 348     // Scalar replacement.
 349     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 350     scobjs->append_if_missing(spobj);
 351     int sco_n = scobjs->find(spobj);
 352     assert(sco_n >= 0, "");
 353     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 354     return;
 355   }
 356   if (regalloc->node_regs_max_index() > 0 &&
 357       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 358     char buf[50];
 359     regalloc->dump_register(n,buf);
 360     st->print(" %s%d]=%s",msg,i,buf);
 361   } else {                      // No register, but might be constant
 362     const Type *t = n->bottom_type();
 363     switch (t->base()) {
 364     case Type::Int:
 365       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
 366       break;
 367     case Type::AnyPtr:
 368       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 369       st->print(" %s%d]=#NULL",msg,i);
 370       break;
 371     case Type::AryPtr:
 372     case Type::InstPtr:
 373       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 374       break;
 375     case Type::KlassPtr:
 376     case Type::AryKlassPtr:
 377     case Type::InstKlassPtr:
 378       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
 379       break;
 380     case Type::MetadataPtr:
 381       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 382       break;
 383     case Type::NarrowOop:
 384       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 385       break;
 386     case Type::RawPtr:
 387       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 388       break;
 389     case Type::DoubleCon:
 390       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 391       break;
 392     case Type::FloatCon:
 393       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 394       break;
 395     case Type::Long:
 396       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 397       break;
 398     case Type::Half:
 399     case Type::Top:
 400       st->print(" %s%d]=_",msg,i);
 401       break;
 402     default: ShouldNotReachHere();
 403     }
 404   }
 405 }
 406 
 407 //---------------------print_method_with_lineno--------------------------------
 408 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
 409   if (show_name) _method->print_short_name(st);
 410 
 411   int lineno = _method->line_number_from_bci(_bci);
 412   if (lineno != -1) {
 413     st->print(" @ bci:%d (line %d)", _bci, lineno);
 414   } else {
 415     st->print(" @ bci:%d", _bci);
 416   }
 417 }
 418 
 419 //------------------------------format-----------------------------------------
 420 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 421   st->print("        #");
 422   if (_method) {
 423     print_method_with_lineno(st, true);
 424   } else {
 425     st->print_cr(" runtime stub ");
 426     return;
 427   }
 428   if (n->is_MachSafePoint()) {
 429     GrowableArray<SafePointScalarObjectNode*> scobjs;
 430     MachSafePointNode *mcall = n->as_MachSafePoint();
 431     uint i;
 432     // Print locals
 433     for (i = 0; i < (uint)loc_size(); i++)
 434       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 435     // Print stack
 436     for (i = 0; i < (uint)stk_size(); i++) {
 437       if ((uint)(_stkoff + i) >= mcall->len())
 438         st->print(" oob ");
 439       else
 440        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 441     }
 442     for (i = 0; (int)i < nof_monitors(); i++) {
 443       Node *box = mcall->monitor_box(this, i);
 444       Node *obj = mcall->monitor_obj(this, i);
 445       if (regalloc->node_regs_max_index() > 0 &&
 446           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 447         box = BoxLockNode::box_node(box);
 448         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 449       } else {
 450         OptoReg::Name box_reg = BoxLockNode::reg(box);
 451         st->print(" MON-BOX%d=%s+%d",
 452                    i,
 453                    OptoReg::regname(OptoReg::c_frame_pointer),
 454                    regalloc->reg2offset(box_reg));
 455       }
 456       const char* obj_msg = "MON-OBJ[";
 457       if (EliminateLocks) {
 458         if (BoxLockNode::box_node(box)->is_eliminated())
 459           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 460       }
 461       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 462     }
 463 
 464     for (i = 0; i < (uint)scobjs.length(); i++) {
 465       // Scalar replaced objects.
 466       st->cr();
 467       st->print("        # ScObj" INT32_FORMAT " ", i);
 468       SafePointScalarObjectNode* spobj = scobjs.at(i);
 469       ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
 470       assert(cik->is_instance_klass() ||
 471              cik->is_array_klass(), "Not supported allocation.");
 472       ciInstanceKlass *iklass = NULL;
 473       if (cik->is_instance_klass()) {
 474         cik->print_name_on(st);
 475         iklass = cik->as_instance_klass();
 476       } else if (cik->is_type_array_klass()) {
 477         cik->as_array_klass()->base_element_type()->print_name_on(st);
 478         st->print("[%d]", spobj->n_fields());
 479       } else if (cik->is_obj_array_klass()) {
 480         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 481         if (cie->is_instance_klass()) {
 482           cie->print_name_on(st);
 483         } else if (cie->is_type_array_klass()) {
 484           cie->as_array_klass()->base_element_type()->print_name_on(st);
 485         } else {
 486           ShouldNotReachHere();
 487         }
 488         st->print("[%d]", spobj->n_fields());
 489         int ndim = cik->as_array_klass()->dimension() - 1;
 490         while (ndim-- > 0) {
 491           st->print("[]");
 492         }
 493       } else if (cik->is_flat_array_klass()) {
 494         ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
 495         cie->print_name_on(st);
 496         st->print("[%d]", spobj->n_fields());
 497         int ndim = cik->as_array_klass()->dimension() - 1;
 498         while (ndim-- > 0) {
 499           st->print("[]");
 500         }
 501       }
 502       st->print("={");
 503       uint nf = spobj->n_fields();
 504       if (nf > 0) {
 505         uint first_ind = spobj->first_index(mcall->jvms());
 506         if (iklass != NULL && iklass->is_inlinetype()) {
 507           Node* init_node = mcall->in(first_ind++);
 508           if (!init_node->is_top()) {
 509             st->print(" [is_init");
 510             format_helper(regalloc, st, init_node, ":", -1, NULL);
 511           }
 512         }
 513         Node* fld_node = mcall->in(first_ind);
 514         ciField* cifield;
 515         if (iklass != NULL) {
 516           st->print(" [");
 517           cifield = iklass->nonstatic_field_at(0);
 518           cifield->print_name_on(st);
 519           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 520         } else {
 521           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 522         }
 523         for (uint j = 1; j < nf; j++) {
 524           fld_node = mcall->in(first_ind+j);
 525           if (iklass != NULL) {
 526             st->print(", [");
 527             cifield = iklass->nonstatic_field_at(j);
 528             cifield->print_name_on(st);
 529             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 530           } else {
 531             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 532           }
 533         }
 534       }
 535       st->print(" }");
 536     }
 537   }
 538   st->cr();
 539   if (caller() != NULL) caller()->format(regalloc, n, st);
 540 }
 541 
 542 
 543 void JVMState::dump_spec(outputStream *st) const {
 544   if (_method != NULL) {
 545     bool printed = false;
 546     if (!Verbose) {
 547       // The JVMS dumps make really, really long lines.
 548       // Take out the most boring parts, which are the package prefixes.
 549       char buf[500];
 550       stringStream namest(buf, sizeof(buf));
 551       _method->print_short_name(&namest);
 552       if (namest.count() < sizeof(buf)) {
 553         const char* name = namest.base();
 554         if (name[0] == ' ')  ++name;
 555         const char* endcn = strchr(name, ':');  // end of class name
 556         if (endcn == NULL)  endcn = strchr(name, '(');
 557         if (endcn == NULL)  endcn = name + strlen(name);
 558         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 559           --endcn;
 560         st->print(" %s", endcn);
 561         printed = true;
 562       }
 563     }
 564     print_method_with_lineno(st, !printed);
 565     if(_reexecute == Reexecute_True)
 566       st->print(" reexecute");
 567   } else {
 568     st->print(" runtime stub");
 569   }
 570   if (caller() != NULL)  caller()->dump_spec(st);
 571 }
 572 
 573 
 574 void JVMState::dump_on(outputStream* st) const {
 575   bool print_map = _map && !((uintptr_t)_map & 1) &&
 576                   ((caller() == NULL) || (caller()->map() != _map));
 577   if (print_map) {
 578     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 579       Node* ex = _map->in(_map->req());  // _map->next_exception()
 580       // skip the first one; it's already being printed
 581       while (ex != NULL && ex->len() > ex->req()) {
 582         ex = ex->in(ex->req());  // ex->next_exception()
 583         ex->dump(1);
 584       }
 585     }
 586     _map->dump(Verbose ? 2 : 1);
 587   }
 588   if (caller() != NULL) {
 589     caller()->dump_on(st);
 590   }
 591   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 592              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 593   if (_method == NULL) {
 594     st->print_cr("(none)");
 595   } else {
 596     _method->print_name(st);
 597     st->cr();
 598     if (bci() >= 0 && bci() < _method->code_size()) {
 599       st->print("    bc: ");
 600       _method->print_codes_on(bci(), bci()+1, st);
 601     }
 602   }
 603 }
 604 
 605 // Extra way to dump a jvms from the debugger,
 606 // to avoid a bug with C++ member function calls.
 607 void dump_jvms(JVMState* jvms) {
 608   jvms->dump();
 609 }
 610 #endif
 611 
 612 //--------------------------clone_shallow--------------------------------------
 613 JVMState* JVMState::clone_shallow(Compile* C) const {
 614   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 615   n->set_bci(_bci);
 616   n->_reexecute = _reexecute;
 617   n->set_locoff(_locoff);
 618   n->set_stkoff(_stkoff);
 619   n->set_monoff(_monoff);
 620   n->set_scloff(_scloff);
 621   n->set_endoff(_endoff);
 622   n->set_sp(_sp);
 623   n->set_map(_map);
 624   return n;
 625 }
 626 
 627 //---------------------------clone_deep----------------------------------------
 628 JVMState* JVMState::clone_deep(Compile* C) const {
 629   JVMState* n = clone_shallow(C);
 630   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 631     p->_caller = p->_caller->clone_shallow(C);
 632   }
 633   assert(n->depth() == depth(), "sanity");
 634   assert(n->debug_depth() == debug_depth(), "sanity");
 635   return n;
 636 }
 637 
 638 /**
 639  * Reset map for all callers
 640  */
 641 void JVMState::set_map_deep(SafePointNode* map) {
 642   for (JVMState* p = this; p != NULL; p = p->_caller) {
 643     p->set_map(map);
 644   }
 645 }
 646 
 647 // unlike set_map(), this is two-way setting.
 648 void JVMState::bind_map(SafePointNode* map) {
 649   set_map(map);
 650   _map->set_jvms(this);
 651 }
 652 
 653 // Adapt offsets in in-array after adding or removing an edge.
 654 // Prerequisite is that the JVMState is used by only one node.
 655 void JVMState::adapt_position(int delta) {
 656   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
 657     jvms->set_locoff(jvms->locoff() + delta);
 658     jvms->set_stkoff(jvms->stkoff() + delta);
 659     jvms->set_monoff(jvms->monoff() + delta);
 660     jvms->set_scloff(jvms->scloff() + delta);
 661     jvms->set_endoff(jvms->endoff() + delta);
 662   }
 663 }
 664 
 665 // Mirror the stack size calculation in the deopt code
 666 // How much stack space would we need at this point in the program in
 667 // case of deoptimization?
 668 int JVMState::interpreter_frame_size() const {
 669   const JVMState* jvms = this;
 670   int size = 0;
 671   int callee_parameters = 0;
 672   int callee_locals = 0;
 673   int extra_args = method()->max_stack() - stk_size();
 674 
 675   while (jvms != NULL) {
 676     int locks = jvms->nof_monitors();
 677     int temps = jvms->stk_size();
 678     bool is_top_frame = (jvms == this);
 679     ciMethod* method = jvms->method();
 680 
 681     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 682                                                                  temps + callee_parameters,
 683                                                                  extra_args,
 684                                                                  locks,
 685                                                                  callee_parameters,
 686                                                                  callee_locals,
 687                                                                  is_top_frame);
 688     size += frame_size;
 689 
 690     callee_parameters = method->size_of_parameters();
 691     callee_locals = method->max_locals();
 692     extra_args = 0;
 693     jvms = jvms->caller();
 694   }
 695   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 696 }
 697 
 698 //=============================================================================
 699 bool CallNode::cmp( const Node &n ) const
 700 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 701 #ifndef PRODUCT
 702 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
 703   // Dump the required inputs, enclosed in '(' and ')'
 704   uint i;                       // Exit value of loop
 705   for (i = 0; i < req(); i++) {    // For all required inputs
 706     if (i == TypeFunc::Parms) st->print("(");
 707     Node* p = in(i);
 708     if (p != nullptr) {
 709       p->dump_idx(false, st, dc);
 710       st->print(" ");
 711     } else {
 712       st->print("_ ");
 713     }
 714   }
 715   st->print(")");
 716 }
 717 
 718 void CallNode::dump_spec(outputStream *st) const {
 719   st->print(" ");
 720   if (tf() != NULL)  tf()->dump_on(st);
 721   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 722   if (jvms() != NULL)  jvms()->dump_spec(st);
 723 }
 724 #endif
 725 
 726 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 727 const Type* CallNode::Value(PhaseGVN* phase) const {
 728   if (!in(0) || phase->type(in(0)) == Type::TOP) {
 729     return Type::TOP;
 730   }
 731   return tf()->range_cc();
 732 }
 733 
 734 //------------------------------calling_convention-----------------------------
 735 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 736   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 737     // The call to that stub is a special case: its inputs are
 738     // multiple values returned from a call and so it should follow
 739     // the return convention.
 740     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 741     return;
 742   }
 743   // Use the standard compiler calling convention
 744   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 745 }
 746 
 747 
 748 //------------------------------match------------------------------------------
 749 // Construct projections for control, I/O, memory-fields, ..., and
 750 // return result(s) along with their RegMask info
 751 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 752   uint con = proj->_con;
 753   const TypeTuple* range_cc = tf()->range_cc();
 754   if (con >= TypeFunc::Parms) {
 755     if (tf()->returns_inline_type_as_fields()) {
 756       // The call returns multiple values (inline type fields): we
 757       // create one projection per returned value.
 758       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 759       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 760       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 761     } else {
 762       if (con == TypeFunc::Parms) {
 763         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 764         OptoRegPair regs = Opcode() == Op_CallLeafVector
 765           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 766           : match->c_return_value(ideal_reg);
 767         RegMask rm = RegMask(regs.first());
 768 
 769         if (Opcode() == Op_CallLeafVector) {
 770           // If the return is in vector, compute appropriate regmask taking into account the whole range
 771           if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
 772             if(OptoReg::is_valid(regs.second())) {
 773               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 774                 rm.Insert(r);
 775               }
 776             }
 777           }
 778         }
 779 
 780         if (OptoReg::is_valid(regs.second())) {
 781           rm.Insert(regs.second());
 782         }
 783         return new MachProjNode(this,con,rm,ideal_reg);
 784       } else {
 785         assert(con == TypeFunc::Parms+1, "only one return value");
 786         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 787         return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad);
 788       }
 789     }
 790   }
 791 
 792   switch (con) {
 793   case TypeFunc::Control:
 794   case TypeFunc::I_O:
 795   case TypeFunc::Memory:
 796     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 797 
 798   case TypeFunc::ReturnAdr:
 799   case TypeFunc::FramePtr:
 800   default:
 801     ShouldNotReachHere();
 802   }
 803   return NULL;
 804 }
 805 
 806 // Do we Match on this edge index or not?  Match no edges
 807 uint CallNode::match_edge(uint idx) const {
 808   return 0;
 809 }
 810 
 811 //
 812 // Determine whether the call could modify the field of the specified
 813 // instance at the specified offset.
 814 //
 815 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 816   assert((t_oop != NULL), "sanity");
 817   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 818     const TypeTuple* args = _tf->domain_sig();
 819     Node* dest = NULL;
 820     // Stubs that can be called once an ArrayCopyNode is expanded have
 821     // different signatures. Look for the second pointer argument,
 822     // that is the destination of the copy.
 823     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 824       if (args->field_at(i)->isa_ptr()) {
 825         j++;
 826         if (j == 2) {
 827           dest = in(i);
 828           break;
 829         }
 830       }
 831     }
 832     guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
 833     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 834       return true;
 835     }
 836     return false;
 837   }
 838   if (t_oop->is_known_instance()) {
 839     // The instance_id is set only for scalar-replaceable allocations which
 840     // are not passed as arguments according to Escape Analysis.
 841     return false;
 842   }
 843   if (t_oop->is_ptr_to_boxed_value()) {
 844     ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
 845     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 846       // Skip unrelated boxing methods.
 847       Node* proj = proj_out_or_null(TypeFunc::Parms);
 848       if ((proj == NULL) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 849         return false;
 850       }
 851     }
 852     if (is_CallJava() && as_CallJava()->method() != NULL) {
 853       ciMethod* meth = as_CallJava()->method();
 854       if (meth->is_getter()) {
 855         return false;
 856       }
 857       // May modify (by reflection) if an boxing object is passed
 858       // as argument or returned.
 859       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
 860       if (proj != NULL) {
 861         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 862         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 863                                  (inst_t->instance_klass() == boxing_klass))) {
 864           return true;
 865         }
 866       }
 867       const TypeTuple* d = tf()->domain_cc();
 868       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 869         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 870         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 871                                  (inst_t->instance_klass() == boxing_klass))) {
 872           return true;
 873         }
 874       }
 875       return false;
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 // Does this call have a direct reference to n other than debug information?
 882 bool CallNode::has_non_debug_use(Node* n) {
 883   const TypeTuple* d = tf()->domain_cc();
 884   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 885     if (in(i) == n) {
 886       return true;
 887     }
 888   }
 889   return false;
 890 }
 891 
 892 bool CallNode::has_debug_use(Node* n) {
 893   if (jvms() != NULL) {
 894     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 895       if (in(i) == n) {
 896         return true;
 897       }
 898     }
 899   }
 900   return false;
 901 }
 902 
 903 // Returns the unique CheckCastPP of a call
 904 // or 'this' if there are several CheckCastPP or unexpected uses
 905 // or returns NULL if there is no one.
 906 Node *CallNode::result_cast() {
 907   Node *cast = NULL;
 908 
 909   Node *p = proj_out_or_null(TypeFunc::Parms);
 910   if (p == NULL)
 911     return NULL;
 912 
 913   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 914     Node *use = p->fast_out(i);
 915     if (use->is_CheckCastPP()) {
 916       if (cast != NULL) {
 917         return this;  // more than 1 CheckCastPP
 918       }
 919       cast = use;
 920     } else if (!use->is_Initialize() &&
 921                !use->is_AddP() &&
 922                use->Opcode() != Op_MemBarStoreStore) {
 923       // Expected uses are restricted to a CheckCastPP, an Initialize
 924       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 925       // encounter any other use (a Phi node can be seen in rare
 926       // cases) return this to prevent incorrect optimizations.
 927       return this;
 928     }
 929   }
 930   return cast;
 931 }
 932 
 933 
 934 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) {
 935   uint max_res = TypeFunc::Parms-1;
 936   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 937     ProjNode *pn = fast_out(i)->as_Proj();
 938     max_res = MAX2(max_res, pn->_con);
 939   }
 940 
 941   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 942 
 943   uint projs_size = sizeof(CallProjections);
 944   if (max_res > TypeFunc::Parms) {
 945     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 946   }
 947   char* projs_storage = resource_allocate_bytes(projs_size);
 948   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 949 
 950   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 951     ProjNode *pn = fast_out(i)->as_Proj();
 952     if (pn->outcnt() == 0) continue;
 953     switch (pn->_con) {
 954     case TypeFunc::Control:
 955       {
 956         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 957         projs->fallthrough_proj = pn;
 958         const Node* cn = pn->unique_ctrl_out_or_null();
 959         if (cn != NULL && cn->is_Catch()) {
 960           ProjNode *cpn = NULL;
 961           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 962             cpn = cn->fast_out(k)->as_Proj();
 963             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 964             if (cpn->_con == CatchProjNode::fall_through_index)
 965               projs->fallthrough_catchproj = cpn;
 966             else {
 967               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 968               projs->catchall_catchproj = cpn;
 969             }
 970           }
 971         }
 972         break;
 973       }
 974     case TypeFunc::I_O:
 975       if (pn->_is_io_use)
 976         projs->catchall_ioproj = pn;
 977       else
 978         projs->fallthrough_ioproj = pn;
 979       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 980         Node* e = pn->out(j);
 981         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 982           assert(projs->exobj == NULL, "only one");
 983           projs->exobj = e;
 984         }
 985       }
 986       break;
 987     case TypeFunc::Memory:
 988       if (pn->_is_io_use)
 989         projs->catchall_memproj = pn;
 990       else
 991         projs->fallthrough_memproj = pn;
 992       break;
 993     case TypeFunc::Parms:
 994       projs->resproj[0] = pn;
 995       break;
 996     default:
 997       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
 998       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
 999       break;
1000     }
1001   }
1002 
1003   // The resproj may not exist because the result could be ignored
1004   // and the exception object may not exist if an exception handler
1005   // swallows the exception but all the other must exist and be found.
1006   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1007   assert(!do_asserts || projs->fallthrough_proj      != NULL, "must be found");
1008   assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
1009   assert(!do_asserts || projs->fallthrough_memproj   != NULL, "must be found");
1010   assert(!do_asserts || projs->fallthrough_ioproj    != NULL, "must be found");
1011   assert(!do_asserts || projs->catchall_catchproj    != NULL, "must be found");
1012   if (separate_io_proj) {
1013     assert(!do_asserts || projs->catchall_memproj    != NULL, "must be found");
1014     assert(!do_asserts || projs->catchall_ioproj     != NULL, "must be found");
1015   }
1016   return projs;
1017 }
1018 
1019 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1020 #ifdef ASSERT
1021   // Validate attached generator
1022   CallGenerator* cg = generator();
1023   if (cg != NULL) {
1024     assert(is_CallStaticJava()  && cg->is_mh_late_inline() ||
1025            is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch");
1026   }
1027 #endif // ASSERT
1028   return SafePointNode::Ideal(phase, can_reshape);
1029 }
1030 
1031 bool CallNode::is_call_to_arraycopystub() const {
1032   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
1033     return true;
1034   }
1035   return false;
1036 }
1037 
1038 //=============================================================================
1039 uint CallJavaNode::size_of() const { return sizeof(*this); }
1040 bool CallJavaNode::cmp( const Node &n ) const {
1041   CallJavaNode &call = (CallJavaNode&)n;
1042   return CallNode::cmp(call) && _method == call._method &&
1043          _override_symbolic_info == call._override_symbolic_info;
1044 }
1045 
1046 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1047   // Copy debug information and adjust JVMState information
1048   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1049   uint new_dbg_start = tf()->domain_sig()->cnt();
1050   int jvms_adj  = new_dbg_start - old_dbg_start;
1051   assert (new_dbg_start == req(), "argument count mismatch");
1052   Compile* C = phase->C;
1053 
1054   // SafePointScalarObject node could be referenced several times in debug info.
1055   // Use Dict to record cloned nodes.
1056   Dict* sosn_map = new Dict(cmpkey,hashkey);
1057   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1058     Node* old_in = sfpt->in(i);
1059     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1060     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
1061       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1062       bool new_node;
1063       Node* new_in = old_sosn->clone(sosn_map, new_node);
1064       if (new_node) { // New node?
1065         new_in->set_req(0, C->root()); // reset control edge
1066         new_in = phase->transform(new_in); // Register new node.
1067       }
1068       old_in = new_in;
1069     }
1070     add_req(old_in);
1071   }
1072 
1073   // JVMS may be shared so clone it before we modify it
1074   set_jvms(sfpt->jvms() != NULL ? sfpt->jvms()->clone_deep(C) : NULL);
1075   for (JVMState *jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1076     jvms->set_map(this);
1077     jvms->set_locoff(jvms->locoff()+jvms_adj);
1078     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1079     jvms->set_monoff(jvms->monoff()+jvms_adj);
1080     jvms->set_scloff(jvms->scloff()+jvms_adj);
1081     jvms->set_endoff(jvms->endoff()+jvms_adj);
1082   }
1083 }
1084 
1085 #ifdef ASSERT
1086 bool CallJavaNode::validate_symbolic_info() const {
1087   if (method() == NULL) {
1088     return true; // call into runtime or uncommon trap
1089   }
1090   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1091   if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1092     return true;
1093   }
1094   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1095   ciMethod* callee = method();
1096   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1097     assert(override_symbolic_info(), "should be set");
1098   }
1099   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1100   return true;
1101 }
1102 #endif
1103 
1104 #ifndef PRODUCT
1105 void CallJavaNode::dump_spec(outputStream* st) const {
1106   if( _method ) _method->print_short_name(st);
1107   CallNode::dump_spec(st);
1108 }
1109 
1110 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1111   if (_method) {
1112     _method->print_short_name(st);
1113   } else {
1114     st->print("<?>");
1115   }
1116 }
1117 #endif
1118 
1119 //=============================================================================
1120 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1121 bool CallStaticJavaNode::cmp( const Node &n ) const {
1122   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1123   return CallJavaNode::cmp(call);
1124 }
1125 
1126 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1127   if (can_reshape && uncommon_trap_request() != 0) {
1128     if (remove_useless_allocation(phase, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) {
1129       if (!in(0)->is_Region()) {
1130         PhaseIterGVN* igvn = phase->is_IterGVN();
1131         igvn->replace_input_of(this, 0, phase->C->top());
1132       }
1133       return this;
1134     }
1135   }
1136 
1137   CallGenerator* cg = generator();
1138   if (can_reshape && cg != NULL) {
1139     assert(IncrementalInlineMH, "required");
1140     assert(cg->call_node() == this, "mismatch");
1141     assert(cg->is_mh_late_inline(), "not virtual");
1142 
1143     // Check whether this MH handle call becomes a candidate for inlining.
1144     ciMethod* callee = cg->method();
1145     vmIntrinsics::ID iid = callee->intrinsic_id();
1146     if (iid == vmIntrinsics::_invokeBasic) {
1147       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1148         phase->C->prepend_late_inline(cg);
1149         set_generator(NULL);
1150       }
1151     } else if (iid == vmIntrinsics::_linkToNative) {
1152       // never retry
1153     } else {
1154       assert(callee->has_member_arg(), "wrong type of call?");
1155       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1156         phase->C->prepend_late_inline(cg);
1157         set_generator(NULL);
1158       }
1159     }
1160   }
1161   return CallNode::Ideal(phase, can_reshape);
1162 }
1163 
1164 //----------------------------uncommon_trap_request----------------------------
1165 // If this is an uncommon trap, return the request code, else zero.
1166 int CallStaticJavaNode::uncommon_trap_request() const {
1167   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1168     return extract_uncommon_trap_request(this);
1169   }
1170   return 0;
1171 }
1172 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1173 #ifndef PRODUCT
1174   if (!(call->req() > TypeFunc::Parms &&
1175         call->in(TypeFunc::Parms) != NULL &&
1176         call->in(TypeFunc::Parms)->is_Con() &&
1177         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1178     assert(in_dump() != 0, "OK if dumping");
1179     tty->print("[bad uncommon trap]");
1180     return 0;
1181   }
1182 #endif
1183   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1184 }
1185 
1186 bool CallStaticJavaNode::remove_useless_allocation(PhaseGVN *phase, Node* ctl, Node* mem, Node* unc_arg) {
1187   // Split if can cause the flattened array branch of an array load to
1188   // end in an uncommon trap. In that case, the allocation of the
1189   // loaded value and its initialization is useless. Eliminate it. use
1190   // the jvm state of the allocation to create a new uncommon trap
1191   // call at the load.
1192   if (ctl == NULL || ctl->is_top() || mem == NULL || mem->is_top() || !mem->is_MergeMem()) {
1193     return false;
1194   }
1195   PhaseIterGVN* igvn = phase->is_IterGVN();
1196   if (ctl->is_Region()) {
1197     bool res = false;
1198     for (uint i = 1; i < ctl->req(); i++) {
1199       MergeMemNode* mm = mem->clone()->as_MergeMem();
1200       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1201         Node* m = mms.memory();
1202         if (m->is_Phi() && m->in(0) == ctl) {
1203           mms.set_memory(m->in(i));
1204         }
1205       }
1206       if (remove_useless_allocation(phase, ctl->in(i), mm, unc_arg)) {
1207         res = true;
1208         if (!ctl->in(i)->is_Region()) {
1209           igvn->replace_input_of(ctl, i, phase->C->top());
1210         }
1211       }
1212       igvn->remove_dead_node(mm);
1213     }
1214     return res;
1215   }
1216   // verify the control flow is ok
1217   Node* call = ctl;
1218   MemBarNode* membar = NULL;
1219   for (;;) {
1220     if (call == NULL || call->is_top()) {
1221       return false;
1222     }
1223     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1224       call = call->in(0);
1225     } else if (call->Opcode() == Op_CallStaticJava &&
1226                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1227       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1228       membar = call->in(0)->in(0)->as_MemBar();
1229       break;
1230     } else {
1231       return false;
1232     }
1233   }
1234 
1235   JVMState* jvms = call->jvms();
1236   if (phase->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1237     return false;
1238   }
1239 
1240   Node* alloc_mem = call->in(TypeFunc::Memory);
1241   if (alloc_mem == NULL || alloc_mem->is_top()) {
1242     return false;
1243   }
1244   if (!alloc_mem->is_MergeMem()) {
1245     alloc_mem = MergeMemNode::make(alloc_mem);
1246     igvn->register_new_node_with_optimizer(alloc_mem);
1247   }
1248 
1249   // and that there's no unexpected side effect
1250   for (MergeMemStream mms2(mem->as_MergeMem(), alloc_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1251     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1252     Node* m2 = mms2.memory2();
1253 
1254     for (uint i = 0; i < 100; i++) {
1255       if (m1 == m2) {
1256         break;
1257       } else if (m1->is_Proj()) {
1258         m1 = m1->in(0);
1259       } else if (m1->is_MemBar()) {
1260         m1 = m1->in(TypeFunc::Memory);
1261       } else if (m1->Opcode() == Op_CallStaticJava &&
1262                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1263         if (m1 != call) {
1264           return false;
1265         }
1266         break;
1267       } else if (m1->is_MergeMem()) {
1268         MergeMemNode* mm = m1->as_MergeMem();
1269         int idx = mms2.alias_idx();
1270         if (idx == Compile::AliasIdxBot) {
1271           m1 = mm->base_memory();
1272         } else {
1273           m1 = mm->memory_at(idx);
1274         }
1275       } else {
1276         return false;
1277       }
1278     }
1279   }
1280   if (alloc_mem->outcnt() == 0) {
1281     igvn->remove_dead_node(alloc_mem);
1282   }
1283 
1284   // Remove membar preceding the call
1285   membar->remove(igvn);
1286 
1287   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
1288   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", NULL);
1289   unc->init_req(TypeFunc::Control, call->in(0));
1290   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1291   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1292   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1293   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1294   unc->init_req(TypeFunc::Parms+0, unc_arg);
1295   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1296   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1297 
1298   igvn->replace_input_of(call, 0, phase->C->top());
1299 
1300   igvn->register_new_node_with_optimizer(unc);
1301 
1302   Node* ctrl = phase->transform(new ProjNode(unc, TypeFunc::Control));
1303   Node* halt = phase->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1304   igvn->add_input_to(phase->C->root(), halt);
1305 
1306   return true;
1307 }
1308 
1309 
1310 #ifndef PRODUCT
1311 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1312   st->print("# Static ");
1313   if (_name != NULL) {
1314     st->print("%s", _name);
1315     int trap_req = uncommon_trap_request();
1316     if (trap_req != 0) {
1317       char buf[100];
1318       st->print("(%s)",
1319                  Deoptimization::format_trap_request(buf, sizeof(buf),
1320                                                      trap_req));
1321     }
1322     st->print(" ");
1323   }
1324   CallJavaNode::dump_spec(st);
1325 }
1326 
1327 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1328   if (_method) {
1329     _method->print_short_name(st);
1330   } else if (_name) {
1331     st->print("%s", _name);
1332   } else {
1333     st->print("<?>");
1334   }
1335 }
1336 #endif
1337 
1338 //=============================================================================
1339 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1340 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1341   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1342   return CallJavaNode::cmp(call);
1343 }
1344 
1345 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1346   CallGenerator* cg = generator();
1347   if (can_reshape && cg != NULL) {
1348     assert(IncrementalInlineVirtual, "required");
1349     assert(cg->call_node() == this, "mismatch");
1350     assert(cg->is_virtual_late_inline(), "not virtual");
1351 
1352     // Recover symbolic info for method resolution.
1353     ciMethod* caller = jvms()->method();
1354     ciBytecodeStream iter(caller);
1355     iter.force_bci(jvms()->bci());
1356 
1357     bool             not_used1;
1358     ciSignature*     not_used2;
1359     ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1360     ciKlass*         holder       = iter.get_declared_method_holder();
1361     if (orig_callee->is_method_handle_intrinsic()) {
1362       assert(_override_symbolic_info, "required");
1363       orig_callee = method();
1364       holder = method()->holder();
1365     }
1366 
1367     ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1368 
1369     Node* receiver_node = in(TypeFunc::Parms);
1370     const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1371 
1372     int  not_used3;
1373     bool call_does_dispatch;
1374     ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1375                                                        call_does_dispatch, not_used3);  // out-parameters
1376     if (!call_does_dispatch) {
1377       // Register for late inlining.
1378       cg->set_callee_method(callee);
1379       phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same
1380       set_generator(NULL);
1381     }
1382   }
1383   return CallNode::Ideal(phase, can_reshape);
1384 }
1385 
1386 #ifndef PRODUCT
1387 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1388   st->print("# Dynamic ");
1389   CallJavaNode::dump_spec(st);
1390 }
1391 #endif
1392 
1393 //=============================================================================
1394 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1395 bool CallRuntimeNode::cmp( const Node &n ) const {
1396   CallRuntimeNode &call = (CallRuntimeNode&)n;
1397   return CallNode::cmp(call) && !strcmp(_name,call._name);
1398 }
1399 #ifndef PRODUCT
1400 void CallRuntimeNode::dump_spec(outputStream *st) const {
1401   st->print("# ");
1402   st->print("%s", _name);
1403   CallNode::dump_spec(st);
1404 }
1405 #endif
1406 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1407 bool CallLeafVectorNode::cmp( const Node &n ) const {
1408   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1409   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1410 }
1411 
1412 //------------------------------calling_convention-----------------------------
1413 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1414   if (_entry_point == NULL) {
1415     // The call to that stub is a special case: its inputs are
1416     // multiple values returned from a call and so it should follow
1417     // the return convention.
1418     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1419     return;
1420   }
1421   SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt);
1422 }
1423 
1424 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1425 #ifdef ASSERT
1426   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1427          "return vector size must match");
1428   const TypeTuple* d = tf()->domain_sig();
1429   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1430     Node* arg = in(i);
1431     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1432            "vector argument size must match");
1433   }
1434 #endif
1435 
1436   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1437 }
1438 
1439 //=============================================================================
1440 //------------------------------calling_convention-----------------------------
1441 
1442 
1443 //=============================================================================
1444 #ifndef PRODUCT
1445 void CallLeafNode::dump_spec(outputStream *st) const {
1446   st->print("# ");
1447   st->print("%s", _name);
1448   CallNode::dump_spec(st);
1449 }
1450 #endif
1451 
1452 uint CallLeafNoFPNode::match_edge(uint idx) const {
1453   // Null entry point is a special case for which the target is in a
1454   // register. Need to match that edge.
1455   return entry_point() == NULL && idx == TypeFunc::Parms;
1456 }
1457 
1458 //=============================================================================
1459 
1460 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1461   assert(verify_jvms(jvms), "jvms must match");
1462   int loc = jvms->locoff() + idx;
1463   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1464     // If current local idx is top then local idx - 1 could
1465     // be a long/double that needs to be killed since top could
1466     // represent the 2nd half of the long/double.
1467     uint ideal = in(loc -1)->ideal_reg();
1468     if (ideal == Op_RegD || ideal == Op_RegL) {
1469       // set other (low index) half to top
1470       set_req(loc - 1, in(loc));
1471     }
1472   }
1473   set_req(loc, c);
1474 }
1475 
1476 uint SafePointNode::size_of() const { return sizeof(*this); }
1477 bool SafePointNode::cmp( const Node &n ) const {
1478   return (&n == this);          // Always fail except on self
1479 }
1480 
1481 //-------------------------set_next_exception----------------------------------
1482 void SafePointNode::set_next_exception(SafePointNode* n) {
1483   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1484   if (len() == req()) {
1485     if (n != NULL)  add_prec(n);
1486   } else {
1487     set_prec(req(), n);
1488   }
1489 }
1490 
1491 
1492 //----------------------------next_exception-----------------------------------
1493 SafePointNode* SafePointNode::next_exception() const {
1494   if (len() == req()) {
1495     return NULL;
1496   } else {
1497     Node* n = in(req());
1498     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1499     return (SafePointNode*) n;
1500   }
1501 }
1502 
1503 
1504 //------------------------------Ideal------------------------------------------
1505 // Skip over any collapsed Regions
1506 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1507   assert(_jvms == NULL || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1508   if (remove_dead_region(phase, can_reshape)) {
1509     return this;
1510   }
1511   // Scalarize inline types in safepoint debug info.
1512   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1513   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != NULL) {
1514     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1515       Node* n = in(i)->uncast();
1516       if (n->is_InlineTypeBase()) {
1517         n->as_InlineTypeBase()->make_scalar_in_safepoints(phase->is_IterGVN());
1518       }
1519     }
1520   }
1521   return NULL;
1522 }
1523 
1524 //------------------------------Identity---------------------------------------
1525 // Remove obviously duplicate safepoints
1526 Node* SafePointNode::Identity(PhaseGVN* phase) {
1527 
1528   // If you have back to back safepoints, remove one
1529   if (in(TypeFunc::Control)->is_SafePoint()) {
1530     Node* out_c = unique_ctrl_out_or_null();
1531     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1532     // outer loop's safepoint could confuse removal of the outer loop.
1533     if (out_c != NULL && !out_c->is_OuterStripMinedLoopEnd()) {
1534       return in(TypeFunc::Control);
1535     }
1536   }
1537 
1538   // Transforming long counted loops requires a safepoint node. Do not
1539   // eliminate a safepoint until loop opts are over.
1540   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1541     Node *n0 = in(0)->in(0);
1542     // Check if he is a call projection (except Leaf Call)
1543     if( n0->is_Catch() ) {
1544       n0 = n0->in(0)->in(0);
1545       assert( n0->is_Call(), "expect a call here" );
1546     }
1547     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1548       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1549       // If the loop dies, they will be removed together.
1550       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1551         return this;
1552       }
1553       // Useless Safepoint, so remove it
1554       return in(TypeFunc::Control);
1555     }
1556   }
1557 
1558   return this;
1559 }
1560 
1561 //------------------------------Value------------------------------------------
1562 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1563   if (phase->type(in(0)) == Type::TOP) {
1564     return Type::TOP;
1565   }
1566   if (in(0) == this) {
1567     return Type::TOP; // Dead infinite loop
1568   }
1569   return Type::CONTROL;
1570 }
1571 
1572 #ifndef PRODUCT
1573 void SafePointNode::dump_spec(outputStream *st) const {
1574   st->print(" SafePoint ");
1575   _replaced_nodes.dump(st);
1576 }
1577 #endif
1578 
1579 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1580   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1581   // Values outside the domain represent debug info
1582   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1583 }
1584 const RegMask &SafePointNode::out_RegMask() const {
1585   return RegMask::Empty;
1586 }
1587 
1588 
1589 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1590   assert((int)grow_by > 0, "sanity");
1591   int monoff = jvms->monoff();
1592   int scloff = jvms->scloff();
1593   int endoff = jvms->endoff();
1594   assert(endoff == (int)req(), "no other states or debug info after me");
1595   Node* top = Compile::current()->top();
1596   for (uint i = 0; i < grow_by; i++) {
1597     ins_req(monoff, top);
1598   }
1599   jvms->set_monoff(monoff + grow_by);
1600   jvms->set_scloff(scloff + grow_by);
1601   jvms->set_endoff(endoff + grow_by);
1602 }
1603 
1604 void SafePointNode::push_monitor(const FastLockNode *lock) {
1605   // Add a LockNode, which points to both the original BoxLockNode (the
1606   // stack space for the monitor) and the Object being locked.
1607   const int MonitorEdges = 2;
1608   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1609   assert(req() == jvms()->endoff(), "correct sizing");
1610   int nextmon = jvms()->scloff();
1611   if (GenerateSynchronizationCode) {
1612     ins_req(nextmon,   lock->box_node());
1613     ins_req(nextmon+1, lock->obj_node());
1614   } else {
1615     Node* top = Compile::current()->top();
1616     ins_req(nextmon, top);
1617     ins_req(nextmon, top);
1618   }
1619   jvms()->set_scloff(nextmon + MonitorEdges);
1620   jvms()->set_endoff(req());
1621 }
1622 
1623 void SafePointNode::pop_monitor() {
1624   // Delete last monitor from debug info
1625   debug_only(int num_before_pop = jvms()->nof_monitors());
1626   const int MonitorEdges = 2;
1627   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1628   int scloff = jvms()->scloff();
1629   int endoff = jvms()->endoff();
1630   int new_scloff = scloff - MonitorEdges;
1631   int new_endoff = endoff - MonitorEdges;
1632   jvms()->set_scloff(new_scloff);
1633   jvms()->set_endoff(new_endoff);
1634   while (scloff > new_scloff)  del_req_ordered(--scloff);
1635   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1636 }
1637 
1638 Node *SafePointNode::peek_monitor_box() const {
1639   int mon = jvms()->nof_monitors() - 1;
1640   assert(mon >= 0, "must have a monitor");
1641   return monitor_box(jvms(), mon);
1642 }
1643 
1644 Node *SafePointNode::peek_monitor_obj() const {
1645   int mon = jvms()->nof_monitors() - 1;
1646   assert(mon >= 0, "must have a monitor");
1647   return monitor_obj(jvms(), mon);
1648 }
1649 
1650 Node* SafePointNode::peek_operand(uint off) const {
1651   assert(jvms()->sp() > 0, "must have an operand");
1652   assert(off < jvms()->sp(), "off is out-of-range");
1653   return stack(jvms(), jvms()->sp() - off - 1);
1654 }
1655 
1656 // Do we Match on this edge index or not?  Match no edges
1657 uint SafePointNode::match_edge(uint idx) const {
1658   return (TypeFunc::Parms == idx);
1659 }
1660 
1661 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1662   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1663   int nb = igvn->C->root()->find_prec_edge(this);
1664   if (nb != -1) {
1665     igvn->delete_precedence_of(igvn->C->root(), nb);
1666   }
1667 }
1668 
1669 //==============  SafePointScalarObjectNode  ==============
1670 
1671 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1672 #ifdef ASSERT
1673                                                      Node* alloc,
1674 #endif
1675                                                      uint first_index,
1676                                                      uint n_fields) :
1677   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1678   _first_index(first_index),
1679   _n_fields(n_fields)
1680 #ifdef ASSERT
1681   , _alloc(alloc)
1682 #endif
1683 {
1684 #ifdef ASSERT
1685   if (alloc != NULL && !alloc->is_Allocate()
1686       && !(alloc->Opcode() == Op_VectorBox)) {
1687     alloc->dump();
1688     assert(false, "unexpected call node");
1689   }
1690 #endif
1691   init_class_id(Class_SafePointScalarObject);
1692 }
1693 
1694 // Do not allow value-numbering for SafePointScalarObject node.
1695 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1696 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1697   return (&n == this); // Always fail except on self
1698 }
1699 
1700 uint SafePointScalarObjectNode::ideal_reg() const {
1701   return 0; // No matching to machine instruction
1702 }
1703 
1704 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1705   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1706 }
1707 
1708 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1709   return RegMask::Empty;
1710 }
1711 
1712 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1713   return 0;
1714 }
1715 
1716 SafePointScalarObjectNode*
1717 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1718   void* cached = (*sosn_map)[(void*)this];
1719   if (cached != NULL) {
1720     new_node = false;
1721     return (SafePointScalarObjectNode*)cached;
1722   }
1723   new_node = true;
1724   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1725   sosn_map->Insert((void*)this, (void*)res);
1726   return res;
1727 }
1728 
1729 
1730 #ifndef PRODUCT
1731 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1732   st->print(" # fields@[%d..%d]", first_index(),
1733              first_index() + n_fields() - 1);
1734 }
1735 
1736 #endif
1737 
1738 //=============================================================================
1739 uint AllocateNode::size_of() const { return sizeof(*this); }
1740 
1741 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1742                            Node *ctrl, Node *mem, Node *abio,
1743                            Node *size, Node *klass_node,
1744                            Node* initial_test,
1745                            InlineTypeBaseNode* inline_type_node)
1746   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1747 {
1748   init_class_id(Class_Allocate);
1749   init_flags(Flag_is_macro);
1750   _is_scalar_replaceable = false;
1751   _is_non_escaping = false;
1752   _is_allocation_MemBar_redundant = false;
1753   _larval = false;
1754   Node *topnode = C->top();
1755 
1756   init_req( TypeFunc::Control  , ctrl );
1757   init_req( TypeFunc::I_O      , abio );
1758   init_req( TypeFunc::Memory   , mem );
1759   init_req( TypeFunc::ReturnAdr, topnode );
1760   init_req( TypeFunc::FramePtr , topnode );
1761   init_req( AllocSize          , size);
1762   init_req( KlassNode          , klass_node);
1763   init_req( InitialTest        , initial_test);
1764   init_req( ALength            , topnode);
1765   init_req( InlineTypeNode     , inline_type_node);
1766   // DefaultValue defaults to NULL
1767   // RawDefaultValue defaults to NULL
1768   C->add_macro_node(this);
1769 }
1770 
1771 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1772 {
1773   assert(initializer != NULL &&
1774          initializer->is_object_constructor_or_class_initializer(),
1775          "unexpected initializer method");
1776   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1777   if (analyzer == NULL) {
1778     return;
1779   }
1780 
1781   // Allocation node is first parameter in its initializer
1782   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1783     _is_allocation_MemBar_redundant = true;
1784   }
1785 }
1786 
1787 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1788   Node* mark_node = NULL;
1789   if (EnableValhalla) {
1790     Node* klass_node = in(AllocateNode::KlassNode);
1791     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1792     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1793   } else {
1794     mark_node = phase->MakeConX(markWord::prototype().value());
1795   }
1796   mark_node = phase->transform(mark_node);
1797   // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
1798   return new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
1799 }
1800 
1801 //=============================================================================
1802 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1803   if (remove_dead_region(phase, can_reshape))  return this;
1804   // Don't bother trying to transform a dead node
1805   if (in(0) && in(0)->is_top())  return NULL;
1806 
1807   const Type* type = phase->type(Ideal_length());
1808   if (type->isa_int() && type->is_int()->_hi < 0) {
1809     if (can_reshape) {
1810       PhaseIterGVN *igvn = phase->is_IterGVN();
1811       // Unreachable fall through path (negative array length),
1812       // the allocation can only throw so disconnect it.
1813       Node* proj = proj_out_or_null(TypeFunc::Control);
1814       Node* catchproj = NULL;
1815       if (proj != NULL) {
1816         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1817           Node *cn = proj->fast_out(i);
1818           if (cn->is_Catch()) {
1819             catchproj = cn->as_Multi()->proj_out_or_null(CatchProjNode::fall_through_index);
1820             break;
1821           }
1822         }
1823       }
1824       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1825           (catchproj->outcnt() > 1 ||
1826            catchproj->unique_out()->Opcode() != Op_Halt)) {
1827         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1828         Node* nproj = catchproj->clone();
1829         igvn->register_new_node_with_optimizer(nproj);
1830 
1831         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1832         frame = phase->transform(frame);
1833         // Halt & Catch Fire
1834         Node* halt = new HaltNode(nproj, frame, "unexpected negative array length");
1835         igvn->add_input_to(phase->C->root(), halt);
1836         phase->transform(halt);
1837 
1838         igvn->replace_node(catchproj, phase->C->top());
1839         return this;
1840       }
1841     } else {
1842       // Can't correct it during regular GVN so register for IGVN
1843       phase->C->record_for_igvn(this);
1844     }
1845   }
1846   return NULL;
1847 }
1848 
1849 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1850 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1851 // a CastII is appropriate, return NULL.
1852 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1853   Node *length = in(AllocateNode::ALength);
1854   assert(length != NULL, "length is not null");
1855 
1856   const TypeInt* length_type = phase->find_int_type(length);
1857   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1858 
1859   if (ary_type != NULL && length_type != NULL) {
1860     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1861     if (narrow_length_type != length_type) {
1862       // Assert one of:
1863       //   - the narrow_length is 0
1864       //   - the narrow_length is not wider than length
1865       assert(narrow_length_type == TypeInt::ZERO ||
1866              length_type->is_con() && narrow_length_type->is_con() &&
1867                 (narrow_length_type->_hi <= length_type->_lo) ||
1868              (narrow_length_type->_hi <= length_type->_hi &&
1869               narrow_length_type->_lo >= length_type->_lo),
1870              "narrow type must be narrower than length type");
1871 
1872       // Return NULL if new nodes are not allowed
1873       if (!allow_new_nodes) {
1874         return NULL;
1875       }
1876       // Create a cast which is control dependent on the initialization to
1877       // propagate the fact that the array length must be positive.
1878       InitializeNode* init = initialization();
1879       if (init != NULL) {
1880         length = new CastIINode(length, narrow_length_type);
1881         length->set_req(TypeFunc::Control, init->proj_out_or_null(TypeFunc::Control));
1882       }
1883     }
1884   }
1885 
1886   return length;
1887 }
1888 
1889 //=============================================================================
1890 uint LockNode::size_of() const { return sizeof(*this); }
1891 
1892 // Redundant lock elimination
1893 //
1894 // There are various patterns of locking where we release and
1895 // immediately reacquire a lock in a piece of code where no operations
1896 // occur in between that would be observable.  In those cases we can
1897 // skip releasing and reacquiring the lock without violating any
1898 // fairness requirements.  Doing this around a loop could cause a lock
1899 // to be held for a very long time so we concentrate on non-looping
1900 // control flow.  We also require that the operations are fully
1901 // redundant meaning that we don't introduce new lock operations on
1902 // some paths so to be able to eliminate it on others ala PRE.  This
1903 // would probably require some more extensive graph manipulation to
1904 // guarantee that the memory edges were all handled correctly.
1905 //
1906 // Assuming p is a simple predicate which can't trap in any way and s
1907 // is a synchronized method consider this code:
1908 //
1909 //   s();
1910 //   if (p)
1911 //     s();
1912 //   else
1913 //     s();
1914 //   s();
1915 //
1916 // 1. The unlocks of the first call to s can be eliminated if the
1917 // locks inside the then and else branches are eliminated.
1918 //
1919 // 2. The unlocks of the then and else branches can be eliminated if
1920 // the lock of the final call to s is eliminated.
1921 //
1922 // Either of these cases subsumes the simple case of sequential control flow
1923 //
1924 // Additionally we can eliminate versions without the else case:
1925 //
1926 //   s();
1927 //   if (p)
1928 //     s();
1929 //   s();
1930 //
1931 // 3. In this case we eliminate the unlock of the first s, the lock
1932 // and unlock in the then case and the lock in the final s.
1933 //
1934 // Note also that in all these cases the then/else pieces don't have
1935 // to be trivial as long as they begin and end with synchronization
1936 // operations.
1937 //
1938 //   s();
1939 //   if (p)
1940 //     s();
1941 //     f();
1942 //     s();
1943 //   s();
1944 //
1945 // The code will work properly for this case, leaving in the unlock
1946 // before the call to f and the relock after it.
1947 //
1948 // A potentially interesting case which isn't handled here is when the
1949 // locking is partially redundant.
1950 //
1951 //   s();
1952 //   if (p)
1953 //     s();
1954 //
1955 // This could be eliminated putting unlocking on the else case and
1956 // eliminating the first unlock and the lock in the then side.
1957 // Alternatively the unlock could be moved out of the then side so it
1958 // was after the merge and the first unlock and second lock
1959 // eliminated.  This might require less manipulation of the memory
1960 // state to get correct.
1961 //
1962 // Additionally we might allow work between a unlock and lock before
1963 // giving up eliminating the locks.  The current code disallows any
1964 // conditional control flow between these operations.  A formulation
1965 // similar to partial redundancy elimination computing the
1966 // availability of unlocking and the anticipatability of locking at a
1967 // program point would allow detection of fully redundant locking with
1968 // some amount of work in between.  I'm not sure how often I really
1969 // think that would occur though.  Most of the cases I've seen
1970 // indicate it's likely non-trivial work would occur in between.
1971 // There may be other more complicated constructs where we could
1972 // eliminate locking but I haven't seen any others appear as hot or
1973 // interesting.
1974 //
1975 // Locking and unlocking have a canonical form in ideal that looks
1976 // roughly like this:
1977 //
1978 //              <obj>
1979 //                | \\------+
1980 //                |  \       \
1981 //                | BoxLock   \
1982 //                |  |   |     \
1983 //                |  |    \     \
1984 //                |  |   FastLock
1985 //                |  |   /
1986 //                |  |  /
1987 //                |  |  |
1988 //
1989 //               Lock
1990 //                |
1991 //            Proj #0
1992 //                |
1993 //            MembarAcquire
1994 //                |
1995 //            Proj #0
1996 //
1997 //            MembarRelease
1998 //                |
1999 //            Proj #0
2000 //                |
2001 //              Unlock
2002 //                |
2003 //            Proj #0
2004 //
2005 //
2006 // This code proceeds by processing Lock nodes during PhaseIterGVN
2007 // and searching back through its control for the proper code
2008 // patterns.  Once it finds a set of lock and unlock operations to
2009 // eliminate they are marked as eliminatable which causes the
2010 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2011 //
2012 //=============================================================================
2013 
2014 //
2015 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
2016 //   - copy regions.  (These may not have been optimized away yet.)
2017 //   - eliminated locking nodes
2018 //
2019 static Node *next_control(Node *ctrl) {
2020   if (ctrl == NULL)
2021     return NULL;
2022   while (1) {
2023     if (ctrl->is_Region()) {
2024       RegionNode *r = ctrl->as_Region();
2025       Node *n = r->is_copy();
2026       if (n == NULL)
2027         break;  // hit a region, return it
2028       else
2029         ctrl = n;
2030     } else if (ctrl->is_Proj()) {
2031       Node *in0 = ctrl->in(0);
2032       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2033         ctrl = in0->in(0);
2034       } else {
2035         break;
2036       }
2037     } else {
2038       break; // found an interesting control
2039     }
2040   }
2041   return ctrl;
2042 }
2043 //
2044 // Given a control, see if it's the control projection of an Unlock which
2045 // operating on the same object as lock.
2046 //
2047 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2048                                             GrowableArray<AbstractLockNode*> &lock_ops) {
2049   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
2050   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
2051     Node *n = ctrl_proj->in(0);
2052     if (n != NULL && n->is_Unlock()) {
2053       UnlockNode *unlock = n->as_Unlock();
2054       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2055       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2056       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2057       if (lock_obj->eqv_uncast(unlock_obj) &&
2058           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2059           !unlock->is_eliminated()) {
2060         lock_ops.append(unlock);
2061         return true;
2062       }
2063     }
2064   }
2065   return false;
2066 }
2067 
2068 //
2069 // Find the lock matching an unlock.  Returns null if a safepoint
2070 // or complicated control is encountered first.
2071 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2072   LockNode *lock_result = NULL;
2073   // find the matching lock, or an intervening safepoint
2074   Node *ctrl = next_control(unlock->in(0));
2075   while (1) {
2076     assert(ctrl != NULL, "invalid control graph");
2077     assert(!ctrl->is_Start(), "missing lock for unlock");
2078     if (ctrl->is_top()) break;  // dead control path
2079     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2080     if (ctrl->is_SafePoint()) {
2081         break;  // found a safepoint (may be the lock we are searching for)
2082     } else if (ctrl->is_Region()) {
2083       // Check for a simple diamond pattern.  Punt on anything more complicated
2084       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
2085         Node *in1 = next_control(ctrl->in(1));
2086         Node *in2 = next_control(ctrl->in(2));
2087         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2088              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2089           ctrl = next_control(in1->in(0)->in(0));
2090         } else {
2091           break;
2092         }
2093       } else {
2094         break;
2095       }
2096     } else {
2097       ctrl = next_control(ctrl->in(0));  // keep searching
2098     }
2099   }
2100   if (ctrl->is_Lock()) {
2101     LockNode *lock = ctrl->as_Lock();
2102     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2103     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2104     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2105     if (lock_obj->eqv_uncast(unlock_obj) &&
2106         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2107       lock_result = lock;
2108     }
2109   }
2110   return lock_result;
2111 }
2112 
2113 // This code corresponds to case 3 above.
2114 
2115 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2116                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
2117   Node* if_node = node->in(0);
2118   bool  if_true = node->is_IfTrue();
2119 
2120   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2121     Node *lock_ctrl = next_control(if_node->in(0));
2122     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2123       Node* lock1_node = NULL;
2124       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2125       if (if_true) {
2126         if (proj->is_IfFalse() && proj->outcnt() == 1) {
2127           lock1_node = proj->unique_out();
2128         }
2129       } else {
2130         if (proj->is_IfTrue() && proj->outcnt() == 1) {
2131           lock1_node = proj->unique_out();
2132         }
2133       }
2134       if (lock1_node != NULL && lock1_node->is_Lock()) {
2135         LockNode *lock1 = lock1_node->as_Lock();
2136         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2137         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2138         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2139         if (lock_obj->eqv_uncast(lock1_obj) &&
2140             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2141             !lock1->is_eliminated()) {
2142           lock_ops.append(lock1);
2143           return true;
2144         }
2145       }
2146     }
2147   }
2148 
2149   lock_ops.trunc_to(0);
2150   return false;
2151 }
2152 
2153 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2154                                GrowableArray<AbstractLockNode*> &lock_ops) {
2155   // check each control merging at this point for a matching unlock.
2156   // in(0) should be self edge so skip it.
2157   for (int i = 1; i < (int)region->req(); i++) {
2158     Node *in_node = next_control(region->in(i));
2159     if (in_node != NULL) {
2160       if (find_matching_unlock(in_node, lock, lock_ops)) {
2161         // found a match so keep on checking.
2162         continue;
2163       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2164         continue;
2165       }
2166 
2167       // If we fall through to here then it was some kind of node we
2168       // don't understand or there wasn't a matching unlock, so give
2169       // up trying to merge locks.
2170       lock_ops.trunc_to(0);
2171       return false;
2172     }
2173   }
2174   return true;
2175 
2176 }
2177 
2178 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2179 
2180 const char * AbstractLockNode::kind_as_string() const {
2181   return _kind_names[_kind];
2182 }
2183 
2184 #ifndef PRODUCT
2185 //
2186 // Create a counter which counts the number of times this lock is acquired
2187 //
2188 void AbstractLockNode::create_lock_counter(JVMState* state) {
2189   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2190 }
2191 
2192 void AbstractLockNode::set_eliminated_lock_counter() {
2193   if (_counter) {
2194     // Update the counter to indicate that this lock was eliminated.
2195     // The counter update code will stay around even though the
2196     // optimizer will eliminate the lock operation itself.
2197     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2198   }
2199 }
2200 
2201 void AbstractLockNode::dump_spec(outputStream* st) const {
2202   st->print("%s ", _kind_names[_kind]);
2203   CallNode::dump_spec(st);
2204 }
2205 
2206 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2207   st->print("%s", _kind_names[_kind]);
2208 }
2209 #endif
2210 
2211 //=============================================================================
2212 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2213 
2214   // perform any generic optimizations first (returns 'this' or NULL)
2215   Node *result = SafePointNode::Ideal(phase, can_reshape);
2216   if (result != NULL)  return result;
2217   // Don't bother trying to transform a dead node
2218   if (in(0) && in(0)->is_top())  return NULL;
2219 
2220   // Now see if we can optimize away this lock.  We don't actually
2221   // remove the locking here, we simply set the _eliminate flag which
2222   // prevents macro expansion from expanding the lock.  Since we don't
2223   // modify the graph, the value returned from this function is the
2224   // one computed above.
2225   const Type* obj_type = phase->type(obj_node());
2226   if (can_reshape && EliminateLocks && !is_non_esc_obj() &&
2227       !obj_type->isa_inlinetype() && !obj_type->is_inlinetypeptr()) {
2228     //
2229     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2230     //
2231     ConnectionGraph *cgr = phase->C->congraph();
2232     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2233       assert(!is_eliminated() || is_coarsened(), "sanity");
2234       // The lock could be marked eliminated by lock coarsening
2235       // code during first IGVN before EA. Replace coarsened flag
2236       // to eliminate all associated locks/unlocks.
2237 #ifdef ASSERT
2238       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2239 #endif
2240       this->set_non_esc_obj();
2241       return result;
2242     }
2243 
2244     if (!phase->C->do_locks_coarsening()) {
2245       return result; // Compiling without locks coarsening
2246     }
2247     //
2248     // Try lock coarsening
2249     //
2250     PhaseIterGVN* iter = phase->is_IterGVN();
2251     if (iter != NULL && !is_eliminated()) {
2252 
2253       GrowableArray<AbstractLockNode*>   lock_ops;
2254 
2255       Node *ctrl = next_control(in(0));
2256 
2257       // now search back for a matching Unlock
2258       if (find_matching_unlock(ctrl, this, lock_ops)) {
2259         // found an unlock directly preceding this lock.  This is the
2260         // case of single unlock directly control dependent on a
2261         // single lock which is the trivial version of case 1 or 2.
2262       } else if (ctrl->is_Region() ) {
2263         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2264         // found lock preceded by multiple unlocks along all paths
2265         // joining at this point which is case 3 in description above.
2266         }
2267       } else {
2268         // see if this lock comes from either half of an if and the
2269         // predecessors merges unlocks and the other half of the if
2270         // performs a lock.
2271         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2272           // found unlock splitting to an if with locks on both branches.
2273         }
2274       }
2275 
2276       if (lock_ops.length() > 0) {
2277         // add ourselves to the list of locks to be eliminated.
2278         lock_ops.append(this);
2279 
2280   #ifndef PRODUCT
2281         if (PrintEliminateLocks) {
2282           int locks = 0;
2283           int unlocks = 0;
2284           if (Verbose) {
2285             tty->print_cr("=== Locks coarsening ===");
2286           }
2287           for (int i = 0; i < lock_ops.length(); i++) {
2288             AbstractLockNode* lock = lock_ops.at(i);
2289             if (lock->Opcode() == Op_Lock)
2290               locks++;
2291             else
2292               unlocks++;
2293             if (Verbose) {
2294               tty->print(" %d: ", i);
2295               lock->dump();
2296             }
2297           }
2298           tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2299         }
2300   #endif
2301 
2302         // for each of the identified locks, mark them
2303         // as eliminatable
2304         for (int i = 0; i < lock_ops.length(); i++) {
2305           AbstractLockNode* lock = lock_ops.at(i);
2306 
2307           // Mark it eliminated by coarsening and update any counters
2308 #ifdef ASSERT
2309           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2310 #endif
2311           lock->set_coarsened();
2312         }
2313         // Record this coarsened group.
2314         phase->C->add_coarsened_locks(lock_ops);
2315       } else if (ctrl->is_Region() &&
2316                  iter->_worklist.member(ctrl)) {
2317         // We weren't able to find any opportunities but the region this
2318         // lock is control dependent on hasn't been processed yet so put
2319         // this lock back on the worklist so we can check again once any
2320         // region simplification has occurred.
2321         iter->_worklist.push(this);
2322       }
2323     }
2324   }
2325 
2326   return result;
2327 }
2328 
2329 //=============================================================================
2330 bool LockNode::is_nested_lock_region() {
2331   return is_nested_lock_region(NULL);
2332 }
2333 
2334 // p is used for access to compilation log; no logging if NULL
2335 bool LockNode::is_nested_lock_region(Compile * c) {
2336   BoxLockNode* box = box_node()->as_BoxLock();
2337   int stk_slot = box->stack_slot();
2338   if (stk_slot <= 0) {
2339 #ifdef ASSERT
2340     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2341 #endif
2342     return false; // External lock or it is not Box (Phi node).
2343   }
2344 
2345   // Ignore complex cases: merged locks or multiple locks.
2346   Node* obj = obj_node();
2347   LockNode* unique_lock = NULL;
2348   Node* bad_lock = NULL;
2349   if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2350 #ifdef ASSERT
2351     this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2352 #endif
2353     return false;
2354   }
2355   if (unique_lock != this) {
2356 #ifdef ASSERT
2357     this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != NULL ? unique_lock : bad_lock));
2358     if (PrintEliminateLocks && Verbose) {
2359       tty->print_cr("=============== unique_lock != this ============");
2360       tty->print(" this: ");
2361       this->dump();
2362       tty->print(" box: ");
2363       box->dump();
2364       tty->print(" obj: ");
2365       obj->dump();
2366       if (unique_lock != NULL) {
2367         tty->print(" unique_lock: ");
2368         unique_lock->dump();
2369       }
2370       if (bad_lock != NULL) {
2371         tty->print(" bad_lock: ");
2372         bad_lock->dump();
2373       }
2374       tty->print_cr("===============");
2375     }
2376 #endif
2377     return false;
2378   }
2379 
2380   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2381   obj = bs->step_over_gc_barrier(obj);
2382   // Look for external lock for the same object.
2383   SafePointNode* sfn = this->as_SafePoint();
2384   JVMState* youngest_jvms = sfn->jvms();
2385   int max_depth = youngest_jvms->depth();
2386   for (int depth = 1; depth <= max_depth; depth++) {
2387     JVMState* jvms = youngest_jvms->of_depth(depth);
2388     int num_mon  = jvms->nof_monitors();
2389     // Loop over monitors
2390     for (int idx = 0; idx < num_mon; idx++) {
2391       Node* obj_node = sfn->monitor_obj(jvms, idx);
2392       obj_node = bs->step_over_gc_barrier(obj_node);
2393       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2394       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2395         return true;
2396       }
2397     }
2398   }
2399 #ifdef ASSERT
2400   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2401 #endif
2402   return false;
2403 }
2404 
2405 //=============================================================================
2406 uint UnlockNode::size_of() const { return sizeof(*this); }
2407 
2408 //=============================================================================
2409 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2410 
2411   // perform any generic optimizations first (returns 'this' or NULL)
2412   Node *result = SafePointNode::Ideal(phase, can_reshape);
2413   if (result != NULL)  return result;
2414   // Don't bother trying to transform a dead node
2415   if (in(0) && in(0)->is_top())  return NULL;
2416 
2417   // Now see if we can optimize away this unlock.  We don't actually
2418   // remove the unlocking here, we simply set the _eliminate flag which
2419   // prevents macro expansion from expanding the unlock.  Since we don't
2420   // modify the graph, the value returned from this function is the
2421   // one computed above.
2422   // Escape state is defined after Parse phase.
2423   const Type* obj_type = phase->type(obj_node());
2424   if (can_reshape && EliminateLocks && !is_non_esc_obj() &&
2425       !obj_type->isa_inlinetype() && !obj_type->is_inlinetypeptr()) {
2426     //
2427     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2428     //
2429     ConnectionGraph *cgr = phase->C->congraph();
2430     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2431       assert(!is_eliminated() || is_coarsened(), "sanity");
2432       // The lock could be marked eliminated by lock coarsening
2433       // code during first IGVN before EA. Replace coarsened flag
2434       // to eliminate all associated locks/unlocks.
2435 #ifdef ASSERT
2436       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2437 #endif
2438       this->set_non_esc_obj();
2439     }
2440   }
2441   return result;
2442 }
2443 
2444 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2445   if (C == NULL) {
2446     return;
2447   }
2448   CompileLog* log = C->log();
2449   if (log != NULL) {
2450     Node* box = box_node();
2451     Node* obj = obj_node();
2452     int box_id = box != NULL ? box->_idx : -1;
2453     int obj_id = obj != NULL ? obj->_idx : -1;
2454 
2455     log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2456           tag, C->compile_id(), this->_idx,
2457           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2458           kind_as_string(), box_id, obj_id, (bad_lock != NULL ? bad_lock->_idx : -1));
2459     log->stamp();
2460     log->end_head();
2461     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2462     while (p != NULL) {
2463       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2464       p = p->caller();
2465     }
2466     log->tail(tag);
2467   }
2468 }
2469 
2470 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
2471   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2472     return dest_t->instance_id() == t_oop->instance_id();
2473   }
2474 
2475   if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2476     // clone
2477     if (t_oop->isa_aryptr()) {
2478       return false;
2479     }
2480     if (!t_oop->isa_instptr()) {
2481       return true;
2482     }
2483     if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2484       return true;
2485     }
2486     // unrelated
2487     return false;
2488   }
2489 
2490   if (dest_t->isa_aryptr()) {
2491     // arraycopy or array clone
2492     if (t_oop->isa_instptr()) {
2493       return false;
2494     }
2495     if (!t_oop->isa_aryptr()) {
2496       return true;
2497     }
2498 
2499     const Type* elem = dest_t->is_aryptr()->elem();
2500     if (elem == Type::BOTTOM) {
2501       // An array but we don't know what elements are
2502       return true;
2503     }
2504 
2505     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2506     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2507     uint dest_alias = phase->C->get_alias_index(dest_t);
2508     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2509 
2510     return dest_alias == t_oop_alias;
2511   }
2512 
2513   return true;
2514 }