1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/bcEscapeAnalyzer.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "code/vmreg.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "compiler/oopMap.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/c2/barrierSetC2.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "opto/callGenerator.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/inlinetypenode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/machnode.hpp" 42 #include "opto/matcher.hpp" 43 #include "opto/movenode.hpp" 44 #include "opto/parse.hpp" 45 #include "opto/regalloc.hpp" 46 #include "opto/regmask.hpp" 47 #include "opto/rootnode.hpp" 48 #include "opto/runtime.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "utilities/powerOfTwo.hpp" 53 54 // Portions of code courtesy of Clifford Click 55 56 // Optimization - Graph Style 57 58 //============================================================================= 59 uint StartNode::size_of() const { return sizeof(*this); } 60 bool StartNode::cmp( const Node &n ) const 61 { return _domain == ((StartNode&)n)._domain; } 62 const Type *StartNode::bottom_type() const { return _domain; } 63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } 64 #ifndef PRODUCT 65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } 67 #endif 68 69 //------------------------------Ideal------------------------------------------ 70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 71 return remove_dead_region(phase, can_reshape) ? this : nullptr; 72 } 73 74 //------------------------------calling_convention----------------------------- 75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 76 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 77 } 78 79 //------------------------------Registers-------------------------------------- 80 const RegMask &StartNode::in_RegMask(uint) const { 81 return RegMask::EMPTY; 82 } 83 84 //------------------------------match------------------------------------------ 85 // Construct projections for incoming parameters, and their RegMask info 86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) { 87 switch (proj->_con) { 88 case TypeFunc::Control: 89 case TypeFunc::I_O: 90 case TypeFunc::Memory: 91 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj); 92 case TypeFunc::FramePtr: 93 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 94 case TypeFunc::ReturnAdr: 95 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 96 case TypeFunc::Parms: 97 default: { 98 uint parm_num = proj->_con - TypeFunc::Parms; 99 const Type *t = _domain->field_at(proj->_con); 100 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 101 return new ConNode(Type::TOP); 102 uint ideal_reg = t->ideal_reg(); 103 RegMask &rm = match->_calling_convention_mask[parm_num]; 104 return new MachProjNode(this,proj->_con,rm,ideal_reg); 105 } 106 } 107 return nullptr; 108 } 109 110 //============================================================================= 111 const char * const ParmNode::names[TypeFunc::Parms+1] = { 112 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 113 }; 114 115 #ifndef PRODUCT 116 void ParmNode::dump_spec(outputStream *st) const { 117 if( _con < TypeFunc::Parms ) { 118 st->print("%s", names[_con]); 119 } else { 120 st->print("Parm%d: ",_con-TypeFunc::Parms); 121 // Verbose and WizardMode dump bottom_type for all nodes 122 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 123 } 124 } 125 126 void ParmNode::dump_compact_spec(outputStream *st) const { 127 if (_con < TypeFunc::Parms) { 128 st->print("%s", names[_con]); 129 } else { 130 st->print("%d:", _con-TypeFunc::Parms); 131 // unconditionally dump bottom_type 132 bottom_type()->dump_on(st); 133 } 134 } 135 #endif 136 137 uint ParmNode::ideal_reg() const { 138 switch( _con ) { 139 case TypeFunc::Control : // fall through 140 case TypeFunc::I_O : // fall through 141 case TypeFunc::Memory : return 0; 142 case TypeFunc::FramePtr : // fall through 143 case TypeFunc::ReturnAdr: return Op_RegP; 144 default : assert( _con > TypeFunc::Parms, "" ); 145 // fall through 146 case TypeFunc::Parms : { 147 // Type of argument being passed 148 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 149 return t->ideal_reg(); 150 } 151 } 152 ShouldNotReachHere(); 153 return 0; 154 } 155 156 //============================================================================= 157 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 158 init_req(TypeFunc::Control,cntrl); 159 init_req(TypeFunc::I_O,i_o); 160 init_req(TypeFunc::Memory,memory); 161 init_req(TypeFunc::FramePtr,frameptr); 162 init_req(TypeFunc::ReturnAdr,retadr); 163 } 164 165 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 166 return remove_dead_region(phase, can_reshape) ? this : nullptr; 167 } 168 169 const Type* ReturnNode::Value(PhaseGVN* phase) const { 170 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 171 ? Type::TOP 172 : Type::BOTTOM; 173 } 174 175 // Do we Match on this edge index or not? No edges on return nodes 176 uint ReturnNode::match_edge(uint idx) const { 177 return 0; 178 } 179 180 181 #ifndef PRODUCT 182 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const { 183 // Dump the required inputs, after printing "returns" 184 uint i; // Exit value of loop 185 for (i = 0; i < req(); i++) { // For all required inputs 186 if (i == TypeFunc::Parms) st->print("returns "); 187 Node* p = in(i); 188 if (p != nullptr) { 189 p->dump_idx(false, st, dc); 190 st->print(" "); 191 } else { 192 st->print("_ "); 193 } 194 } 195 } 196 #endif 197 198 //============================================================================= 199 RethrowNode::RethrowNode( 200 Node* cntrl, 201 Node* i_o, 202 Node* memory, 203 Node* frameptr, 204 Node* ret_adr, 205 Node* exception 206 ) : Node(TypeFunc::Parms + 1) { 207 init_req(TypeFunc::Control , cntrl ); 208 init_req(TypeFunc::I_O , i_o ); 209 init_req(TypeFunc::Memory , memory ); 210 init_req(TypeFunc::FramePtr , frameptr ); 211 init_req(TypeFunc::ReturnAdr, ret_adr); 212 init_req(TypeFunc::Parms , exception); 213 } 214 215 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 216 return remove_dead_region(phase, can_reshape) ? this : nullptr; 217 } 218 219 const Type* RethrowNode::Value(PhaseGVN* phase) const { 220 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 221 ? Type::TOP 222 : Type::BOTTOM; 223 } 224 225 uint RethrowNode::match_edge(uint idx) const { 226 return 0; 227 } 228 229 #ifndef PRODUCT 230 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const { 231 // Dump the required inputs, after printing "exception" 232 uint i; // Exit value of loop 233 for (i = 0; i < req(); i++) { // For all required inputs 234 if (i == TypeFunc::Parms) st->print("exception "); 235 Node* p = in(i); 236 if (p != nullptr) { 237 p->dump_idx(false, st, dc); 238 st->print(" "); 239 } else { 240 st->print("_ "); 241 } 242 } 243 } 244 #endif 245 246 //============================================================================= 247 // Do we Match on this edge index or not? Match only target address & method 248 uint TailCallNode::match_edge(uint idx) const { 249 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 250 } 251 252 //============================================================================= 253 // Do we Match on this edge index or not? Match only target address & oop 254 uint TailJumpNode::match_edge(uint idx) const { 255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 256 } 257 258 //============================================================================= 259 JVMState::JVMState(ciMethod* method, JVMState* caller) : 260 _method(method), 261 _receiver_info(nullptr) { 262 assert(method != nullptr, "must be valid call site"); 263 _bci = InvocationEntryBci; 264 _reexecute = Reexecute_Undefined; 265 DEBUG_ONLY(_bci = -99); // random garbage value 266 DEBUG_ONLY(_map = (SafePointNode*)-1); 267 _caller = caller; 268 _depth = 1 + (caller == nullptr ? 0 : caller->depth()); 269 _locoff = TypeFunc::Parms; 270 _stkoff = _locoff + _method->max_locals(); 271 _monoff = _stkoff + _method->max_stack(); 272 _scloff = _monoff; 273 _endoff = _monoff; 274 _sp = 0; 275 } 276 JVMState::JVMState(int stack_size) : 277 _method(nullptr), 278 _receiver_info(nullptr) { 279 _bci = InvocationEntryBci; 280 _reexecute = Reexecute_Undefined; 281 DEBUG_ONLY(_map = (SafePointNode*)-1); 282 _caller = nullptr; 283 _depth = 1; 284 _locoff = TypeFunc::Parms; 285 _stkoff = _locoff; 286 _monoff = _stkoff + stack_size; 287 _scloff = _monoff; 288 _endoff = _monoff; 289 _sp = 0; 290 } 291 292 //--------------------------------of_depth------------------------------------- 293 JVMState* JVMState::of_depth(int d) const { 294 const JVMState* jvmp = this; 295 assert(0 < d && (uint)d <= depth(), "oob"); 296 for (int skip = depth() - d; skip > 0; skip--) { 297 jvmp = jvmp->caller(); 298 } 299 assert(jvmp->depth() == (uint)d, "found the right one"); 300 return (JVMState*)jvmp; 301 } 302 303 //-----------------------------same_calls_as----------------------------------- 304 bool JVMState::same_calls_as(const JVMState* that) const { 305 if (this == that) return true; 306 if (this->depth() != that->depth()) return false; 307 const JVMState* p = this; 308 const JVMState* q = that; 309 for (;;) { 310 if (p->_method != q->_method) return false; 311 if (p->_method == nullptr) return true; // bci is irrelevant 312 if (p->_bci != q->_bci) return false; 313 if (p->_reexecute != q->_reexecute) return false; 314 p = p->caller(); 315 q = q->caller(); 316 if (p == q) return true; 317 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end"); 318 } 319 } 320 321 //------------------------------debug_start------------------------------------ 322 uint JVMState::debug_start() const { 323 DEBUG_ONLY(JVMState* jvmroot = of_depth(1)); 324 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 325 return of_depth(1)->locoff(); 326 } 327 328 //-------------------------------debug_end------------------------------------- 329 uint JVMState::debug_end() const { 330 DEBUG_ONLY(JVMState* jvmroot = of_depth(1)); 331 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 332 return endoff(); 333 } 334 335 //------------------------------debug_depth------------------------------------ 336 uint JVMState::debug_depth() const { 337 uint total = 0; 338 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) { 339 total += jvmp->debug_size(); 340 } 341 return total; 342 } 343 344 #ifndef PRODUCT 345 346 //------------------------------format_helper---------------------------------- 347 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 348 // any defined value or not. If it does, print out the register or constant. 349 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 350 if (n == nullptr) { st->print(" null"); return; } 351 if (n->is_SafePointScalarObject()) { 352 // Scalar replacement. 353 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 354 scobjs->append_if_missing(spobj); 355 int sco_n = scobjs->find(spobj); 356 assert(sco_n >= 0, ""); 357 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 358 return; 359 } 360 if (regalloc->node_regs_max_index() > 0 && 361 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 362 char buf[50]; 363 regalloc->dump_register(n,buf,sizeof(buf)); 364 st->print(" %s%d]=%s",msg,i,buf); 365 } else { // No register, but might be constant 366 const Type *t = n->bottom_type(); 367 switch (t->base()) { 368 case Type::Int: 369 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); 370 break; 371 case Type::AnyPtr: 372 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 373 st->print(" %s%d]=#null",msg,i); 374 break; 375 case Type::AryPtr: 376 case Type::InstPtr: 377 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 378 break; 379 case Type::KlassPtr: 380 case Type::AryKlassPtr: 381 case Type::InstKlassPtr: 382 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass())); 383 break; 384 case Type::MetadataPtr: 385 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 386 break; 387 case Type::NarrowOop: 388 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 389 break; 390 case Type::RawPtr: 391 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 392 break; 393 case Type::DoubleCon: 394 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 395 break; 396 case Type::FloatCon: 397 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 398 break; 399 case Type::Long: 400 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 401 break; 402 case Type::Half: 403 case Type::Top: 404 st->print(" %s%d]=_",msg,i); 405 break; 406 default: ShouldNotReachHere(); 407 } 408 } 409 } 410 411 //---------------------print_method_with_lineno-------------------------------- 412 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const { 413 if (show_name) _method->print_short_name(st); 414 415 int lineno = _method->line_number_from_bci(_bci); 416 if (lineno != -1) { 417 st->print(" @ bci:%d (line %d)", _bci, lineno); 418 } else { 419 st->print(" @ bci:%d", _bci); 420 } 421 } 422 423 //------------------------------format----------------------------------------- 424 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 425 st->print(" #"); 426 if (_method) { 427 print_method_with_lineno(st, true); 428 } else { 429 st->print_cr(" runtime stub "); 430 return; 431 } 432 if (n->is_MachSafePoint()) { 433 GrowableArray<SafePointScalarObjectNode*> scobjs; 434 MachSafePointNode *mcall = n->as_MachSafePoint(); 435 uint i; 436 // Print locals 437 for (i = 0; i < (uint)loc_size(); i++) 438 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 439 // Print stack 440 for (i = 0; i < (uint)stk_size(); i++) { 441 if ((uint)(_stkoff + i) >= mcall->len()) 442 st->print(" oob "); 443 else 444 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 445 } 446 for (i = 0; (int)i < nof_monitors(); i++) { 447 Node *box = mcall->monitor_box(this, i); 448 Node *obj = mcall->monitor_obj(this, i); 449 if (regalloc->node_regs_max_index() > 0 && 450 OptoReg::is_valid(regalloc->get_reg_first(box))) { 451 box = BoxLockNode::box_node(box); 452 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 453 } else { 454 OptoReg::Name box_reg = BoxLockNode::reg(box); 455 st->print(" MON-BOX%d=%s+%d", 456 i, 457 OptoReg::regname(OptoReg::c_frame_pointer), 458 regalloc->reg2offset(box_reg)); 459 } 460 const char* obj_msg = "MON-OBJ["; 461 if (EliminateLocks) { 462 if (BoxLockNode::box_node(box)->is_eliminated()) 463 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 464 } 465 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 466 } 467 468 for (i = 0; i < (uint)scobjs.length(); i++) { 469 // Scalar replaced objects. 470 st->cr(); 471 st->print(" # ScObj" INT32_FORMAT " ", i); 472 SafePointScalarObjectNode* spobj = scobjs.at(i); 473 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass(); 474 assert(cik->is_instance_klass() || 475 cik->is_array_klass(), "Not supported allocation."); 476 ciInstanceKlass *iklass = nullptr; 477 if (cik->is_instance_klass()) { 478 cik->print_name_on(st); 479 iklass = cik->as_instance_klass(); 480 } else if (cik->is_type_array_klass()) { 481 cik->as_array_klass()->base_element_type()->print_name_on(st); 482 st->print("[%d]", spobj->n_fields()); 483 } else if (cik->is_obj_array_klass()) { 484 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 485 if (cie->is_instance_klass()) { 486 cie->print_name_on(st); 487 } else if (cie->is_type_array_klass()) { 488 cie->as_array_klass()->base_element_type()->print_name_on(st); 489 } else { 490 ShouldNotReachHere(); 491 } 492 st->print("[%d]", spobj->n_fields()); 493 int ndim = cik->as_array_klass()->dimension() - 1; 494 while (ndim-- > 0) { 495 st->print("[]"); 496 } 497 } else if (cik->is_flat_array_klass()) { 498 ciKlass* cie = cik->as_flat_array_klass()->base_element_klass(); 499 cie->print_name_on(st); 500 st->print("[%d]", spobj->n_fields()); 501 int ndim = cik->as_array_klass()->dimension() - 1; 502 while (ndim-- > 0) { 503 st->print("[]"); 504 } 505 } 506 st->print("={"); 507 uint nf = spobj->n_fields(); 508 if (nf > 0) { 509 uint first_ind = spobj->first_index(mcall->jvms()); 510 if (iklass != nullptr && iklass->is_inlinetype()) { 511 Node* null_marker = mcall->in(first_ind++); 512 if (!null_marker->is_top()) { 513 st->print(" [null marker"); 514 format_helper(regalloc, st, null_marker, ":", -1, nullptr); 515 } 516 } 517 Node* fld_node = mcall->in(first_ind); 518 if (iklass != nullptr) { 519 st->print(" ["); 520 iklass->nonstatic_field_at(0)->print_name_on(st); 521 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 522 } else { 523 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 524 } 525 for (uint j = 1; j < nf; j++) { 526 fld_node = mcall->in(first_ind+j); 527 if (iklass != nullptr) { 528 st->print(", ["); 529 iklass->nonstatic_field_at(j)->print_name_on(st); 530 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 531 } else { 532 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 533 } 534 } 535 } 536 st->print(" }"); 537 } 538 } 539 st->cr(); 540 if (caller() != nullptr) caller()->format(regalloc, n, st); 541 } 542 543 544 void JVMState::dump_spec(outputStream *st) const { 545 if (_method != nullptr) { 546 bool printed = false; 547 if (!Verbose) { 548 // The JVMS dumps make really, really long lines. 549 // Take out the most boring parts, which are the package prefixes. 550 char buf[500]; 551 stringStream namest(buf, sizeof(buf)); 552 _method->print_short_name(&namest); 553 if (namest.count() < sizeof(buf)) { 554 const char* name = namest.base(); 555 if (name[0] == ' ') ++name; 556 const char* endcn = strchr(name, ':'); // end of class name 557 if (endcn == nullptr) endcn = strchr(name, '('); 558 if (endcn == nullptr) endcn = name + strlen(name); 559 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 560 --endcn; 561 st->print(" %s", endcn); 562 printed = true; 563 } 564 } 565 print_method_with_lineno(st, !printed); 566 if(_reexecute == Reexecute_True) 567 st->print(" reexecute"); 568 } else { 569 st->print(" runtime stub"); 570 } 571 if (caller() != nullptr) caller()->dump_spec(st); 572 } 573 574 575 void JVMState::dump_on(outputStream* st) const { 576 bool print_map = _map && !((uintptr_t)_map & 1) && 577 ((caller() == nullptr) || (caller()->map() != _map)); 578 if (print_map) { 579 if (_map->len() > _map->req()) { // _map->has_exceptions() 580 Node* ex = _map->in(_map->req()); // _map->next_exception() 581 // skip the first one; it's already being printed 582 while (ex != nullptr && ex->len() > ex->req()) { 583 ex = ex->in(ex->req()); // ex->next_exception() 584 ex->dump(1); 585 } 586 } 587 _map->dump(Verbose ? 2 : 1); 588 } 589 if (caller() != nullptr) { 590 caller()->dump_on(st); 591 } 592 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 593 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 594 if (_method == nullptr) { 595 st->print_cr("(none)"); 596 } else { 597 _method->print_name(st); 598 st->cr(); 599 if (bci() >= 0 && bci() < _method->code_size()) { 600 st->print(" bc: "); 601 _method->print_codes_on(bci(), bci()+1, st); 602 } 603 } 604 } 605 606 // Extra way to dump a jvms from the debugger, 607 // to avoid a bug with C++ member function calls. 608 void dump_jvms(JVMState* jvms) { 609 jvms->dump(); 610 } 611 #endif 612 613 //--------------------------clone_shallow-------------------------------------- 614 JVMState* JVMState::clone_shallow(Compile* C) const { 615 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 616 n->set_bci(_bci); 617 n->_reexecute = _reexecute; 618 n->set_locoff(_locoff); 619 n->set_stkoff(_stkoff); 620 n->set_monoff(_monoff); 621 n->set_scloff(_scloff); 622 n->set_endoff(_endoff); 623 n->set_sp(_sp); 624 n->set_map(_map); 625 n->set_receiver_info(_receiver_info); 626 return n; 627 } 628 629 //---------------------------clone_deep---------------------------------------- 630 JVMState* JVMState::clone_deep(Compile* C) const { 631 JVMState* n = clone_shallow(C); 632 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) { 633 p->_caller = p->_caller->clone_shallow(C); 634 } 635 assert(n->depth() == depth(), "sanity"); 636 assert(n->debug_depth() == debug_depth(), "sanity"); 637 return n; 638 } 639 640 /** 641 * Reset map for all callers 642 */ 643 void JVMState::set_map_deep(SafePointNode* map) { 644 for (JVMState* p = this; p != nullptr; p = p->_caller) { 645 p->set_map(map); 646 } 647 } 648 649 // unlike set_map(), this is two-way setting. 650 void JVMState::bind_map(SafePointNode* map) { 651 set_map(map); 652 _map->set_jvms(this); 653 } 654 655 // Adapt offsets in in-array after adding or removing an edge. 656 // Prerequisite is that the JVMState is used by only one node. 657 void JVMState::adapt_position(int delta) { 658 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) { 659 jvms->set_locoff(jvms->locoff() + delta); 660 jvms->set_stkoff(jvms->stkoff() + delta); 661 jvms->set_monoff(jvms->monoff() + delta); 662 jvms->set_scloff(jvms->scloff() + delta); 663 jvms->set_endoff(jvms->endoff() + delta); 664 } 665 } 666 667 // Mirror the stack size calculation in the deopt code 668 // How much stack space would we need at this point in the program in 669 // case of deoptimization? 670 int JVMState::interpreter_frame_size() const { 671 const JVMState* jvms = this; 672 int size = 0; 673 int callee_parameters = 0; 674 int callee_locals = 0; 675 int extra_args = method()->max_stack() - stk_size(); 676 677 while (jvms != nullptr) { 678 int locks = jvms->nof_monitors(); 679 int temps = jvms->stk_size(); 680 bool is_top_frame = (jvms == this); 681 ciMethod* method = jvms->method(); 682 683 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 684 temps + callee_parameters, 685 extra_args, 686 locks, 687 callee_parameters, 688 callee_locals, 689 is_top_frame); 690 size += frame_size; 691 692 callee_parameters = method->size_of_parameters(); 693 callee_locals = method->max_locals(); 694 extra_args = 0; 695 jvms = jvms->caller(); 696 } 697 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 698 } 699 700 // Compute receiver info for a compiled lambda form at call site. 701 ciInstance* JVMState::compute_receiver_info(ciMethod* callee) const { 702 assert(callee != nullptr && callee->is_compiled_lambda_form(), ""); 703 if (has_method() && method()->is_compiled_lambda_form()) { // callee is not a MH invoker 704 Node* recv = map()->argument(this, 0); 705 assert(recv != nullptr, ""); 706 const TypeOopPtr* recv_toop = recv->bottom_type()->isa_oopptr(); 707 if (recv_toop != nullptr && recv_toop->const_oop() != nullptr) { 708 return recv_toop->const_oop()->as_instance(); 709 } 710 } 711 return nullptr; 712 } 713 714 //============================================================================= 715 bool CallNode::cmp( const Node &n ) const 716 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 717 #ifndef PRODUCT 718 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const { 719 // Dump the required inputs, enclosed in '(' and ')' 720 uint i; // Exit value of loop 721 for (i = 0; i < req(); i++) { // For all required inputs 722 if (i == TypeFunc::Parms) st->print("("); 723 Node* p = in(i); 724 if (p != nullptr) { 725 p->dump_idx(false, st, dc); 726 st->print(" "); 727 } else { 728 st->print("_ "); 729 } 730 } 731 st->print(")"); 732 } 733 734 void CallNode::dump_spec(outputStream *st) const { 735 st->print(" "); 736 if (tf() != nullptr) tf()->dump_on(st); 737 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 738 if (jvms() != nullptr) jvms()->dump_spec(st); 739 } 740 741 void AllocateNode::dump_spec(outputStream* st) const { 742 st->print(" "); 743 if (tf() != nullptr) { 744 tf()->dump_on(st); 745 } 746 if (_cnt != COUNT_UNKNOWN) { 747 st->print(" C=%f", _cnt); 748 } 749 const Node* const klass_node = in(KlassNode); 750 if (klass_node != nullptr) { 751 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr(); 752 753 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) { 754 st->print(" allocationKlass:"); 755 klass_ptr->exact_klass()->print_name_on(st); 756 } 757 } 758 if (jvms() != nullptr) { 759 jvms()->dump_spec(st); 760 } 761 } 762 #endif 763 764 const Type *CallNode::bottom_type() const { return tf()->range_cc(); } 765 const Type* CallNode::Value(PhaseGVN* phase) const { 766 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 767 return Type::TOP; 768 } 769 return tf()->range_cc(); 770 } 771 772 //------------------------------calling_convention----------------------------- 773 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 774 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) { 775 // The call to that stub is a special case: its inputs are 776 // multiple values returned from a call and so it should follow 777 // the return convention. 778 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt); 779 return; 780 } 781 // Use the standard compiler calling convention 782 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 783 } 784 785 786 //------------------------------match------------------------------------------ 787 // Construct projections for control, I/O, memory-fields, ..., and 788 // return result(s) along with their RegMask info 789 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) { 790 uint con = proj->_con; 791 const TypeTuple* range_cc = tf()->range_cc(); 792 if (con >= TypeFunc::Parms) { 793 if (tf()->returns_inline_type_as_fields()) { 794 // The call returns multiple values (inline type fields): we 795 // create one projection per returned value. 796 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return"); 797 uint ideal_reg = range_cc->field_at(con)->ideal_reg(); 798 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg); 799 } else { 800 if (con == TypeFunc::Parms) { 801 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg(); 802 OptoRegPair regs = Opcode() == Op_CallLeafVector 803 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine 804 : match->c_return_value(ideal_reg); 805 RegMask rm = RegMask(regs.first()); 806 807 if (Opcode() == Op_CallLeafVector) { 808 // If the return is in vector, compute appropriate regmask taking into account the whole range 809 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) { 810 if(OptoReg::is_valid(regs.second())) { 811 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) { 812 rm.insert(r); 813 } 814 } 815 } 816 } 817 818 if (OptoReg::is_valid(regs.second())) { 819 rm.insert(regs.second()); 820 } 821 return new MachProjNode(this,con,rm,ideal_reg); 822 } else { 823 assert(con == TypeFunc::Parms+1, "only one return value"); 824 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 825 return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad); 826 } 827 } 828 } 829 830 switch (con) { 831 case TypeFunc::Control: 832 case TypeFunc::I_O: 833 case TypeFunc::Memory: 834 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj); 835 836 case TypeFunc::ReturnAdr: 837 case TypeFunc::FramePtr: 838 default: 839 ShouldNotReachHere(); 840 } 841 return nullptr; 842 } 843 844 // Do we Match on this edge index or not? Match no edges 845 uint CallNode::match_edge(uint idx) const { 846 return 0; 847 } 848 849 // 850 // Determine whether the call could modify the field of the specified 851 // instance at the specified offset. 852 // 853 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { 854 assert((t_oop != nullptr), "sanity"); 855 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { 856 const TypeTuple* args = _tf->domain_sig(); 857 Node* dest = nullptr; 858 // Stubs that can be called once an ArrayCopyNode is expanded have 859 // different signatures. Look for the second pointer argument, 860 // that is the destination of the copy. 861 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { 862 if (args->field_at(i)->isa_ptr()) { 863 j++; 864 if (j == 2) { 865 dest = in(i); 866 break; 867 } 868 } 869 } 870 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!"); 871 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { 872 return true; 873 } 874 return false; 875 } 876 if (t_oop->is_known_instance()) { 877 // The instance_id is set only for scalar-replaceable allocations which 878 // are not passed as arguments according to Escape Analysis. 879 return false; 880 } 881 if (t_oop->is_ptr_to_boxed_value()) { 882 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass(); 883 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 884 // Skip unrelated boxing methods. 885 Node* proj = proj_out_or_null(TypeFunc::Parms); 886 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) { 887 return false; 888 } 889 } 890 if (is_CallJava() && as_CallJava()->method() != nullptr) { 891 ciMethod* meth = as_CallJava()->method(); 892 if (meth->is_getter()) { 893 return false; 894 } 895 // May modify (by reflection) if an boxing object is passed 896 // as argument or returned. 897 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr; 898 if (proj != nullptr) { 899 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 900 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 901 (inst_t->instance_klass() == boxing_klass))) { 902 return true; 903 } 904 } 905 const TypeTuple* d = tf()->domain_cc(); 906 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 907 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 908 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 909 (inst_t->instance_klass() == boxing_klass))) { 910 return true; 911 } 912 } 913 return false; 914 } 915 } 916 return true; 917 } 918 919 // Does this call have a direct reference to n other than debug information? 920 bool CallNode::has_non_debug_use(Node* n) { 921 const TypeTuple* d = tf()->domain_cc(); 922 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 923 if (in(i) == n) { 924 return true; 925 } 926 } 927 return false; 928 } 929 930 bool CallNode::has_debug_use(Node* n) { 931 if (jvms() != nullptr) { 932 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 933 if (in(i) == n) { 934 return true; 935 } 936 } 937 } 938 return false; 939 } 940 941 // Returns the unique CheckCastPP of a call 942 // or 'this' if there are several CheckCastPP or unexpected uses 943 // or returns null if there is no one. 944 Node *CallNode::result_cast() { 945 Node *cast = nullptr; 946 947 Node *p = proj_out_or_null(TypeFunc::Parms); 948 if (p == nullptr) 949 return nullptr; 950 951 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 952 Node *use = p->fast_out(i); 953 if (use->is_CheckCastPP()) { 954 if (cast != nullptr) { 955 return this; // more than 1 CheckCastPP 956 } 957 cast = use; 958 } else if (!use->is_Initialize() && 959 !use->is_AddP() && 960 use->Opcode() != Op_MemBarStoreStore) { 961 // Expected uses are restricted to a CheckCastPP, an Initialize 962 // node, a MemBarStoreStore (clone) and AddP nodes. If we 963 // encounter any other use (a Phi node can be seen in rare 964 // cases) return this to prevent incorrect optimizations. 965 return this; 966 } 967 } 968 return cast; 969 } 970 971 972 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const { 973 uint max_res = TypeFunc::Parms-1; 974 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 975 ProjNode *pn = fast_out(i)->as_Proj(); 976 max_res = MAX2(max_res, pn->_con); 977 } 978 979 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds"); 980 981 uint projs_size = sizeof(CallProjections); 982 if (max_res > TypeFunc::Parms) { 983 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*); 984 } 985 char* projs_storage = resource_allocate_bytes(projs_size); 986 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1); 987 988 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 989 ProjNode *pn = fast_out(i)->as_Proj(); 990 if (pn->outcnt() == 0) continue; 991 switch (pn->_con) { 992 case TypeFunc::Control: 993 { 994 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 995 projs->fallthrough_proj = pn; 996 const Node* cn = pn->unique_ctrl_out_or_null(); 997 if (cn != nullptr && cn->is_Catch()) { 998 ProjNode *cpn = nullptr; 999 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 1000 cpn = cn->fast_out(k)->as_Proj(); 1001 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 1002 if (cpn->_con == CatchProjNode::fall_through_index) 1003 projs->fallthrough_catchproj = cpn; 1004 else { 1005 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 1006 projs->catchall_catchproj = cpn; 1007 } 1008 } 1009 } 1010 break; 1011 } 1012 case TypeFunc::I_O: 1013 if (pn->_is_io_use) 1014 projs->catchall_ioproj = pn; 1015 else 1016 projs->fallthrough_ioproj = pn; 1017 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 1018 Node* e = pn->out(j); 1019 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 1020 assert(projs->exobj == nullptr, "only one"); 1021 projs->exobj = e; 1022 } 1023 } 1024 break; 1025 case TypeFunc::Memory: 1026 if (pn->_is_io_use) 1027 projs->catchall_memproj = pn; 1028 else 1029 projs->fallthrough_memproj = pn; 1030 break; 1031 case TypeFunc::Parms: 1032 projs->resproj[0] = pn; 1033 break; 1034 default: 1035 assert(pn->_con <= max_res, "unexpected projection from allocation node."); 1036 projs->resproj[pn->_con-TypeFunc::Parms] = pn; 1037 break; 1038 } 1039 } 1040 1041 // The resproj may not exist because the result could be ignored 1042 // and the exception object may not exist if an exception handler 1043 // swallows the exception but all the other must exist and be found. 1044 do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); 1045 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found"); 1046 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found"); 1047 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found"); 1048 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found"); 1049 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found"); 1050 if (separate_io_proj) { 1051 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found"); 1052 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found"); 1053 } 1054 return projs; 1055 } 1056 1057 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1058 #ifdef ASSERT 1059 // Validate attached generator 1060 CallGenerator* cg = generator(); 1061 if (cg != nullptr) { 1062 assert((is_CallStaticJava() && cg->is_mh_late_inline()) || 1063 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch"); 1064 } 1065 #endif // ASSERT 1066 return SafePointNode::Ideal(phase, can_reshape); 1067 } 1068 1069 bool CallNode::is_call_to_arraycopystub() const { 1070 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) { 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 //============================================================================= 1077 uint CallJavaNode::size_of() const { return sizeof(*this); } 1078 bool CallJavaNode::cmp( const Node &n ) const { 1079 CallJavaNode &call = (CallJavaNode&)n; 1080 return CallNode::cmp(call) && _method == call._method && 1081 _override_symbolic_info == call._override_symbolic_info; 1082 } 1083 1084 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) { 1085 // Copy debug information and adjust JVMState information 1086 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1; 1087 uint new_dbg_start = tf()->domain_sig()->cnt(); 1088 int jvms_adj = new_dbg_start - old_dbg_start; 1089 assert (new_dbg_start == req(), "argument count mismatch"); 1090 Compile* C = phase->C; 1091 1092 // SafePointScalarObject node could be referenced several times in debug info. 1093 // Use Dict to record cloned nodes. 1094 Dict* sosn_map = new Dict(cmpkey,hashkey); 1095 for (uint i = old_dbg_start; i < sfpt->req(); i++) { 1096 Node* old_in = sfpt->in(i); 1097 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 1098 if (old_in != nullptr && old_in->is_SafePointScalarObject()) { 1099 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 1100 bool new_node; 1101 Node* new_in = old_sosn->clone(sosn_map, new_node); 1102 if (new_node) { // New node? 1103 new_in->set_req(0, C->root()); // reset control edge 1104 new_in = phase->transform(new_in); // Register new node. 1105 } 1106 old_in = new_in; 1107 } 1108 add_req(old_in); 1109 } 1110 1111 // JVMS may be shared so clone it before we modify it 1112 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr); 1113 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1114 jvms->set_map(this); 1115 jvms->set_locoff(jvms->locoff()+jvms_adj); 1116 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 1117 jvms->set_monoff(jvms->monoff()+jvms_adj); 1118 jvms->set_scloff(jvms->scloff()+jvms_adj); 1119 jvms->set_endoff(jvms->endoff()+jvms_adj); 1120 } 1121 } 1122 1123 #ifdef ASSERT 1124 bool CallJavaNode::validate_symbolic_info() const { 1125 if (method() == nullptr) { 1126 return true; // call into runtime or uncommon trap 1127 } 1128 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci()); 1129 if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) { 1130 return true; 1131 } 1132 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci()); 1133 ciMethod* callee = method(); 1134 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) { 1135 assert(override_symbolic_info(), "should be set"); 1136 } 1137 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info"); 1138 return true; 1139 } 1140 #endif 1141 1142 #ifndef PRODUCT 1143 void CallJavaNode::dump_spec(outputStream* st) const { 1144 if( _method ) _method->print_short_name(st); 1145 CallNode::dump_spec(st); 1146 } 1147 1148 void CallJavaNode::dump_compact_spec(outputStream* st) const { 1149 if (_method) { 1150 _method->print_short_name(st); 1151 } else { 1152 st->print("<?>"); 1153 } 1154 } 1155 #endif 1156 1157 void CallJavaNode::register_for_late_inline() { 1158 if (generator() != nullptr) { 1159 Compile::current()->prepend_late_inline(generator()); 1160 set_generator(nullptr); 1161 } else { 1162 assert(false, "repeated inline attempt"); 1163 } 1164 } 1165 1166 //============================================================================= 1167 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 1168 bool CallStaticJavaNode::cmp( const Node &n ) const { 1169 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 1170 return CallJavaNode::cmp(call); 1171 } 1172 1173 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1174 if (can_reshape && uncommon_trap_request() != 0) { 1175 PhaseIterGVN* igvn = phase->is_IterGVN(); 1176 if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) { 1177 if (!control()->is_Region()) { 1178 igvn->replace_input_of(this, 0, phase->C->top()); 1179 } 1180 return this; 1181 } 1182 } 1183 1184 // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type 1185 if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() && 1186 (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) { 1187 Node* left = in(TypeFunc::Parms); 1188 Node* right = in(TypeFunc::Parms + 1); 1189 if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) { 1190 if (!left->is_InlineType()) { 1191 swap(left, right); 1192 } 1193 InlineTypeNode* vt = left->as_InlineType(); 1194 1195 // Check if the field layout can be optimized 1196 if (vt->can_emit_substitutability_check(right)) { 1197 PhaseIterGVN* igvn = phase->is_IterGVN(); 1198 1199 Node* ctrl = control(); 1200 RegionNode* region = new RegionNode(1); 1201 Node* phi = new PhiNode(region, TypeInt::POS); 1202 1203 Node* base = right; 1204 Node* ptr = right; 1205 if (!base->is_InlineType()) { 1206 // Parse time checks guarantee that both operands are non-null and have the same type 1207 base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type())); 1208 ptr = base; 1209 } 1210 // Emit IR for field-wise comparison 1211 vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr); 1212 1213 // Equals 1214 region->add_req(ctrl); 1215 phi->add_req(igvn->intcon(1)); 1216 1217 ctrl = igvn->register_new_node_with_optimizer(region); 1218 Node* res = igvn->register_new_node_with_optimizer(phi); 1219 1220 // Kill exception projections and return a tuple that will replace the call 1221 CallProjections* projs = extract_projections(false /*separate_io_proj*/); 1222 if (projs->fallthrough_catchproj != nullptr) { 1223 igvn->replace_node(projs->fallthrough_catchproj, ctrl); 1224 } 1225 if (projs->catchall_memproj != nullptr) { 1226 igvn->replace_node(projs->catchall_memproj, igvn->C->top()); 1227 } 1228 if (projs->catchall_ioproj != nullptr) { 1229 igvn->replace_node(projs->catchall_ioproj, igvn->C->top()); 1230 } 1231 if (projs->catchall_catchproj != nullptr) { 1232 igvn->replace_node(projs->catchall_catchproj, igvn->C->top()); 1233 } 1234 return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res); 1235 } 1236 } 1237 } 1238 1239 CallGenerator* cg = generator(); 1240 if (can_reshape && cg != nullptr) { 1241 if (cg->is_mh_late_inline()) { 1242 assert(IncrementalInlineMH, "required"); 1243 assert(cg->call_node() == this, "mismatch"); 1244 assert(cg->method()->is_method_handle_intrinsic(), "required"); 1245 1246 // Check whether this MH handle call becomes a candidate for inlining. 1247 ciMethod* callee = cg->method(); 1248 vmIntrinsics::ID iid = callee->intrinsic_id(); 1249 if (iid == vmIntrinsics::_invokeBasic) { 1250 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 1251 register_for_late_inline(); 1252 } 1253 } else if (iid == vmIntrinsics::_linkToNative) { 1254 // never retry 1255 } else { 1256 assert(callee->has_member_arg(), "wrong type of call?"); 1257 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 1258 register_for_late_inline(); 1259 } 1260 } 1261 } else { 1262 assert(IncrementalInline, "required"); 1263 assert(!cg->method()->is_method_handle_intrinsic(), "required"); 1264 if (phase->C->print_inlining()) { 1265 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, 1266 "static call node changed: trying again"); 1267 } 1268 register_for_late_inline(); 1269 } 1270 } 1271 return CallNode::Ideal(phase, can_reshape); 1272 } 1273 1274 //----------------------------is_uncommon_trap---------------------------- 1275 // Returns true if this is an uncommon trap. 1276 bool CallStaticJavaNode::is_uncommon_trap() const { 1277 return (_name != nullptr && !strcmp(_name, "uncommon_trap")); 1278 } 1279 1280 //----------------------------uncommon_trap_request---------------------------- 1281 // If this is an uncommon trap, return the request code, else zero. 1282 int CallStaticJavaNode::uncommon_trap_request() const { 1283 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0; 1284 } 1285 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 1286 #ifndef PRODUCT 1287 if (!(call->req() > TypeFunc::Parms && 1288 call->in(TypeFunc::Parms) != nullptr && 1289 call->in(TypeFunc::Parms)->is_Con() && 1290 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 1291 assert(in_dump() != 0, "OK if dumping"); 1292 tty->print("[bad uncommon trap]"); 1293 return 0; 1294 } 1295 #endif 1296 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 1297 } 1298 1299 // Split if can cause the flat array branch of an array load with unknown type (see 1300 // Parse::array_load) to end in an uncommon trap. In that case, the call to 1301 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState. 1302 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) { 1303 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) { 1304 return false; 1305 } 1306 if (ctl->is_Region()) { 1307 bool res = false; 1308 for (uint i = 1; i < ctl->req(); i++) { 1309 MergeMemNode* mm = mem->clone()->as_MergeMem(); 1310 for (MergeMemStream mms(mm); mms.next_non_empty(); ) { 1311 Node* m = mms.memory(); 1312 if (m->is_Phi() && m->in(0) == ctl) { 1313 mms.set_memory(m->in(i)); 1314 } 1315 } 1316 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) { 1317 res = true; 1318 if (!ctl->in(i)->is_Region()) { 1319 igvn->replace_input_of(ctl, i, igvn->C->top()); 1320 } 1321 } 1322 igvn->remove_dead_node(mm); 1323 } 1324 return res; 1325 } 1326 // Verify the control flow is ok 1327 Node* call = ctl; 1328 MemBarNode* membar = nullptr; 1329 for (;;) { 1330 if (call == nullptr || call->is_top()) { 1331 return false; 1332 } 1333 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) { 1334 call = call->in(0); 1335 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() && 1336 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) { 1337 assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar"); 1338 membar = call->in(0)->in(0)->as_MemBar(); 1339 break; 1340 } else { 1341 return false; 1342 } 1343 } 1344 1345 JVMState* jvms = call->jvms(); 1346 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) { 1347 return false; 1348 } 1349 1350 Node* call_mem = call->in(TypeFunc::Memory); 1351 if (call_mem == nullptr || call_mem->is_top()) { 1352 return false; 1353 } 1354 if (!call_mem->is_MergeMem()) { 1355 call_mem = MergeMemNode::make(call_mem); 1356 igvn->register_new_node_with_optimizer(call_mem); 1357 } 1358 1359 // Verify that there's no unexpected side effect 1360 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) { 1361 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory(); 1362 Node* m2 = mms2.memory2(); 1363 1364 for (uint i = 0; i < 100; i++) { 1365 if (m1 == m2) { 1366 break; 1367 } else if (m1->is_Proj()) { 1368 m1 = m1->in(0); 1369 } else if (m1->is_MemBar()) { 1370 m1 = m1->in(TypeFunc::Memory); 1371 } else if (m1->Opcode() == Op_CallStaticJava && 1372 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) { 1373 if (m1 != call) { 1374 return false; 1375 } 1376 break; 1377 } else if (m1->is_MergeMem()) { 1378 MergeMemNode* mm = m1->as_MergeMem(); 1379 int idx = mms2.alias_idx(); 1380 if (idx == Compile::AliasIdxBot) { 1381 m1 = mm->base_memory(); 1382 } else { 1383 m1 = mm->memory_at(idx); 1384 } 1385 } else { 1386 return false; 1387 } 1388 } 1389 } 1390 if (call_mem->outcnt() == 0) { 1391 igvn->remove_dead_node(call_mem); 1392 } 1393 1394 // Remove membar preceding the call 1395 membar->remove(igvn); 1396 1397 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 1398 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr); 1399 unc->init_req(TypeFunc::Control, call->in(0)); 1400 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O)); 1401 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory)); 1402 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 1403 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 1404 unc->init_req(TypeFunc::Parms+0, unc_arg); 1405 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 1406 unc->copy_call_debug_info(igvn, call->as_CallStaticJava()); 1407 1408 // Replace the call with an uncommon trap 1409 igvn->replace_input_of(call, 0, igvn->C->top()); 1410 1411 igvn->register_new_node_with_optimizer(unc); 1412 1413 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control)); 1414 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen")); 1415 igvn->add_input_to(igvn->C->root(), halt); 1416 1417 return true; 1418 } 1419 1420 1421 #ifndef PRODUCT 1422 void CallStaticJavaNode::dump_spec(outputStream *st) const { 1423 st->print("# Static "); 1424 if (_name != nullptr) { 1425 st->print("%s", _name); 1426 int trap_req = uncommon_trap_request(); 1427 if (trap_req != 0) { 1428 char buf[100]; 1429 st->print("(%s)", 1430 Deoptimization::format_trap_request(buf, sizeof(buf), 1431 trap_req)); 1432 } 1433 st->print(" "); 1434 } 1435 CallJavaNode::dump_spec(st); 1436 } 1437 1438 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { 1439 if (_method) { 1440 _method->print_short_name(st); 1441 } else if (_name) { 1442 st->print("%s", _name); 1443 } else { 1444 st->print("<?>"); 1445 } 1446 } 1447 #endif 1448 1449 //============================================================================= 1450 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 1451 bool CallDynamicJavaNode::cmp( const Node &n ) const { 1452 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 1453 return CallJavaNode::cmp(call); 1454 } 1455 1456 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1457 CallGenerator* cg = generator(); 1458 if (can_reshape && cg != nullptr) { 1459 if (cg->is_virtual_late_inline()) { 1460 assert(IncrementalInlineVirtual, "required"); 1461 assert(cg->call_node() == this, "mismatch"); 1462 1463 if (cg->callee_method() == nullptr) { 1464 // Recover symbolic info for method resolution. 1465 ciMethod* caller = jvms()->method(); 1466 ciBytecodeStream iter(caller); 1467 iter.force_bci(jvms()->bci()); 1468 1469 bool not_used1; 1470 ciSignature* not_used2; 1471 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode 1472 ciKlass* holder = iter.get_declared_method_holder(); 1473 if (orig_callee->is_method_handle_intrinsic()) { 1474 assert(_override_symbolic_info, "required"); 1475 orig_callee = method(); 1476 holder = method()->holder(); 1477 } 1478 1479 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 1480 1481 Node* receiver_node = in(TypeFunc::Parms); 1482 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr(); 1483 1484 int not_used3; 1485 bool call_does_dispatch; 1486 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/, 1487 call_does_dispatch, not_used3); // out-parameters 1488 if (!call_does_dispatch) { 1489 cg->set_callee_method(callee); 1490 } 1491 } 1492 if (cg->callee_method() != nullptr) { 1493 // Register for late inlining. 1494 register_for_late_inline(); // MH late inlining prepends to the list, so do the same 1495 } 1496 } else { 1497 assert(IncrementalInline, "required"); 1498 if (phase->C->print_inlining()) { 1499 phase->C->inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, 1500 "dynamic call node changed: trying again"); 1501 } 1502 register_for_late_inline(); 1503 } 1504 } 1505 return CallNode::Ideal(phase, can_reshape); 1506 } 1507 1508 #ifndef PRODUCT 1509 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 1510 st->print("# Dynamic "); 1511 CallJavaNode::dump_spec(st); 1512 } 1513 #endif 1514 1515 //============================================================================= 1516 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 1517 bool CallRuntimeNode::cmp( const Node &n ) const { 1518 CallRuntimeNode &call = (CallRuntimeNode&)n; 1519 return CallNode::cmp(call) && !strcmp(_name,call._name); 1520 } 1521 #ifndef PRODUCT 1522 void CallRuntimeNode::dump_spec(outputStream *st) const { 1523 st->print("# "); 1524 st->print("%s", _name); 1525 CallNode::dump_spec(st); 1526 } 1527 #endif 1528 uint CallLeafVectorNode::size_of() const { return sizeof(*this); } 1529 bool CallLeafVectorNode::cmp( const Node &n ) const { 1530 CallLeafVectorNode &call = (CallLeafVectorNode&)n; 1531 return CallLeafNode::cmp(call) && _num_bits == call._num_bits; 1532 } 1533 1534 //------------------------------calling_convention----------------------------- 1535 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 1536 if (_entry_point == nullptr) { 1537 // The call to that stub is a special case: its inputs are 1538 // multiple values returned from a call and so it should follow 1539 // the return convention. 1540 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt); 1541 return; 1542 } 1543 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt); 1544 } 1545 1546 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1547 #ifdef ASSERT 1548 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1549 "return vector size must match"); 1550 const TypeTuple* d = tf()->domain_sig(); 1551 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1552 Node* arg = in(i); 1553 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1554 "vector argument size must match"); 1555 } 1556 #endif 1557 1558 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt); 1559 } 1560 1561 //============================================================================= 1562 //------------------------------calling_convention----------------------------- 1563 1564 1565 //============================================================================= 1566 bool CallLeafPureNode::is_unused() const { 1567 return proj_out_or_null(TypeFunc::Parms) == nullptr; 1568 } 1569 1570 bool CallLeafPureNode::is_dead() const { 1571 return proj_out_or_null(TypeFunc::Control) == nullptr; 1572 } 1573 1574 /* We make a tuple of the global input state + TOP for the output values. 1575 * We use this to delete a pure function that is not used: by replacing the call with 1576 * such a tuple, we let output Proj's idealization pick the corresponding input of the 1577 * pure call, so jumping over it, and effectively, removing the call from the graph. 1578 * This avoids doing the graph surgery manually, but leaves that to IGVN 1579 * that is specialized for doing that right. We need also tuple components for output 1580 * values of the function to respect the return arity, and in case there is a projection 1581 * that would pick an output (which shouldn't happen at the moment). 1582 */ 1583 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const { 1584 // Transparently propagate input state but parameters 1585 TupleNode* tuple = TupleNode::make( 1586 tf()->range_cc(), 1587 in(TypeFunc::Control), 1588 in(TypeFunc::I_O), 1589 in(TypeFunc::Memory), 1590 in(TypeFunc::FramePtr), 1591 in(TypeFunc::ReturnAdr)); 1592 1593 // And add TOPs for the return values 1594 for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) { 1595 tuple->set_req(i, C->top()); 1596 } 1597 1598 return tuple; 1599 } 1600 1601 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1602 if (is_dead()) { 1603 return nullptr; 1604 } 1605 1606 // We need to wait until IGVN because during parsing, usages might still be missing 1607 // and we would remove the call immediately. 1608 if (can_reshape && is_unused()) { 1609 // The result is not used. We remove the call by replacing it with a tuple, that 1610 // is later disintegrated by the projections. 1611 return make_tuple_of_input_state_and_top_return_values(phase->C); 1612 } 1613 1614 return CallRuntimeNode::Ideal(phase, can_reshape); 1615 } 1616 1617 #ifndef PRODUCT 1618 void CallLeafNode::dump_spec(outputStream *st) const { 1619 st->print("# "); 1620 st->print("%s", _name); 1621 CallNode::dump_spec(st); 1622 } 1623 #endif 1624 1625 uint CallLeafNoFPNode::match_edge(uint idx) const { 1626 // Null entry point is a special case for which the target is in a 1627 // register. Need to match that edge. 1628 return entry_point() == nullptr && idx == TypeFunc::Parms; 1629 } 1630 1631 //============================================================================= 1632 1633 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) { 1634 assert(verify_jvms(jvms), "jvms must match"); 1635 int loc = jvms->locoff() + idx; 1636 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1637 // If current local idx is top then local idx - 1 could 1638 // be a long/double that needs to be killed since top could 1639 // represent the 2nd half of the long/double. 1640 uint ideal = in(loc -1)->ideal_reg(); 1641 if (ideal == Op_RegD || ideal == Op_RegL) { 1642 // set other (low index) half to top 1643 set_req(loc - 1, in(loc)); 1644 } 1645 } 1646 set_req(loc, c); 1647 } 1648 1649 uint SafePointNode::size_of() const { return sizeof(*this); } 1650 bool SafePointNode::cmp( const Node &n ) const { 1651 return (&n == this); // Always fail except on self 1652 } 1653 1654 //-------------------------set_next_exception---------------------------------- 1655 void SafePointNode::set_next_exception(SafePointNode* n) { 1656 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1657 if (len() == req()) { 1658 if (n != nullptr) add_prec(n); 1659 } else { 1660 set_prec(req(), n); 1661 } 1662 } 1663 1664 1665 //----------------------------next_exception----------------------------------- 1666 SafePointNode* SafePointNode::next_exception() const { 1667 if (len() == req()) { 1668 return nullptr; 1669 } else { 1670 Node* n = in(req()); 1671 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1672 return (SafePointNode*) n; 1673 } 1674 } 1675 1676 1677 //------------------------------Ideal------------------------------------------ 1678 // Skip over any collapsed Regions 1679 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1680 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState"); 1681 if (remove_dead_region(phase, can_reshape)) { 1682 return this; 1683 } 1684 // Scalarize inline types in safepoint debug info. 1685 // Delay this until all inlining is over to avoid getting inconsistent debug info. 1686 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) { 1687 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 1688 Node* n = in(i)->uncast(); 1689 if (n->is_InlineType()) { 1690 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN()); 1691 } 1692 } 1693 } 1694 return nullptr; 1695 } 1696 1697 //------------------------------Identity--------------------------------------- 1698 // Remove obviously duplicate safepoints 1699 Node* SafePointNode::Identity(PhaseGVN* phase) { 1700 1701 // If you have back to back safepoints, remove one 1702 if (in(TypeFunc::Control)->is_SafePoint()) { 1703 Node* out_c = unique_ctrl_out_or_null(); 1704 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the 1705 // outer loop's safepoint could confuse removal of the outer loop. 1706 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) { 1707 return in(TypeFunc::Control); 1708 } 1709 } 1710 1711 // Transforming long counted loops requires a safepoint node. Do not 1712 // eliminate a safepoint until loop opts are over. 1713 if (in(0)->is_Proj() && !phase->C->major_progress()) { 1714 Node *n0 = in(0)->in(0); 1715 // Check if he is a call projection (except Leaf Call) 1716 if( n0->is_Catch() ) { 1717 n0 = n0->in(0)->in(0); 1718 assert( n0->is_Call(), "expect a call here" ); 1719 } 1720 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1721 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode. 1722 // If the loop dies, they will be removed together. 1723 if (has_out_with(Op_OuterStripMinedLoopEnd)) { 1724 return this; 1725 } 1726 // Useless Safepoint, so remove it 1727 return in(TypeFunc::Control); 1728 } 1729 } 1730 1731 return this; 1732 } 1733 1734 //------------------------------Value------------------------------------------ 1735 const Type* SafePointNode::Value(PhaseGVN* phase) const { 1736 if (phase->type(in(0)) == Type::TOP) { 1737 return Type::TOP; 1738 } 1739 if (in(0) == this) { 1740 return Type::TOP; // Dead infinite loop 1741 } 1742 return Type::CONTROL; 1743 } 1744 1745 #ifndef PRODUCT 1746 void SafePointNode::dump_spec(outputStream *st) const { 1747 st->print(" SafePoint "); 1748 _replaced_nodes.dump(st); 1749 } 1750 #endif 1751 1752 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1753 if (idx < TypeFunc::Parms) { 1754 return RegMask::EMPTY; 1755 } 1756 // Values outside the domain represent debug info 1757 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1758 } 1759 const RegMask &SafePointNode::out_RegMask() const { 1760 return RegMask::EMPTY; 1761 } 1762 1763 1764 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1765 assert((int)grow_by > 0, "sanity"); 1766 int monoff = jvms->monoff(); 1767 int scloff = jvms->scloff(); 1768 int endoff = jvms->endoff(); 1769 assert(endoff == (int)req(), "no other states or debug info after me"); 1770 Node* top = Compile::current()->top(); 1771 for (uint i = 0; i < grow_by; i++) { 1772 ins_req(monoff, top); 1773 } 1774 jvms->set_monoff(monoff + grow_by); 1775 jvms->set_scloff(scloff + grow_by); 1776 jvms->set_endoff(endoff + grow_by); 1777 } 1778 1779 void SafePointNode::push_monitor(const FastLockNode *lock) { 1780 // Add a LockNode, which points to both the original BoxLockNode (the 1781 // stack space for the monitor) and the Object being locked. 1782 const int MonitorEdges = 2; 1783 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1784 assert(req() == jvms()->endoff(), "correct sizing"); 1785 int nextmon = jvms()->scloff(); 1786 ins_req(nextmon, lock->box_node()); 1787 ins_req(nextmon+1, lock->obj_node()); 1788 jvms()->set_scloff(nextmon + MonitorEdges); 1789 jvms()->set_endoff(req()); 1790 } 1791 1792 void SafePointNode::pop_monitor() { 1793 // Delete last monitor from debug info 1794 DEBUG_ONLY(int num_before_pop = jvms()->nof_monitors()); 1795 const int MonitorEdges = 2; 1796 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1797 int scloff = jvms()->scloff(); 1798 int endoff = jvms()->endoff(); 1799 int new_scloff = scloff - MonitorEdges; 1800 int new_endoff = endoff - MonitorEdges; 1801 jvms()->set_scloff(new_scloff); 1802 jvms()->set_endoff(new_endoff); 1803 while (scloff > new_scloff) del_req_ordered(--scloff); 1804 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1805 } 1806 1807 Node *SafePointNode::peek_monitor_box() const { 1808 int mon = jvms()->nof_monitors() - 1; 1809 assert(mon >= 0, "must have a monitor"); 1810 return monitor_box(jvms(), mon); 1811 } 1812 1813 Node *SafePointNode::peek_monitor_obj() const { 1814 int mon = jvms()->nof_monitors() - 1; 1815 assert(mon >= 0, "must have a monitor"); 1816 return monitor_obj(jvms(), mon); 1817 } 1818 1819 Node* SafePointNode::peek_operand(uint off) const { 1820 assert(jvms()->sp() > 0, "must have an operand"); 1821 assert(off < jvms()->sp(), "off is out-of-range"); 1822 return stack(jvms(), jvms()->sp() - off - 1); 1823 } 1824 1825 // Do we Match on this edge index or not? Match no edges 1826 uint SafePointNode::match_edge(uint idx) const { 1827 return (TypeFunc::Parms == idx); 1828 } 1829 1830 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) { 1831 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops"); 1832 int nb = igvn->C->root()->find_prec_edge(this); 1833 if (nb != -1) { 1834 igvn->delete_precedence_of(igvn->C->root(), nb); 1835 } 1836 } 1837 1838 //============== SafePointScalarObjectNode ============== 1839 1840 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) : 1841 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1842 _first_index(first_index), 1843 _depth(depth), 1844 _n_fields(n_fields), 1845 _alloc(alloc) 1846 { 1847 #ifdef ASSERT 1848 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) { 1849 alloc->dump(); 1850 assert(false, "unexpected call node"); 1851 } 1852 #endif 1853 init_class_id(Class_SafePointScalarObject); 1854 } 1855 1856 // Do not allow value-numbering for SafePointScalarObject node. 1857 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1858 bool SafePointScalarObjectNode::cmp( const Node &n ) const { 1859 return (&n == this); // Always fail except on self 1860 } 1861 1862 uint SafePointScalarObjectNode::ideal_reg() const { 1863 return 0; // No matching to machine instruction 1864 } 1865 1866 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1867 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1868 } 1869 1870 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1871 return RegMask::EMPTY; 1872 } 1873 1874 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1875 return 0; 1876 } 1877 1878 SafePointScalarObjectNode* 1879 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const { 1880 void* cached = (*sosn_map)[(void*)this]; 1881 if (cached != nullptr) { 1882 new_node = false; 1883 return (SafePointScalarObjectNode*)cached; 1884 } 1885 new_node = true; 1886 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1887 sosn_map->Insert((void*)this, (void*)res); 1888 return res; 1889 } 1890 1891 1892 #ifndef PRODUCT 1893 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1894 st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1); 1895 } 1896 #endif 1897 1898 //============== SafePointScalarMergeNode ============== 1899 1900 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) : 1901 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1902 _merge_pointer_idx(merge_pointer_idx) 1903 { 1904 init_class_id(Class_SafePointScalarMerge); 1905 } 1906 1907 // Do not allow value-numbering for SafePointScalarMerge node. 1908 uint SafePointScalarMergeNode::hash() const { return NO_HASH; } 1909 bool SafePointScalarMergeNode::cmp( const Node &n ) const { 1910 return (&n == this); // Always fail except on self 1911 } 1912 1913 uint SafePointScalarMergeNode::ideal_reg() const { 1914 return 0; // No matching to machine instruction 1915 } 1916 1917 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const { 1918 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1919 } 1920 1921 const RegMask &SafePointScalarMergeNode::out_RegMask() const { 1922 return RegMask::EMPTY; 1923 } 1924 1925 uint SafePointScalarMergeNode::match_edge(uint idx) const { 1926 return 0; 1927 } 1928 1929 SafePointScalarMergeNode* 1930 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const { 1931 void* cached = (*sosn_map)[(void*)this]; 1932 if (cached != nullptr) { 1933 new_node = false; 1934 return (SafePointScalarMergeNode*)cached; 1935 } 1936 new_node = true; 1937 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone(); 1938 sosn_map->Insert((void*)this, (void*)res); 1939 return res; 1940 } 1941 1942 #ifndef PRODUCT 1943 void SafePointScalarMergeNode::dump_spec(outputStream *st) const { 1944 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1); 1945 } 1946 #endif 1947 1948 //============================================================================= 1949 uint AllocateNode::size_of() const { return sizeof(*this); } 1950 1951 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1952 Node *ctrl, Node *mem, Node *abio, 1953 Node *size, Node *klass_node, 1954 Node* initial_test, 1955 InlineTypeNode* inline_type_node) 1956 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM) 1957 { 1958 init_class_id(Class_Allocate); 1959 init_flags(Flag_is_macro); 1960 _is_scalar_replaceable = false; 1961 _is_non_escaping = false; 1962 _is_allocation_MemBar_redundant = false; 1963 _larval = false; 1964 Node *topnode = C->top(); 1965 1966 init_req( TypeFunc::Control , ctrl ); 1967 init_req( TypeFunc::I_O , abio ); 1968 init_req( TypeFunc::Memory , mem ); 1969 init_req( TypeFunc::ReturnAdr, topnode ); 1970 init_req( TypeFunc::FramePtr , topnode ); 1971 init_req( AllocSize , size); 1972 init_req( KlassNode , klass_node); 1973 init_req( InitialTest , initial_test); 1974 init_req( ALength , topnode); 1975 init_req( ValidLengthTest , topnode); 1976 init_req( InlineType , inline_type_node); 1977 // DefaultValue defaults to nullptr 1978 // RawDefaultValue defaults to nullptr 1979 C->add_macro_node(this); 1980 } 1981 1982 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) 1983 { 1984 assert(initializer != nullptr && 1985 (initializer->is_object_constructor() || initializer->is_class_initializer()), 1986 "unexpected initializer method"); 1987 BCEscapeAnalyzer* analyzer = initializer->get_bcea(); 1988 if (analyzer == nullptr) { 1989 return; 1990 } 1991 1992 // Allocation node is first parameter in its initializer 1993 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { 1994 _is_allocation_MemBar_redundant = true; 1995 } 1996 } 1997 1998 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) { 1999 Node* mark_node = nullptr; 2000 if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) { 2001 Node* klass_node = in(AllocateNode::KlassNode); 2002 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset())))); 2003 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 2004 if (Arguments::is_valhalla_enabled()) { 2005 mark_node = phase->transform(mark_node); 2006 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal 2007 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0)); 2008 } 2009 return mark_node; 2010 } else { 2011 return phase->MakeConX(markWord::prototype().value()); 2012 } 2013 } 2014 2015 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 2016 // CastII, if appropriate. If we are not allowed to create new nodes, and 2017 // a CastII is appropriate, return null. 2018 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) { 2019 Node *length = in(AllocateNode::ALength); 2020 assert(length != nullptr, "length is not null"); 2021 2022 const TypeInt* length_type = phase->find_int_type(length); 2023 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 2024 2025 if (ary_type != nullptr && length_type != nullptr) { 2026 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 2027 if (narrow_length_type != length_type) { 2028 // Assert one of: 2029 // - the narrow_length is 0 2030 // - the narrow_length is not wider than length 2031 assert(narrow_length_type == TypeInt::ZERO || 2032 (length_type->is_con() && narrow_length_type->is_con() && 2033 (narrow_length_type->_hi <= length_type->_lo)) || 2034 (narrow_length_type->_hi <= length_type->_hi && 2035 narrow_length_type->_lo >= length_type->_lo), 2036 "narrow type must be narrower than length type"); 2037 2038 // Return null if new nodes are not allowed 2039 if (!allow_new_nodes) { 2040 return nullptr; 2041 } 2042 // Create a cast which is control dependent on the initialization to 2043 // propagate the fact that the array length must be positive. 2044 InitializeNode* init = initialization(); 2045 if (init != nullptr) { 2046 length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type); 2047 } 2048 } 2049 } 2050 2051 return length; 2052 } 2053 2054 //============================================================================= 2055 const TypeFunc* LockNode::_lock_type_Type = nullptr; 2056 2057 uint LockNode::size_of() const { return sizeof(*this); } 2058 2059 // Redundant lock elimination 2060 // 2061 // There are various patterns of locking where we release and 2062 // immediately reacquire a lock in a piece of code where no operations 2063 // occur in between that would be observable. In those cases we can 2064 // skip releasing and reacquiring the lock without violating any 2065 // fairness requirements. Doing this around a loop could cause a lock 2066 // to be held for a very long time so we concentrate on non-looping 2067 // control flow. We also require that the operations are fully 2068 // redundant meaning that we don't introduce new lock operations on 2069 // some paths so to be able to eliminate it on others ala PRE. This 2070 // would probably require some more extensive graph manipulation to 2071 // guarantee that the memory edges were all handled correctly. 2072 // 2073 // Assuming p is a simple predicate which can't trap in any way and s 2074 // is a synchronized method consider this code: 2075 // 2076 // s(); 2077 // if (p) 2078 // s(); 2079 // else 2080 // s(); 2081 // s(); 2082 // 2083 // 1. The unlocks of the first call to s can be eliminated if the 2084 // locks inside the then and else branches are eliminated. 2085 // 2086 // 2. The unlocks of the then and else branches can be eliminated if 2087 // the lock of the final call to s is eliminated. 2088 // 2089 // Either of these cases subsumes the simple case of sequential control flow 2090 // 2091 // Additionally we can eliminate versions without the else case: 2092 // 2093 // s(); 2094 // if (p) 2095 // s(); 2096 // s(); 2097 // 2098 // 3. In this case we eliminate the unlock of the first s, the lock 2099 // and unlock in the then case and the lock in the final s. 2100 // 2101 // Note also that in all these cases the then/else pieces don't have 2102 // to be trivial as long as they begin and end with synchronization 2103 // operations. 2104 // 2105 // s(); 2106 // if (p) 2107 // s(); 2108 // f(); 2109 // s(); 2110 // s(); 2111 // 2112 // The code will work properly for this case, leaving in the unlock 2113 // before the call to f and the relock after it. 2114 // 2115 // A potentially interesting case which isn't handled here is when the 2116 // locking is partially redundant. 2117 // 2118 // s(); 2119 // if (p) 2120 // s(); 2121 // 2122 // This could be eliminated putting unlocking on the else case and 2123 // eliminating the first unlock and the lock in the then side. 2124 // Alternatively the unlock could be moved out of the then side so it 2125 // was after the merge and the first unlock and second lock 2126 // eliminated. This might require less manipulation of the memory 2127 // state to get correct. 2128 // 2129 // Additionally we might allow work between a unlock and lock before 2130 // giving up eliminating the locks. The current code disallows any 2131 // conditional control flow between these operations. A formulation 2132 // similar to partial redundancy elimination computing the 2133 // availability of unlocking and the anticipatability of locking at a 2134 // program point would allow detection of fully redundant locking with 2135 // some amount of work in between. I'm not sure how often I really 2136 // think that would occur though. Most of the cases I've seen 2137 // indicate it's likely non-trivial work would occur in between. 2138 // There may be other more complicated constructs where we could 2139 // eliminate locking but I haven't seen any others appear as hot or 2140 // interesting. 2141 // 2142 // Locking and unlocking have a canonical form in ideal that looks 2143 // roughly like this: 2144 // 2145 // <obj> 2146 // | \\------+ 2147 // | \ \ 2148 // | BoxLock \ 2149 // | | | \ 2150 // | | \ \ 2151 // | | FastLock 2152 // | | / 2153 // | | / 2154 // | | | 2155 // 2156 // Lock 2157 // | 2158 // Proj #0 2159 // | 2160 // MembarAcquire 2161 // | 2162 // Proj #0 2163 // 2164 // MembarRelease 2165 // | 2166 // Proj #0 2167 // | 2168 // Unlock 2169 // | 2170 // Proj #0 2171 // 2172 // 2173 // This code proceeds by processing Lock nodes during PhaseIterGVN 2174 // and searching back through its control for the proper code 2175 // patterns. Once it finds a set of lock and unlock operations to 2176 // eliminate they are marked as eliminatable which causes the 2177 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 2178 // 2179 //============================================================================= 2180 2181 // 2182 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 2183 // - copy regions. (These may not have been optimized away yet.) 2184 // - eliminated locking nodes 2185 // 2186 static Node *next_control(Node *ctrl) { 2187 if (ctrl == nullptr) 2188 return nullptr; 2189 while (1) { 2190 if (ctrl->is_Region()) { 2191 RegionNode *r = ctrl->as_Region(); 2192 Node *n = r->is_copy(); 2193 if (n == nullptr) 2194 break; // hit a region, return it 2195 else 2196 ctrl = n; 2197 } else if (ctrl->is_Proj()) { 2198 Node *in0 = ctrl->in(0); 2199 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 2200 ctrl = in0->in(0); 2201 } else { 2202 break; 2203 } 2204 } else { 2205 break; // found an interesting control 2206 } 2207 } 2208 return ctrl; 2209 } 2210 // 2211 // Given a control, see if it's the control projection of an Unlock which 2212 // operating on the same object as lock. 2213 // 2214 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 2215 GrowableArray<AbstractLockNode*> &lock_ops) { 2216 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr; 2217 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) { 2218 Node *n = ctrl_proj->in(0); 2219 if (n != nullptr && n->is_Unlock()) { 2220 UnlockNode *unlock = n->as_Unlock(); 2221 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2222 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2223 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 2224 if (lock_obj->eqv_uncast(unlock_obj) && 2225 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 2226 !unlock->is_eliminated()) { 2227 lock_ops.append(unlock); 2228 return true; 2229 } 2230 } 2231 } 2232 return false; 2233 } 2234 2235 // 2236 // Find the lock matching an unlock. Returns null if a safepoint 2237 // or complicated control is encountered first. 2238 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 2239 LockNode *lock_result = nullptr; 2240 // find the matching lock, or an intervening safepoint 2241 Node *ctrl = next_control(unlock->in(0)); 2242 while (1) { 2243 assert(ctrl != nullptr, "invalid control graph"); 2244 assert(!ctrl->is_Start(), "missing lock for unlock"); 2245 if (ctrl->is_top()) break; // dead control path 2246 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 2247 if (ctrl->is_SafePoint()) { 2248 break; // found a safepoint (may be the lock we are searching for) 2249 } else if (ctrl->is_Region()) { 2250 // Check for a simple diamond pattern. Punt on anything more complicated 2251 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) { 2252 Node *in1 = next_control(ctrl->in(1)); 2253 Node *in2 = next_control(ctrl->in(2)); 2254 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 2255 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 2256 ctrl = next_control(in1->in(0)->in(0)); 2257 } else { 2258 break; 2259 } 2260 } else { 2261 break; 2262 } 2263 } else { 2264 ctrl = next_control(ctrl->in(0)); // keep searching 2265 } 2266 } 2267 if (ctrl->is_Lock()) { 2268 LockNode *lock = ctrl->as_Lock(); 2269 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2270 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2271 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 2272 if (lock_obj->eqv_uncast(unlock_obj) && 2273 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 2274 lock_result = lock; 2275 } 2276 } 2277 return lock_result; 2278 } 2279 2280 // This code corresponds to case 3 above. 2281 2282 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 2283 GrowableArray<AbstractLockNode*> &lock_ops) { 2284 Node* if_node = node->in(0); 2285 bool if_true = node->is_IfTrue(); 2286 2287 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 2288 Node *lock_ctrl = next_control(if_node->in(0)); 2289 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 2290 Node* lock1_node = nullptr; 2291 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 2292 if (if_true) { 2293 if (proj->is_IfFalse() && proj->outcnt() == 1) { 2294 lock1_node = proj->unique_out(); 2295 } 2296 } else { 2297 if (proj->is_IfTrue() && proj->outcnt() == 1) { 2298 lock1_node = proj->unique_out(); 2299 } 2300 } 2301 if (lock1_node != nullptr && lock1_node->is_Lock()) { 2302 LockNode *lock1 = lock1_node->as_Lock(); 2303 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2304 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 2305 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node()); 2306 if (lock_obj->eqv_uncast(lock1_obj) && 2307 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 2308 !lock1->is_eliminated()) { 2309 lock_ops.append(lock1); 2310 return true; 2311 } 2312 } 2313 } 2314 } 2315 2316 lock_ops.trunc_to(0); 2317 return false; 2318 } 2319 2320 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 2321 GrowableArray<AbstractLockNode*> &lock_ops) { 2322 // check each control merging at this point for a matching unlock. 2323 // in(0) should be self edge so skip it. 2324 for (int i = 1; i < (int)region->req(); i++) { 2325 Node *in_node = next_control(region->in(i)); 2326 if (in_node != nullptr) { 2327 if (find_matching_unlock(in_node, lock, lock_ops)) { 2328 // found a match so keep on checking. 2329 continue; 2330 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 2331 continue; 2332 } 2333 2334 // If we fall through to here then it was some kind of node we 2335 // don't understand or there wasn't a matching unlock, so give 2336 // up trying to merge locks. 2337 lock_ops.trunc_to(0); 2338 return false; 2339 } 2340 } 2341 return true; 2342 2343 } 2344 2345 // Check that all locks/unlocks associated with object come from balanced regions. 2346 bool AbstractLockNode::is_balanced() { 2347 Node* obj = obj_node(); 2348 for (uint j = 0; j < obj->outcnt(); j++) { 2349 Node* n = obj->raw_out(j); 2350 if (n->is_AbstractLock() && 2351 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2352 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock(); 2353 if (n_box->is_unbalanced()) { 2354 return false; 2355 } 2356 } 2357 } 2358 return true; 2359 } 2360 2361 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; 2362 2363 const char * AbstractLockNode::kind_as_string() const { 2364 return _kind_names[_kind]; 2365 } 2366 2367 #ifndef PRODUCT 2368 // 2369 // Create a counter which counts the number of times this lock is acquired 2370 // 2371 void AbstractLockNode::create_lock_counter(JVMState* state) { 2372 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 2373 } 2374 2375 void AbstractLockNode::set_eliminated_lock_counter() { 2376 if (_counter) { 2377 // Update the counter to indicate that this lock was eliminated. 2378 // The counter update code will stay around even though the 2379 // optimizer will eliminate the lock operation itself. 2380 _counter->set_tag(NamedCounter::EliminatedLockCounter); 2381 } 2382 } 2383 2384 void AbstractLockNode::dump_spec(outputStream* st) const { 2385 st->print("%s ", _kind_names[_kind]); 2386 CallNode::dump_spec(st); 2387 } 2388 2389 void AbstractLockNode::dump_compact_spec(outputStream* st) const { 2390 st->print("%s", _kind_names[_kind]); 2391 } 2392 #endif 2393 2394 //============================================================================= 2395 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2396 2397 // perform any generic optimizations first (returns 'this' or null) 2398 Node *result = SafePointNode::Ideal(phase, can_reshape); 2399 if (result != nullptr) return result; 2400 // Don't bother trying to transform a dead node 2401 if (in(0) && in(0)->is_top()) return nullptr; 2402 2403 // Now see if we can optimize away this lock. We don't actually 2404 // remove the locking here, we simply set the _eliminate flag which 2405 // prevents macro expansion from expanding the lock. Since we don't 2406 // modify the graph, the value returned from this function is the 2407 // one computed above. 2408 const Type* obj_type = phase->type(obj_node()); 2409 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) { 2410 // 2411 // If we are locking an non-escaped object, the lock/unlock is unnecessary 2412 // 2413 ConnectionGraph *cgr = phase->C->congraph(); 2414 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 2415 assert(!is_eliminated() || is_coarsened(), "sanity"); 2416 // The lock could be marked eliminated by lock coarsening 2417 // code during first IGVN before EA. Replace coarsened flag 2418 // to eliminate all associated locks/unlocks. 2419 #ifdef ASSERT 2420 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); 2421 #endif 2422 this->set_non_esc_obj(); 2423 return result; 2424 } 2425 2426 if (!phase->C->do_locks_coarsening()) { 2427 return result; // Compiling without locks coarsening 2428 } 2429 // 2430 // Try lock coarsening 2431 // 2432 PhaseIterGVN* iter = phase->is_IterGVN(); 2433 if (iter != nullptr && !is_eliminated()) { 2434 2435 GrowableArray<AbstractLockNode*> lock_ops; 2436 2437 Node *ctrl = next_control(in(0)); 2438 2439 // now search back for a matching Unlock 2440 if (find_matching_unlock(ctrl, this, lock_ops)) { 2441 // found an unlock directly preceding this lock. This is the 2442 // case of single unlock directly control dependent on a 2443 // single lock which is the trivial version of case 1 or 2. 2444 } else if (ctrl->is_Region() ) { 2445 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 2446 // found lock preceded by multiple unlocks along all paths 2447 // joining at this point which is case 3 in description above. 2448 } 2449 } else { 2450 // see if this lock comes from either half of an if and the 2451 // predecessors merges unlocks and the other half of the if 2452 // performs a lock. 2453 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 2454 // found unlock splitting to an if with locks on both branches. 2455 } 2456 } 2457 2458 if (lock_ops.length() > 0) { 2459 // add ourselves to the list of locks to be eliminated. 2460 lock_ops.append(this); 2461 2462 #ifndef PRODUCT 2463 if (PrintEliminateLocks) { 2464 int locks = 0; 2465 int unlocks = 0; 2466 if (Verbose) { 2467 tty->print_cr("=== Locks coarsening ==="); 2468 tty->print("Obj: "); 2469 obj_node()->dump(); 2470 } 2471 for (int i = 0; i < lock_ops.length(); i++) { 2472 AbstractLockNode* lock = lock_ops.at(i); 2473 if (lock->Opcode() == Op_Lock) 2474 locks++; 2475 else 2476 unlocks++; 2477 if (Verbose) { 2478 tty->print("Box %d: ", i); 2479 box_node()->dump(); 2480 tty->print(" %d: ", i); 2481 lock->dump(); 2482 } 2483 } 2484 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks); 2485 } 2486 #endif 2487 2488 // for each of the identified locks, mark them 2489 // as eliminatable 2490 for (int i = 0; i < lock_ops.length(); i++) { 2491 AbstractLockNode* lock = lock_ops.at(i); 2492 2493 // Mark it eliminated by coarsening and update any counters 2494 #ifdef ASSERT 2495 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); 2496 #endif 2497 lock->set_coarsened(); 2498 } 2499 // Record this coarsened group. 2500 phase->C->add_coarsened_locks(lock_ops); 2501 } else if (ctrl->is_Region() && 2502 iter->_worklist.member(ctrl)) { 2503 // We weren't able to find any opportunities but the region this 2504 // lock is control dependent on hasn't been processed yet so put 2505 // this lock back on the worklist so we can check again once any 2506 // region simplification has occurred. 2507 iter->_worklist.push(this); 2508 } 2509 } 2510 } 2511 2512 return result; 2513 } 2514 2515 //============================================================================= 2516 bool LockNode::is_nested_lock_region() { 2517 return is_nested_lock_region(nullptr); 2518 } 2519 2520 // p is used for access to compilation log; no logging if null 2521 bool LockNode::is_nested_lock_region(Compile * c) { 2522 BoxLockNode* box = box_node()->as_BoxLock(); 2523 int stk_slot = box->stack_slot(); 2524 if (stk_slot <= 0) { 2525 #ifdef ASSERT 2526 this->log_lock_optimization(c, "eliminate_lock_INLR_1"); 2527 #endif 2528 return false; // External lock or it is not Box (Phi node). 2529 } 2530 2531 // Ignore complex cases: merged locks or multiple locks. 2532 Node* obj = obj_node(); 2533 LockNode* unique_lock = nullptr; 2534 Node* bad_lock = nullptr; 2535 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) { 2536 #ifdef ASSERT 2537 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock); 2538 #endif 2539 return false; 2540 } 2541 if (unique_lock != this) { 2542 #ifdef ASSERT 2543 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock)); 2544 if (PrintEliminateLocks && Verbose) { 2545 tty->print_cr("=============== unique_lock != this ============"); 2546 tty->print(" this: "); 2547 this->dump(); 2548 tty->print(" box: "); 2549 box->dump(); 2550 tty->print(" obj: "); 2551 obj->dump(); 2552 if (unique_lock != nullptr) { 2553 tty->print(" unique_lock: "); 2554 unique_lock->dump(); 2555 } 2556 if (bad_lock != nullptr) { 2557 tty->print(" bad_lock: "); 2558 bad_lock->dump(); 2559 } 2560 tty->print_cr("==============="); 2561 } 2562 #endif 2563 return false; 2564 } 2565 2566 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2567 obj = bs->step_over_gc_barrier(obj); 2568 // Look for external lock for the same object. 2569 SafePointNode* sfn = this->as_SafePoint(); 2570 JVMState* youngest_jvms = sfn->jvms(); 2571 int max_depth = youngest_jvms->depth(); 2572 for (int depth = 1; depth <= max_depth; depth++) { 2573 JVMState* jvms = youngest_jvms->of_depth(depth); 2574 int num_mon = jvms->nof_monitors(); 2575 // Loop over monitors 2576 for (int idx = 0; idx < num_mon; idx++) { 2577 Node* obj_node = sfn->monitor_obj(jvms, idx); 2578 obj_node = bs->step_over_gc_barrier(obj_node); 2579 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 2580 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 2581 box->set_nested(); 2582 return true; 2583 } 2584 } 2585 } 2586 #ifdef ASSERT 2587 this->log_lock_optimization(c, "eliminate_lock_INLR_3"); 2588 #endif 2589 return false; 2590 } 2591 2592 //============================================================================= 2593 uint UnlockNode::size_of() const { return sizeof(*this); } 2594 2595 //============================================================================= 2596 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2597 2598 // perform any generic optimizations first (returns 'this' or null) 2599 Node *result = SafePointNode::Ideal(phase, can_reshape); 2600 if (result != nullptr) return result; 2601 // Don't bother trying to transform a dead node 2602 if (in(0) && in(0)->is_top()) return nullptr; 2603 2604 // Now see if we can optimize away this unlock. We don't actually 2605 // remove the unlocking here, we simply set the _eliminate flag which 2606 // prevents macro expansion from expanding the unlock. Since we don't 2607 // modify the graph, the value returned from this function is the 2608 // one computed above. 2609 // Escape state is defined after Parse phase. 2610 const Type* obj_type = phase->type(obj_node()); 2611 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) { 2612 // 2613 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary. 2614 // 2615 ConnectionGraph *cgr = phase->C->congraph(); 2616 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 2617 assert(!is_eliminated() || is_coarsened(), "sanity"); 2618 // The lock could be marked eliminated by lock coarsening 2619 // code during first IGVN before EA. Replace coarsened flag 2620 // to eliminate all associated locks/unlocks. 2621 #ifdef ASSERT 2622 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); 2623 #endif 2624 this->set_non_esc_obj(); 2625 } 2626 } 2627 return result; 2628 } 2629 2630 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const { 2631 if (C == nullptr) { 2632 return; 2633 } 2634 CompileLog* log = C->log(); 2635 if (log != nullptr) { 2636 Node* box = box_node(); 2637 Node* obj = obj_node(); 2638 int box_id = box != nullptr ? box->_idx : -1; 2639 int obj_id = obj != nullptr ? obj->_idx : -1; 2640 2641 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'", 2642 tag, C->compile_id(), this->_idx, 2643 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 2644 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1)); 2645 log->stamp(); 2646 log->end_head(); 2647 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 2648 while (p != nullptr) { 2649 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 2650 p = p->caller(); 2651 } 2652 log->tail(tag); 2653 } 2654 } 2655 2656 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) { 2657 if (dest_t->is_known_instance() && t_oop->is_known_instance()) { 2658 return dest_t->instance_id() == t_oop->instance_id(); 2659 } 2660 2661 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) { 2662 // clone 2663 if (t_oop->isa_aryptr()) { 2664 return false; 2665 } 2666 if (!t_oop->isa_instptr()) { 2667 return true; 2668 } 2669 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) { 2670 return true; 2671 } 2672 // unrelated 2673 return false; 2674 } 2675 2676 if (dest_t->isa_aryptr()) { 2677 // arraycopy or array clone 2678 if (t_oop->isa_instptr()) { 2679 return false; 2680 } 2681 if (!t_oop->isa_aryptr()) { 2682 return true; 2683 } 2684 2685 const Type* elem = dest_t->is_aryptr()->elem(); 2686 if (elem == Type::BOTTOM) { 2687 // An array but we don't know what elements are 2688 return true; 2689 } 2690 2691 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr(); 2692 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot); 2693 uint dest_alias = phase->C->get_alias_index(dest_t); 2694 uint t_oop_alias = phase->C->get_alias_index(t_oop); 2695 2696 return dest_alias == t_oop_alias; 2697 } 2698 2699 return true; 2700 } --- EOF ---