1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/bcEscapeAnalyzer.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/inlinetypenode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/regalloc.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 #include "code/vmreg.hpp"
  51 
  52 // Portions of code courtesy of Clifford Click
  53 
  54 // Optimization - Graph Style
  55 
  56 //=============================================================================
  57 uint StartNode::size_of() const { return sizeof(*this); }
  58 bool StartNode::cmp( const Node &n ) const
  59 { return _domain == ((StartNode&)n)._domain; }
  60 const Type *StartNode::bottom_type() const { return _domain; }
  61 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  62 #ifndef PRODUCT
  63 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  64 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  65 #endif
  66 
  67 //------------------------------Ideal------------------------------------------
  68 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  69   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  70 }
  71 
  72 //------------------------------calling_convention-----------------------------
  73 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  74   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  75 }
  76 
  77 //------------------------------Registers--------------------------------------
  78 const RegMask &StartNode::in_RegMask(uint) const {
  79   return RegMask::Empty;
  80 }
  81 
  82 //------------------------------match------------------------------------------
  83 // Construct projections for incoming parameters, and their RegMask info
  84 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  85   switch (proj->_con) {
  86   case TypeFunc::Control:
  87   case TypeFunc::I_O:
  88   case TypeFunc::Memory:
  89     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  90   case TypeFunc::FramePtr:
  91     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  92   case TypeFunc::ReturnAdr:
  93     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  94   case TypeFunc::Parms:
  95   default: {
  96       uint parm_num = proj->_con - TypeFunc::Parms;
  97       const Type *t = _domain->field_at(proj->_con);
  98       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  99         return new ConNode(Type::TOP);
 100       uint ideal_reg = t->ideal_reg();
 101       RegMask &rm = match->_calling_convention_mask[parm_num];
 102       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 103     }
 104   }
 105   return nullptr;
 106 }
 107 











 108 //=============================================================================
 109 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 110   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 111 };
 112 
 113 #ifndef PRODUCT
 114 void ParmNode::dump_spec(outputStream *st) const {
 115   if( _con < TypeFunc::Parms ) {
 116     st->print("%s", names[_con]);
 117   } else {
 118     st->print("Parm%d: ",_con-TypeFunc::Parms);
 119     // Verbose and WizardMode dump bottom_type for all nodes
 120     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 121   }
 122 }
 123 
 124 void ParmNode::dump_compact_spec(outputStream *st) const {
 125   if (_con < TypeFunc::Parms) {
 126     st->print("%s", names[_con]);
 127   } else {
 128     st->print("%d:", _con-TypeFunc::Parms);
 129     // unconditionally dump bottom_type
 130     bottom_type()->dump_on(st);
 131   }
 132 }
 133 #endif
 134 
 135 uint ParmNode::ideal_reg() const {
 136   switch( _con ) {
 137   case TypeFunc::Control  : // fall through
 138   case TypeFunc::I_O      : // fall through
 139   case TypeFunc::Memory   : return 0;
 140   case TypeFunc::FramePtr : // fall through
 141   case TypeFunc::ReturnAdr: return Op_RegP;
 142   default                 : assert( _con > TypeFunc::Parms, "" );
 143     // fall through
 144   case TypeFunc::Parms    : {
 145     // Type of argument being passed
 146     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 147     return t->ideal_reg();
 148   }
 149   }
 150   ShouldNotReachHere();
 151   return 0;
 152 }
 153 
 154 //=============================================================================
 155 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 156   init_req(TypeFunc::Control,cntrl);
 157   init_req(TypeFunc::I_O,i_o);
 158   init_req(TypeFunc::Memory,memory);
 159   init_req(TypeFunc::FramePtr,frameptr);
 160   init_req(TypeFunc::ReturnAdr,retadr);
 161 }
 162 
 163 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 164   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 165 }
 166 
 167 const Type* ReturnNode::Value(PhaseGVN* phase) const {
 168   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 169     ? Type::TOP
 170     : Type::BOTTOM;
 171 }
 172 
 173 // Do we Match on this edge index or not?  No edges on return nodes
 174 uint ReturnNode::match_edge(uint idx) const {
 175   return 0;
 176 }
 177 
 178 
 179 #ifndef PRODUCT
 180 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
 181   // Dump the required inputs, after printing "returns"
 182   uint i;                       // Exit value of loop
 183   for (i = 0; i < req(); i++) {    // For all required inputs
 184     if (i == TypeFunc::Parms) st->print("returns ");
 185     Node* p = in(i);
 186     if (p != nullptr) {
 187       p->dump_idx(false, st, dc);
 188       st->print(" ");
 189     } else {
 190       st->print("_ ");
 191     }
 192   }
 193 }
 194 #endif
 195 
 196 //=============================================================================
 197 RethrowNode::RethrowNode(
 198   Node* cntrl,
 199   Node* i_o,
 200   Node* memory,
 201   Node* frameptr,
 202   Node* ret_adr,
 203   Node* exception
 204 ) : Node(TypeFunc::Parms + 1) {
 205   init_req(TypeFunc::Control  , cntrl    );
 206   init_req(TypeFunc::I_O      , i_o      );
 207   init_req(TypeFunc::Memory   , memory   );
 208   init_req(TypeFunc::FramePtr , frameptr );
 209   init_req(TypeFunc::ReturnAdr, ret_adr);
 210   init_req(TypeFunc::Parms    , exception);
 211 }
 212 
 213 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 214   return remove_dead_region(phase, can_reshape) ? this : nullptr;
 215 }
 216 
 217 const Type* RethrowNode::Value(PhaseGVN* phase) const {
 218   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 219     ? Type::TOP
 220     : Type::BOTTOM;
 221 }
 222 
 223 uint RethrowNode::match_edge(uint idx) const {
 224   return 0;
 225 }
 226 
 227 #ifndef PRODUCT
 228 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
 229   // Dump the required inputs, after printing "exception"
 230   uint i;                       // Exit value of loop
 231   for (i = 0; i < req(); i++) {    // For all required inputs
 232     if (i == TypeFunc::Parms) st->print("exception ");
 233     Node* p = in(i);
 234     if (p != nullptr) {
 235       p->dump_idx(false, st, dc);
 236       st->print(" ");
 237     } else {
 238       st->print("_ ");
 239     }
 240   }
 241 }
 242 #endif
 243 
 244 //=============================================================================
 245 // Do we Match on this edge index or not?  Match only target address & method
 246 uint TailCallNode::match_edge(uint idx) const {
 247   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 248 }
 249 
 250 //=============================================================================
 251 // Do we Match on this edge index or not?  Match only target address & oop
 252 uint TailJumpNode::match_edge(uint idx) const {
 253   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 254 }
 255 
 256 //=============================================================================
 257 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 258   _method(method) {
 259   assert(method != nullptr, "must be valid call site");
 260   _bci = InvocationEntryBci;
 261   _reexecute = Reexecute_Undefined;
 262   debug_only(_bci = -99);  // random garbage value
 263   debug_only(_map = (SafePointNode*)-1);
 264   _caller = caller;
 265   _depth  = 1 + (caller == nullptr ? 0 : caller->depth());
 266   _locoff = TypeFunc::Parms;
 267   _stkoff = _locoff + _method->max_locals();
 268   _monoff = _stkoff + _method->max_stack();
 269   _scloff = _monoff;
 270   _endoff = _monoff;
 271   _sp = 0;
 272 }
 273 JVMState::JVMState(int stack_size) :
 274   _method(nullptr) {
 275   _bci = InvocationEntryBci;
 276   _reexecute = Reexecute_Undefined;
 277   debug_only(_map = (SafePointNode*)-1);
 278   _caller = nullptr;
 279   _depth  = 1;
 280   _locoff = TypeFunc::Parms;
 281   _stkoff = _locoff;
 282   _monoff = _stkoff + stack_size;
 283   _scloff = _monoff;
 284   _endoff = _monoff;
 285   _sp = 0;
 286 }
 287 
 288 //--------------------------------of_depth-------------------------------------
 289 JVMState* JVMState::of_depth(int d) const {
 290   const JVMState* jvmp = this;
 291   assert(0 < d && (uint)d <= depth(), "oob");
 292   for (int skip = depth() - d; skip > 0; skip--) {
 293     jvmp = jvmp->caller();
 294   }
 295   assert(jvmp->depth() == (uint)d, "found the right one");
 296   return (JVMState*)jvmp;
 297 }
 298 
 299 //-----------------------------same_calls_as-----------------------------------
 300 bool JVMState::same_calls_as(const JVMState* that) const {
 301   if (this == that)                    return true;
 302   if (this->depth() != that->depth())  return false;
 303   const JVMState* p = this;
 304   const JVMState* q = that;
 305   for (;;) {
 306     if (p->_method != q->_method)    return false;
 307     if (p->_method == nullptr)       return true;   // bci is irrelevant
 308     if (p->_bci    != q->_bci)       return false;
 309     if (p->_reexecute != q->_reexecute)  return false;
 310     p = p->caller();
 311     q = q->caller();
 312     if (p == q)                      return true;
 313     assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
 314   }
 315 }
 316 
 317 //------------------------------debug_start------------------------------------
 318 uint JVMState::debug_start()  const {
 319   debug_only(JVMState* jvmroot = of_depth(1));
 320   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 321   return of_depth(1)->locoff();
 322 }
 323 
 324 //-------------------------------debug_end-------------------------------------
 325 uint JVMState::debug_end() const {
 326   debug_only(JVMState* jvmroot = of_depth(1));
 327   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 328   return endoff();
 329 }
 330 
 331 //------------------------------debug_depth------------------------------------
 332 uint JVMState::debug_depth() const {
 333   uint total = 0;
 334   for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
 335     total += jvmp->debug_size();
 336   }
 337   return total;
 338 }
 339 
 340 #ifndef PRODUCT
 341 
 342 //------------------------------format_helper----------------------------------
 343 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 344 // any defined value or not.  If it does, print out the register or constant.
 345 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 346   if (n == nullptr) { st->print(" null"); return; }
 347   if (n->is_SafePointScalarObject()) {
 348     // Scalar replacement.
 349     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 350     scobjs->append_if_missing(spobj);
 351     int sco_n = scobjs->find(spobj);
 352     assert(sco_n >= 0, "");
 353     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 354     return;
 355   }
 356   if (regalloc->node_regs_max_index() > 0 &&
 357       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 358     char buf[50];
 359     regalloc->dump_register(n,buf,sizeof(buf));
 360     st->print(" %s%d]=%s",msg,i,buf);
 361   } else {                      // No register, but might be constant
 362     const Type *t = n->bottom_type();
 363     switch (t->base()) {
 364     case Type::Int:
 365       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
 366       break;
 367     case Type::AnyPtr:
 368       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 369       st->print(" %s%d]=#null",msg,i);
 370       break;
 371     case Type::AryPtr:
 372     case Type::InstPtr:
 373       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 374       break;
 375     case Type::KlassPtr:
 376     case Type::AryKlassPtr:
 377     case Type::InstKlassPtr:
 378       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
 379       break;
 380     case Type::MetadataPtr:
 381       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 382       break;
 383     case Type::NarrowOop:
 384       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 385       break;
 386     case Type::RawPtr:
 387       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 388       break;
 389     case Type::DoubleCon:
 390       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 391       break;
 392     case Type::FloatCon:
 393       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 394       break;
 395     case Type::Long:
 396       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 397       break;
 398     case Type::Half:
 399     case Type::Top:
 400       st->print(" %s%d]=_",msg,i);
 401       break;
 402     default: ShouldNotReachHere();
 403     }
 404   }
 405 }
 406 
 407 //---------------------print_method_with_lineno--------------------------------
 408 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
 409   if (show_name) _method->print_short_name(st);
 410 
 411   int lineno = _method->line_number_from_bci(_bci);
 412   if (lineno != -1) {
 413     st->print(" @ bci:%d (line %d)", _bci, lineno);
 414   } else {
 415     st->print(" @ bci:%d", _bci);
 416   }
 417 }
 418 
 419 //------------------------------format-----------------------------------------
 420 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 421   st->print("        #");
 422   if (_method) {
 423     print_method_with_lineno(st, true);
 424   } else {
 425     st->print_cr(" runtime stub ");
 426     return;
 427   }
 428   if (n->is_MachSafePoint()) {
 429     GrowableArray<SafePointScalarObjectNode*> scobjs;
 430     MachSafePointNode *mcall = n->as_MachSafePoint();
 431     uint i;
 432     // Print locals
 433     for (i = 0; i < (uint)loc_size(); i++)
 434       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 435     // Print stack
 436     for (i = 0; i < (uint)stk_size(); i++) {
 437       if ((uint)(_stkoff + i) >= mcall->len())
 438         st->print(" oob ");
 439       else
 440        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 441     }
 442     for (i = 0; (int)i < nof_monitors(); i++) {
 443       Node *box = mcall->monitor_box(this, i);
 444       Node *obj = mcall->monitor_obj(this, i);
 445       if (regalloc->node_regs_max_index() > 0 &&
 446           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 447         box = BoxLockNode::box_node(box);
 448         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 449       } else {
 450         OptoReg::Name box_reg = BoxLockNode::reg(box);
 451         st->print(" MON-BOX%d=%s+%d",
 452                    i,
 453                    OptoReg::regname(OptoReg::c_frame_pointer),
 454                    regalloc->reg2offset(box_reg));
 455       }
 456       const char* obj_msg = "MON-OBJ[";
 457       if (EliminateLocks) {
 458         if (BoxLockNode::box_node(box)->is_eliminated())
 459           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 460       }
 461       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 462     }
 463 
 464     for (i = 0; i < (uint)scobjs.length(); i++) {
 465       // Scalar replaced objects.
 466       st->cr();
 467       st->print("        # ScObj" INT32_FORMAT " ", i);
 468       SafePointScalarObjectNode* spobj = scobjs.at(i);
 469       ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
 470       assert(cik->is_instance_klass() ||
 471              cik->is_array_klass(), "Not supported allocation.");
 472       ciInstanceKlass *iklass = nullptr;
 473       if (cik->is_instance_klass()) {
 474         cik->print_name_on(st);
 475         iklass = cik->as_instance_klass();
 476       } else if (cik->is_type_array_klass()) {
 477         cik->as_array_klass()->base_element_type()->print_name_on(st);
 478         st->print("[%d]", spobj->n_fields());
 479       } else if (cik->is_obj_array_klass()) {
 480         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 481         if (cie->is_instance_klass()) {
 482           cie->print_name_on(st);
 483         } else if (cie->is_type_array_klass()) {
 484           cie->as_array_klass()->base_element_type()->print_name_on(st);
 485         } else {
 486           ShouldNotReachHere();
 487         }
 488         st->print("[%d]", spobj->n_fields());
 489         int ndim = cik->as_array_klass()->dimension() - 1;
 490         while (ndim-- > 0) {
 491           st->print("[]");
 492         }
 493       } else if (cik->is_flat_array_klass()) {
 494         ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
 495         cie->print_name_on(st);
 496         st->print("[%d]", spobj->n_fields());
 497         int ndim = cik->as_array_klass()->dimension() - 1;
 498         while (ndim-- > 0) {
 499           st->print("[]");
 500         }
 501       }
 502       st->print("={");
 503       uint nf = spobj->n_fields();
 504       if (nf > 0) {
 505         uint first_ind = spobj->first_index(mcall->jvms());
 506         if (iklass != nullptr && iklass->is_inlinetype()) {
 507           Node* init_node = mcall->in(first_ind++);
 508           if (!init_node->is_top()) {
 509             st->print(" [is_init");
 510             format_helper(regalloc, st, init_node, ":", -1, nullptr);
 511           }
 512         }
 513         Node* fld_node = mcall->in(first_ind);
 514         ciField* cifield;
 515         if (iklass != nullptr) {
 516           st->print(" [");
 517           cifield = iklass->nonstatic_field_at(0);
 518           cifield->print_name_on(st);
 519           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 520         } else {
 521           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 522         }
 523         for (uint j = 1; j < nf; j++) {
 524           fld_node = mcall->in(first_ind+j);
 525           if (iklass != nullptr) {
 526             st->print(", [");
 527             cifield = iklass->nonstatic_field_at(j);
 528             cifield->print_name_on(st);
 529             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 530           } else {
 531             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 532           }
 533         }
 534       }
 535       st->print(" }");
 536     }
 537   }
 538   st->cr();
 539   if (caller() != nullptr) caller()->format(regalloc, n, st);
 540 }
 541 
 542 
 543 void JVMState::dump_spec(outputStream *st) const {
 544   if (_method != nullptr) {
 545     bool printed = false;
 546     if (!Verbose) {
 547       // The JVMS dumps make really, really long lines.
 548       // Take out the most boring parts, which are the package prefixes.
 549       char buf[500];
 550       stringStream namest(buf, sizeof(buf));
 551       _method->print_short_name(&namest);
 552       if (namest.count() < sizeof(buf)) {
 553         const char* name = namest.base();
 554         if (name[0] == ' ')  ++name;
 555         const char* endcn = strchr(name, ':');  // end of class name
 556         if (endcn == nullptr)  endcn = strchr(name, '(');
 557         if (endcn == nullptr)  endcn = name + strlen(name);
 558         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 559           --endcn;
 560         st->print(" %s", endcn);
 561         printed = true;
 562       }
 563     }
 564     print_method_with_lineno(st, !printed);
 565     if(_reexecute == Reexecute_True)
 566       st->print(" reexecute");
 567   } else {
 568     st->print(" runtime stub");
 569   }
 570   if (caller() != nullptr)  caller()->dump_spec(st);
 571 }
 572 
 573 
 574 void JVMState::dump_on(outputStream* st) const {
 575   bool print_map = _map && !((uintptr_t)_map & 1) &&
 576                   ((caller() == nullptr) || (caller()->map() != _map));
 577   if (print_map) {
 578     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 579       Node* ex = _map->in(_map->req());  // _map->next_exception()
 580       // skip the first one; it's already being printed
 581       while (ex != nullptr && ex->len() > ex->req()) {
 582         ex = ex->in(ex->req());  // ex->next_exception()
 583         ex->dump(1);
 584       }
 585     }
 586     _map->dump(Verbose ? 2 : 1);
 587   }
 588   if (caller() != nullptr) {
 589     caller()->dump_on(st);
 590   }
 591   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 592              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 593   if (_method == nullptr) {
 594     st->print_cr("(none)");
 595   } else {
 596     _method->print_name(st);
 597     st->cr();
 598     if (bci() >= 0 && bci() < _method->code_size()) {
 599       st->print("    bc: ");
 600       _method->print_codes_on(bci(), bci()+1, st);
 601     }
 602   }
 603 }
 604 
 605 // Extra way to dump a jvms from the debugger,
 606 // to avoid a bug with C++ member function calls.
 607 void dump_jvms(JVMState* jvms) {
 608   jvms->dump();
 609 }
 610 #endif
 611 
 612 //--------------------------clone_shallow--------------------------------------
 613 JVMState* JVMState::clone_shallow(Compile* C) const {
 614   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 615   n->set_bci(_bci);
 616   n->_reexecute = _reexecute;
 617   n->set_locoff(_locoff);
 618   n->set_stkoff(_stkoff);
 619   n->set_monoff(_monoff);
 620   n->set_scloff(_scloff);
 621   n->set_endoff(_endoff);
 622   n->set_sp(_sp);
 623   n->set_map(_map);
 624   return n;
 625 }
 626 
 627 //---------------------------clone_deep----------------------------------------
 628 JVMState* JVMState::clone_deep(Compile* C) const {
 629   JVMState* n = clone_shallow(C);
 630   for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
 631     p->_caller = p->_caller->clone_shallow(C);
 632   }
 633   assert(n->depth() == depth(), "sanity");
 634   assert(n->debug_depth() == debug_depth(), "sanity");
 635   return n;
 636 }
 637 
 638 /**
 639  * Reset map for all callers
 640  */
 641 void JVMState::set_map_deep(SafePointNode* map) {
 642   for (JVMState* p = this; p != nullptr; p = p->_caller) {
 643     p->set_map(map);
 644   }
 645 }
 646 
 647 // unlike set_map(), this is two-way setting.
 648 void JVMState::bind_map(SafePointNode* map) {
 649   set_map(map);
 650   _map->set_jvms(this);
 651 }
 652 
 653 // Adapt offsets in in-array after adding or removing an edge.
 654 // Prerequisite is that the JVMState is used by only one node.
 655 void JVMState::adapt_position(int delta) {
 656   for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
 657     jvms->set_locoff(jvms->locoff() + delta);
 658     jvms->set_stkoff(jvms->stkoff() + delta);
 659     jvms->set_monoff(jvms->monoff() + delta);
 660     jvms->set_scloff(jvms->scloff() + delta);
 661     jvms->set_endoff(jvms->endoff() + delta);
 662   }
 663 }
 664 
 665 // Mirror the stack size calculation in the deopt code
 666 // How much stack space would we need at this point in the program in
 667 // case of deoptimization?
 668 int JVMState::interpreter_frame_size() const {
 669   const JVMState* jvms = this;
 670   int size = 0;
 671   int callee_parameters = 0;
 672   int callee_locals = 0;
 673   int extra_args = method()->max_stack() - stk_size();
 674 
 675   while (jvms != nullptr) {
 676     int locks = jvms->nof_monitors();
 677     int temps = jvms->stk_size();
 678     bool is_top_frame = (jvms == this);
 679     ciMethod* method = jvms->method();
 680 
 681     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 682                                                                  temps + callee_parameters,
 683                                                                  extra_args,
 684                                                                  locks,
 685                                                                  callee_parameters,
 686                                                                  callee_locals,
 687                                                                  is_top_frame);
 688     size += frame_size;
 689 
 690     callee_parameters = method->size_of_parameters();
 691     callee_locals = method->max_locals();
 692     extra_args = 0;
 693     jvms = jvms->caller();
 694   }
 695   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 696 }
 697 
 698 //=============================================================================
 699 bool CallNode::cmp( const Node &n ) const
 700 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 701 #ifndef PRODUCT
 702 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
 703   // Dump the required inputs, enclosed in '(' and ')'
 704   uint i;                       // Exit value of loop
 705   for (i = 0; i < req(); i++) {    // For all required inputs
 706     if (i == TypeFunc::Parms) st->print("(");
 707     Node* p = in(i);
 708     if (p != nullptr) {
 709       p->dump_idx(false, st, dc);
 710       st->print(" ");
 711     } else {
 712       st->print("_ ");
 713     }
 714   }
 715   st->print(")");
 716 }
 717 
 718 void CallNode::dump_spec(outputStream *st) const {
 719   st->print(" ");
 720   if (tf() != nullptr)  tf()->dump_on(st);
 721   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 722   if (jvms() != nullptr)  jvms()->dump_spec(st);
 723 }
 724 #endif
 725 
 726 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 727 const Type* CallNode::Value(PhaseGVN* phase) const {
 728   if (!in(0) || phase->type(in(0)) == Type::TOP) {
 729     return Type::TOP;
 730   }
 731   return tf()->range_cc();
 732 }
 733 
 734 //------------------------------calling_convention-----------------------------
 735 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 736   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 737     // The call to that stub is a special case: its inputs are
 738     // multiple values returned from a call and so it should follow
 739     // the return convention.
 740     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 741     return;
 742   }
 743   // Use the standard compiler calling convention
 744   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 745 }
 746 
 747 
 748 //------------------------------match------------------------------------------
 749 // Construct projections for control, I/O, memory-fields, ..., and
 750 // return result(s) along with their RegMask info
 751 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 752   uint con = proj->_con;
 753   const TypeTuple* range_cc = tf()->range_cc();
 754   if (con >= TypeFunc::Parms) {
 755     if (tf()->returns_inline_type_as_fields()) {
 756       // The call returns multiple values (inline type fields): we
 757       // create one projection per returned value.
 758       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 759       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 760       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 761     } else {
 762       if (con == TypeFunc::Parms) {
 763         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 764         OptoRegPair regs = Opcode() == Op_CallLeafVector
 765           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 766           : match->c_return_value(ideal_reg);
 767         RegMask rm = RegMask(regs.first());
 768 
 769         if (Opcode() == Op_CallLeafVector) {
 770           // If the return is in vector, compute appropriate regmask taking into account the whole range
 771           if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
 772             if(OptoReg::is_valid(regs.second())) {
 773               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 774                 rm.Insert(r);
 775               }
 776             }

 777           }
 778         }
 779 
 780         if (OptoReg::is_valid(regs.second())) {
 781           rm.Insert(regs.second());
 782         }
 783         return new MachProjNode(this,con,rm,ideal_reg);
 784       } else {
 785         assert(con == TypeFunc::Parms+1, "only one return value");
 786         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 787         return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad);
 788       }
 789     }




 790   }
 791 
 792   switch (con) {
 793   case TypeFunc::Control:
 794   case TypeFunc::I_O:
 795   case TypeFunc::Memory:
 796     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 797 
 798   case TypeFunc::ReturnAdr:
 799   case TypeFunc::FramePtr:
 800   default:
 801     ShouldNotReachHere();
 802   }
 803   return nullptr;
 804 }
 805 
 806 // Do we Match on this edge index or not?  Match no edges
 807 uint CallNode::match_edge(uint idx) const {
 808   return 0;
 809 }
 810 
 811 //
 812 // Determine whether the call could modify the field of the specified
 813 // instance at the specified offset.
 814 //
 815 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 816   assert((t_oop != nullptr), "sanity");
 817   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 818     const TypeTuple* args = _tf->domain_sig();
 819     Node* dest = nullptr;
 820     // Stubs that can be called once an ArrayCopyNode is expanded have
 821     // different signatures. Look for the second pointer argument,
 822     // that is the destination of the copy.
 823     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 824       if (args->field_at(i)->isa_ptr()) {
 825         j++;
 826         if (j == 2) {
 827           dest = in(i);
 828           break;
 829         }
 830       }
 831     }
 832     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 833     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 834       return true;
 835     }
 836     return false;
 837   }
 838   if (t_oop->is_known_instance()) {
 839     // The instance_id is set only for scalar-replaceable allocations which
 840     // are not passed as arguments according to Escape Analysis.
 841     return false;
 842   }
 843   if (t_oop->is_ptr_to_boxed_value()) {
 844     ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
 845     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 846       // Skip unrelated boxing methods.
 847       Node* proj = proj_out_or_null(TypeFunc::Parms);
 848       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 849         return false;
 850       }
 851     }
 852     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 853       ciMethod* meth = as_CallJava()->method();
 854       if (meth->is_getter()) {
 855         return false;
 856       }
 857       // May modify (by reflection) if an boxing object is passed
 858       // as argument or returned.
 859       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 860       if (proj != nullptr) {
 861         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 862         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 863                                    (inst_t->instance_klass() == boxing_klass))) {
 864           return true;
 865         }
 866       }
 867       const TypeTuple* d = tf()->domain_cc();
 868       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 869         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 870         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 871                                  (inst_t->instance_klass() == boxing_klass))) {
 872           return true;
 873         }
 874       }
 875       return false;
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 // Does this call have a direct reference to n other than debug information?
 882 bool CallNode::has_non_debug_use(Node* n) {
 883   const TypeTuple* d = tf()->domain_cc();
 884   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 885     if (in(i) == n) {

 886       return true;
 887     }
 888   }
 889   return false;
 890 }
 891 
 892 bool CallNode::has_debug_use(Node* n) {
 893   if (jvms() != nullptr) {
 894     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 895       if (in(i) == n) {
 896         return true;
 897       }
 898     }
 899   }
 900   return false;
 901 }
 902 
 903 // Returns the unique CheckCastPP of a call
 904 // or 'this' if there are several CheckCastPP or unexpected uses
 905 // or returns null if there is no one.
 906 Node *CallNode::result_cast() {
 907   Node *cast = nullptr;
 908 
 909   Node *p = proj_out_or_null(TypeFunc::Parms);
 910   if (p == nullptr)
 911     return nullptr;
 912 
 913   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 914     Node *use = p->fast_out(i);
 915     if (use->is_CheckCastPP()) {
 916       if (cast != nullptr) {
 917         return this;  // more than 1 CheckCastPP
 918       }
 919       cast = use;
 920     } else if (!use->is_Initialize() &&
 921                !use->is_AddP() &&
 922                use->Opcode() != Op_MemBarStoreStore) {
 923       // Expected uses are restricted to a CheckCastPP, an Initialize
 924       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 925       // encounter any other use (a Phi node can be seen in rare
 926       // cases) return this to prevent incorrect optimizations.
 927       return this;
 928     }
 929   }
 930   return cast;
 931 }
 932 
 933 
 934 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) {
 935   uint max_res = TypeFunc::Parms-1;
 936   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 937     ProjNode *pn = fast_out(i)->as_Proj();
 938     max_res = MAX2(max_res, pn->_con);
 939   }
 940 
 941   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 942 
 943   uint projs_size = sizeof(CallProjections);
 944   if (max_res > TypeFunc::Parms) {
 945     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 946   }
 947   char* projs_storage = resource_allocate_bytes(projs_size);
 948   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 949 
 950   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 951     ProjNode *pn = fast_out(i)->as_Proj();
 952     if (pn->outcnt() == 0) continue;
 953     switch (pn->_con) {
 954     case TypeFunc::Control:
 955       {
 956         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 957         projs->fallthrough_proj = pn;
 958         const Node* cn = pn->unique_ctrl_out_or_null();
 959         if (cn != nullptr && cn->is_Catch()) {
 960           ProjNode *cpn = nullptr;
 961           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 962             cpn = cn->fast_out(k)->as_Proj();
 963             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 964             if (cpn->_con == CatchProjNode::fall_through_index)
 965               projs->fallthrough_catchproj = cpn;
 966             else {
 967               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 968               projs->catchall_catchproj = cpn;
 969             }
 970           }
 971         }
 972         break;
 973       }
 974     case TypeFunc::I_O:
 975       if (pn->_is_io_use)
 976         projs->catchall_ioproj = pn;
 977       else
 978         projs->fallthrough_ioproj = pn;
 979       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 980         Node* e = pn->out(j);
 981         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 982           assert(projs->exobj == nullptr, "only one");
 983           projs->exobj = e;
 984         }
 985       }
 986       break;
 987     case TypeFunc::Memory:
 988       if (pn->_is_io_use)
 989         projs->catchall_memproj = pn;
 990       else
 991         projs->fallthrough_memproj = pn;
 992       break;
 993     case TypeFunc::Parms:
 994       projs->resproj[0] = pn;
 995       break;
 996     default:
 997       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
 998       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
 999       break;
1000     }
1001   }
1002 
1003   // The resproj may not exist because the result could be ignored
1004   // and the exception object may not exist if an exception handler
1005   // swallows the exception but all the other must exist and be found.

1006   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1007   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1008   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1009   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1010   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1011   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1012   if (separate_io_proj) {
1013     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1014     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1015   }
1016   return projs;
1017 }
1018 
1019 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1020 #ifdef ASSERT
1021   // Validate attached generator
1022   CallGenerator* cg = generator();
1023   if (cg != nullptr) {
1024     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1025            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1026   }
1027 #endif // ASSERT
1028   return SafePointNode::Ideal(phase, can_reshape);
1029 }
1030 
1031 bool CallNode::is_call_to_arraycopystub() const {
1032   if (_name != nullptr && strstr(_name, "arraycopy") != 0) {
1033     return true;
1034   }
1035   return false;
1036 }
1037 
1038 //=============================================================================
1039 uint CallJavaNode::size_of() const { return sizeof(*this); }
1040 bool CallJavaNode::cmp( const Node &n ) const {
1041   CallJavaNode &call = (CallJavaNode&)n;
1042   return CallNode::cmp(call) && _method == call._method &&
1043          _override_symbolic_info == call._override_symbolic_info;
1044 }
1045 
1046 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1047   // Copy debug information and adjust JVMState information
1048   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1049   uint new_dbg_start = tf()->domain_sig()->cnt();
1050   int jvms_adj  = new_dbg_start - old_dbg_start;
1051   assert (new_dbg_start == req(), "argument count mismatch");
1052   Compile* C = phase->C;
1053 
1054   // SafePointScalarObject node could be referenced several times in debug info.
1055   // Use Dict to record cloned nodes.
1056   Dict* sosn_map = new Dict(cmpkey,hashkey);
1057   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1058     Node* old_in = sfpt->in(i);
1059     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1060     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1061       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1062       bool new_node;
1063       Node* new_in = old_sosn->clone(sosn_map, new_node);
1064       if (new_node) { // New node?
1065         new_in->set_req(0, C->root()); // reset control edge
1066         new_in = phase->transform(new_in); // Register new node.
1067       }
1068       old_in = new_in;
1069     }
1070     add_req(old_in);
1071   }
1072 
1073   // JVMS may be shared so clone it before we modify it
1074   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1075   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1076     jvms->set_map(this);
1077     jvms->set_locoff(jvms->locoff()+jvms_adj);
1078     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1079     jvms->set_monoff(jvms->monoff()+jvms_adj);
1080     jvms->set_scloff(jvms->scloff()+jvms_adj);
1081     jvms->set_endoff(jvms->endoff()+jvms_adj);
1082   }
1083 }
1084 
1085 #ifdef ASSERT
1086 bool CallJavaNode::validate_symbolic_info() const {
1087   if (method() == nullptr) {
1088     return true; // call into runtime or uncommon trap
1089   }
1090   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1091   if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1092     return true;
1093   }
1094   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1095   ciMethod* callee = method();
1096   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1097     assert(override_symbolic_info(), "should be set");
1098   }
1099   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1100   return true;
1101 }
1102 #endif
1103 
1104 #ifndef PRODUCT
1105 void CallJavaNode::dump_spec(outputStream* st) const {
1106   if( _method ) _method->print_short_name(st);
1107   CallNode::dump_spec(st);
1108 }
1109 
1110 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1111   if (_method) {
1112     _method->print_short_name(st);
1113   } else {
1114     st->print("<?>");
1115   }
1116 }
1117 #endif
1118 
1119 //=============================================================================
1120 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1121 bool CallStaticJavaNode::cmp( const Node &n ) const {
1122   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1123   return CallJavaNode::cmp(call);
1124 }
1125 
1126 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1127   if (can_reshape && uncommon_trap_request() != 0) {
1128     PhaseIterGVN* igvn = phase->is_IterGVN();
1129     if (remove_unknown_flat_array_load(igvn, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) {
1130       if (!in(0)->is_Region()) {
1131         igvn->replace_input_of(this, 0, phase->C->top());
1132       }
1133       return this;
1134     }
1135   }
1136 
1137   CallGenerator* cg = generator();
1138   if (can_reshape && cg != nullptr) {
1139     assert(IncrementalInlineMH, "required");
1140     assert(cg->call_node() == this, "mismatch");
1141     assert(cg->is_mh_late_inline(), "not virtual");
1142 
1143     // Check whether this MH handle call becomes a candidate for inlining.
1144     ciMethod* callee = cg->method();
1145     vmIntrinsics::ID iid = callee->intrinsic_id();
1146     if (iid == vmIntrinsics::_invokeBasic) {
1147       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1148         phase->C->prepend_late_inline(cg);
1149         set_generator(nullptr);
1150       }
1151     } else if (iid == vmIntrinsics::_linkToNative) {
1152       // never retry
1153     } else {
1154       assert(callee->has_member_arg(), "wrong type of call?");
1155       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1156         phase->C->prepend_late_inline(cg);
1157         set_generator(nullptr);
1158       }
1159     }
1160   }
1161   return CallNode::Ideal(phase, can_reshape);
1162 }
1163 
1164 //----------------------------is_uncommon_trap----------------------------
1165 // Returns true if this is an uncommon trap.
1166 bool CallStaticJavaNode::is_uncommon_trap() const {
1167   return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1168 }
1169 
1170 //----------------------------uncommon_trap_request----------------------------
1171 // If this is an uncommon trap, return the request code, else zero.
1172 int CallStaticJavaNode::uncommon_trap_request() const {
1173   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1174 }
1175 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1176 #ifndef PRODUCT
1177   if (!(call->req() > TypeFunc::Parms &&
1178         call->in(TypeFunc::Parms) != nullptr &&
1179         call->in(TypeFunc::Parms)->is_Con() &&
1180         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1181     assert(in_dump() != 0, "OK if dumping");
1182     tty->print("[bad uncommon trap]");
1183     return 0;
1184   }
1185 #endif
1186   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1187 }
1188 
1189 // Split if can cause the flat array branch of an array load with unknown type (see
1190 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1191 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1192 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1193   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1194     return false;
1195   }
1196   if (ctl->is_Region()) {
1197     bool res = false;
1198     for (uint i = 1; i < ctl->req(); i++) {
1199       MergeMemNode* mm = mem->clone()->as_MergeMem();
1200       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1201         Node* m = mms.memory();
1202         if (m->is_Phi() && m->in(0) == ctl) {
1203           mms.set_memory(m->in(i));
1204         }
1205       }
1206       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1207         res = true;
1208         if (!ctl->in(i)->is_Region()) {
1209           igvn->replace_input_of(ctl, i, igvn->C->top());
1210         }
1211       }
1212       igvn->remove_dead_node(mm);
1213     }
1214     return res;
1215   }
1216   // Verify the control flow is ok
1217   Node* call = ctl;
1218   MemBarNode* membar = nullptr;
1219   for (;;) {
1220     if (call == nullptr || call->is_top()) {
1221       return false;
1222     }
1223     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1224       call = call->in(0);
1225     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1226                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1227       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1228       membar = call->in(0)->in(0)->as_MemBar();
1229       break;
1230     } else {
1231       return false;
1232     }
1233   }
1234 
1235   JVMState* jvms = call->jvms();
1236   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1237     return false;
1238   }
1239 
1240   Node* call_mem = call->in(TypeFunc::Memory);
1241   if (call_mem == nullptr || call_mem->is_top()) {
1242     return false;
1243   }
1244   if (!call_mem->is_MergeMem()) {
1245     call_mem = MergeMemNode::make(call_mem);
1246     igvn->register_new_node_with_optimizer(call_mem);
1247   }
1248 
1249   // Verify that there's no unexpected side effect
1250   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1251     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1252     Node* m2 = mms2.memory2();
1253 
1254     for (uint i = 0; i < 100; i++) {
1255       if (m1 == m2) {
1256         break;
1257       } else if (m1->is_Proj()) {
1258         m1 = m1->in(0);
1259       } else if (m1->is_MemBar()) {
1260         m1 = m1->in(TypeFunc::Memory);
1261       } else if (m1->Opcode() == Op_CallStaticJava &&
1262                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1263         if (m1 != call) {
1264           return false;
1265         }
1266         break;
1267       } else if (m1->is_MergeMem()) {
1268         MergeMemNode* mm = m1->as_MergeMem();
1269         int idx = mms2.alias_idx();
1270         if (idx == Compile::AliasIdxBot) {
1271           m1 = mm->base_memory();
1272         } else {
1273           m1 = mm->memory_at(idx);
1274         }
1275       } else {
1276         return false;
1277       }
1278     }
1279   }
1280   if (call_mem->outcnt() == 0) {
1281     igvn->remove_dead_node(call_mem);
1282   }
1283 
1284   // Remove membar preceding the call
1285   membar->remove(igvn);
1286 
1287   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
1288   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1289   unc->init_req(TypeFunc::Control, call->in(0));
1290   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1291   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1292   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1293   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1294   unc->init_req(TypeFunc::Parms+0, unc_arg);
1295   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1296   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1297 
1298   // Replace the call with an uncommon trap
1299   igvn->replace_input_of(call, 0, igvn->C->top());
1300 
1301   igvn->register_new_node_with_optimizer(unc);
1302 
1303   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1304   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1305   igvn->add_input_to(igvn->C->root(), halt);
1306 
1307   return true;
1308 }
1309 
1310 
1311 #ifndef PRODUCT
1312 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1313   st->print("# Static ");
1314   if (_name != nullptr) {
1315     st->print("%s", _name);
1316     int trap_req = uncommon_trap_request();
1317     if (trap_req != 0) {
1318       char buf[100];
1319       st->print("(%s)",
1320                  Deoptimization::format_trap_request(buf, sizeof(buf),
1321                                                      trap_req));
1322     }
1323     st->print(" ");
1324   }
1325   CallJavaNode::dump_spec(st);
1326 }
1327 
1328 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1329   if (_method) {
1330     _method->print_short_name(st);
1331   } else if (_name) {
1332     st->print("%s", _name);
1333   } else {
1334     st->print("<?>");
1335   }
1336 }
1337 #endif
1338 
1339 //=============================================================================
1340 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1341 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1342   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1343   return CallJavaNode::cmp(call);
1344 }
1345 
1346 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1347   CallGenerator* cg = generator();
1348   if (can_reshape && cg != nullptr) {
1349     assert(IncrementalInlineVirtual, "required");
1350     assert(cg->call_node() == this, "mismatch");
1351     assert(cg->is_virtual_late_inline(), "not virtual");
1352 
1353     // Recover symbolic info for method resolution.
1354     ciMethod* caller = jvms()->method();
1355     ciBytecodeStream iter(caller);
1356     iter.force_bci(jvms()->bci());
1357 
1358     bool             not_used1;
1359     ciSignature*     not_used2;
1360     ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1361     ciKlass*         holder       = iter.get_declared_method_holder();
1362     if (orig_callee->is_method_handle_intrinsic()) {
1363       assert(_override_symbolic_info, "required");
1364       orig_callee = method();
1365       holder = method()->holder();
1366     }
1367 
1368     ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1369 
1370     Node* receiver_node = in(TypeFunc::Parms);
1371     const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1372 
1373     int  not_used3;
1374     bool call_does_dispatch;
1375     ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1376                                                        call_does_dispatch, not_used3);  // out-parameters
1377     if (!call_does_dispatch) {
1378       // Register for late inlining.
1379       cg->set_callee_method(callee);
1380       phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same
1381       set_generator(nullptr);
1382     }
1383   }
1384   return CallNode::Ideal(phase, can_reshape);
1385 }
1386 
1387 #ifndef PRODUCT
1388 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1389   st->print("# Dynamic ");
1390   CallJavaNode::dump_spec(st);
1391 }
1392 #endif
1393 
1394 //=============================================================================
1395 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1396 bool CallRuntimeNode::cmp( const Node &n ) const {
1397   CallRuntimeNode &call = (CallRuntimeNode&)n;
1398   return CallNode::cmp(call) && !strcmp(_name,call._name);
1399 }
1400 #ifndef PRODUCT
1401 void CallRuntimeNode::dump_spec(outputStream *st) const {
1402   st->print("# ");
1403   st->print("%s", _name);
1404   CallNode::dump_spec(st);
1405 }
1406 #endif
1407 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1408 bool CallLeafVectorNode::cmp( const Node &n ) const {
1409   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1410   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1411 }
1412 
1413 //------------------------------calling_convention-----------------------------
1414 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1415   if (_entry_point == nullptr) {
1416     // The call to that stub is a special case: its inputs are
1417     // multiple values returned from a call and so it should follow
1418     // the return convention.
1419     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1420     return;
1421   }
1422   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1423 }
1424 
1425 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1426 #ifdef ASSERT
1427   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1428          "return vector size must match");
1429   const TypeTuple* d = tf()->domain_sig();
1430   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1431     Node* arg = in(i);
1432     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1433            "vector argument size must match");
1434   }
1435 #endif
1436 
1437   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1438 }
1439 
1440 //=============================================================================
1441 //------------------------------calling_convention-----------------------------
1442 
1443 
1444 //=============================================================================
1445 #ifndef PRODUCT
1446 void CallLeafNode::dump_spec(outputStream *st) const {
1447   st->print("# ");
1448   st->print("%s", _name);
1449   CallNode::dump_spec(st);
1450 }
1451 #endif
1452 
1453 uint CallLeafNoFPNode::match_edge(uint idx) const {
1454   // Null entry point is a special case for which the target is in a
1455   // register. Need to match that edge.
1456   return entry_point() == nullptr && idx == TypeFunc::Parms;
1457 }
1458 
1459 //=============================================================================
1460 
1461 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1462   assert(verify_jvms(jvms), "jvms must match");
1463   int loc = jvms->locoff() + idx;
1464   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1465     // If current local idx is top then local idx - 1 could
1466     // be a long/double that needs to be killed since top could
1467     // represent the 2nd half of the long/double.
1468     uint ideal = in(loc -1)->ideal_reg();
1469     if (ideal == Op_RegD || ideal == Op_RegL) {
1470       // set other (low index) half to top
1471       set_req(loc - 1, in(loc));
1472     }
1473   }
1474   set_req(loc, c);
1475 }
1476 
1477 uint SafePointNode::size_of() const { return sizeof(*this); }
1478 bool SafePointNode::cmp( const Node &n ) const {
1479   return (&n == this);          // Always fail except on self
1480 }
1481 
1482 //-------------------------set_next_exception----------------------------------
1483 void SafePointNode::set_next_exception(SafePointNode* n) {
1484   assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1485   if (len() == req()) {
1486     if (n != nullptr)  add_prec(n);
1487   } else {
1488     set_prec(req(), n);
1489   }
1490 }
1491 
1492 
1493 //----------------------------next_exception-----------------------------------
1494 SafePointNode* SafePointNode::next_exception() const {
1495   if (len() == req()) {
1496     return nullptr;
1497   } else {
1498     Node* n = in(req());
1499     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1500     return (SafePointNode*) n;
1501   }
1502 }
1503 
1504 
1505 //------------------------------Ideal------------------------------------------
1506 // Skip over any collapsed Regions
1507 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1508   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1509   if (remove_dead_region(phase, can_reshape)) {
1510     return this;
1511   }
1512   // Scalarize inline types in safepoint debug info.
1513   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1514   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1515     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1516       Node* n = in(i)->uncast();
1517       if (n->is_InlineType()) {
1518         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1519       }
1520     }
1521   }
1522   return nullptr;
1523 }
1524 
1525 //------------------------------Identity---------------------------------------
1526 // Remove obviously duplicate safepoints
1527 Node* SafePointNode::Identity(PhaseGVN* phase) {
1528 
1529   // If you have back to back safepoints, remove one
1530   if (in(TypeFunc::Control)->is_SafePoint()) {
1531     Node* out_c = unique_ctrl_out_or_null();
1532     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1533     // outer loop's safepoint could confuse removal of the outer loop.
1534     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1535       return in(TypeFunc::Control);
1536     }
1537   }
1538 
1539   // Transforming long counted loops requires a safepoint node. Do not
1540   // eliminate a safepoint until loop opts are over.
1541   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1542     Node *n0 = in(0)->in(0);
1543     // Check if he is a call projection (except Leaf Call)
1544     if( n0->is_Catch() ) {
1545       n0 = n0->in(0)->in(0);
1546       assert( n0->is_Call(), "expect a call here" );
1547     }
1548     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1549       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1550       // If the loop dies, they will be removed together.
1551       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1552         return this;
1553       }
1554       // Useless Safepoint, so remove it
1555       return in(TypeFunc::Control);
1556     }
1557   }
1558 
1559   return this;
1560 }
1561 
1562 //------------------------------Value------------------------------------------
1563 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1564   if (phase->type(in(0)) == Type::TOP) {
1565     return Type::TOP;
1566   }
1567   if (in(0) == this) {
1568     return Type::TOP; // Dead infinite loop
1569   }
1570   return Type::CONTROL;
1571 }
1572 
1573 #ifndef PRODUCT
1574 void SafePointNode::dump_spec(outputStream *st) const {
1575   st->print(" SafePoint ");
1576   _replaced_nodes.dump(st);
1577 }
1578 #endif
1579 
1580 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1581   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1582   // Values outside the domain represent debug info
1583   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1584 }
1585 const RegMask &SafePointNode::out_RegMask() const {
1586   return RegMask::Empty;
1587 }
1588 
1589 
1590 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1591   assert((int)grow_by > 0, "sanity");
1592   int monoff = jvms->monoff();
1593   int scloff = jvms->scloff();
1594   int endoff = jvms->endoff();
1595   assert(endoff == (int)req(), "no other states or debug info after me");
1596   Node* top = Compile::current()->top();
1597   for (uint i = 0; i < grow_by; i++) {
1598     ins_req(monoff, top);
1599   }
1600   jvms->set_monoff(monoff + grow_by);
1601   jvms->set_scloff(scloff + grow_by);
1602   jvms->set_endoff(endoff + grow_by);
1603 }
1604 
1605 void SafePointNode::push_monitor(const FastLockNode *lock) {
1606   // Add a LockNode, which points to both the original BoxLockNode (the
1607   // stack space for the monitor) and the Object being locked.
1608   const int MonitorEdges = 2;
1609   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1610   assert(req() == jvms()->endoff(), "correct sizing");
1611   int nextmon = jvms()->scloff();
1612   if (GenerateSynchronizationCode) {
1613     ins_req(nextmon,   lock->box_node());
1614     ins_req(nextmon+1, lock->obj_node());
1615   } else {
1616     Node* top = Compile::current()->top();
1617     ins_req(nextmon, top);
1618     ins_req(nextmon, top);
1619   }
1620   jvms()->set_scloff(nextmon + MonitorEdges);
1621   jvms()->set_endoff(req());
1622 }
1623 
1624 void SafePointNode::pop_monitor() {
1625   // Delete last monitor from debug info
1626   debug_only(int num_before_pop = jvms()->nof_monitors());
1627   const int MonitorEdges = 2;
1628   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1629   int scloff = jvms()->scloff();
1630   int endoff = jvms()->endoff();
1631   int new_scloff = scloff - MonitorEdges;
1632   int new_endoff = endoff - MonitorEdges;
1633   jvms()->set_scloff(new_scloff);
1634   jvms()->set_endoff(new_endoff);
1635   while (scloff > new_scloff)  del_req_ordered(--scloff);
1636   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1637 }
1638 
1639 Node *SafePointNode::peek_monitor_box() const {
1640   int mon = jvms()->nof_monitors() - 1;
1641   assert(mon >= 0, "must have a monitor");
1642   return monitor_box(jvms(), mon);
1643 }
1644 
1645 Node *SafePointNode::peek_monitor_obj() const {
1646   int mon = jvms()->nof_monitors() - 1;
1647   assert(mon >= 0, "must have a monitor");
1648   return monitor_obj(jvms(), mon);
1649 }
1650 
1651 Node* SafePointNode::peek_operand(uint off) const {
1652   assert(jvms()->sp() > 0, "must have an operand");
1653   assert(off < jvms()->sp(), "off is out-of-range");
1654   return stack(jvms(), jvms()->sp() - off - 1);
1655 }
1656 
1657 // Do we Match on this edge index or not?  Match no edges
1658 uint SafePointNode::match_edge(uint idx) const {
1659   return (TypeFunc::Parms == idx);
1660 }
1661 
1662 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1663   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1664   int nb = igvn->C->root()->find_prec_edge(this);
1665   if (nb != -1) {
1666     igvn->delete_precedence_of(igvn->C->root(), nb);
1667   }
1668 }
1669 
1670 //==============  SafePointScalarObjectNode  ==============
1671 
1672 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1673   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1674   _first_index(first_index),
1675   _depth(depth),
1676   _n_fields(n_fields),
1677   _alloc(alloc)
1678 {
1679 #ifdef ASSERT
1680   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1681     alloc->dump();
1682     assert(false, "unexpected call node");
1683   }
1684 #endif
1685   init_class_id(Class_SafePointScalarObject);
1686 }
1687 
1688 // Do not allow value-numbering for SafePointScalarObject node.
1689 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1690 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1691   return (&n == this); // Always fail except on self
1692 }
1693 
1694 uint SafePointScalarObjectNode::ideal_reg() const {
1695   return 0; // No matching to machine instruction
1696 }
1697 
1698 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1699   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1700 }
1701 
1702 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1703   return RegMask::Empty;
1704 }
1705 
1706 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1707   return 0;
1708 }
1709 
1710 SafePointScalarObjectNode*
1711 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1712   void* cached = (*sosn_map)[(void*)this];
1713   if (cached != nullptr) {
1714     new_node = false;
1715     return (SafePointScalarObjectNode*)cached;
1716   }
1717   new_node = true;
1718   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1719   sosn_map->Insert((void*)this, (void*)res);
1720   return res;
1721 }
1722 
1723 
1724 #ifndef PRODUCT
1725 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1726   st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1727 }
1728 #endif
1729 
1730 //==============  SafePointScalarMergeNode  ==============
1731 
1732 SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1733   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1734   _merge_pointer_idx(merge_pointer_idx)
1735 {
1736   init_class_id(Class_SafePointScalarMerge);
1737 }
1738 
1739 // Do not allow value-numbering for SafePointScalarMerge node.
1740 uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1741 bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1742   return (&n == this); // Always fail except on self
1743 }
1744 
1745 uint SafePointScalarMergeNode::ideal_reg() const {
1746   return 0; // No matching to machine instruction
1747 }
1748 
1749 const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1750   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1751 }
1752 
1753 const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1754   return RegMask::Empty;
1755 }
1756 
1757 uint SafePointScalarMergeNode::match_edge(uint idx) const {
1758   return 0;
1759 }
1760 
1761 SafePointScalarMergeNode*
1762 SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1763   void* cached = (*sosn_map)[(void*)this];
1764   if (cached != nullptr) {
1765     new_node = false;
1766     return (SafePointScalarMergeNode*)cached;
1767   }
1768   new_node = true;
1769   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1770   sosn_map->Insert((void*)this, (void*)res);
1771   return res;
1772 }
1773 
1774 #ifndef PRODUCT
1775 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1776   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1777 }
1778 #endif
1779 
1780 //=============================================================================
1781 uint AllocateNode::size_of() const { return sizeof(*this); }
1782 
1783 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1784                            Node *ctrl, Node *mem, Node *abio,
1785                            Node *size, Node *klass_node,
1786                            Node* initial_test,
1787                            InlineTypeNode* inline_type_node)
1788   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1789 {
1790   init_class_id(Class_Allocate);
1791   init_flags(Flag_is_macro);
1792   _is_scalar_replaceable = false;
1793   _is_non_escaping = false;
1794   _is_allocation_MemBar_redundant = false;
1795   _larval = false;
1796   Node *topnode = C->top();
1797 
1798   init_req( TypeFunc::Control  , ctrl );
1799   init_req( TypeFunc::I_O      , abio );
1800   init_req( TypeFunc::Memory   , mem );
1801   init_req( TypeFunc::ReturnAdr, topnode );
1802   init_req( TypeFunc::FramePtr , topnode );
1803   init_req( AllocSize          , size);
1804   init_req( KlassNode          , klass_node);
1805   init_req( InitialTest        , initial_test);
1806   init_req( ALength            , topnode);
1807   init_req( ValidLengthTest    , topnode);
1808   init_req( InlineType     , inline_type_node);
1809   // DefaultValue defaults to nullptr
1810   // RawDefaultValue defaults to nullptr
1811   C->add_macro_node(this);
1812 }
1813 
1814 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1815 {
1816   assert(initializer != nullptr &&
1817          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1818          "unexpected initializer method");

1819   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1820   if (analyzer == nullptr) {
1821     return;
1822   }
1823 
1824   // Allocation node is first parameter in its initializer
1825   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1826     _is_allocation_MemBar_redundant = true;
1827   }
1828 }
1829 
1830 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1831   Node* mark_node = nullptr;
1832   if (EnableValhalla) {
1833     Node* klass_node = in(AllocateNode::KlassNode);
1834     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1835     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1836   } else {
1837     mark_node = phase->MakeConX(markWord::prototype().value());
1838   }
1839   mark_node = phase->transform(mark_node);
1840   // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
1841   return new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
1842 }
1843 
1844 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1845 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1846 // a CastII is appropriate, return null.
1847 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1848   Node *length = in(AllocateNode::ALength);
1849   assert(length != nullptr, "length is not null");
1850 
1851   const TypeInt* length_type = phase->find_int_type(length);
1852   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1853 
1854   if (ary_type != nullptr && length_type != nullptr) {
1855     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1856     if (narrow_length_type != length_type) {
1857       // Assert one of:
1858       //   - the narrow_length is 0
1859       //   - the narrow_length is not wider than length
1860       assert(narrow_length_type == TypeInt::ZERO ||
1861              (length_type->is_con() && narrow_length_type->is_con() &&
1862               (narrow_length_type->_hi <= length_type->_lo)) ||
1863              (narrow_length_type->_hi <= length_type->_hi &&
1864               narrow_length_type->_lo >= length_type->_lo),
1865              "narrow type must be narrower than length type");
1866 
1867       // Return null if new nodes are not allowed
1868       if (!allow_new_nodes) {
1869         return nullptr;
1870       }
1871       // Create a cast which is control dependent on the initialization to
1872       // propagate the fact that the array length must be positive.
1873       InitializeNode* init = initialization();
1874       if (init != nullptr) {
1875         length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
1876       }
1877     }
1878   }
1879 
1880   return length;
1881 }
1882 
1883 //=============================================================================
1884 uint LockNode::size_of() const { return sizeof(*this); }
1885 
1886 // Redundant lock elimination
1887 //
1888 // There are various patterns of locking where we release and
1889 // immediately reacquire a lock in a piece of code where no operations
1890 // occur in between that would be observable.  In those cases we can
1891 // skip releasing and reacquiring the lock without violating any
1892 // fairness requirements.  Doing this around a loop could cause a lock
1893 // to be held for a very long time so we concentrate on non-looping
1894 // control flow.  We also require that the operations are fully
1895 // redundant meaning that we don't introduce new lock operations on
1896 // some paths so to be able to eliminate it on others ala PRE.  This
1897 // would probably require some more extensive graph manipulation to
1898 // guarantee that the memory edges were all handled correctly.
1899 //
1900 // Assuming p is a simple predicate which can't trap in any way and s
1901 // is a synchronized method consider this code:
1902 //
1903 //   s();
1904 //   if (p)
1905 //     s();
1906 //   else
1907 //     s();
1908 //   s();
1909 //
1910 // 1. The unlocks of the first call to s can be eliminated if the
1911 // locks inside the then and else branches are eliminated.
1912 //
1913 // 2. The unlocks of the then and else branches can be eliminated if
1914 // the lock of the final call to s is eliminated.
1915 //
1916 // Either of these cases subsumes the simple case of sequential control flow
1917 //
1918 // Additionally we can eliminate versions without the else case:
1919 //
1920 //   s();
1921 //   if (p)
1922 //     s();
1923 //   s();
1924 //
1925 // 3. In this case we eliminate the unlock of the first s, the lock
1926 // and unlock in the then case and the lock in the final s.
1927 //
1928 // Note also that in all these cases the then/else pieces don't have
1929 // to be trivial as long as they begin and end with synchronization
1930 // operations.
1931 //
1932 //   s();
1933 //   if (p)
1934 //     s();
1935 //     f();
1936 //     s();
1937 //   s();
1938 //
1939 // The code will work properly for this case, leaving in the unlock
1940 // before the call to f and the relock after it.
1941 //
1942 // A potentially interesting case which isn't handled here is when the
1943 // locking is partially redundant.
1944 //
1945 //   s();
1946 //   if (p)
1947 //     s();
1948 //
1949 // This could be eliminated putting unlocking on the else case and
1950 // eliminating the first unlock and the lock in the then side.
1951 // Alternatively the unlock could be moved out of the then side so it
1952 // was after the merge and the first unlock and second lock
1953 // eliminated.  This might require less manipulation of the memory
1954 // state to get correct.
1955 //
1956 // Additionally we might allow work between a unlock and lock before
1957 // giving up eliminating the locks.  The current code disallows any
1958 // conditional control flow between these operations.  A formulation
1959 // similar to partial redundancy elimination computing the
1960 // availability of unlocking and the anticipatability of locking at a
1961 // program point would allow detection of fully redundant locking with
1962 // some amount of work in between.  I'm not sure how often I really
1963 // think that would occur though.  Most of the cases I've seen
1964 // indicate it's likely non-trivial work would occur in between.
1965 // There may be other more complicated constructs where we could
1966 // eliminate locking but I haven't seen any others appear as hot or
1967 // interesting.
1968 //
1969 // Locking and unlocking have a canonical form in ideal that looks
1970 // roughly like this:
1971 //
1972 //              <obj>
1973 //                | \\------+
1974 //                |  \       \
1975 //                | BoxLock   \
1976 //                |  |   |     \
1977 //                |  |    \     \
1978 //                |  |   FastLock
1979 //                |  |   /
1980 //                |  |  /
1981 //                |  |  |
1982 //
1983 //               Lock
1984 //                |
1985 //            Proj #0
1986 //                |
1987 //            MembarAcquire
1988 //                |
1989 //            Proj #0
1990 //
1991 //            MembarRelease
1992 //                |
1993 //            Proj #0
1994 //                |
1995 //              Unlock
1996 //                |
1997 //            Proj #0
1998 //
1999 //
2000 // This code proceeds by processing Lock nodes during PhaseIterGVN
2001 // and searching back through its control for the proper code
2002 // patterns.  Once it finds a set of lock and unlock operations to
2003 // eliminate they are marked as eliminatable which causes the
2004 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
2005 //
2006 //=============================================================================
2007 
2008 //
2009 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
2010 //   - copy regions.  (These may not have been optimized away yet.)
2011 //   - eliminated locking nodes
2012 //
2013 static Node *next_control(Node *ctrl) {
2014   if (ctrl == nullptr)
2015     return nullptr;
2016   while (1) {
2017     if (ctrl->is_Region()) {
2018       RegionNode *r = ctrl->as_Region();
2019       Node *n = r->is_copy();
2020       if (n == nullptr)
2021         break;  // hit a region, return it
2022       else
2023         ctrl = n;
2024     } else if (ctrl->is_Proj()) {
2025       Node *in0 = ctrl->in(0);
2026       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
2027         ctrl = in0->in(0);
2028       } else {
2029         break;
2030       }
2031     } else {
2032       break; // found an interesting control
2033     }
2034   }
2035   return ctrl;
2036 }
2037 //
2038 // Given a control, see if it's the control projection of an Unlock which
2039 // operating on the same object as lock.
2040 //
2041 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
2042                                             GrowableArray<AbstractLockNode*> &lock_ops) {
2043   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
2044   if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
2045     Node *n = ctrl_proj->in(0);
2046     if (n != nullptr && n->is_Unlock()) {
2047       UnlockNode *unlock = n->as_Unlock();
2048       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2049       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2050       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2051       if (lock_obj->eqv_uncast(unlock_obj) &&
2052           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
2053           !unlock->is_eliminated()) {
2054         lock_ops.append(unlock);
2055         return true;
2056       }
2057     }
2058   }
2059   return false;
2060 }
2061 
2062 //
2063 // Find the lock matching an unlock.  Returns null if a safepoint
2064 // or complicated control is encountered first.
2065 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
2066   LockNode *lock_result = nullptr;
2067   // find the matching lock, or an intervening safepoint
2068   Node *ctrl = next_control(unlock->in(0));
2069   while (1) {
2070     assert(ctrl != nullptr, "invalid control graph");
2071     assert(!ctrl->is_Start(), "missing lock for unlock");
2072     if (ctrl->is_top()) break;  // dead control path
2073     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
2074     if (ctrl->is_SafePoint()) {
2075         break;  // found a safepoint (may be the lock we are searching for)
2076     } else if (ctrl->is_Region()) {
2077       // Check for a simple diamond pattern.  Punt on anything more complicated
2078       if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
2079         Node *in1 = next_control(ctrl->in(1));
2080         Node *in2 = next_control(ctrl->in(2));
2081         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
2082              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
2083           ctrl = next_control(in1->in(0)->in(0));
2084         } else {
2085           break;
2086         }
2087       } else {
2088         break;
2089       }
2090     } else {
2091       ctrl = next_control(ctrl->in(0));  // keep searching
2092     }
2093   }
2094   if (ctrl->is_Lock()) {
2095     LockNode *lock = ctrl->as_Lock();
2096     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2097     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2098     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
2099     if (lock_obj->eqv_uncast(unlock_obj) &&
2100         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
2101       lock_result = lock;
2102     }
2103   }
2104   return lock_result;
2105 }
2106 
2107 // This code corresponds to case 3 above.
2108 
2109 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
2110                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
2111   Node* if_node = node->in(0);
2112   bool  if_true = node->is_IfTrue();
2113 
2114   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
2115     Node *lock_ctrl = next_control(if_node->in(0));
2116     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
2117       Node* lock1_node = nullptr;
2118       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
2119       if (if_true) {
2120         if (proj->is_IfFalse() && proj->outcnt() == 1) {
2121           lock1_node = proj->unique_out();
2122         }
2123       } else {
2124         if (proj->is_IfTrue() && proj->outcnt() == 1) {
2125           lock1_node = proj->unique_out();
2126         }
2127       }
2128       if (lock1_node != nullptr && lock1_node->is_Lock()) {
2129         LockNode *lock1 = lock1_node->as_Lock();
2130         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2131         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
2132         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
2133         if (lock_obj->eqv_uncast(lock1_obj) &&
2134             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
2135             !lock1->is_eliminated()) {
2136           lock_ops.append(lock1);
2137           return true;
2138         }
2139       }
2140     }
2141   }
2142 
2143   lock_ops.trunc_to(0);
2144   return false;
2145 }
2146 
2147 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
2148                                GrowableArray<AbstractLockNode*> &lock_ops) {
2149   // check each control merging at this point for a matching unlock.
2150   // in(0) should be self edge so skip it.
2151   for (int i = 1; i < (int)region->req(); i++) {
2152     Node *in_node = next_control(region->in(i));
2153     if (in_node != nullptr) {
2154       if (find_matching_unlock(in_node, lock, lock_ops)) {
2155         // found a match so keep on checking.
2156         continue;
2157       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2158         continue;
2159       }
2160 
2161       // If we fall through to here then it was some kind of node we
2162       // don't understand or there wasn't a matching unlock, so give
2163       // up trying to merge locks.
2164       lock_ops.trunc_to(0);
2165       return false;
2166     }
2167   }
2168   return true;
2169 
2170 }
2171 
2172 // Check that all locks/unlocks associated with object come from balanced regions.
2173 bool AbstractLockNode::is_balanced() {
2174   Node* obj = obj_node();
2175   for (uint j = 0; j < obj->outcnt(); j++) {
2176     Node* n = obj->raw_out(j);
2177     if (n->is_AbstractLock() &&
2178         n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2179       BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
2180       if (n_box->is_unbalanced()) {
2181         return false;
2182       }
2183     }
2184   }
2185   return true;
2186 }
2187 
2188 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2189 
2190 const char * AbstractLockNode::kind_as_string() const {
2191   return _kind_names[_kind];
2192 }
2193 
2194 #ifndef PRODUCT
2195 //
2196 // Create a counter which counts the number of times this lock is acquired
2197 //
2198 void AbstractLockNode::create_lock_counter(JVMState* state) {
2199   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2200 }
2201 
2202 void AbstractLockNode::set_eliminated_lock_counter() {
2203   if (_counter) {
2204     // Update the counter to indicate that this lock was eliminated.
2205     // The counter update code will stay around even though the
2206     // optimizer will eliminate the lock operation itself.
2207     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2208   }
2209 }
2210 
2211 void AbstractLockNode::dump_spec(outputStream* st) const {
2212   st->print("%s ", _kind_names[_kind]);
2213   CallNode::dump_spec(st);
2214 }
2215 
2216 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2217   st->print("%s", _kind_names[_kind]);
2218 }
2219 #endif
2220 
2221 //=============================================================================
2222 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2223 
2224   // perform any generic optimizations first (returns 'this' or null)
2225   Node *result = SafePointNode::Ideal(phase, can_reshape);
2226   if (result != nullptr)  return result;
2227   // Don't bother trying to transform a dead node
2228   if (in(0) && in(0)->is_top())  return nullptr;
2229 
2230   // Now see if we can optimize away this lock.  We don't actually
2231   // remove the locking here, we simply set the _eliminate flag which
2232   // prevents macro expansion from expanding the lock.  Since we don't
2233   // modify the graph, the value returned from this function is the
2234   // one computed above.
2235   const Type* obj_type = phase->type(obj_node());
2236   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2237     //
2238     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2239     //
2240     ConnectionGraph *cgr = phase->C->congraph();
2241     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2242       assert(!is_eliminated() || is_coarsened(), "sanity");
2243       // The lock could be marked eliminated by lock coarsening
2244       // code during first IGVN before EA. Replace coarsened flag
2245       // to eliminate all associated locks/unlocks.
2246 #ifdef ASSERT
2247       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2248 #endif
2249       this->set_non_esc_obj();
2250       return result;
2251     }
2252 
2253     if (!phase->C->do_locks_coarsening()) {
2254       return result; // Compiling without locks coarsening
2255     }
2256     //
2257     // Try lock coarsening
2258     //
2259     PhaseIterGVN* iter = phase->is_IterGVN();
2260     if (iter != nullptr && !is_eliminated()) {
2261 
2262       GrowableArray<AbstractLockNode*>   lock_ops;
2263 
2264       Node *ctrl = next_control(in(0));
2265 
2266       // now search back for a matching Unlock
2267       if (find_matching_unlock(ctrl, this, lock_ops)) {
2268         // found an unlock directly preceding this lock.  This is the
2269         // case of single unlock directly control dependent on a
2270         // single lock which is the trivial version of case 1 or 2.
2271       } else if (ctrl->is_Region() ) {
2272         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2273         // found lock preceded by multiple unlocks along all paths
2274         // joining at this point which is case 3 in description above.
2275         }
2276       } else {
2277         // see if this lock comes from either half of an if and the
2278         // predecessors merges unlocks and the other half of the if
2279         // performs a lock.
2280         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2281           // found unlock splitting to an if with locks on both branches.
2282         }
2283       }
2284 
2285       if (lock_ops.length() > 0) {
2286         // add ourselves to the list of locks to be eliminated.
2287         lock_ops.append(this);
2288 
2289   #ifndef PRODUCT
2290         if (PrintEliminateLocks) {
2291           int locks = 0;
2292           int unlocks = 0;
2293           if (Verbose) {
2294             tty->print_cr("=== Locks coarsening ===");
2295             tty->print("Obj: ");
2296             obj_node()->dump();
2297           }
2298           for (int i = 0; i < lock_ops.length(); i++) {
2299             AbstractLockNode* lock = lock_ops.at(i);
2300             if (lock->Opcode() == Op_Lock)
2301               locks++;
2302             else
2303               unlocks++;
2304             if (Verbose) {
2305               tty->print("Box %d: ", i);
2306               box_node()->dump();
2307               tty->print(" %d: ", i);
2308               lock->dump();
2309             }
2310           }
2311           tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2312         }
2313   #endif
2314 
2315         // for each of the identified locks, mark them
2316         // as eliminatable
2317         for (int i = 0; i < lock_ops.length(); i++) {
2318           AbstractLockNode* lock = lock_ops.at(i);
2319 
2320           // Mark it eliminated by coarsening and update any counters
2321 #ifdef ASSERT
2322           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2323 #endif
2324           lock->set_coarsened();
2325         }
2326         // Record this coarsened group.
2327         phase->C->add_coarsened_locks(lock_ops);
2328       } else if (ctrl->is_Region() &&
2329                  iter->_worklist.member(ctrl)) {
2330         // We weren't able to find any opportunities but the region this
2331         // lock is control dependent on hasn't been processed yet so put
2332         // this lock back on the worklist so we can check again once any
2333         // region simplification has occurred.
2334         iter->_worklist.push(this);
2335       }
2336     }
2337   }
2338 
2339   return result;
2340 }
2341 
2342 //=============================================================================
2343 bool LockNode::is_nested_lock_region() {
2344   return is_nested_lock_region(nullptr);
2345 }
2346 
2347 // p is used for access to compilation log; no logging if null
2348 bool LockNode::is_nested_lock_region(Compile * c) {
2349   BoxLockNode* box = box_node()->as_BoxLock();
2350   int stk_slot = box->stack_slot();
2351   if (stk_slot <= 0) {
2352 #ifdef ASSERT
2353     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2354 #endif
2355     return false; // External lock or it is not Box (Phi node).
2356   }
2357 
2358   // Ignore complex cases: merged locks or multiple locks.
2359   Node* obj = obj_node();
2360   LockNode* unique_lock = nullptr;
2361   Node* bad_lock = nullptr;
2362   if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2363 #ifdef ASSERT
2364     this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2365 #endif
2366     return false;
2367   }
2368   if (unique_lock != this) {
2369 #ifdef ASSERT
2370     this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2371     if (PrintEliminateLocks && Verbose) {
2372       tty->print_cr("=============== unique_lock != this ============");
2373       tty->print(" this: ");
2374       this->dump();
2375       tty->print(" box: ");
2376       box->dump();
2377       tty->print(" obj: ");
2378       obj->dump();
2379       if (unique_lock != nullptr) {
2380         tty->print(" unique_lock: ");
2381         unique_lock->dump();
2382       }
2383       if (bad_lock != nullptr) {
2384         tty->print(" bad_lock: ");
2385         bad_lock->dump();
2386       }
2387       tty->print_cr("===============");
2388     }
2389 #endif
2390     return false;
2391   }
2392 
2393   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2394   obj = bs->step_over_gc_barrier(obj);
2395   // Look for external lock for the same object.
2396   SafePointNode* sfn = this->as_SafePoint();
2397   JVMState* youngest_jvms = sfn->jvms();
2398   int max_depth = youngest_jvms->depth();
2399   for (int depth = 1; depth <= max_depth; depth++) {
2400     JVMState* jvms = youngest_jvms->of_depth(depth);
2401     int num_mon  = jvms->nof_monitors();
2402     // Loop over monitors
2403     for (int idx = 0; idx < num_mon; idx++) {
2404       Node* obj_node = sfn->monitor_obj(jvms, idx);
2405       obj_node = bs->step_over_gc_barrier(obj_node);
2406       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2407       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2408         box->set_nested();
2409         return true;
2410       }
2411     }
2412   }
2413 #ifdef ASSERT
2414   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2415 #endif
2416   return false;
2417 }
2418 
2419 //=============================================================================
2420 uint UnlockNode::size_of() const { return sizeof(*this); }
2421 
2422 //=============================================================================
2423 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2424 
2425   // perform any generic optimizations first (returns 'this' or null)
2426   Node *result = SafePointNode::Ideal(phase, can_reshape);
2427   if (result != nullptr)  return result;
2428   // Don't bother trying to transform a dead node
2429   if (in(0) && in(0)->is_top())  return nullptr;
2430 
2431   // Now see if we can optimize away this unlock.  We don't actually
2432   // remove the unlocking here, we simply set the _eliminate flag which
2433   // prevents macro expansion from expanding the unlock.  Since we don't
2434   // modify the graph, the value returned from this function is the
2435   // one computed above.
2436   // Escape state is defined after Parse phase.
2437   const Type* obj_type = phase->type(obj_node());
2438   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2439     //
2440     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2441     //
2442     ConnectionGraph *cgr = phase->C->congraph();
2443     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2444       assert(!is_eliminated() || is_coarsened(), "sanity");
2445       // The lock could be marked eliminated by lock coarsening
2446       // code during first IGVN before EA. Replace coarsened flag
2447       // to eliminate all associated locks/unlocks.
2448 #ifdef ASSERT
2449       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2450 #endif
2451       this->set_non_esc_obj();
2452     }
2453   }
2454   return result;
2455 }
2456 
2457 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2458   if (C == nullptr) {
2459     return;
2460   }
2461   CompileLog* log = C->log();
2462   if (log != nullptr) {
2463     Node* box = box_node();
2464     Node* obj = obj_node();
2465     int box_id = box != nullptr ? box->_idx : -1;
2466     int obj_id = obj != nullptr ? obj->_idx : -1;
2467 
2468     log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2469           tag, C->compile_id(), this->_idx,
2470           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2471           kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2472     log->stamp();
2473     log->end_head();
2474     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2475     while (p != nullptr) {
2476       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2477       p = p->caller();
2478     }
2479     log->tail(tag);
2480   }
2481 }
2482 
2483 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2484   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2485     return dest_t->instance_id() == t_oop->instance_id();
2486   }
2487 
2488   if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2489     // clone
2490     if (t_oop->isa_aryptr()) {
2491       return false;
2492     }
2493     if (!t_oop->isa_instptr()) {
2494       return true;
2495     }
2496     if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2497       return true;
2498     }
2499     // unrelated
2500     return false;
2501   }
2502 
2503   if (dest_t->isa_aryptr()) {
2504     // arraycopy or array clone
2505     if (t_oop->isa_instptr()) {
2506       return false;
2507     }
2508     if (!t_oop->isa_aryptr()) {
2509       return true;
2510     }
2511 
2512     const Type* elem = dest_t->is_aryptr()->elem();
2513     if (elem == Type::BOTTOM) {
2514       // An array but we don't know what elements are
2515       return true;
2516     }
2517 
2518     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2519     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2520     uint dest_alias = phase->C->get_alias_index(dest_t);
2521     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2522 
2523     return dest_alias == t_oop_alias;
2524   }
2525 
2526   return true;
2527 }
--- EOF ---