< prev index next >

src/hotspot/share/opto/callnode.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"


  26 #include "code/vmreg.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/escape.hpp"

  37 #include "opto/locknode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"

  40 #include "opto/parse.hpp"
  41 #include "opto/regalloc.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"

  45 #include "runtime/sharedRuntime.hpp"

  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 // Portions of code courtesy of Clifford Click
  49 
  50 // Optimization - Graph Style
  51 
  52 //=============================================================================
  53 uint StartNode::size_of() const { return sizeof(*this); }
  54 bool StartNode::cmp( const Node &n ) const
  55 { return _domain == ((StartNode&)n)._domain; }
  56 const Type *StartNode::bottom_type() const { return _domain; }
  57 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  58 #ifndef PRODUCT
  59 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  60 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  61 #endif
  62 
  63 //------------------------------Ideal------------------------------------------
  64 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  65   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  66 }
  67 
  68 //------------------------------calling_convention-----------------------------
  69 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  70   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  71 }
  72 
  73 //------------------------------Registers--------------------------------------
  74 const RegMask &StartNode::in_RegMask(uint) const {
  75   return RegMask::EMPTY;
  76 }
  77 
  78 //------------------------------match------------------------------------------
  79 // Construct projections for incoming parameters, and their RegMask info
  80 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  81   switch (proj->_con) {
  82   case TypeFunc::Control:
  83   case TypeFunc::I_O:
  84   case TypeFunc::Memory:
  85     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  86   case TypeFunc::FramePtr:
  87     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  88   case TypeFunc::ReturnAdr:
  89     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  90   case TypeFunc::Parms:
  91   default: {
  92       uint parm_num = proj->_con - TypeFunc::Parms;
  93       const Type *t = _domain->field_at(proj->_con);
  94       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  95         return new ConNode(Type::TOP);
  96       uint ideal_reg = t->ideal_reg();
  97       RegMask &rm = match->_calling_convention_mask[parm_num];
  98       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  99     }
 100   }
 101   return nullptr;
 102 }
 103 
 104 //------------------------------StartOSRNode----------------------------------
 105 // The method start node for an on stack replacement adapter
 106 
 107 //------------------------------osr_domain-----------------------------
 108 const TypeTuple *StartOSRNode::osr_domain() {
 109   const Type **fields = TypeTuple::fields(2);
 110   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 111 
 112   return TypeTuple::make(TypeFunc::Parms+1, fields);
 113 }
 114 
 115 //=============================================================================
 116 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 117   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 118 };
 119 
 120 #ifndef PRODUCT
 121 void ParmNode::dump_spec(outputStream *st) const {
 122   if( _con < TypeFunc::Parms ) {
 123     st->print("%s", names[_con]);
 124   } else {
 125     st->print("Parm%d: ",_con-TypeFunc::Parms);
 126     // Verbose and WizardMode dump bottom_type for all nodes
 127     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 128   }
 129 }
 130 
 131 void ParmNode::dump_compact_spec(outputStream *st) const {
 132   if (_con < TypeFunc::Parms) {
 133     st->print("%s", names[_con]);
 134   } else {

 482       if (cik->is_instance_klass()) {
 483         cik->print_name_on(st);
 484         iklass = cik->as_instance_klass();
 485       } else if (cik->is_type_array_klass()) {
 486         cik->as_array_klass()->base_element_type()->print_name_on(st);
 487         st->print("[%d]", spobj->n_fields());
 488       } else if (cik->is_obj_array_klass()) {
 489         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 490         if (cie->is_instance_klass()) {
 491           cie->print_name_on(st);
 492         } else if (cie->is_type_array_klass()) {
 493           cie->as_array_klass()->base_element_type()->print_name_on(st);
 494         } else {
 495           ShouldNotReachHere();
 496         }
 497         st->print("[%d]", spobj->n_fields());
 498         int ndim = cik->as_array_klass()->dimension() - 1;
 499         while (ndim-- > 0) {
 500           st->print("[]");
 501         }


 502       }
 503       st->print("={");
 504       uint nf = spobj->n_fields();
 505       if (nf > 0) {
 506         uint first_ind = spobj->first_index(mcall->jvms());







 507         Node* fld_node = mcall->in(first_ind);
 508         ciField* cifield;
 509         if (iklass != nullptr) {
 510           st->print(" [");
 511           cifield = iklass->nonstatic_field_at(0);
 512           cifield->print_name_on(st);
 513           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 514         } else {
 515           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 516         }
 517         for (uint j = 1; j < nf; j++) {
 518           fld_node = mcall->in(first_ind+j);
 519           if (iklass != nullptr) {
 520             st->print(", [");
 521             cifield = iklass->nonstatic_field_at(j);
 522             cifield->print_name_on(st);
 523             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 524           } else {
 525             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 526           }
 527         }
 528       }
 529       st->print(" }");
 530     }
 531   }
 532   st->cr();
 533   if (caller() != nullptr) caller()->format(regalloc, n, st);
 534 }
 535 
 536 
 537 void JVMState::dump_spec(outputStream *st) const {
 538   if (_method != nullptr) {
 539     bool printed = false;
 540     if (!Verbose) {
 541       // The JVMS dumps make really, really long lines.
 542       // Take out the most boring parts, which are the package prefixes.

 737     tf()->dump_on(st);
 738   }
 739   if (_cnt != COUNT_UNKNOWN) {
 740     st->print(" C=%f", _cnt);
 741   }
 742   const Node* const klass_node = in(KlassNode);
 743   if (klass_node != nullptr) {
 744     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 745 
 746     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 747       st->print(" allocationKlass:");
 748       klass_ptr->exact_klass()->print_name_on(st);
 749     }
 750   }
 751   if (jvms() != nullptr) {
 752     jvms()->dump_spec(st);
 753   }
 754 }
 755 #endif
 756 
 757 const Type *CallNode::bottom_type() const { return tf()->range(); }
 758 const Type* CallNode::Value(PhaseGVN* phase) const {
 759   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 760     return Type::TOP;
 761   }
 762   return tf()->range();
 763 }
 764 
 765 //------------------------------calling_convention-----------------------------
 766 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







 767   // Use the standard compiler calling convention
 768   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 769 }
 770 
 771 
 772 //------------------------------match------------------------------------------
 773 // Construct projections for control, I/O, memory-fields, ..., and
 774 // return result(s) along with their RegMask info
 775 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 776   switch (proj->_con) {
 777   case TypeFunc::Control:
 778   case TypeFunc::I_O:
 779   case TypeFunc::Memory:
 780     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 781 
 782   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 783     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 784     // 2nd half of doubles and longs
 785     return new MachProjNode(this,proj->_con, RegMask::EMPTY, (uint)OptoReg::Bad);
 786 
 787   case TypeFunc::Parms: {       // Normal returns
 788     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 789     OptoRegPair regs = Opcode() == Op_CallLeafVector
 790       ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 791       : is_CallRuntime()
 792         ? match->c_return_value(ideal_reg)  // Calls into C runtime
 793         : match->  return_value(ideal_reg); // Calls into compiled Java code
 794     RegMask rm = RegMask(regs.first());
 795 
 796     if (Opcode() == Op_CallLeafVector) {
 797       // If the return is in vector, compute appropriate regmask taking into account the whole range
 798       if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 799         if(OptoReg::is_valid(regs.second())) {
 800           for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 801             rm.insert(r);
 802           }
 803         }









 804       }
 805     }
 806 
 807     if( OptoReg::is_valid(regs.second()) )
 808       rm.insert(regs.second());
 809     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 810   }
 811 






 812   case TypeFunc::ReturnAdr:
 813   case TypeFunc::FramePtr:
 814   default:
 815     ShouldNotReachHere();
 816   }
 817   return nullptr;
 818 }
 819 
 820 // Do we Match on this edge index or not?  Match no edges
 821 uint CallNode::match_edge(uint idx) const {
 822   return 0;
 823 }
 824 
 825 //
 826 // Determine whether the call could modify the field of the specified
 827 // instance at the specified offset.
 828 //
 829 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 830   assert((t_oop != nullptr), "sanity");
 831   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 832     const TypeTuple* args = _tf->domain();
 833     Node* dest = nullptr;
 834     // Stubs that can be called once an ArrayCopyNode is expanded have
 835     // different signatures. Look for the second pointer argument,
 836     // that is the destination of the copy.
 837     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 838       if (args->field_at(i)->isa_ptr()) {
 839         j++;
 840         if (j == 2) {
 841           dest = in(i);
 842           break;
 843         }
 844       }
 845     }
 846     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 847     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 848       return true;
 849     }
 850     return false;
 851   }
 852   if (t_oop->is_known_instance()) {

 861       Node* proj = proj_out_or_null(TypeFunc::Parms);
 862       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 863         return false;
 864       }
 865     }
 866     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 867       ciMethod* meth = as_CallJava()->method();
 868       if (meth->is_getter()) {
 869         return false;
 870       }
 871       // May modify (by reflection) if an boxing object is passed
 872       // as argument or returned.
 873       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 874       if (proj != nullptr) {
 875         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 876         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 877                                    (inst_t->instance_klass() == boxing_klass))) {
 878           return true;
 879         }
 880       }
 881       const TypeTuple* d = tf()->domain();
 882       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 883         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 884         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 885                                  (inst_t->instance_klass() == boxing_klass))) {
 886           return true;
 887         }
 888       }
 889       return false;
 890     }
 891   }
 892   return true;
 893 }
 894 
 895 // Does this call have a direct reference to n other than debug information?
 896 bool CallNode::has_non_debug_use(Node *n) {
 897   const TypeTuple * d = tf()->domain();
 898   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 899     Node *arg = in(i);
 900     if (arg == n) {
 901       return true;
 902     }
 903   }
 904   return false;
 905 }
 906 











 907 // Returns the unique CheckCastPP of a call
 908 // or 'this' if there are several CheckCastPP or unexpected uses
 909 // or returns null if there is no one.
 910 Node *CallNode::result_cast() {
 911   Node *cast = nullptr;
 912 
 913   Node *p = proj_out_or_null(TypeFunc::Parms);
 914   if (p == nullptr)
 915     return nullptr;
 916 
 917   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 918     Node *use = p->fast_out(i);
 919     if (use->is_CheckCastPP()) {
 920       if (cast != nullptr) {
 921         return this;  // more than 1 CheckCastPP
 922       }
 923       cast = use;
 924     } else if (!use->is_Initialize() &&
 925                !use->is_AddP() &&
 926                use->Opcode() != Op_MemBarStoreStore) {
 927       // Expected uses are restricted to a CheckCastPP, an Initialize
 928       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 929       // encounter any other use (a Phi node can be seen in rare
 930       // cases) return this to prevent incorrect optimizations.
 931       return this;
 932     }
 933   }
 934   return cast;
 935 }
 936 
 937 
 938 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) const {
 939   projs->fallthrough_proj      = nullptr;
 940   projs->fallthrough_catchproj = nullptr;
 941   projs->fallthrough_ioproj    = nullptr;
 942   projs->catchall_ioproj       = nullptr;
 943   projs->catchall_catchproj    = nullptr;
 944   projs->fallthrough_memproj   = nullptr;
 945   projs->catchall_memproj      = nullptr;
 946   projs->resproj               = nullptr;
 947   projs->exobj                 = nullptr;





 948 
 949   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 950     ProjNode *pn = fast_out(i)->as_Proj();
 951     if (pn->outcnt() == 0) continue;
 952     switch (pn->_con) {
 953     case TypeFunc::Control:
 954       {
 955         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 956         projs->fallthrough_proj = pn;
 957         const Node* cn = pn->unique_ctrl_out_or_null();
 958         if (cn != nullptr && cn->is_Catch()) {
 959           ProjNode *cpn = nullptr;
 960           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 961             cpn = cn->fast_out(k)->as_Proj();
 962             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 963             if (cpn->_con == CatchProjNode::fall_through_index)
 964               projs->fallthrough_catchproj = cpn;
 965             else {
 966               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 967               projs->catchall_catchproj = cpn;

 973     case TypeFunc::I_O:
 974       if (pn->_is_io_use)
 975         projs->catchall_ioproj = pn;
 976       else
 977         projs->fallthrough_ioproj = pn;
 978       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 979         Node* e = pn->out(j);
 980         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 981           assert(projs->exobj == nullptr, "only one");
 982           projs->exobj = e;
 983         }
 984       }
 985       break;
 986     case TypeFunc::Memory:
 987       if (pn->_is_io_use)
 988         projs->catchall_memproj = pn;
 989       else
 990         projs->fallthrough_memproj = pn;
 991       break;
 992     case TypeFunc::Parms:
 993       projs->resproj = pn;
 994       break;
 995     default:
 996       assert(false, "unexpected projection from allocation node.");


 997     }
 998   }
 999 
1000   // The resproj may not exist because the result could be ignored
1001   // and the exception object may not exist if an exception handler
1002   // swallows the exception but all the other must exist and be found.
1003   assert(projs->fallthrough_proj      != nullptr, "must be found");
1004   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();

1005   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1006   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1007   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1008   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1009   if (separate_io_proj) {
1010     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1011     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1012   }

1013 }
1014 
1015 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1016 #ifdef ASSERT
1017   // Validate attached generator
1018   CallGenerator* cg = generator();
1019   if (cg != nullptr) {
1020     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1021            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1022   }
1023 #endif // ASSERT
1024   return SafePointNode::Ideal(phase, can_reshape);
1025 }
1026 
1027 bool CallNode::is_call_to_arraycopystub() const {
1028   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1029     return true;
1030   }
1031   return false;
1032 }
1033 
1034 //=============================================================================
1035 uint CallJavaNode::size_of() const { return sizeof(*this); }
1036 bool CallJavaNode::cmp( const Node &n ) const {
1037   CallJavaNode &call = (CallJavaNode&)n;
1038   return CallNode::cmp(call) && _method == call._method &&
1039          _override_symbolic_info == call._override_symbolic_info;
1040 }
1041 
1042 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1043   // Copy debug information and adjust JVMState information
1044   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1045   uint new_dbg_start = tf()->domain()->cnt();
1046   int jvms_adj  = new_dbg_start - old_dbg_start;
1047   assert (new_dbg_start == req(), "argument count mismatch");
1048   Compile* C = phase->C;
1049 
1050   // SafePointScalarObject node could be referenced several times in debug info.
1051   // Use Dict to record cloned nodes.
1052   Dict* sosn_map = new Dict(cmpkey,hashkey);
1053   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1054     Node* old_in = sfpt->in(i);
1055     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1056     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1057       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1058       bool new_node;
1059       Node* new_in = old_sosn->clone(sosn_map, new_node);
1060       if (new_node) { // New node?
1061         new_in->set_req(0, C->root()); // reset control edge
1062         new_in = phase->transform(new_in); // Register new node.
1063       }
1064       old_in = new_in;
1065     }
1066     add_req(old_in);
1067   }
1068 
1069   // JVMS may be shared so clone it before we modify it
1070   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1071   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1072     jvms->set_map(this);
1073     jvms->set_locoff(jvms->locoff()+jvms_adj);
1074     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1075     jvms->set_monoff(jvms->monoff()+jvms_adj);
1076     jvms->set_scloff(jvms->scloff()+jvms_adj);
1077     jvms->set_endoff(jvms->endoff()+jvms_adj);
1078   }
1079 }
1080 
1081 #ifdef ASSERT
1082 bool CallJavaNode::validate_symbolic_info() const {
1083   if (method() == nullptr) {
1084     return true; // call into runtime or uncommon trap
1085   }




1086   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1087   ciMethod* callee = method();
1088   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1089     assert(override_symbolic_info(), "should be set");
1090   }
1091   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1092   return true;
1093 }
1094 #endif
1095 
1096 #ifndef PRODUCT
1097 void CallJavaNode::dump_spec(outputStream* st) const {
1098   if( _method ) _method->print_short_name(st);
1099   CallNode::dump_spec(st);
1100 }
1101 
1102 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1103   if (_method) {
1104     _method->print_short_name(st);
1105   } else {

1108 }
1109 #endif
1110 
1111 void CallJavaNode::register_for_late_inline() {
1112   if (generator() != nullptr) {
1113     Compile::current()->prepend_late_inline(generator());
1114     set_generator(nullptr);
1115   } else {
1116     assert(false, "repeated inline attempt");
1117   }
1118 }
1119 
1120 //=============================================================================
1121 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1122 bool CallStaticJavaNode::cmp( const Node &n ) const {
1123   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1124   return CallJavaNode::cmp(call);
1125 }
1126 
1127 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {

































































1128   CallGenerator* cg = generator();
1129   if (can_reshape && cg != nullptr) {
1130     if (cg->is_mh_late_inline()) {
1131       assert(IncrementalInlineMH, "required");
1132       assert(cg->call_node() == this, "mismatch");
1133       assert(cg->method()->is_method_handle_intrinsic(), "required");
1134 
1135       // Check whether this MH handle call becomes a candidate for inlining.
1136       ciMethod* callee = cg->method();
1137       vmIntrinsics::ID iid = callee->intrinsic_id();
1138       if (iid == vmIntrinsics::_invokeBasic) {
1139         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1140           register_for_late_inline();
1141         }
1142       } else if (iid == vmIntrinsics::_linkToNative) {
1143         // never retry
1144       } else {
1145         assert(callee->has_member_arg(), "wrong type of call?");
1146         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1147           register_for_late_inline();

1168 
1169 //----------------------------uncommon_trap_request----------------------------
1170 // If this is an uncommon trap, return the request code, else zero.
1171 int CallStaticJavaNode::uncommon_trap_request() const {
1172   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1173 }
1174 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1175 #ifndef PRODUCT
1176   if (!(call->req() > TypeFunc::Parms &&
1177         call->in(TypeFunc::Parms) != nullptr &&
1178         call->in(TypeFunc::Parms)->is_Con() &&
1179         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1180     assert(in_dump() != 0, "OK if dumping");
1181     tty->print("[bad uncommon trap]");
1182     return 0;
1183   }
1184 #endif
1185   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1186 }
1187 


























































































































1188 #ifndef PRODUCT
1189 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1190   st->print("# Static ");
1191   if (_name != nullptr) {
1192     st->print("%s", _name);
1193     int trap_req = uncommon_trap_request();
1194     if (trap_req != 0) {
1195       char buf[100];
1196       st->print("(%s)",
1197                  Deoptimization::format_trap_request(buf, sizeof(buf),
1198                                                      trap_req));
1199     }
1200     st->print(" ");
1201   }
1202   CallJavaNode::dump_spec(st);
1203 }
1204 
1205 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1206   if (_method) {
1207     _method->print_short_name(st);

1283 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1284 bool CallRuntimeNode::cmp( const Node &n ) const {
1285   CallRuntimeNode &call = (CallRuntimeNode&)n;
1286   return CallNode::cmp(call) && !strcmp(_name,call._name);
1287 }
1288 #ifndef PRODUCT
1289 void CallRuntimeNode::dump_spec(outputStream *st) const {
1290   st->print("# ");
1291   st->print("%s", _name);
1292   CallNode::dump_spec(st);
1293 }
1294 #endif
1295 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1296 bool CallLeafVectorNode::cmp( const Node &n ) const {
1297   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1298   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1299 }
1300 
1301 //------------------------------calling_convention-----------------------------
1302 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







1303   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1304 }
1305 
1306 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1307 #ifdef ASSERT
1308   assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1309          "return vector size must match");
1310   const TypeTuple* d = tf()->domain();
1311   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1312     Node* arg = in(i);
1313     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1314            "vector argument size must match");
1315   }
1316 #endif
1317 
1318   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1319 }
1320 
1321 //=============================================================================
1322 //------------------------------calling_convention-----------------------------
1323 
1324 
1325 //=============================================================================
1326 bool CallLeafPureNode::is_unused() const {
1327   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1328 }
1329 
1330 bool CallLeafPureNode::is_dead() const {
1331   return proj_out_or_null(TypeFunc::Control) == nullptr;
1332 }
1333 
1334 /* We make a tuple of the global input state + TOP for the output values.
1335  * We use this to delete a pure function that is not used: by replacing the call with
1336  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1337  * pure call, so jumping over it, and effectively, removing the call from the graph.
1338  * This avoids doing the graph surgery manually, but leaves that to IGVN
1339  * that is specialized for doing that right. We need also tuple components for output
1340  * values of the function to respect the return arity, and in case there is a projection
1341  * that would pick an output (which shouldn't happen at the moment).
1342  */
1343 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1344   // Transparently propagate input state but parameters
1345   TupleNode* tuple = TupleNode::make(
1346       tf()->range(),
1347       in(TypeFunc::Control),
1348       in(TypeFunc::I_O),
1349       in(TypeFunc::Memory),
1350       in(TypeFunc::FramePtr),
1351       in(TypeFunc::ReturnAdr));
1352 
1353   // And add TOPs for the return values
1354   for (uint i = TypeFunc::Parms; i < tf()->range()->cnt(); i++) {
1355     tuple->set_req(i, C->top());
1356   }
1357 
1358   return tuple;
1359 }
1360 
1361 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1362   if (is_dead()) {
1363     return nullptr;
1364   }
1365 
1366   // We need to wait until IGVN because during parsing, usages might still be missing
1367   // and we would remove the call immediately.
1368   if (can_reshape && is_unused()) {
1369     // The result is not used. We remove the call by replacing it with a tuple, that
1370     // is later disintegrated by the projections.
1371     return make_tuple_of_input_state_and_top_return_values(phase->C);
1372   }
1373 
1374   return CallRuntimeNode::Ideal(phase, can_reshape);
1375 }
1376 
1377 #ifndef PRODUCT
1378 void CallLeafNode::dump_spec(outputStream *st) const {
1379   st->print("# ");
1380   st->print("%s", _name);
1381   CallNode::dump_spec(st);
1382 }
1383 #endif
1384 






1385 //=============================================================================
1386 
1387 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1388   assert(verify_jvms(jvms), "jvms must match");
1389   int loc = jvms->locoff() + idx;
1390   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1391     // If current local idx is top then local idx - 1 could
1392     // be a long/double that needs to be killed since top could
1393     // represent the 2nd half of the long/double.
1394     uint ideal = in(loc -1)->ideal_reg();
1395     if (ideal == Op_RegD || ideal == Op_RegL) {
1396       // set other (low index) half to top
1397       set_req(loc - 1, in(loc));
1398     }
1399   }
1400   set_req(loc, c);
1401 }
1402 
1403 uint SafePointNode::size_of() const { return sizeof(*this); }
1404 bool SafePointNode::cmp( const Node &n ) const {

1415   }
1416 }
1417 
1418 
1419 //----------------------------next_exception-----------------------------------
1420 SafePointNode* SafePointNode::next_exception() const {
1421   if (len() == req()) {
1422     return nullptr;
1423   } else {
1424     Node* n = in(req());
1425     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1426     return (SafePointNode*) n;
1427   }
1428 }
1429 
1430 
1431 //------------------------------Ideal------------------------------------------
1432 // Skip over any collapsed Regions
1433 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1434   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1435   return remove_dead_region(phase, can_reshape) ? this : nullptr;













1436 }
1437 
1438 //------------------------------Identity---------------------------------------
1439 // Remove obviously duplicate safepoints
1440 Node* SafePointNode::Identity(PhaseGVN* phase) {
1441 
1442   // If you have back to back safepoints, remove one
1443   if (in(TypeFunc::Control)->is_SafePoint()) {
1444     Node* out_c = unique_ctrl_out_or_null();
1445     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1446     // outer loop's safepoint could confuse removal of the outer loop.
1447     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1448       return in(TypeFunc::Control);
1449     }
1450   }
1451 
1452   // Transforming long counted loops requires a safepoint node. Do not
1453   // eliminate a safepoint until loop opts are over.
1454   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1455     Node *n0 = in(0)->in(0);

1569 }
1570 
1571 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1572   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1573   int nb = igvn->C->root()->find_prec_edge(this);
1574   if (nb != -1) {
1575     igvn->delete_precedence_of(igvn->C->root(), nb);
1576   }
1577 }
1578 
1579 //==============  SafePointScalarObjectNode  ==============
1580 
1581 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1582   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1583   _first_index(first_index),
1584   _depth(depth),
1585   _n_fields(n_fields),
1586   _alloc(alloc)
1587 {
1588 #ifdef ASSERT
1589   if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1590     alloc->dump();
1591     assert(false, "unexpected call node");
1592   }
1593 #endif
1594   init_class_id(Class_SafePointScalarObject);
1595 }
1596 
1597 // Do not allow value-numbering for SafePointScalarObject node.
1598 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1599 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1600   return (&n == this); // Always fail except on self
1601 }
1602 
1603 uint SafePointScalarObjectNode::ideal_reg() const {
1604   return 0; // No matching to machine instruction
1605 }
1606 
1607 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1608   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1609 }

1674     new_node = false;
1675     return (SafePointScalarMergeNode*)cached;
1676   }
1677   new_node = true;
1678   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1679   sosn_map->Insert((void*)this, (void*)res);
1680   return res;
1681 }
1682 
1683 #ifndef PRODUCT
1684 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1685   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1686 }
1687 #endif
1688 
1689 //=============================================================================
1690 uint AllocateNode::size_of() const { return sizeof(*this); }
1691 
1692 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1693                            Node *ctrl, Node *mem, Node *abio,
1694                            Node *size, Node *klass_node, Node *initial_test)


1695   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1696 {
1697   init_class_id(Class_Allocate);
1698   init_flags(Flag_is_macro);
1699   _is_scalar_replaceable = false;
1700   _is_non_escaping = false;
1701   _is_allocation_MemBar_redundant = false;

1702   Node *topnode = C->top();
1703 
1704   init_req( TypeFunc::Control  , ctrl );
1705   init_req( TypeFunc::I_O      , abio );
1706   init_req( TypeFunc::Memory   , mem );
1707   init_req( TypeFunc::ReturnAdr, topnode );
1708   init_req( TypeFunc::FramePtr , topnode );
1709   init_req( AllocSize          , size);
1710   init_req( KlassNode          , klass_node);
1711   init_req( InitialTest        , initial_test);
1712   init_req( ALength            , topnode);
1713   init_req( ValidLengthTest    , topnode);



1714   C->add_macro_node(this);
1715 }
1716 
1717 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1718 {
1719   assert(initializer != nullptr && initializer->is_object_initializer(),

1720          "unexpected initializer method");
1721   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1722   if (analyzer == nullptr) {
1723     return;
1724   }
1725 
1726   // Allocation node is first parameter in its initializer
1727   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1728     _is_allocation_MemBar_redundant = true;
1729   }
1730 }
1731 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {

1732   Node* mark_node = nullptr;
1733   if (UseCompactObjectHeaders) {
1734     Node* klass_node = in(AllocateNode::KlassNode);
1735     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1736     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);






1737   } else {
1738     // For now only enable fast locking for non-array types
1739     mark_node = phase->MakeConX(markWord::prototype().value());
1740   }
1741   return mark_node;
1742 }
1743 
1744 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1745 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1746 // a CastII is appropriate, return null.
1747 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1748   Node *length = in(AllocateNode::ALength);
1749   assert(length != nullptr, "length is not null");
1750 
1751   const TypeInt* length_type = phase->find_int_type(length);
1752   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1753 
1754   if (ary_type != nullptr && length_type != nullptr) {
1755     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1756     if (narrow_length_type != length_type) {
1757       // Assert one of:
1758       //   - the narrow_length is 0
1759       //   - the narrow_length is not wider than length
1760       assert(narrow_length_type == TypeInt::ZERO ||
1761              (length_type->is_con() && narrow_length_type->is_con() &&

2117 
2118 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2119   st->print("%s", _kind_names[_kind]);
2120 }
2121 #endif
2122 
2123 //=============================================================================
2124 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2125 
2126   // perform any generic optimizations first (returns 'this' or null)
2127   Node *result = SafePointNode::Ideal(phase, can_reshape);
2128   if (result != nullptr)  return result;
2129   // Don't bother trying to transform a dead node
2130   if (in(0) && in(0)->is_top())  return nullptr;
2131 
2132   // Now see if we can optimize away this lock.  We don't actually
2133   // remove the locking here, we simply set the _eliminate flag which
2134   // prevents macro expansion from expanding the lock.  Since we don't
2135   // modify the graph, the value returned from this function is the
2136   // one computed above.
2137   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2138     //
2139     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2140     //
2141     ConnectionGraph *cgr = phase->C->congraph();
2142     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2143       assert(!is_eliminated() || is_coarsened(), "sanity");
2144       // The lock could be marked eliminated by lock coarsening
2145       // code during first IGVN before EA. Replace coarsened flag
2146       // to eliminate all associated locks/unlocks.
2147 #ifdef ASSERT
2148       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2149 #endif
2150       this->set_non_esc_obj();
2151       return result;
2152     }
2153 
2154     if (!phase->C->do_locks_coarsening()) {
2155       return result; // Compiling without locks coarsening
2156     }
2157     //

2318 }
2319 
2320 //=============================================================================
2321 uint UnlockNode::size_of() const { return sizeof(*this); }
2322 
2323 //=============================================================================
2324 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2325 
2326   // perform any generic optimizations first (returns 'this' or null)
2327   Node *result = SafePointNode::Ideal(phase, can_reshape);
2328   if (result != nullptr)  return result;
2329   // Don't bother trying to transform a dead node
2330   if (in(0) && in(0)->is_top())  return nullptr;
2331 
2332   // Now see if we can optimize away this unlock.  We don't actually
2333   // remove the unlocking here, we simply set the _eliminate flag which
2334   // prevents macro expansion from expanding the unlock.  Since we don't
2335   // modify the graph, the value returned from this function is the
2336   // one computed above.
2337   // Escape state is defined after Parse phase.
2338   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2339     //
2340     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2341     //
2342     ConnectionGraph *cgr = phase->C->congraph();
2343     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2344       assert(!is_eliminated() || is_coarsened(), "sanity");
2345       // The lock could be marked eliminated by lock coarsening
2346       // code during first IGVN before EA. Replace coarsened flag
2347       // to eliminate all associated locks/unlocks.
2348 #ifdef ASSERT
2349       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2350 #endif
2351       this->set_non_esc_obj();
2352     }
2353   }
2354   return result;
2355 }
2356 
2357 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2358   if (C == nullptr) {

2398     }
2399     // unrelated
2400     return false;
2401   }
2402 
2403   if (dest_t->isa_aryptr()) {
2404     // arraycopy or array clone
2405     if (t_oop->isa_instptr()) {
2406       return false;
2407     }
2408     if (!t_oop->isa_aryptr()) {
2409       return true;
2410     }
2411 
2412     const Type* elem = dest_t->is_aryptr()->elem();
2413     if (elem == Type::BOTTOM) {
2414       // An array but we don't know what elements are
2415       return true;
2416     }
2417 
2418     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();

2419     uint dest_alias = phase->C->get_alias_index(dest_t);
2420     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2421 
2422     return dest_alias == t_oop_alias;
2423   }
2424 
2425   return true;
2426 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "code/vmreg.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/regalloc.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 // Portions of code courtesy of Clifford Click
  55 
  56 // Optimization - Graph Style
  57 
  58 //=============================================================================
  59 uint StartNode::size_of() const { return sizeof(*this); }
  60 bool StartNode::cmp( const Node &n ) const
  61 { return _domain == ((StartNode&)n)._domain; }
  62 const Type *StartNode::bottom_type() const { return _domain; }
  63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  64 #ifndef PRODUCT
  65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  67 #endif
  68 
  69 //------------------------------Ideal------------------------------------------
  70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  71   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  72 }
  73 
  74 //------------------------------calling_convention-----------------------------
  75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  76   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  77 }
  78 
  79 //------------------------------Registers--------------------------------------
  80 const RegMask &StartNode::in_RegMask(uint) const {
  81   return RegMask::EMPTY;
  82 }
  83 
  84 //------------------------------match------------------------------------------
  85 // Construct projections for incoming parameters, and their RegMask info
  86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  87   switch (proj->_con) {
  88   case TypeFunc::Control:
  89   case TypeFunc::I_O:
  90   case TypeFunc::Memory:
  91     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  92   case TypeFunc::FramePtr:
  93     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  94   case TypeFunc::ReturnAdr:
  95     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  96   case TypeFunc::Parms:
  97   default: {
  98       uint parm_num = proj->_con - TypeFunc::Parms;
  99       const Type *t = _domain->field_at(proj->_con);
 100       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
 101         return new ConNode(Type::TOP);
 102       uint ideal_reg = t->ideal_reg();
 103       RegMask &rm = match->_calling_convention_mask[parm_num];
 104       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 105     }
 106   }
 107   return nullptr;
 108 }
 109 











 110 //=============================================================================
 111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ParmNode::dump_spec(outputStream *st) const {
 117   if( _con < TypeFunc::Parms ) {
 118     st->print("%s", names[_con]);
 119   } else {
 120     st->print("Parm%d: ",_con-TypeFunc::Parms);
 121     // Verbose and WizardMode dump bottom_type for all nodes
 122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 123   }
 124 }
 125 
 126 void ParmNode::dump_compact_spec(outputStream *st) const {
 127   if (_con < TypeFunc::Parms) {
 128     st->print("%s", names[_con]);
 129   } else {

 477       if (cik->is_instance_klass()) {
 478         cik->print_name_on(st);
 479         iklass = cik->as_instance_klass();
 480       } else if (cik->is_type_array_klass()) {
 481         cik->as_array_klass()->base_element_type()->print_name_on(st);
 482         st->print("[%d]", spobj->n_fields());
 483       } else if (cik->is_obj_array_klass()) {
 484         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 485         if (cie->is_instance_klass()) {
 486           cie->print_name_on(st);
 487         } else if (cie->is_type_array_klass()) {
 488           cie->as_array_klass()->base_element_type()->print_name_on(st);
 489         } else {
 490           ShouldNotReachHere();
 491         }
 492         st->print("[%d]", spobj->n_fields());
 493         int ndim = cik->as_array_klass()->dimension() - 1;
 494         while (ndim-- > 0) {
 495           st->print("[]");
 496         }
 497       } else {
 498         assert(false, "unexpected type %s", cik->name()->as_utf8());
 499       }
 500       st->print("={");
 501       uint nf = spobj->n_fields();
 502       if (nf > 0) {
 503         uint first_ind = spobj->first_index(mcall->jvms());
 504         if (iklass != nullptr && iklass->is_inlinetype()) {
 505           Node* null_marker = mcall->in(first_ind++);
 506           if (!null_marker->is_top()) {
 507             st->print(" [null marker");
 508             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 509           }
 510         }
 511         Node* fld_node = mcall->in(first_ind);

 512         if (iklass != nullptr) {
 513           st->print(" [");
 514           iklass->nonstatic_field_at(0)->print_name_on(st);

 515           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 516         } else {
 517           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 518         }
 519         for (uint j = 1; j < nf; j++) {
 520           fld_node = mcall->in(first_ind+j);
 521           if (iklass != nullptr) {
 522             st->print(", [");
 523             iklass->nonstatic_field_at(j)->print_name_on(st);

 524             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 525           } else {
 526             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 527           }
 528         }
 529       }
 530       st->print(" }");
 531     }
 532   }
 533   st->cr();
 534   if (caller() != nullptr) caller()->format(regalloc, n, st);
 535 }
 536 
 537 
 538 void JVMState::dump_spec(outputStream *st) const {
 539   if (_method != nullptr) {
 540     bool printed = false;
 541     if (!Verbose) {
 542       // The JVMS dumps make really, really long lines.
 543       // Take out the most boring parts, which are the package prefixes.

 738     tf()->dump_on(st);
 739   }
 740   if (_cnt != COUNT_UNKNOWN) {
 741     st->print(" C=%f", _cnt);
 742   }
 743   const Node* const klass_node = in(KlassNode);
 744   if (klass_node != nullptr) {
 745     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 746 
 747     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 748       st->print(" allocationKlass:");
 749       klass_ptr->exact_klass()->print_name_on(st);
 750     }
 751   }
 752   if (jvms() != nullptr) {
 753     jvms()->dump_spec(st);
 754   }
 755 }
 756 #endif
 757 
 758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 759 const Type* CallNode::Value(PhaseGVN* phase) const {
 760   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 761     return Type::TOP;
 762   }
 763   return tf()->range_cc();
 764 }
 765 
 766 //------------------------------calling_convention-----------------------------
 767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 768   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 769     // The call to that stub is a special case: its inputs are
 770     // multiple values returned from a call and so it should follow
 771     // the return convention.
 772     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 773     return;
 774   }
 775   // Use the standard compiler calling convention
 776   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 777 }
 778 
 779 
 780 //------------------------------match------------------------------------------
 781 // Construct projections for control, I/O, memory-fields, ..., and
 782 // return result(s) along with their RegMask info
 783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 784   uint con = proj->_con;
 785   const TypeTuple* range_cc = tf()->range_cc();
 786   if (con >= TypeFunc::Parms) {
 787     if (tf()->returns_inline_type_as_fields()) {
 788       // The call returns multiple values (inline type fields): we
 789       // create one projection per returned value.
 790       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 791       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 792       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 793     } else {
 794       if (con == TypeFunc::Parms) {
 795         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 796         OptoRegPair regs = Opcode() == Op_CallLeafVector
 797           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 798           : match->c_return_value(ideal_reg);
 799         RegMask rm = RegMask(regs.first());
 800 
 801         if (Opcode() == Op_CallLeafVector) {
 802           // If the return is in vector, compute appropriate regmask taking into account the whole range
 803           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 804             if(OptoReg::is_valid(regs.second())) {
 805               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 806                 rm.insert(r);
 807               }
 808             }

 809           }
 810         }
 811 
 812         if (OptoReg::is_valid(regs.second())) {
 813           rm.insert(regs.second());
 814         }
 815         return new MachProjNode(this,con,rm,ideal_reg);
 816       } else {
 817         assert(con == TypeFunc::Parms+1, "only one return value");
 818         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 819         return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
 820       }
 821     }




 822   }
 823 
 824   switch (con) {
 825   case TypeFunc::Control:
 826   case TypeFunc::I_O:
 827   case TypeFunc::Memory:
 828     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 829 
 830   case TypeFunc::ReturnAdr:
 831   case TypeFunc::FramePtr:
 832   default:
 833     ShouldNotReachHere();
 834   }
 835   return nullptr;
 836 }
 837 
 838 // Do we Match on this edge index or not?  Match no edges
 839 uint CallNode::match_edge(uint idx) const {
 840   return 0;
 841 }
 842 
 843 //
 844 // Determine whether the call could modify the field of the specified
 845 // instance at the specified offset.
 846 //
 847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 848   assert((t_oop != nullptr), "sanity");
 849   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 850     const TypeTuple* args = _tf->domain_sig();
 851     Node* dest = nullptr;
 852     // Stubs that can be called once an ArrayCopyNode is expanded have
 853     // different signatures. Look for the second pointer argument,
 854     // that is the destination of the copy.
 855     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 856       if (args->field_at(i)->isa_ptr()) {
 857         j++;
 858         if (j == 2) {
 859           dest = in(i);
 860           break;
 861         }
 862       }
 863     }
 864     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 865     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 866       return true;
 867     }
 868     return false;
 869   }
 870   if (t_oop->is_known_instance()) {

 879       Node* proj = proj_out_or_null(TypeFunc::Parms);
 880       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 881         return false;
 882       }
 883     }
 884     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 885       ciMethod* meth = as_CallJava()->method();
 886       if (meth->is_getter()) {
 887         return false;
 888       }
 889       // May modify (by reflection) if an boxing object is passed
 890       // as argument or returned.
 891       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 892       if (proj != nullptr) {
 893         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 894         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 895                                    (inst_t->instance_klass() == boxing_klass))) {
 896           return true;
 897         }
 898       }
 899       const TypeTuple* d = tf()->domain_cc();
 900       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 901         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 902         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 903                                  (inst_t->instance_klass() == boxing_klass))) {
 904           return true;
 905         }
 906       }
 907       return false;
 908     }
 909   }
 910   return true;
 911 }
 912 
 913 // Does this call have a direct reference to n other than debug information?
 914 bool CallNode::has_non_debug_use(Node* n) {
 915   const TypeTuple* d = tf()->domain_cc();
 916   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 917     if (in(i) == n) {

 918       return true;
 919     }
 920   }
 921   return false;
 922 }
 923 
 924 bool CallNode::has_debug_use(Node* n) {
 925   if (jvms() != nullptr) {
 926     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 927       if (in(i) == n) {
 928         return true;
 929       }
 930     }
 931   }
 932   return false;
 933 }
 934 
 935 // Returns the unique CheckCastPP of a call
 936 // or 'this' if there are several CheckCastPP or unexpected uses
 937 // or returns null if there is no one.
 938 Node *CallNode::result_cast() {
 939   Node *cast = nullptr;
 940 
 941   Node *p = proj_out_or_null(TypeFunc::Parms);
 942   if (p == nullptr)
 943     return nullptr;
 944 
 945   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 946     Node *use = p->fast_out(i);
 947     if (use->is_CheckCastPP()) {
 948       if (cast != nullptr) {
 949         return this;  // more than 1 CheckCastPP
 950       }
 951       cast = use;
 952     } else if (!use->is_Initialize() &&
 953                !use->is_AddP() &&
 954                use->Opcode() != Op_MemBarStoreStore) {
 955       // Expected uses are restricted to a CheckCastPP, an Initialize
 956       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 957       // encounter any other use (a Phi node can be seen in rare
 958       // cases) return this to prevent incorrect optimizations.
 959       return this;
 960     }
 961   }
 962   return cast;
 963 }
 964 
 965 
 966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 967   uint max_res = TypeFunc::Parms-1;
 968   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 969     ProjNode *pn = fast_out(i)->as_Proj();
 970     max_res = MAX2(max_res, pn->_con);
 971   }
 972 
 973   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 974 
 975   uint projs_size = sizeof(CallProjections);
 976   if (max_res > TypeFunc::Parms) {
 977     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 978   }
 979   char* projs_storage = resource_allocate_bytes(projs_size);
 980   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 981 
 982   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 983     ProjNode *pn = fast_out(i)->as_Proj();
 984     if (pn->outcnt() == 0) continue;
 985     switch (pn->_con) {
 986     case TypeFunc::Control:
 987       {
 988         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 989         projs->fallthrough_proj = pn;
 990         const Node* cn = pn->unique_ctrl_out_or_null();
 991         if (cn != nullptr && cn->is_Catch()) {
 992           ProjNode *cpn = nullptr;
 993           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 994             cpn = cn->fast_out(k)->as_Proj();
 995             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 996             if (cpn->_con == CatchProjNode::fall_through_index)
 997               projs->fallthrough_catchproj = cpn;
 998             else {
 999               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000               projs->catchall_catchproj = cpn;

1006     case TypeFunc::I_O:
1007       if (pn->_is_io_use)
1008         projs->catchall_ioproj = pn;
1009       else
1010         projs->fallthrough_ioproj = pn;
1011       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012         Node* e = pn->out(j);
1013         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014           assert(projs->exobj == nullptr, "only one");
1015           projs->exobj = e;
1016         }
1017       }
1018       break;
1019     case TypeFunc::Memory:
1020       if (pn->_is_io_use)
1021         projs->catchall_memproj = pn;
1022       else
1023         projs->fallthrough_memproj = pn;
1024       break;
1025     case TypeFunc::Parms:
1026       projs->resproj[0] = pn;
1027       break;
1028     default:
1029       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031       break;
1032     }
1033   }
1034 
1035   // The resproj may not exist because the result could be ignored
1036   // and the exception object may not exist if an exception handler
1037   // swallows the exception but all the other must exist and be found.

1038   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1040   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1042   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1043   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1044   if (separate_io_proj) {
1045     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1046     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1047   }
1048   return projs;
1049 }
1050 
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053   // Validate attached generator
1054   CallGenerator* cg = generator();
1055   if (cg != nullptr) {
1056     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1057            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058   }
1059 #endif // ASSERT
1060   return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062 
1063 bool CallNode::is_call_to_arraycopystub() const {
1064   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065     return true;
1066   }
1067   return false;
1068 }
1069 
1070 //=============================================================================
1071 uint CallJavaNode::size_of() const { return sizeof(*this); }
1072 bool CallJavaNode::cmp( const Node &n ) const {
1073   CallJavaNode &call = (CallJavaNode&)n;
1074   return CallNode::cmp(call) && _method == call._method &&
1075          _override_symbolic_info == call._override_symbolic_info;
1076 }
1077 
1078 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1079   // Copy debug information and adjust JVMState information
1080   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1081   uint new_dbg_start = tf()->domain_sig()->cnt();
1082   int jvms_adj  = new_dbg_start - old_dbg_start;
1083   assert (new_dbg_start == req(), "argument count mismatch");
1084   Compile* C = phase->C;
1085 
1086   // SafePointScalarObject node could be referenced several times in debug info.
1087   // Use Dict to record cloned nodes.
1088   Dict* sosn_map = new Dict(cmpkey,hashkey);
1089   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1090     Node* old_in = sfpt->in(i);
1091     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1092     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1093       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1094       bool new_node;
1095       Node* new_in = old_sosn->clone(sosn_map, new_node);
1096       if (new_node) { // New node?
1097         new_in->set_req(0, C->root()); // reset control edge
1098         new_in = phase->transform(new_in); // Register new node.
1099       }
1100       old_in = new_in;
1101     }
1102     add_req(old_in);
1103   }
1104 
1105   // JVMS may be shared so clone it before we modify it
1106   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1107   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1108     jvms->set_map(this);
1109     jvms->set_locoff(jvms->locoff()+jvms_adj);
1110     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1111     jvms->set_monoff(jvms->monoff()+jvms_adj);
1112     jvms->set_scloff(jvms->scloff()+jvms_adj);
1113     jvms->set_endoff(jvms->endoff()+jvms_adj);
1114   }
1115 }
1116 
1117 #ifdef ASSERT
1118 bool CallJavaNode::validate_symbolic_info() const {
1119   if (method() == nullptr) {
1120     return true; // call into runtime or uncommon trap
1121   }
1122   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1123   if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1124     return true;
1125   }
1126   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1127   ciMethod* callee = method();
1128   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1129     assert(override_symbolic_info(), "should be set");
1130   }
1131   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1132   return true;
1133 }
1134 #endif
1135 
1136 #ifndef PRODUCT
1137 void CallJavaNode::dump_spec(outputStream* st) const {
1138   if( _method ) _method->print_short_name(st);
1139   CallNode::dump_spec(st);
1140 }
1141 
1142 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1143   if (_method) {
1144     _method->print_short_name(st);
1145   } else {

1148 }
1149 #endif
1150 
1151 void CallJavaNode::register_for_late_inline() {
1152   if (generator() != nullptr) {
1153     Compile::current()->prepend_late_inline(generator());
1154     set_generator(nullptr);
1155   } else {
1156     assert(false, "repeated inline attempt");
1157   }
1158 }
1159 
1160 //=============================================================================
1161 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1162 bool CallStaticJavaNode::cmp( const Node &n ) const {
1163   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1164   return CallJavaNode::cmp(call);
1165 }
1166 
1167 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1168   if (can_reshape && uncommon_trap_request() != 0) {
1169     PhaseIterGVN* igvn = phase->is_IterGVN();
1170     if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1171       if (!control()->is_Region()) {
1172         igvn->replace_input_of(this, 0, phase->C->top());
1173       }
1174       return this;
1175     }
1176   }
1177 
1178   // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1179   if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1180       (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1181     Node* left = in(TypeFunc::Parms);
1182     Node* right = in(TypeFunc::Parms + 1);
1183     if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1184       if (!left->is_InlineType()) {
1185         swap(left, right);
1186       }
1187       InlineTypeNode* vt = left->as_InlineType();
1188 
1189       // Check if the field layout can be optimized
1190       if (vt->can_emit_substitutability_check(right)) {
1191         PhaseIterGVN* igvn = phase->is_IterGVN();
1192 
1193         Node* ctrl = control();
1194         RegionNode* region = new RegionNode(1);
1195         Node* phi = new PhiNode(region, TypeInt::POS);
1196 
1197         Node* base = right;
1198         Node* ptr = right;
1199         if (!base->is_InlineType()) {
1200           // Parse time checks guarantee that both operands are non-null and have the same type
1201           base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1202           ptr = base;
1203         }
1204         // Emit IR for field-wise comparison
1205         vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1206 
1207         // Equals
1208         region->add_req(ctrl);
1209         phi->add_req(igvn->intcon(1));
1210 
1211         ctrl = igvn->register_new_node_with_optimizer(region);
1212         Node* res = igvn->register_new_node_with_optimizer(phi);
1213 
1214         // Kill exception projections and return a tuple that will replace the call
1215         CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1216         if (projs->fallthrough_catchproj != nullptr) {
1217           igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1218         }
1219         if (projs->catchall_memproj != nullptr) {
1220           igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1221         }
1222         if (projs->catchall_ioproj != nullptr) {
1223           igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1224         }
1225         if (projs->catchall_catchproj != nullptr) {
1226           igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1227         }
1228         return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1229       }
1230     }
1231   }
1232 
1233   CallGenerator* cg = generator();
1234   if (can_reshape && cg != nullptr) {
1235     if (cg->is_mh_late_inline()) {
1236       assert(IncrementalInlineMH, "required");
1237       assert(cg->call_node() == this, "mismatch");
1238       assert(cg->method()->is_method_handle_intrinsic(), "required");
1239 
1240       // Check whether this MH handle call becomes a candidate for inlining.
1241       ciMethod* callee = cg->method();
1242       vmIntrinsics::ID iid = callee->intrinsic_id();
1243       if (iid == vmIntrinsics::_invokeBasic) {
1244         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1245           register_for_late_inline();
1246         }
1247       } else if (iid == vmIntrinsics::_linkToNative) {
1248         // never retry
1249       } else {
1250         assert(callee->has_member_arg(), "wrong type of call?");
1251         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1252           register_for_late_inline();

1273 
1274 //----------------------------uncommon_trap_request----------------------------
1275 // If this is an uncommon trap, return the request code, else zero.
1276 int CallStaticJavaNode::uncommon_trap_request() const {
1277   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1278 }
1279 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1280 #ifndef PRODUCT
1281   if (!(call->req() > TypeFunc::Parms &&
1282         call->in(TypeFunc::Parms) != nullptr &&
1283         call->in(TypeFunc::Parms)->is_Con() &&
1284         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1285     assert(in_dump() != 0, "OK if dumping");
1286     tty->print("[bad uncommon trap]");
1287     return 0;
1288   }
1289 #endif
1290   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1291 }
1292 
1293 // Split if can cause the flat array branch of an array load with unknown type (see
1294 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1295 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1296 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1297   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1298     return false;
1299   }
1300   if (ctl->is_Region()) {
1301     bool res = false;
1302     for (uint i = 1; i < ctl->req(); i++) {
1303       MergeMemNode* mm = mem->clone()->as_MergeMem();
1304       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1305         Node* m = mms.memory();
1306         if (m->is_Phi() && m->in(0) == ctl) {
1307           mms.set_memory(m->in(i));
1308         }
1309       }
1310       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1311         res = true;
1312         if (!ctl->in(i)->is_Region()) {
1313           igvn->replace_input_of(ctl, i, igvn->C->top());
1314         }
1315       }
1316       igvn->remove_dead_node(mm);
1317     }
1318     return res;
1319   }
1320   // Verify the control flow is ok
1321   Node* call = ctl;
1322   MemBarNode* membar = nullptr;
1323   for (;;) {
1324     if (call == nullptr || call->is_top()) {
1325       return false;
1326     }
1327     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1328       call = call->in(0);
1329     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1330                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1331       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1332       membar = call->in(0)->in(0)->as_MemBar();
1333       break;
1334     } else {
1335       return false;
1336     }
1337   }
1338 
1339   JVMState* jvms = call->jvms();
1340   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1341     return false;
1342   }
1343 
1344   Node* call_mem = call->in(TypeFunc::Memory);
1345   if (call_mem == nullptr || call_mem->is_top()) {
1346     return false;
1347   }
1348   if (!call_mem->is_MergeMem()) {
1349     call_mem = MergeMemNode::make(call_mem);
1350     igvn->register_new_node_with_optimizer(call_mem);
1351   }
1352 
1353   // Verify that there's no unexpected side effect
1354   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1355     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1356     Node* m2 = mms2.memory2();
1357 
1358     for (uint i = 0; i < 100; i++) {
1359       if (m1 == m2) {
1360         break;
1361       } else if (m1->is_Proj()) {
1362         m1 = m1->in(0);
1363       } else if (m1->is_MemBar()) {
1364         m1 = m1->in(TypeFunc::Memory);
1365       } else if (m1->Opcode() == Op_CallStaticJava &&
1366                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1367         if (m1 != call) {
1368           return false;
1369         }
1370         break;
1371       } else if (m1->is_MergeMem()) {
1372         MergeMemNode* mm = m1->as_MergeMem();
1373         int idx = mms2.alias_idx();
1374         if (idx == Compile::AliasIdxBot) {
1375           m1 = mm->base_memory();
1376         } else {
1377           m1 = mm->memory_at(idx);
1378         }
1379       } else {
1380         return false;
1381       }
1382     }
1383   }
1384   if (call_mem->outcnt() == 0) {
1385     igvn->remove_dead_node(call_mem);
1386   }
1387 
1388   // Remove membar preceding the call
1389   membar->remove(igvn);
1390 
1391   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1392   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1393   unc->init_req(TypeFunc::Control, call->in(0));
1394   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1395   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1396   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1397   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1398   unc->init_req(TypeFunc::Parms+0, unc_arg);
1399   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1400   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1401 
1402   // Replace the call with an uncommon trap
1403   igvn->replace_input_of(call, 0, igvn->C->top());
1404 
1405   igvn->register_new_node_with_optimizer(unc);
1406 
1407   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1408   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1409   igvn->add_input_to(igvn->C->root(), halt);
1410 
1411   return true;
1412 }
1413 
1414 
1415 #ifndef PRODUCT
1416 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1417   st->print("# Static ");
1418   if (_name != nullptr) {
1419     st->print("%s", _name);
1420     int trap_req = uncommon_trap_request();
1421     if (trap_req != 0) {
1422       char buf[100];
1423       st->print("(%s)",
1424                  Deoptimization::format_trap_request(buf, sizeof(buf),
1425                                                      trap_req));
1426     }
1427     st->print(" ");
1428   }
1429   CallJavaNode::dump_spec(st);
1430 }
1431 
1432 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1433   if (_method) {
1434     _method->print_short_name(st);

1510 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1511 bool CallRuntimeNode::cmp( const Node &n ) const {
1512   CallRuntimeNode &call = (CallRuntimeNode&)n;
1513   return CallNode::cmp(call) && !strcmp(_name,call._name);
1514 }
1515 #ifndef PRODUCT
1516 void CallRuntimeNode::dump_spec(outputStream *st) const {
1517   st->print("# ");
1518   st->print("%s", _name);
1519   CallNode::dump_spec(st);
1520 }
1521 #endif
1522 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1523 bool CallLeafVectorNode::cmp( const Node &n ) const {
1524   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1525   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1526 }
1527 
1528 //------------------------------calling_convention-----------------------------
1529 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1530   if (_entry_point == nullptr) {
1531     // The call to that stub is a special case: its inputs are
1532     // multiple values returned from a call and so it should follow
1533     // the return convention.
1534     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1535     return;
1536   }
1537   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1538 }
1539 
1540 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1541 #ifdef ASSERT
1542   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1543          "return vector size must match");
1544   const TypeTuple* d = tf()->domain_sig();
1545   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1546     Node* arg = in(i);
1547     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1548            "vector argument size must match");
1549   }
1550 #endif
1551 
1552   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1553 }
1554 
1555 //=============================================================================
1556 //------------------------------calling_convention-----------------------------
1557 
1558 
1559 //=============================================================================
1560 bool CallLeafPureNode::is_unused() const {
1561   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1562 }
1563 
1564 bool CallLeafPureNode::is_dead() const {
1565   return proj_out_or_null(TypeFunc::Control) == nullptr;
1566 }
1567 
1568 /* We make a tuple of the global input state + TOP for the output values.
1569  * We use this to delete a pure function that is not used: by replacing the call with
1570  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1571  * pure call, so jumping over it, and effectively, removing the call from the graph.
1572  * This avoids doing the graph surgery manually, but leaves that to IGVN
1573  * that is specialized for doing that right. We need also tuple components for output
1574  * values of the function to respect the return arity, and in case there is a projection
1575  * that would pick an output (which shouldn't happen at the moment).
1576  */
1577 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1578   // Transparently propagate input state but parameters
1579   TupleNode* tuple = TupleNode::make(
1580       tf()->range_cc(),
1581       in(TypeFunc::Control),
1582       in(TypeFunc::I_O),
1583       in(TypeFunc::Memory),
1584       in(TypeFunc::FramePtr),
1585       in(TypeFunc::ReturnAdr));
1586 
1587   // And add TOPs for the return values
1588   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1589     tuple->set_req(i, C->top());
1590   }
1591 
1592   return tuple;
1593 }
1594 
1595 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1596   if (is_dead()) {
1597     return nullptr;
1598   }
1599 
1600   // We need to wait until IGVN because during parsing, usages might still be missing
1601   // and we would remove the call immediately.
1602   if (can_reshape && is_unused()) {
1603     // The result is not used. We remove the call by replacing it with a tuple, that
1604     // is later disintegrated by the projections.
1605     return make_tuple_of_input_state_and_top_return_values(phase->C);
1606   }
1607 
1608   return CallRuntimeNode::Ideal(phase, can_reshape);
1609 }
1610 
1611 #ifndef PRODUCT
1612 void CallLeafNode::dump_spec(outputStream *st) const {
1613   st->print("# ");
1614   st->print("%s", _name);
1615   CallNode::dump_spec(st);
1616 }
1617 #endif
1618 
1619 uint CallLeafNoFPNode::match_edge(uint idx) const {
1620   // Null entry point is a special case for which the target is in a
1621   // register. Need to match that edge.
1622   return entry_point() == nullptr && idx == TypeFunc::Parms;
1623 }
1624 
1625 //=============================================================================
1626 
1627 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1628   assert(verify_jvms(jvms), "jvms must match");
1629   int loc = jvms->locoff() + idx;
1630   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1631     // If current local idx is top then local idx - 1 could
1632     // be a long/double that needs to be killed since top could
1633     // represent the 2nd half of the long/double.
1634     uint ideal = in(loc -1)->ideal_reg();
1635     if (ideal == Op_RegD || ideal == Op_RegL) {
1636       // set other (low index) half to top
1637       set_req(loc - 1, in(loc));
1638     }
1639   }
1640   set_req(loc, c);
1641 }
1642 
1643 uint SafePointNode::size_of() const { return sizeof(*this); }
1644 bool SafePointNode::cmp( const Node &n ) const {

1655   }
1656 }
1657 
1658 
1659 //----------------------------next_exception-----------------------------------
1660 SafePointNode* SafePointNode::next_exception() const {
1661   if (len() == req()) {
1662     return nullptr;
1663   } else {
1664     Node* n = in(req());
1665     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1666     return (SafePointNode*) n;
1667   }
1668 }
1669 
1670 
1671 //------------------------------Ideal------------------------------------------
1672 // Skip over any collapsed Regions
1673 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1674   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1675   if (remove_dead_region(phase, can_reshape)) {
1676     return this;
1677   }
1678   // Scalarize inline types in safepoint debug info.
1679   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1680   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1681     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1682       Node* n = in(i)->uncast();
1683       if (n->is_InlineType()) {
1684         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1685       }
1686     }
1687   }
1688   return nullptr;
1689 }
1690 
1691 //------------------------------Identity---------------------------------------
1692 // Remove obviously duplicate safepoints
1693 Node* SafePointNode::Identity(PhaseGVN* phase) {
1694 
1695   // If you have back to back safepoints, remove one
1696   if (in(TypeFunc::Control)->is_SafePoint()) {
1697     Node* out_c = unique_ctrl_out_or_null();
1698     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1699     // outer loop's safepoint could confuse removal of the outer loop.
1700     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1701       return in(TypeFunc::Control);
1702     }
1703   }
1704 
1705   // Transforming long counted loops requires a safepoint node. Do not
1706   // eliminate a safepoint until loop opts are over.
1707   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1708     Node *n0 = in(0)->in(0);

1822 }
1823 
1824 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1825   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1826   int nb = igvn->C->root()->find_prec_edge(this);
1827   if (nb != -1) {
1828     igvn->delete_precedence_of(igvn->C->root(), nb);
1829   }
1830 }
1831 
1832 //==============  SafePointScalarObjectNode  ==============
1833 
1834 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1835   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1836   _first_index(first_index),
1837   _depth(depth),
1838   _n_fields(n_fields),
1839   _alloc(alloc)
1840 {
1841 #ifdef ASSERT
1842   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1843     alloc->dump();
1844     assert(false, "unexpected call node");
1845   }
1846 #endif
1847   init_class_id(Class_SafePointScalarObject);
1848 }
1849 
1850 // Do not allow value-numbering for SafePointScalarObject node.
1851 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1852 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1853   return (&n == this); // Always fail except on self
1854 }
1855 
1856 uint SafePointScalarObjectNode::ideal_reg() const {
1857   return 0; // No matching to machine instruction
1858 }
1859 
1860 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1861   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1862 }

1927     new_node = false;
1928     return (SafePointScalarMergeNode*)cached;
1929   }
1930   new_node = true;
1931   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1932   sosn_map->Insert((void*)this, (void*)res);
1933   return res;
1934 }
1935 
1936 #ifndef PRODUCT
1937 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1938   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1939 }
1940 #endif
1941 
1942 //=============================================================================
1943 uint AllocateNode::size_of() const { return sizeof(*this); }
1944 
1945 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1946                            Node *ctrl, Node *mem, Node *abio,
1947                            Node *size, Node *klass_node,
1948                            Node* initial_test,
1949                            InlineTypeNode* inline_type_node)
1950   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1951 {
1952   init_class_id(Class_Allocate);
1953   init_flags(Flag_is_macro);
1954   _is_scalar_replaceable = false;
1955   _is_non_escaping = false;
1956   _is_allocation_MemBar_redundant = false;
1957   _larval = false;
1958   Node *topnode = C->top();
1959 
1960   init_req( TypeFunc::Control  , ctrl );
1961   init_req( TypeFunc::I_O      , abio );
1962   init_req( TypeFunc::Memory   , mem );
1963   init_req( TypeFunc::ReturnAdr, topnode );
1964   init_req( TypeFunc::FramePtr , topnode );
1965   init_req( AllocSize          , size);
1966   init_req( KlassNode          , klass_node);
1967   init_req( InitialTest        , initial_test);
1968   init_req( ALength            , topnode);
1969   init_req( ValidLengthTest    , topnode);
1970   init_req( InlineType     , inline_type_node);
1971   // DefaultValue defaults to nullptr
1972   // RawDefaultValue defaults to nullptr
1973   C->add_macro_node(this);
1974 }
1975 
1976 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1977 {
1978   assert(initializer != nullptr &&
1979          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1980          "unexpected initializer method");
1981   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1982   if (analyzer == nullptr) {
1983     return;
1984   }
1985 
1986   // Allocation node is first parameter in its initializer
1987   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1988     _is_allocation_MemBar_redundant = true;
1989   }
1990 }
1991 
1992 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1993   Node* mark_node = nullptr;
1994   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
1995     Node* klass_node = in(AllocateNode::KlassNode);
1996     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1997     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1998     if (Arguments::is_valhalla_enabled()) {
1999       mark_node = phase->transform(mark_node);
2000       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2001       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2002     }
2003     return mark_node;
2004   } else {
2005     return phase->MakeConX(markWord::prototype().value());

2006   }

2007 }
2008 
2009 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2010 // CastII, if appropriate.  If we are not allowed to create new nodes, and
2011 // a CastII is appropriate, return null.
2012 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2013   Node *length = in(AllocateNode::ALength);
2014   assert(length != nullptr, "length is not null");
2015 
2016   const TypeInt* length_type = phase->find_int_type(length);
2017   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2018 
2019   if (ary_type != nullptr && length_type != nullptr) {
2020     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2021     if (narrow_length_type != length_type) {
2022       // Assert one of:
2023       //   - the narrow_length is 0
2024       //   - the narrow_length is not wider than length
2025       assert(narrow_length_type == TypeInt::ZERO ||
2026              (length_type->is_con() && narrow_length_type->is_con() &&

2382 
2383 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2384   st->print("%s", _kind_names[_kind]);
2385 }
2386 #endif
2387 
2388 //=============================================================================
2389 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2390 
2391   // perform any generic optimizations first (returns 'this' or null)
2392   Node *result = SafePointNode::Ideal(phase, can_reshape);
2393   if (result != nullptr)  return result;
2394   // Don't bother trying to transform a dead node
2395   if (in(0) && in(0)->is_top())  return nullptr;
2396 
2397   // Now see if we can optimize away this lock.  We don't actually
2398   // remove the locking here, we simply set the _eliminate flag which
2399   // prevents macro expansion from expanding the lock.  Since we don't
2400   // modify the graph, the value returned from this function is the
2401   // one computed above.
2402   const Type* obj_type = phase->type(obj_node());
2403   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2404     //
2405     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2406     //
2407     ConnectionGraph *cgr = phase->C->congraph();
2408     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2409       assert(!is_eliminated() || is_coarsened(), "sanity");
2410       // The lock could be marked eliminated by lock coarsening
2411       // code during first IGVN before EA. Replace coarsened flag
2412       // to eliminate all associated locks/unlocks.
2413 #ifdef ASSERT
2414       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2415 #endif
2416       this->set_non_esc_obj();
2417       return result;
2418     }
2419 
2420     if (!phase->C->do_locks_coarsening()) {
2421       return result; // Compiling without locks coarsening
2422     }
2423     //

2584 }
2585 
2586 //=============================================================================
2587 uint UnlockNode::size_of() const { return sizeof(*this); }
2588 
2589 //=============================================================================
2590 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2591 
2592   // perform any generic optimizations first (returns 'this' or null)
2593   Node *result = SafePointNode::Ideal(phase, can_reshape);
2594   if (result != nullptr)  return result;
2595   // Don't bother trying to transform a dead node
2596   if (in(0) && in(0)->is_top())  return nullptr;
2597 
2598   // Now see if we can optimize away this unlock.  We don't actually
2599   // remove the unlocking here, we simply set the _eliminate flag which
2600   // prevents macro expansion from expanding the unlock.  Since we don't
2601   // modify the graph, the value returned from this function is the
2602   // one computed above.
2603   // Escape state is defined after Parse phase.
2604   const Type* obj_type = phase->type(obj_node());
2605   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2606     //
2607     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2608     //
2609     ConnectionGraph *cgr = phase->C->congraph();
2610     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2611       assert(!is_eliminated() || is_coarsened(), "sanity");
2612       // The lock could be marked eliminated by lock coarsening
2613       // code during first IGVN before EA. Replace coarsened flag
2614       // to eliminate all associated locks/unlocks.
2615 #ifdef ASSERT
2616       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2617 #endif
2618       this->set_non_esc_obj();
2619     }
2620   }
2621   return result;
2622 }
2623 
2624 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2625   if (C == nullptr) {

2665     }
2666     // unrelated
2667     return false;
2668   }
2669 
2670   if (dest_t->isa_aryptr()) {
2671     // arraycopy or array clone
2672     if (t_oop->isa_instptr()) {
2673       return false;
2674     }
2675     if (!t_oop->isa_aryptr()) {
2676       return true;
2677     }
2678 
2679     const Type* elem = dest_t->is_aryptr()->elem();
2680     if (elem == Type::BOTTOM) {
2681       // An array but we don't know what elements are
2682       return true;
2683     }
2684 
2685     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2686     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2687     uint dest_alias = phase->C->get_alias_index(dest_t);
2688     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2689 
2690     return dest_alias == t_oop_alias;
2691   }
2692 
2693   return true;
2694 }
< prev index next >