1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "code/vmreg.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "compiler/oopMap.hpp"
29 #include "gc/shared/barrierSet.hpp"
30 #include "gc/shared/c2/barrierSetC2.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "opto/callGenerator.hpp"
33 #include "opto/callnode.hpp"
34 #include "opto/castnode.hpp"
35 #include "opto/convertnode.hpp"
36 #include "opto/escape.hpp"
37 #include "opto/locknode.hpp"
38 #include "opto/machnode.hpp"
39 #include "opto/matcher.hpp"
40 #include "opto/parse.hpp"
41 #include "opto/regalloc.hpp"
42 #include "opto/regmask.hpp"
43 #include "opto/rootnode.hpp"
44 #include "opto/runtime.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 // Portions of code courtesy of Clifford Click
49
50 // Optimization - Graph Style
51
52 //=============================================================================
53 uint StartNode::size_of() const { return sizeof(*this); }
54 bool StartNode::cmp( const Node &n ) const
55 { return _domain == ((StartNode&)n)._domain; }
56 const Type *StartNode::bottom_type() const { return _domain; }
57 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
58 #ifndef PRODUCT
59 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
60 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
61 #endif
62
63 //------------------------------Ideal------------------------------------------
64 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
65 return remove_dead_region(phase, can_reshape) ? this : nullptr;
66 }
67
68 //------------------------------calling_convention-----------------------------
69 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
70 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
71 }
72
73 //------------------------------Registers--------------------------------------
74 const RegMask &StartNode::in_RegMask(uint) const {
75 return RegMask::EMPTY;
76 }
77
78 //------------------------------match------------------------------------------
79 // Construct projections for incoming parameters, and their RegMask info
80 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
81 switch (proj->_con) {
82 case TypeFunc::Control:
83 case TypeFunc::I_O:
84 case TypeFunc::Memory:
85 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
86 case TypeFunc::FramePtr:
87 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
88 case TypeFunc::ReturnAdr:
89 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
90 case TypeFunc::Parms:
91 default: {
92 uint parm_num = proj->_con - TypeFunc::Parms;
93 const Type *t = _domain->field_at(proj->_con);
94 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
95 return new ConNode(Type::TOP);
96 uint ideal_reg = t->ideal_reg();
97 RegMask &rm = match->_calling_convention_mask[parm_num];
98 return new MachProjNode(this,proj->_con,rm,ideal_reg);
99 }
100 }
101 return nullptr;
102 }
103
104 //------------------------------StartOSRNode----------------------------------
105 // The method start node for an on stack replacement adapter
106
107 //------------------------------osr_domain-----------------------------
108 const TypeTuple *StartOSRNode::osr_domain() {
109 const Type **fields = TypeTuple::fields(2);
110 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
111
112 return TypeTuple::make(TypeFunc::Parms+1, fields);
113 }
114
115 //=============================================================================
116 const char * const ParmNode::names[TypeFunc::Parms+1] = {
117 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
118 };
119
120 #ifndef PRODUCT
121 void ParmNode::dump_spec(outputStream *st) const {
122 if( _con < TypeFunc::Parms ) {
123 st->print("%s", names[_con]);
124 } else {
125 st->print("Parm%d: ",_con-TypeFunc::Parms);
126 // Verbose and WizardMode dump bottom_type for all nodes
127 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
128 }
129 }
130
131 void ParmNode::dump_compact_spec(outputStream *st) const {
132 if (_con < TypeFunc::Parms) {
133 st->print("%s", names[_con]);
134 } else {
482 if (cik->is_instance_klass()) {
483 cik->print_name_on(st);
484 iklass = cik->as_instance_klass();
485 } else if (cik->is_type_array_klass()) {
486 cik->as_array_klass()->base_element_type()->print_name_on(st);
487 st->print("[%d]", spobj->n_fields());
488 } else if (cik->is_obj_array_klass()) {
489 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
490 if (cie->is_instance_klass()) {
491 cie->print_name_on(st);
492 } else if (cie->is_type_array_klass()) {
493 cie->as_array_klass()->base_element_type()->print_name_on(st);
494 } else {
495 ShouldNotReachHere();
496 }
497 st->print("[%d]", spobj->n_fields());
498 int ndim = cik->as_array_klass()->dimension() - 1;
499 while (ndim-- > 0) {
500 st->print("[]");
501 }
502 }
503 st->print("={");
504 uint nf = spobj->n_fields();
505 if (nf > 0) {
506 uint first_ind = spobj->first_index(mcall->jvms());
507 Node* fld_node = mcall->in(first_ind);
508 ciField* cifield;
509 if (iklass != nullptr) {
510 st->print(" [");
511 cifield = iklass->nonstatic_field_at(0);
512 cifield->print_name_on(st);
513 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
514 } else {
515 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
516 }
517 for (uint j = 1; j < nf; j++) {
518 fld_node = mcall->in(first_ind+j);
519 if (iklass != nullptr) {
520 st->print(", [");
521 cifield = iklass->nonstatic_field_at(j);
522 cifield->print_name_on(st);
523 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
524 } else {
525 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
526 }
527 }
528 }
529 st->print(" }");
530 }
531 }
532 st->cr();
533 if (caller() != nullptr) caller()->format(regalloc, n, st);
534 }
535
536
537 void JVMState::dump_spec(outputStream *st) const {
538 if (_method != nullptr) {
539 bool printed = false;
540 if (!Verbose) {
541 // The JVMS dumps make really, really long lines.
542 // Take out the most boring parts, which are the package prefixes.
737 tf()->dump_on(st);
738 }
739 if (_cnt != COUNT_UNKNOWN) {
740 st->print(" C=%f", _cnt);
741 }
742 const Node* const klass_node = in(KlassNode);
743 if (klass_node != nullptr) {
744 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
745
746 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
747 st->print(" allocationKlass:");
748 klass_ptr->exact_klass()->print_name_on(st);
749 }
750 }
751 if (jvms() != nullptr) {
752 jvms()->dump_spec(st);
753 }
754 }
755 #endif
756
757 const Type *CallNode::bottom_type() const { return tf()->range(); }
758 const Type* CallNode::Value(PhaseGVN* phase) const {
759 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
760 return Type::TOP;
761 }
762 return tf()->range();
763 }
764
765 //------------------------------calling_convention-----------------------------
766 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
767 // Use the standard compiler calling convention
768 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
769 }
770
771
772 //------------------------------match------------------------------------------
773 // Construct projections for control, I/O, memory-fields, ..., and
774 // return result(s) along with their RegMask info
775 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
776 switch (proj->_con) {
777 case TypeFunc::Control:
778 case TypeFunc::I_O:
779 case TypeFunc::Memory:
780 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
781
782 case TypeFunc::Parms+1: // For LONG & DOUBLE returns
783 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
784 // 2nd half of doubles and longs
785 return new MachProjNode(this,proj->_con, RegMask::EMPTY, (uint)OptoReg::Bad);
786
787 case TypeFunc::Parms: { // Normal returns
788 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
789 OptoRegPair regs = Opcode() == Op_CallLeafVector
790 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
791 : is_CallRuntime()
792 ? match->c_return_value(ideal_reg) // Calls into C runtime
793 : match-> return_value(ideal_reg); // Calls into compiled Java code
794 RegMask rm = RegMask(regs.first());
795
796 if (Opcode() == Op_CallLeafVector) {
797 // If the return is in vector, compute appropriate regmask taking into account the whole range
798 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
799 if(OptoReg::is_valid(regs.second())) {
800 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
801 rm.insert(r);
802 }
803 }
804 }
805 }
806
807 if( OptoReg::is_valid(regs.second()) )
808 rm.insert(regs.second());
809 return new MachProjNode(this,proj->_con,rm,ideal_reg);
810 }
811
812 case TypeFunc::ReturnAdr:
813 case TypeFunc::FramePtr:
814 default:
815 ShouldNotReachHere();
816 }
817 return nullptr;
818 }
819
820 // Do we Match on this edge index or not? Match no edges
821 uint CallNode::match_edge(uint idx) const {
822 return 0;
823 }
824
825 //
826 // Determine whether the call could modify the field of the specified
827 // instance at the specified offset.
828 //
829 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
830 assert((t_oop != nullptr), "sanity");
831 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
832 const TypeTuple* args = _tf->domain();
833 Node* dest = nullptr;
834 // Stubs that can be called once an ArrayCopyNode is expanded have
835 // different signatures. Look for the second pointer argument,
836 // that is the destination of the copy.
837 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
838 if (args->field_at(i)->isa_ptr()) {
839 j++;
840 if (j == 2) {
841 dest = in(i);
842 break;
843 }
844 }
845 }
846 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
847 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
848 return true;
849 }
850 return false;
851 }
852 if (t_oop->is_known_instance()) {
861 Node* proj = proj_out_or_null(TypeFunc::Parms);
862 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
863 return false;
864 }
865 }
866 if (is_CallJava() && as_CallJava()->method() != nullptr) {
867 ciMethod* meth = as_CallJava()->method();
868 if (meth->is_getter()) {
869 return false;
870 }
871 // May modify (by reflection) if an boxing object is passed
872 // as argument or returned.
873 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
874 if (proj != nullptr) {
875 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
876 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
877 (inst_t->instance_klass() == boxing_klass))) {
878 return true;
879 }
880 }
881 const TypeTuple* d = tf()->domain();
882 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
883 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
884 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
885 (inst_t->instance_klass() == boxing_klass))) {
886 return true;
887 }
888 }
889 return false;
890 }
891 }
892 return true;
893 }
894
895 // Does this call have a direct reference to n other than debug information?
896 bool CallNode::has_non_debug_use(Node *n) {
897 const TypeTuple * d = tf()->domain();
898 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
899 Node *arg = in(i);
900 if (arg == n) {
901 return true;
902 }
903 }
904 return false;
905 }
906
907 // Returns the unique CheckCastPP of a call
908 // or 'this' if there are several CheckCastPP or unexpected uses
909 // or returns null if there is no one.
910 Node *CallNode::result_cast() {
911 Node *cast = nullptr;
912
913 Node *p = proj_out_or_null(TypeFunc::Parms);
914 if (p == nullptr)
915 return nullptr;
916
917 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
918 Node *use = p->fast_out(i);
919 if (use->is_CheckCastPP()) {
920 if (cast != nullptr) {
921 return this; // more than 1 CheckCastPP
922 }
923 cast = use;
924 } else if (!use->is_Initialize() &&
925 !use->is_AddP() &&
926 use->Opcode() != Op_MemBarStoreStore) {
927 // Expected uses are restricted to a CheckCastPP, an Initialize
928 // node, a MemBarStoreStore (clone) and AddP nodes. If we
929 // encounter any other use (a Phi node can be seen in rare
930 // cases) return this to prevent incorrect optimizations.
931 return this;
932 }
933 }
934 return cast;
935 }
936
937
938 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) const {
939 projs->fallthrough_proj = nullptr;
940 projs->fallthrough_catchproj = nullptr;
941 projs->fallthrough_ioproj = nullptr;
942 projs->catchall_ioproj = nullptr;
943 projs->catchall_catchproj = nullptr;
944 projs->fallthrough_memproj = nullptr;
945 projs->catchall_memproj = nullptr;
946 projs->resproj = nullptr;
947 projs->exobj = nullptr;
948
949 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
950 ProjNode *pn = fast_out(i)->as_Proj();
951 if (pn->outcnt() == 0) continue;
952 switch (pn->_con) {
953 case TypeFunc::Control:
954 {
955 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
956 projs->fallthrough_proj = pn;
957 const Node* cn = pn->unique_ctrl_out_or_null();
958 if (cn != nullptr && cn->is_Catch()) {
959 ProjNode *cpn = nullptr;
960 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
961 cpn = cn->fast_out(k)->as_Proj();
962 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
963 if (cpn->_con == CatchProjNode::fall_through_index)
964 projs->fallthrough_catchproj = cpn;
965 else {
966 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
967 projs->catchall_catchproj = cpn;
973 case TypeFunc::I_O:
974 if (pn->_is_io_use)
975 projs->catchall_ioproj = pn;
976 else
977 projs->fallthrough_ioproj = pn;
978 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
979 Node* e = pn->out(j);
980 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
981 assert(projs->exobj == nullptr, "only one");
982 projs->exobj = e;
983 }
984 }
985 break;
986 case TypeFunc::Memory:
987 if (pn->_is_io_use)
988 projs->catchall_memproj = pn;
989 else
990 projs->fallthrough_memproj = pn;
991 break;
992 case TypeFunc::Parms:
993 projs->resproj = pn;
994 break;
995 default:
996 assert(false, "unexpected projection from allocation node.");
997 }
998 }
999
1000 // The resproj may not exist because the result could be ignored
1001 // and the exception object may not exist if an exception handler
1002 // swallows the exception but all the other must exist and be found.
1003 assert(projs->fallthrough_proj != nullptr, "must be found");
1004 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1005 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1006 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1007 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1008 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1009 if (separate_io_proj) {
1010 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1011 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1012 }
1013 }
1014
1015 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1016 #ifdef ASSERT
1017 // Validate attached generator
1018 CallGenerator* cg = generator();
1019 if (cg != nullptr) {
1020 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1021 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1022 }
1023 #endif // ASSERT
1024 return SafePointNode::Ideal(phase, can_reshape);
1025 }
1026
1027 bool CallNode::is_call_to_arraycopystub() const {
1028 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1029 return true;
1030 }
1031 return false;
1032 }
1033
1034 bool CallNode::is_call_to_multianewarray_stub() const {
1035 if (_name != nullptr &&
1036 strstr(_name, "multianewarray") != nullptr &&
1037 strstr(_name, "C2 runtime") != nullptr) {
1038 return true;
1039 }
1040 return false;
1041 }
1042
1043 //=============================================================================
1044 uint CallJavaNode::size_of() const { return sizeof(*this); }
1045 bool CallJavaNode::cmp( const Node &n ) const {
1046 CallJavaNode &call = (CallJavaNode&)n;
1047 return CallNode::cmp(call) && _method == call._method &&
1048 _override_symbolic_info == call._override_symbolic_info;
1049 }
1050
1051 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1052 // Copy debug information and adjust JVMState information
1053 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1054 uint new_dbg_start = tf()->domain()->cnt();
1055 int jvms_adj = new_dbg_start - old_dbg_start;
1056 assert (new_dbg_start == req(), "argument count mismatch");
1057 Compile* C = phase->C;
1058
1059 // SafePointScalarObject node could be referenced several times in debug info.
1060 // Use Dict to record cloned nodes.
1061 Dict* sosn_map = new Dict(cmpkey,hashkey);
1062 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1063 Node* old_in = sfpt->in(i);
1064 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1065 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1066 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1067 bool new_node;
1068 Node* new_in = old_sosn->clone(sosn_map, new_node);
1069 if (new_node) { // New node?
1070 new_in->set_req(0, C->root()); // reset control edge
1071 new_in = phase->transform(new_in); // Register new node.
1072 }
1073 old_in = new_in;
1074 }
1075 add_req(old_in);
1076 }
1077
1078 // JVMS may be shared so clone it before we modify it
1079 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1080 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1081 jvms->set_map(this);
1082 jvms->set_locoff(jvms->locoff()+jvms_adj);
1083 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1084 jvms->set_monoff(jvms->monoff()+jvms_adj);
1085 jvms->set_scloff(jvms->scloff()+jvms_adj);
1086 jvms->set_endoff(jvms->endoff()+jvms_adj);
1087 }
1088 }
1089
1090 #ifdef ASSERT
1091 bool CallJavaNode::validate_symbolic_info() const {
1092 if (method() == nullptr) {
1093 return true; // call into runtime or uncommon trap
1094 }
1095 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1096 ciMethod* callee = method();
1097 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1098 assert(override_symbolic_info(), "should be set");
1099 }
1100 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1101 return true;
1102 }
1103 #endif
1104
1105 #ifndef PRODUCT
1106 void CallJavaNode::dump_spec(outputStream* st) const {
1107 if( _method ) _method->print_short_name(st);
1108 CallNode::dump_spec(st);
1109 }
1110
1111 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1112 if (_method) {
1113 _method->print_short_name(st);
1114 } else {
1117 }
1118 #endif
1119
1120 void CallJavaNode::register_for_late_inline() {
1121 if (generator() != nullptr) {
1122 Compile::current()->prepend_late_inline(generator());
1123 set_generator(nullptr);
1124 } else {
1125 assert(false, "repeated inline attempt");
1126 }
1127 }
1128
1129 //=============================================================================
1130 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1131 bool CallStaticJavaNode::cmp( const Node &n ) const {
1132 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1133 return CallJavaNode::cmp(call);
1134 }
1135
1136 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1137 CallGenerator* cg = generator();
1138 if (can_reshape && cg != nullptr) {
1139 if (cg->is_mh_late_inline()) {
1140 assert(IncrementalInlineMH, "required");
1141 assert(cg->call_node() == this, "mismatch");
1142 assert(cg->method()->is_method_handle_intrinsic(), "required");
1143
1144 // Check whether this MH handle call becomes a candidate for inlining.
1145 ciMethod* callee = cg->method();
1146 vmIntrinsics::ID iid = callee->intrinsic_id();
1147 if (iid == vmIntrinsics::_invokeBasic) {
1148 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1149 register_for_late_inline();
1150 }
1151 } else if (iid == vmIntrinsics::_linkToNative) {
1152 // never retry
1153 } else {
1154 assert(callee->has_member_arg(), "wrong type of call?");
1155 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1156 register_for_late_inline();
1177
1178 //----------------------------uncommon_trap_request----------------------------
1179 // If this is an uncommon trap, return the request code, else zero.
1180 int CallStaticJavaNode::uncommon_trap_request() const {
1181 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1182 }
1183 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1184 #ifndef PRODUCT
1185 if (!(call->req() > TypeFunc::Parms &&
1186 call->in(TypeFunc::Parms) != nullptr &&
1187 call->in(TypeFunc::Parms)->is_Con() &&
1188 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1189 assert(in_dump() != 0, "OK if dumping");
1190 tty->print("[bad uncommon trap]");
1191 return 0;
1192 }
1193 #endif
1194 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1195 }
1196
1197 #ifndef PRODUCT
1198 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1199 st->print("# Static ");
1200 if (_name != nullptr) {
1201 st->print("%s", _name);
1202 int trap_req = uncommon_trap_request();
1203 if (trap_req != 0) {
1204 char buf[100];
1205 st->print("(%s)",
1206 Deoptimization::format_trap_request(buf, sizeof(buf),
1207 trap_req));
1208 }
1209 st->print(" ");
1210 }
1211 CallJavaNode::dump_spec(st);
1212 }
1213
1214 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1215 if (_method) {
1216 _method->print_short_name(st);
1292 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1293 bool CallRuntimeNode::cmp( const Node &n ) const {
1294 CallRuntimeNode &call = (CallRuntimeNode&)n;
1295 return CallNode::cmp(call) && !strcmp(_name,call._name);
1296 }
1297 #ifndef PRODUCT
1298 void CallRuntimeNode::dump_spec(outputStream *st) const {
1299 st->print("# ");
1300 st->print("%s", _name);
1301 CallNode::dump_spec(st);
1302 }
1303 #endif
1304 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1305 bool CallLeafVectorNode::cmp( const Node &n ) const {
1306 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1307 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1308 }
1309
1310 //------------------------------calling_convention-----------------------------
1311 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1312 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1313 }
1314
1315 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1316 #ifdef ASSERT
1317 assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1318 "return vector size must match");
1319 const TypeTuple* d = tf()->domain();
1320 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1321 Node* arg = in(i);
1322 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1323 "vector argument size must match");
1324 }
1325 #endif
1326
1327 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1328 }
1329
1330 //=============================================================================
1331 //------------------------------calling_convention-----------------------------
1332
1333
1334 //=============================================================================
1335 bool CallLeafPureNode::is_unused() const {
1336 return proj_out_or_null(TypeFunc::Parms) == nullptr;
1337 }
1338
1339 bool CallLeafPureNode::is_dead() const {
1340 return proj_out_or_null(TypeFunc::Control) == nullptr;
1341 }
1342
1343 /* We make a tuple of the global input state + TOP for the output values.
1344 * We use this to delete a pure function that is not used: by replacing the call with
1345 * such a tuple, we let output Proj's idealization pick the corresponding input of the
1346 * pure call, so jumping over it, and effectively, removing the call from the graph.
1347 * This avoids doing the graph surgery manually, but leaves that to IGVN
1348 * that is specialized for doing that right. We need also tuple components for output
1349 * values of the function to respect the return arity, and in case there is a projection
1350 * that would pick an output (which shouldn't happen at the moment).
1351 */
1352 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1353 // Transparently propagate input state but parameters
1354 TupleNode* tuple = TupleNode::make(
1355 tf()->range(),
1356 in(TypeFunc::Control),
1357 in(TypeFunc::I_O),
1358 in(TypeFunc::Memory),
1359 in(TypeFunc::FramePtr),
1360 in(TypeFunc::ReturnAdr));
1361
1362 // And add TOPs for the return values
1363 for (uint i = TypeFunc::Parms; i < tf()->range()->cnt(); i++) {
1364 tuple->set_req(i, C->top());
1365 }
1366
1367 return tuple;
1368 }
1369
1370 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1371 if (is_dead()) {
1372 return nullptr;
1373 }
1374
1375 // We need to wait until IGVN because during parsing, usages might still be missing
1376 // and we would remove the call immediately.
1377 if (can_reshape && is_unused()) {
1378 // The result is not used. We remove the call by replacing it with a tuple, that
1379 // is later disintegrated by the projections.
1380 return make_tuple_of_input_state_and_top_return_values(phase->C);
1381 }
1382
1383 return CallRuntimeNode::Ideal(phase, can_reshape);
1384 }
1385
1386 #ifndef PRODUCT
1387 void CallLeafNode::dump_spec(outputStream *st) const {
1388 st->print("# ");
1389 st->print("%s", _name);
1390 CallNode::dump_spec(st);
1391 }
1392 #endif
1393
1394 //=============================================================================
1395
1396 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1397 assert(verify_jvms(jvms), "jvms must match");
1398 int loc = jvms->locoff() + idx;
1399 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1400 // If current local idx is top then local idx - 1 could
1401 // be a long/double that needs to be killed since top could
1402 // represent the 2nd half of the long/double.
1403 uint ideal = in(loc -1)->ideal_reg();
1404 if (ideal == Op_RegD || ideal == Op_RegL) {
1405 // set other (low index) half to top
1406 set_req(loc - 1, in(loc));
1407 }
1408 }
1409 set_req(loc, c);
1410 }
1411
1412 uint SafePointNode::size_of() const { return sizeof(*this); }
1413 bool SafePointNode::cmp( const Node &n ) const {
1424 }
1425 }
1426
1427
1428 //----------------------------next_exception-----------------------------------
1429 SafePointNode* SafePointNode::next_exception() const {
1430 if (len() == req()) {
1431 return nullptr;
1432 } else {
1433 Node* n = in(req());
1434 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1435 return (SafePointNode*) n;
1436 }
1437 }
1438
1439
1440 //------------------------------Ideal------------------------------------------
1441 // Skip over any collapsed Regions
1442 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1443 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1444 return remove_dead_region(phase, can_reshape) ? this : nullptr;
1445 }
1446
1447 //------------------------------Identity---------------------------------------
1448 // Remove obviously duplicate safepoints
1449 Node* SafePointNode::Identity(PhaseGVN* phase) {
1450
1451 // If you have back to back safepoints, remove one
1452 if (in(TypeFunc::Control)->is_SafePoint()) {
1453 Node* out_c = unique_ctrl_out_or_null();
1454 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1455 // outer loop's safepoint could confuse removal of the outer loop.
1456 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1457 return in(TypeFunc::Control);
1458 }
1459 }
1460
1461 // Transforming long counted loops requires a safepoint node. Do not
1462 // eliminate a safepoint until loop opts are over.
1463 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1464 Node *n0 = in(0)->in(0);
1578 }
1579
1580 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1581 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1582 int nb = igvn->C->root()->find_prec_edge(this);
1583 if (nb != -1) {
1584 igvn->delete_precedence_of(igvn->C->root(), nb);
1585 }
1586 }
1587
1588 //============== SafePointScalarObjectNode ==============
1589
1590 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1591 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1592 _first_index(first_index),
1593 _depth(depth),
1594 _n_fields(n_fields),
1595 _alloc(alloc)
1596 {
1597 #ifdef ASSERT
1598 if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1599 alloc->dump();
1600 assert(false, "unexpected call node");
1601 }
1602 #endif
1603 init_class_id(Class_SafePointScalarObject);
1604 }
1605
1606 // Do not allow value-numbering for SafePointScalarObject node.
1607 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1608 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1609 return (&n == this); // Always fail except on self
1610 }
1611
1612 uint SafePointScalarObjectNode::ideal_reg() const {
1613 return 0; // No matching to machine instruction
1614 }
1615
1616 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1617 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1618 }
1683 new_node = false;
1684 return (SafePointScalarMergeNode*)cached;
1685 }
1686 new_node = true;
1687 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1688 sosn_map->Insert((void*)this, (void*)res);
1689 return res;
1690 }
1691
1692 #ifndef PRODUCT
1693 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1694 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1695 }
1696 #endif
1697
1698 //=============================================================================
1699 uint AllocateNode::size_of() const { return sizeof(*this); }
1700
1701 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1702 Node *ctrl, Node *mem, Node *abio,
1703 Node *size, Node *klass_node, Node *initial_test)
1704 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1705 {
1706 init_class_id(Class_Allocate);
1707 init_flags(Flag_is_macro);
1708 _is_scalar_replaceable = false;
1709 _is_non_escaping = false;
1710 _is_allocation_MemBar_redundant = false;
1711 Node *topnode = C->top();
1712
1713 init_req( TypeFunc::Control , ctrl );
1714 init_req( TypeFunc::I_O , abio );
1715 init_req( TypeFunc::Memory , mem );
1716 init_req( TypeFunc::ReturnAdr, topnode );
1717 init_req( TypeFunc::FramePtr , topnode );
1718 init_req( AllocSize , size);
1719 init_req( KlassNode , klass_node);
1720 init_req( InitialTest , initial_test);
1721 init_req( ALength , topnode);
1722 init_req( ValidLengthTest , topnode);
1723 C->add_macro_node(this);
1724 }
1725
1726 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1727 {
1728 assert(initializer != nullptr && initializer->is_object_initializer(),
1729 "unexpected initializer method");
1730 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1731 if (analyzer == nullptr) {
1732 return;
1733 }
1734
1735 // Allocation node is first parameter in its initializer
1736 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1737 _is_allocation_MemBar_redundant = true;
1738 }
1739 }
1740 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {
1741 Node* mark_node = nullptr;
1742 if (UseCompactObjectHeaders) {
1743 Node* klass_node = in(AllocateNode::KlassNode);
1744 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1745 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1746 } else {
1747 // For now only enable fast locking for non-array types
1748 mark_node = phase->MakeConX(markWord::prototype().value());
1749 }
1750 return mark_node;
1751 }
1752
1753 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1754 // CastII, if appropriate. If we are not allowed to create new nodes, and
1755 // a CastII is appropriate, return null.
1756 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1757 Node *length = in(AllocateNode::ALength);
1758 assert(length != nullptr, "length is not null");
1759
1760 const TypeInt* length_type = phase->find_int_type(length);
1761 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1762
1763 if (ary_type != nullptr && length_type != nullptr) {
1764 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1765 if (narrow_length_type != length_type) {
1766 // Assert one of:
1767 // - the narrow_length is 0
1768 // - the narrow_length is not wider than length
1769 assert(narrow_length_type == TypeInt::ZERO ||
1770 (length_type->is_con() && narrow_length_type->is_con() &&
2126
2127 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2128 st->print("%s", _kind_names[_kind]);
2129 }
2130 #endif
2131
2132 //=============================================================================
2133 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2134
2135 // perform any generic optimizations first (returns 'this' or null)
2136 Node *result = SafePointNode::Ideal(phase, can_reshape);
2137 if (result != nullptr) return result;
2138 // Don't bother trying to transform a dead node
2139 if (in(0) && in(0)->is_top()) return nullptr;
2140
2141 // Now see if we can optimize away this lock. We don't actually
2142 // remove the locking here, we simply set the _eliminate flag which
2143 // prevents macro expansion from expanding the lock. Since we don't
2144 // modify the graph, the value returned from this function is the
2145 // one computed above.
2146 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2147 //
2148 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2149 //
2150 ConnectionGraph *cgr = phase->C->congraph();
2151 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2152 assert(!is_eliminated() || is_coarsened(), "sanity");
2153 // The lock could be marked eliminated by lock coarsening
2154 // code during first IGVN before EA. Replace coarsened flag
2155 // to eliminate all associated locks/unlocks.
2156 #ifdef ASSERT
2157 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2158 #endif
2159 this->set_non_esc_obj();
2160 return result;
2161 }
2162
2163 if (!phase->C->do_locks_coarsening()) {
2164 return result; // Compiling without locks coarsening
2165 }
2166 //
2327 }
2328
2329 //=============================================================================
2330 uint UnlockNode::size_of() const { return sizeof(*this); }
2331
2332 //=============================================================================
2333 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2334
2335 // perform any generic optimizations first (returns 'this' or null)
2336 Node *result = SafePointNode::Ideal(phase, can_reshape);
2337 if (result != nullptr) return result;
2338 // Don't bother trying to transform a dead node
2339 if (in(0) && in(0)->is_top()) return nullptr;
2340
2341 // Now see if we can optimize away this unlock. We don't actually
2342 // remove the unlocking here, we simply set the _eliminate flag which
2343 // prevents macro expansion from expanding the unlock. Since we don't
2344 // modify the graph, the value returned from this function is the
2345 // one computed above.
2346 // Escape state is defined after Parse phase.
2347 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2348 //
2349 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2350 //
2351 ConnectionGraph *cgr = phase->C->congraph();
2352 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2353 assert(!is_eliminated() || is_coarsened(), "sanity");
2354 // The lock could be marked eliminated by lock coarsening
2355 // code during first IGVN before EA. Replace coarsened flag
2356 // to eliminate all associated locks/unlocks.
2357 #ifdef ASSERT
2358 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2359 #endif
2360 this->set_non_esc_obj();
2361 }
2362 }
2363 return result;
2364 }
2365
2366 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2367 if (C == nullptr) {
2407 }
2408 // unrelated
2409 return false;
2410 }
2411
2412 if (dest_t->isa_aryptr()) {
2413 // arraycopy or array clone
2414 if (t_oop->isa_instptr()) {
2415 return false;
2416 }
2417 if (!t_oop->isa_aryptr()) {
2418 return true;
2419 }
2420
2421 const Type* elem = dest_t->is_aryptr()->elem();
2422 if (elem == Type::BOTTOM) {
2423 // An array but we don't know what elements are
2424 return true;
2425 }
2426
2427 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2428 uint dest_alias = phase->C->get_alias_index(dest_t);
2429 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2430
2431 return dest_alias == t_oop_alias;
2432 }
2433
2434 return true;
2435 }
|
1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "code/vmreg.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "compiler/oopMap.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "gc/shared/c2/barrierSetC2.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "opto/callGenerator.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/inlinetypenode.hpp"
40 #include "opto/locknode.hpp"
41 #include "opto/machnode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/memnode.hpp"
44 #include "opto/movenode.hpp"
45 #include "opto/parse.hpp"
46 #include "opto/regalloc.hpp"
47 #include "opto/regmask.hpp"
48 #include "opto/rootnode.hpp"
49 #include "opto/runtime.hpp"
50 #include "runtime/arguments.hpp"
51 #include "runtime/sharedRuntime.hpp"
52 #include "runtime/stubRoutines.hpp"
53 #include "utilities/powerOfTwo.hpp"
54
55 // Portions of code courtesy of Clifford Click
56
57 // Optimization - Graph Style
58
59 //=============================================================================
60 uint StartNode::size_of() const { return sizeof(*this); }
61 bool StartNode::cmp( const Node &n ) const
62 { return _domain == ((StartNode&)n)._domain; }
63 const Type *StartNode::bottom_type() const { return _domain; }
64 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
65 #ifndef PRODUCT
66 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
67 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
68 #endif
69
70 //------------------------------Ideal------------------------------------------
71 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
72 return remove_dead_region(phase, can_reshape) ? this : nullptr;
73 }
74
75 //------------------------------calling_convention-----------------------------
76 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
77 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
78 }
79
80 //------------------------------Registers--------------------------------------
81 const RegMask &StartNode::in_RegMask(uint) const {
82 return RegMask::EMPTY;
83 }
84
85 //------------------------------match------------------------------------------
86 // Construct projections for incoming parameters, and their RegMask info
87 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
88 switch (proj->_con) {
89 case TypeFunc::Control:
90 case TypeFunc::I_O:
91 case TypeFunc::Memory:
92 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
93 case TypeFunc::FramePtr:
94 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
95 case TypeFunc::ReturnAdr:
96 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
97 case TypeFunc::Parms:
98 default: {
99 uint parm_num = proj->_con - TypeFunc::Parms;
100 const Type *t = _domain->field_at(proj->_con);
101 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
102 return new ConNode(Type::TOP);
103 uint ideal_reg = t->ideal_reg();
104 RegMask &rm = match->_calling_convention_mask[parm_num];
105 return new MachProjNode(this,proj->_con,rm,ideal_reg);
106 }
107 }
108 return nullptr;
109 }
110
111 //=============================================================================
112 const char * const ParmNode::names[TypeFunc::Parms+1] = {
113 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
114 };
115
116 #ifndef PRODUCT
117 void ParmNode::dump_spec(outputStream *st) const {
118 if( _con < TypeFunc::Parms ) {
119 st->print("%s", names[_con]);
120 } else {
121 st->print("Parm%d: ",_con-TypeFunc::Parms);
122 // Verbose and WizardMode dump bottom_type for all nodes
123 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
124 }
125 }
126
127 void ParmNode::dump_compact_spec(outputStream *st) const {
128 if (_con < TypeFunc::Parms) {
129 st->print("%s", names[_con]);
130 } else {
478 if (cik->is_instance_klass()) {
479 cik->print_name_on(st);
480 iklass = cik->as_instance_klass();
481 } else if (cik->is_type_array_klass()) {
482 cik->as_array_klass()->base_element_type()->print_name_on(st);
483 st->print("[%d]", spobj->n_fields());
484 } else if (cik->is_obj_array_klass()) {
485 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
486 if (cie->is_instance_klass()) {
487 cie->print_name_on(st);
488 } else if (cie->is_type_array_klass()) {
489 cie->as_array_klass()->base_element_type()->print_name_on(st);
490 } else {
491 ShouldNotReachHere();
492 }
493 st->print("[%d]", spobj->n_fields());
494 int ndim = cik->as_array_klass()->dimension() - 1;
495 while (ndim-- > 0) {
496 st->print("[]");
497 }
498 } else {
499 assert(false, "unexpected type %s", cik->name()->as_utf8());
500 }
501 st->print("={");
502 uint nf = spobj->n_fields();
503 if (nf > 0) {
504 uint first_ind = spobj->first_index(mcall->jvms());
505 if (iklass != nullptr && iklass->is_inlinetype()) {
506 Node* null_marker = mcall->in(first_ind++);
507 if (!null_marker->is_top()) {
508 st->print(" [null marker");
509 format_helper(regalloc, st, null_marker, ":", -1, nullptr);
510 }
511 }
512 Node* fld_node = mcall->in(first_ind);
513 if (iklass != nullptr) {
514 st->print(" [");
515 iklass->nonstatic_field_at(0)->print_name_on(st);
516 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
517 } else {
518 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
519 }
520 for (uint j = 1; j < nf; j++) {
521 fld_node = mcall->in(first_ind+j);
522 if (iklass != nullptr) {
523 st->print(", [");
524 iklass->nonstatic_field_at(j)->print_name_on(st);
525 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
526 } else {
527 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
528 }
529 }
530 }
531 st->print(" }");
532 }
533 }
534 st->cr();
535 if (caller() != nullptr) caller()->format(regalloc, n, st);
536 }
537
538
539 void JVMState::dump_spec(outputStream *st) const {
540 if (_method != nullptr) {
541 bool printed = false;
542 if (!Verbose) {
543 // The JVMS dumps make really, really long lines.
544 // Take out the most boring parts, which are the package prefixes.
739 tf()->dump_on(st);
740 }
741 if (_cnt != COUNT_UNKNOWN) {
742 st->print(" C=%f", _cnt);
743 }
744 const Node* const klass_node = in(KlassNode);
745 if (klass_node != nullptr) {
746 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
747
748 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
749 st->print(" allocationKlass:");
750 klass_ptr->exact_klass()->print_name_on(st);
751 }
752 }
753 if (jvms() != nullptr) {
754 jvms()->dump_spec(st);
755 }
756 }
757 #endif
758
759 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
760 const Type* CallNode::Value(PhaseGVN* phase) const {
761 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
762 return Type::TOP;
763 }
764 return tf()->range_cc();
765 }
766
767 //------------------------------calling_convention-----------------------------
768 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
769 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
770 // The call to that stub is a special case: its inputs are
771 // multiple values returned from a call and so it should follow
772 // the return convention.
773 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
774 return;
775 }
776 // Use the standard compiler calling convention
777 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
778 }
779
780
781 //------------------------------match------------------------------------------
782 // Construct projections for control, I/O, memory-fields, ..., and
783 // return result(s) along with their RegMask info
784 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
785 uint con = proj->_con;
786 const TypeTuple* range_cc = tf()->range_cc();
787 if (con >= TypeFunc::Parms) {
788 if (tf()->returns_inline_type_as_fields()) {
789 // The call returns multiple values (inline type fields): we
790 // create one projection per returned value.
791 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
792 uint ideal_reg = range_cc->field_at(con)->ideal_reg();
793 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
794 } else {
795 if (con == TypeFunc::Parms) {
796 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
797 OptoRegPair regs = Opcode() == Op_CallLeafVector
798 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
799 : match->c_return_value(ideal_reg);
800 RegMask rm = RegMask(regs.first());
801
802 if (Opcode() == Op_CallLeafVector) {
803 // If the return is in vector, compute appropriate regmask taking into account the whole range
804 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
805 if(OptoReg::is_valid(regs.second())) {
806 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
807 rm.insert(r);
808 }
809 }
810 }
811 }
812
813 if (OptoReg::is_valid(regs.second())) {
814 rm.insert(regs.second());
815 }
816 return new MachProjNode(this,con,rm,ideal_reg);
817 } else {
818 assert(con == TypeFunc::Parms+1, "only one return value");
819 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
820 return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
821 }
822 }
823 }
824
825 switch (con) {
826 case TypeFunc::Control:
827 case TypeFunc::I_O:
828 case TypeFunc::Memory:
829 return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
830
831 case TypeFunc::ReturnAdr:
832 case TypeFunc::FramePtr:
833 default:
834 ShouldNotReachHere();
835 }
836 return nullptr;
837 }
838
839 // Do we Match on this edge index or not? Match no edges
840 uint CallNode::match_edge(uint idx) const {
841 return 0;
842 }
843
844 //
845 // Determine whether the call could modify the field of the specified
846 // instance at the specified offset.
847 //
848 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
849 assert((t_oop != nullptr), "sanity");
850 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
851 const TypeTuple* args = _tf->domain_sig();
852 Node* dest = nullptr;
853 // Stubs that can be called once an ArrayCopyNode is expanded have
854 // different signatures. Look for the second pointer argument,
855 // that is the destination of the copy.
856 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
857 if (args->field_at(i)->isa_ptr()) {
858 j++;
859 if (j == 2) {
860 dest = in(i);
861 break;
862 }
863 }
864 }
865 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
866 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
867 return true;
868 }
869 return false;
870 }
871 if (t_oop->is_known_instance()) {
880 Node* proj = proj_out_or_null(TypeFunc::Parms);
881 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
882 return false;
883 }
884 }
885 if (is_CallJava() && as_CallJava()->method() != nullptr) {
886 ciMethod* meth = as_CallJava()->method();
887 if (meth->is_getter()) {
888 return false;
889 }
890 // May modify (by reflection) if an boxing object is passed
891 // as argument or returned.
892 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
893 if (proj != nullptr) {
894 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
895 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
896 (inst_t->instance_klass() == boxing_klass))) {
897 return true;
898 }
899 }
900 const TypeTuple* d = tf()->domain_cc();
901 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
902 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
903 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
904 (inst_t->instance_klass() == boxing_klass))) {
905 return true;
906 }
907 }
908 return false;
909 }
910 }
911 return true;
912 }
913
914 // Does this call have a direct reference to n other than debug information?
915 bool CallNode::has_non_debug_use(Node* n) {
916 const TypeTuple* d = tf()->domain_cc();
917 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
918 if (in(i) == n) {
919 return true;
920 }
921 }
922 return false;
923 }
924
925 bool CallNode::has_debug_use(Node* n) {
926 if (jvms() != nullptr) {
927 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
928 if (in(i) == n) {
929 return true;
930 }
931 }
932 }
933 return false;
934 }
935
936 // Returns the unique CheckCastPP of a call
937 // or 'this' if there are several CheckCastPP or unexpected uses
938 // or returns null if there is no one.
939 Node *CallNode::result_cast() {
940 Node *cast = nullptr;
941
942 Node *p = proj_out_or_null(TypeFunc::Parms);
943 if (p == nullptr)
944 return nullptr;
945
946 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
947 Node *use = p->fast_out(i);
948 if (use->is_CheckCastPP()) {
949 if (cast != nullptr) {
950 return this; // more than 1 CheckCastPP
951 }
952 cast = use;
953 } else if (!use->is_Initialize() &&
954 !use->is_AddP() &&
955 use->Opcode() != Op_MemBarStoreStore) {
956 // Expected uses are restricted to a CheckCastPP, an Initialize
957 // node, a MemBarStoreStore (clone) and AddP nodes. If we
958 // encounter any other use (a Phi node can be seen in rare
959 // cases) return this to prevent incorrect optimizations.
960 return this;
961 }
962 }
963 return cast;
964 }
965
966
967 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
968 uint max_res = TypeFunc::Parms-1;
969 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
970 ProjNode *pn = fast_out(i)->as_Proj();
971 max_res = MAX2(max_res, pn->_con);
972 }
973
974 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
975
976 uint projs_size = sizeof(CallProjections);
977 if (max_res > TypeFunc::Parms) {
978 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
979 }
980 char* projs_storage = resource_allocate_bytes(projs_size);
981 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
982
983 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
984 ProjNode *pn = fast_out(i)->as_Proj();
985 if (pn->outcnt() == 0) continue;
986 switch (pn->_con) {
987 case TypeFunc::Control:
988 {
989 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
990 projs->fallthrough_proj = pn;
991 const Node* cn = pn->unique_ctrl_out_or_null();
992 if (cn != nullptr && cn->is_Catch()) {
993 ProjNode *cpn = nullptr;
994 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
995 cpn = cn->fast_out(k)->as_Proj();
996 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
997 if (cpn->_con == CatchProjNode::fall_through_index)
998 projs->fallthrough_catchproj = cpn;
999 else {
1000 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1001 projs->catchall_catchproj = cpn;
1007 case TypeFunc::I_O:
1008 if (pn->_is_io_use)
1009 projs->catchall_ioproj = pn;
1010 else
1011 projs->fallthrough_ioproj = pn;
1012 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1013 Node* e = pn->out(j);
1014 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1015 assert(projs->exobj == nullptr, "only one");
1016 projs->exobj = e;
1017 }
1018 }
1019 break;
1020 case TypeFunc::Memory:
1021 if (pn->_is_io_use)
1022 projs->catchall_memproj = pn;
1023 else
1024 projs->fallthrough_memproj = pn;
1025 break;
1026 case TypeFunc::Parms:
1027 projs->resproj[0] = pn;
1028 break;
1029 default:
1030 assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1031 projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1032 break;
1033 }
1034 }
1035
1036 // The resproj may not exist because the result could be ignored
1037 // and the exception object may not exist if an exception handler
1038 // swallows the exception but all the other must exist and be found.
1039 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1040 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found");
1041 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1042 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1043 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1044 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1045 if (separate_io_proj) {
1046 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1047 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1048 }
1049 return projs;
1050 }
1051
1052 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1053 #ifdef ASSERT
1054 // Validate attached generator
1055 CallGenerator* cg = generator();
1056 if (cg != nullptr) {
1057 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1058 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1059 }
1060 #endif // ASSERT
1061 return SafePointNode::Ideal(phase, can_reshape);
1062 }
1063
1064 bool CallNode::is_call_to_arraycopystub() const {
1065 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1066 return true;
1067 }
1068 return false;
1069 }
1070
1071 bool CallNode::is_call_to_multianewarray_stub() const {
1072 if (_name != nullptr &&
1073 strstr(_name, "multianewarray") != nullptr &&
1074 strstr(_name, "C2 runtime") != nullptr) {
1075 return true;
1076 }
1077 return false;
1078 }
1079
1080 //=============================================================================
1081 uint CallJavaNode::size_of() const { return sizeof(*this); }
1082 bool CallJavaNode::cmp( const Node &n ) const {
1083 CallJavaNode &call = (CallJavaNode&)n;
1084 return CallNode::cmp(call) && _method == call._method &&
1085 _override_symbolic_info == call._override_symbolic_info;
1086 }
1087
1088 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1089 // Copy debug information and adjust JVMState information
1090 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1091 uint new_dbg_start = tf()->domain_sig()->cnt();
1092 int jvms_adj = new_dbg_start - old_dbg_start;
1093 assert (new_dbg_start == req(), "argument count mismatch");
1094 Compile* C = phase->C;
1095
1096 // SafePointScalarObject node could be referenced several times in debug info.
1097 // Use Dict to record cloned nodes.
1098 Dict* sosn_map = new Dict(cmpkey,hashkey);
1099 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1100 Node* old_in = sfpt->in(i);
1101 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1102 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1103 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1104 bool new_node;
1105 Node* new_in = old_sosn->clone(sosn_map, new_node);
1106 if (new_node) { // New node?
1107 new_in->set_req(0, C->root()); // reset control edge
1108 new_in = phase->transform(new_in); // Register new node.
1109 }
1110 old_in = new_in;
1111 }
1112 add_req(old_in);
1113 }
1114
1115 // JVMS may be shared so clone it before we modify it
1116 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1117 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1118 jvms->set_map(this);
1119 jvms->set_locoff(jvms->locoff()+jvms_adj);
1120 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1121 jvms->set_monoff(jvms->monoff()+jvms_adj);
1122 jvms->set_scloff(jvms->scloff()+jvms_adj);
1123 jvms->set_endoff(jvms->endoff()+jvms_adj);
1124 }
1125 }
1126
1127 #ifdef ASSERT
1128 bool CallJavaNode::validate_symbolic_info() const {
1129 if (method() == nullptr) {
1130 return true; // call into runtime or uncommon trap
1131 }
1132 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1133 if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1134 return true;
1135 }
1136 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1137 ciMethod* callee = method();
1138 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1139 assert(override_symbolic_info(), "should be set");
1140 }
1141 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1142 return true;
1143 }
1144 #endif
1145
1146 #ifndef PRODUCT
1147 void CallJavaNode::dump_spec(outputStream* st) const {
1148 if( _method ) _method->print_short_name(st);
1149 CallNode::dump_spec(st);
1150 }
1151
1152 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1153 if (_method) {
1154 _method->print_short_name(st);
1155 } else {
1158 }
1159 #endif
1160
1161 void CallJavaNode::register_for_late_inline() {
1162 if (generator() != nullptr) {
1163 Compile::current()->prepend_late_inline(generator());
1164 set_generator(nullptr);
1165 } else {
1166 assert(false, "repeated inline attempt");
1167 }
1168 }
1169
1170 //=============================================================================
1171 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1172 bool CallStaticJavaNode::cmp( const Node &n ) const {
1173 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1174 return CallJavaNode::cmp(call);
1175 }
1176
1177 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1178 if (can_reshape && uncommon_trap_request() != 0) {
1179 PhaseIterGVN* igvn = phase->is_IterGVN();
1180 if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1181 if (!control()->is_Region()) {
1182 igvn->replace_input_of(this, 0, phase->C->top());
1183 }
1184 return this;
1185 }
1186 }
1187
1188 // Try to replace the runtime call to the substitutability test emitted by acmp if we can reason
1189 // about the operands
1190 if (can_reshape && !control()->is_top() && method() != nullptr &&
1191 method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1192 method()->name() == ciSymbols::isSubstitutable_name()) {
1193 Node* res = replace_is_substitutable(phase->is_IterGVN());
1194 if (res != nullptr) {
1195 return res;
1196 }
1197 }
1198
1199 CallGenerator* cg = generator();
1200 if (can_reshape && cg != nullptr) {
1201 if (cg->is_mh_late_inline()) {
1202 assert(IncrementalInlineMH, "required");
1203 assert(cg->call_node() == this, "mismatch");
1204 assert(cg->method()->is_method_handle_intrinsic(), "required");
1205
1206 // Check whether this MH handle call becomes a candidate for inlining.
1207 ciMethod* callee = cg->method();
1208 vmIntrinsics::ID iid = callee->intrinsic_id();
1209 if (iid == vmIntrinsics::_invokeBasic) {
1210 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1211 register_for_late_inline();
1212 }
1213 } else if (iid == vmIntrinsics::_linkToNative) {
1214 // never retry
1215 } else {
1216 assert(callee->has_member_arg(), "wrong type of call?");
1217 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1218 register_for_late_inline();
1239
1240 //----------------------------uncommon_trap_request----------------------------
1241 // If this is an uncommon trap, return the request code, else zero.
1242 int CallStaticJavaNode::uncommon_trap_request() const {
1243 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1244 }
1245 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1246 #ifndef PRODUCT
1247 if (!(call->req() > TypeFunc::Parms &&
1248 call->in(TypeFunc::Parms) != nullptr &&
1249 call->in(TypeFunc::Parms)->is_Con() &&
1250 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1251 assert(in_dump() != 0, "OK if dumping");
1252 tty->print("[bad uncommon trap]");
1253 return 0;
1254 }
1255 #endif
1256 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1257 }
1258
1259 // Split if can cause the flat array branch of an array load with unknown type (see
1260 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1261 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1262 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1263 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1264 return false;
1265 }
1266 if (ctl->is_Region()) {
1267 bool res = false;
1268 for (uint i = 1; i < ctl->req(); i++) {
1269 MergeMemNode* mm = mem->clone()->as_MergeMem();
1270 for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1271 Node* m = mms.memory();
1272 if (m->is_Phi() && m->in(0) == ctl) {
1273 mms.set_memory(m->in(i));
1274 }
1275 }
1276 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1277 res = true;
1278 if (!ctl->in(i)->is_Region()) {
1279 igvn->replace_input_of(ctl, i, igvn->C->top());
1280 }
1281 }
1282 igvn->remove_dead_node(mm);
1283 }
1284 return res;
1285 }
1286 // Verify the control flow is ok
1287 Node* call = ctl;
1288 MemBarNode* membar = nullptr;
1289 for (;;) {
1290 if (call == nullptr || call->is_top()) {
1291 return false;
1292 }
1293 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1294 call = call->in(0);
1295 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1296 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1297 // If there is no explicit flat array accesses in the compilation unit, there would be no
1298 // membar here
1299 if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1300 membar = call->in(0)->in(0)->as_MemBar();
1301 }
1302 break;
1303 } else {
1304 return false;
1305 }
1306 }
1307
1308 JVMState* jvms = call->jvms();
1309 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1310 return false;
1311 }
1312
1313 Node* call_mem = call->in(TypeFunc::Memory);
1314 if (call_mem == nullptr || call_mem->is_top()) {
1315 return false;
1316 }
1317 if (!call_mem->is_MergeMem()) {
1318 call_mem = MergeMemNode::make(call_mem);
1319 igvn->register_new_node_with_optimizer(call_mem);
1320 }
1321
1322 // Verify that there's no unexpected side effect
1323 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1324 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1325 Node* m2 = mms2.memory2();
1326
1327 for (uint i = 0; i < 100; i++) {
1328 if (m1 == m2) {
1329 break;
1330 } else if (m1->is_Proj()) {
1331 m1 = m1->in(0);
1332 } else if (m1->is_MemBar()) {
1333 m1 = m1->in(TypeFunc::Memory);
1334 } else if (m1->Opcode() == Op_CallStaticJava &&
1335 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1336 if (m1 != call) {
1337 return false;
1338 }
1339 break;
1340 } else if (m1->is_MergeMem()) {
1341 MergeMemNode* mm = m1->as_MergeMem();
1342 int idx = mms2.alias_idx();
1343 if (idx == Compile::AliasIdxBot) {
1344 m1 = mm->base_memory();
1345 } else {
1346 m1 = mm->memory_at(idx);
1347 }
1348 } else {
1349 return false;
1350 }
1351 }
1352 }
1353 if (call_mem->outcnt() == 0) {
1354 igvn->remove_dead_node(call_mem);
1355 }
1356
1357 // Remove membar preceding the call
1358 if (membar != nullptr) {
1359 membar->remove(igvn);
1360 }
1361
1362 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1363 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1364 unc->init_req(TypeFunc::Control, call->in(0));
1365 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1366 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1367 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
1368 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1369 unc->init_req(TypeFunc::Parms+0, unc_arg);
1370 unc->set_cnt(PROB_UNLIKELY_MAG(4));
1371 unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1372
1373 // Replace the call with an uncommon trap
1374 igvn->replace_input_of(call, 0, igvn->C->top());
1375
1376 igvn->register_new_node_with_optimizer(unc);
1377
1378 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1379 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1380 igvn->add_input_to(igvn->C->root(), halt);
1381
1382 return true;
1383 }
1384
1385 // Try to replace a runtime call to the substitutability test by either a simple pointer comparison
1386 // if either operand is not a value object, or comparing their fields if either operand is an
1387 // object of a known value type
1388 Node* CallStaticJavaNode::replace_is_substitutable(PhaseIterGVN* igvn) {
1389 // Delay IGVN during macro expansion
1390 assert(!igvn->delay_transform(), "must not delay during Ideal");
1391 igvn->set_delay_transform(true);
1392
1393 // Prepare to inline, clone the jvms
1394 JVMState* jvms = this->jvms()->clone_shallow(igvn->C);
1395 assert(jvms->map()->next_exception() == nullptr, "this call does not throw");
1396 SafePointNode* map = new SafePointNode(req(), jvms);
1397 igvn->register_new_node_with_optimizer(map);
1398 for (uint i = 0; i < req(); i++) {
1399 map->init_req(i, in(i));
1400 }
1401 MergeMemNode* mem = MergeMemNode::make(map->memory());
1402 igvn->register_new_node_with_optimizer(mem);
1403 map->set_memory(mem);
1404 jvms->set_map(map);
1405 GraphKit kit(jvms, igvn);
1406
1407 Node* left = in(TypeFunc::Parms);
1408 Node* right = in(TypeFunc::Parms + 1);
1409 Node* replace = InlineTypeNode::emit_substitutability_check(&kit, left, right);
1410 igvn->set_delay_transform(false);
1411 if (replace == nullptr) {
1412 return nullptr;
1413 }
1414
1415 // Kill exception projections and return a tuple that will replace the call
1416 CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1417 if (projs->fallthrough_catchproj != nullptr) {
1418 igvn->replace_node(projs->fallthrough_catchproj, kit.control());
1419 }
1420 if (projs->catchall_memproj != nullptr) {
1421 igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1422 }
1423 if (projs->catchall_ioproj != nullptr) {
1424 igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1425 }
1426 if (projs->catchall_catchproj != nullptr) {
1427 igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1428 }
1429 return TupleNode::make(tf()->range_cc(), igvn->C->top(), kit.i_o(), kit.reset_memory(), kit.frameptr(), kit.returnadr(), replace);
1430 }
1431
1432 #ifndef PRODUCT
1433 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1434 st->print("# Static ");
1435 if (_name != nullptr) {
1436 st->print("%s", _name);
1437 int trap_req = uncommon_trap_request();
1438 if (trap_req != 0) {
1439 char buf[100];
1440 st->print("(%s)",
1441 Deoptimization::format_trap_request(buf, sizeof(buf),
1442 trap_req));
1443 }
1444 st->print(" ");
1445 }
1446 CallJavaNode::dump_spec(st);
1447 }
1448
1449 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1450 if (_method) {
1451 _method->print_short_name(st);
1527 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1528 bool CallRuntimeNode::cmp( const Node &n ) const {
1529 CallRuntimeNode &call = (CallRuntimeNode&)n;
1530 return CallNode::cmp(call) && !strcmp(_name,call._name);
1531 }
1532 #ifndef PRODUCT
1533 void CallRuntimeNode::dump_spec(outputStream *st) const {
1534 st->print("# ");
1535 st->print("%s", _name);
1536 CallNode::dump_spec(st);
1537 }
1538 #endif
1539 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1540 bool CallLeafVectorNode::cmp( const Node &n ) const {
1541 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1542 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1543 }
1544
1545 //------------------------------calling_convention-----------------------------
1546 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1547 if (_entry_point == nullptr) {
1548 // The call to that stub is a special case: its inputs are
1549 // multiple values returned from a call and so it should follow
1550 // the return convention.
1551 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1552 return;
1553 }
1554 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1555 }
1556
1557 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1558 #ifdef ASSERT
1559 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1560 "return vector size must match");
1561 const TypeTuple* d = tf()->domain_sig();
1562 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1563 Node* arg = in(i);
1564 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1565 "vector argument size must match");
1566 }
1567 #endif
1568
1569 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1570 }
1571
1572 //=============================================================================
1573 //------------------------------calling_convention-----------------------------
1574
1575
1576 //=============================================================================
1577 bool CallLeafPureNode::is_unused() const {
1578 return proj_out_or_null(TypeFunc::Parms) == nullptr;
1579 }
1580
1581 bool CallLeafPureNode::is_dead() const {
1582 return proj_out_or_null(TypeFunc::Control) == nullptr;
1583 }
1584
1585 /* We make a tuple of the global input state + TOP for the output values.
1586 * We use this to delete a pure function that is not used: by replacing the call with
1587 * such a tuple, we let output Proj's idealization pick the corresponding input of the
1588 * pure call, so jumping over it, and effectively, removing the call from the graph.
1589 * This avoids doing the graph surgery manually, but leaves that to IGVN
1590 * that is specialized for doing that right. We need also tuple components for output
1591 * values of the function to respect the return arity, and in case there is a projection
1592 * that would pick an output (which shouldn't happen at the moment).
1593 */
1594 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1595 // Transparently propagate input state but parameters
1596 TupleNode* tuple = TupleNode::make(
1597 tf()->range_cc(),
1598 in(TypeFunc::Control),
1599 in(TypeFunc::I_O),
1600 in(TypeFunc::Memory),
1601 in(TypeFunc::FramePtr),
1602 in(TypeFunc::ReturnAdr));
1603
1604 // And add TOPs for the return values
1605 for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1606 tuple->set_req(i, C->top());
1607 }
1608
1609 return tuple;
1610 }
1611
1612 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1613 if (is_dead()) {
1614 return nullptr;
1615 }
1616
1617 // We need to wait until IGVN because during parsing, usages might still be missing
1618 // and we would remove the call immediately.
1619 if (can_reshape && is_unused()) {
1620 // The result is not used. We remove the call by replacing it with a tuple, that
1621 // is later disintegrated by the projections.
1622 return make_tuple_of_input_state_and_top_return_values(phase->C);
1623 }
1624
1625 return CallRuntimeNode::Ideal(phase, can_reshape);
1626 }
1627
1628 #ifndef PRODUCT
1629 void CallLeafNode::dump_spec(outputStream *st) const {
1630 st->print("# ");
1631 st->print("%s", _name);
1632 CallNode::dump_spec(st);
1633 }
1634 #endif
1635
1636 uint CallLeafNoFPNode::match_edge(uint idx) const {
1637 // Null entry point is a special case for which the target is in a
1638 // register. Need to match that edge.
1639 return entry_point() == nullptr && idx == TypeFunc::Parms;
1640 }
1641
1642 //=============================================================================
1643
1644 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1645 assert(verify_jvms(jvms), "jvms must match");
1646 int loc = jvms->locoff() + idx;
1647 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1648 // If current local idx is top then local idx - 1 could
1649 // be a long/double that needs to be killed since top could
1650 // represent the 2nd half of the long/double.
1651 uint ideal = in(loc -1)->ideal_reg();
1652 if (ideal == Op_RegD || ideal == Op_RegL) {
1653 // set other (low index) half to top
1654 set_req(loc - 1, in(loc));
1655 }
1656 }
1657 set_req(loc, c);
1658 }
1659
1660 uint SafePointNode::size_of() const { return sizeof(*this); }
1661 bool SafePointNode::cmp( const Node &n ) const {
1672 }
1673 }
1674
1675
1676 //----------------------------next_exception-----------------------------------
1677 SafePointNode* SafePointNode::next_exception() const {
1678 if (len() == req()) {
1679 return nullptr;
1680 } else {
1681 Node* n = in(req());
1682 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1683 return (SafePointNode*) n;
1684 }
1685 }
1686
1687
1688 //------------------------------Ideal------------------------------------------
1689 // Skip over any collapsed Regions
1690 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1691 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1692 if (remove_dead_region(phase, can_reshape)) {
1693 return this;
1694 }
1695 // Scalarize inline types in safepoint debug info.
1696 // Delay this until all inlining is over to avoid getting inconsistent debug info.
1697 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1698 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1699 Node* n = in(i)->uncast();
1700 if (n->is_InlineType()) {
1701 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1702 }
1703 }
1704 }
1705 return nullptr;
1706 }
1707
1708 //------------------------------Identity---------------------------------------
1709 // Remove obviously duplicate safepoints
1710 Node* SafePointNode::Identity(PhaseGVN* phase) {
1711
1712 // If you have back to back safepoints, remove one
1713 if (in(TypeFunc::Control)->is_SafePoint()) {
1714 Node* out_c = unique_ctrl_out_or_null();
1715 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1716 // outer loop's safepoint could confuse removal of the outer loop.
1717 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1718 return in(TypeFunc::Control);
1719 }
1720 }
1721
1722 // Transforming long counted loops requires a safepoint node. Do not
1723 // eliminate a safepoint until loop opts are over.
1724 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1725 Node *n0 = in(0)->in(0);
1839 }
1840
1841 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1842 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1843 int nb = igvn->C->root()->find_prec_edge(this);
1844 if (nb != -1) {
1845 igvn->delete_precedence_of(igvn->C->root(), nb);
1846 }
1847 }
1848
1849 //============== SafePointScalarObjectNode ==============
1850
1851 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1852 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1853 _first_index(first_index),
1854 _depth(depth),
1855 _n_fields(n_fields),
1856 _alloc(alloc)
1857 {
1858 #ifdef ASSERT
1859 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1860 alloc->dump();
1861 assert(false, "unexpected call node");
1862 }
1863 #endif
1864 init_class_id(Class_SafePointScalarObject);
1865 }
1866
1867 // Do not allow value-numbering for SafePointScalarObject node.
1868 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1869 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1870 return (&n == this); // Always fail except on self
1871 }
1872
1873 uint SafePointScalarObjectNode::ideal_reg() const {
1874 return 0; // No matching to machine instruction
1875 }
1876
1877 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1878 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1879 }
1944 new_node = false;
1945 return (SafePointScalarMergeNode*)cached;
1946 }
1947 new_node = true;
1948 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1949 sosn_map->Insert((void*)this, (void*)res);
1950 return res;
1951 }
1952
1953 #ifndef PRODUCT
1954 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1955 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1956 }
1957 #endif
1958
1959 //=============================================================================
1960 uint AllocateNode::size_of() const { return sizeof(*this); }
1961
1962 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1963 Node *ctrl, Node *mem, Node *abio,
1964 Node *size, Node *klass_node,
1965 Node* initial_test,
1966 InlineTypeNode* inline_type_node)
1967 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1968 {
1969 init_class_id(Class_Allocate);
1970 init_flags(Flag_is_macro);
1971 _is_scalar_replaceable = false;
1972 _is_non_escaping = false;
1973 _is_allocation_MemBar_redundant = false;
1974 _larval = false;
1975 Node *topnode = C->top();
1976
1977 init_req( TypeFunc::Control , ctrl );
1978 init_req( TypeFunc::I_O , abio );
1979 init_req( TypeFunc::Memory , mem );
1980 init_req( TypeFunc::ReturnAdr, topnode );
1981 init_req( TypeFunc::FramePtr , topnode );
1982 init_req( AllocSize , size);
1983 init_req( KlassNode , klass_node);
1984 init_req( InitialTest , initial_test);
1985 init_req( ALength , topnode);
1986 init_req( ValidLengthTest , topnode);
1987 init_req( InlineType , inline_type_node);
1988 // DefaultValue defaults to nullptr
1989 // RawDefaultValue defaults to nullptr
1990 C->add_macro_node(this);
1991 }
1992
1993 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1994 {
1995 assert(initializer != nullptr &&
1996 (initializer->is_object_constructor() || initializer->is_class_initializer()),
1997 "unexpected initializer method");
1998 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1999 if (analyzer == nullptr) {
2000 return;
2001 }
2002
2003 // Allocation node is first parameter in its initializer
2004 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
2005 _is_allocation_MemBar_redundant = true;
2006 }
2007 }
2008
2009 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
2010 Node* mark_node = nullptr;
2011 if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2012 Node* klass_node = in(AllocateNode::KlassNode);
2013 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2014 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2015 if (Arguments::is_valhalla_enabled()) {
2016 mark_node = phase->transform(mark_node);
2017 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2018 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2019 }
2020 return mark_node;
2021 } else {
2022 return phase->MakeConX(markWord::prototype().value());
2023 }
2024 }
2025
2026 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2027 // CastII, if appropriate. If we are not allowed to create new nodes, and
2028 // a CastII is appropriate, return null.
2029 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2030 Node *length = in(AllocateNode::ALength);
2031 assert(length != nullptr, "length is not null");
2032
2033 const TypeInt* length_type = phase->find_int_type(length);
2034 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2035
2036 if (ary_type != nullptr && length_type != nullptr) {
2037 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2038 if (narrow_length_type != length_type) {
2039 // Assert one of:
2040 // - the narrow_length is 0
2041 // - the narrow_length is not wider than length
2042 assert(narrow_length_type == TypeInt::ZERO ||
2043 (length_type->is_con() && narrow_length_type->is_con() &&
2399
2400 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2401 st->print("%s", _kind_names[_kind]);
2402 }
2403 #endif
2404
2405 //=============================================================================
2406 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2407
2408 // perform any generic optimizations first (returns 'this' or null)
2409 Node *result = SafePointNode::Ideal(phase, can_reshape);
2410 if (result != nullptr) return result;
2411 // Don't bother trying to transform a dead node
2412 if (in(0) && in(0)->is_top()) return nullptr;
2413
2414 // Now see if we can optimize away this lock. We don't actually
2415 // remove the locking here, we simply set the _eliminate flag which
2416 // prevents macro expansion from expanding the lock. Since we don't
2417 // modify the graph, the value returned from this function is the
2418 // one computed above.
2419 const Type* obj_type = phase->type(obj_node());
2420 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2421 //
2422 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2423 //
2424 ConnectionGraph *cgr = phase->C->congraph();
2425 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2426 assert(!is_eliminated() || is_coarsened(), "sanity");
2427 // The lock could be marked eliminated by lock coarsening
2428 // code during first IGVN before EA. Replace coarsened flag
2429 // to eliminate all associated locks/unlocks.
2430 #ifdef ASSERT
2431 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2432 #endif
2433 this->set_non_esc_obj();
2434 return result;
2435 }
2436
2437 if (!phase->C->do_locks_coarsening()) {
2438 return result; // Compiling without locks coarsening
2439 }
2440 //
2601 }
2602
2603 //=============================================================================
2604 uint UnlockNode::size_of() const { return sizeof(*this); }
2605
2606 //=============================================================================
2607 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2608
2609 // perform any generic optimizations first (returns 'this' or null)
2610 Node *result = SafePointNode::Ideal(phase, can_reshape);
2611 if (result != nullptr) return result;
2612 // Don't bother trying to transform a dead node
2613 if (in(0) && in(0)->is_top()) return nullptr;
2614
2615 // Now see if we can optimize away this unlock. We don't actually
2616 // remove the unlocking here, we simply set the _eliminate flag which
2617 // prevents macro expansion from expanding the unlock. Since we don't
2618 // modify the graph, the value returned from this function is the
2619 // one computed above.
2620 // Escape state is defined after Parse phase.
2621 const Type* obj_type = phase->type(obj_node());
2622 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2623 //
2624 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2625 //
2626 ConnectionGraph *cgr = phase->C->congraph();
2627 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2628 assert(!is_eliminated() || is_coarsened(), "sanity");
2629 // The lock could be marked eliminated by lock coarsening
2630 // code during first IGVN before EA. Replace coarsened flag
2631 // to eliminate all associated locks/unlocks.
2632 #ifdef ASSERT
2633 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2634 #endif
2635 this->set_non_esc_obj();
2636 }
2637 }
2638 return result;
2639 }
2640
2641 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2642 if (C == nullptr) {
2682 }
2683 // unrelated
2684 return false;
2685 }
2686
2687 if (dest_t->isa_aryptr()) {
2688 // arraycopy or array clone
2689 if (t_oop->isa_instptr()) {
2690 return false;
2691 }
2692 if (!t_oop->isa_aryptr()) {
2693 return true;
2694 }
2695
2696 const Type* elem = dest_t->is_aryptr()->elem();
2697 if (elem == Type::BOTTOM) {
2698 // An array but we don't know what elements are
2699 return true;
2700 }
2701
2702 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2703 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2704 uint dest_alias = phase->C->get_alias_index(dest_t);
2705 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2706
2707 return dest_alias == t_oop_alias;
2708 }
2709
2710 return true;
2711 }
|