< prev index next >

src/hotspot/share/opto/callnode.cpp

Print this page

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"

  27 #include "ci/bcEscapeAnalyzer.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/escape.hpp"

  37 #include "opto/locknode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/parse.hpp"
  41 #include "opto/regalloc.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/sharedRuntime.hpp"

  46 #include "utilities/powerOfTwo.hpp"
  47 #include "code/vmreg.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 //=============================================================================
  54 uint StartNode::size_of() const { return sizeof(*this); }
  55 bool StartNode::cmp( const Node &n ) const
  56 { return _domain == ((StartNode&)n)._domain; }
  57 const Type *StartNode::bottom_type() const { return _domain; }
  58 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  59 #ifndef PRODUCT
  60 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  61 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  62 #endif
  63 
  64 //------------------------------Ideal------------------------------------------
  65 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  66   return remove_dead_region(phase, can_reshape) ? this : NULL;
  67 }
  68 
  69 //------------------------------calling_convention-----------------------------
  70 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  71   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  72 }
  73 
  74 //------------------------------Registers--------------------------------------
  75 const RegMask &StartNode::in_RegMask(uint) const {
  76   return RegMask::Empty;
  77 }
  78 
  79 //------------------------------match------------------------------------------
  80 // Construct projections for incoming parameters, and their RegMask info
  81 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  82   switch (proj->_con) {
  83   case TypeFunc::Control:
  84   case TypeFunc::I_O:
  85   case TypeFunc::Memory:
  86     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  87   case TypeFunc::FramePtr:
  88     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  89   case TypeFunc::ReturnAdr:
  90     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  91   case TypeFunc::Parms:
  92   default: {
  93       uint parm_num = proj->_con - TypeFunc::Parms;
  94       const Type *t = _domain->field_at(proj->_con);
  95       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  96         return new ConNode(Type::TOP);
  97       uint ideal_reg = t->ideal_reg();
  98       RegMask &rm = match->_calling_convention_mask[parm_num];
  99       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 100     }
 101   }
 102   return NULL;
 103 }
 104 
 105 //------------------------------StartOSRNode----------------------------------
 106 // The method start node for an on stack replacement adapter
 107 
 108 //------------------------------osr_domain-----------------------------
 109 const TypeTuple *StartOSRNode::osr_domain() {
 110   const Type **fields = TypeTuple::fields(2);
 111   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 112 
 113   return TypeTuple::make(TypeFunc::Parms+1, fields);
 114 }
 115 
 116 //=============================================================================
 117 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 118   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 119 };
 120 
 121 #ifndef PRODUCT
 122 void ParmNode::dump_spec(outputStream *st) const {
 123   if( _con < TypeFunc::Parms ) {
 124     st->print("%s", names[_con]);
 125   } else {
 126     st->print("Parm%d: ",_con-TypeFunc::Parms);
 127     // Verbose and WizardMode dump bottom_type for all nodes
 128     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 129   }
 130 }
 131 
 132 void ParmNode::dump_compact_spec(outputStream *st) const {
 133   if (_con < TypeFunc::Parms) {
 134     st->print("%s", names[_con]);
 135   } else {

 481       if (cik->is_instance_klass()) {
 482         cik->print_name_on(st);
 483         iklass = cik->as_instance_klass();
 484       } else if (cik->is_type_array_klass()) {
 485         cik->as_array_klass()->base_element_type()->print_name_on(st);
 486         st->print("[%d]", spobj->n_fields());
 487       } else if (cik->is_obj_array_klass()) {
 488         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 489         if (cie->is_instance_klass()) {
 490           cie->print_name_on(st);
 491         } else if (cie->is_type_array_klass()) {
 492           cie->as_array_klass()->base_element_type()->print_name_on(st);
 493         } else {
 494           ShouldNotReachHere();
 495         }
 496         st->print("[%d]", spobj->n_fields());
 497         int ndim = cik->as_array_klass()->dimension() - 1;
 498         while (ndim-- > 0) {
 499           st->print("[]");
 500         }








 501       }
 502       st->print("={");
 503       uint nf = spobj->n_fields();
 504       if (nf > 0) {
 505         uint first_ind = spobj->first_index(mcall->jvms());







 506         Node* fld_node = mcall->in(first_ind);
 507         ciField* cifield;
 508         if (iklass != NULL) {
 509           st->print(" [");
 510           cifield = iklass->nonstatic_field_at(0);
 511           cifield->print_name_on(st);
 512           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 513         } else {
 514           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 515         }
 516         for (uint j = 1; j < nf; j++) {
 517           fld_node = mcall->in(first_ind+j);
 518           if (iklass != NULL) {
 519             st->print(", [");
 520             cifield = iklass->nonstatic_field_at(j);
 521             cifield->print_name_on(st);
 522             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 523           } else {
 524             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 525           }

 699     if (i == TypeFunc::Parms) st->print("(");
 700     Node* p = in(i);
 701     if (p != nullptr) {
 702       p->dump_idx(false, st, dc);
 703       st->print(" ");
 704     } else {
 705       st->print("_ ");
 706     }
 707   }
 708   st->print(")");
 709 }
 710 
 711 void CallNode::dump_spec(outputStream *st) const {
 712   st->print(" ");
 713   if (tf() != NULL)  tf()->dump_on(st);
 714   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 715   if (jvms() != NULL)  jvms()->dump_spec(st);
 716 }
 717 #endif
 718 
 719 const Type *CallNode::bottom_type() const { return tf()->range(); }
 720 const Type* CallNode::Value(PhaseGVN* phase) const {
 721   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 722   return tf()->range();


 723 }
 724 
 725 //------------------------------calling_convention-----------------------------
 726 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







 727   // Use the standard compiler calling convention
 728   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 729 }
 730 
 731 
 732 //------------------------------match------------------------------------------
 733 // Construct projections for control, I/O, memory-fields, ..., and
 734 // return result(s) along with their RegMask info
 735 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 736   switch (proj->_con) {
 737   case TypeFunc::Control:
 738   case TypeFunc::I_O:
 739   case TypeFunc::Memory:
 740     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 741 
 742   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 743     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 744     // 2nd half of doubles and longs
 745     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 746 
 747   case TypeFunc::Parms: {       // Normal returns
 748     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 749     OptoRegPair regs = Opcode() == Op_CallLeafVector
 750       ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 751       : is_CallRuntime()
 752         ? match->c_return_value(ideal_reg)  // Calls into C runtime
 753         : match->  return_value(ideal_reg); // Calls into compiled Java code
 754     RegMask rm = RegMask(regs.first());
 755 
 756     if (Opcode() == Op_CallLeafVector) {
 757       // If the return is in vector, compute appropriate regmask taking into account the whole range
 758       if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
 759         if(OptoReg::is_valid(regs.second())) {
 760           for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 761             rm.Insert(r);
 762           }
 763         }









 764       }
 765     }
 766 
 767     if( OptoReg::is_valid(regs.second()) )
 768       rm.Insert( regs.second() );
 769     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 770   }
 771 






 772   case TypeFunc::ReturnAdr:
 773   case TypeFunc::FramePtr:
 774   default:
 775     ShouldNotReachHere();
 776   }
 777   return NULL;
 778 }
 779 
 780 // Do we Match on this edge index or not?  Match no edges
 781 uint CallNode::match_edge(uint idx) const {
 782   return 0;
 783 }
 784 
 785 //
 786 // Determine whether the call could modify the field of the specified
 787 // instance at the specified offset.
 788 //
 789 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 790   assert((t_oop != NULL), "sanity");
 791   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 792     const TypeTuple* args = _tf->domain();
 793     Node* dest = NULL;
 794     // Stubs that can be called once an ArrayCopyNode is expanded have
 795     // different signatures. Look for the second pointer argument,
 796     // that is the destination of the copy.
 797     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 798       if (args->field_at(i)->isa_ptr()) {
 799         j++;
 800         if (j == 2) {
 801           dest = in(i);
 802           break;
 803         }
 804       }
 805     }
 806     guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
 807     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 808       return true;
 809     }
 810     return false;
 811   }
 812   if (t_oop->is_known_instance()) {

 821       Node* proj = proj_out_or_null(TypeFunc::Parms);
 822       if ((proj == NULL) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 823         return false;
 824       }
 825     }
 826     if (is_CallJava() && as_CallJava()->method() != NULL) {
 827       ciMethod* meth = as_CallJava()->method();
 828       if (meth->is_getter()) {
 829         return false;
 830       }
 831       // May modify (by reflection) if an boxing object is passed
 832       // as argument or returned.
 833       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
 834       if (proj != NULL) {
 835         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 836         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 837                                  (inst_t->instance_klass() == boxing_klass))) {
 838           return true;
 839         }
 840       }
 841       const TypeTuple* d = tf()->domain();
 842       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 843         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 844         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 845                                  (inst_t->instance_klass() == boxing_klass))) {
 846           return true;
 847         }
 848       }
 849       return false;
 850     }
 851   }
 852   return true;
 853 }
 854 
 855 // Does this call have a direct reference to n other than debug information?
 856 bool CallNode::has_non_debug_use(Node *n) {
 857   const TypeTuple * d = tf()->domain();
 858   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 859     Node *arg = in(i);
 860     if (arg == n) {
 861       return true;
 862     }
 863   }
 864   return false;
 865 }
 866 











 867 // Returns the unique CheckCastPP of a call
 868 // or 'this' if there are several CheckCastPP or unexpected uses
 869 // or returns NULL if there is no one.
 870 Node *CallNode::result_cast() {
 871   Node *cast = NULL;
 872 
 873   Node *p = proj_out_or_null(TypeFunc::Parms);
 874   if (p == NULL)
 875     return NULL;
 876 
 877   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 878     Node *use = p->fast_out(i);
 879     if (use->is_CheckCastPP()) {
 880       if (cast != NULL) {
 881         return this;  // more than 1 CheckCastPP
 882       }
 883       cast = use;
 884     } else if (!use->is_Initialize() &&
 885                !use->is_AddP() &&
 886                use->Opcode() != Op_MemBarStoreStore) {
 887       // Expected uses are restricted to a CheckCastPP, an Initialize
 888       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 889       // encounter any other use (a Phi node can be seen in rare
 890       // cases) return this to prevent incorrect optimizations.
 891       return this;
 892     }
 893   }
 894   return cast;
 895 }
 896 
 897 
 898 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
 899   projs->fallthrough_proj      = NULL;
 900   projs->fallthrough_catchproj = NULL;
 901   projs->fallthrough_ioproj    = NULL;
 902   projs->catchall_ioproj       = NULL;
 903   projs->catchall_catchproj    = NULL;
 904   projs->fallthrough_memproj   = NULL;
 905   projs->catchall_memproj      = NULL;
 906   projs->resproj               = NULL;
 907   projs->exobj                 = NULL;





 908 
 909   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 910     ProjNode *pn = fast_out(i)->as_Proj();
 911     if (pn->outcnt() == 0) continue;
 912     switch (pn->_con) {
 913     case TypeFunc::Control:
 914       {
 915         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 916         projs->fallthrough_proj = pn;
 917         const Node* cn = pn->unique_ctrl_out_or_null();
 918         if (cn != NULL && cn->is_Catch()) {
 919           ProjNode *cpn = NULL;
 920           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 921             cpn = cn->fast_out(k)->as_Proj();
 922             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 923             if (cpn->_con == CatchProjNode::fall_through_index)
 924               projs->fallthrough_catchproj = cpn;
 925             else {
 926               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 927               projs->catchall_catchproj = cpn;

 933     case TypeFunc::I_O:
 934       if (pn->_is_io_use)
 935         projs->catchall_ioproj = pn;
 936       else
 937         projs->fallthrough_ioproj = pn;
 938       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 939         Node* e = pn->out(j);
 940         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 941           assert(projs->exobj == NULL, "only one");
 942           projs->exobj = e;
 943         }
 944       }
 945       break;
 946     case TypeFunc::Memory:
 947       if (pn->_is_io_use)
 948         projs->catchall_memproj = pn;
 949       else
 950         projs->fallthrough_memproj = pn;
 951       break;
 952     case TypeFunc::Parms:
 953       projs->resproj = pn;
 954       break;
 955     default:
 956       assert(false, "unexpected projection from allocation node.");


 957     }
 958   }
 959 
 960   // The resproj may not exist because the result could be ignored
 961   // and the exception object may not exist if an exception handler
 962   // swallows the exception but all the other must exist and be found.
 963   assert(projs->fallthrough_proj      != NULL, "must be found");
 964   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();

 965   assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
 966   assert(!do_asserts || projs->fallthrough_memproj   != NULL, "must be found");
 967   assert(!do_asserts || projs->fallthrough_ioproj    != NULL, "must be found");
 968   assert(!do_asserts || projs->catchall_catchproj    != NULL, "must be found");
 969   if (separate_io_proj) {
 970     assert(!do_asserts || projs->catchall_memproj    != NULL, "must be found");
 971     assert(!do_asserts || projs->catchall_ioproj     != NULL, "must be found");
 972   }

 973 }
 974 
 975 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 976 #ifdef ASSERT
 977   // Validate attached generator
 978   CallGenerator* cg = generator();
 979   if (cg != NULL) {
 980     assert(is_CallStaticJava()  && cg->is_mh_late_inline() ||
 981            is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch");
 982   }
 983 #endif // ASSERT
 984   return SafePointNode::Ideal(phase, can_reshape);
 985 }
 986 
 987 bool CallNode::is_call_to_arraycopystub() const {
 988   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
 989     return true;
 990   }
 991   return false;
 992 }
 993 
 994 //=============================================================================
 995 uint CallJavaNode::size_of() const { return sizeof(*this); }
 996 bool CallJavaNode::cmp( const Node &n ) const {
 997   CallJavaNode &call = (CallJavaNode&)n;
 998   return CallNode::cmp(call) && _method == call._method &&
 999          _override_symbolic_info == call._override_symbolic_info;
1000 }
1001 
1002 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1003   // Copy debug information and adjust JVMState information
1004   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1005   uint new_dbg_start = tf()->domain()->cnt();
1006   int jvms_adj  = new_dbg_start - old_dbg_start;
1007   assert (new_dbg_start == req(), "argument count mismatch");
1008   Compile* C = phase->C;
1009 
1010   // SafePointScalarObject node could be referenced several times in debug info.
1011   // Use Dict to record cloned nodes.
1012   Dict* sosn_map = new Dict(cmpkey,hashkey);
1013   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1014     Node* old_in = sfpt->in(i);
1015     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1016     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
1017       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1018       bool new_node;
1019       Node* new_in = old_sosn->clone(sosn_map, new_node);
1020       if (new_node) { // New node?
1021         new_in->set_req(0, C->root()); // reset control edge
1022         new_in = phase->transform(new_in); // Register new node.
1023       }
1024       old_in = new_in;
1025     }
1026     add_req(old_in);
1027   }
1028 
1029   // JVMS may be shared so clone it before we modify it
1030   set_jvms(sfpt->jvms() != NULL ? sfpt->jvms()->clone_deep(C) : NULL);
1031   for (JVMState *jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1032     jvms->set_map(this);
1033     jvms->set_locoff(jvms->locoff()+jvms_adj);
1034     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1035     jvms->set_monoff(jvms->monoff()+jvms_adj);
1036     jvms->set_scloff(jvms->scloff()+jvms_adj);
1037     jvms->set_endoff(jvms->endoff()+jvms_adj);
1038   }
1039 }
1040 
1041 #ifdef ASSERT
1042 bool CallJavaNode::validate_symbolic_info() const {
1043   if (method() == NULL) {
1044     return true; // call into runtime or uncommon trap
1045   }




1046   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1047   ciMethod* callee = method();
1048   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1049     assert(override_symbolic_info(), "should be set");
1050   }
1051   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1052   return true;
1053 }
1054 #endif
1055 
1056 #ifndef PRODUCT
1057 void CallJavaNode::dump_spec(outputStream* st) const {
1058   if( _method ) _method->print_short_name(st);
1059   CallNode::dump_spec(st);
1060 }
1061 
1062 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1063   if (_method) {
1064     _method->print_short_name(st);
1065   } else {
1066     st->print("<?>");
1067   }
1068 }
1069 #endif
1070 
1071 //=============================================================================
1072 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1073 bool CallStaticJavaNode::cmp( const Node &n ) const {
1074   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1075   return CallJavaNode::cmp(call);
1076 }
1077 
1078 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {










1079   CallGenerator* cg = generator();
1080   if (can_reshape && cg != NULL) {
1081     assert(IncrementalInlineMH, "required");
1082     assert(cg->call_node() == this, "mismatch");
1083     assert(cg->is_mh_late_inline(), "not virtual");
1084 
1085     // Check whether this MH handle call becomes a candidate for inlining.
1086     ciMethod* callee = cg->method();
1087     vmIntrinsics::ID iid = callee->intrinsic_id();
1088     if (iid == vmIntrinsics::_invokeBasic) {
1089       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1090         phase->C->prepend_late_inline(cg);
1091         set_generator(NULL);
1092       }
1093     } else if (iid == vmIntrinsics::_linkToNative) {
1094       // never retry
1095     } else {
1096       assert(callee->has_member_arg(), "wrong type of call?");
1097       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1098         phase->C->prepend_late_inline(cg);

1108 int CallStaticJavaNode::uncommon_trap_request() const {
1109   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1110     return extract_uncommon_trap_request(this);
1111   }
1112   return 0;
1113 }
1114 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1115 #ifndef PRODUCT
1116   if (!(call->req() > TypeFunc::Parms &&
1117         call->in(TypeFunc::Parms) != NULL &&
1118         call->in(TypeFunc::Parms)->is_Con() &&
1119         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1120     assert(in_dump() != 0, "OK if dumping");
1121     tty->print("[bad uncommon trap]");
1122     return 0;
1123   }
1124 #endif
1125   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1126 }
1127 




























































































































1128 #ifndef PRODUCT
1129 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1130   st->print("# Static ");
1131   if (_name != NULL) {
1132     st->print("%s", _name);
1133     int trap_req = uncommon_trap_request();
1134     if (trap_req != 0) {
1135       char buf[100];
1136       st->print("(%s)",
1137                  Deoptimization::format_trap_request(buf, sizeof(buf),
1138                                                      trap_req));
1139     }
1140     st->print(" ");
1141   }
1142   CallJavaNode::dump_spec(st);
1143 }
1144 
1145 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1146   if (_method) {
1147     _method->print_short_name(st);

1212 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1213 bool CallRuntimeNode::cmp( const Node &n ) const {
1214   CallRuntimeNode &call = (CallRuntimeNode&)n;
1215   return CallNode::cmp(call) && !strcmp(_name,call._name);
1216 }
1217 #ifndef PRODUCT
1218 void CallRuntimeNode::dump_spec(outputStream *st) const {
1219   st->print("# ");
1220   st->print("%s", _name);
1221   CallNode::dump_spec(st);
1222 }
1223 #endif
1224 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1225 bool CallLeafVectorNode::cmp( const Node &n ) const {
1226   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1227   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1228 }
1229 
1230 //------------------------------calling_convention-----------------------------
1231 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







1232   SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt);
1233 }
1234 
1235 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1236 #ifdef ASSERT
1237   assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1238          "return vector size must match");
1239   const TypeTuple* d = tf()->domain();
1240   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1241     Node* arg = in(i);
1242     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1243            "vector argument size must match");
1244   }
1245 #endif
1246 
1247   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1248 }
1249 
1250 //=============================================================================
1251 //------------------------------calling_convention-----------------------------
1252 
1253 
1254 //=============================================================================
1255 #ifndef PRODUCT
1256 void CallLeafNode::dump_spec(outputStream *st) const {
1257   st->print("# ");
1258   st->print("%s", _name);
1259   CallNode::dump_spec(st);
1260 }
1261 #endif
1262 






1263 //=============================================================================
1264 
1265 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1266   assert(verify_jvms(jvms), "jvms must match");
1267   int loc = jvms->locoff() + idx;
1268   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1269     // If current local idx is top then local idx - 1 could
1270     // be a long/double that needs to be killed since top could
1271     // represent the 2nd half of the long/double.
1272     uint ideal = in(loc -1)->ideal_reg();
1273     if (ideal == Op_RegD || ideal == Op_RegL) {
1274       // set other (low index) half to top
1275       set_req(loc - 1, in(loc));
1276     }
1277   }
1278   set_req(loc, c);
1279 }
1280 
1281 uint SafePointNode::size_of() const { return sizeof(*this); }
1282 bool SafePointNode::cmp( const Node &n ) const {

1293   }
1294 }
1295 
1296 
1297 //----------------------------next_exception-----------------------------------
1298 SafePointNode* SafePointNode::next_exception() const {
1299   if (len() == req()) {
1300     return NULL;
1301   } else {
1302     Node* n = in(req());
1303     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1304     return (SafePointNode*) n;
1305   }
1306 }
1307 
1308 
1309 //------------------------------Ideal------------------------------------------
1310 // Skip over any collapsed Regions
1311 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1312   assert(_jvms == NULL || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1313   return remove_dead_region(phase, can_reshape) ? this : NULL;













1314 }
1315 
1316 //------------------------------Identity---------------------------------------
1317 // Remove obviously duplicate safepoints
1318 Node* SafePointNode::Identity(PhaseGVN* phase) {
1319 
1320   // If you have back to back safepoints, remove one
1321   if (in(TypeFunc::Control)->is_SafePoint()) {
1322     Node* out_c = unique_ctrl_out_or_null();
1323     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1324     // outer loop's safepoint could confuse removal of the outer loop.
1325     if (out_c != NULL && !out_c->is_OuterStripMinedLoopEnd()) {
1326       return in(TypeFunc::Control);
1327     }
1328   }
1329 
1330   // Transforming long counted loops requires a safepoint node. Do not
1331   // eliminate a safepoint until loop opts are over.
1332   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1333     Node *n0 = in(0)->in(0);

1457     igvn->delete_precedence_of(igvn->C->root(), nb);
1458   }
1459 }
1460 
1461 //==============  SafePointScalarObjectNode  ==============
1462 
1463 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1464 #ifdef ASSERT
1465                                                      Node* alloc,
1466 #endif
1467                                                      uint first_index,
1468                                                      uint n_fields) :
1469   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1470   _first_index(first_index),
1471   _n_fields(n_fields)
1472 #ifdef ASSERT
1473   , _alloc(alloc)
1474 #endif
1475 {
1476 #ifdef ASSERT
1477   if (!alloc->is_Allocate()
1478       && !(alloc->Opcode() == Op_VectorBox)) {
1479     alloc->dump();
1480     assert(false, "unexpected call node");
1481   }
1482 #endif
1483   init_class_id(Class_SafePointScalarObject);
1484 }
1485 
1486 // Do not allow value-numbering for SafePointScalarObject node.
1487 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1488 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1489   return (&n == this); // Always fail except on self
1490 }
1491 
1492 uint SafePointScalarObjectNode::ideal_reg() const {
1493   return 0; // No matching to machine instruction
1494 }
1495 
1496 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1497   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);

1515   new_node = true;
1516   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1517   sosn_map->Insert((void*)this, (void*)res);
1518   return res;
1519 }
1520 
1521 
1522 #ifndef PRODUCT
1523 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1524   st->print(" # fields@[%d..%d]", first_index(),
1525              first_index() + n_fields() - 1);
1526 }
1527 
1528 #endif
1529 
1530 //=============================================================================
1531 uint AllocateNode::size_of() const { return sizeof(*this); }
1532 
1533 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1534                            Node *ctrl, Node *mem, Node *abio,
1535                            Node *size, Node *klass_node, Node *initial_test)


1536   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1537 {
1538   init_class_id(Class_Allocate);
1539   init_flags(Flag_is_macro);
1540   _is_scalar_replaceable = false;
1541   _is_non_escaping = false;
1542   _is_allocation_MemBar_redundant = false;

1543   Node *topnode = C->top();
1544 
1545   init_req( TypeFunc::Control  , ctrl );
1546   init_req( TypeFunc::I_O      , abio );
1547   init_req( TypeFunc::Memory   , mem );
1548   init_req( TypeFunc::ReturnAdr, topnode );
1549   init_req( TypeFunc::FramePtr , topnode );
1550   init_req( AllocSize          , size);
1551   init_req( KlassNode          , klass_node);
1552   init_req( InitialTest        , initial_test);
1553   init_req( ALength            , topnode);
1554   init_req( ValidLengthTest    , topnode);



1555   C->add_macro_node(this);
1556 }
1557 
1558 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1559 {
1560   assert(initializer != NULL &&
1561          initializer->is_initializer() &&
1562          !initializer->is_static(),
1563              "unexpected initializer method");
1564   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1565   if (analyzer == NULL) {
1566     return;
1567   }
1568 
1569   // Allocation node is first parameter in its initializer
1570   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1571     _is_allocation_MemBar_redundant = true;
1572   }
1573 }
1574 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {

1575   Node* mark_node = NULL;
1576   // For now only enable fast locking for non-array types
1577   mark_node = phase->MakeConX(markWord::prototype().value());
1578   return mark_node;







1579 }
1580 
1581 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1582 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1583 // a CastII is appropriate, return NULL.
1584 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1585   Node *length = in(AllocateNode::ALength);
1586   assert(length != NULL, "length is not null");
1587 
1588   const TypeInt* length_type = phase->find_int_type(length);
1589   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1590 
1591   if (ary_type != NULL && length_type != NULL) {
1592     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1593     if (narrow_length_type != length_type) {
1594       // Assert one of:
1595       //   - the narrow_length is 0
1596       //   - the narrow_length is not wider than length
1597       assert(narrow_length_type == TypeInt::ZERO ||
1598              length_type->is_con() && narrow_length_type->is_con() &&

1937 
1938 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
1939   st->print("%s", _kind_names[_kind]);
1940 }
1941 #endif
1942 
1943 //=============================================================================
1944 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1945 
1946   // perform any generic optimizations first (returns 'this' or NULL)
1947   Node *result = SafePointNode::Ideal(phase, can_reshape);
1948   if (result != NULL)  return result;
1949   // Don't bother trying to transform a dead node
1950   if (in(0) && in(0)->is_top())  return NULL;
1951 
1952   // Now see if we can optimize away this lock.  We don't actually
1953   // remove the locking here, we simply set the _eliminate flag which
1954   // prevents macro expansion from expanding the lock.  Since we don't
1955   // modify the graph, the value returned from this function is the
1956   // one computed above.
1957   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

1958     //
1959     // If we are locking an non-escaped object, the lock/unlock is unnecessary
1960     //
1961     ConnectionGraph *cgr = phase->C->congraph();
1962     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1963       assert(!is_eliminated() || is_coarsened(), "sanity");
1964       // The lock could be marked eliminated by lock coarsening
1965       // code during first IGVN before EA. Replace coarsened flag
1966       // to eliminate all associated locks/unlocks.
1967 #ifdef ASSERT
1968       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
1969 #endif
1970       this->set_non_esc_obj();
1971       return result;
1972     }
1973 
1974     if (!phase->C->do_locks_coarsening()) {
1975       return result; // Compiling without locks coarsening
1976     }
1977     //

2133 }
2134 
2135 //=============================================================================
2136 uint UnlockNode::size_of() const { return sizeof(*this); }
2137 
2138 //=============================================================================
2139 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2140 
2141   // perform any generic optimizations first (returns 'this' or NULL)
2142   Node *result = SafePointNode::Ideal(phase, can_reshape);
2143   if (result != NULL)  return result;
2144   // Don't bother trying to transform a dead node
2145   if (in(0) && in(0)->is_top())  return NULL;
2146 
2147   // Now see if we can optimize away this unlock.  We don't actually
2148   // remove the unlocking here, we simply set the _eliminate flag which
2149   // prevents macro expansion from expanding the unlock.  Since we don't
2150   // modify the graph, the value returned from this function is the
2151   // one computed above.
2152   // Escape state is defined after Parse phase.
2153   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2154     //
2155     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2156     //
2157     ConnectionGraph *cgr = phase->C->congraph();
2158     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2159       assert(!is_eliminated() || is_coarsened(), "sanity");
2160       // The lock could be marked eliminated by lock coarsening
2161       // code during first IGVN before EA. Replace coarsened flag
2162       // to eliminate all associated locks/unlocks.
2163 #ifdef ASSERT
2164       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2165 #endif
2166       this->set_non_esc_obj();
2167     }
2168   }
2169   return result;
2170 }
2171 
2172 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2173   if (C == NULL) {

2213     }
2214     // unrelated
2215     return false;
2216   }
2217 
2218   if (dest_t->isa_aryptr()) {
2219     // arraycopy or array clone
2220     if (t_oop->isa_instptr()) {
2221       return false;
2222     }
2223     if (!t_oop->isa_aryptr()) {
2224       return true;
2225     }
2226 
2227     const Type* elem = dest_t->is_aryptr()->elem();
2228     if (elem == Type::BOTTOM) {
2229       // An array but we don't know what elements are
2230       return true;
2231     }
2232 
2233     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();

2234     uint dest_alias = phase->C->get_alias_index(dest_t);
2235     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2236 
2237     return dest_alias == t_oop_alias;
2238   }
2239 
2240   return true;
2241 }

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/bcEscapeAnalyzer.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/inlinetypenode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/regalloc.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 #include "code/vmreg.hpp"
  51 
  52 // Portions of code courtesy of Clifford Click
  53 
  54 // Optimization - Graph Style
  55 
  56 //=============================================================================
  57 uint StartNode::size_of() const { return sizeof(*this); }
  58 bool StartNode::cmp( const Node &n ) const
  59 { return _domain == ((StartNode&)n)._domain; }
  60 const Type *StartNode::bottom_type() const { return _domain; }
  61 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  62 #ifndef PRODUCT
  63 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  64 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  65 #endif
  66 
  67 //------------------------------Ideal------------------------------------------
  68 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  69   return remove_dead_region(phase, can_reshape) ? this : NULL;
  70 }
  71 
  72 //------------------------------calling_convention-----------------------------
  73 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  74   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  75 }
  76 
  77 //------------------------------Registers--------------------------------------
  78 const RegMask &StartNode::in_RegMask(uint) const {
  79   return RegMask::Empty;
  80 }
  81 
  82 //------------------------------match------------------------------------------
  83 // Construct projections for incoming parameters, and their RegMask info
  84 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  85   switch (proj->_con) {
  86   case TypeFunc::Control:
  87   case TypeFunc::I_O:
  88   case TypeFunc::Memory:
  89     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  90   case TypeFunc::FramePtr:
  91     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  92   case TypeFunc::ReturnAdr:
  93     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  94   case TypeFunc::Parms:
  95   default: {
  96       uint parm_num = proj->_con - TypeFunc::Parms;
  97       const Type *t = _domain->field_at(proj->_con);
  98       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  99         return new ConNode(Type::TOP);
 100       uint ideal_reg = t->ideal_reg();
 101       RegMask &rm = match->_calling_convention_mask[parm_num];
 102       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 103     }
 104   }
 105   return NULL;
 106 }
 107 











 108 //=============================================================================
 109 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 110   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 111 };
 112 
 113 #ifndef PRODUCT
 114 void ParmNode::dump_spec(outputStream *st) const {
 115   if( _con < TypeFunc::Parms ) {
 116     st->print("%s", names[_con]);
 117   } else {
 118     st->print("Parm%d: ",_con-TypeFunc::Parms);
 119     // Verbose and WizardMode dump bottom_type for all nodes
 120     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 121   }
 122 }
 123 
 124 void ParmNode::dump_compact_spec(outputStream *st) const {
 125   if (_con < TypeFunc::Parms) {
 126     st->print("%s", names[_con]);
 127   } else {

 473       if (cik->is_instance_klass()) {
 474         cik->print_name_on(st);
 475         iklass = cik->as_instance_klass();
 476       } else if (cik->is_type_array_klass()) {
 477         cik->as_array_klass()->base_element_type()->print_name_on(st);
 478         st->print("[%d]", spobj->n_fields());
 479       } else if (cik->is_obj_array_klass()) {
 480         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 481         if (cie->is_instance_klass()) {
 482           cie->print_name_on(st);
 483         } else if (cie->is_type_array_klass()) {
 484           cie->as_array_klass()->base_element_type()->print_name_on(st);
 485         } else {
 486           ShouldNotReachHere();
 487         }
 488         st->print("[%d]", spobj->n_fields());
 489         int ndim = cik->as_array_klass()->dimension() - 1;
 490         while (ndim-- > 0) {
 491           st->print("[]");
 492         }
 493       } else if (cik->is_flat_array_klass()) {
 494         ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
 495         cie->print_name_on(st);
 496         st->print("[%d]", spobj->n_fields());
 497         int ndim = cik->as_array_klass()->dimension() - 1;
 498         while (ndim-- > 0) {
 499           st->print("[]");
 500         }
 501       }
 502       st->print("={");
 503       uint nf = spobj->n_fields();
 504       if (nf > 0) {
 505         uint first_ind = spobj->first_index(mcall->jvms());
 506         if (iklass != NULL && iklass->is_inlinetype()) {
 507           Node* init_node = mcall->in(first_ind++);
 508           if (!init_node->is_top()) {
 509             st->print(" [is_init");
 510             format_helper(regalloc, st, init_node, ":", -1, NULL);
 511           }
 512         }
 513         Node* fld_node = mcall->in(first_ind);
 514         ciField* cifield;
 515         if (iklass != NULL) {
 516           st->print(" [");
 517           cifield = iklass->nonstatic_field_at(0);
 518           cifield->print_name_on(st);
 519           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 520         } else {
 521           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 522         }
 523         for (uint j = 1; j < nf; j++) {
 524           fld_node = mcall->in(first_ind+j);
 525           if (iklass != NULL) {
 526             st->print(", [");
 527             cifield = iklass->nonstatic_field_at(j);
 528             cifield->print_name_on(st);
 529             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 530           } else {
 531             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 532           }

 706     if (i == TypeFunc::Parms) st->print("(");
 707     Node* p = in(i);
 708     if (p != nullptr) {
 709       p->dump_idx(false, st, dc);
 710       st->print(" ");
 711     } else {
 712       st->print("_ ");
 713     }
 714   }
 715   st->print(")");
 716 }
 717 
 718 void CallNode::dump_spec(outputStream *st) const {
 719   st->print(" ");
 720   if (tf() != NULL)  tf()->dump_on(st);
 721   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 722   if (jvms() != NULL)  jvms()->dump_spec(st);
 723 }
 724 #endif
 725 
 726 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 727 const Type* CallNode::Value(PhaseGVN* phase) const {
 728   if (!in(0) || phase->type(in(0)) == Type::TOP) {
 729     return Type::TOP;
 730   }
 731   return tf()->range_cc();
 732 }
 733 
 734 //------------------------------calling_convention-----------------------------
 735 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 736   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 737     // The call to that stub is a special case: its inputs are
 738     // multiple values returned from a call and so it should follow
 739     // the return convention.
 740     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 741     return;
 742   }
 743   // Use the standard compiler calling convention
 744   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 745 }
 746 
 747 
 748 //------------------------------match------------------------------------------
 749 // Construct projections for control, I/O, memory-fields, ..., and
 750 // return result(s) along with their RegMask info
 751 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 752   uint con = proj->_con;
 753   const TypeTuple* range_cc = tf()->range_cc();
 754   if (con >= TypeFunc::Parms) {
 755     if (tf()->returns_inline_type_as_fields()) {
 756       // The call returns multiple values (inline type fields): we
 757       // create one projection per returned value.
 758       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 759       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 760       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 761     } else {
 762       if (con == TypeFunc::Parms) {
 763         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 764         OptoRegPair regs = Opcode() == Op_CallLeafVector
 765           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 766           : match->c_return_value(ideal_reg);
 767         RegMask rm = RegMask(regs.first());
 768 
 769         if (Opcode() == Op_CallLeafVector) {
 770           // If the return is in vector, compute appropriate regmask taking into account the whole range
 771           if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
 772             if(OptoReg::is_valid(regs.second())) {
 773               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 774                 rm.Insert(r);
 775               }
 776             }

 777           }
 778         }
 779 
 780         if (OptoReg::is_valid(regs.second())) {
 781           rm.Insert(regs.second());
 782         }
 783         return new MachProjNode(this,con,rm,ideal_reg);
 784       } else {
 785         assert(con == TypeFunc::Parms+1, "only one return value");
 786         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 787         return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad);
 788       }
 789     }




 790   }
 791 
 792   switch (con) {
 793   case TypeFunc::Control:
 794   case TypeFunc::I_O:
 795   case TypeFunc::Memory:
 796     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 797 
 798   case TypeFunc::ReturnAdr:
 799   case TypeFunc::FramePtr:
 800   default:
 801     ShouldNotReachHere();
 802   }
 803   return NULL;
 804 }
 805 
 806 // Do we Match on this edge index or not?  Match no edges
 807 uint CallNode::match_edge(uint idx) const {
 808   return 0;
 809 }
 810 
 811 //
 812 // Determine whether the call could modify the field of the specified
 813 // instance at the specified offset.
 814 //
 815 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 816   assert((t_oop != NULL), "sanity");
 817   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 818     const TypeTuple* args = _tf->domain_sig();
 819     Node* dest = NULL;
 820     // Stubs that can be called once an ArrayCopyNode is expanded have
 821     // different signatures. Look for the second pointer argument,
 822     // that is the destination of the copy.
 823     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 824       if (args->field_at(i)->isa_ptr()) {
 825         j++;
 826         if (j == 2) {
 827           dest = in(i);
 828           break;
 829         }
 830       }
 831     }
 832     guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
 833     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 834       return true;
 835     }
 836     return false;
 837   }
 838   if (t_oop->is_known_instance()) {

 847       Node* proj = proj_out_or_null(TypeFunc::Parms);
 848       if ((proj == NULL) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 849         return false;
 850       }
 851     }
 852     if (is_CallJava() && as_CallJava()->method() != NULL) {
 853       ciMethod* meth = as_CallJava()->method();
 854       if (meth->is_getter()) {
 855         return false;
 856       }
 857       // May modify (by reflection) if an boxing object is passed
 858       // as argument or returned.
 859       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
 860       if (proj != NULL) {
 861         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 862         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 863                                  (inst_t->instance_klass() == boxing_klass))) {
 864           return true;
 865         }
 866       }
 867       const TypeTuple* d = tf()->domain_cc();
 868       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 869         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 870         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 871                                  (inst_t->instance_klass() == boxing_klass))) {
 872           return true;
 873         }
 874       }
 875       return false;
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 // Does this call have a direct reference to n other than debug information?
 882 bool CallNode::has_non_debug_use(Node* n) {
 883   const TypeTuple* d = tf()->domain_cc();
 884   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 885     if (in(i) == n) {

 886       return true;
 887     }
 888   }
 889   return false;
 890 }
 891 
 892 bool CallNode::has_debug_use(Node* n) {
 893   if (jvms() != NULL) {
 894     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 895       if (in(i) == n) {
 896         return true;
 897       }
 898     }
 899   }
 900   return false;
 901 }
 902 
 903 // Returns the unique CheckCastPP of a call
 904 // or 'this' if there are several CheckCastPP or unexpected uses
 905 // or returns NULL if there is no one.
 906 Node *CallNode::result_cast() {
 907   Node *cast = NULL;
 908 
 909   Node *p = proj_out_or_null(TypeFunc::Parms);
 910   if (p == NULL)
 911     return NULL;
 912 
 913   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 914     Node *use = p->fast_out(i);
 915     if (use->is_CheckCastPP()) {
 916       if (cast != NULL) {
 917         return this;  // more than 1 CheckCastPP
 918       }
 919       cast = use;
 920     } else if (!use->is_Initialize() &&
 921                !use->is_AddP() &&
 922                use->Opcode() != Op_MemBarStoreStore) {
 923       // Expected uses are restricted to a CheckCastPP, an Initialize
 924       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 925       // encounter any other use (a Phi node can be seen in rare
 926       // cases) return this to prevent incorrect optimizations.
 927       return this;
 928     }
 929   }
 930   return cast;
 931 }
 932 
 933 
 934 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) {
 935   uint max_res = TypeFunc::Parms-1;
 936   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 937     ProjNode *pn = fast_out(i)->as_Proj();
 938     max_res = MAX2(max_res, pn->_con);
 939   }
 940 
 941   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 942 
 943   uint projs_size = sizeof(CallProjections);
 944   if (max_res > TypeFunc::Parms) {
 945     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 946   }
 947   char* projs_storage = resource_allocate_bytes(projs_size);
 948   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 949 
 950   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 951     ProjNode *pn = fast_out(i)->as_Proj();
 952     if (pn->outcnt() == 0) continue;
 953     switch (pn->_con) {
 954     case TypeFunc::Control:
 955       {
 956         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 957         projs->fallthrough_proj = pn;
 958         const Node* cn = pn->unique_ctrl_out_or_null();
 959         if (cn != NULL && cn->is_Catch()) {
 960           ProjNode *cpn = NULL;
 961           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 962             cpn = cn->fast_out(k)->as_Proj();
 963             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 964             if (cpn->_con == CatchProjNode::fall_through_index)
 965               projs->fallthrough_catchproj = cpn;
 966             else {
 967               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 968               projs->catchall_catchproj = cpn;

 974     case TypeFunc::I_O:
 975       if (pn->_is_io_use)
 976         projs->catchall_ioproj = pn;
 977       else
 978         projs->fallthrough_ioproj = pn;
 979       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 980         Node* e = pn->out(j);
 981         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 982           assert(projs->exobj == NULL, "only one");
 983           projs->exobj = e;
 984         }
 985       }
 986       break;
 987     case TypeFunc::Memory:
 988       if (pn->_is_io_use)
 989         projs->catchall_memproj = pn;
 990       else
 991         projs->fallthrough_memproj = pn;
 992       break;
 993     case TypeFunc::Parms:
 994       projs->resproj[0] = pn;
 995       break;
 996     default:
 997       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
 998       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
 999       break;
1000     }
1001   }
1002 
1003   // The resproj may not exist because the result could be ignored
1004   // and the exception object may not exist if an exception handler
1005   // swallows the exception but all the other must exist and be found.

1006   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1007   assert(!do_asserts || projs->fallthrough_proj      != NULL, "must be found");
1008   assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
1009   assert(!do_asserts || projs->fallthrough_memproj   != NULL, "must be found");
1010   assert(!do_asserts || projs->fallthrough_ioproj    != NULL, "must be found");
1011   assert(!do_asserts || projs->catchall_catchproj    != NULL, "must be found");
1012   if (separate_io_proj) {
1013     assert(!do_asserts || projs->catchall_memproj    != NULL, "must be found");
1014     assert(!do_asserts || projs->catchall_ioproj     != NULL, "must be found");
1015   }
1016   return projs;
1017 }
1018 
1019 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1020 #ifdef ASSERT
1021   // Validate attached generator
1022   CallGenerator* cg = generator();
1023   if (cg != NULL) {
1024     assert(is_CallStaticJava()  && cg->is_mh_late_inline() ||
1025            is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch");
1026   }
1027 #endif // ASSERT
1028   return SafePointNode::Ideal(phase, can_reshape);
1029 }
1030 
1031 bool CallNode::is_call_to_arraycopystub() const {
1032   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
1033     return true;
1034   }
1035   return false;
1036 }
1037 
1038 //=============================================================================
1039 uint CallJavaNode::size_of() const { return sizeof(*this); }
1040 bool CallJavaNode::cmp( const Node &n ) const {
1041   CallJavaNode &call = (CallJavaNode&)n;
1042   return CallNode::cmp(call) && _method == call._method &&
1043          _override_symbolic_info == call._override_symbolic_info;
1044 }
1045 
1046 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1047   // Copy debug information and adjust JVMState information
1048   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1049   uint new_dbg_start = tf()->domain_sig()->cnt();
1050   int jvms_adj  = new_dbg_start - old_dbg_start;
1051   assert (new_dbg_start == req(), "argument count mismatch");
1052   Compile* C = phase->C;
1053 
1054   // SafePointScalarObject node could be referenced several times in debug info.
1055   // Use Dict to record cloned nodes.
1056   Dict* sosn_map = new Dict(cmpkey,hashkey);
1057   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1058     Node* old_in = sfpt->in(i);
1059     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1060     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
1061       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1062       bool new_node;
1063       Node* new_in = old_sosn->clone(sosn_map, new_node);
1064       if (new_node) { // New node?
1065         new_in->set_req(0, C->root()); // reset control edge
1066         new_in = phase->transform(new_in); // Register new node.
1067       }
1068       old_in = new_in;
1069     }
1070     add_req(old_in);
1071   }
1072 
1073   // JVMS may be shared so clone it before we modify it
1074   set_jvms(sfpt->jvms() != NULL ? sfpt->jvms()->clone_deep(C) : NULL);
1075   for (JVMState *jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1076     jvms->set_map(this);
1077     jvms->set_locoff(jvms->locoff()+jvms_adj);
1078     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1079     jvms->set_monoff(jvms->monoff()+jvms_adj);
1080     jvms->set_scloff(jvms->scloff()+jvms_adj);
1081     jvms->set_endoff(jvms->endoff()+jvms_adj);
1082   }
1083 }
1084 
1085 #ifdef ASSERT
1086 bool CallJavaNode::validate_symbolic_info() const {
1087   if (method() == NULL) {
1088     return true; // call into runtime or uncommon trap
1089   }
1090   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1091   if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1092     return true;
1093   }
1094   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1095   ciMethod* callee = method();
1096   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1097     assert(override_symbolic_info(), "should be set");
1098   }
1099   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1100   return true;
1101 }
1102 #endif
1103 
1104 #ifndef PRODUCT
1105 void CallJavaNode::dump_spec(outputStream* st) const {
1106   if( _method ) _method->print_short_name(st);
1107   CallNode::dump_spec(st);
1108 }
1109 
1110 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1111   if (_method) {
1112     _method->print_short_name(st);
1113   } else {
1114     st->print("<?>");
1115   }
1116 }
1117 #endif
1118 
1119 //=============================================================================
1120 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1121 bool CallStaticJavaNode::cmp( const Node &n ) const {
1122   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1123   return CallJavaNode::cmp(call);
1124 }
1125 
1126 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1127   if (can_reshape && uncommon_trap_request() != 0) {
1128     if (remove_useless_allocation(phase, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) {
1129       if (!in(0)->is_Region()) {
1130         PhaseIterGVN* igvn = phase->is_IterGVN();
1131         igvn->replace_input_of(this, 0, phase->C->top());
1132       }
1133       return this;
1134     }
1135   }
1136 
1137   CallGenerator* cg = generator();
1138   if (can_reshape && cg != NULL) {
1139     assert(IncrementalInlineMH, "required");
1140     assert(cg->call_node() == this, "mismatch");
1141     assert(cg->is_mh_late_inline(), "not virtual");
1142 
1143     // Check whether this MH handle call becomes a candidate for inlining.
1144     ciMethod* callee = cg->method();
1145     vmIntrinsics::ID iid = callee->intrinsic_id();
1146     if (iid == vmIntrinsics::_invokeBasic) {
1147       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1148         phase->C->prepend_late_inline(cg);
1149         set_generator(NULL);
1150       }
1151     } else if (iid == vmIntrinsics::_linkToNative) {
1152       // never retry
1153     } else {
1154       assert(callee->has_member_arg(), "wrong type of call?");
1155       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1156         phase->C->prepend_late_inline(cg);

1166 int CallStaticJavaNode::uncommon_trap_request() const {
1167   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1168     return extract_uncommon_trap_request(this);
1169   }
1170   return 0;
1171 }
1172 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1173 #ifndef PRODUCT
1174   if (!(call->req() > TypeFunc::Parms &&
1175         call->in(TypeFunc::Parms) != NULL &&
1176         call->in(TypeFunc::Parms)->is_Con() &&
1177         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1178     assert(in_dump() != 0, "OK if dumping");
1179     tty->print("[bad uncommon trap]");
1180     return 0;
1181   }
1182 #endif
1183   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1184 }
1185 
1186 bool CallStaticJavaNode::remove_useless_allocation(PhaseGVN *phase, Node* ctl, Node* mem, Node* unc_arg) {
1187   // Split if can cause the flattened array branch of an array load to
1188   // end in an uncommon trap. In that case, the allocation of the
1189   // loaded value and its initialization is useless. Eliminate it. use
1190   // the jvm state of the allocation to create a new uncommon trap
1191   // call at the load.
1192   if (ctl == NULL || ctl->is_top() || mem == NULL || mem->is_top() || !mem->is_MergeMem()) {
1193     return false;
1194   }
1195   PhaseIterGVN* igvn = phase->is_IterGVN();
1196   if (ctl->is_Region()) {
1197     bool res = false;
1198     for (uint i = 1; i < ctl->req(); i++) {
1199       MergeMemNode* mm = mem->clone()->as_MergeMem();
1200       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1201         Node* m = mms.memory();
1202         if (m->is_Phi() && m->in(0) == ctl) {
1203           mms.set_memory(m->in(i));
1204         }
1205       }
1206       if (remove_useless_allocation(phase, ctl->in(i), mm, unc_arg)) {
1207         res = true;
1208         if (!ctl->in(i)->is_Region()) {
1209           igvn->replace_input_of(ctl, i, phase->C->top());
1210         }
1211       }
1212       igvn->remove_dead_node(mm);
1213     }
1214     return res;
1215   }
1216   // verify the control flow is ok
1217   Node* call = ctl;
1218   MemBarNode* membar = NULL;
1219   for (;;) {
1220     if (call == NULL || call->is_top()) {
1221       return false;
1222     }
1223     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1224       call = call->in(0);
1225     } else if (call->Opcode() == Op_CallStaticJava &&
1226                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1227       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1228       membar = call->in(0)->in(0)->as_MemBar();
1229       break;
1230     } else {
1231       return false;
1232     }
1233   }
1234 
1235   JVMState* jvms = call->jvms();
1236   if (phase->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1237     return false;
1238   }
1239 
1240   Node* alloc_mem = call->in(TypeFunc::Memory);
1241   if (alloc_mem == NULL || alloc_mem->is_top()) {
1242     return false;
1243   }
1244   if (!alloc_mem->is_MergeMem()) {
1245     alloc_mem = MergeMemNode::make(alloc_mem);
1246     igvn->register_new_node_with_optimizer(alloc_mem);
1247   }
1248 
1249   // and that there's no unexpected side effect
1250   for (MergeMemStream mms2(mem->as_MergeMem(), alloc_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1251     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1252     Node* m2 = mms2.memory2();
1253 
1254     for (uint i = 0; i < 100; i++) {
1255       if (m1 == m2) {
1256         break;
1257       } else if (m1->is_Proj()) {
1258         m1 = m1->in(0);
1259       } else if (m1->is_MemBar()) {
1260         m1 = m1->in(TypeFunc::Memory);
1261       } else if (m1->Opcode() == Op_CallStaticJava &&
1262                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1263         if (m1 != call) {
1264           return false;
1265         }
1266         break;
1267       } else if (m1->is_MergeMem()) {
1268         MergeMemNode* mm = m1->as_MergeMem();
1269         int idx = mms2.alias_idx();
1270         if (idx == Compile::AliasIdxBot) {
1271           m1 = mm->base_memory();
1272         } else {
1273           m1 = mm->memory_at(idx);
1274         }
1275       } else {
1276         return false;
1277       }
1278     }
1279   }
1280   if (alloc_mem->outcnt() == 0) {
1281     igvn->remove_dead_node(alloc_mem);
1282   }
1283 
1284   // Remove membar preceding the call
1285   membar->remove(igvn);
1286 
1287   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
1288   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", NULL);
1289   unc->init_req(TypeFunc::Control, call->in(0));
1290   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1291   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1292   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1293   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1294   unc->init_req(TypeFunc::Parms+0, unc_arg);
1295   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1296   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1297 
1298   igvn->replace_input_of(call, 0, phase->C->top());
1299 
1300   igvn->register_new_node_with_optimizer(unc);
1301 
1302   Node* ctrl = phase->transform(new ProjNode(unc, TypeFunc::Control));
1303   Node* halt = phase->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1304   igvn->add_input_to(phase->C->root(), halt);
1305 
1306   return true;
1307 }
1308 
1309 
1310 #ifndef PRODUCT
1311 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1312   st->print("# Static ");
1313   if (_name != NULL) {
1314     st->print("%s", _name);
1315     int trap_req = uncommon_trap_request();
1316     if (trap_req != 0) {
1317       char buf[100];
1318       st->print("(%s)",
1319                  Deoptimization::format_trap_request(buf, sizeof(buf),
1320                                                      trap_req));
1321     }
1322     st->print(" ");
1323   }
1324   CallJavaNode::dump_spec(st);
1325 }
1326 
1327 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1328   if (_method) {
1329     _method->print_short_name(st);

1394 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1395 bool CallRuntimeNode::cmp( const Node &n ) const {
1396   CallRuntimeNode &call = (CallRuntimeNode&)n;
1397   return CallNode::cmp(call) && !strcmp(_name,call._name);
1398 }
1399 #ifndef PRODUCT
1400 void CallRuntimeNode::dump_spec(outputStream *st) const {
1401   st->print("# ");
1402   st->print("%s", _name);
1403   CallNode::dump_spec(st);
1404 }
1405 #endif
1406 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1407 bool CallLeafVectorNode::cmp( const Node &n ) const {
1408   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1409   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1410 }
1411 
1412 //------------------------------calling_convention-----------------------------
1413 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1414   if (_entry_point == NULL) {
1415     // The call to that stub is a special case: its inputs are
1416     // multiple values returned from a call and so it should follow
1417     // the return convention.
1418     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1419     return;
1420   }
1421   SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt);
1422 }
1423 
1424 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1425 #ifdef ASSERT
1426   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1427          "return vector size must match");
1428   const TypeTuple* d = tf()->domain_sig();
1429   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1430     Node* arg = in(i);
1431     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1432            "vector argument size must match");
1433   }
1434 #endif
1435 
1436   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1437 }
1438 
1439 //=============================================================================
1440 //------------------------------calling_convention-----------------------------
1441 
1442 
1443 //=============================================================================
1444 #ifndef PRODUCT
1445 void CallLeafNode::dump_spec(outputStream *st) const {
1446   st->print("# ");
1447   st->print("%s", _name);
1448   CallNode::dump_spec(st);
1449 }
1450 #endif
1451 
1452 uint CallLeafNoFPNode::match_edge(uint idx) const {
1453   // Null entry point is a special case for which the target is in a
1454   // register. Need to match that edge.
1455   return entry_point() == NULL && idx == TypeFunc::Parms;
1456 }
1457 
1458 //=============================================================================
1459 
1460 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1461   assert(verify_jvms(jvms), "jvms must match");
1462   int loc = jvms->locoff() + idx;
1463   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1464     // If current local idx is top then local idx - 1 could
1465     // be a long/double that needs to be killed since top could
1466     // represent the 2nd half of the long/double.
1467     uint ideal = in(loc -1)->ideal_reg();
1468     if (ideal == Op_RegD || ideal == Op_RegL) {
1469       // set other (low index) half to top
1470       set_req(loc - 1, in(loc));
1471     }
1472   }
1473   set_req(loc, c);
1474 }
1475 
1476 uint SafePointNode::size_of() const { return sizeof(*this); }
1477 bool SafePointNode::cmp( const Node &n ) const {

1488   }
1489 }
1490 
1491 
1492 //----------------------------next_exception-----------------------------------
1493 SafePointNode* SafePointNode::next_exception() const {
1494   if (len() == req()) {
1495     return NULL;
1496   } else {
1497     Node* n = in(req());
1498     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1499     return (SafePointNode*) n;
1500   }
1501 }
1502 
1503 
1504 //------------------------------Ideal------------------------------------------
1505 // Skip over any collapsed Regions
1506 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1507   assert(_jvms == NULL || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1508   if (remove_dead_region(phase, can_reshape)) {
1509     return this;
1510   }
1511   // Scalarize inline types in safepoint debug info.
1512   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1513   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != NULL) {
1514     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1515       Node* n = in(i)->uncast();
1516       if (n->is_InlineType()) {
1517         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1518       }
1519     }
1520   }
1521   return NULL;
1522 }
1523 
1524 //------------------------------Identity---------------------------------------
1525 // Remove obviously duplicate safepoints
1526 Node* SafePointNode::Identity(PhaseGVN* phase) {
1527 
1528   // If you have back to back safepoints, remove one
1529   if (in(TypeFunc::Control)->is_SafePoint()) {
1530     Node* out_c = unique_ctrl_out_or_null();
1531     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1532     // outer loop's safepoint could confuse removal of the outer loop.
1533     if (out_c != NULL && !out_c->is_OuterStripMinedLoopEnd()) {
1534       return in(TypeFunc::Control);
1535     }
1536   }
1537 
1538   // Transforming long counted loops requires a safepoint node. Do not
1539   // eliminate a safepoint until loop opts are over.
1540   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1541     Node *n0 = in(0)->in(0);

1665     igvn->delete_precedence_of(igvn->C->root(), nb);
1666   }
1667 }
1668 
1669 //==============  SafePointScalarObjectNode  ==============
1670 
1671 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1672 #ifdef ASSERT
1673                                                      Node* alloc,
1674 #endif
1675                                                      uint first_index,
1676                                                      uint n_fields) :
1677   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1678   _first_index(first_index),
1679   _n_fields(n_fields)
1680 #ifdef ASSERT
1681   , _alloc(alloc)
1682 #endif
1683 {
1684 #ifdef ASSERT
1685   if (alloc != NULL && !alloc->is_Allocate()
1686       && !(alloc->Opcode() == Op_VectorBox)) {
1687     alloc->dump();
1688     assert(false, "unexpected call node");
1689   }
1690 #endif
1691   init_class_id(Class_SafePointScalarObject);
1692 }
1693 
1694 // Do not allow value-numbering for SafePointScalarObject node.
1695 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1696 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1697   return (&n == this); // Always fail except on self
1698 }
1699 
1700 uint SafePointScalarObjectNode::ideal_reg() const {
1701   return 0; // No matching to machine instruction
1702 }
1703 
1704 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1705   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);

1723   new_node = true;
1724   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1725   sosn_map->Insert((void*)this, (void*)res);
1726   return res;
1727 }
1728 
1729 
1730 #ifndef PRODUCT
1731 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1732   st->print(" # fields@[%d..%d]", first_index(),
1733              first_index() + n_fields() - 1);
1734 }
1735 
1736 #endif
1737 
1738 //=============================================================================
1739 uint AllocateNode::size_of() const { return sizeof(*this); }
1740 
1741 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1742                            Node *ctrl, Node *mem, Node *abio,
1743                            Node *size, Node *klass_node,
1744                            Node* initial_test,
1745                            InlineTypeNode* inline_type_node)
1746   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1747 {
1748   init_class_id(Class_Allocate);
1749   init_flags(Flag_is_macro);
1750   _is_scalar_replaceable = false;
1751   _is_non_escaping = false;
1752   _is_allocation_MemBar_redundant = false;
1753   _larval = false;
1754   Node *topnode = C->top();
1755 
1756   init_req( TypeFunc::Control  , ctrl );
1757   init_req( TypeFunc::I_O      , abio );
1758   init_req( TypeFunc::Memory   , mem );
1759   init_req( TypeFunc::ReturnAdr, topnode );
1760   init_req( TypeFunc::FramePtr , topnode );
1761   init_req( AllocSize          , size);
1762   init_req( KlassNode          , klass_node);
1763   init_req( InitialTest        , initial_test);
1764   init_req( ALength            , topnode);
1765   init_req( ValidLengthTest    , topnode);
1766   init_req( InlineType     , inline_type_node);
1767   // DefaultValue defaults to NULL
1768   // RawDefaultValue defaults to NULL
1769   C->add_macro_node(this);
1770 }
1771 
1772 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1773 {
1774   assert(initializer != NULL &&
1775          initializer->is_object_constructor_or_class_initializer(),
1776          "unexpected initializer method");

1777   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1778   if (analyzer == NULL) {
1779     return;
1780   }
1781 
1782   // Allocation node is first parameter in its initializer
1783   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1784     _is_allocation_MemBar_redundant = true;
1785   }
1786 }
1787 
1788 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1789   Node* mark_node = NULL;
1790   if (EnableValhalla) {
1791     Node* klass_node = in(AllocateNode::KlassNode);
1792     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1793     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1794   } else {
1795     mark_node = phase->MakeConX(markWord::prototype().value());
1796   }
1797   mark_node = phase->transform(mark_node);
1798   // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
1799   return new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
1800 }
1801 
1802 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1803 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1804 // a CastII is appropriate, return NULL.
1805 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1806   Node *length = in(AllocateNode::ALength);
1807   assert(length != NULL, "length is not null");
1808 
1809   const TypeInt* length_type = phase->find_int_type(length);
1810   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1811 
1812   if (ary_type != NULL && length_type != NULL) {
1813     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1814     if (narrow_length_type != length_type) {
1815       // Assert one of:
1816       //   - the narrow_length is 0
1817       //   - the narrow_length is not wider than length
1818       assert(narrow_length_type == TypeInt::ZERO ||
1819              length_type->is_con() && narrow_length_type->is_con() &&

2158 
2159 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2160   st->print("%s", _kind_names[_kind]);
2161 }
2162 #endif
2163 
2164 //=============================================================================
2165 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2166 
2167   // perform any generic optimizations first (returns 'this' or NULL)
2168   Node *result = SafePointNode::Ideal(phase, can_reshape);
2169   if (result != NULL)  return result;
2170   // Don't bother trying to transform a dead node
2171   if (in(0) && in(0)->is_top())  return NULL;
2172 
2173   // Now see if we can optimize away this lock.  We don't actually
2174   // remove the locking here, we simply set the _eliminate flag which
2175   // prevents macro expansion from expanding the lock.  Since we don't
2176   // modify the graph, the value returned from this function is the
2177   // one computed above.
2178   const Type* obj_type = phase->type(obj_node());
2179   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2180     //
2181     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2182     //
2183     ConnectionGraph *cgr = phase->C->congraph();
2184     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2185       assert(!is_eliminated() || is_coarsened(), "sanity");
2186       // The lock could be marked eliminated by lock coarsening
2187       // code during first IGVN before EA. Replace coarsened flag
2188       // to eliminate all associated locks/unlocks.
2189 #ifdef ASSERT
2190       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2191 #endif
2192       this->set_non_esc_obj();
2193       return result;
2194     }
2195 
2196     if (!phase->C->do_locks_coarsening()) {
2197       return result; // Compiling without locks coarsening
2198     }
2199     //

2355 }
2356 
2357 //=============================================================================
2358 uint UnlockNode::size_of() const { return sizeof(*this); }
2359 
2360 //=============================================================================
2361 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2362 
2363   // perform any generic optimizations first (returns 'this' or NULL)
2364   Node *result = SafePointNode::Ideal(phase, can_reshape);
2365   if (result != NULL)  return result;
2366   // Don't bother trying to transform a dead node
2367   if (in(0) && in(0)->is_top())  return NULL;
2368 
2369   // Now see if we can optimize away this unlock.  We don't actually
2370   // remove the unlocking here, we simply set the _eliminate flag which
2371   // prevents macro expansion from expanding the unlock.  Since we don't
2372   // modify the graph, the value returned from this function is the
2373   // one computed above.
2374   // Escape state is defined after Parse phase.
2375   const Type* obj_type = phase->type(obj_node());
2376   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2377     //
2378     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2379     //
2380     ConnectionGraph *cgr = phase->C->congraph();
2381     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2382       assert(!is_eliminated() || is_coarsened(), "sanity");
2383       // The lock could be marked eliminated by lock coarsening
2384       // code during first IGVN before EA. Replace coarsened flag
2385       // to eliminate all associated locks/unlocks.
2386 #ifdef ASSERT
2387       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2388 #endif
2389       this->set_non_esc_obj();
2390     }
2391   }
2392   return result;
2393 }
2394 
2395 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2396   if (C == NULL) {

2436     }
2437     // unrelated
2438     return false;
2439   }
2440 
2441   if (dest_t->isa_aryptr()) {
2442     // arraycopy or array clone
2443     if (t_oop->isa_instptr()) {
2444       return false;
2445     }
2446     if (!t_oop->isa_aryptr()) {
2447       return true;
2448     }
2449 
2450     const Type* elem = dest_t->is_aryptr()->elem();
2451     if (elem == Type::BOTTOM) {
2452       // An array but we don't know what elements are
2453       return true;
2454     }
2455 
2456     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2457     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2458     uint dest_alias = phase->C->get_alias_index(dest_t);
2459     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2460 
2461     return dest_alias == t_oop_alias;
2462   }
2463 
2464   return true;
2465 }
< prev index next >