< prev index next >

src/hotspot/share/opto/callnode.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"


  26 #include "code/vmreg.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/escape.hpp"

  37 #include "opto/locknode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"

  40 #include "opto/parse.hpp"
  41 #include "opto/regalloc.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"

  45 #include "runtime/sharedRuntime.hpp"

  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 // Portions of code courtesy of Clifford Click
  49 
  50 // Optimization - Graph Style
  51 
  52 //=============================================================================
  53 uint StartNode::size_of() const { return sizeof(*this); }
  54 bool StartNode::cmp( const Node &n ) const
  55 { return _domain == ((StartNode&)n)._domain; }
  56 const Type *StartNode::bottom_type() const { return _domain; }
  57 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  58 #ifndef PRODUCT
  59 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  60 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  61 #endif
  62 
  63 //------------------------------Ideal------------------------------------------
  64 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  65   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  66 }
  67 
  68 //------------------------------calling_convention-----------------------------
  69 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  70   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  71 }
  72 
  73 //------------------------------Registers--------------------------------------
  74 const RegMask &StartNode::in_RegMask(uint) const {
  75   return RegMask::EMPTY;
  76 }
  77 
  78 //------------------------------match------------------------------------------
  79 // Construct projections for incoming parameters, and their RegMask info
  80 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  81   switch (proj->_con) {
  82   case TypeFunc::Control:
  83   case TypeFunc::I_O:
  84   case TypeFunc::Memory:
  85     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  86   case TypeFunc::FramePtr:
  87     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  88   case TypeFunc::ReturnAdr:
  89     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  90   case TypeFunc::Parms:
  91   default: {
  92       uint parm_num = proj->_con - TypeFunc::Parms;
  93       const Type *t = _domain->field_at(proj->_con);
  94       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  95         return new ConNode(Type::TOP);
  96       uint ideal_reg = t->ideal_reg();
  97       RegMask &rm = match->_calling_convention_mask[parm_num];
  98       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  99     }
 100   }
 101   return nullptr;
 102 }
 103 
 104 //------------------------------StartOSRNode----------------------------------
 105 // The method start node for an on stack replacement adapter
 106 
 107 //------------------------------osr_domain-----------------------------
 108 const TypeTuple *StartOSRNode::osr_domain() {
 109   const Type **fields = TypeTuple::fields(2);
 110   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 111 
 112   return TypeTuple::make(TypeFunc::Parms+1, fields);
 113 }
 114 
 115 //=============================================================================
 116 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 117   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 118 };
 119 
 120 #ifndef PRODUCT
 121 void ParmNode::dump_spec(outputStream *st) const {
 122   if( _con < TypeFunc::Parms ) {
 123     st->print("%s", names[_con]);
 124   } else {
 125     st->print("Parm%d: ",_con-TypeFunc::Parms);
 126     // Verbose and WizardMode dump bottom_type for all nodes
 127     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 128   }
 129 }
 130 
 131 void ParmNode::dump_compact_spec(outputStream *st) const {
 132   if (_con < TypeFunc::Parms) {
 133     st->print("%s", names[_con]);
 134   } else {

 482       if (cik->is_instance_klass()) {
 483         cik->print_name_on(st);
 484         iklass = cik->as_instance_klass();
 485       } else if (cik->is_type_array_klass()) {
 486         cik->as_array_klass()->base_element_type()->print_name_on(st);
 487         st->print("[%d]", spobj->n_fields());
 488       } else if (cik->is_obj_array_klass()) {
 489         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 490         if (cie->is_instance_klass()) {
 491           cie->print_name_on(st);
 492         } else if (cie->is_type_array_klass()) {
 493           cie->as_array_klass()->base_element_type()->print_name_on(st);
 494         } else {
 495           ShouldNotReachHere();
 496         }
 497         st->print("[%d]", spobj->n_fields());
 498         int ndim = cik->as_array_klass()->dimension() - 1;
 499         while (ndim-- > 0) {
 500           st->print("[]");
 501         }


 502       }
 503       st->print("={");
 504       uint nf = spobj->n_fields();
 505       if (nf > 0) {
 506         uint first_ind = spobj->first_index(mcall->jvms());







 507         Node* fld_node = mcall->in(first_ind);
 508         ciField* cifield;
 509         if (iklass != nullptr) {
 510           st->print(" [");
 511           cifield = iklass->nonstatic_field_at(0);
 512           cifield->print_name_on(st);
 513           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 514         } else {
 515           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 516         }
 517         for (uint j = 1; j < nf; j++) {
 518           fld_node = mcall->in(first_ind+j);
 519           if (iklass != nullptr) {
 520             st->print(", [");
 521             cifield = iklass->nonstatic_field_at(j);
 522             cifield->print_name_on(st);
 523             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 524           } else {
 525             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 526           }
 527         }
 528       }
 529       st->print(" }");
 530     }
 531   }
 532   st->cr();
 533   if (caller() != nullptr) caller()->format(regalloc, n, st);
 534 }
 535 
 536 
 537 void JVMState::dump_spec(outputStream *st) const {
 538   if (_method != nullptr) {
 539     bool printed = false;
 540     if (!Verbose) {
 541       // The JVMS dumps make really, really long lines.
 542       // Take out the most boring parts, which are the package prefixes.

 737     tf()->dump_on(st);
 738   }
 739   if (_cnt != COUNT_UNKNOWN) {
 740     st->print(" C=%f", _cnt);
 741   }
 742   const Node* const klass_node = in(KlassNode);
 743   if (klass_node != nullptr) {
 744     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 745 
 746     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 747       st->print(" allocationKlass:");
 748       klass_ptr->exact_klass()->print_name_on(st);
 749     }
 750   }
 751   if (jvms() != nullptr) {
 752     jvms()->dump_spec(st);
 753   }
 754 }
 755 #endif
 756 
 757 const Type *CallNode::bottom_type() const { return tf()->range(); }
 758 const Type* CallNode::Value(PhaseGVN* phase) const {
 759   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 760     return Type::TOP;
 761   }
 762   return tf()->range();
 763 }
 764 
 765 //------------------------------calling_convention-----------------------------
 766 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







 767   // Use the standard compiler calling convention
 768   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 769 }
 770 
 771 
 772 //------------------------------match------------------------------------------
 773 // Construct projections for control, I/O, memory-fields, ..., and
 774 // return result(s) along with their RegMask info
 775 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 776   switch (proj->_con) {
 777   case TypeFunc::Control:
 778   case TypeFunc::I_O:
 779   case TypeFunc::Memory:
 780     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 781 
 782   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 783     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 784     // 2nd half of doubles and longs
 785     return new MachProjNode(this,proj->_con, RegMask::EMPTY, (uint)OptoReg::Bad);
 786 
 787   case TypeFunc::Parms: {       // Normal returns
 788     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 789     OptoRegPair regs = Opcode() == Op_CallLeafVector
 790       ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 791       : is_CallRuntime()
 792         ? match->c_return_value(ideal_reg)  // Calls into C runtime
 793         : match->  return_value(ideal_reg); // Calls into compiled Java code
 794     RegMask rm = RegMask(regs.first());
 795 
 796     if (Opcode() == Op_CallLeafVector) {
 797       // If the return is in vector, compute appropriate regmask taking into account the whole range
 798       if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 799         if(OptoReg::is_valid(regs.second())) {
 800           for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 801             rm.insert(r);
 802           }
 803         }









 804       }
 805     }
 806 
 807     if( OptoReg::is_valid(regs.second()) )
 808       rm.insert(regs.second());
 809     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 810   }
 811 






 812   case TypeFunc::ReturnAdr:
 813   case TypeFunc::FramePtr:
 814   default:
 815     ShouldNotReachHere();
 816   }
 817   return nullptr;
 818 }
 819 
 820 // Do we Match on this edge index or not?  Match no edges
 821 uint CallNode::match_edge(uint idx) const {
 822   return 0;
 823 }
 824 
 825 //
 826 // Determine whether the call could modify the field of the specified
 827 // instance at the specified offset.
 828 //
 829 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 830   assert((t_oop != nullptr), "sanity");
 831   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 832     const TypeTuple* args = _tf->domain();
 833     Node* dest = nullptr;
 834     // Stubs that can be called once an ArrayCopyNode is expanded have
 835     // different signatures. Look for the second pointer argument,
 836     // that is the destination of the copy.
 837     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 838       if (args->field_at(i)->isa_ptr()) {
 839         j++;
 840         if (j == 2) {
 841           dest = in(i);
 842           break;
 843         }
 844       }
 845     }
 846     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 847     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 848       return true;
 849     }
 850     return false;
 851   }
 852   if (t_oop->is_known_instance()) {

 861       Node* proj = proj_out_or_null(TypeFunc::Parms);
 862       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 863         return false;
 864       }
 865     }
 866     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 867       ciMethod* meth = as_CallJava()->method();
 868       if (meth->is_getter()) {
 869         return false;
 870       }
 871       // May modify (by reflection) if an boxing object is passed
 872       // as argument or returned.
 873       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 874       if (proj != nullptr) {
 875         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 876         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 877                                    (inst_t->instance_klass() == boxing_klass))) {
 878           return true;
 879         }
 880       }
 881       const TypeTuple* d = tf()->domain();
 882       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 883         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 884         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 885                                  (inst_t->instance_klass() == boxing_klass))) {
 886           return true;
 887         }
 888       }
 889       return false;
 890     }
 891   }
 892   return true;
 893 }
 894 
 895 // Does this call have a direct reference to n other than debug information?
 896 bool CallNode::has_non_debug_use(Node *n) {
 897   const TypeTuple * d = tf()->domain();
 898   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 899     Node *arg = in(i);
 900     if (arg == n) {
 901       return true;
 902     }
 903   }
 904   return false;
 905 }
 906 











 907 // Returns the unique CheckCastPP of a call
 908 // or 'this' if there are several CheckCastPP or unexpected uses
 909 // or returns null if there is no one.
 910 Node *CallNode::result_cast() {
 911   Node *cast = nullptr;
 912 
 913   Node *p = proj_out_or_null(TypeFunc::Parms);
 914   if (p == nullptr)
 915     return nullptr;
 916 
 917   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 918     Node *use = p->fast_out(i);
 919     if (use->is_CheckCastPP()) {
 920       if (cast != nullptr) {
 921         return this;  // more than 1 CheckCastPP
 922       }
 923       cast = use;
 924     } else if (!use->is_Initialize() &&
 925                !use->is_AddP() &&
 926                use->Opcode() != Op_MemBarStoreStore) {
 927       // Expected uses are restricted to a CheckCastPP, an Initialize
 928       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 929       // encounter any other use (a Phi node can be seen in rare
 930       // cases) return this to prevent incorrect optimizations.
 931       return this;
 932     }
 933   }
 934   return cast;
 935 }
 936 
 937 
 938 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) const {
 939   projs->fallthrough_proj      = nullptr;
 940   projs->fallthrough_catchproj = nullptr;
 941   projs->fallthrough_ioproj    = nullptr;
 942   projs->catchall_ioproj       = nullptr;
 943   projs->catchall_catchproj    = nullptr;
 944   projs->fallthrough_memproj   = nullptr;
 945   projs->catchall_memproj      = nullptr;
 946   projs->resproj               = nullptr;
 947   projs->exobj                 = nullptr;





 948 
 949   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 950     ProjNode *pn = fast_out(i)->as_Proj();
 951     if (pn->outcnt() == 0) continue;
 952     switch (pn->_con) {
 953     case TypeFunc::Control:
 954       {
 955         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 956         projs->fallthrough_proj = pn;
 957         const Node* cn = pn->unique_ctrl_out_or_null();
 958         if (cn != nullptr && cn->is_Catch()) {
 959           ProjNode *cpn = nullptr;
 960           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 961             cpn = cn->fast_out(k)->as_Proj();
 962             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 963             if (cpn->_con == CatchProjNode::fall_through_index)
 964               projs->fallthrough_catchproj = cpn;
 965             else {
 966               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 967               projs->catchall_catchproj = cpn;

 973     case TypeFunc::I_O:
 974       if (pn->_is_io_use)
 975         projs->catchall_ioproj = pn;
 976       else
 977         projs->fallthrough_ioproj = pn;
 978       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 979         Node* e = pn->out(j);
 980         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 981           assert(projs->exobj == nullptr, "only one");
 982           projs->exobj = e;
 983         }
 984       }
 985       break;
 986     case TypeFunc::Memory:
 987       if (pn->_is_io_use)
 988         projs->catchall_memproj = pn;
 989       else
 990         projs->fallthrough_memproj = pn;
 991       break;
 992     case TypeFunc::Parms:
 993       projs->resproj = pn;
 994       break;
 995     default:
 996       assert(false, "unexpected projection from allocation node.");


 997     }
 998   }
 999 
1000   // The resproj may not exist because the result could be ignored
1001   // and the exception object may not exist if an exception handler
1002   // swallows the exception but all the other must exist and be found.
1003   assert(projs->fallthrough_proj      != nullptr, "must be found");
1004   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();

1005   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1006   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1007   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1008   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1009   if (separate_io_proj) {
1010     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1011     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1012   }

1013 }
1014 
1015 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1016 #ifdef ASSERT
1017   // Validate attached generator
1018   CallGenerator* cg = generator();
1019   if (cg != nullptr) {
1020     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1021            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1022   }
1023 #endif // ASSERT
1024   return SafePointNode::Ideal(phase, can_reshape);
1025 }
1026 
1027 bool CallNode::is_call_to_arraycopystub() const {
1028   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1029     return true;
1030   }
1031   return false;
1032 }
1033 
1034 bool CallNode::is_call_to_multianewarray_stub() const {
1035   if (_name != nullptr &&
1036       strstr(_name, "multianewarray") != nullptr &&
1037       strstr(_name, "C2 runtime") != nullptr) {
1038     return true;
1039   }
1040   return false;
1041 }
1042 
1043 //=============================================================================
1044 uint CallJavaNode::size_of() const { return sizeof(*this); }
1045 bool CallJavaNode::cmp( const Node &n ) const {
1046   CallJavaNode &call = (CallJavaNode&)n;
1047   return CallNode::cmp(call) && _method == call._method &&
1048          _override_symbolic_info == call._override_symbolic_info;
1049 }
1050 
1051 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1052   // Copy debug information and adjust JVMState information
1053   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1054   uint new_dbg_start = tf()->domain()->cnt();
1055   int jvms_adj  = new_dbg_start - old_dbg_start;
1056   assert (new_dbg_start == req(), "argument count mismatch");
1057   Compile* C = phase->C;
1058 
1059   // SafePointScalarObject node could be referenced several times in debug info.
1060   // Use Dict to record cloned nodes.
1061   Dict* sosn_map = new Dict(cmpkey,hashkey);
1062   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1063     Node* old_in = sfpt->in(i);
1064     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1065     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1066       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1067       bool new_node;
1068       Node* new_in = old_sosn->clone(sosn_map, new_node);
1069       if (new_node) { // New node?
1070         new_in->set_req(0, C->root()); // reset control edge
1071         new_in = phase->transform(new_in); // Register new node.
1072       }
1073       old_in = new_in;
1074     }
1075     add_req(old_in);
1076   }
1077 
1078   // JVMS may be shared so clone it before we modify it
1079   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1080   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1081     jvms->set_map(this);
1082     jvms->set_locoff(jvms->locoff()+jvms_adj);
1083     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1084     jvms->set_monoff(jvms->monoff()+jvms_adj);
1085     jvms->set_scloff(jvms->scloff()+jvms_adj);
1086     jvms->set_endoff(jvms->endoff()+jvms_adj);
1087   }
1088 }
1089 
1090 #ifdef ASSERT
1091 bool CallJavaNode::validate_symbolic_info() const {
1092   if (method() == nullptr) {
1093     return true; // call into runtime or uncommon trap
1094   }




1095   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1096   ciMethod* callee = method();
1097   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1098     assert(override_symbolic_info(), "should be set");
1099   }
1100   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1101   return true;
1102 }
1103 #endif
1104 
1105 #ifndef PRODUCT
1106 void CallJavaNode::dump_spec(outputStream* st) const {
1107   if( _method ) _method->print_short_name(st);
1108   CallNode::dump_spec(st);
1109 }
1110 
1111 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1112   if (_method) {
1113     _method->print_short_name(st);
1114   } else {

1117 }
1118 #endif
1119 
1120 void CallJavaNode::register_for_late_inline() {
1121   if (generator() != nullptr) {
1122     Compile::current()->prepend_late_inline(generator());
1123     set_generator(nullptr);
1124   } else {
1125     assert(false, "repeated inline attempt");
1126   }
1127 }
1128 
1129 //=============================================================================
1130 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1131 bool CallStaticJavaNode::cmp( const Node &n ) const {
1132   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1133   return CallJavaNode::cmp(call);
1134 }
1135 
1136 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {

































































1137   CallGenerator* cg = generator();
1138   if (can_reshape && cg != nullptr) {
1139     if (cg->is_mh_late_inline()) {
1140       assert(IncrementalInlineMH, "required");
1141       assert(cg->call_node() == this, "mismatch");
1142       assert(cg->method()->is_method_handle_intrinsic(), "required");
1143 
1144       // Check whether this MH handle call becomes a candidate for inlining.
1145       ciMethod* callee = cg->method();
1146       vmIntrinsics::ID iid = callee->intrinsic_id();
1147       if (iid == vmIntrinsics::_invokeBasic) {
1148         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1149           register_for_late_inline();
1150         }
1151       } else if (iid == vmIntrinsics::_linkToNative) {
1152         // never retry
1153       } else {
1154         assert(callee->has_member_arg(), "wrong type of call?");
1155         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1156           register_for_late_inline();

1177 
1178 //----------------------------uncommon_trap_request----------------------------
1179 // If this is an uncommon trap, return the request code, else zero.
1180 int CallStaticJavaNode::uncommon_trap_request() const {
1181   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1182 }
1183 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1184 #ifndef PRODUCT
1185   if (!(call->req() > TypeFunc::Parms &&
1186         call->in(TypeFunc::Parms) != nullptr &&
1187         call->in(TypeFunc::Parms)->is_Con() &&
1188         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1189     assert(in_dump() != 0, "OK if dumping");
1190     tty->print("[bad uncommon trap]");
1191     return 0;
1192   }
1193 #endif
1194   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1195 }
1196 































































































































1197 #ifndef PRODUCT
1198 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1199   st->print("# Static ");
1200   if (_name != nullptr) {
1201     st->print("%s", _name);
1202     int trap_req = uncommon_trap_request();
1203     if (trap_req != 0) {
1204       char buf[100];
1205       st->print("(%s)",
1206                  Deoptimization::format_trap_request(buf, sizeof(buf),
1207                                                      trap_req));
1208     }
1209     st->print(" ");
1210   }
1211   CallJavaNode::dump_spec(st);
1212 }
1213 
1214 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1215   if (_method) {
1216     _method->print_short_name(st);

1292 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1293 bool CallRuntimeNode::cmp( const Node &n ) const {
1294   CallRuntimeNode &call = (CallRuntimeNode&)n;
1295   return CallNode::cmp(call) && !strcmp(_name,call._name);
1296 }
1297 #ifndef PRODUCT
1298 void CallRuntimeNode::dump_spec(outputStream *st) const {
1299   st->print("# ");
1300   st->print("%s", _name);
1301   CallNode::dump_spec(st);
1302 }
1303 #endif
1304 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1305 bool CallLeafVectorNode::cmp( const Node &n ) const {
1306   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1307   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1308 }
1309 
1310 //------------------------------calling_convention-----------------------------
1311 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







1312   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1313 }
1314 
1315 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1316 #ifdef ASSERT
1317   assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1318          "return vector size must match");
1319   const TypeTuple* d = tf()->domain();
1320   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1321     Node* arg = in(i);
1322     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1323            "vector argument size must match");
1324   }
1325 #endif
1326 
1327   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1328 }
1329 
1330 //=============================================================================
1331 //------------------------------calling_convention-----------------------------
1332 
1333 
1334 //=============================================================================
1335 bool CallLeafPureNode::is_unused() const {
1336   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1337 }
1338 
1339 bool CallLeafPureNode::is_dead() const {
1340   return proj_out_or_null(TypeFunc::Control) == nullptr;
1341 }
1342 
1343 /* We make a tuple of the global input state + TOP for the output values.
1344  * We use this to delete a pure function that is not used: by replacing the call with
1345  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1346  * pure call, so jumping over it, and effectively, removing the call from the graph.
1347  * This avoids doing the graph surgery manually, but leaves that to IGVN
1348  * that is specialized for doing that right. We need also tuple components for output
1349  * values of the function to respect the return arity, and in case there is a projection
1350  * that would pick an output (which shouldn't happen at the moment).
1351  */
1352 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1353   // Transparently propagate input state but parameters
1354   TupleNode* tuple = TupleNode::make(
1355       tf()->range(),
1356       in(TypeFunc::Control),
1357       in(TypeFunc::I_O),
1358       in(TypeFunc::Memory),
1359       in(TypeFunc::FramePtr),
1360       in(TypeFunc::ReturnAdr));
1361 
1362   // And add TOPs for the return values
1363   for (uint i = TypeFunc::Parms; i < tf()->range()->cnt(); i++) {
1364     tuple->set_req(i, C->top());
1365   }
1366 
1367   return tuple;
1368 }
1369 
1370 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1371   if (is_dead()) {
1372     return nullptr;
1373   }
1374 
1375   // We need to wait until IGVN because during parsing, usages might still be missing
1376   // and we would remove the call immediately.
1377   if (can_reshape && is_unused()) {
1378     // The result is not used. We remove the call by replacing it with a tuple, that
1379     // is later disintegrated by the projections.
1380     return make_tuple_of_input_state_and_top_return_values(phase->C);
1381   }
1382 
1383   return CallRuntimeNode::Ideal(phase, can_reshape);
1384 }
1385 
1386 #ifndef PRODUCT
1387 void CallLeafNode::dump_spec(outputStream *st) const {
1388   st->print("# ");
1389   st->print("%s", _name);
1390   CallNode::dump_spec(st);
1391 }
1392 #endif
1393 






1394 //=============================================================================
1395 
1396 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1397   assert(verify_jvms(jvms), "jvms must match");
1398   int loc = jvms->locoff() + idx;
1399   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1400     // If current local idx is top then local idx - 1 could
1401     // be a long/double that needs to be killed since top could
1402     // represent the 2nd half of the long/double.
1403     uint ideal = in(loc -1)->ideal_reg();
1404     if (ideal == Op_RegD || ideal == Op_RegL) {
1405       // set other (low index) half to top
1406       set_req(loc - 1, in(loc));
1407     }
1408   }
1409   set_req(loc, c);
1410 }
1411 
1412 uint SafePointNode::size_of() const { return sizeof(*this); }
1413 bool SafePointNode::cmp( const Node &n ) const {

1424   }
1425 }
1426 
1427 
1428 //----------------------------next_exception-----------------------------------
1429 SafePointNode* SafePointNode::next_exception() const {
1430   if (len() == req()) {
1431     return nullptr;
1432   } else {
1433     Node* n = in(req());
1434     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1435     return (SafePointNode*) n;
1436   }
1437 }
1438 
1439 
1440 //------------------------------Ideal------------------------------------------
1441 // Skip over any collapsed Regions
1442 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1443   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1444   return remove_dead_region(phase, can_reshape) ? this : nullptr;













1445 }
1446 
1447 //------------------------------Identity---------------------------------------
1448 // Remove obviously duplicate safepoints
1449 Node* SafePointNode::Identity(PhaseGVN* phase) {
1450 
1451   // If you have back to back safepoints, remove one
1452   if (in(TypeFunc::Control)->is_SafePoint()) {
1453     Node* out_c = unique_ctrl_out_or_null();
1454     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1455     // outer loop's safepoint could confuse removal of the outer loop.
1456     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1457       return in(TypeFunc::Control);
1458     }
1459   }
1460 
1461   // Transforming long counted loops requires a safepoint node. Do not
1462   // eliminate a safepoint until loop opts are over.
1463   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1464     Node *n0 = in(0)->in(0);

1578 }
1579 
1580 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1581   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1582   int nb = igvn->C->root()->find_prec_edge(this);
1583   if (nb != -1) {
1584     igvn->delete_precedence_of(igvn->C->root(), nb);
1585   }
1586 }
1587 
1588 //==============  SafePointScalarObjectNode  ==============
1589 
1590 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1591   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1592   _first_index(first_index),
1593   _depth(depth),
1594   _n_fields(n_fields),
1595   _alloc(alloc)
1596 {
1597 #ifdef ASSERT
1598   if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1599     alloc->dump();
1600     assert(false, "unexpected call node");
1601   }
1602 #endif
1603   init_class_id(Class_SafePointScalarObject);
1604 }
1605 
1606 // Do not allow value-numbering for SafePointScalarObject node.
1607 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1608 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1609   return (&n == this); // Always fail except on self
1610 }
1611 
1612 uint SafePointScalarObjectNode::ideal_reg() const {
1613   return 0; // No matching to machine instruction
1614 }
1615 
1616 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1617   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1618 }

1683     new_node = false;
1684     return (SafePointScalarMergeNode*)cached;
1685   }
1686   new_node = true;
1687   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1688   sosn_map->Insert((void*)this, (void*)res);
1689   return res;
1690 }
1691 
1692 #ifndef PRODUCT
1693 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1694   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1695 }
1696 #endif
1697 
1698 //=============================================================================
1699 uint AllocateNode::size_of() const { return sizeof(*this); }
1700 
1701 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1702                            Node *ctrl, Node *mem, Node *abio,
1703                            Node *size, Node *klass_node, Node *initial_test)


1704   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1705 {
1706   init_class_id(Class_Allocate);
1707   init_flags(Flag_is_macro);
1708   _is_scalar_replaceable = false;
1709   _is_non_escaping = false;
1710   _is_allocation_MemBar_redundant = false;

1711   Node *topnode = C->top();
1712 
1713   init_req( TypeFunc::Control  , ctrl );
1714   init_req( TypeFunc::I_O      , abio );
1715   init_req( TypeFunc::Memory   , mem );
1716   init_req( TypeFunc::ReturnAdr, topnode );
1717   init_req( TypeFunc::FramePtr , topnode );
1718   init_req( AllocSize          , size);
1719   init_req( KlassNode          , klass_node);
1720   init_req( InitialTest        , initial_test);
1721   init_req( ALength            , topnode);
1722   init_req( ValidLengthTest    , topnode);



1723   C->add_macro_node(this);
1724 }
1725 
1726 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1727 {
1728   assert(initializer != nullptr && initializer->is_object_initializer(),

1729          "unexpected initializer method");
1730   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1731   if (analyzer == nullptr) {
1732     return;
1733   }
1734 
1735   // Allocation node is first parameter in its initializer
1736   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1737     _is_allocation_MemBar_redundant = true;
1738   }
1739 }
1740 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {

1741   Node* mark_node = nullptr;
1742   if (UseCompactObjectHeaders) {
1743     Node* klass_node = in(AllocateNode::KlassNode);
1744     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1745     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);






1746   } else {
1747     // For now only enable fast locking for non-array types
1748     mark_node = phase->MakeConX(markWord::prototype().value());
1749   }
1750   return mark_node;
1751 }
1752 
1753 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1754 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1755 // a CastII is appropriate, return null.
1756 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1757   Node *length = in(AllocateNode::ALength);
1758   assert(length != nullptr, "length is not null");
1759 
1760   const TypeInt* length_type = phase->find_int_type(length);
1761   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1762 
1763   if (ary_type != nullptr && length_type != nullptr) {
1764     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1765     if (narrow_length_type != length_type) {
1766       // Assert one of:
1767       //   - the narrow_length is 0
1768       //   - the narrow_length is not wider than length
1769       assert(narrow_length_type == TypeInt::ZERO ||
1770              (length_type->is_con() && narrow_length_type->is_con() &&

2126 
2127 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2128   st->print("%s", _kind_names[_kind]);
2129 }
2130 #endif
2131 
2132 //=============================================================================
2133 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2134 
2135   // perform any generic optimizations first (returns 'this' or null)
2136   Node *result = SafePointNode::Ideal(phase, can_reshape);
2137   if (result != nullptr)  return result;
2138   // Don't bother trying to transform a dead node
2139   if (in(0) && in(0)->is_top())  return nullptr;
2140 
2141   // Now see if we can optimize away this lock.  We don't actually
2142   // remove the locking here, we simply set the _eliminate flag which
2143   // prevents macro expansion from expanding the lock.  Since we don't
2144   // modify the graph, the value returned from this function is the
2145   // one computed above.
2146   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2147     //
2148     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2149     //
2150     ConnectionGraph *cgr = phase->C->congraph();
2151     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2152       assert(!is_eliminated() || is_coarsened(), "sanity");
2153       // The lock could be marked eliminated by lock coarsening
2154       // code during first IGVN before EA. Replace coarsened flag
2155       // to eliminate all associated locks/unlocks.
2156 #ifdef ASSERT
2157       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2158 #endif
2159       this->set_non_esc_obj();
2160       return result;
2161     }
2162 
2163     if (!phase->C->do_locks_coarsening()) {
2164       return result; // Compiling without locks coarsening
2165     }
2166     //

2327 }
2328 
2329 //=============================================================================
2330 uint UnlockNode::size_of() const { return sizeof(*this); }
2331 
2332 //=============================================================================
2333 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2334 
2335   // perform any generic optimizations first (returns 'this' or null)
2336   Node *result = SafePointNode::Ideal(phase, can_reshape);
2337   if (result != nullptr)  return result;
2338   // Don't bother trying to transform a dead node
2339   if (in(0) && in(0)->is_top())  return nullptr;
2340 
2341   // Now see if we can optimize away this unlock.  We don't actually
2342   // remove the unlocking here, we simply set the _eliminate flag which
2343   // prevents macro expansion from expanding the unlock.  Since we don't
2344   // modify the graph, the value returned from this function is the
2345   // one computed above.
2346   // Escape state is defined after Parse phase.
2347   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2348     //
2349     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2350     //
2351     ConnectionGraph *cgr = phase->C->congraph();
2352     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2353       assert(!is_eliminated() || is_coarsened(), "sanity");
2354       // The lock could be marked eliminated by lock coarsening
2355       // code during first IGVN before EA. Replace coarsened flag
2356       // to eliminate all associated locks/unlocks.
2357 #ifdef ASSERT
2358       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2359 #endif
2360       this->set_non_esc_obj();
2361     }
2362   }
2363   return result;
2364 }
2365 
2366 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2367   if (C == nullptr) {

2407     }
2408     // unrelated
2409     return false;
2410   }
2411 
2412   if (dest_t->isa_aryptr()) {
2413     // arraycopy or array clone
2414     if (t_oop->isa_instptr()) {
2415       return false;
2416     }
2417     if (!t_oop->isa_aryptr()) {
2418       return true;
2419     }
2420 
2421     const Type* elem = dest_t->is_aryptr()->elem();
2422     if (elem == Type::BOTTOM) {
2423       // An array but we don't know what elements are
2424       return true;
2425     }
2426 
2427     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();

2428     uint dest_alias = phase->C->get_alias_index(dest_t);
2429     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2430 
2431     return dest_alias == t_oop_alias;
2432   }
2433 
2434   return true;
2435 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "code/vmreg.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/regalloc.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 // Portions of code courtesy of Clifford Click
  55 
  56 // Optimization - Graph Style
  57 
  58 //=============================================================================
  59 uint StartNode::size_of() const { return sizeof(*this); }
  60 bool StartNode::cmp( const Node &n ) const
  61 { return _domain == ((StartNode&)n)._domain; }
  62 const Type *StartNode::bottom_type() const { return _domain; }
  63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  64 #ifndef PRODUCT
  65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  67 #endif
  68 
  69 //------------------------------Ideal------------------------------------------
  70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  71   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  72 }
  73 
  74 //------------------------------calling_convention-----------------------------
  75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  76   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  77 }
  78 
  79 //------------------------------Registers--------------------------------------
  80 const RegMask &StartNode::in_RegMask(uint) const {
  81   return RegMask::EMPTY;
  82 }
  83 
  84 //------------------------------match------------------------------------------
  85 // Construct projections for incoming parameters, and their RegMask info
  86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  87   switch (proj->_con) {
  88   case TypeFunc::Control:
  89   case TypeFunc::I_O:
  90   case TypeFunc::Memory:
  91     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  92   case TypeFunc::FramePtr:
  93     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  94   case TypeFunc::ReturnAdr:
  95     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  96   case TypeFunc::Parms:
  97   default: {
  98       uint parm_num = proj->_con - TypeFunc::Parms;
  99       const Type *t = _domain->field_at(proj->_con);
 100       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
 101         return new ConNode(Type::TOP);
 102       uint ideal_reg = t->ideal_reg();
 103       RegMask &rm = match->_calling_convention_mask[parm_num];
 104       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 105     }
 106   }
 107   return nullptr;
 108 }
 109 











 110 //=============================================================================
 111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ParmNode::dump_spec(outputStream *st) const {
 117   if( _con < TypeFunc::Parms ) {
 118     st->print("%s", names[_con]);
 119   } else {
 120     st->print("Parm%d: ",_con-TypeFunc::Parms);
 121     // Verbose and WizardMode dump bottom_type for all nodes
 122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 123   }
 124 }
 125 
 126 void ParmNode::dump_compact_spec(outputStream *st) const {
 127   if (_con < TypeFunc::Parms) {
 128     st->print("%s", names[_con]);
 129   } else {

 477       if (cik->is_instance_klass()) {
 478         cik->print_name_on(st);
 479         iklass = cik->as_instance_klass();
 480       } else if (cik->is_type_array_klass()) {
 481         cik->as_array_klass()->base_element_type()->print_name_on(st);
 482         st->print("[%d]", spobj->n_fields());
 483       } else if (cik->is_obj_array_klass()) {
 484         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 485         if (cie->is_instance_klass()) {
 486           cie->print_name_on(st);
 487         } else if (cie->is_type_array_klass()) {
 488           cie->as_array_klass()->base_element_type()->print_name_on(st);
 489         } else {
 490           ShouldNotReachHere();
 491         }
 492         st->print("[%d]", spobj->n_fields());
 493         int ndim = cik->as_array_klass()->dimension() - 1;
 494         while (ndim-- > 0) {
 495           st->print("[]");
 496         }
 497       } else {
 498         assert(false, "unexpected type %s", cik->name()->as_utf8());
 499       }
 500       st->print("={");
 501       uint nf = spobj->n_fields();
 502       if (nf > 0) {
 503         uint first_ind = spobj->first_index(mcall->jvms());
 504         if (iklass != nullptr && iklass->is_inlinetype()) {
 505           Node* null_marker = mcall->in(first_ind++);
 506           if (!null_marker->is_top()) {
 507             st->print(" [null marker");
 508             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 509           }
 510         }
 511         Node* fld_node = mcall->in(first_ind);

 512         if (iklass != nullptr) {
 513           st->print(" [");
 514           iklass->nonstatic_field_at(0)->print_name_on(st);

 515           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 516         } else {
 517           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 518         }
 519         for (uint j = 1; j < nf; j++) {
 520           fld_node = mcall->in(first_ind+j);
 521           if (iklass != nullptr) {
 522             st->print(", [");
 523             iklass->nonstatic_field_at(j)->print_name_on(st);

 524             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 525           } else {
 526             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 527           }
 528         }
 529       }
 530       st->print(" }");
 531     }
 532   }
 533   st->cr();
 534   if (caller() != nullptr) caller()->format(regalloc, n, st);
 535 }
 536 
 537 
 538 void JVMState::dump_spec(outputStream *st) const {
 539   if (_method != nullptr) {
 540     bool printed = false;
 541     if (!Verbose) {
 542       // The JVMS dumps make really, really long lines.
 543       // Take out the most boring parts, which are the package prefixes.

 738     tf()->dump_on(st);
 739   }
 740   if (_cnt != COUNT_UNKNOWN) {
 741     st->print(" C=%f", _cnt);
 742   }
 743   const Node* const klass_node = in(KlassNode);
 744   if (klass_node != nullptr) {
 745     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 746 
 747     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 748       st->print(" allocationKlass:");
 749       klass_ptr->exact_klass()->print_name_on(st);
 750     }
 751   }
 752   if (jvms() != nullptr) {
 753     jvms()->dump_spec(st);
 754   }
 755 }
 756 #endif
 757 
 758 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 759 const Type* CallNode::Value(PhaseGVN* phase) const {
 760   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 761     return Type::TOP;
 762   }
 763   return tf()->range_cc();
 764 }
 765 
 766 //------------------------------calling_convention-----------------------------
 767 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 768   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 769     // The call to that stub is a special case: its inputs are
 770     // multiple values returned from a call and so it should follow
 771     // the return convention.
 772     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 773     return;
 774   }
 775   // Use the standard compiler calling convention
 776   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 777 }
 778 
 779 
 780 //------------------------------match------------------------------------------
 781 // Construct projections for control, I/O, memory-fields, ..., and
 782 // return result(s) along with their RegMask info
 783 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 784   uint con = proj->_con;
 785   const TypeTuple* range_cc = tf()->range_cc();
 786   if (con >= TypeFunc::Parms) {
 787     if (tf()->returns_inline_type_as_fields()) {
 788       // The call returns multiple values (inline type fields): we
 789       // create one projection per returned value.
 790       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 791       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 792       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 793     } else {
 794       if (con == TypeFunc::Parms) {
 795         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 796         OptoRegPair regs = Opcode() == Op_CallLeafVector
 797           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 798           : match->c_return_value(ideal_reg);
 799         RegMask rm = RegMask(regs.first());
 800 
 801         if (Opcode() == Op_CallLeafVector) {
 802           // If the return is in vector, compute appropriate regmask taking into account the whole range
 803           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 804             if(OptoReg::is_valid(regs.second())) {
 805               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 806                 rm.insert(r);
 807               }
 808             }

 809           }
 810         }
 811 
 812         if (OptoReg::is_valid(regs.second())) {
 813           rm.insert(regs.second());
 814         }
 815         return new MachProjNode(this,con,rm,ideal_reg);
 816       } else {
 817         assert(con == TypeFunc::Parms+1, "only one return value");
 818         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 819         return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
 820       }
 821     }




 822   }
 823 
 824   switch (con) {
 825   case TypeFunc::Control:
 826   case TypeFunc::I_O:
 827   case TypeFunc::Memory:
 828     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 829 
 830   case TypeFunc::ReturnAdr:
 831   case TypeFunc::FramePtr:
 832   default:
 833     ShouldNotReachHere();
 834   }
 835   return nullptr;
 836 }
 837 
 838 // Do we Match on this edge index or not?  Match no edges
 839 uint CallNode::match_edge(uint idx) const {
 840   return 0;
 841 }
 842 
 843 //
 844 // Determine whether the call could modify the field of the specified
 845 // instance at the specified offset.
 846 //
 847 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 848   assert((t_oop != nullptr), "sanity");
 849   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 850     const TypeTuple* args = _tf->domain_sig();
 851     Node* dest = nullptr;
 852     // Stubs that can be called once an ArrayCopyNode is expanded have
 853     // different signatures. Look for the second pointer argument,
 854     // that is the destination of the copy.
 855     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 856       if (args->field_at(i)->isa_ptr()) {
 857         j++;
 858         if (j == 2) {
 859           dest = in(i);
 860           break;
 861         }
 862       }
 863     }
 864     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 865     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 866       return true;
 867     }
 868     return false;
 869   }
 870   if (t_oop->is_known_instance()) {

 879       Node* proj = proj_out_or_null(TypeFunc::Parms);
 880       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 881         return false;
 882       }
 883     }
 884     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 885       ciMethod* meth = as_CallJava()->method();
 886       if (meth->is_getter()) {
 887         return false;
 888       }
 889       // May modify (by reflection) if an boxing object is passed
 890       // as argument or returned.
 891       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 892       if (proj != nullptr) {
 893         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 894         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 895                                    (inst_t->instance_klass() == boxing_klass))) {
 896           return true;
 897         }
 898       }
 899       const TypeTuple* d = tf()->domain_cc();
 900       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 901         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 902         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 903                                  (inst_t->instance_klass() == boxing_klass))) {
 904           return true;
 905         }
 906       }
 907       return false;
 908     }
 909   }
 910   return true;
 911 }
 912 
 913 // Does this call have a direct reference to n other than debug information?
 914 bool CallNode::has_non_debug_use(Node* n) {
 915   const TypeTuple* d = tf()->domain_cc();
 916   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 917     if (in(i) == n) {

 918       return true;
 919     }
 920   }
 921   return false;
 922 }
 923 
 924 bool CallNode::has_debug_use(Node* n) {
 925   if (jvms() != nullptr) {
 926     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 927       if (in(i) == n) {
 928         return true;
 929       }
 930     }
 931   }
 932   return false;
 933 }
 934 
 935 // Returns the unique CheckCastPP of a call
 936 // or 'this' if there are several CheckCastPP or unexpected uses
 937 // or returns null if there is no one.
 938 Node *CallNode::result_cast() {
 939   Node *cast = nullptr;
 940 
 941   Node *p = proj_out_or_null(TypeFunc::Parms);
 942   if (p == nullptr)
 943     return nullptr;
 944 
 945   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 946     Node *use = p->fast_out(i);
 947     if (use->is_CheckCastPP()) {
 948       if (cast != nullptr) {
 949         return this;  // more than 1 CheckCastPP
 950       }
 951       cast = use;
 952     } else if (!use->is_Initialize() &&
 953                !use->is_AddP() &&
 954                use->Opcode() != Op_MemBarStoreStore) {
 955       // Expected uses are restricted to a CheckCastPP, an Initialize
 956       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 957       // encounter any other use (a Phi node can be seen in rare
 958       // cases) return this to prevent incorrect optimizations.
 959       return this;
 960     }
 961   }
 962   return cast;
 963 }
 964 
 965 
 966 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 967   uint max_res = TypeFunc::Parms-1;
 968   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 969     ProjNode *pn = fast_out(i)->as_Proj();
 970     max_res = MAX2(max_res, pn->_con);
 971   }
 972 
 973   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 974 
 975   uint projs_size = sizeof(CallProjections);
 976   if (max_res > TypeFunc::Parms) {
 977     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 978   }
 979   char* projs_storage = resource_allocate_bytes(projs_size);
 980   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 981 
 982   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 983     ProjNode *pn = fast_out(i)->as_Proj();
 984     if (pn->outcnt() == 0) continue;
 985     switch (pn->_con) {
 986     case TypeFunc::Control:
 987       {
 988         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 989         projs->fallthrough_proj = pn;
 990         const Node* cn = pn->unique_ctrl_out_or_null();
 991         if (cn != nullptr && cn->is_Catch()) {
 992           ProjNode *cpn = nullptr;
 993           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 994             cpn = cn->fast_out(k)->as_Proj();
 995             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 996             if (cpn->_con == CatchProjNode::fall_through_index)
 997               projs->fallthrough_catchproj = cpn;
 998             else {
 999               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1000               projs->catchall_catchproj = cpn;

1006     case TypeFunc::I_O:
1007       if (pn->_is_io_use)
1008         projs->catchall_ioproj = pn;
1009       else
1010         projs->fallthrough_ioproj = pn;
1011       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1012         Node* e = pn->out(j);
1013         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1014           assert(projs->exobj == nullptr, "only one");
1015           projs->exobj = e;
1016         }
1017       }
1018       break;
1019     case TypeFunc::Memory:
1020       if (pn->_is_io_use)
1021         projs->catchall_memproj = pn;
1022       else
1023         projs->fallthrough_memproj = pn;
1024       break;
1025     case TypeFunc::Parms:
1026       projs->resproj[0] = pn;
1027       break;
1028     default:
1029       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1030       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1031       break;
1032     }
1033   }
1034 
1035   // The resproj may not exist because the result could be ignored
1036   // and the exception object may not exist if an exception handler
1037   // swallows the exception but all the other must exist and be found.

1038   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1039   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1040   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1041   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1042   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1043   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1044   if (separate_io_proj) {
1045     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1046     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1047   }
1048   return projs;
1049 }
1050 
1051 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1052 #ifdef ASSERT
1053   // Validate attached generator
1054   CallGenerator* cg = generator();
1055   if (cg != nullptr) {
1056     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1057            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1058   }
1059 #endif // ASSERT
1060   return SafePointNode::Ideal(phase, can_reshape);
1061 }
1062 
1063 bool CallNode::is_call_to_arraycopystub() const {
1064   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1065     return true;
1066   }
1067   return false;
1068 }
1069 
1070 bool CallNode::is_call_to_multianewarray_stub() const {
1071   if (_name != nullptr &&
1072       strstr(_name, "multianewarray") != nullptr &&
1073       strstr(_name, "C2 runtime") != nullptr) {
1074     return true;
1075   }
1076   return false;
1077 }
1078 
1079 //=============================================================================
1080 uint CallJavaNode::size_of() const { return sizeof(*this); }
1081 bool CallJavaNode::cmp( const Node &n ) const {
1082   CallJavaNode &call = (CallJavaNode&)n;
1083   return CallNode::cmp(call) && _method == call._method &&
1084          _override_symbolic_info == call._override_symbolic_info;
1085 }
1086 
1087 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1088   // Copy debug information and adjust JVMState information
1089   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1090   uint new_dbg_start = tf()->domain_sig()->cnt();
1091   int jvms_adj  = new_dbg_start - old_dbg_start;
1092   assert (new_dbg_start == req(), "argument count mismatch");
1093   Compile* C = phase->C;
1094 
1095   // SafePointScalarObject node could be referenced several times in debug info.
1096   // Use Dict to record cloned nodes.
1097   Dict* sosn_map = new Dict(cmpkey,hashkey);
1098   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1099     Node* old_in = sfpt->in(i);
1100     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1101     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1102       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1103       bool new_node;
1104       Node* new_in = old_sosn->clone(sosn_map, new_node);
1105       if (new_node) { // New node?
1106         new_in->set_req(0, C->root()); // reset control edge
1107         new_in = phase->transform(new_in); // Register new node.
1108       }
1109       old_in = new_in;
1110     }
1111     add_req(old_in);
1112   }
1113 
1114   // JVMS may be shared so clone it before we modify it
1115   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1116   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1117     jvms->set_map(this);
1118     jvms->set_locoff(jvms->locoff()+jvms_adj);
1119     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1120     jvms->set_monoff(jvms->monoff()+jvms_adj);
1121     jvms->set_scloff(jvms->scloff()+jvms_adj);
1122     jvms->set_endoff(jvms->endoff()+jvms_adj);
1123   }
1124 }
1125 
1126 #ifdef ASSERT
1127 bool CallJavaNode::validate_symbolic_info() const {
1128   if (method() == nullptr) {
1129     return true; // call into runtime or uncommon trap
1130   }
1131   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1132   if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1133     return true;
1134   }
1135   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1136   ciMethod* callee = method();
1137   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1138     assert(override_symbolic_info(), "should be set");
1139   }
1140   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1141   return true;
1142 }
1143 #endif
1144 
1145 #ifndef PRODUCT
1146 void CallJavaNode::dump_spec(outputStream* st) const {
1147   if( _method ) _method->print_short_name(st);
1148   CallNode::dump_spec(st);
1149 }
1150 
1151 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1152   if (_method) {
1153     _method->print_short_name(st);
1154   } else {

1157 }
1158 #endif
1159 
1160 void CallJavaNode::register_for_late_inline() {
1161   if (generator() != nullptr) {
1162     Compile::current()->prepend_late_inline(generator());
1163     set_generator(nullptr);
1164   } else {
1165     assert(false, "repeated inline attempt");
1166   }
1167 }
1168 
1169 //=============================================================================
1170 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1171 bool CallStaticJavaNode::cmp( const Node &n ) const {
1172   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1173   return CallJavaNode::cmp(call);
1174 }
1175 
1176 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1177   if (can_reshape && uncommon_trap_request() != 0) {
1178     PhaseIterGVN* igvn = phase->is_IterGVN();
1179     if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1180       if (!control()->is_Region()) {
1181         igvn->replace_input_of(this, 0, phase->C->top());
1182       }
1183       return this;
1184     }
1185   }
1186 
1187   // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1188   if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1189       (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1190     Node* left = in(TypeFunc::Parms);
1191     Node* right = in(TypeFunc::Parms + 1);
1192     if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1193       if (!left->is_InlineType()) {
1194         swap(left, right);
1195       }
1196       InlineTypeNode* vt = left->as_InlineType();
1197 
1198       // Check if the field layout can be optimized
1199       if (vt->can_emit_substitutability_check(right)) {
1200         PhaseIterGVN* igvn = phase->is_IterGVN();
1201 
1202         Node* ctrl = control();
1203         RegionNode* region = new RegionNode(1);
1204         Node* phi = new PhiNode(region, TypeInt::POS);
1205 
1206         Node* base = right;
1207         Node* ptr = right;
1208         if (!base->is_InlineType()) {
1209           // Parse time checks guarantee that both operands are non-null and have the same type
1210           base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1211           ptr = base;
1212         }
1213         // Emit IR for field-wise comparison
1214         vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1215 
1216         // Equals
1217         region->add_req(ctrl);
1218         phi->add_req(igvn->intcon(1));
1219 
1220         ctrl = igvn->register_new_node_with_optimizer(region);
1221         Node* res = igvn->register_new_node_with_optimizer(phi);
1222 
1223         // Kill exception projections and return a tuple that will replace the call
1224         CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1225         if (projs->fallthrough_catchproj != nullptr) {
1226           igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1227         }
1228         if (projs->catchall_memproj != nullptr) {
1229           igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1230         }
1231         if (projs->catchall_ioproj != nullptr) {
1232           igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1233         }
1234         if (projs->catchall_catchproj != nullptr) {
1235           igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1236         }
1237         return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1238       }
1239     }
1240   }
1241 
1242   CallGenerator* cg = generator();
1243   if (can_reshape && cg != nullptr) {
1244     if (cg->is_mh_late_inline()) {
1245       assert(IncrementalInlineMH, "required");
1246       assert(cg->call_node() == this, "mismatch");
1247       assert(cg->method()->is_method_handle_intrinsic(), "required");
1248 
1249       // Check whether this MH handle call becomes a candidate for inlining.
1250       ciMethod* callee = cg->method();
1251       vmIntrinsics::ID iid = callee->intrinsic_id();
1252       if (iid == vmIntrinsics::_invokeBasic) {
1253         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1254           register_for_late_inline();
1255         }
1256       } else if (iid == vmIntrinsics::_linkToNative) {
1257         // never retry
1258       } else {
1259         assert(callee->has_member_arg(), "wrong type of call?");
1260         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1261           register_for_late_inline();

1282 
1283 //----------------------------uncommon_trap_request----------------------------
1284 // If this is an uncommon trap, return the request code, else zero.
1285 int CallStaticJavaNode::uncommon_trap_request() const {
1286   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1287 }
1288 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1289 #ifndef PRODUCT
1290   if (!(call->req() > TypeFunc::Parms &&
1291         call->in(TypeFunc::Parms) != nullptr &&
1292         call->in(TypeFunc::Parms)->is_Con() &&
1293         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1294     assert(in_dump() != 0, "OK if dumping");
1295     tty->print("[bad uncommon trap]");
1296     return 0;
1297   }
1298 #endif
1299   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1300 }
1301 
1302 // Split if can cause the flat array branch of an array load with unknown type (see
1303 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1304 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1305 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1306   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1307     return false;
1308   }
1309   if (ctl->is_Region()) {
1310     bool res = false;
1311     for (uint i = 1; i < ctl->req(); i++) {
1312       MergeMemNode* mm = mem->clone()->as_MergeMem();
1313       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1314         Node* m = mms.memory();
1315         if (m->is_Phi() && m->in(0) == ctl) {
1316           mms.set_memory(m->in(i));
1317         }
1318       }
1319       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1320         res = true;
1321         if (!ctl->in(i)->is_Region()) {
1322           igvn->replace_input_of(ctl, i, igvn->C->top());
1323         }
1324       }
1325       igvn->remove_dead_node(mm);
1326     }
1327     return res;
1328   }
1329   // Verify the control flow is ok
1330   Node* call = ctl;
1331   MemBarNode* membar = nullptr;
1332   for (;;) {
1333     if (call == nullptr || call->is_top()) {
1334       return false;
1335     }
1336     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1337       call = call->in(0);
1338     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1339                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1340       // If there is no explicit flat array accesses in the compilation unit, there would be no
1341       // membar here
1342       if (call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar()) {
1343         membar = call->in(0)->in(0)->as_MemBar();
1344       }
1345       break;
1346     } else {
1347       return false;
1348     }
1349   }
1350 
1351   JVMState* jvms = call->jvms();
1352   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1353     return false;
1354   }
1355 
1356   Node* call_mem = call->in(TypeFunc::Memory);
1357   if (call_mem == nullptr || call_mem->is_top()) {
1358     return false;
1359   }
1360   if (!call_mem->is_MergeMem()) {
1361     call_mem = MergeMemNode::make(call_mem);
1362     igvn->register_new_node_with_optimizer(call_mem);
1363   }
1364 
1365   // Verify that there's no unexpected side effect
1366   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1367     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1368     Node* m2 = mms2.memory2();
1369 
1370     for (uint i = 0; i < 100; i++) {
1371       if (m1 == m2) {
1372         break;
1373       } else if (m1->is_Proj()) {
1374         m1 = m1->in(0);
1375       } else if (m1->is_MemBar()) {
1376         m1 = m1->in(TypeFunc::Memory);
1377       } else if (m1->Opcode() == Op_CallStaticJava &&
1378                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1379         if (m1 != call) {
1380           return false;
1381         }
1382         break;
1383       } else if (m1->is_MergeMem()) {
1384         MergeMemNode* mm = m1->as_MergeMem();
1385         int idx = mms2.alias_idx();
1386         if (idx == Compile::AliasIdxBot) {
1387           m1 = mm->base_memory();
1388         } else {
1389           m1 = mm->memory_at(idx);
1390         }
1391       } else {
1392         return false;
1393       }
1394     }
1395   }
1396   if (call_mem->outcnt() == 0) {
1397     igvn->remove_dead_node(call_mem);
1398   }
1399 
1400   // Remove membar preceding the call
1401   if (membar != nullptr) {
1402     membar->remove(igvn);
1403   }
1404 
1405   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1406   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1407   unc->init_req(TypeFunc::Control, call->in(0));
1408   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1409   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1410   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1411   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1412   unc->init_req(TypeFunc::Parms+0, unc_arg);
1413   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1414   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1415 
1416   // Replace the call with an uncommon trap
1417   igvn->replace_input_of(call, 0, igvn->C->top());
1418 
1419   igvn->register_new_node_with_optimizer(unc);
1420 
1421   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1422   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1423   igvn->add_input_to(igvn->C->root(), halt);
1424 
1425   return true;
1426 }
1427 
1428 
1429 #ifndef PRODUCT
1430 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1431   st->print("# Static ");
1432   if (_name != nullptr) {
1433     st->print("%s", _name);
1434     int trap_req = uncommon_trap_request();
1435     if (trap_req != 0) {
1436       char buf[100];
1437       st->print("(%s)",
1438                  Deoptimization::format_trap_request(buf, sizeof(buf),
1439                                                      trap_req));
1440     }
1441     st->print(" ");
1442   }
1443   CallJavaNode::dump_spec(st);
1444 }
1445 
1446 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1447   if (_method) {
1448     _method->print_short_name(st);

1524 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1525 bool CallRuntimeNode::cmp( const Node &n ) const {
1526   CallRuntimeNode &call = (CallRuntimeNode&)n;
1527   return CallNode::cmp(call) && !strcmp(_name,call._name);
1528 }
1529 #ifndef PRODUCT
1530 void CallRuntimeNode::dump_spec(outputStream *st) const {
1531   st->print("# ");
1532   st->print("%s", _name);
1533   CallNode::dump_spec(st);
1534 }
1535 #endif
1536 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1537 bool CallLeafVectorNode::cmp( const Node &n ) const {
1538   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1539   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1540 }
1541 
1542 //------------------------------calling_convention-----------------------------
1543 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1544   if (_entry_point == nullptr) {
1545     // The call to that stub is a special case: its inputs are
1546     // multiple values returned from a call and so it should follow
1547     // the return convention.
1548     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1549     return;
1550   }
1551   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1552 }
1553 
1554 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1555 #ifdef ASSERT
1556   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1557          "return vector size must match");
1558   const TypeTuple* d = tf()->domain_sig();
1559   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1560     Node* arg = in(i);
1561     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1562            "vector argument size must match");
1563   }
1564 #endif
1565 
1566   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1567 }
1568 
1569 //=============================================================================
1570 //------------------------------calling_convention-----------------------------
1571 
1572 
1573 //=============================================================================
1574 bool CallLeafPureNode::is_unused() const {
1575   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1576 }
1577 
1578 bool CallLeafPureNode::is_dead() const {
1579   return proj_out_or_null(TypeFunc::Control) == nullptr;
1580 }
1581 
1582 /* We make a tuple of the global input state + TOP for the output values.
1583  * We use this to delete a pure function that is not used: by replacing the call with
1584  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1585  * pure call, so jumping over it, and effectively, removing the call from the graph.
1586  * This avoids doing the graph surgery manually, but leaves that to IGVN
1587  * that is specialized for doing that right. We need also tuple components for output
1588  * values of the function to respect the return arity, and in case there is a projection
1589  * that would pick an output (which shouldn't happen at the moment).
1590  */
1591 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1592   // Transparently propagate input state but parameters
1593   TupleNode* tuple = TupleNode::make(
1594       tf()->range_cc(),
1595       in(TypeFunc::Control),
1596       in(TypeFunc::I_O),
1597       in(TypeFunc::Memory),
1598       in(TypeFunc::FramePtr),
1599       in(TypeFunc::ReturnAdr));
1600 
1601   // And add TOPs for the return values
1602   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1603     tuple->set_req(i, C->top());
1604   }
1605 
1606   return tuple;
1607 }
1608 
1609 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1610   if (is_dead()) {
1611     return nullptr;
1612   }
1613 
1614   // We need to wait until IGVN because during parsing, usages might still be missing
1615   // and we would remove the call immediately.
1616   if (can_reshape && is_unused()) {
1617     // The result is not used. We remove the call by replacing it with a tuple, that
1618     // is later disintegrated by the projections.
1619     return make_tuple_of_input_state_and_top_return_values(phase->C);
1620   }
1621 
1622   return CallRuntimeNode::Ideal(phase, can_reshape);
1623 }
1624 
1625 #ifndef PRODUCT
1626 void CallLeafNode::dump_spec(outputStream *st) const {
1627   st->print("# ");
1628   st->print("%s", _name);
1629   CallNode::dump_spec(st);
1630 }
1631 #endif
1632 
1633 uint CallLeafNoFPNode::match_edge(uint idx) const {
1634   // Null entry point is a special case for which the target is in a
1635   // register. Need to match that edge.
1636   return entry_point() == nullptr && idx == TypeFunc::Parms;
1637 }
1638 
1639 //=============================================================================
1640 
1641 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1642   assert(verify_jvms(jvms), "jvms must match");
1643   int loc = jvms->locoff() + idx;
1644   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1645     // If current local idx is top then local idx - 1 could
1646     // be a long/double that needs to be killed since top could
1647     // represent the 2nd half of the long/double.
1648     uint ideal = in(loc -1)->ideal_reg();
1649     if (ideal == Op_RegD || ideal == Op_RegL) {
1650       // set other (low index) half to top
1651       set_req(loc - 1, in(loc));
1652     }
1653   }
1654   set_req(loc, c);
1655 }
1656 
1657 uint SafePointNode::size_of() const { return sizeof(*this); }
1658 bool SafePointNode::cmp( const Node &n ) const {

1669   }
1670 }
1671 
1672 
1673 //----------------------------next_exception-----------------------------------
1674 SafePointNode* SafePointNode::next_exception() const {
1675   if (len() == req()) {
1676     return nullptr;
1677   } else {
1678     Node* n = in(req());
1679     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1680     return (SafePointNode*) n;
1681   }
1682 }
1683 
1684 
1685 //------------------------------Ideal------------------------------------------
1686 // Skip over any collapsed Regions
1687 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1688   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1689   if (remove_dead_region(phase, can_reshape)) {
1690     return this;
1691   }
1692   // Scalarize inline types in safepoint debug info.
1693   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1694   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1695     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1696       Node* n = in(i)->uncast();
1697       if (n->is_InlineType()) {
1698         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1699       }
1700     }
1701   }
1702   return nullptr;
1703 }
1704 
1705 //------------------------------Identity---------------------------------------
1706 // Remove obviously duplicate safepoints
1707 Node* SafePointNode::Identity(PhaseGVN* phase) {
1708 
1709   // If you have back to back safepoints, remove one
1710   if (in(TypeFunc::Control)->is_SafePoint()) {
1711     Node* out_c = unique_ctrl_out_or_null();
1712     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1713     // outer loop's safepoint could confuse removal of the outer loop.
1714     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1715       return in(TypeFunc::Control);
1716     }
1717   }
1718 
1719   // Transforming long counted loops requires a safepoint node. Do not
1720   // eliminate a safepoint until loop opts are over.
1721   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1722     Node *n0 = in(0)->in(0);

1836 }
1837 
1838 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1839   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1840   int nb = igvn->C->root()->find_prec_edge(this);
1841   if (nb != -1) {
1842     igvn->delete_precedence_of(igvn->C->root(), nb);
1843   }
1844 }
1845 
1846 //==============  SafePointScalarObjectNode  ==============
1847 
1848 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1849   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1850   _first_index(first_index),
1851   _depth(depth),
1852   _n_fields(n_fields),
1853   _alloc(alloc)
1854 {
1855 #ifdef ASSERT
1856   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1857     alloc->dump();
1858     assert(false, "unexpected call node");
1859   }
1860 #endif
1861   init_class_id(Class_SafePointScalarObject);
1862 }
1863 
1864 // Do not allow value-numbering for SafePointScalarObject node.
1865 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1866 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1867   return (&n == this); // Always fail except on self
1868 }
1869 
1870 uint SafePointScalarObjectNode::ideal_reg() const {
1871   return 0; // No matching to machine instruction
1872 }
1873 
1874 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1875   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1876 }

1941     new_node = false;
1942     return (SafePointScalarMergeNode*)cached;
1943   }
1944   new_node = true;
1945   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1946   sosn_map->Insert((void*)this, (void*)res);
1947   return res;
1948 }
1949 
1950 #ifndef PRODUCT
1951 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1952   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1953 }
1954 #endif
1955 
1956 //=============================================================================
1957 uint AllocateNode::size_of() const { return sizeof(*this); }
1958 
1959 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1960                            Node *ctrl, Node *mem, Node *abio,
1961                            Node *size, Node *klass_node,
1962                            Node* initial_test,
1963                            InlineTypeNode* inline_type_node)
1964   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1965 {
1966   init_class_id(Class_Allocate);
1967   init_flags(Flag_is_macro);
1968   _is_scalar_replaceable = false;
1969   _is_non_escaping = false;
1970   _is_allocation_MemBar_redundant = false;
1971   _larval = false;
1972   Node *topnode = C->top();
1973 
1974   init_req( TypeFunc::Control  , ctrl );
1975   init_req( TypeFunc::I_O      , abio );
1976   init_req( TypeFunc::Memory   , mem );
1977   init_req( TypeFunc::ReturnAdr, topnode );
1978   init_req( TypeFunc::FramePtr , topnode );
1979   init_req( AllocSize          , size);
1980   init_req( KlassNode          , klass_node);
1981   init_req( InitialTest        , initial_test);
1982   init_req( ALength            , topnode);
1983   init_req( ValidLengthTest    , topnode);
1984   init_req( InlineType     , inline_type_node);
1985   // DefaultValue defaults to nullptr
1986   // RawDefaultValue defaults to nullptr
1987   C->add_macro_node(this);
1988 }
1989 
1990 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1991 {
1992   assert(initializer != nullptr &&
1993          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1994          "unexpected initializer method");
1995   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1996   if (analyzer == nullptr) {
1997     return;
1998   }
1999 
2000   // Allocation node is first parameter in its initializer
2001   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
2002     _is_allocation_MemBar_redundant = true;
2003   }
2004 }
2005 
2006 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
2007   Node* mark_node = nullptr;
2008   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2009     Node* klass_node = in(AllocateNode::KlassNode);
2010     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2011     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2012     if (Arguments::is_valhalla_enabled()) {
2013       mark_node = phase->transform(mark_node);
2014       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2015       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2016     }
2017     return mark_node;
2018   } else {
2019     return phase->MakeConX(markWord::prototype().value());

2020   }

2021 }
2022 
2023 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2024 // CastII, if appropriate.  If we are not allowed to create new nodes, and
2025 // a CastII is appropriate, return null.
2026 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2027   Node *length = in(AllocateNode::ALength);
2028   assert(length != nullptr, "length is not null");
2029 
2030   const TypeInt* length_type = phase->find_int_type(length);
2031   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2032 
2033   if (ary_type != nullptr && length_type != nullptr) {
2034     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2035     if (narrow_length_type != length_type) {
2036       // Assert one of:
2037       //   - the narrow_length is 0
2038       //   - the narrow_length is not wider than length
2039       assert(narrow_length_type == TypeInt::ZERO ||
2040              (length_type->is_con() && narrow_length_type->is_con() &&

2396 
2397 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2398   st->print("%s", _kind_names[_kind]);
2399 }
2400 #endif
2401 
2402 //=============================================================================
2403 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2404 
2405   // perform any generic optimizations first (returns 'this' or null)
2406   Node *result = SafePointNode::Ideal(phase, can_reshape);
2407   if (result != nullptr)  return result;
2408   // Don't bother trying to transform a dead node
2409   if (in(0) && in(0)->is_top())  return nullptr;
2410 
2411   // Now see if we can optimize away this lock.  We don't actually
2412   // remove the locking here, we simply set the _eliminate flag which
2413   // prevents macro expansion from expanding the lock.  Since we don't
2414   // modify the graph, the value returned from this function is the
2415   // one computed above.
2416   const Type* obj_type = phase->type(obj_node());
2417   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2418     //
2419     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2420     //
2421     ConnectionGraph *cgr = phase->C->congraph();
2422     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2423       assert(!is_eliminated() || is_coarsened(), "sanity");
2424       // The lock could be marked eliminated by lock coarsening
2425       // code during first IGVN before EA. Replace coarsened flag
2426       // to eliminate all associated locks/unlocks.
2427 #ifdef ASSERT
2428       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2429 #endif
2430       this->set_non_esc_obj();
2431       return result;
2432     }
2433 
2434     if (!phase->C->do_locks_coarsening()) {
2435       return result; // Compiling without locks coarsening
2436     }
2437     //

2598 }
2599 
2600 //=============================================================================
2601 uint UnlockNode::size_of() const { return sizeof(*this); }
2602 
2603 //=============================================================================
2604 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2605 
2606   // perform any generic optimizations first (returns 'this' or null)
2607   Node *result = SafePointNode::Ideal(phase, can_reshape);
2608   if (result != nullptr)  return result;
2609   // Don't bother trying to transform a dead node
2610   if (in(0) && in(0)->is_top())  return nullptr;
2611 
2612   // Now see if we can optimize away this unlock.  We don't actually
2613   // remove the unlocking here, we simply set the _eliminate flag which
2614   // prevents macro expansion from expanding the unlock.  Since we don't
2615   // modify the graph, the value returned from this function is the
2616   // one computed above.
2617   // Escape state is defined after Parse phase.
2618   const Type* obj_type = phase->type(obj_node());
2619   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2620     //
2621     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2622     //
2623     ConnectionGraph *cgr = phase->C->congraph();
2624     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2625       assert(!is_eliminated() || is_coarsened(), "sanity");
2626       // The lock could be marked eliminated by lock coarsening
2627       // code during first IGVN before EA. Replace coarsened flag
2628       // to eliminate all associated locks/unlocks.
2629 #ifdef ASSERT
2630       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2631 #endif
2632       this->set_non_esc_obj();
2633     }
2634   }
2635   return result;
2636 }
2637 
2638 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2639   if (C == nullptr) {

2679     }
2680     // unrelated
2681     return false;
2682   }
2683 
2684   if (dest_t->isa_aryptr()) {
2685     // arraycopy or array clone
2686     if (t_oop->isa_instptr()) {
2687       return false;
2688     }
2689     if (!t_oop->isa_aryptr()) {
2690       return true;
2691     }
2692 
2693     const Type* elem = dest_t->is_aryptr()->elem();
2694     if (elem == Type::BOTTOM) {
2695       // An array but we don't know what elements are
2696       return true;
2697     }
2698 
2699     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2700     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2701     uint dest_alias = phase->C->get_alias_index(dest_t);
2702     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2703 
2704     return dest_alias == t_oop_alias;
2705   }
2706 
2707   return true;
2708 }
< prev index next >