< prev index next >

src/hotspot/share/opto/callnode.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"


  26 #include "code/vmreg.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/escape.hpp"

  37 #include "opto/locknode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"

  40 #include "opto/parse.hpp"
  41 #include "opto/regalloc.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"

  45 #include "runtime/sharedRuntime.hpp"

  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 // Portions of code courtesy of Clifford Click
  49 
  50 // Optimization - Graph Style
  51 
  52 //=============================================================================
  53 uint StartNode::size_of() const { return sizeof(*this); }
  54 bool StartNode::cmp( const Node &n ) const
  55 { return _domain == ((StartNode&)n)._domain; }
  56 const Type *StartNode::bottom_type() const { return _domain; }
  57 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  58 #ifndef PRODUCT
  59 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  60 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  61 #endif
  62 
  63 //------------------------------Ideal------------------------------------------
  64 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  65   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  66 }
  67 
  68 //------------------------------calling_convention-----------------------------
  69 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  70   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  71 }
  72 
  73 //------------------------------Registers--------------------------------------
  74 const RegMask &StartNode::in_RegMask(uint) const {
  75   return RegMask::EMPTY;
  76 }
  77 
  78 //------------------------------match------------------------------------------
  79 // Construct projections for incoming parameters, and their RegMask info
  80 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  81   switch (proj->_con) {
  82   case TypeFunc::Control:
  83   case TypeFunc::I_O:
  84   case TypeFunc::Memory:
  85     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  86   case TypeFunc::FramePtr:
  87     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  88   case TypeFunc::ReturnAdr:
  89     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  90   case TypeFunc::Parms:
  91   default: {
  92       uint parm_num = proj->_con - TypeFunc::Parms;
  93       const Type *t = _domain->field_at(proj->_con);
  94       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  95         return new ConNode(Type::TOP);
  96       uint ideal_reg = t->ideal_reg();
  97       RegMask &rm = match->_calling_convention_mask[parm_num];
  98       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  99     }
 100   }
 101   return nullptr;
 102 }
 103 
 104 //------------------------------StartOSRNode----------------------------------
 105 // The method start node for an on stack replacement adapter
 106 
 107 //------------------------------osr_domain-----------------------------
 108 const TypeTuple *StartOSRNode::osr_domain() {
 109   const Type **fields = TypeTuple::fields(2);
 110   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 111 
 112   return TypeTuple::make(TypeFunc::Parms+1, fields);
 113 }
 114 
 115 //=============================================================================
 116 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 117   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 118 };
 119 
 120 #ifndef PRODUCT
 121 void ParmNode::dump_spec(outputStream *st) const {
 122   if( _con < TypeFunc::Parms ) {
 123     st->print("%s", names[_con]);
 124   } else {
 125     st->print("Parm%d: ",_con-TypeFunc::Parms);
 126     // Verbose and WizardMode dump bottom_type for all nodes
 127     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 128   }
 129 }
 130 
 131 void ParmNode::dump_compact_spec(outputStream *st) const {
 132   if (_con < TypeFunc::Parms) {
 133     st->print("%s", names[_con]);
 134   } else {

 482       if (cik->is_instance_klass()) {
 483         cik->print_name_on(st);
 484         iklass = cik->as_instance_klass();
 485       } else if (cik->is_type_array_klass()) {
 486         cik->as_array_klass()->base_element_type()->print_name_on(st);
 487         st->print("[%d]", spobj->n_fields());
 488       } else if (cik->is_obj_array_klass()) {
 489         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 490         if (cie->is_instance_klass()) {
 491           cie->print_name_on(st);
 492         } else if (cie->is_type_array_klass()) {
 493           cie->as_array_klass()->base_element_type()->print_name_on(st);
 494         } else {
 495           ShouldNotReachHere();
 496         }
 497         st->print("[%d]", spobj->n_fields());
 498         int ndim = cik->as_array_klass()->dimension() - 1;
 499         while (ndim-- > 0) {
 500           st->print("[]");
 501         }








 502       }
 503       st->print("={");
 504       uint nf = spobj->n_fields();
 505       if (nf > 0) {
 506         uint first_ind = spobj->first_index(mcall->jvms());







 507         Node* fld_node = mcall->in(first_ind);
 508         ciField* cifield;
 509         if (iklass != nullptr) {
 510           st->print(" [");
 511           cifield = iklass->nonstatic_field_at(0);
 512           cifield->print_name_on(st);
 513           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 514         } else {
 515           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 516         }
 517         for (uint j = 1; j < nf; j++) {
 518           fld_node = mcall->in(first_ind+j);
 519           if (iklass != nullptr) {
 520             st->print(", [");
 521             cifield = iklass->nonstatic_field_at(j);
 522             cifield->print_name_on(st);
 523             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 524           } else {
 525             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 526           }
 527         }
 528       }
 529       st->print(" }");
 530     }
 531   }
 532   st->cr();
 533   if (caller() != nullptr) caller()->format(regalloc, n, st);
 534 }
 535 
 536 
 537 void JVMState::dump_spec(outputStream *st) const {
 538   if (_method != nullptr) {
 539     bool printed = false;
 540     if (!Verbose) {
 541       // The JVMS dumps make really, really long lines.
 542       // Take out the most boring parts, which are the package prefixes.

 737     tf()->dump_on(st);
 738   }
 739   if (_cnt != COUNT_UNKNOWN) {
 740     st->print(" C=%f", _cnt);
 741   }
 742   const Node* const klass_node = in(KlassNode);
 743   if (klass_node != nullptr) {
 744     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 745 
 746     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 747       st->print(" allocationKlass:");
 748       klass_ptr->exact_klass()->print_name_on(st);
 749     }
 750   }
 751   if (jvms() != nullptr) {
 752     jvms()->dump_spec(st);
 753   }
 754 }
 755 #endif
 756 
 757 const Type *CallNode::bottom_type() const { return tf()->range(); }
 758 const Type* CallNode::Value(PhaseGVN* phase) const {
 759   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 760     return Type::TOP;
 761   }
 762   return tf()->range();
 763 }
 764 
 765 //------------------------------calling_convention-----------------------------
 766 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







 767   // Use the standard compiler calling convention
 768   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 769 }
 770 
 771 
 772 //------------------------------match------------------------------------------
 773 // Construct projections for control, I/O, memory-fields, ..., and
 774 // return result(s) along with their RegMask info
 775 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 776   switch (proj->_con) {
 777   case TypeFunc::Control:
 778   case TypeFunc::I_O:
 779   case TypeFunc::Memory:
 780     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 781 
 782   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 783     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 784     // 2nd half of doubles and longs
 785     return new MachProjNode(this,proj->_con, RegMask::EMPTY, (uint)OptoReg::Bad);
 786 
 787   case TypeFunc::Parms: {       // Normal returns
 788     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 789     OptoRegPair regs = Opcode() == Op_CallLeafVector
 790       ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 791       : is_CallRuntime()
 792         ? match->c_return_value(ideal_reg)  // Calls into C runtime
 793         : match->  return_value(ideal_reg); // Calls into compiled Java code
 794     RegMask rm = RegMask(regs.first());
 795 
 796     if (Opcode() == Op_CallLeafVector) {
 797       // If the return is in vector, compute appropriate regmask taking into account the whole range
 798       if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 799         if(OptoReg::is_valid(regs.second())) {
 800           for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 801             rm.insert(r);
 802           }
 803         }









 804       }
 805     }
 806 
 807     if( OptoReg::is_valid(regs.second()) )
 808       rm.insert(regs.second());
 809     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 810   }
 811 






 812   case TypeFunc::ReturnAdr:
 813   case TypeFunc::FramePtr:
 814   default:
 815     ShouldNotReachHere();
 816   }
 817   return nullptr;
 818 }
 819 
 820 // Do we Match on this edge index or not?  Match no edges
 821 uint CallNode::match_edge(uint idx) const {
 822   return 0;
 823 }
 824 
 825 //
 826 // Determine whether the call could modify the field of the specified
 827 // instance at the specified offset.
 828 //
 829 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 830   assert((t_oop != nullptr), "sanity");
 831   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 832     const TypeTuple* args = _tf->domain();
 833     Node* dest = nullptr;
 834     // Stubs that can be called once an ArrayCopyNode is expanded have
 835     // different signatures. Look for the second pointer argument,
 836     // that is the destination of the copy.
 837     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 838       if (args->field_at(i)->isa_ptr()) {
 839         j++;
 840         if (j == 2) {
 841           dest = in(i);
 842           break;
 843         }
 844       }
 845     }
 846     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 847     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 848       return true;
 849     }
 850     return false;
 851   }
 852   if (t_oop->is_known_instance()) {

 861       Node* proj = proj_out_or_null(TypeFunc::Parms);
 862       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 863         return false;
 864       }
 865     }
 866     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 867       ciMethod* meth = as_CallJava()->method();
 868       if (meth->is_getter()) {
 869         return false;
 870       }
 871       // May modify (by reflection) if an boxing object is passed
 872       // as argument or returned.
 873       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 874       if (proj != nullptr) {
 875         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 876         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 877                                    (inst_t->instance_klass() == boxing_klass))) {
 878           return true;
 879         }
 880       }
 881       const TypeTuple* d = tf()->domain();
 882       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 883         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 884         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 885                                  (inst_t->instance_klass() == boxing_klass))) {
 886           return true;
 887         }
 888       }
 889       return false;
 890     }
 891   }
 892   return true;
 893 }
 894 
 895 // Does this call have a direct reference to n other than debug information?
 896 bool CallNode::has_non_debug_use(Node *n) {
 897   const TypeTuple * d = tf()->domain();
 898   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 899     Node *arg = in(i);
 900     if (arg == n) {
 901       return true;
 902     }
 903   }
 904   return false;
 905 }
 906 











 907 // Returns the unique CheckCastPP of a call
 908 // or 'this' if there are several CheckCastPP or unexpected uses
 909 // or returns null if there is no one.
 910 Node *CallNode::result_cast() {
 911   Node *cast = nullptr;
 912 
 913   Node *p = proj_out_or_null(TypeFunc::Parms);
 914   if (p == nullptr)
 915     return nullptr;
 916 
 917   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 918     Node *use = p->fast_out(i);
 919     if (use->is_CheckCastPP()) {
 920       if (cast != nullptr) {
 921         return this;  // more than 1 CheckCastPP
 922       }
 923       cast = use;
 924     } else if (!use->is_Initialize() &&
 925                !use->is_AddP() &&
 926                use->Opcode() != Op_MemBarStoreStore) {
 927       // Expected uses are restricted to a CheckCastPP, an Initialize
 928       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 929       // encounter any other use (a Phi node can be seen in rare
 930       // cases) return this to prevent incorrect optimizations.
 931       return this;
 932     }
 933   }
 934   return cast;
 935 }
 936 
 937 
 938 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) const {
 939   projs->fallthrough_proj      = nullptr;
 940   projs->fallthrough_catchproj = nullptr;
 941   projs->fallthrough_ioproj    = nullptr;
 942   projs->catchall_ioproj       = nullptr;
 943   projs->catchall_catchproj    = nullptr;
 944   projs->fallthrough_memproj   = nullptr;
 945   projs->catchall_memproj      = nullptr;
 946   projs->resproj               = nullptr;
 947   projs->exobj                 = nullptr;





 948 
 949   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 950     ProjNode *pn = fast_out(i)->as_Proj();
 951     if (pn->outcnt() == 0) continue;
 952     switch (pn->_con) {
 953     case TypeFunc::Control:
 954       {
 955         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 956         projs->fallthrough_proj = pn;
 957         const Node* cn = pn->unique_ctrl_out_or_null();
 958         if (cn != nullptr && cn->is_Catch()) {
 959           ProjNode *cpn = nullptr;
 960           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 961             cpn = cn->fast_out(k)->as_Proj();
 962             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 963             if (cpn->_con == CatchProjNode::fall_through_index)
 964               projs->fallthrough_catchproj = cpn;
 965             else {
 966               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 967               projs->catchall_catchproj = cpn;

 973     case TypeFunc::I_O:
 974       if (pn->_is_io_use)
 975         projs->catchall_ioproj = pn;
 976       else
 977         projs->fallthrough_ioproj = pn;
 978       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 979         Node* e = pn->out(j);
 980         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 981           assert(projs->exobj == nullptr, "only one");
 982           projs->exobj = e;
 983         }
 984       }
 985       break;
 986     case TypeFunc::Memory:
 987       if (pn->_is_io_use)
 988         projs->catchall_memproj = pn;
 989       else
 990         projs->fallthrough_memproj = pn;
 991       break;
 992     case TypeFunc::Parms:
 993       projs->resproj = pn;
 994       break;
 995     default:
 996       assert(false, "unexpected projection from allocation node.");


 997     }
 998   }
 999 
1000   // The resproj may not exist because the result could be ignored
1001   // and the exception object may not exist if an exception handler
1002   // swallows the exception but all the other must exist and be found.
1003   assert(projs->fallthrough_proj      != nullptr, "must be found");
1004   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();

1005   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1006   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1007   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1008   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1009   if (separate_io_proj) {
1010     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1011     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1012   }

1013 }
1014 
1015 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1016 #ifdef ASSERT
1017   // Validate attached generator
1018   CallGenerator* cg = generator();
1019   if (cg != nullptr) {
1020     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1021            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1022   }
1023 #endif // ASSERT
1024   return SafePointNode::Ideal(phase, can_reshape);
1025 }
1026 
1027 bool CallNode::is_call_to_arraycopystub() const {
1028   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1029     return true;
1030   }
1031   return false;
1032 }
1033 
1034 //=============================================================================
1035 uint CallJavaNode::size_of() const { return sizeof(*this); }
1036 bool CallJavaNode::cmp( const Node &n ) const {
1037   CallJavaNode &call = (CallJavaNode&)n;
1038   return CallNode::cmp(call) && _method == call._method &&
1039          _override_symbolic_info == call._override_symbolic_info;
1040 }
1041 
1042 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1043   // Copy debug information and adjust JVMState information
1044   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1045   uint new_dbg_start = tf()->domain()->cnt();
1046   int jvms_adj  = new_dbg_start - old_dbg_start;
1047   assert (new_dbg_start == req(), "argument count mismatch");
1048   Compile* C = phase->C;
1049 
1050   // SafePointScalarObject node could be referenced several times in debug info.
1051   // Use Dict to record cloned nodes.
1052   Dict* sosn_map = new Dict(cmpkey,hashkey);
1053   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1054     Node* old_in = sfpt->in(i);
1055     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1056     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1057       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1058       bool new_node;
1059       Node* new_in = old_sosn->clone(sosn_map, new_node);
1060       if (new_node) { // New node?
1061         new_in->set_req(0, C->root()); // reset control edge
1062         new_in = phase->transform(new_in); // Register new node.
1063       }
1064       old_in = new_in;
1065     }
1066     add_req(old_in);
1067   }
1068 
1069   // JVMS may be shared so clone it before we modify it
1070   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1071   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1072     jvms->set_map(this);
1073     jvms->set_locoff(jvms->locoff()+jvms_adj);
1074     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1075     jvms->set_monoff(jvms->monoff()+jvms_adj);
1076     jvms->set_scloff(jvms->scloff()+jvms_adj);
1077     jvms->set_endoff(jvms->endoff()+jvms_adj);
1078   }
1079 }
1080 
1081 #ifdef ASSERT
1082 bool CallJavaNode::validate_symbolic_info() const {
1083   if (method() == nullptr) {
1084     return true; // call into runtime or uncommon trap
1085   }




1086   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1087   ciMethod* callee = method();
1088   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1089     assert(override_symbolic_info(), "should be set");
1090   }
1091   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1092   return true;
1093 }
1094 #endif
1095 
1096 #ifndef PRODUCT
1097 void CallJavaNode::dump_spec(outputStream* st) const {
1098   if( _method ) _method->print_short_name(st);
1099   CallNode::dump_spec(st);
1100 }
1101 
1102 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1103   if (_method) {
1104     _method->print_short_name(st);
1105   } else {

1108 }
1109 #endif
1110 
1111 void CallJavaNode::register_for_late_inline() {
1112   if (generator() != nullptr) {
1113     Compile::current()->prepend_late_inline(generator());
1114     set_generator(nullptr);
1115   } else {
1116     assert(false, "repeated inline attempt");
1117   }
1118 }
1119 
1120 //=============================================================================
1121 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1122 bool CallStaticJavaNode::cmp( const Node &n ) const {
1123   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1124   return CallJavaNode::cmp(call);
1125 }
1126 
1127 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {

































































1128   CallGenerator* cg = generator();
1129   if (can_reshape && cg != nullptr) {
1130     if (cg->is_mh_late_inline()) {
1131       assert(IncrementalInlineMH, "required");
1132       assert(cg->call_node() == this, "mismatch");
1133       assert(cg->method()->is_method_handle_intrinsic(), "required");
1134 
1135       // Check whether this MH handle call becomes a candidate for inlining.
1136       ciMethod* callee = cg->method();
1137       vmIntrinsics::ID iid = callee->intrinsic_id();
1138       if (iid == vmIntrinsics::_invokeBasic) {
1139         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1140           register_for_late_inline();
1141         }
1142       } else if (iid == vmIntrinsics::_linkToNative) {
1143         // never retry
1144       } else {
1145         assert(callee->has_member_arg(), "wrong type of call?");
1146         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1147           register_for_late_inline();

1168 
1169 //----------------------------uncommon_trap_request----------------------------
1170 // If this is an uncommon trap, return the request code, else zero.
1171 int CallStaticJavaNode::uncommon_trap_request() const {
1172   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1173 }
1174 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1175 #ifndef PRODUCT
1176   if (!(call->req() > TypeFunc::Parms &&
1177         call->in(TypeFunc::Parms) != nullptr &&
1178         call->in(TypeFunc::Parms)->is_Con() &&
1179         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1180     assert(in_dump() != 0, "OK if dumping");
1181     tty->print("[bad uncommon trap]");
1182     return 0;
1183   }
1184 #endif
1185   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1186 }
1187 


























































































































1188 #ifndef PRODUCT
1189 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1190   st->print("# Static ");
1191   if (_name != nullptr) {
1192     st->print("%s", _name);
1193     int trap_req = uncommon_trap_request();
1194     if (trap_req != 0) {
1195       char buf[100];
1196       st->print("(%s)",
1197                  Deoptimization::format_trap_request(buf, sizeof(buf),
1198                                                      trap_req));
1199     }
1200     st->print(" ");
1201   }
1202   CallJavaNode::dump_spec(st);
1203 }
1204 
1205 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1206   if (_method) {
1207     _method->print_short_name(st);

1283 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1284 bool CallRuntimeNode::cmp( const Node &n ) const {
1285   CallRuntimeNode &call = (CallRuntimeNode&)n;
1286   return CallNode::cmp(call) && !strcmp(_name,call._name);
1287 }
1288 #ifndef PRODUCT
1289 void CallRuntimeNode::dump_spec(outputStream *st) const {
1290   st->print("# ");
1291   st->print("%s", _name);
1292   CallNode::dump_spec(st);
1293 }
1294 #endif
1295 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1296 bool CallLeafVectorNode::cmp( const Node &n ) const {
1297   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1298   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1299 }
1300 
1301 //------------------------------calling_convention-----------------------------
1302 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {







1303   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1304 }
1305 
1306 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1307 #ifdef ASSERT
1308   assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1309          "return vector size must match");
1310   const TypeTuple* d = tf()->domain();
1311   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1312     Node* arg = in(i);
1313     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1314            "vector argument size must match");
1315   }
1316 #endif
1317 
1318   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1319 }
1320 
1321 //=============================================================================
1322 //------------------------------calling_convention-----------------------------
1323 
1324 
1325 //=============================================================================
1326 bool CallLeafPureNode::is_unused() const {
1327   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1328 }
1329 
1330 bool CallLeafPureNode::is_dead() const {
1331   return proj_out_or_null(TypeFunc::Control) == nullptr;
1332 }
1333 
1334 /* We make a tuple of the global input state + TOP for the output values.
1335  * We use this to delete a pure function that is not used: by replacing the call with
1336  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1337  * pure call, so jumping over it, and effectively, removing the call from the graph.
1338  * This avoids doing the graph surgery manually, but leaves that to IGVN
1339  * that is specialized for doing that right. We need also tuple components for output
1340  * values of the function to respect the return arity, and in case there is a projection
1341  * that would pick an output (which shouldn't happen at the moment).
1342  */
1343 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1344   // Transparently propagate input state but parameters
1345   TupleNode* tuple = TupleNode::make(
1346       tf()->range(),
1347       in(TypeFunc::Control),
1348       in(TypeFunc::I_O),
1349       in(TypeFunc::Memory),
1350       in(TypeFunc::FramePtr),
1351       in(TypeFunc::ReturnAdr));
1352 
1353   // And add TOPs for the return values
1354   for (uint i = TypeFunc::Parms; i < tf()->range()->cnt(); i++) {
1355     tuple->set_req(i, C->top());
1356   }
1357 
1358   return tuple;
1359 }
1360 
1361 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1362   if (is_dead()) {
1363     return nullptr;
1364   }
1365 
1366   // We need to wait until IGVN because during parsing, usages might still be missing
1367   // and we would remove the call immediately.
1368   if (can_reshape && is_unused()) {
1369     // The result is not used. We remove the call by replacing it with a tuple, that
1370     // is later disintegrated by the projections.
1371     return make_tuple_of_input_state_and_top_return_values(phase->C);
1372   }
1373 
1374   return CallRuntimeNode::Ideal(phase, can_reshape);
1375 }
1376 
1377 #ifndef PRODUCT
1378 void CallLeafNode::dump_spec(outputStream *st) const {
1379   st->print("# ");
1380   st->print("%s", _name);
1381   CallNode::dump_spec(st);
1382 }
1383 #endif
1384 






1385 //=============================================================================
1386 
1387 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1388   assert(verify_jvms(jvms), "jvms must match");
1389   int loc = jvms->locoff() + idx;
1390   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1391     // If current local idx is top then local idx - 1 could
1392     // be a long/double that needs to be killed since top could
1393     // represent the 2nd half of the long/double.
1394     uint ideal = in(loc -1)->ideal_reg();
1395     if (ideal == Op_RegD || ideal == Op_RegL) {
1396       // set other (low index) half to top
1397       set_req(loc - 1, in(loc));
1398     }
1399   }
1400   set_req(loc, c);
1401 }
1402 
1403 uint SafePointNode::size_of() const { return sizeof(*this); }
1404 bool SafePointNode::cmp( const Node &n ) const {

1415   }
1416 }
1417 
1418 
1419 //----------------------------next_exception-----------------------------------
1420 SafePointNode* SafePointNode::next_exception() const {
1421   if (len() == req()) {
1422     return nullptr;
1423   } else {
1424     Node* n = in(req());
1425     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1426     return (SafePointNode*) n;
1427   }
1428 }
1429 
1430 
1431 //------------------------------Ideal------------------------------------------
1432 // Skip over any collapsed Regions
1433 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1434   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1435   return remove_dead_region(phase, can_reshape) ? this : nullptr;













1436 }
1437 
1438 //------------------------------Identity---------------------------------------
1439 // Remove obviously duplicate safepoints
1440 Node* SafePointNode::Identity(PhaseGVN* phase) {
1441 
1442   // If you have back to back safepoints, remove one
1443   if (in(TypeFunc::Control)->is_SafePoint()) {
1444     Node* out_c = unique_ctrl_out_or_null();
1445     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1446     // outer loop's safepoint could confuse removal of the outer loop.
1447     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1448       return in(TypeFunc::Control);
1449     }
1450   }
1451 
1452   // Transforming long counted loops requires a safepoint node. Do not
1453   // eliminate a safepoint until loop opts are over.
1454   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1455     Node *n0 = in(0)->in(0);

1569 }
1570 
1571 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1572   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1573   int nb = igvn->C->root()->find_prec_edge(this);
1574   if (nb != -1) {
1575     igvn->delete_precedence_of(igvn->C->root(), nb);
1576   }
1577 }
1578 
1579 //==============  SafePointScalarObjectNode  ==============
1580 
1581 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1582   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1583   _first_index(first_index),
1584   _depth(depth),
1585   _n_fields(n_fields),
1586   _alloc(alloc)
1587 {
1588 #ifdef ASSERT
1589   if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1590     alloc->dump();
1591     assert(false, "unexpected call node");
1592   }
1593 #endif
1594   init_class_id(Class_SafePointScalarObject);
1595 }
1596 
1597 // Do not allow value-numbering for SafePointScalarObject node.
1598 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1599 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1600   return (&n == this); // Always fail except on self
1601 }
1602 
1603 uint SafePointScalarObjectNode::ideal_reg() const {
1604   return 0; // No matching to machine instruction
1605 }
1606 
1607 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1608   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1609 }

1674     new_node = false;
1675     return (SafePointScalarMergeNode*)cached;
1676   }
1677   new_node = true;
1678   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1679   sosn_map->Insert((void*)this, (void*)res);
1680   return res;
1681 }
1682 
1683 #ifndef PRODUCT
1684 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1685   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1686 }
1687 #endif
1688 
1689 //=============================================================================
1690 uint AllocateNode::size_of() const { return sizeof(*this); }
1691 
1692 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1693                            Node *ctrl, Node *mem, Node *abio,
1694                            Node *size, Node *klass_node, Node *initial_test)


1695   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1696 {
1697   init_class_id(Class_Allocate);
1698   init_flags(Flag_is_macro);
1699   _is_scalar_replaceable = false;
1700   _is_non_escaping = false;
1701   _is_allocation_MemBar_redundant = false;

1702   Node *topnode = C->top();
1703 
1704   init_req( TypeFunc::Control  , ctrl );
1705   init_req( TypeFunc::I_O      , abio );
1706   init_req( TypeFunc::Memory   , mem );
1707   init_req( TypeFunc::ReturnAdr, topnode );
1708   init_req( TypeFunc::FramePtr , topnode );
1709   init_req( AllocSize          , size);
1710   init_req( KlassNode          , klass_node);
1711   init_req( InitialTest        , initial_test);
1712   init_req( ALength            , topnode);
1713   init_req( ValidLengthTest    , topnode);



1714   C->add_macro_node(this);
1715 }
1716 
1717 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1718 {
1719   assert(initializer != nullptr && initializer->is_object_initializer(),

1720          "unexpected initializer method");
1721   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1722   if (analyzer == nullptr) {
1723     return;
1724   }
1725 
1726   // Allocation node is first parameter in its initializer
1727   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1728     _is_allocation_MemBar_redundant = true;
1729   }
1730 }
1731 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {

1732   Node* mark_node = nullptr;
1733   if (UseCompactObjectHeaders) {
1734     Node* klass_node = in(AllocateNode::KlassNode);
1735     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1736     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);






1737   } else {
1738     // For now only enable fast locking for non-array types
1739     mark_node = phase->MakeConX(markWord::prototype().value());
1740   }
1741   return mark_node;
1742 }
1743 
1744 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1745 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1746 // a CastII is appropriate, return null.
1747 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1748   Node *length = in(AllocateNode::ALength);
1749   assert(length != nullptr, "length is not null");
1750 
1751   const TypeInt* length_type = phase->find_int_type(length);
1752   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1753 
1754   if (ary_type != nullptr && length_type != nullptr) {
1755     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1756     if (narrow_length_type != length_type) {
1757       // Assert one of:
1758       //   - the narrow_length is 0
1759       //   - the narrow_length is not wider than length
1760       assert(narrow_length_type == TypeInt::ZERO ||
1761              (length_type->is_con() && narrow_length_type->is_con() &&

2117 
2118 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2119   st->print("%s", _kind_names[_kind]);
2120 }
2121 #endif
2122 
2123 //=============================================================================
2124 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2125 
2126   // perform any generic optimizations first (returns 'this' or null)
2127   Node *result = SafePointNode::Ideal(phase, can_reshape);
2128   if (result != nullptr)  return result;
2129   // Don't bother trying to transform a dead node
2130   if (in(0) && in(0)->is_top())  return nullptr;
2131 
2132   // Now see if we can optimize away this lock.  We don't actually
2133   // remove the locking here, we simply set the _eliminate flag which
2134   // prevents macro expansion from expanding the lock.  Since we don't
2135   // modify the graph, the value returned from this function is the
2136   // one computed above.
2137   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2138     //
2139     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2140     //
2141     ConnectionGraph *cgr = phase->C->congraph();
2142     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2143       assert(!is_eliminated() || is_coarsened(), "sanity");
2144       // The lock could be marked eliminated by lock coarsening
2145       // code during first IGVN before EA. Replace coarsened flag
2146       // to eliminate all associated locks/unlocks.
2147 #ifdef ASSERT
2148       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2149 #endif
2150       this->set_non_esc_obj();
2151       return result;
2152     }
2153 
2154     if (!phase->C->do_locks_coarsening()) {
2155       return result; // Compiling without locks coarsening
2156     }
2157     //

2318 }
2319 
2320 //=============================================================================
2321 uint UnlockNode::size_of() const { return sizeof(*this); }
2322 
2323 //=============================================================================
2324 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2325 
2326   // perform any generic optimizations first (returns 'this' or null)
2327   Node *result = SafePointNode::Ideal(phase, can_reshape);
2328   if (result != nullptr)  return result;
2329   // Don't bother trying to transform a dead node
2330   if (in(0) && in(0)->is_top())  return nullptr;
2331 
2332   // Now see if we can optimize away this unlock.  We don't actually
2333   // remove the unlocking here, we simply set the _eliminate flag which
2334   // prevents macro expansion from expanding the unlock.  Since we don't
2335   // modify the graph, the value returned from this function is the
2336   // one computed above.
2337   // Escape state is defined after Parse phase.
2338   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {

2339     //
2340     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2341     //
2342     ConnectionGraph *cgr = phase->C->congraph();
2343     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2344       assert(!is_eliminated() || is_coarsened(), "sanity");
2345       // The lock could be marked eliminated by lock coarsening
2346       // code during first IGVN before EA. Replace coarsened flag
2347       // to eliminate all associated locks/unlocks.
2348 #ifdef ASSERT
2349       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2350 #endif
2351       this->set_non_esc_obj();
2352     }
2353   }
2354   return result;
2355 }
2356 
2357 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2358   if (C == nullptr) {

2398     }
2399     // unrelated
2400     return false;
2401   }
2402 
2403   if (dest_t->isa_aryptr()) {
2404     // arraycopy or array clone
2405     if (t_oop->isa_instptr()) {
2406       return false;
2407     }
2408     if (!t_oop->isa_aryptr()) {
2409       return true;
2410     }
2411 
2412     const Type* elem = dest_t->is_aryptr()->elem();
2413     if (elem == Type::BOTTOM) {
2414       // An array but we don't know what elements are
2415       return true;
2416     }
2417 
2418     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();

2419     uint dest_alias = phase->C->get_alias_index(dest_t);
2420     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2421 
2422     return dest_alias == t_oop_alias;
2423   }
2424 
2425   return true;
2426 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "code/vmreg.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/regalloc.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 // Portions of code courtesy of Clifford Click
  55 
  56 // Optimization - Graph Style
  57 
  58 //=============================================================================
  59 uint StartNode::size_of() const { return sizeof(*this); }
  60 bool StartNode::cmp( const Node &n ) const
  61 { return _domain == ((StartNode&)n)._domain; }
  62 const Type *StartNode::bottom_type() const { return _domain; }
  63 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
  64 #ifndef PRODUCT
  65 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  66 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
  67 #endif
  68 
  69 //------------------------------Ideal------------------------------------------
  70 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  71   return remove_dead_region(phase, can_reshape) ? this : nullptr;
  72 }
  73 
  74 //------------------------------calling_convention-----------------------------
  75 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
  76   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
  77 }
  78 
  79 //------------------------------Registers--------------------------------------
  80 const RegMask &StartNode::in_RegMask(uint) const {
  81   return RegMask::EMPTY;
  82 }
  83 
  84 //------------------------------match------------------------------------------
  85 // Construct projections for incoming parameters, and their RegMask info
  86 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
  87   switch (proj->_con) {
  88   case TypeFunc::Control:
  89   case TypeFunc::I_O:
  90   case TypeFunc::Memory:
  91     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
  92   case TypeFunc::FramePtr:
  93     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  94   case TypeFunc::ReturnAdr:
  95     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  96   case TypeFunc::Parms:
  97   default: {
  98       uint parm_num = proj->_con - TypeFunc::Parms;
  99       const Type *t = _domain->field_at(proj->_con);
 100       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
 101         return new ConNode(Type::TOP);
 102       uint ideal_reg = t->ideal_reg();
 103       RegMask &rm = match->_calling_convention_mask[parm_num];
 104       return new MachProjNode(this,proj->_con,rm,ideal_reg);
 105     }
 106   }
 107   return nullptr;
 108 }
 109 











 110 //=============================================================================
 111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ParmNode::dump_spec(outputStream *st) const {
 117   if( _con < TypeFunc::Parms ) {
 118     st->print("%s", names[_con]);
 119   } else {
 120     st->print("Parm%d: ",_con-TypeFunc::Parms);
 121     // Verbose and WizardMode dump bottom_type for all nodes
 122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 123   }
 124 }
 125 
 126 void ParmNode::dump_compact_spec(outputStream *st) const {
 127   if (_con < TypeFunc::Parms) {
 128     st->print("%s", names[_con]);
 129   } else {

 477       if (cik->is_instance_klass()) {
 478         cik->print_name_on(st);
 479         iklass = cik->as_instance_klass();
 480       } else if (cik->is_type_array_klass()) {
 481         cik->as_array_klass()->base_element_type()->print_name_on(st);
 482         st->print("[%d]", spobj->n_fields());
 483       } else if (cik->is_obj_array_klass()) {
 484         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 485         if (cie->is_instance_klass()) {
 486           cie->print_name_on(st);
 487         } else if (cie->is_type_array_klass()) {
 488           cie->as_array_klass()->base_element_type()->print_name_on(st);
 489         } else {
 490           ShouldNotReachHere();
 491         }
 492         st->print("[%d]", spobj->n_fields());
 493         int ndim = cik->as_array_klass()->dimension() - 1;
 494         while (ndim-- > 0) {
 495           st->print("[]");
 496         }
 497       } else if (cik->is_flat_array_klass()) {
 498         ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
 499         cie->print_name_on(st);
 500         st->print("[%d]", spobj->n_fields());
 501         int ndim = cik->as_array_klass()->dimension() - 1;
 502         while (ndim-- > 0) {
 503           st->print("[]");
 504         }
 505       }
 506       st->print("={");
 507       uint nf = spobj->n_fields();
 508       if (nf > 0) {
 509         uint first_ind = spobj->first_index(mcall->jvms());
 510         if (iklass != nullptr && iklass->is_inlinetype()) {
 511           Node* null_marker = mcall->in(first_ind++);
 512           if (!null_marker->is_top()) {
 513             st->print(" [null marker");
 514             format_helper(regalloc, st, null_marker, ":", -1, nullptr);
 515           }
 516         }
 517         Node* fld_node = mcall->in(first_ind);

 518         if (iklass != nullptr) {
 519           st->print(" [");
 520           iklass->nonstatic_field_at(0)->print_name_on(st);

 521           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 522         } else {
 523           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 524         }
 525         for (uint j = 1; j < nf; j++) {
 526           fld_node = mcall->in(first_ind+j);
 527           if (iklass != nullptr) {
 528             st->print(", [");
 529             iklass->nonstatic_field_at(j)->print_name_on(st);

 530             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 531           } else {
 532             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 533           }
 534         }
 535       }
 536       st->print(" }");
 537     }
 538   }
 539   st->cr();
 540   if (caller() != nullptr) caller()->format(regalloc, n, st);
 541 }
 542 
 543 
 544 void JVMState::dump_spec(outputStream *st) const {
 545   if (_method != nullptr) {
 546     bool printed = false;
 547     if (!Verbose) {
 548       // The JVMS dumps make really, really long lines.
 549       // Take out the most boring parts, which are the package prefixes.

 744     tf()->dump_on(st);
 745   }
 746   if (_cnt != COUNT_UNKNOWN) {
 747     st->print(" C=%f", _cnt);
 748   }
 749   const Node* const klass_node = in(KlassNode);
 750   if (klass_node != nullptr) {
 751     const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
 752 
 753     if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
 754       st->print(" allocationKlass:");
 755       klass_ptr->exact_klass()->print_name_on(st);
 756     }
 757   }
 758   if (jvms() != nullptr) {
 759     jvms()->dump_spec(st);
 760   }
 761 }
 762 #endif
 763 
 764 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
 765 const Type* CallNode::Value(PhaseGVN* phase) const {
 766   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
 767     return Type::TOP;
 768   }
 769   return tf()->range_cc();
 770 }
 771 
 772 //------------------------------calling_convention-----------------------------
 773 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
 774   if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
 775     // The call to that stub is a special case: its inputs are
 776     // multiple values returned from a call and so it should follow
 777     // the return convention.
 778     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
 779     return;
 780   }
 781   // Use the standard compiler calling convention
 782   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
 783 }
 784 
 785 
 786 //------------------------------match------------------------------------------
 787 // Construct projections for control, I/O, memory-fields, ..., and
 788 // return result(s) along with their RegMask info
 789 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
 790   uint con = proj->_con;
 791   const TypeTuple* range_cc = tf()->range_cc();
 792   if (con >= TypeFunc::Parms) {
 793     if (tf()->returns_inline_type_as_fields()) {
 794       // The call returns multiple values (inline type fields): we
 795       // create one projection per returned value.
 796       assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
 797       uint ideal_reg = range_cc->field_at(con)->ideal_reg();
 798       return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
 799     } else {
 800       if (con == TypeFunc::Parms) {
 801         uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
 802         OptoRegPair regs = Opcode() == Op_CallLeafVector
 803           ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
 804           : match->c_return_value(ideal_reg);
 805         RegMask rm = RegMask(regs.first());
 806 
 807         if (Opcode() == Op_CallLeafVector) {
 808           // If the return is in vector, compute appropriate regmask taking into account the whole range
 809           if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
 810             if(OptoReg::is_valid(regs.second())) {
 811               for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
 812                 rm.insert(r);
 813               }
 814             }

 815           }
 816         }
 817 
 818         if (OptoReg::is_valid(regs.second())) {
 819           rm.insert(regs.second());
 820         }
 821         return new MachProjNode(this,con,rm,ideal_reg);
 822       } else {
 823         assert(con == TypeFunc::Parms+1, "only one return value");
 824         assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 825         return new MachProjNode(this,con, RegMask::EMPTY, (uint)OptoReg::Bad);
 826       }
 827     }




 828   }
 829 
 830   switch (con) {
 831   case TypeFunc::Control:
 832   case TypeFunc::I_O:
 833   case TypeFunc::Memory:
 834     return new MachProjNode(this,proj->_con,RegMask::EMPTY,MachProjNode::unmatched_proj);
 835 
 836   case TypeFunc::ReturnAdr:
 837   case TypeFunc::FramePtr:
 838   default:
 839     ShouldNotReachHere();
 840   }
 841   return nullptr;
 842 }
 843 
 844 // Do we Match on this edge index or not?  Match no edges
 845 uint CallNode::match_edge(uint idx) const {
 846   return 0;
 847 }
 848 
 849 //
 850 // Determine whether the call could modify the field of the specified
 851 // instance at the specified offset.
 852 //
 853 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
 854   assert((t_oop != nullptr), "sanity");
 855   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
 856     const TypeTuple* args = _tf->domain_sig();
 857     Node* dest = nullptr;
 858     // Stubs that can be called once an ArrayCopyNode is expanded have
 859     // different signatures. Look for the second pointer argument,
 860     // that is the destination of the copy.
 861     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
 862       if (args->field_at(i)->isa_ptr()) {
 863         j++;
 864         if (j == 2) {
 865           dest = in(i);
 866           break;
 867         }
 868       }
 869     }
 870     guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
 871     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
 872       return true;
 873     }
 874     return false;
 875   }
 876   if (t_oop->is_known_instance()) {

 885       Node* proj = proj_out_or_null(TypeFunc::Parms);
 886       if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
 887         return false;
 888       }
 889     }
 890     if (is_CallJava() && as_CallJava()->method() != nullptr) {
 891       ciMethod* meth = as_CallJava()->method();
 892       if (meth->is_getter()) {
 893         return false;
 894       }
 895       // May modify (by reflection) if an boxing object is passed
 896       // as argument or returned.
 897       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
 898       if (proj != nullptr) {
 899         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 900         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 901                                    (inst_t->instance_klass() == boxing_klass))) {
 902           return true;
 903         }
 904       }
 905       const TypeTuple* d = tf()->domain_cc();
 906       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 907         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 908         if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
 909                                  (inst_t->instance_klass() == boxing_klass))) {
 910           return true;
 911         }
 912       }
 913       return false;
 914     }
 915   }
 916   return true;
 917 }
 918 
 919 // Does this call have a direct reference to n other than debug information?
 920 bool CallNode::has_non_debug_use(Node* n) {
 921   const TypeTuple* d = tf()->domain_cc();
 922   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 923     if (in(i) == n) {

 924       return true;
 925     }
 926   }
 927   return false;
 928 }
 929 
 930 bool CallNode::has_debug_use(Node* n) {
 931   if (jvms() != nullptr) {
 932     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
 933       if (in(i) == n) {
 934         return true;
 935       }
 936     }
 937   }
 938   return false;
 939 }
 940 
 941 // Returns the unique CheckCastPP of a call
 942 // or 'this' if there are several CheckCastPP or unexpected uses
 943 // or returns null if there is no one.
 944 Node *CallNode::result_cast() {
 945   Node *cast = nullptr;
 946 
 947   Node *p = proj_out_or_null(TypeFunc::Parms);
 948   if (p == nullptr)
 949     return nullptr;
 950 
 951   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 952     Node *use = p->fast_out(i);
 953     if (use->is_CheckCastPP()) {
 954       if (cast != nullptr) {
 955         return this;  // more than 1 CheckCastPP
 956       }
 957       cast = use;
 958     } else if (!use->is_Initialize() &&
 959                !use->is_AddP() &&
 960                use->Opcode() != Op_MemBarStoreStore) {
 961       // Expected uses are restricted to a CheckCastPP, an Initialize
 962       // node, a MemBarStoreStore (clone) and AddP nodes. If we
 963       // encounter any other use (a Phi node can be seen in rare
 964       // cases) return this to prevent incorrect optimizations.
 965       return this;
 966     }
 967   }
 968   return cast;
 969 }
 970 
 971 
 972 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) const {
 973   uint max_res = TypeFunc::Parms-1;
 974   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 975     ProjNode *pn = fast_out(i)->as_Proj();
 976     max_res = MAX2(max_res, pn->_con);
 977   }
 978 
 979   assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
 980 
 981   uint projs_size = sizeof(CallProjections);
 982   if (max_res > TypeFunc::Parms) {
 983     projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
 984   }
 985   char* projs_storage = resource_allocate_bytes(projs_size);
 986   CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
 987 
 988   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 989     ProjNode *pn = fast_out(i)->as_Proj();
 990     if (pn->outcnt() == 0) continue;
 991     switch (pn->_con) {
 992     case TypeFunc::Control:
 993       {
 994         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 995         projs->fallthrough_proj = pn;
 996         const Node* cn = pn->unique_ctrl_out_or_null();
 997         if (cn != nullptr && cn->is_Catch()) {
 998           ProjNode *cpn = nullptr;
 999           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
1000             cpn = cn->fast_out(k)->as_Proj();
1001             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
1002             if (cpn->_con == CatchProjNode::fall_through_index)
1003               projs->fallthrough_catchproj = cpn;
1004             else {
1005               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
1006               projs->catchall_catchproj = cpn;

1012     case TypeFunc::I_O:
1013       if (pn->_is_io_use)
1014         projs->catchall_ioproj = pn;
1015       else
1016         projs->fallthrough_ioproj = pn;
1017       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1018         Node* e = pn->out(j);
1019         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1020           assert(projs->exobj == nullptr, "only one");
1021           projs->exobj = e;
1022         }
1023       }
1024       break;
1025     case TypeFunc::Memory:
1026       if (pn->_is_io_use)
1027         projs->catchall_memproj = pn;
1028       else
1029         projs->fallthrough_memproj = pn;
1030       break;
1031     case TypeFunc::Parms:
1032       projs->resproj[0] = pn;
1033       break;
1034     default:
1035       assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1036       projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1037       break;
1038     }
1039   }
1040 
1041   // The resproj may not exist because the result could be ignored
1042   // and the exception object may not exist if an exception handler
1043   // swallows the exception but all the other must exist and be found.

1044   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1045   assert(!do_asserts || projs->fallthrough_proj      != nullptr, "must be found");
1046   assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1047   assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
1048   assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
1049   assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
1050   if (separate_io_proj) {
1051     assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
1052     assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
1053   }
1054   return projs;
1055 }
1056 
1057 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1058 #ifdef ASSERT
1059   // Validate attached generator
1060   CallGenerator* cg = generator();
1061   if (cg != nullptr) {
1062     assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
1063            (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1064   }
1065 #endif // ASSERT
1066   return SafePointNode::Ideal(phase, can_reshape);
1067 }
1068 
1069 bool CallNode::is_call_to_arraycopystub() const {
1070   if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1071     return true;
1072   }
1073   return false;
1074 }
1075 
1076 //=============================================================================
1077 uint CallJavaNode::size_of() const { return sizeof(*this); }
1078 bool CallJavaNode::cmp( const Node &n ) const {
1079   CallJavaNode &call = (CallJavaNode&)n;
1080   return CallNode::cmp(call) && _method == call._method &&
1081          _override_symbolic_info == call._override_symbolic_info;
1082 }
1083 
1084 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1085   // Copy debug information and adjust JVMState information
1086   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1087   uint new_dbg_start = tf()->domain_sig()->cnt();
1088   int jvms_adj  = new_dbg_start - old_dbg_start;
1089   assert (new_dbg_start == req(), "argument count mismatch");
1090   Compile* C = phase->C;
1091 
1092   // SafePointScalarObject node could be referenced several times in debug info.
1093   // Use Dict to record cloned nodes.
1094   Dict* sosn_map = new Dict(cmpkey,hashkey);
1095   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1096     Node* old_in = sfpt->in(i);
1097     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1098     if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1099       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1100       bool new_node;
1101       Node* new_in = old_sosn->clone(sosn_map, new_node);
1102       if (new_node) { // New node?
1103         new_in->set_req(0, C->root()); // reset control edge
1104         new_in = phase->transform(new_in); // Register new node.
1105       }
1106       old_in = new_in;
1107     }
1108     add_req(old_in);
1109   }
1110 
1111   // JVMS may be shared so clone it before we modify it
1112   set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1113   for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1114     jvms->set_map(this);
1115     jvms->set_locoff(jvms->locoff()+jvms_adj);
1116     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1117     jvms->set_monoff(jvms->monoff()+jvms_adj);
1118     jvms->set_scloff(jvms->scloff()+jvms_adj);
1119     jvms->set_endoff(jvms->endoff()+jvms_adj);
1120   }
1121 }
1122 
1123 #ifdef ASSERT
1124 bool CallJavaNode::validate_symbolic_info() const {
1125   if (method() == nullptr) {
1126     return true; // call into runtime or uncommon trap
1127   }
1128   Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1129   if (Arguments::is_valhalla_enabled() && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1130     return true;
1131   }
1132   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1133   ciMethod* callee = method();
1134   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1135     assert(override_symbolic_info(), "should be set");
1136   }
1137   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1138   return true;
1139 }
1140 #endif
1141 
1142 #ifndef PRODUCT
1143 void CallJavaNode::dump_spec(outputStream* st) const {
1144   if( _method ) _method->print_short_name(st);
1145   CallNode::dump_spec(st);
1146 }
1147 
1148 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1149   if (_method) {
1150     _method->print_short_name(st);
1151   } else {

1154 }
1155 #endif
1156 
1157 void CallJavaNode::register_for_late_inline() {
1158   if (generator() != nullptr) {
1159     Compile::current()->prepend_late_inline(generator());
1160     set_generator(nullptr);
1161   } else {
1162     assert(false, "repeated inline attempt");
1163   }
1164 }
1165 
1166 //=============================================================================
1167 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1168 bool CallStaticJavaNode::cmp( const Node &n ) const {
1169   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1170   return CallJavaNode::cmp(call);
1171 }
1172 
1173 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1174   if (can_reshape && uncommon_trap_request() != 0) {
1175     PhaseIterGVN* igvn = phase->is_IterGVN();
1176     if (remove_unknown_flat_array_load(igvn, control(), memory(), in(TypeFunc::Parms))) {
1177       if (!control()->is_Region()) {
1178         igvn->replace_input_of(this, 0, phase->C->top());
1179       }
1180       return this;
1181     }
1182   }
1183 
1184   // Try to replace the runtime call to the substitutability test emitted by acmp if (at least) one operand is a known type
1185   if (can_reshape && !control()->is_top() && method() != nullptr && method()->holder() == phase->C->env()->ValueObjectMethods_klass() &&
1186       (method()->name() == ciSymbols::isSubstitutableAlt_name() || method()->name() == ciSymbols::isSubstitutable_name())) {
1187     Node* left = in(TypeFunc::Parms);
1188     Node* right = in(TypeFunc::Parms + 1);
1189     if (!left->is_top() && !right->is_top() && (left->is_InlineType() || right->is_InlineType())) {
1190       if (!left->is_InlineType()) {
1191         swap(left, right);
1192       }
1193       InlineTypeNode* vt = left->as_InlineType();
1194 
1195       // Check if the field layout can be optimized
1196       if (vt->can_emit_substitutability_check(right)) {
1197         PhaseIterGVN* igvn = phase->is_IterGVN();
1198 
1199         Node* ctrl = control();
1200         RegionNode* region = new RegionNode(1);
1201         Node* phi = new PhiNode(region, TypeInt::POS);
1202 
1203         Node* base = right;
1204         Node* ptr = right;
1205         if (!base->is_InlineType()) {
1206           // Parse time checks guarantee that both operands are non-null and have the same type
1207           base = igvn->register_new_node_with_optimizer(new CheckCastPPNode(ctrl, base, vt->bottom_type()));
1208           ptr = base;
1209         }
1210         // Emit IR for field-wise comparison
1211         vt->check_substitutability(igvn, region, phi, &ctrl, in(MemNode::Memory), base, ptr);
1212 
1213         // Equals
1214         region->add_req(ctrl);
1215         phi->add_req(igvn->intcon(1));
1216 
1217         ctrl = igvn->register_new_node_with_optimizer(region);
1218         Node* res = igvn->register_new_node_with_optimizer(phi);
1219 
1220         // Kill exception projections and return a tuple that will replace the call
1221         CallProjections* projs = extract_projections(false /*separate_io_proj*/);
1222         if (projs->fallthrough_catchproj != nullptr) {
1223           igvn->replace_node(projs->fallthrough_catchproj, ctrl);
1224         }
1225         if (projs->catchall_memproj != nullptr) {
1226           igvn->replace_node(projs->catchall_memproj, igvn->C->top());
1227         }
1228         if (projs->catchall_ioproj != nullptr) {
1229           igvn->replace_node(projs->catchall_ioproj, igvn->C->top());
1230         }
1231         if (projs->catchall_catchproj != nullptr) {
1232           igvn->replace_node(projs->catchall_catchproj, igvn->C->top());
1233         }
1234         return TupleNode::make(tf()->range_cc(), ctrl, i_o(), memory(), frameptr(), returnadr(), res);
1235       }
1236     }
1237   }
1238 
1239   CallGenerator* cg = generator();
1240   if (can_reshape && cg != nullptr) {
1241     if (cg->is_mh_late_inline()) {
1242       assert(IncrementalInlineMH, "required");
1243       assert(cg->call_node() == this, "mismatch");
1244       assert(cg->method()->is_method_handle_intrinsic(), "required");
1245 
1246       // Check whether this MH handle call becomes a candidate for inlining.
1247       ciMethod* callee = cg->method();
1248       vmIntrinsics::ID iid = callee->intrinsic_id();
1249       if (iid == vmIntrinsics::_invokeBasic) {
1250         if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1251           register_for_late_inline();
1252         }
1253       } else if (iid == vmIntrinsics::_linkToNative) {
1254         // never retry
1255       } else {
1256         assert(callee->has_member_arg(), "wrong type of call?");
1257         if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1258           register_for_late_inline();

1279 
1280 //----------------------------uncommon_trap_request----------------------------
1281 // If this is an uncommon trap, return the request code, else zero.
1282 int CallStaticJavaNode::uncommon_trap_request() const {
1283   return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1284 }
1285 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1286 #ifndef PRODUCT
1287   if (!(call->req() > TypeFunc::Parms &&
1288         call->in(TypeFunc::Parms) != nullptr &&
1289         call->in(TypeFunc::Parms)->is_Con() &&
1290         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1291     assert(in_dump() != 0, "OK if dumping");
1292     tty->print("[bad uncommon trap]");
1293     return 0;
1294   }
1295 #endif
1296   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1297 }
1298 
1299 // Split if can cause the flat array branch of an array load with unknown type (see
1300 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1301 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1302 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1303   if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1304     return false;
1305   }
1306   if (ctl->is_Region()) {
1307     bool res = false;
1308     for (uint i = 1; i < ctl->req(); i++) {
1309       MergeMemNode* mm = mem->clone()->as_MergeMem();
1310       for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1311         Node* m = mms.memory();
1312         if (m->is_Phi() && m->in(0) == ctl) {
1313           mms.set_memory(m->in(i));
1314         }
1315       }
1316       if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1317         res = true;
1318         if (!ctl->in(i)->is_Region()) {
1319           igvn->replace_input_of(ctl, i, igvn->C->top());
1320         }
1321       }
1322       igvn->remove_dead_node(mm);
1323     }
1324     return res;
1325   }
1326   // Verify the control flow is ok
1327   Node* call = ctl;
1328   MemBarNode* membar = nullptr;
1329   for (;;) {
1330     if (call == nullptr || call->is_top()) {
1331       return false;
1332     }
1333     if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1334       call = call->in(0);
1335     } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1336                call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1337       assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1338       membar = call->in(0)->in(0)->as_MemBar();
1339       break;
1340     } else {
1341       return false;
1342     }
1343   }
1344 
1345   JVMState* jvms = call->jvms();
1346   if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1347     return false;
1348   }
1349 
1350   Node* call_mem = call->in(TypeFunc::Memory);
1351   if (call_mem == nullptr || call_mem->is_top()) {
1352     return false;
1353   }
1354   if (!call_mem->is_MergeMem()) {
1355     call_mem = MergeMemNode::make(call_mem);
1356     igvn->register_new_node_with_optimizer(call_mem);
1357   }
1358 
1359   // Verify that there's no unexpected side effect
1360   for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1361     Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1362     Node* m2 = mms2.memory2();
1363 
1364     for (uint i = 0; i < 100; i++) {
1365       if (m1 == m2) {
1366         break;
1367       } else if (m1->is_Proj()) {
1368         m1 = m1->in(0);
1369       } else if (m1->is_MemBar()) {
1370         m1 = m1->in(TypeFunc::Memory);
1371       } else if (m1->Opcode() == Op_CallStaticJava &&
1372                  m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1373         if (m1 != call) {
1374           return false;
1375         }
1376         break;
1377       } else if (m1->is_MergeMem()) {
1378         MergeMemNode* mm = m1->as_MergeMem();
1379         int idx = mms2.alias_idx();
1380         if (idx == Compile::AliasIdxBot) {
1381           m1 = mm->base_memory();
1382         } else {
1383           m1 = mm->memory_at(idx);
1384         }
1385       } else {
1386         return false;
1387       }
1388     }
1389   }
1390   if (call_mem->outcnt() == 0) {
1391     igvn->remove_dead_node(call_mem);
1392   }
1393 
1394   // Remove membar preceding the call
1395   membar->remove(igvn);
1396 
1397   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1398   CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1399   unc->init_req(TypeFunc::Control, call->in(0));
1400   unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1401   unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1402   unc->init_req(TypeFunc::FramePtr,  call->in(TypeFunc::FramePtr));
1403   unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1404   unc->init_req(TypeFunc::Parms+0, unc_arg);
1405   unc->set_cnt(PROB_UNLIKELY_MAG(4));
1406   unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1407 
1408   // Replace the call with an uncommon trap
1409   igvn->replace_input_of(call, 0, igvn->C->top());
1410 
1411   igvn->register_new_node_with_optimizer(unc);
1412 
1413   Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1414   Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1415   igvn->add_input_to(igvn->C->root(), halt);
1416 
1417   return true;
1418 }
1419 
1420 
1421 #ifndef PRODUCT
1422 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1423   st->print("# Static ");
1424   if (_name != nullptr) {
1425     st->print("%s", _name);
1426     int trap_req = uncommon_trap_request();
1427     if (trap_req != 0) {
1428       char buf[100];
1429       st->print("(%s)",
1430                  Deoptimization::format_trap_request(buf, sizeof(buf),
1431                                                      trap_req));
1432     }
1433     st->print(" ");
1434   }
1435   CallJavaNode::dump_spec(st);
1436 }
1437 
1438 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1439   if (_method) {
1440     _method->print_short_name(st);

1516 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1517 bool CallRuntimeNode::cmp( const Node &n ) const {
1518   CallRuntimeNode &call = (CallRuntimeNode&)n;
1519   return CallNode::cmp(call) && !strcmp(_name,call._name);
1520 }
1521 #ifndef PRODUCT
1522 void CallRuntimeNode::dump_spec(outputStream *st) const {
1523   st->print("# ");
1524   st->print("%s", _name);
1525   CallNode::dump_spec(st);
1526 }
1527 #endif
1528 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1529 bool CallLeafVectorNode::cmp( const Node &n ) const {
1530   CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1531   return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1532 }
1533 
1534 //------------------------------calling_convention-----------------------------
1535 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1536   if (_entry_point == nullptr) {
1537     // The call to that stub is a special case: its inputs are
1538     // multiple values returned from a call and so it should follow
1539     // the return convention.
1540     SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1541     return;
1542   }
1543   SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1544 }
1545 
1546 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1547 #ifdef ASSERT
1548   assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1549          "return vector size must match");
1550   const TypeTuple* d = tf()->domain_sig();
1551   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1552     Node* arg = in(i);
1553     assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1554            "vector argument size must match");
1555   }
1556 #endif
1557 
1558   SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1559 }
1560 
1561 //=============================================================================
1562 //------------------------------calling_convention-----------------------------
1563 
1564 
1565 //=============================================================================
1566 bool CallLeafPureNode::is_unused() const {
1567   return proj_out_or_null(TypeFunc::Parms) == nullptr;
1568 }
1569 
1570 bool CallLeafPureNode::is_dead() const {
1571   return proj_out_or_null(TypeFunc::Control) == nullptr;
1572 }
1573 
1574 /* We make a tuple of the global input state + TOP for the output values.
1575  * We use this to delete a pure function that is not used: by replacing the call with
1576  * such a tuple, we let output Proj's idealization pick the corresponding input of the
1577  * pure call, so jumping over it, and effectively, removing the call from the graph.
1578  * This avoids doing the graph surgery manually, but leaves that to IGVN
1579  * that is specialized for doing that right. We need also tuple components for output
1580  * values of the function to respect the return arity, and in case there is a projection
1581  * that would pick an output (which shouldn't happen at the moment).
1582  */
1583 TupleNode* CallLeafPureNode::make_tuple_of_input_state_and_top_return_values(const Compile* C) const {
1584   // Transparently propagate input state but parameters
1585   TupleNode* tuple = TupleNode::make(
1586       tf()->range_cc(),
1587       in(TypeFunc::Control),
1588       in(TypeFunc::I_O),
1589       in(TypeFunc::Memory),
1590       in(TypeFunc::FramePtr),
1591       in(TypeFunc::ReturnAdr));
1592 
1593   // And add TOPs for the return values
1594   for (uint i = TypeFunc::Parms; i < tf()->range_cc()->cnt(); i++) {
1595     tuple->set_req(i, C->top());
1596   }
1597 
1598   return tuple;
1599 }
1600 
1601 Node* CallLeafPureNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1602   if (is_dead()) {
1603     return nullptr;
1604   }
1605 
1606   // We need to wait until IGVN because during parsing, usages might still be missing
1607   // and we would remove the call immediately.
1608   if (can_reshape && is_unused()) {
1609     // The result is not used. We remove the call by replacing it with a tuple, that
1610     // is later disintegrated by the projections.
1611     return make_tuple_of_input_state_and_top_return_values(phase->C);
1612   }
1613 
1614   return CallRuntimeNode::Ideal(phase, can_reshape);
1615 }
1616 
1617 #ifndef PRODUCT
1618 void CallLeafNode::dump_spec(outputStream *st) const {
1619   st->print("# ");
1620   st->print("%s", _name);
1621   CallNode::dump_spec(st);
1622 }
1623 #endif
1624 
1625 uint CallLeafNoFPNode::match_edge(uint idx) const {
1626   // Null entry point is a special case for which the target is in a
1627   // register. Need to match that edge.
1628   return entry_point() == nullptr && idx == TypeFunc::Parms;
1629 }
1630 
1631 //=============================================================================
1632 
1633 void SafePointNode::set_local(const JVMState* jvms, uint idx, Node *c) {
1634   assert(verify_jvms(jvms), "jvms must match");
1635   int loc = jvms->locoff() + idx;
1636   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1637     // If current local idx is top then local idx - 1 could
1638     // be a long/double that needs to be killed since top could
1639     // represent the 2nd half of the long/double.
1640     uint ideal = in(loc -1)->ideal_reg();
1641     if (ideal == Op_RegD || ideal == Op_RegL) {
1642       // set other (low index) half to top
1643       set_req(loc - 1, in(loc));
1644     }
1645   }
1646   set_req(loc, c);
1647 }
1648 
1649 uint SafePointNode::size_of() const { return sizeof(*this); }
1650 bool SafePointNode::cmp( const Node &n ) const {

1661   }
1662 }
1663 
1664 
1665 //----------------------------next_exception-----------------------------------
1666 SafePointNode* SafePointNode::next_exception() const {
1667   if (len() == req()) {
1668     return nullptr;
1669   } else {
1670     Node* n = in(req());
1671     assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1672     return (SafePointNode*) n;
1673   }
1674 }
1675 
1676 
1677 //------------------------------Ideal------------------------------------------
1678 // Skip over any collapsed Regions
1679 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1680   assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1681   if (remove_dead_region(phase, can_reshape)) {
1682     return this;
1683   }
1684   // Scalarize inline types in safepoint debug info.
1685   // Delay this until all inlining is over to avoid getting inconsistent debug info.
1686   if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1687     for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1688       Node* n = in(i)->uncast();
1689       if (n->is_InlineType()) {
1690         n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1691       }
1692     }
1693   }
1694   return nullptr;
1695 }
1696 
1697 //------------------------------Identity---------------------------------------
1698 // Remove obviously duplicate safepoints
1699 Node* SafePointNode::Identity(PhaseGVN* phase) {
1700 
1701   // If you have back to back safepoints, remove one
1702   if (in(TypeFunc::Control)->is_SafePoint()) {
1703     Node* out_c = unique_ctrl_out_or_null();
1704     // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1705     // outer loop's safepoint could confuse removal of the outer loop.
1706     if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1707       return in(TypeFunc::Control);
1708     }
1709   }
1710 
1711   // Transforming long counted loops requires a safepoint node. Do not
1712   // eliminate a safepoint until loop opts are over.
1713   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1714     Node *n0 = in(0)->in(0);

1828 }
1829 
1830 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1831   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1832   int nb = igvn->C->root()->find_prec_edge(this);
1833   if (nb != -1) {
1834     igvn->delete_precedence_of(igvn->C->root(), nb);
1835   }
1836 }
1837 
1838 //==============  SafePointScalarObjectNode  ==============
1839 
1840 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1841   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1842   _first_index(first_index),
1843   _depth(depth),
1844   _n_fields(n_fields),
1845   _alloc(alloc)
1846 {
1847 #ifdef ASSERT
1848   if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1849     alloc->dump();
1850     assert(false, "unexpected call node");
1851   }
1852 #endif
1853   init_class_id(Class_SafePointScalarObject);
1854 }
1855 
1856 // Do not allow value-numbering for SafePointScalarObject node.
1857 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1858 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1859   return (&n == this); // Always fail except on self
1860 }
1861 
1862 uint SafePointScalarObjectNode::ideal_reg() const {
1863   return 0; // No matching to machine instruction
1864 }
1865 
1866 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1867   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1868 }

1933     new_node = false;
1934     return (SafePointScalarMergeNode*)cached;
1935   }
1936   new_node = true;
1937   SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1938   sosn_map->Insert((void*)this, (void*)res);
1939   return res;
1940 }
1941 
1942 #ifndef PRODUCT
1943 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1944   st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1945 }
1946 #endif
1947 
1948 //=============================================================================
1949 uint AllocateNode::size_of() const { return sizeof(*this); }
1950 
1951 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1952                            Node *ctrl, Node *mem, Node *abio,
1953                            Node *size, Node *klass_node,
1954                            Node* initial_test,
1955                            InlineTypeNode* inline_type_node)
1956   : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1957 {
1958   init_class_id(Class_Allocate);
1959   init_flags(Flag_is_macro);
1960   _is_scalar_replaceable = false;
1961   _is_non_escaping = false;
1962   _is_allocation_MemBar_redundant = false;
1963   _larval = false;
1964   Node *topnode = C->top();
1965 
1966   init_req( TypeFunc::Control  , ctrl );
1967   init_req( TypeFunc::I_O      , abio );
1968   init_req( TypeFunc::Memory   , mem );
1969   init_req( TypeFunc::ReturnAdr, topnode );
1970   init_req( TypeFunc::FramePtr , topnode );
1971   init_req( AllocSize          , size);
1972   init_req( KlassNode          , klass_node);
1973   init_req( InitialTest        , initial_test);
1974   init_req( ALength            , topnode);
1975   init_req( ValidLengthTest    , topnode);
1976   init_req( InlineType     , inline_type_node);
1977   // DefaultValue defaults to nullptr
1978   // RawDefaultValue defaults to nullptr
1979   C->add_macro_node(this);
1980 }
1981 
1982 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1983 {
1984   assert(initializer != nullptr &&
1985          (initializer->is_object_constructor() || initializer->is_class_initializer()),
1986          "unexpected initializer method");
1987   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1988   if (analyzer == nullptr) {
1989     return;
1990   }
1991 
1992   // Allocation node is first parameter in its initializer
1993   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1994     _is_allocation_MemBar_redundant = true;
1995   }
1996 }
1997 
1998 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1999   Node* mark_node = nullptr;
2000   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
2001     Node* klass_node = in(AllocateNode::KlassNode);
2002     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
2003     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
2004     if (Arguments::is_valhalla_enabled()) {
2005       mark_node = phase->transform(mark_node);
2006       // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
2007       mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
2008     }
2009     return mark_node;
2010   } else {
2011     return phase->MakeConX(markWord::prototype().value());

2012   }

2013 }
2014 
2015 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
2016 // CastII, if appropriate.  If we are not allowed to create new nodes, and
2017 // a CastII is appropriate, return null.
2018 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
2019   Node *length = in(AllocateNode::ALength);
2020   assert(length != nullptr, "length is not null");
2021 
2022   const TypeInt* length_type = phase->find_int_type(length);
2023   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
2024 
2025   if (ary_type != nullptr && length_type != nullptr) {
2026     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
2027     if (narrow_length_type != length_type) {
2028       // Assert one of:
2029       //   - the narrow_length is 0
2030       //   - the narrow_length is not wider than length
2031       assert(narrow_length_type == TypeInt::ZERO ||
2032              (length_type->is_con() && narrow_length_type->is_con() &&

2388 
2389 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2390   st->print("%s", _kind_names[_kind]);
2391 }
2392 #endif
2393 
2394 //=============================================================================
2395 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2396 
2397   // perform any generic optimizations first (returns 'this' or null)
2398   Node *result = SafePointNode::Ideal(phase, can_reshape);
2399   if (result != nullptr)  return result;
2400   // Don't bother trying to transform a dead node
2401   if (in(0) && in(0)->is_top())  return nullptr;
2402 
2403   // Now see if we can optimize away this lock.  We don't actually
2404   // remove the locking here, we simply set the _eliminate flag which
2405   // prevents macro expansion from expanding the lock.  Since we don't
2406   // modify the graph, the value returned from this function is the
2407   // one computed above.
2408   const Type* obj_type = phase->type(obj_node());
2409   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2410     //
2411     // If we are locking an non-escaped object, the lock/unlock is unnecessary
2412     //
2413     ConnectionGraph *cgr = phase->C->congraph();
2414     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2415       assert(!is_eliminated() || is_coarsened(), "sanity");
2416       // The lock could be marked eliminated by lock coarsening
2417       // code during first IGVN before EA. Replace coarsened flag
2418       // to eliminate all associated locks/unlocks.
2419 #ifdef ASSERT
2420       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2421 #endif
2422       this->set_non_esc_obj();
2423       return result;
2424     }
2425 
2426     if (!phase->C->do_locks_coarsening()) {
2427       return result; // Compiling without locks coarsening
2428     }
2429     //

2590 }
2591 
2592 //=============================================================================
2593 uint UnlockNode::size_of() const { return sizeof(*this); }
2594 
2595 //=============================================================================
2596 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2597 
2598   // perform any generic optimizations first (returns 'this' or null)
2599   Node *result = SafePointNode::Ideal(phase, can_reshape);
2600   if (result != nullptr)  return result;
2601   // Don't bother trying to transform a dead node
2602   if (in(0) && in(0)->is_top())  return nullptr;
2603 
2604   // Now see if we can optimize away this unlock.  We don't actually
2605   // remove the unlocking here, we simply set the _eliminate flag which
2606   // prevents macro expansion from expanding the unlock.  Since we don't
2607   // modify the graph, the value returned from this function is the
2608   // one computed above.
2609   // Escape state is defined after Parse phase.
2610   const Type* obj_type = phase->type(obj_node());
2611   if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2612     //
2613     // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2614     //
2615     ConnectionGraph *cgr = phase->C->congraph();
2616     if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2617       assert(!is_eliminated() || is_coarsened(), "sanity");
2618       // The lock could be marked eliminated by lock coarsening
2619       // code during first IGVN before EA. Replace coarsened flag
2620       // to eliminate all associated locks/unlocks.
2621 #ifdef ASSERT
2622       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2623 #endif
2624       this->set_non_esc_obj();
2625     }
2626   }
2627   return result;
2628 }
2629 
2630 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2631   if (C == nullptr) {

2671     }
2672     // unrelated
2673     return false;
2674   }
2675 
2676   if (dest_t->isa_aryptr()) {
2677     // arraycopy or array clone
2678     if (t_oop->isa_instptr()) {
2679       return false;
2680     }
2681     if (!t_oop->isa_aryptr()) {
2682       return true;
2683     }
2684 
2685     const Type* elem = dest_t->is_aryptr()->elem();
2686     if (elem == Type::BOTTOM) {
2687       // An array but we don't know what elements are
2688       return true;
2689     }
2690 
2691     dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2692     t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2693     uint dest_alias = phase->C->get_alias_index(dest_t);
2694     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2695 
2696     return dest_alias == t_oop_alias;
2697   }
2698 
2699   return true;
2700 }
< prev index next >