1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_CALLNODE_HPP 26 #define SHARE_OPTO_CALLNODE_HPP 27 28 #include "opto/connode.hpp" 29 #include "opto/mulnode.hpp" 30 #include "opto/multnode.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/phaseX.hpp" 33 #include "opto/replacednodes.hpp" 34 #include "opto/type.hpp" 35 #include "utilities/growableArray.hpp" 36 37 // Portions of code courtesy of Clifford Click 38 39 // Optimization - Graph Style 40 41 class NamedCounter; 42 class MultiNode; 43 class SafePointNode; 44 class CallNode; 45 class CallJavaNode; 46 class CallStaticJavaNode; 47 class CallDynamicJavaNode; 48 class CallRuntimeNode; 49 class CallLeafNode; 50 class CallLeafNoFPNode; 51 class CallLeafVectorNode; 52 class AllocateNode; 53 class AllocateArrayNode; 54 class AbstractLockNode; 55 class LockNode; 56 class UnlockNode; 57 class FastLockNode; 58 59 //------------------------------StartNode-------------------------------------- 60 // The method start node 61 class StartNode : public MultiNode { 62 virtual bool cmp( const Node &n ) const; 63 virtual uint size_of() const; // Size is bigger 64 public: 65 const TypeTuple *_domain; 66 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { 67 init_class_id(Class_Start); 68 init_req(0,this); 69 init_req(1,root); 70 } 71 virtual int Opcode() const; 72 virtual bool pinned() const { return true; }; 73 virtual const Type *bottom_type() const; 74 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 75 virtual const Type* Value(PhaseGVN* phase) const; 76 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 77 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; 78 virtual const RegMask &in_RegMask(uint) const; 79 virtual Node *match( const ProjNode *proj, const Matcher *m ); 80 virtual uint ideal_reg() const { return 0; } 81 #ifndef PRODUCT 82 virtual void dump_spec(outputStream *st) const; 83 virtual void dump_compact_spec(outputStream *st) const; 84 #endif 85 }; 86 87 //------------------------------StartOSRNode----------------------------------- 88 // The method start node for on stack replacement code 89 class StartOSRNode : public StartNode { 90 public: 91 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} 92 virtual int Opcode() const; 93 static const TypeTuple *osr_domain(); 94 }; 95 96 97 //------------------------------ParmNode--------------------------------------- 98 // Incoming parameters 99 class ParmNode : public ProjNode { 100 static const char * const names[TypeFunc::Parms+1]; 101 public: 102 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { 103 init_class_id(Class_Parm); 104 } 105 virtual int Opcode() const; 106 virtual bool is_CFG() const { return (_con == TypeFunc::Control); } 107 virtual uint ideal_reg() const; 108 #ifndef PRODUCT 109 virtual void dump_spec(outputStream *st) const; 110 virtual void dump_compact_spec(outputStream *st) const; 111 #endif 112 }; 113 114 115 //------------------------------ReturnNode------------------------------------- 116 // Return from subroutine node 117 class ReturnNode : public Node { 118 public: 119 ReturnNode(uint edges, Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr); 120 virtual int Opcode() const; 121 virtual bool is_CFG() const { return true; } 122 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 123 virtual bool depends_only_on_test() const { return false; } 124 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 125 virtual const Type* Value(PhaseGVN* phase) const; 126 virtual uint ideal_reg() const { return NotAMachineReg; } 127 virtual uint match_edge(uint idx) const; 128 #ifndef PRODUCT 129 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 130 #endif 131 }; 132 133 134 //------------------------------RethrowNode------------------------------------ 135 // Rethrow of exception at call site. Ends a procedure before rethrowing; 136 // ends the current basic block like a ReturnNode. Restores registers and 137 // unwinds stack. Rethrow happens in the caller's method. 138 class RethrowNode : public Node { 139 public: 140 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); 141 virtual int Opcode() const; 142 virtual bool is_CFG() const { return true; } 143 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 144 virtual bool depends_only_on_test() const { return false; } 145 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 146 virtual const Type* Value(PhaseGVN* phase) const; 147 virtual uint match_edge(uint idx) const; 148 virtual uint ideal_reg() const { return NotAMachineReg; } 149 #ifndef PRODUCT 150 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 151 #endif 152 }; 153 154 155 //------------------------------ForwardExceptionNode--------------------------- 156 // Pop stack frame and jump to StubRoutines::forward_exception_entry() 157 class ForwardExceptionNode : public ReturnNode { 158 public: 159 ForwardExceptionNode(Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr) 160 : ReturnNode(TypeFunc::Parms, cntrl, i_o, memory, frameptr, retadr) { 161 } 162 163 virtual int Opcode() const; 164 }; 165 166 //------------------------------TailCallNode----------------------------------- 167 // Pop stack frame and jump indirect 168 class TailCallNode : public ReturnNode { 169 public: 170 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) 171 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { 172 init_req(TypeFunc::Parms, target); 173 init_req(TypeFunc::Parms+1, moop); 174 } 175 176 virtual int Opcode() const; 177 virtual uint match_edge(uint idx) const; 178 }; 179 180 //------------------------------TailJumpNode----------------------------------- 181 // Pop stack frame and jump indirect 182 class TailJumpNode : public ReturnNode { 183 public: 184 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) 185 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { 186 init_req(TypeFunc::Parms, target); 187 init_req(TypeFunc::Parms+1, ex_oop); 188 } 189 190 virtual int Opcode() const; 191 virtual uint match_edge(uint idx) const; 192 }; 193 194 //-------------------------------JVMState------------------------------------- 195 // A linked list of JVMState nodes captures the whole interpreter state, 196 // plus GC roots, for all active calls at some call site in this compilation 197 // unit. (If there is no inlining, then the list has exactly one link.) 198 // This provides a way to map the optimized program back into the interpreter, 199 // or to let the GC mark the stack. 200 class JVMState : public ResourceObj { 201 public: 202 typedef enum { 203 Reexecute_Undefined = -1, // not defined -- will be translated into false later 204 Reexecute_False = 0, // false -- do not reexecute 205 Reexecute_True = 1 // true -- reexecute the bytecode 206 } ReexecuteState; //Reexecute State 207 208 private: 209 JVMState* _caller; // List pointer for forming scope chains 210 uint _depth; // One more than caller depth, or one. 211 uint _locoff; // Offset to locals in input edge mapping 212 uint _stkoff; // Offset to stack in input edge mapping 213 uint _monoff; // Offset to monitors in input edge mapping 214 uint _scloff; // Offset to fields of scalar objs in input edge mapping 215 uint _endoff; // Offset to end of input edge mapping 216 uint _sp; // Java Expression Stack Pointer for this state 217 int _bci; // Byte Code Index of this JVM point 218 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed 219 ciMethod* _method; // Method Pointer 220 SafePointNode* _map; // Map node associated with this scope 221 public: 222 friend class Compile; 223 friend class PreserveReexecuteState; 224 225 // Because JVMState objects live over the entire lifetime of the 226 // Compile object, they are allocated into the comp_arena, which 227 // does not get resource marked or reset during the compile process 228 void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } 229 void operator delete( void * ) { } // fast deallocation 230 231 // Create a new JVMState, ready for abstract interpretation. 232 JVMState(ciMethod* method, JVMState* caller); 233 JVMState(int stack_size); // root state; has a null method 234 235 // Access functions for the JVM 236 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| 237 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff 238 uint locoff() const { return _locoff; } 239 uint stkoff() const { return _stkoff; } 240 uint argoff() const { return _stkoff + _sp; } 241 uint monoff() const { return _monoff; } 242 uint scloff() const { return _scloff; } 243 uint endoff() const { return _endoff; } 244 uint oopoff() const { return debug_end(); } 245 246 int loc_size() const { return stkoff() - locoff(); } 247 int stk_size() const { return monoff() - stkoff(); } 248 int mon_size() const { return scloff() - monoff(); } 249 int scl_size() const { return endoff() - scloff(); } 250 251 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } 252 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } 253 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } 254 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } 255 256 uint sp() const { return _sp; } 257 int bci() const { return _bci; } 258 bool should_reexecute() const { return _reexecute==Reexecute_True; } 259 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } 260 bool has_method() const { return _method != nullptr; } 261 ciMethod* method() const { assert(has_method(), ""); return _method; } 262 JVMState* caller() const { return _caller; } 263 SafePointNode* map() const { return _map; } 264 uint depth() const { return _depth; } 265 uint debug_start() const; // returns locoff of root caller 266 uint debug_end() const; // returns endoff of self 267 uint debug_size() const { 268 return loc_size() + sp() + mon_size() + scl_size(); 269 } 270 uint debug_depth() const; // returns sum of debug_size values at all depths 271 272 // Returns the JVM state at the desired depth (1 == root). 273 JVMState* of_depth(int d) const; 274 275 // Tells if two JVM states have the same call chain (depth, methods, & bcis). 276 bool same_calls_as(const JVMState* that) const; 277 278 // Monitors (monitors are stored as (boxNode, objNode) pairs 279 enum { logMonitorEdges = 1 }; 280 int nof_monitors() const { return mon_size() >> logMonitorEdges; } 281 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } 282 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } 283 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } 284 bool is_monitor_box(uint off) const { 285 assert(is_mon(off), "should be called only for monitor edge"); 286 return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); 287 } 288 bool is_monitor_use(uint off) const { return (is_mon(off) 289 && is_monitor_box(off)) 290 || (caller() && caller()->is_monitor_use(off)); } 291 292 // Initialization functions for the JVM 293 void set_locoff(uint off) { _locoff = off; } 294 void set_stkoff(uint off) { _stkoff = off; } 295 void set_monoff(uint off) { _monoff = off; } 296 void set_scloff(uint off) { _scloff = off; } 297 void set_endoff(uint off) { _endoff = off; } 298 void set_offsets(uint off) { 299 _locoff = _stkoff = _monoff = _scloff = _endoff = off; 300 } 301 void set_map(SafePointNode* map) { _map = map; } 302 void bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode 303 void set_sp(uint sp) { _sp = sp; } 304 // _reexecute is initialized to "undefined" for a new bci 305 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } 306 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} 307 308 // Miscellaneous utility functions 309 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain 310 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller 311 void set_map_deep(SafePointNode *map);// reset map for all callers 312 void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. 313 int interpreter_frame_size() const; 314 315 #ifndef PRODUCT 316 void print_method_with_lineno(outputStream* st, bool show_name) const; 317 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; 318 void dump_spec(outputStream *st) const; 319 void dump_on(outputStream* st) const; 320 void dump() const { 321 dump_on(tty); 322 } 323 #endif 324 }; 325 326 //------------------------------SafePointNode---------------------------------- 327 // A SafePointNode is a subclass of a MultiNode for convenience (and 328 // potential code sharing) only - conceptually it is independent of 329 // the Node semantics. 330 class SafePointNode : public MultiNode { 331 friend JVMState; 332 friend class GraphKit; 333 friend class LibraryCallKit; 334 335 virtual bool cmp( const Node &n ) const; 336 virtual uint size_of() const; // Size is bigger 337 338 protected: 339 JVMState* const _jvms; // Pointer to list of JVM State objects 340 // Many calls take *all* of memory as input, 341 // but some produce a limited subset of that memory as output. 342 // The adr_type reports the call's behavior as a store, not a load. 343 const TypePtr* _adr_type; // What type of memory does this node produce? 344 ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() 345 bool _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States 346 347 void set_jvms(JVMState* s) { 348 assert(s != nullptr, "assign null value to _jvms"); 349 *(JVMState**)&_jvms = s; // override const attribute in the accessor 350 } 351 public: 352 SafePointNode(uint edges, JVMState* jvms, 353 // A plain safepoint advertises no memory effects (null): 354 const TypePtr* adr_type = nullptr) 355 : MultiNode( edges ), 356 _jvms(jvms), 357 _adr_type(adr_type), 358 _has_ea_local_in_scope(false) 359 { 360 init_class_id(Class_SafePoint); 361 } 362 363 JVMState* jvms() const { return _jvms; } 364 virtual bool needs_deep_clone_jvms(Compile* C) { return false; } 365 void clone_jvms(Compile* C) { 366 if (jvms() != nullptr) { 367 if (needs_deep_clone_jvms(C)) { 368 set_jvms(jvms()->clone_deep(C)); 369 jvms()->set_map_deep(this); 370 } else { 371 jvms()->clone_shallow(C)->bind_map(this); 372 } 373 } 374 } 375 376 private: 377 void verify_input(JVMState* jvms, uint idx) const { 378 assert(verify_jvms(jvms), "jvms must match"); 379 Node* n = in(idx); 380 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || 381 in(idx + 1)->is_top(), "2nd half of long/double"); 382 } 383 384 public: 385 // Functionality from old debug nodes which has changed 386 Node *local(JVMState* jvms, uint idx) const { 387 verify_input(jvms, jvms->locoff() + idx); 388 return in(jvms->locoff() + idx); 389 } 390 Node *stack(JVMState* jvms, uint idx) const { 391 verify_input(jvms, jvms->stkoff() + idx); 392 return in(jvms->stkoff() + idx); 393 } 394 Node *argument(JVMState* jvms, uint idx) const { 395 verify_input(jvms, jvms->argoff() + idx); 396 return in(jvms->argoff() + idx); 397 } 398 Node *monitor_box(JVMState* jvms, uint idx) const { 399 assert(verify_jvms(jvms), "jvms must match"); 400 return in(jvms->monitor_box_offset(idx)); 401 } 402 Node *monitor_obj(JVMState* jvms, uint idx) const { 403 assert(verify_jvms(jvms), "jvms must match"); 404 return in(jvms->monitor_obj_offset(idx)); 405 } 406 407 void set_local(JVMState* jvms, uint idx, Node *c); 408 409 void set_stack(JVMState* jvms, uint idx, Node *c) { 410 assert(verify_jvms(jvms), "jvms must match"); 411 set_req(jvms->stkoff() + idx, c); 412 } 413 void set_argument(JVMState* jvms, uint idx, Node *c) { 414 assert(verify_jvms(jvms), "jvms must match"); 415 set_req(jvms->argoff() + idx, c); 416 } 417 void ensure_stack(JVMState* jvms, uint stk_size) { 418 assert(verify_jvms(jvms), "jvms must match"); 419 int grow_by = (int)stk_size - (int)jvms->stk_size(); 420 if (grow_by > 0) grow_stack(jvms, grow_by); 421 } 422 void grow_stack(JVMState* jvms, uint grow_by); 423 // Handle monitor stack 424 void push_monitor( const FastLockNode *lock ); 425 void pop_monitor (); 426 Node *peek_monitor_box() const; 427 Node *peek_monitor_obj() const; 428 // Peek Operand Stacks, JVMS 2.6.2 429 Node* peek_operand(uint off = 0) const; 430 431 // Access functions for the JVM 432 Node *control () const { return in(TypeFunc::Control ); } 433 Node *i_o () const { return in(TypeFunc::I_O ); } 434 Node *memory () const { return in(TypeFunc::Memory ); } 435 Node *returnadr() const { return in(TypeFunc::ReturnAdr); } 436 Node *frameptr () const { return in(TypeFunc::FramePtr ); } 437 438 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } 439 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } 440 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } 441 442 MergeMemNode* merged_memory() const { 443 return in(TypeFunc::Memory)->as_MergeMem(); 444 } 445 446 // The parser marks useless maps as dead when it's done with them: 447 bool is_killed() { return in(TypeFunc::Control) == nullptr; } 448 449 // Exception states bubbling out of subgraphs such as inlined calls 450 // are recorded here. (There might be more than one, hence the "next".) 451 // This feature is used only for safepoints which serve as "maps" 452 // for JVM states during parsing, intrinsic expansion, etc. 453 SafePointNode* next_exception() const; 454 void set_next_exception(SafePointNode* n); 455 bool has_exceptions() const { return next_exception() != nullptr; } 456 457 // Helper methods to operate on replaced nodes 458 ReplacedNodes replaced_nodes() const { 459 return _replaced_nodes; 460 } 461 462 void set_replaced_nodes(ReplacedNodes replaced_nodes) { 463 _replaced_nodes = replaced_nodes; 464 } 465 466 void clone_replaced_nodes() { 467 _replaced_nodes.clone(); 468 } 469 void record_replaced_node(Node* initial, Node* improved) { 470 _replaced_nodes.record(initial, improved); 471 } 472 void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { 473 _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); 474 } 475 void delete_replaced_nodes() { 476 _replaced_nodes.reset(); 477 } 478 void apply_replaced_nodes(uint idx) { 479 _replaced_nodes.apply(this, idx); 480 } 481 void merge_replaced_nodes_with(SafePointNode* sfpt) { 482 _replaced_nodes.merge_with(sfpt->_replaced_nodes); 483 } 484 bool has_replaced_nodes() const { 485 return !_replaced_nodes.is_empty(); 486 } 487 void set_has_ea_local_in_scope(bool b) { 488 _has_ea_local_in_scope = b; 489 } 490 bool has_ea_local_in_scope() const { 491 return _has_ea_local_in_scope; 492 } 493 494 void disconnect_from_root(PhaseIterGVN *igvn); 495 496 // Standard Node stuff 497 virtual int Opcode() const; 498 virtual bool pinned() const { return true; } 499 virtual const Type* Value(PhaseGVN* phase) const; 500 virtual const Type* bottom_type() const { return Type::CONTROL; } 501 virtual const TypePtr* adr_type() const { return _adr_type; } 502 void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; } 503 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 504 virtual Node* Identity(PhaseGVN* phase); 505 virtual uint ideal_reg() const { return 0; } 506 virtual const RegMask &in_RegMask(uint) const; 507 virtual const RegMask &out_RegMask() const; 508 virtual uint match_edge(uint idx) const; 509 510 #ifndef PRODUCT 511 virtual void dump_spec(outputStream *st) const; 512 #endif 513 }; 514 515 //------------------------------SafePointScalarObjectNode---------------------- 516 // A SafePointScalarObjectNode represents the state of a scalarized object 517 // at a safepoint. 518 class SafePointScalarObjectNode: public TypeNode { 519 uint _first_index; // First input edge relative index of a SafePoint node where 520 // states of the scalarized object fields are collected. 521 uint _depth; // Depth of the JVM state the _first_index field refers to 522 uint _n_fields; // Number of non-static fields of the scalarized object. 523 524 Node* _alloc; // Just for debugging purposes. 525 526 virtual uint hash() const; 527 virtual bool cmp( const Node &n ) const; 528 529 uint first_index() const { return _first_index; } 530 531 public: 532 SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields); 533 534 virtual int Opcode() const; 535 virtual uint ideal_reg() const; 536 virtual const RegMask &in_RegMask(uint) const; 537 virtual const RegMask &out_RegMask() const; 538 virtual uint match_edge(uint idx) const; 539 540 uint first_index(JVMState* jvms) const { 541 assert(jvms != nullptr, "missed JVMS"); 542 return jvms->of_depth(_depth)->scloff() + _first_index; 543 } 544 uint n_fields() const { return _n_fields; } 545 546 #ifdef ASSERT 547 Node* alloc() const { return _alloc; } 548 #endif 549 550 virtual uint size_of() const { return sizeof(*this); } 551 552 // Assumes that "this" is an argument to a safepoint node "s", and that 553 // "new_call" is being created to correspond to "s". But the difference 554 // between the start index of the jvmstates of "new_call" and "s" is 555 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 556 // corresponds appropriately to "this" in "new_call". Assumes that 557 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 558 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 559 SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const; 560 561 #ifndef PRODUCT 562 virtual void dump_spec(outputStream *st) const; 563 #endif 564 }; 565 566 //------------------------------SafePointScalarMergeNode---------------------- 567 // 568 // This class represents an allocation merge that is used as debug information 569 // and had at least one of its input scalar replaced. 570 // 571 // The required inputs of this node, except the control, are pointers to 572 // SafePointScalarObjectNodes that describe scalarized inputs of the original 573 // allocation merge. The other(s) properties of the class are described below. 574 // 575 // _merge_pointer_idx : index in the SafePointNode's input array where the 576 // description of the _allocation merge_ starts. The index is zero based and 577 // relative to the SafePoint's scloff. The two entries in the SafePointNode's 578 // input array starting at '_merge_pointer_idx` are Phi nodes representing: 579 // 580 // 1) The original merge Phi. During rematerialization this input will only be 581 // used if the "selector Phi" (see below) indicates that the execution of the 582 // Phi took the path of a non scalarized input. 583 // 584 // 2) A "selector Phi". The output of this Phi will be '-1' if the execution 585 // of the method exercised a non scalarized input of the original Phi. 586 // Otherwise, the output will be >=0, and it will indicate the index-1 in the 587 // SafePointScalarMergeNode input array where the description of the 588 // scalarized object that should be used is. 589 // 590 // As an example, consider a Phi merging 3 inputs, of which the last 2 are 591 // scalar replaceable. 592 // 593 // Phi(Region, NSR, SR, SR) 594 // 595 // During scalar replacement the SR inputs will be changed to null: 596 // 597 // Phi(Region, NSR, nullptr, nullptr) 598 // 599 // A corresponding selector Phi will be created with a configuration like this: 600 // 601 // Phi(Region, -1, 0, 1) 602 // 603 // During execution of the compiled method, if the execution reaches a Trap, the 604 // output of the selector Phi will tell if we need to rematerialize one of the 605 // scalar replaced inputs or if we should just use the pointer returned by the 606 // original Phi. 607 608 class SafePointScalarMergeNode: public TypeNode { 609 int _merge_pointer_idx; // This is the first input edge relative 610 // index of a SafePoint node where metadata information relative 611 // to restoring the merge is stored. The corresponding input 612 // in the associated SafePoint will point to a Phi representing 613 // potential non-scalar replaced objects. 614 615 virtual uint hash() const; 616 virtual bool cmp( const Node &n ) const; 617 618 public: 619 SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx); 620 621 virtual int Opcode() const; 622 virtual uint ideal_reg() const; 623 virtual const RegMask &in_RegMask(uint) const; 624 virtual const RegMask &out_RegMask() const; 625 virtual uint match_edge(uint idx) const; 626 627 virtual uint size_of() const { return sizeof(*this); } 628 629 int merge_pointer_idx(JVMState* jvms) const { 630 assert(jvms != nullptr, "JVMS reference is null."); 631 return jvms->scloff() + _merge_pointer_idx; 632 } 633 634 int selector_idx(JVMState* jvms) const { 635 assert(jvms != nullptr, "JVMS reference is null."); 636 return jvms->scloff() + _merge_pointer_idx + 1; 637 } 638 639 // Assumes that "this" is an argument to a safepoint node "s", and that 640 // "new_call" is being created to correspond to "s". But the difference 641 // between the start index of the jvmstates of "new_call" and "s" is 642 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 643 // corresponds appropriately to "this" in "new_call". Assumes that 644 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 645 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 646 SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const; 647 648 #ifndef PRODUCT 649 virtual void dump_spec(outputStream *st) const; 650 #endif 651 }; 652 653 // Simple container for the outgoing projections of a call. Useful 654 // for serious surgery on calls. 655 class CallProjections : public StackObj { 656 public: 657 Node* fallthrough_proj; 658 Node* fallthrough_catchproj; 659 Node* fallthrough_memproj; 660 Node* fallthrough_ioproj; 661 Node* catchall_catchproj; 662 Node* catchall_memproj; 663 Node* catchall_ioproj; 664 Node* resproj; 665 Node* exobj; 666 }; 667 668 class CallGenerator; 669 670 //------------------------------CallNode--------------------------------------- 671 // Call nodes now subsume the function of debug nodes at callsites, so they 672 // contain the functionality of a full scope chain of debug nodes. 673 class CallNode : public SafePointNode { 674 675 protected: 676 bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase); 677 678 public: 679 const TypeFunc* _tf; // Function type 680 address _entry_point; // Address of method being called 681 float _cnt; // Estimate of number of times called 682 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls 683 const char* _name; // Printable name, if _method is null 684 685 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr) 686 : SafePointNode(tf->domain()->cnt(), jvms, adr_type), 687 _tf(tf), 688 _entry_point(addr), 689 _cnt(COUNT_UNKNOWN), 690 _generator(nullptr), 691 _name(nullptr) 692 { 693 init_class_id(Class_Call); 694 } 695 696 const TypeFunc* tf() const { return _tf; } 697 address entry_point() const { return _entry_point; } 698 float cnt() const { return _cnt; } 699 CallGenerator* generator() const { return _generator; } 700 701 void set_tf(const TypeFunc* tf) { _tf = tf; } 702 void set_entry_point(address p) { _entry_point = p; } 703 void set_cnt(float c) { _cnt = c; } 704 void set_generator(CallGenerator* cg) { _generator = cg; } 705 706 virtual const Type* bottom_type() const; 707 virtual const Type* Value(PhaseGVN* phase) const; 708 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 709 virtual Node* Identity(PhaseGVN* phase) { return this; } 710 virtual bool cmp(const Node &n) const; 711 virtual uint size_of() const = 0; 712 virtual void calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const; 713 virtual Node* match(const ProjNode* proj, const Matcher* m); 714 virtual uint ideal_reg() const { return NotAMachineReg; } 715 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and 716 // for some macro nodes whose expansion does not have a safepoint on the fast path. 717 virtual bool guaranteed_safepoint() { return true; } 718 // For macro nodes, the JVMState gets modified during expansion. If calls 719 // use MachConstantBase, it gets modified during matching. So when cloning 720 // the node the JVMState must be deep cloned. Default is to shallow clone. 721 virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); } 722 723 // Returns true if the call may modify n 724 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase); 725 // Does this node have a use of n other than in debug information? 726 bool has_non_debug_use(Node* n); 727 // Returns the unique CheckCastPP of a call 728 // or result projection is there are several CheckCastPP 729 // or returns null if there is no one. 730 Node* result_cast(); 731 // Does this node returns pointer? 732 bool returns_pointer() const { 733 const TypeTuple* r = tf()->range(); 734 return (r->cnt() > TypeFunc::Parms && 735 r->field_at(TypeFunc::Parms)->isa_ptr()); 736 } 737 738 // Collect all the interesting edges from a call for use in 739 // replacing the call by something else. Used by macro expansion 740 // and the late inlining support. 741 void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true) const; 742 743 virtual uint match_edge(uint idx) const; 744 745 bool is_call_to_arraycopystub() const; 746 747 virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {} 748 749 #ifndef PRODUCT 750 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; 751 virtual void dump_spec(outputStream* st) const; 752 #endif 753 }; 754 755 756 //------------------------------CallJavaNode----------------------------------- 757 // Make a static or dynamic subroutine call node using Java calling 758 // convention. (The "Java" calling convention is the compiler's calling 759 // convention, as opposed to the interpreter's or that of native C.) 760 class CallJavaNode : public CallNode { 761 protected: 762 virtual bool cmp( const Node &n ) const; 763 virtual uint size_of() const; // Size is bigger 764 765 ciMethod* _method; // Method being direct called 766 bool _optimized_virtual; 767 bool _method_handle_invoke; 768 bool _override_symbolic_info; // Override symbolic call site info from bytecode 769 bool _arg_escape; // ArgEscape in parameter list 770 public: 771 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method) 772 : CallNode(tf, addr, TypePtr::BOTTOM), 773 _method(method), 774 _optimized_virtual(false), 775 _method_handle_invoke(false), 776 _override_symbolic_info(false), 777 _arg_escape(false) 778 { 779 init_class_id(Class_CallJava); 780 } 781 782 virtual int Opcode() const; 783 ciMethod* method() const { return _method; } 784 void set_method(ciMethod *m) { _method = m; } 785 void set_optimized_virtual(bool f) { _optimized_virtual = f; } 786 bool is_optimized_virtual() const { return _optimized_virtual; } 787 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } 788 bool is_method_handle_invoke() const { return _method_handle_invoke; } 789 void set_override_symbolic_info(bool f) { _override_symbolic_info = f; } 790 bool override_symbolic_info() const { return _override_symbolic_info; } 791 void set_arg_escape(bool f) { _arg_escape = f; } 792 bool arg_escape() const { return _arg_escape; } 793 void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt); 794 void register_for_late_inline(); 795 796 DEBUG_ONLY( bool validate_symbolic_info() const; ) 797 798 #ifndef PRODUCT 799 virtual void dump_spec(outputStream *st) const; 800 virtual void dump_compact_spec(outputStream *st) const; 801 #endif 802 }; 803 804 //------------------------------CallStaticJavaNode----------------------------- 805 // Make a direct subroutine call using Java calling convention (for static 806 // calls and optimized virtual calls, plus calls to wrappers for run-time 807 // routines); generates static stub. 808 class CallStaticJavaNode : public CallJavaNode { 809 virtual bool cmp( const Node &n ) const; 810 virtual uint size_of() const; // Size is bigger 811 public: 812 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method) 813 : CallJavaNode(tf, addr, method) { 814 init_class_id(Class_CallStaticJava); 815 if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) { 816 init_flags(Flag_is_macro); 817 C->add_macro_node(this); 818 } 819 } 820 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) 821 : CallJavaNode(tf, addr, nullptr) { 822 init_class_id(Class_CallStaticJava); 823 // This node calls a runtime stub, which often has narrow memory effects. 824 _adr_type = adr_type; 825 _name = name; 826 } 827 828 // If this is an uncommon trap, return the request code, else zero. 829 int uncommon_trap_request() const; 830 bool is_uncommon_trap() const; 831 static int extract_uncommon_trap_request(const Node* call); 832 833 bool is_boxing_method() const { 834 return is_macro() && (method() != nullptr) && method()->is_boxing_method(); 835 } 836 // Late inlining modifies the JVMState, so we need to deep clone it 837 // when the call node is cloned (because it is macro node). 838 virtual bool needs_deep_clone_jvms(Compile* C) { 839 return is_boxing_method() || CallNode::needs_deep_clone_jvms(C); 840 } 841 842 virtual int Opcode() const; 843 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 844 845 #ifndef PRODUCT 846 virtual void dump_spec(outputStream *st) const; 847 virtual void dump_compact_spec(outputStream *st) const; 848 #endif 849 }; 850 851 //------------------------------CallDynamicJavaNode---------------------------- 852 // Make a dispatched call using Java calling convention. 853 class CallDynamicJavaNode : public CallJavaNode { 854 virtual bool cmp( const Node &n ) const; 855 virtual uint size_of() const; // Size is bigger 856 public: 857 CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index) 858 : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) { 859 init_class_id(Class_CallDynamicJava); 860 } 861 862 // Late inlining modifies the JVMState, so we need to deep clone it 863 // when the call node is cloned. 864 virtual bool needs_deep_clone_jvms(Compile* C) { 865 return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C); 866 } 867 868 int _vtable_index; 869 virtual int Opcode() const; 870 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 871 #ifndef PRODUCT 872 virtual void dump_spec(outputStream *st) const; 873 #endif 874 }; 875 876 //------------------------------CallRuntimeNode-------------------------------- 877 // Make a direct subroutine call node into compiled C++ code. 878 class CallRuntimeNode : public CallNode { 879 protected: 880 virtual bool cmp( const Node &n ) const; 881 virtual uint size_of() const; // Size is bigger 882 public: 883 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, 884 const TypePtr* adr_type, JVMState* jvms = nullptr) 885 : CallNode(tf, addr, adr_type, jvms) 886 { 887 init_class_id(Class_CallRuntime); 888 _name = name; 889 } 890 891 virtual int Opcode() const; 892 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 893 894 #ifndef PRODUCT 895 virtual void dump_spec(outputStream *st) const; 896 #endif 897 }; 898 899 //------------------------------CallLeafNode----------------------------------- 900 // Make a direct subroutine call node into compiled C++ code, without 901 // safepoints 902 class CallLeafNode : public CallRuntimeNode { 903 public: 904 CallLeafNode(const TypeFunc* tf, address addr, const char* name, 905 const TypePtr* adr_type) 906 : CallRuntimeNode(tf, addr, name, adr_type) 907 { 908 init_class_id(Class_CallLeaf); 909 } 910 virtual int Opcode() const; 911 virtual bool guaranteed_safepoint() { return false; } 912 #ifndef PRODUCT 913 virtual void dump_spec(outputStream *st) const; 914 #endif 915 }; 916 917 /* A pure function call, they are assumed not to be safepoints, not to read or write memory, 918 * have no exception... They just take parameters, return a value without side effect. It is 919 * always correct to create some, or remove them, if the result is not used. 920 * 921 * They still have control input to allow easy lowering into other kind of calls that require 922 * a control, but this is more a technical than a moral constraint. 923 * 924 * Pure calls must have only control and data input and output: I/O, Memory and so on must be top. 925 * Nevertheless, pure calls can typically be expensive math operations so care must be taken 926 * when letting the node float. 927 */ 928 class CallLeafPureNode : public CallLeafNode { 929 protected: 930 bool is_unused() const; 931 bool is_dead() const; 932 TupleNode* make_tuple_of_input_state_and_top_return_values(const Compile* C) const; 933 934 public: 935 CallLeafPureNode(const TypeFunc* tf, address addr, const char* name, 936 const TypePtr* adr_type) 937 : CallLeafNode(tf, addr, name, adr_type) { 938 init_class_id(Class_CallLeafPure); 939 } 940 int Opcode() const override; 941 Node* Ideal(PhaseGVN* phase, bool can_reshape) override; 942 }; 943 944 //------------------------------CallLeafNoFPNode------------------------------- 945 // CallLeafNode, not using floating point or using it in the same manner as 946 // the generated code 947 class CallLeafNoFPNode : public CallLeafNode { 948 public: 949 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, 950 const TypePtr* adr_type) 951 : CallLeafNode(tf, addr, name, adr_type) 952 { 953 init_class_id(Class_CallLeafNoFP); 954 } 955 virtual int Opcode() const; 956 }; 957 958 //------------------------------CallLeafVectorNode------------------------------- 959 // CallLeafNode but calling with vector calling convention instead. 960 class CallLeafVectorNode : public CallLeafNode { 961 private: 962 uint _num_bits; 963 protected: 964 virtual bool cmp( const Node &n ) const; 965 virtual uint size_of() const; // Size is bigger 966 public: 967 CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name, 968 const TypePtr* adr_type, uint num_bits) 969 : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits) 970 { 971 } 972 virtual int Opcode() const; 973 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 974 }; 975 976 977 //------------------------------Allocate--------------------------------------- 978 // High-level memory allocation 979 // 980 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will 981 // get expanded into a code sequence containing a call. Unlike other CallNodes, 982 // they have 2 memory projections and 2 i_o projections (which are distinguished by 983 // the _is_io_use flag in the projection.) This is needed when expanding the node in 984 // order to differentiate the uses of the projection on the normal control path from 985 // those on the exception return path. 986 // 987 class AllocateNode : public CallNode { 988 public: 989 enum { 990 // Output: 991 RawAddress = TypeFunc::Parms, // the newly-allocated raw address 992 // Inputs: 993 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object 994 KlassNode, // type (maybe dynamic) of the obj. 995 InitialTest, // slow-path test (may be constant) 996 ALength, // array length (or TOP if none) 997 ValidLengthTest, 998 ParmLimit 999 }; 1000 1001 static const TypeFunc* alloc_type(const Type* t) { 1002 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); 1003 fields[AllocSize] = TypeInt::POS; 1004 fields[KlassNode] = TypeInstPtr::NOTNULL; 1005 fields[InitialTest] = TypeInt::BOOL; 1006 fields[ALength] = t; // length (can be a bad length) 1007 fields[ValidLengthTest] = TypeInt::BOOL; 1008 1009 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); 1010 1011 // create result type (range) 1012 fields = TypeTuple::fields(1); 1013 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 1014 1015 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1016 1017 return TypeFunc::make(domain, range); 1018 } 1019 1020 // Result of Escape Analysis 1021 bool _is_scalar_replaceable; 1022 bool _is_non_escaping; 1023 // True when MemBar for new is redundant with MemBar at initialzer exit 1024 bool _is_allocation_MemBar_redundant; 1025 1026 virtual uint size_of() const; // Size is bigger 1027 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, 1028 Node *size, Node *klass_node, Node *initial_test); 1029 // Expansion modifies the JVMState, so we need to deep clone it 1030 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1031 virtual int Opcode() const; 1032 virtual uint ideal_reg() const { return Op_RegP; } 1033 virtual bool guaranteed_safepoint() { return false; } 1034 1035 // allocations do not modify their arguments 1036 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;} 1037 1038 // Pattern-match a possible usage of AllocateNode. 1039 // Return null if no allocation is recognized. 1040 // The operand is the pointer produced by the (possible) allocation. 1041 // It must be a projection of the Allocate or its subsequent CastPP. 1042 // (Note: This function is defined in file graphKit.cpp, near 1043 // GraphKit::new_instance/new_array, whose output it recognizes.) 1044 // The 'ptr' may not have an offset unless the 'offset' argument is given. 1045 static AllocateNode* Ideal_allocation(Node* ptr); 1046 1047 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip 1048 // an offset, which is reported back to the caller. 1049 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) 1050 static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase, 1051 intptr_t& offset); 1052 1053 // Dig the klass operand out of a (possible) allocation site. 1054 static Node* Ideal_klass(Node* ptr, PhaseValues* phase) { 1055 AllocateNode* allo = Ideal_allocation(ptr); 1056 return (allo == nullptr) ? nullptr : allo->in(KlassNode); 1057 } 1058 1059 // Conservatively small estimate of offset of first non-header byte. 1060 int minimum_header_size() { 1061 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 1062 instanceOopDesc::base_offset_in_bytes(); 1063 } 1064 1065 // Return the corresponding initialization barrier (or null if none). 1066 // Walks out edges to find it... 1067 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 1068 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 1069 InitializeNode* initialization(); 1070 1071 // Convenience for initialization->maybe_set_complete(phase) 1072 bool maybe_set_complete(PhaseGVN* phase); 1073 1074 // Return true if allocation doesn't escape thread, its escape state 1075 // needs be noEscape or ArgEscape. InitializeNode._does_not_escape 1076 // is true when its allocation's escape state is noEscape or 1077 // ArgEscape. In case allocation's InitializeNode is null, check 1078 // AlllocateNode._is_non_escaping flag. 1079 // AlllocateNode._is_non_escaping is true when its escape state is 1080 // noEscape. 1081 bool does_not_escape_thread() { 1082 InitializeNode* init = nullptr; 1083 return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape()); 1084 } 1085 1086 // If object doesn't escape in <.init> method and there is memory barrier 1087 // inserted at exit of its <.init>, memory barrier for new is not necessary. 1088 // Inovke this method when MemBar at exit of initializer and post-dominate 1089 // allocation node. 1090 void compute_MemBar_redundancy(ciMethod* initializer); 1091 bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; } 1092 1093 Node* make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem); 1094 1095 NOT_PRODUCT(virtual void dump_spec(outputStream* st) const;) 1096 }; 1097 1098 //------------------------------AllocateArray--------------------------------- 1099 // 1100 // High-level array allocation 1101 // 1102 class AllocateArrayNode : public AllocateNode { 1103 public: 1104 AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node, 1105 Node* initial_test, Node* count_val, Node* valid_length_test) 1106 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, 1107 initial_test) 1108 { 1109 init_class_id(Class_AllocateArray); 1110 set_req(AllocateNode::ALength, count_val); 1111 set_req(AllocateNode::ValidLengthTest, valid_length_test); 1112 } 1113 virtual int Opcode() const; 1114 1115 // Dig the length operand out of a array allocation site. 1116 Node* Ideal_length() { 1117 return in(AllocateNode::ALength); 1118 } 1119 1120 // Dig the length operand out of a array allocation site and narrow the 1121 // type with a CastII, if necesssary 1122 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true); 1123 1124 // Pattern-match a possible usage of AllocateArrayNode. 1125 // Return null if no allocation is recognized. 1126 static AllocateArrayNode* Ideal_array_allocation(Node* ptr) { 1127 AllocateNode* allo = Ideal_allocation(ptr); 1128 return (allo == nullptr || !allo->is_AllocateArray()) 1129 ? nullptr : allo->as_AllocateArray(); 1130 } 1131 }; 1132 1133 //------------------------------AbstractLockNode----------------------------------- 1134 class AbstractLockNode: public CallNode { 1135 private: 1136 enum { 1137 Regular = 0, // Normal lock 1138 NonEscObj, // Lock is used for non escaping object 1139 Coarsened, // Lock was coarsened 1140 Nested // Nested lock 1141 } _kind; 1142 1143 static const char* _kind_names[Nested+1]; 1144 1145 #ifndef PRODUCT 1146 NamedCounter* _counter; 1147 #endif 1148 1149 protected: 1150 // helper functions for lock elimination 1151 // 1152 1153 bool find_matching_unlock(const Node* ctrl, LockNode* lock, 1154 GrowableArray<AbstractLockNode*> &lock_ops); 1155 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1156 GrowableArray<AbstractLockNode*> &lock_ops); 1157 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1158 GrowableArray<AbstractLockNode*> &lock_ops); 1159 LockNode *find_matching_lock(UnlockNode* unlock); 1160 1161 // Update the counter to indicate that this lock was eliminated. 1162 void set_eliminated_lock_counter() PRODUCT_RETURN; 1163 1164 public: 1165 AbstractLockNode(const TypeFunc *tf) 1166 : CallNode(tf, nullptr, TypeRawPtr::BOTTOM), 1167 _kind(Regular) 1168 { 1169 #ifndef PRODUCT 1170 _counter = nullptr; 1171 #endif 1172 } 1173 virtual int Opcode() const = 0; 1174 Node * obj_node() const {return in(TypeFunc::Parms + 0); } 1175 Node * box_node() const {return in(TypeFunc::Parms + 1); } 1176 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } 1177 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } 1178 1179 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} 1180 1181 virtual uint size_of() const { return sizeof(*this); } 1182 1183 bool is_eliminated() const { return (_kind != Regular); } 1184 bool is_non_esc_obj() const { return (_kind == NonEscObj); } 1185 bool is_coarsened() const { return (_kind == Coarsened); } 1186 bool is_nested() const { return (_kind == Nested); } 1187 1188 const char * kind_as_string() const; 1189 void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const; 1190 1191 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } 1192 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } 1193 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } 1194 1195 // Check that all locks/unlocks associated with object come from balanced regions. 1196 // They can become unbalanced after coarsening optimization or on OSR entry. 1197 bool is_balanced(); 1198 1199 // locking does not modify its arguments 1200 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; } 1201 1202 #ifndef PRODUCT 1203 void create_lock_counter(JVMState* s); 1204 NamedCounter* counter() const { return _counter; } 1205 virtual void dump_spec(outputStream* st) const; 1206 virtual void dump_compact_spec(outputStream* st) const; 1207 #endif 1208 }; 1209 1210 //------------------------------Lock--------------------------------------- 1211 // High-level lock operation 1212 // 1213 // This is a subclass of CallNode because it is a macro node which gets expanded 1214 // into a code sequence containing a call. This node takes 3 "parameters": 1215 // 0 - object to lock 1216 // 1 - a BoxLockNode 1217 // 2 - a FastLockNode 1218 // 1219 class LockNode : public AbstractLockNode { 1220 static const TypeFunc* _lock_type_Type; 1221 public: 1222 1223 static inline const TypeFunc* lock_type() { 1224 assert(_lock_type_Type != nullptr, "should be initialized"); 1225 return _lock_type_Type; 1226 } 1227 1228 static void initialize_lock_Type() { 1229 assert(_lock_type_Type == nullptr, "should be called once"); 1230 // create input type (domain) 1231 const Type **fields = TypeTuple::fields(3); 1232 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 1233 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 1234 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock 1235 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); 1236 1237 // create result type (range) 1238 fields = TypeTuple::fields(0); 1239 1240 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1241 1242 _lock_type_Type = TypeFunc::make(domain,range); 1243 } 1244 1245 virtual int Opcode() const; 1246 virtual uint size_of() const; // Size is bigger 1247 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { 1248 init_class_id(Class_Lock); 1249 init_flags(Flag_is_macro); 1250 C->add_macro_node(this); 1251 } 1252 virtual bool guaranteed_safepoint() { return false; } 1253 1254 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1255 // Expansion modifies the JVMState, so we need to deep clone it 1256 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1257 1258 bool is_nested_lock_region(); // Is this Lock nested? 1259 bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? 1260 }; 1261 1262 //------------------------------Unlock--------------------------------------- 1263 // High-level unlock operation 1264 class UnlockNode : public AbstractLockNode { 1265 private: 1266 #ifdef ASSERT 1267 JVMState* const _dbg_jvms; // Pointer to list of JVM State objects 1268 #endif 1269 public: 1270 virtual int Opcode() const; 1271 virtual uint size_of() const; // Size is bigger 1272 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) 1273 #ifdef ASSERT 1274 , _dbg_jvms(nullptr) 1275 #endif 1276 { 1277 init_class_id(Class_Unlock); 1278 init_flags(Flag_is_macro); 1279 C->add_macro_node(this); 1280 } 1281 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1282 // unlock is never a safepoint 1283 virtual bool guaranteed_safepoint() { return false; } 1284 #ifdef ASSERT 1285 void set_dbg_jvms(JVMState* s) { 1286 *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor 1287 } 1288 JVMState* dbg_jvms() const { return _dbg_jvms; } 1289 #else 1290 JVMState* dbg_jvms() const { return nullptr; } 1291 #endif 1292 }; 1293 #endif // SHARE_OPTO_CALLNODE_HPP