1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 #include "utilities/growableArray.hpp"
  36 
  37 // Portions of code courtesy of Clifford Click
  38 
  39 // Optimization - Graph Style
  40 
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class         CallLeafVectorNode;
  52 class     AllocateNode;
  53 class       AllocateArrayNode;
  54 class     AbstractLockNode;
  55 class       LockNode;
  56 class       UnlockNode;
  57 class FastLockNode;
  58 
  59 //------------------------------StartNode--------------------------------------
  60 // The method start node
  61 class StartNode : public MultiNode {
  62   virtual bool cmp( const Node &n ) const;
  63   virtual uint size_of() const; // Size is bigger
  64 public:
  65   const TypeTuple *_domain;
  66   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  67     init_class_id(Class_Start);
  68     init_req(0,this);
  69     init_req(1,root);
  70   }
  71   virtual int Opcode() const;
  72   virtual bool pinned() const { return true; };
  73   virtual const Type *bottom_type() const;
  74   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  75   virtual const Type* Value(PhaseGVN* phase) const;
  76   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  77   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  78   virtual const RegMask &in_RegMask(uint) const;
  79   virtual Node *match( const ProjNode *proj, const Matcher *m );
  80   virtual uint ideal_reg() const { return 0; }
  81 #ifndef PRODUCT
  82   virtual void  dump_spec(outputStream *st) const;
  83   virtual void  dump_compact_spec(outputStream *st) const;
  84 #endif
  85 };
  86 
  87 //------------------------------StartOSRNode-----------------------------------
  88 // The method start node for on stack replacement code
  89 class StartOSRNode : public StartNode {
  90 public:
  91   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  92   virtual int   Opcode() const;
  93   static  const TypeTuple *osr_domain();
  94 };
  95 
  96 
  97 //------------------------------ParmNode---------------------------------------
  98 // Incoming parameters
  99 class ParmNode : public ProjNode {
 100   static const char * const names[TypeFunc::Parms+1];
 101 public:
 102   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 103     init_class_id(Class_Parm);
 104   }
 105   virtual int Opcode() const;
 106   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 107   virtual uint ideal_reg() const;
 108 #ifndef PRODUCT
 109   virtual void dump_spec(outputStream *st) const;
 110   virtual void dump_compact_spec(outputStream *st) const;
 111 #endif
 112 };
 113 
 114 
 115 //------------------------------ReturnNode-------------------------------------
 116 // Return from subroutine node
 117 class ReturnNode : public Node {
 118 public:
 119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 120   virtual int Opcode() const;
 121   virtual bool  is_CFG() const { return true; }
 122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 123   virtual bool depends_only_on_test() const { return false; }
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type* Value(PhaseGVN* phase) const;
 126   virtual uint ideal_reg() const { return NotAMachineReg; }
 127   virtual uint match_edge(uint idx) const;
 128 #ifndef PRODUCT
 129   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 130 #endif
 131 };
 132 
 133 
 134 //------------------------------RethrowNode------------------------------------
 135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 136 // ends the current basic block like a ReturnNode.  Restores registers and
 137 // unwinds stack.  Rethrow happens in the caller's method.
 138 class RethrowNode : public Node {
 139  public:
 140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 141   virtual int Opcode() const;
 142   virtual bool  is_CFG() const { return true; }
 143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 144   virtual bool depends_only_on_test() const { return false; }
 145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 146   virtual const Type* Value(PhaseGVN* phase) const;
 147   virtual uint match_edge(uint idx) const;
 148   virtual uint ideal_reg() const { return NotAMachineReg; }
 149 #ifndef PRODUCT
 150   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 151 #endif
 152 };
 153 
 154 
 155 //------------------------------TailCallNode-----------------------------------
 156 // Pop stack frame and jump indirect
 157 class TailCallNode : public ReturnNode {
 158 public:
 159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 161     init_req(TypeFunc::Parms, target);
 162     init_req(TypeFunc::Parms+1, moop);
 163   }
 164 
 165   virtual int Opcode() const;
 166   virtual uint match_edge(uint idx) const;
 167 };
 168 
 169 //------------------------------TailJumpNode-----------------------------------
 170 // Pop stack frame and jump indirect
 171 class TailJumpNode : public ReturnNode {
 172 public:
 173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 175     init_req(TypeFunc::Parms, target);
 176     init_req(TypeFunc::Parms+1, ex_oop);
 177   }
 178 
 179   virtual int Opcode() const;
 180   virtual uint match_edge(uint idx) const;
 181 };
 182 
 183 //-------------------------------JVMState-------------------------------------
 184 // A linked list of JVMState nodes captures the whole interpreter state,
 185 // plus GC roots, for all active calls at some call site in this compilation
 186 // unit.  (If there is no inlining, then the list has exactly one link.)
 187 // This provides a way to map the optimized program back into the interpreter,
 188 // or to let the GC mark the stack.
 189 class JVMState : public ResourceObj {
 190   friend class VMStructs;
 191 public:
 192   typedef enum {
 193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 194     Reexecute_False     =  0, // false       -- do not reexecute
 195     Reexecute_True      =  1  // true        -- reexecute the bytecode
 196   } ReexecuteState; //Reexecute State
 197 
 198 private:
 199   JVMState*         _caller;    // List pointer for forming scope chains
 200   uint              _depth;     // One more than caller depth, or one.
 201   uint              _locoff;    // Offset to locals in input edge mapping
 202   uint              _stkoff;    // Offset to stack in input edge mapping
 203   uint              _monoff;    // Offset to monitors in input edge mapping
 204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 205   uint              _endoff;    // Offset to end of input edge mapping
 206   uint              _sp;        // Java Expression Stack Pointer for this state
 207   int               _bci;       // Byte Code Index of this JVM point
 208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 209   ciMethod*         _method;    // Method Pointer
 210   SafePointNode*    _map;       // Map node associated with this scope
 211 public:
 212   friend class Compile;
 213   friend class PreserveReexecuteState;
 214 
 215   // Because JVMState objects live over the entire lifetime of the
 216   // Compile object, they are allocated into the comp_arena, which
 217   // does not get resource marked or reset during the compile process
 218   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 219   void operator delete( void * ) { } // fast deallocation
 220 
 221   // Create a new JVMState, ready for abstract interpretation.
 222   JVMState(ciMethod* method, JVMState* caller);
 223   JVMState(int stack_size);  // root state; has a null method
 224 
 225   // Access functions for the JVM
 226   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 227   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 228   uint              locoff() const { return _locoff; }
 229   uint              stkoff() const { return _stkoff; }
 230   uint              argoff() const { return _stkoff + _sp; }
 231   uint              monoff() const { return _monoff; }
 232   uint              scloff() const { return _scloff; }
 233   uint              endoff() const { return _endoff; }
 234   uint              oopoff() const { return debug_end(); }
 235 
 236   int            loc_size() const { return stkoff() - locoff(); }
 237   int            stk_size() const { return monoff() - stkoff(); }
 238   int            mon_size() const { return scloff() - monoff(); }
 239   int            scl_size() const { return endoff() - scloff(); }
 240 
 241   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 242   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 243   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 244   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 245 
 246   uint                      sp() const { return _sp; }
 247   int                      bci() const { return _bci; }
 248   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 249   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 250   bool              has_method() const { return _method != nullptr; }
 251   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 252   JVMState*             caller() const { return _caller; }
 253   SafePointNode*           map() const { return _map; }
 254   uint                   depth() const { return _depth; }
 255   uint             debug_start() const; // returns locoff of root caller
 256   uint               debug_end() const; // returns endoff of self
 257   uint              debug_size() const {
 258     return loc_size() + sp() + mon_size() + scl_size();
 259   }
 260   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 261 
 262   // Returns the JVM state at the desired depth (1 == root).
 263   JVMState* of_depth(int d) const;
 264 
 265   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 266   bool same_calls_as(const JVMState* that) const;
 267 
 268   // Monitors (monitors are stored as (boxNode, objNode) pairs
 269   enum { logMonitorEdges = 1 };
 270   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 271   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 272   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 273   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 274   bool is_monitor_box(uint off)    const {
 275     assert(is_mon(off), "should be called only for monitor edge");
 276     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 277   }
 278   bool is_monitor_use(uint off)    const { return (is_mon(off)
 279                                                    && is_monitor_box(off))
 280                                              || (caller() && caller()->is_monitor_use(off)); }
 281 
 282   // Initialization functions for the JVM
 283   void              set_locoff(uint off) { _locoff = off; }
 284   void              set_stkoff(uint off) { _stkoff = off; }
 285   void              set_monoff(uint off) { _monoff = off; }
 286   void              set_scloff(uint off) { _scloff = off; }
 287   void              set_endoff(uint off) { _endoff = off; }
 288   void              set_offsets(uint off) {
 289     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 290   }
 291   void              set_map(SafePointNode* map) { _map = map; }
 292   void              bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301   void      set_map_deep(SafePointNode *map);// reset map for all callers
 302   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 303   int       interpreter_frame_size() const;
 304 
 305 #ifndef PRODUCT
 306   void      print_method_with_lineno(outputStream* st, bool show_name) const;
 307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 308   void      dump_spec(outputStream *st) const;
 309   void      dump_on(outputStream* st) const;
 310   void      dump() const {
 311     dump_on(tty);
 312   }
 313 #endif
 314 };
 315 
 316 //------------------------------SafePointNode----------------------------------
 317 // A SafePointNode is a subclass of a MultiNode for convenience (and
 318 // potential code sharing) only - conceptually it is independent of
 319 // the Node semantics.
 320 class SafePointNode : public MultiNode {
 321   friend JVMState;
 322   friend class GraphKit;
 323   friend class VMStructs;
 324 
 325   virtual bool           cmp( const Node &n ) const;
 326   virtual uint           size_of() const;       // Size is bigger
 327 
 328 protected:
 329   JVMState* const _jvms;      // Pointer to list of JVM State objects
 330   // Many calls take *all* of memory as input,
 331   // but some produce a limited subset of that memory as output.
 332   // The adr_type reports the call's behavior as a store, not a load.
 333   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 334   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 335   bool            _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States
 336 
 337   void set_jvms(JVMState* s) {
 338   assert(s != nullptr, "assign null value to _jvms");
 339     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 340   }
 341 public:
 342   SafePointNode(uint edges, JVMState* jvms,
 343                 // A plain safepoint advertises no memory effects (null):
 344                 const TypePtr* adr_type = nullptr)
 345     : MultiNode( edges ),
 346       _jvms(jvms),
 347       _adr_type(adr_type),
 348       _has_ea_local_in_scope(false)
 349   {
 350     init_class_id(Class_SafePoint);
 351   }
 352 
 353   JVMState* jvms() const { return _jvms; }
 354   virtual bool needs_deep_clone_jvms(Compile* C) { return false; }
 355   void clone_jvms(Compile* C) {
 356     if (jvms() != nullptr) {
 357       if (needs_deep_clone_jvms(C)) {
 358         set_jvms(jvms()->clone_deep(C));
 359         jvms()->set_map_deep(this);
 360       } else {
 361         jvms()->clone_shallow(C)->bind_map(this);
 362       }
 363     }
 364   }
 365 
 366  private:
 367   void verify_input(JVMState* jvms, uint idx) const {
 368     assert(verify_jvms(jvms), "jvms must match");
 369     Node* n = in(idx);
 370     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 371            in(idx + 1)->is_top(), "2nd half of long/double");
 372   }
 373 
 374  public:
 375   // Functionality from old debug nodes which has changed
 376   Node *local(JVMState* jvms, uint idx) const {
 377     verify_input(jvms, jvms->locoff() + idx);
 378     return in(jvms->locoff() + idx);
 379   }
 380   Node *stack(JVMState* jvms, uint idx) const {
 381     verify_input(jvms, jvms->stkoff() + idx);
 382     return in(jvms->stkoff() + idx);
 383   }
 384   Node *argument(JVMState* jvms, uint idx) const {
 385     verify_input(jvms, jvms->argoff() + idx);
 386     return in(jvms->argoff() + idx);
 387   }
 388   Node *monitor_box(JVMState* jvms, uint idx) const {
 389     assert(verify_jvms(jvms), "jvms must match");
 390     return in(jvms->monitor_box_offset(idx));
 391   }
 392   Node *monitor_obj(JVMState* jvms, uint idx) const {
 393     assert(verify_jvms(jvms), "jvms must match");
 394     return in(jvms->monitor_obj_offset(idx));
 395   }
 396 
 397   void  set_local(JVMState* jvms, uint idx, Node *c);
 398 
 399   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 400     assert(verify_jvms(jvms), "jvms must match");
 401     set_req(jvms->stkoff() + idx, c);
 402   }
 403   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 404     assert(verify_jvms(jvms), "jvms must match");
 405     set_req(jvms->argoff() + idx, c);
 406   }
 407   void ensure_stack(JVMState* jvms, uint stk_size) {
 408     assert(verify_jvms(jvms), "jvms must match");
 409     int grow_by = (int)stk_size - (int)jvms->stk_size();
 410     if (grow_by > 0)  grow_stack(jvms, grow_by);
 411   }
 412   void grow_stack(JVMState* jvms, uint grow_by);
 413   // Handle monitor stack
 414   void push_monitor( const FastLockNode *lock );
 415   void pop_monitor ();
 416   Node *peek_monitor_box() const;
 417   Node *peek_monitor_obj() const;
 418   // Peek Operand Stacks, JVMS 2.6.2
 419   Node* peek_operand(uint off = 0) const;
 420 
 421   // Access functions for the JVM
 422   Node *control  () const { return in(TypeFunc::Control  ); }
 423   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 424   Node *memory   () const { return in(TypeFunc::Memory   ); }
 425   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 426   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 427 
 428   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 429   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 430   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 431 
 432   MergeMemNode* merged_memory() const {
 433     return in(TypeFunc::Memory)->as_MergeMem();
 434   }
 435 
 436   // The parser marks useless maps as dead when it's done with them:
 437   bool is_killed() { return in(TypeFunc::Control) == nullptr; }
 438 
 439   // Exception states bubbling out of subgraphs such as inlined calls
 440   // are recorded here.  (There might be more than one, hence the "next".)
 441   // This feature is used only for safepoints which serve as "maps"
 442   // for JVM states during parsing, intrinsic expansion, etc.
 443   SafePointNode*         next_exception() const;
 444   void               set_next_exception(SafePointNode* n);
 445   bool                   has_exceptions() const { return next_exception() != nullptr; }
 446 
 447   // Helper methods to operate on replaced nodes
 448   ReplacedNodes replaced_nodes() const {
 449     return _replaced_nodes;
 450   }
 451 
 452   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 453     _replaced_nodes = replaced_nodes;
 454   }
 455 
 456   void clone_replaced_nodes() {
 457     _replaced_nodes.clone();
 458   }
 459   void record_replaced_node(Node* initial, Node* improved) {
 460     _replaced_nodes.record(initial, improved);
 461   }
 462   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 463     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 464   }
 465   void delete_replaced_nodes() {
 466     _replaced_nodes.reset();
 467   }
 468   void apply_replaced_nodes(uint idx) {
 469     _replaced_nodes.apply(this, idx);
 470   }
 471   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 472     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 473   }
 474   bool has_replaced_nodes() const {
 475     return !_replaced_nodes.is_empty();
 476   }
 477   void set_has_ea_local_in_scope(bool b) {
 478     _has_ea_local_in_scope = b;
 479   }
 480   bool has_ea_local_in_scope() const {
 481     return _has_ea_local_in_scope;
 482   }
 483 
 484   void disconnect_from_root(PhaseIterGVN *igvn);
 485 
 486   // Standard Node stuff
 487   virtual int            Opcode() const;
 488   virtual bool           pinned() const { return true; }
 489   virtual const Type*    Value(PhaseGVN* phase) const;
 490   virtual const Type*    bottom_type() const { return Type::CONTROL; }
 491   virtual const TypePtr* adr_type() const { return _adr_type; }
 492   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 493   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 494   virtual Node*          Identity(PhaseGVN* phase);
 495   virtual uint           ideal_reg() const { return 0; }
 496   virtual const RegMask &in_RegMask(uint) const;
 497   virtual const RegMask &out_RegMask() const;
 498   virtual uint           match_edge(uint idx) const;
 499 
 500 #ifndef PRODUCT
 501   virtual void           dump_spec(outputStream *st) const;
 502 #endif
 503 };
 504 
 505 //------------------------------SafePointScalarObjectNode----------------------
 506 // A SafePointScalarObjectNode represents the state of a scalarized object
 507 // at a safepoint.
 508 class SafePointScalarObjectNode: public TypeNode {
 509   uint _first_index;              // First input edge relative index of a SafePoint node where
 510                                   // states of the scalarized object fields are collected.
 511                                   // It is relative to the last (youngest) jvms->_scloff.
 512   uint _n_fields;                 // Number of non-static fields of the scalarized object.
 513 
 514   Node* _alloc;                   // Just for debugging purposes.
 515 
 516   virtual uint hash() const;
 517   virtual bool cmp( const Node &n ) const;
 518 
 519   uint first_index() const { return _first_index; }
 520 
 521 public:
 522   SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint n_fields);
 523 
 524   virtual int Opcode() const;
 525   virtual uint           ideal_reg() const;
 526   virtual const RegMask &in_RegMask(uint) const;
 527   virtual const RegMask &out_RegMask() const;
 528   virtual uint           match_edge(uint idx) const;
 529 
 530   uint first_index(JVMState* jvms) const {
 531     assert(jvms != nullptr, "missed JVMS");
 532     return jvms->scloff() + _first_index;
 533   }
 534   uint n_fields()    const { return _n_fields; }
 535 
 536 #ifdef ASSERT
 537   Node* alloc() const { return _alloc; }
 538 #endif
 539 
 540   virtual uint size_of() const { return sizeof(*this); }
 541 
 542   // Assumes that "this" is an argument to a safepoint node "s", and that
 543   // "new_call" is being created to correspond to "s".  But the difference
 544   // between the start index of the jvmstates of "new_call" and "s" is
 545   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 546   // corresponds appropriately to "this" in "new_call".  Assumes that
 547   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 548   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 549   SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const;
 550 
 551 #ifndef PRODUCT
 552   virtual void              dump_spec(outputStream *st) const;
 553 #endif
 554 };
 555 
 556 //------------------------------SafePointScalarMergeNode----------------------
 557 //
 558 // This class represents an allocation merge that is used as debug information
 559 // and had at least one of its input scalar replaced.
 560 //
 561 // The required inputs of this node, except the control, are pointers to
 562 // SafePointScalarObjectNodes that describe scalarized inputs of the original
 563 // allocation merge. The other(s) properties of the class are described below.
 564 //
 565 // _merge_pointer_idx : index in the SafePointNode's input array where the
 566 //   description of the _allocation merge_ starts. The index is zero based and
 567 //   relative to the SafePoint's scloff. The two entries in the SafePointNode's
 568 //   input array starting at '_merge_pointer_idx` are Phi nodes representing:
 569 //
 570 //   1) The original merge Phi. During rematerialization this input will only be
 571 //   used if the "selector Phi" (see below) indicates that the execution of the
 572 //   Phi took the path of a non scalarized input.
 573 //
 574 //   2) A "selector Phi". The output of this Phi will be '-1' if the execution
 575 //   of the method exercised a non scalarized input of the original Phi.
 576 //   Otherwise, the output will be >=0, and it will indicate the index-1 in the
 577 //   SafePointScalarMergeNode input array where the description of the
 578 //   scalarized object that should be used is.
 579 //
 580 // As an example, consider a Phi merging 3 inputs, of which the last 2 are
 581 // scalar replaceable.
 582 //
 583 //    Phi(Region, NSR, SR, SR)
 584 //
 585 // During scalar replacement the SR inputs will be changed to null:
 586 //
 587 //    Phi(Region, NSR, nullptr, nullptr)
 588 //
 589 // A corresponding selector Phi will be created with a configuration like this:
 590 //
 591 //    Phi(Region, -1, 0, 1)
 592 //
 593 // During execution of the compiled method, if the execution reaches a Trap, the
 594 // output of the selector Phi will tell if we need to rematerialize one of the
 595 // scalar replaced inputs or if we should just use the pointer returned by the
 596 // original Phi.
 597 
 598 class SafePointScalarMergeNode: public TypeNode {
 599   int _merge_pointer_idx;         // This is the first input edge relative
 600                                   // index of a SafePoint node where metadata information relative
 601                                   // to restoring the merge is stored. The corresponding input
 602                                   // in the associated SafePoint will point to a Phi representing
 603                                   // potential non-scalar replaced objects.
 604 
 605   virtual uint hash() const;
 606   virtual bool cmp( const Node &n ) const;
 607 
 608 public:
 609   SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx);
 610 
 611   virtual int            Opcode() const;
 612   virtual uint           ideal_reg() const;
 613   virtual const RegMask &in_RegMask(uint) const;
 614   virtual const RegMask &out_RegMask() const;
 615   virtual uint           match_edge(uint idx) const;
 616 
 617   virtual uint size_of() const { return sizeof(*this); }
 618 
 619   int merge_pointer_idx(JVMState* jvms) const {
 620     assert(jvms != nullptr, "JVMS reference is null.");
 621     return jvms->scloff() + _merge_pointer_idx;
 622   }
 623 
 624   int selector_idx(JVMState* jvms) const {
 625     assert(jvms != nullptr, "JVMS reference is null.");
 626     return jvms->scloff() + _merge_pointer_idx + 1;
 627   }
 628 
 629   // Assumes that "this" is an argument to a safepoint node "s", and that
 630   // "new_call" is being created to correspond to "s".  But the difference
 631   // between the start index of the jvmstates of "new_call" and "s" is
 632   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 633   // corresponds appropriately to "this" in "new_call".  Assumes that
 634   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 635   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 636   SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const;
 637 
 638 #ifndef PRODUCT
 639   virtual void              dump_spec(outputStream *st) const;
 640 #endif
 641 };
 642 
 643 // Simple container for the outgoing projections of a call.  Useful
 644 // for serious surgery on calls.
 645 class CallProjections : public StackObj {
 646 public:
 647   Node* fallthrough_proj;
 648   Node* fallthrough_catchproj;
 649   Node* fallthrough_memproj;
 650   Node* fallthrough_ioproj;
 651   Node* catchall_catchproj;
 652   Node* catchall_memproj;
 653   Node* catchall_ioproj;
 654   Node* resproj;
 655   Node* exobj;
 656 };
 657 
 658 class CallGenerator;
 659 
 660 //------------------------------CallNode---------------------------------------
 661 // Call nodes now subsume the function of debug nodes at callsites, so they
 662 // contain the functionality of a full scope chain of debug nodes.
 663 class CallNode : public SafePointNode {
 664   friend class VMStructs;
 665 
 666 protected:
 667   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase);
 668 
 669 public:
 670   const TypeFunc* _tf;          // Function type
 671   address         _entry_point; // Address of method being called
 672   float           _cnt;         // Estimate of number of times called
 673   CallGenerator*  _generator;   // corresponding CallGenerator for some late inline calls
 674   const char*     _name;        // Printable name, if _method is null
 675 
 676   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr)
 677     : SafePointNode(tf->domain()->cnt(), jvms, adr_type),
 678       _tf(tf),
 679       _entry_point(addr),
 680       _cnt(COUNT_UNKNOWN),
 681       _generator(nullptr),
 682       _name(nullptr)
 683   {
 684     init_class_id(Class_Call);
 685   }
 686 
 687   const TypeFunc* tf()         const { return _tf; }
 688   address  entry_point()       const { return _entry_point; }
 689   float    cnt()               const { return _cnt; }
 690   CallGenerator* generator()   const { return _generator; }
 691 
 692   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 693   void set_entry_point(address p)       { _entry_point = p; }
 694   void set_cnt(float c)                 { _cnt = c; }
 695   void set_generator(CallGenerator* cg) { _generator = cg; }
 696 
 697   virtual const Type* bottom_type() const;
 698   virtual const Type* Value(PhaseGVN* phase) const;
 699   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 700   virtual Node* Identity(PhaseGVN* phase) { return this; }
 701   virtual bool        cmp(const Node &n) const;
 702   virtual uint        size_of() const = 0;
 703   virtual void        calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const;
 704   virtual Node*       match(const ProjNode* proj, const Matcher* m);
 705   virtual uint        ideal_reg() const { return NotAMachineReg; }
 706   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 707   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 708   virtual bool        guaranteed_safepoint()  { return true; }
 709   // For macro nodes, the JVMState gets modified during expansion. If calls
 710   // use MachConstantBase, it gets modified during matching. So when cloning
 711   // the node the JVMState must be deep cloned. Default is to shallow clone.
 712   virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); }
 713 
 714   // Returns true if the call may modify n
 715   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase);
 716   // Does this node have a use of n other than in debug information?
 717   bool                has_non_debug_use(Node* n);
 718   // Returns the unique CheckCastPP of a call
 719   // or result projection is there are several CheckCastPP
 720   // or returns null if there is no one.
 721   Node* result_cast();
 722   // Does this node returns pointer?
 723   bool returns_pointer() const {
 724     const TypeTuple* r = tf()->range();
 725     return (r->cnt() > TypeFunc::Parms &&
 726             r->field_at(TypeFunc::Parms)->isa_ptr());
 727   }
 728 
 729   // Collect all the interesting edges from a call for use in
 730   // replacing the call by something else.  Used by macro expansion
 731   // and the late inlining support.
 732   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 733 
 734   virtual uint match_edge(uint idx) const;
 735 
 736   bool is_call_to_arraycopystub() const;
 737 
 738   virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {}
 739 
 740 #ifndef PRODUCT
 741   virtual void        dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;
 742   virtual void        dump_spec(outputStream* st) const;
 743 #endif
 744 };
 745 
 746 
 747 //------------------------------CallJavaNode-----------------------------------
 748 // Make a static or dynamic subroutine call node using Java calling
 749 // convention.  (The "Java" calling convention is the compiler's calling
 750 // convention, as opposed to the interpreter's or that of native C.)
 751 class CallJavaNode : public CallNode {
 752   friend class VMStructs;
 753 protected:
 754   virtual bool cmp( const Node &n ) const;
 755   virtual uint size_of() const; // Size is bigger
 756 
 757   bool    _optimized_virtual;
 758   bool    _method_handle_invoke;
 759   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 760   ciMethod* _method;               // Method being direct called
 761   bool    _arg_escape;             // ArgEscape in parameter list
 762 public:
 763   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method)
 764     : CallNode(tf, addr, TypePtr::BOTTOM),
 765       _optimized_virtual(false),
 766       _method_handle_invoke(false),
 767       _override_symbolic_info(false),
 768       _method(method),
 769       _arg_escape(false)
 770   {
 771     init_class_id(Class_CallJava);
 772   }
 773 
 774   virtual int   Opcode() const;
 775   ciMethod* method() const                 { return _method; }
 776   void  set_method(ciMethod *m)            { _method = m; }
 777   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 778   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 779   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 780   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 781   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 782   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 783   void  set_arg_escape(bool f)             { _arg_escape = f; }
 784   bool  arg_escape() const                 { return _arg_escape; }
 785   void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt);
 786 
 787   DEBUG_ONLY( bool validate_symbolic_info() const; )
 788 
 789 #ifndef PRODUCT
 790   virtual void  dump_spec(outputStream *st) const;
 791   virtual void  dump_compact_spec(outputStream *st) const;
 792 #endif
 793 };
 794 
 795 //------------------------------CallStaticJavaNode-----------------------------
 796 // Make a direct subroutine call using Java calling convention (for static
 797 // calls and optimized virtual calls, plus calls to wrappers for run-time
 798 // routines); generates static stub.
 799 class CallStaticJavaNode : public CallJavaNode {
 800   virtual bool cmp( const Node &n ) const;
 801   virtual uint size_of() const; // Size is bigger
 802 public:
 803   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method)
 804     : CallJavaNode(tf, addr, method) {
 805     init_class_id(Class_CallStaticJava);
 806     if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) {
 807       init_flags(Flag_is_macro);
 808       C->add_macro_node(this);
 809     }
 810   }
 811   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type)
 812     : CallJavaNode(tf, addr, nullptr) {
 813     init_class_id(Class_CallStaticJava);
 814     // This node calls a runtime stub, which often has narrow memory effects.
 815     _adr_type = adr_type;
 816     _name = name;
 817   }
 818 
 819   // If this is an uncommon trap, return the request code, else zero.
 820   int uncommon_trap_request() const;
 821   bool is_uncommon_trap() const;
 822   static int extract_uncommon_trap_request(const Node* call);
 823 
 824   bool is_boxing_method() const {
 825     return is_macro() && (method() != nullptr) && method()->is_boxing_method();
 826   }
 827   // Late inlining modifies the JVMState, so we need to deep clone it
 828   // when the call node is cloned (because it is macro node).
 829   virtual bool needs_deep_clone_jvms(Compile* C) {
 830     return is_boxing_method() || CallNode::needs_deep_clone_jvms(C);
 831   }
 832 
 833   virtual int         Opcode() const;
 834   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 835 
 836 #ifndef PRODUCT
 837   virtual void        dump_spec(outputStream *st) const;
 838   virtual void        dump_compact_spec(outputStream *st) const;
 839 #endif
 840 };
 841 
 842 //------------------------------CallDynamicJavaNode----------------------------
 843 // Make a dispatched call using Java calling convention.
 844 class CallDynamicJavaNode : public CallJavaNode {
 845   virtual bool cmp( const Node &n ) const;
 846   virtual uint size_of() const; // Size is bigger
 847 public:
 848   CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index)
 849     : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) {
 850     init_class_id(Class_CallDynamicJava);
 851   }
 852 
 853   // Late inlining modifies the JVMState, so we need to deep clone it
 854   // when the call node is cloned.
 855   virtual bool needs_deep_clone_jvms(Compile* C) {
 856     return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C);
 857   }
 858 
 859   int _vtable_index;
 860   virtual int   Opcode() const;
 861   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 862 #ifndef PRODUCT
 863   virtual void  dump_spec(outputStream *st) const;
 864 #endif
 865 };
 866 
 867 //------------------------------CallRuntimeNode--------------------------------
 868 // Make a direct subroutine call node into compiled C++ code.
 869 class CallRuntimeNode : public CallNode {
 870 protected:
 871   virtual bool cmp( const Node &n ) const;
 872   virtual uint size_of() const; // Size is bigger
 873 public:
 874   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 875                   const TypePtr* adr_type, JVMState* jvms = nullptr)
 876     : CallNode(tf, addr, adr_type, jvms)
 877   {
 878     init_class_id(Class_CallRuntime);
 879     _name = name;
 880   }
 881 
 882   virtual int   Opcode() const;
 883   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 884 
 885 #ifndef PRODUCT
 886   virtual void  dump_spec(outputStream *st) const;
 887 #endif
 888 };
 889 
 890 //------------------------------CallLeafNode-----------------------------------
 891 // Make a direct subroutine call node into compiled C++ code, without
 892 // safepoints
 893 class CallLeafNode : public CallRuntimeNode {
 894 public:
 895   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 896                const TypePtr* adr_type)
 897     : CallRuntimeNode(tf, addr, name, adr_type)
 898   {
 899     init_class_id(Class_CallLeaf);
 900   }
 901   virtual int   Opcode() const;
 902   virtual bool        guaranteed_safepoint()  { return false; }
 903 #ifndef PRODUCT
 904   virtual void  dump_spec(outputStream *st) const;
 905 #endif
 906 };
 907 
 908 //------------------------------CallLeafNoFPNode-------------------------------
 909 // CallLeafNode, not using floating point or using it in the same manner as
 910 // the generated code
 911 class CallLeafNoFPNode : public CallLeafNode {
 912 public:
 913   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 914                    const TypePtr* adr_type)
 915     : CallLeafNode(tf, addr, name, adr_type)
 916   {
 917     init_class_id(Class_CallLeafNoFP);
 918   }
 919   virtual int   Opcode() const;
 920 };
 921 
 922 //------------------------------CallLeafVectorNode-------------------------------
 923 // CallLeafNode but calling with vector calling convention instead.
 924 class CallLeafVectorNode : public CallLeafNode {
 925 private:
 926   uint _num_bits;
 927 protected:
 928   virtual bool cmp( const Node &n ) const;
 929   virtual uint size_of() const; // Size is bigger
 930 public:
 931   CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name,
 932                    const TypePtr* adr_type, uint num_bits)
 933     : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits)
 934   {
 935   }
 936   virtual int   Opcode() const;
 937   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 938 };
 939 
 940 
 941 //------------------------------Allocate---------------------------------------
 942 // High-level memory allocation
 943 //
 944 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 945 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 946 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 947 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 948 //  order to differentiate the uses of the projection on the normal control path from
 949 //  those on the exception return path.
 950 //
 951 class AllocateNode : public CallNode {
 952 public:
 953   enum {
 954     // Output:
 955     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 956     // Inputs:
 957     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 958     KlassNode,                        // type (maybe dynamic) of the obj.
 959     InitialTest,                      // slow-path test (may be constant)
 960     ALength,                          // array length (or TOP if none)
 961     ValidLengthTest,
 962     ParmLimit
 963   };
 964 
 965   static const TypeFunc* alloc_type(const Type* t) {
 966     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 967     fields[AllocSize]   = TypeInt::POS;
 968     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 969     fields[InitialTest] = TypeInt::BOOL;
 970     fields[ALength]     = t;  // length (can be a bad length)
 971     fields[ValidLengthTest] = TypeInt::BOOL;
 972 
 973     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 974 
 975     // create result type (range)
 976     fields = TypeTuple::fields(1);
 977     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 978 
 979     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 980 
 981     return TypeFunc::make(domain, range);
 982   }
 983 
 984   // Result of Escape Analysis
 985   bool _is_scalar_replaceable;
 986   bool _is_non_escaping;
 987   // True when MemBar for new is redundant with MemBar at initialzer exit
 988   bool _is_allocation_MemBar_redundant;
 989 
 990   virtual uint size_of() const; // Size is bigger
 991   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 992                Node *size, Node *klass_node, Node *initial_test);
 993   // Expansion modifies the JVMState, so we need to deep clone it
 994   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
 995   virtual int Opcode() const;
 996   virtual uint ideal_reg() const { return Op_RegP; }
 997   virtual bool        guaranteed_safepoint()  { return false; }
 998 
 999   // allocations do not modify their arguments
1000   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;}
1001 
1002   // Pattern-match a possible usage of AllocateNode.
1003   // Return null if no allocation is recognized.
1004   // The operand is the pointer produced by the (possible) allocation.
1005   // It must be a projection of the Allocate or its subsequent CastPP.
1006   // (Note:  This function is defined in file graphKit.cpp, near
1007   // GraphKit::new_instance/new_array, whose output it recognizes.)
1008   // The 'ptr' may not have an offset unless the 'offset' argument is given.
1009   static AllocateNode* Ideal_allocation(Node* ptr);
1010 
1011   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
1012   // an offset, which is reported back to the caller.
1013   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
1014   static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase,
1015                                         intptr_t& offset);
1016 
1017   // Dig the klass operand out of a (possible) allocation site.
1018   static Node* Ideal_klass(Node* ptr, PhaseValues* phase) {
1019     AllocateNode* allo = Ideal_allocation(ptr);
1020     return (allo == nullptr) ? nullptr : allo->in(KlassNode);
1021   }
1022 
1023   // Conservatively small estimate of offset of first non-header byte.
1024   int minimum_header_size() {
1025     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
1026                                 instanceOopDesc::base_offset_in_bytes();
1027   }
1028 
1029   // Return the corresponding initialization barrier (or null if none).
1030   // Walks out edges to find it...
1031   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1032   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1033   InitializeNode* initialization();
1034 
1035   // Convenience for initialization->maybe_set_complete(phase)
1036   bool maybe_set_complete(PhaseGVN* phase);
1037 
1038   // Return true if allocation doesn't escape thread, its escape state
1039   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
1040   // is true when its allocation's escape state is noEscape or
1041   // ArgEscape. In case allocation's InitializeNode is null, check
1042   // AlllocateNode._is_non_escaping flag.
1043   // AlllocateNode._is_non_escaping is true when its escape state is
1044   // noEscape.
1045   bool does_not_escape_thread() {
1046     InitializeNode* init = nullptr;
1047     return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape());
1048   }
1049 
1050   // If object doesn't escape in <.init> method and there is memory barrier
1051   // inserted at exit of its <.init>, memory barrier for new is not necessary.
1052   // Inovke this method when MemBar at exit of initializer and post-dominate
1053   // allocation node.
1054   void compute_MemBar_redundancy(ciMethod* initializer);
1055   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
1056 
1057   Node* make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem);
1058 };
1059 
1060 //------------------------------AllocateArray---------------------------------
1061 //
1062 // High-level array allocation
1063 //
1064 class AllocateArrayNode : public AllocateNode {
1065 public:
1066   AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node,
1067                     Node* initial_test, Node* count_val, Node* valid_length_test)
1068     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
1069                    initial_test)
1070   {
1071     init_class_id(Class_AllocateArray);
1072     set_req(AllocateNode::ALength,        count_val);
1073     set_req(AllocateNode::ValidLengthTest, valid_length_test);
1074   }
1075   virtual int Opcode() const;
1076 
1077   // Dig the length operand out of a array allocation site.
1078   Node* Ideal_length() {
1079     return in(AllocateNode::ALength);
1080   }
1081 
1082   // Dig the length operand out of a array allocation site and narrow the
1083   // type with a CastII, if necesssary
1084   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true);
1085 
1086   // Pattern-match a possible usage of AllocateArrayNode.
1087   // Return null if no allocation is recognized.
1088   static AllocateArrayNode* Ideal_array_allocation(Node* ptr) {
1089     AllocateNode* allo = Ideal_allocation(ptr);
1090     return (allo == nullptr || !allo->is_AllocateArray())
1091            ? nullptr : allo->as_AllocateArray();
1092   }
1093 };
1094 
1095 //------------------------------AbstractLockNode-----------------------------------
1096 class AbstractLockNode: public CallNode {
1097 private:
1098   enum {
1099     Regular = 0,  // Normal lock
1100     NonEscObj,    // Lock is used for non escaping object
1101     Coarsened,    // Lock was coarsened
1102     Nested        // Nested lock
1103   } _kind;
1104 
1105   static const char* _kind_names[Nested+1];
1106 
1107 #ifndef PRODUCT
1108   NamedCounter* _counter;
1109 #endif
1110 
1111 protected:
1112   // helper functions for lock elimination
1113   //
1114 
1115   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1116                             GrowableArray<AbstractLockNode*> &lock_ops);
1117   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1118                                        GrowableArray<AbstractLockNode*> &lock_ops);
1119   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1120                                GrowableArray<AbstractLockNode*> &lock_ops);
1121   LockNode *find_matching_lock(UnlockNode* unlock);
1122 
1123   // Update the counter to indicate that this lock was eliminated.
1124   void set_eliminated_lock_counter() PRODUCT_RETURN;
1125 
1126 public:
1127   AbstractLockNode(const TypeFunc *tf)
1128     : CallNode(tf, nullptr, TypeRawPtr::BOTTOM),
1129       _kind(Regular)
1130   {
1131 #ifndef PRODUCT
1132     _counter = nullptr;
1133 #endif
1134   }
1135   virtual int Opcode() const = 0;
1136   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1137   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1138   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1139   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1140 
1141   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1142 
1143   virtual uint size_of() const { return sizeof(*this); }
1144 
1145   bool is_eliminated()  const { return (_kind != Regular); }
1146   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1147   bool is_coarsened()   const { return (_kind == Coarsened); }
1148   bool is_nested()      const { return (_kind == Nested); }
1149 
1150   const char * kind_as_string() const;
1151   void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const;
1152 
1153   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1154   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1155   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1156 
1157   // locking does not modify its arguments
1158   virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; }
1159 
1160 #ifndef PRODUCT
1161   void create_lock_counter(JVMState* s);
1162   NamedCounter* counter() const { return _counter; }
1163   virtual void dump_spec(outputStream* st) const;
1164   virtual void dump_compact_spec(outputStream* st) const;
1165 #endif
1166 };
1167 
1168 //------------------------------Lock---------------------------------------
1169 // High-level lock operation
1170 //
1171 // This is a subclass of CallNode because it is a macro node which gets expanded
1172 // into a code sequence containing a call.  This node takes 3 "parameters":
1173 //    0  -  object to lock
1174 //    1 -   a BoxLockNode
1175 //    2 -   a FastLockNode
1176 //
1177 class LockNode : public AbstractLockNode {
1178 public:
1179 
1180   static const TypeFunc *lock_type() {
1181     // create input type (domain)
1182     const Type **fields = TypeTuple::fields(3);
1183     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1184     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1185     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1186     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1187 
1188     // create result type (range)
1189     fields = TypeTuple::fields(0);
1190 
1191     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1192 
1193     return TypeFunc::make(domain,range);
1194   }
1195 
1196   virtual int Opcode() const;
1197   virtual uint size_of() const; // Size is bigger
1198   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1199     init_class_id(Class_Lock);
1200     init_flags(Flag_is_macro);
1201     C->add_macro_node(this);
1202   }
1203   virtual bool        guaranteed_safepoint()  { return false; }
1204 
1205   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1206   // Expansion modifies the JVMState, so we need to deep clone it
1207   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1208 
1209   bool is_nested_lock_region(); // Is this Lock nested?
1210   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1211 };
1212 
1213 //------------------------------Unlock---------------------------------------
1214 // High-level unlock operation
1215 class UnlockNode : public AbstractLockNode {
1216 private:
1217 #ifdef ASSERT
1218   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1219 #endif
1220 public:
1221   virtual int Opcode() const;
1222   virtual uint size_of() const; // Size is bigger
1223   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1224 #ifdef ASSERT
1225     , _dbg_jvms(nullptr)
1226 #endif
1227   {
1228     init_class_id(Class_Unlock);
1229     init_flags(Flag_is_macro);
1230     C->add_macro_node(this);
1231   }
1232   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1233   // unlock is never a safepoint
1234   virtual bool        guaranteed_safepoint()  { return false; }
1235 #ifdef ASSERT
1236   void set_dbg_jvms(JVMState* s) {
1237     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1238   }
1239   JVMState* dbg_jvms() const { return _dbg_jvms; }
1240 #else
1241   JVMState* dbg_jvms() const { return nullptr; }
1242 #endif
1243 };
1244 #endif // SHARE_OPTO_CALLNODE_HPP