1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_CALLNODE_HPP 26 #define SHARE_OPTO_CALLNODE_HPP 27 28 #include "opto/connode.hpp" 29 #include "opto/mulnode.hpp" 30 #include "opto/multnode.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/phaseX.hpp" 33 #include "opto/replacednodes.hpp" 34 #include "opto/type.hpp" 35 #include "utilities/growableArray.hpp" 36 37 // Portions of code courtesy of Clifford Click 38 39 // Optimization - Graph Style 40 41 class NamedCounter; 42 class MultiNode; 43 class SafePointNode; 44 class CallNode; 45 class CallJavaNode; 46 class CallStaticJavaNode; 47 class CallDynamicJavaNode; 48 class CallRuntimeNode; 49 class CallLeafNode; 50 class CallLeafNoFPNode; 51 class CallLeafVectorNode; 52 class AllocateNode; 53 class AllocateArrayNode; 54 class AbstractLockNode; 55 class LockNode; 56 class UnlockNode; 57 class FastLockNode; 58 59 //------------------------------StartNode-------------------------------------- 60 // The method start node 61 class StartNode : public MultiNode { 62 virtual bool cmp( const Node &n ) const; 63 virtual uint size_of() const; // Size is bigger 64 public: 65 const TypeTuple *_domain; 66 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { 67 init_class_id(Class_Start); 68 init_req(0,this); 69 init_req(1,root); 70 } 71 virtual int Opcode() const; 72 virtual bool pinned() const { return true; }; 73 virtual const Type *bottom_type() const; 74 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 75 virtual const Type* Value(PhaseGVN* phase) const; 76 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 77 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; 78 virtual const RegMask &in_RegMask(uint) const; 79 virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask); 80 virtual uint ideal_reg() const { return 0; } 81 #ifndef PRODUCT 82 virtual void dump_spec(outputStream *st) const; 83 virtual void dump_compact_spec(outputStream *st) const; 84 #endif 85 }; 86 87 //------------------------------StartOSRNode----------------------------------- 88 // The method start node for on stack replacement code 89 class StartOSRNode : public StartNode { 90 public: 91 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} 92 virtual int Opcode() const; 93 }; 94 95 96 //------------------------------ParmNode--------------------------------------- 97 // Incoming parameters 98 class ParmNode : public ProjNode { 99 static const char * const names[TypeFunc::Parms+1]; 100 public: 101 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { 102 init_class_id(Class_Parm); 103 } 104 virtual int Opcode() const; 105 virtual bool is_CFG() const { return (_con == TypeFunc::Control); } 106 virtual uint ideal_reg() const; 107 #ifndef PRODUCT 108 virtual void dump_spec(outputStream *st) const; 109 virtual void dump_compact_spec(outputStream *st) const; 110 #endif 111 }; 112 113 114 //------------------------------ReturnNode------------------------------------- 115 // Return from subroutine node 116 class ReturnNode : public Node { 117 public: 118 ReturnNode(uint edges, Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr); 119 virtual int Opcode() const; 120 virtual bool is_CFG() const { return true; } 121 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 122 virtual bool depends_only_on_test() const { return false; } 123 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 124 virtual const Type* Value(PhaseGVN* phase) const; 125 virtual uint ideal_reg() const { return NotAMachineReg; } 126 virtual uint match_edge(uint idx) const; 127 #ifndef PRODUCT 128 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 129 #endif 130 }; 131 132 133 //------------------------------RethrowNode------------------------------------ 134 // Rethrow of exception at call site. Ends a procedure before rethrowing; 135 // ends the current basic block like a ReturnNode. Restores registers and 136 // unwinds stack. Rethrow happens in the caller's method. 137 class RethrowNode : public Node { 138 public: 139 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); 140 virtual int Opcode() const; 141 virtual bool is_CFG() const { return true; } 142 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 143 virtual bool depends_only_on_test() const { return false; } 144 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 145 virtual const Type* Value(PhaseGVN* phase) const; 146 virtual uint match_edge(uint idx) const; 147 virtual uint ideal_reg() const { return NotAMachineReg; } 148 #ifndef PRODUCT 149 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 150 #endif 151 }; 152 153 154 //------------------------------ForwardExceptionNode--------------------------- 155 // Pop stack frame and jump to StubRoutines::forward_exception_entry() 156 class ForwardExceptionNode : public ReturnNode { 157 public: 158 ForwardExceptionNode(Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr) 159 : ReturnNode(TypeFunc::Parms, cntrl, i_o, memory, frameptr, retadr) { 160 } 161 162 virtual int Opcode() const; 163 }; 164 165 //------------------------------TailCallNode----------------------------------- 166 // Pop stack frame and jump indirect 167 class TailCallNode : public ReturnNode { 168 public: 169 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) 170 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { 171 init_req(TypeFunc::Parms, target); 172 init_req(TypeFunc::Parms+1, moop); 173 } 174 175 virtual int Opcode() const; 176 virtual uint match_edge(uint idx) const; 177 }; 178 179 //------------------------------TailJumpNode----------------------------------- 180 // Pop stack frame and jump indirect 181 class TailJumpNode : public ReturnNode { 182 public: 183 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) 184 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { 185 init_req(TypeFunc::Parms, target); 186 init_req(TypeFunc::Parms+1, ex_oop); 187 } 188 189 virtual int Opcode() const; 190 virtual uint match_edge(uint idx) const; 191 }; 192 193 //-------------------------------JVMState------------------------------------- 194 // A linked list of JVMState nodes captures the whole interpreter state, 195 // plus GC roots, for all active calls at some call site in this compilation 196 // unit. (If there is no inlining, then the list has exactly one link.) 197 // This provides a way to map the optimized program back into the interpreter, 198 // or to let the GC mark the stack. 199 class JVMState : public ResourceObj { 200 public: 201 typedef enum { 202 Reexecute_Undefined = -1, // not defined -- will be translated into false later 203 Reexecute_False = 0, // false -- do not reexecute 204 Reexecute_True = 1 // true -- reexecute the bytecode 205 } ReexecuteState; //Reexecute State 206 207 private: 208 JVMState* _caller; // List pointer for forming scope chains 209 uint _depth; // One more than caller depth, or one. 210 uint _locoff; // Offset to locals in input edge mapping 211 uint _stkoff; // Offset to stack in input edge mapping 212 uint _monoff; // Offset to monitors in input edge mapping 213 uint _scloff; // Offset to fields of scalar objs in input edge mapping 214 uint _endoff; // Offset to end of input edge mapping 215 uint _sp; // Java Expression Stack Pointer for this state 216 int _bci; // Byte Code Index of this JVM point 217 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed 218 ciMethod* _method; // Method Pointer 219 SafePointNode* _map; // Map node associated with this scope 220 public: 221 friend class Compile; 222 friend class PreserveReexecuteState; 223 224 // Because JVMState objects live over the entire lifetime of the 225 // Compile object, they are allocated into the comp_arena, which 226 // does not get resource marked or reset during the compile process 227 void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } 228 void operator delete( void * ) { } // fast deallocation 229 230 // Create a new JVMState, ready for abstract interpretation. 231 JVMState(ciMethod* method, JVMState* caller); 232 JVMState(int stack_size); // root state; has a null method 233 234 // Access functions for the JVM 235 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| 236 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff 237 uint locoff() const { return _locoff; } 238 uint stkoff() const { return _stkoff; } 239 uint argoff() const { return _stkoff + _sp; } 240 uint monoff() const { return _monoff; } 241 uint scloff() const { return _scloff; } 242 uint endoff() const { return _endoff; } 243 uint oopoff() const { return debug_end(); } 244 245 int loc_size() const { return stkoff() - locoff(); } 246 int stk_size() const { return monoff() - stkoff(); } 247 int mon_size() const { return scloff() - monoff(); } 248 int scl_size() const { return endoff() - scloff(); } 249 250 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } 251 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } 252 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } 253 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } 254 255 uint sp() const { return _sp; } 256 int bci() const { return _bci; } 257 bool should_reexecute() const { return _reexecute==Reexecute_True; } 258 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } 259 bool has_method() const { return _method != nullptr; } 260 ciMethod* method() const { assert(has_method(), ""); return _method; } 261 JVMState* caller() const { return _caller; } 262 SafePointNode* map() const { return _map; } 263 uint depth() const { return _depth; } 264 uint debug_start() const; // returns locoff of root caller 265 uint debug_end() const; // returns endoff of self 266 uint debug_size() const { 267 return loc_size() + sp() + mon_size() + scl_size(); 268 } 269 uint debug_depth() const; // returns sum of debug_size values at all depths 270 271 // Returns the JVM state at the desired depth (1 == root). 272 JVMState* of_depth(int d) const; 273 274 // Tells if two JVM states have the same call chain (depth, methods, & bcis). 275 bool same_calls_as(const JVMState* that) const; 276 277 // Monitors (monitors are stored as (boxNode, objNode) pairs 278 enum { logMonitorEdges = 1 }; 279 int nof_monitors() const { return mon_size() >> logMonitorEdges; } 280 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } 281 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } 282 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } 283 bool is_monitor_box(uint off) const { 284 assert(is_mon(off), "should be called only for monitor edge"); 285 return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); 286 } 287 bool is_monitor_use(uint off) const { return (is_mon(off) 288 && is_monitor_box(off)) 289 || (caller() && caller()->is_monitor_use(off)); } 290 291 // Initialization functions for the JVM 292 void set_locoff(uint off) { _locoff = off; } 293 void set_stkoff(uint off) { _stkoff = off; } 294 void set_monoff(uint off) { _monoff = off; } 295 void set_scloff(uint off) { _scloff = off; } 296 void set_endoff(uint off) { _endoff = off; } 297 void set_offsets(uint off) { 298 _locoff = _stkoff = _monoff = _scloff = _endoff = off; 299 } 300 void set_map(SafePointNode* map) { _map = map; } 301 void bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode 302 void set_sp(uint sp) { _sp = sp; } 303 // _reexecute is initialized to "undefined" for a new bci 304 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } 305 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} 306 307 // Miscellaneous utility functions 308 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain 309 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller 310 void set_map_deep(SafePointNode *map);// reset map for all callers 311 void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. 312 int interpreter_frame_size() const; 313 314 #ifndef PRODUCT 315 void print_method_with_lineno(outputStream* st, bool show_name) const; 316 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; 317 void dump_spec(outputStream *st) const; 318 void dump_on(outputStream* st) const; 319 void dump() const { 320 dump_on(tty); 321 } 322 #endif 323 }; 324 325 //------------------------------SafePointNode---------------------------------- 326 // A SafePointNode is a subclass of a MultiNode for convenience (and 327 // potential code sharing) only - conceptually it is independent of 328 // the Node semantics. 329 class SafePointNode : public MultiNode { 330 friend JVMState; 331 friend class GraphKit; 332 friend class LibraryCallKit; 333 334 virtual bool cmp( const Node &n ) const; 335 virtual uint size_of() const; // Size is bigger 336 337 protected: 338 JVMState* const _jvms; // Pointer to list of JVM State objects 339 // Many calls take *all* of memory as input, 340 // but some produce a limited subset of that memory as output. 341 // The adr_type reports the call's behavior as a store, not a load. 342 const TypePtr* _adr_type; // What type of memory does this node produce? 343 ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() 344 bool _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States 345 346 void set_jvms(JVMState* s) { 347 assert(s != nullptr, "assign null value to _jvms"); 348 *(JVMState**)&_jvms = s; // override const attribute in the accessor 349 } 350 public: 351 SafePointNode(uint edges, JVMState* jvms, 352 // A plain safepoint advertises no memory effects (null): 353 const TypePtr* adr_type = nullptr) 354 : MultiNode( edges ), 355 _jvms(jvms), 356 _adr_type(adr_type), 357 _has_ea_local_in_scope(false) 358 { 359 init_class_id(Class_SafePoint); 360 } 361 362 JVMState* jvms() const { return _jvms; } 363 virtual bool needs_deep_clone_jvms(Compile* C) { return false; } 364 void clone_jvms(Compile* C) { 365 if (jvms() != nullptr) { 366 if (needs_deep_clone_jvms(C)) { 367 set_jvms(jvms()->clone_deep(C)); 368 jvms()->set_map_deep(this); 369 } else { 370 jvms()->clone_shallow(C)->bind_map(this); 371 } 372 } 373 } 374 375 private: 376 void verify_input(JVMState* jvms, uint idx) const { 377 assert(verify_jvms(jvms), "jvms must match"); 378 Node* n = in(idx); 379 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || 380 in(idx + 1)->is_top(), "2nd half of long/double"); 381 } 382 383 public: 384 // Functionality from old debug nodes which has changed 385 Node *local(JVMState* jvms, uint idx) const { 386 verify_input(jvms, jvms->locoff() + idx); 387 return in(jvms->locoff() + idx); 388 } 389 Node *stack(JVMState* jvms, uint idx) const { 390 verify_input(jvms, jvms->stkoff() + idx); 391 return in(jvms->stkoff() + idx); 392 } 393 Node *argument(JVMState* jvms, uint idx) const { 394 verify_input(jvms, jvms->argoff() + idx); 395 return in(jvms->argoff() + idx); 396 } 397 Node *monitor_box(JVMState* jvms, uint idx) const { 398 assert(verify_jvms(jvms), "jvms must match"); 399 return in(jvms->monitor_box_offset(idx)); 400 } 401 Node *monitor_obj(JVMState* jvms, uint idx) const { 402 assert(verify_jvms(jvms), "jvms must match"); 403 return in(jvms->monitor_obj_offset(idx)); 404 } 405 406 void set_local(JVMState* jvms, uint idx, Node *c); 407 408 void set_stack(JVMState* jvms, uint idx, Node *c) { 409 assert(verify_jvms(jvms), "jvms must match"); 410 set_req(jvms->stkoff() + idx, c); 411 } 412 void set_argument(JVMState* jvms, uint idx, Node *c) { 413 assert(verify_jvms(jvms), "jvms must match"); 414 set_req(jvms->argoff() + idx, c); 415 } 416 void ensure_stack(JVMState* jvms, uint stk_size) { 417 assert(verify_jvms(jvms), "jvms must match"); 418 int grow_by = (int)stk_size - (int)jvms->stk_size(); 419 if (grow_by > 0) grow_stack(jvms, grow_by); 420 } 421 void grow_stack(JVMState* jvms, uint grow_by); 422 // Handle monitor stack 423 void push_monitor( const FastLockNode *lock ); 424 void pop_monitor (); 425 Node *peek_monitor_box() const; 426 Node *peek_monitor_obj() const; 427 // Peek Operand Stacks, JVMS 2.6.2 428 Node* peek_operand(uint off = 0) const; 429 430 // Access functions for the JVM 431 Node *control () const { return in(TypeFunc::Control ); } 432 Node *i_o () const { return in(TypeFunc::I_O ); } 433 Node *memory () const { return in(TypeFunc::Memory ); } 434 Node *returnadr() const { return in(TypeFunc::ReturnAdr); } 435 Node *frameptr () const { return in(TypeFunc::FramePtr ); } 436 437 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } 438 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } 439 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } 440 441 MergeMemNode* merged_memory() const { 442 return in(TypeFunc::Memory)->as_MergeMem(); 443 } 444 445 // The parser marks useless maps as dead when it's done with them: 446 bool is_killed() { return in(TypeFunc::Control) == nullptr; } 447 448 // Exception states bubbling out of subgraphs such as inlined calls 449 // are recorded here. (There might be more than one, hence the "next".) 450 // This feature is used only for safepoints which serve as "maps" 451 // for JVM states during parsing, intrinsic expansion, etc. 452 SafePointNode* next_exception() const; 453 void set_next_exception(SafePointNode* n); 454 bool has_exceptions() const { return next_exception() != nullptr; } 455 456 // Helper methods to operate on replaced nodes 457 ReplacedNodes replaced_nodes() const { 458 return _replaced_nodes; 459 } 460 461 void set_replaced_nodes(ReplacedNodes replaced_nodes) { 462 _replaced_nodes = replaced_nodes; 463 } 464 465 void clone_replaced_nodes() { 466 _replaced_nodes.clone(); 467 } 468 void record_replaced_node(Node* initial, Node* improved) { 469 _replaced_nodes.record(initial, improved); 470 } 471 void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { 472 _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); 473 } 474 void delete_replaced_nodes() { 475 _replaced_nodes.reset(); 476 } 477 void apply_replaced_nodes(uint idx) { 478 _replaced_nodes.apply(this, idx); 479 } 480 void merge_replaced_nodes_with(SafePointNode* sfpt) { 481 _replaced_nodes.merge_with(sfpt->_replaced_nodes); 482 } 483 bool has_replaced_nodes() const { 484 return !_replaced_nodes.is_empty(); 485 } 486 void set_has_ea_local_in_scope(bool b) { 487 _has_ea_local_in_scope = b; 488 } 489 bool has_ea_local_in_scope() const { 490 return _has_ea_local_in_scope; 491 } 492 493 void disconnect_from_root(PhaseIterGVN *igvn); 494 495 // Standard Node stuff 496 virtual int Opcode() const; 497 virtual bool pinned() const { return true; } 498 virtual const Type* Value(PhaseGVN* phase) const; 499 virtual const Type* bottom_type() const { return Type::CONTROL; } 500 virtual const TypePtr* adr_type() const { return _adr_type; } 501 void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; } 502 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 503 virtual Node* Identity(PhaseGVN* phase); 504 virtual uint ideal_reg() const { return 0; } 505 virtual const RegMask &in_RegMask(uint) const; 506 virtual const RegMask &out_RegMask() const; 507 virtual uint match_edge(uint idx) const; 508 509 #ifndef PRODUCT 510 virtual void dump_spec(outputStream *st) const; 511 #endif 512 }; 513 514 //------------------------------SafePointScalarObjectNode---------------------- 515 // A SafePointScalarObjectNode represents the state of a scalarized object 516 // at a safepoint. 517 class SafePointScalarObjectNode: public TypeNode { 518 uint _first_index; // First input edge relative index of a SafePoint node where 519 // states of the scalarized object fields are collected. 520 uint _depth; // Depth of the JVM state the _first_index field refers to 521 uint _n_fields; // Number of non-static fields of the scalarized object. 522 523 Node* _alloc; // Just for debugging purposes. 524 525 virtual uint hash() const; 526 virtual bool cmp( const Node &n ) const; 527 528 uint first_index() const { return _first_index; } 529 530 public: 531 SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields); 532 533 virtual int Opcode() const; 534 virtual uint ideal_reg() const; 535 virtual const RegMask &in_RegMask(uint) const; 536 virtual const RegMask &out_RegMask() const; 537 virtual uint match_edge(uint idx) const; 538 539 uint first_index(JVMState* jvms) const { 540 assert(jvms != nullptr, "missed JVMS"); 541 return jvms->of_depth(_depth)->scloff() + _first_index; 542 } 543 uint n_fields() const { return _n_fields; } 544 545 #ifdef ASSERT 546 Node* alloc() const { return _alloc; } 547 #endif 548 549 virtual uint size_of() const { return sizeof(*this); } 550 551 // Assumes that "this" is an argument to a safepoint node "s", and that 552 // "new_call" is being created to correspond to "s". But the difference 553 // between the start index of the jvmstates of "new_call" and "s" is 554 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 555 // corresponds appropriately to "this" in "new_call". Assumes that 556 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 557 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 558 SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const; 559 560 #ifndef PRODUCT 561 virtual void dump_spec(outputStream *st) const; 562 #endif 563 }; 564 565 //------------------------------SafePointScalarMergeNode---------------------- 566 // 567 // This class represents an allocation merge that is used as debug information 568 // and had at least one of its input scalar replaced. 569 // 570 // The required inputs of this node, except the control, are pointers to 571 // SafePointScalarObjectNodes that describe scalarized inputs of the original 572 // allocation merge. The other(s) properties of the class are described below. 573 // 574 // _merge_pointer_idx : index in the SafePointNode's input array where the 575 // description of the _allocation merge_ starts. The index is zero based and 576 // relative to the SafePoint's scloff. The two entries in the SafePointNode's 577 // input array starting at '_merge_pointer_idx` are Phi nodes representing: 578 // 579 // 1) The original merge Phi. During rematerialization this input will only be 580 // used if the "selector Phi" (see below) indicates that the execution of the 581 // Phi took the path of a non scalarized input. 582 // 583 // 2) A "selector Phi". The output of this Phi will be '-1' if the execution 584 // of the method exercised a non scalarized input of the original Phi. 585 // Otherwise, the output will be >=0, and it will indicate the index-1 in the 586 // SafePointScalarMergeNode input array where the description of the 587 // scalarized object that should be used is. 588 // 589 // As an example, consider a Phi merging 3 inputs, of which the last 2 are 590 // scalar replaceable. 591 // 592 // Phi(Region, NSR, SR, SR) 593 // 594 // During scalar replacement the SR inputs will be changed to null: 595 // 596 // Phi(Region, NSR, nullptr, nullptr) 597 // 598 // A corresponding selector Phi will be created with a configuration like this: 599 // 600 // Phi(Region, -1, 0, 1) 601 // 602 // During execution of the compiled method, if the execution reaches a Trap, the 603 // output of the selector Phi will tell if we need to rematerialize one of the 604 // scalar replaced inputs or if we should just use the pointer returned by the 605 // original Phi. 606 607 class SafePointScalarMergeNode: public TypeNode { 608 int _merge_pointer_idx; // This is the first input edge relative 609 // index of a SafePoint node where metadata information relative 610 // to restoring the merge is stored. The corresponding input 611 // in the associated SafePoint will point to a Phi representing 612 // potential non-scalar replaced objects. 613 614 virtual uint hash() const; 615 virtual bool cmp( const Node &n ) const; 616 617 public: 618 SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx); 619 620 virtual int Opcode() const; 621 virtual uint ideal_reg() const; 622 virtual const RegMask &in_RegMask(uint) const; 623 virtual const RegMask &out_RegMask() const; 624 virtual uint match_edge(uint idx) const; 625 626 virtual uint size_of() const { return sizeof(*this); } 627 628 int merge_pointer_idx(JVMState* jvms) const { 629 assert(jvms != nullptr, "JVMS reference is null."); 630 return jvms->scloff() + _merge_pointer_idx; 631 } 632 633 int selector_idx(JVMState* jvms) const { 634 assert(jvms != nullptr, "JVMS reference is null."); 635 return jvms->scloff() + _merge_pointer_idx + 1; 636 } 637 638 // Assumes that "this" is an argument to a safepoint node "s", and that 639 // "new_call" is being created to correspond to "s". But the difference 640 // between the start index of the jvmstates of "new_call" and "s" is 641 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 642 // corresponds appropriately to "this" in "new_call". Assumes that 643 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 644 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 645 SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const; 646 647 #ifndef PRODUCT 648 virtual void dump_spec(outputStream *st) const; 649 #endif 650 }; 651 652 // Simple container for the outgoing projections of a call. Useful 653 // for serious surgery on calls. 654 class CallProjections { 655 public: 656 Node* fallthrough_proj; 657 Node* fallthrough_catchproj; 658 Node* fallthrough_memproj; 659 Node* fallthrough_ioproj; 660 Node* catchall_catchproj; 661 Node* catchall_memproj; 662 Node* catchall_ioproj; 663 Node* exobj; 664 uint nb_resproj; 665 Node* resproj[1]; // at least one projection 666 667 CallProjections(uint nbres) { 668 fallthrough_proj = nullptr; 669 fallthrough_catchproj = nullptr; 670 fallthrough_memproj = nullptr; 671 fallthrough_ioproj = nullptr; 672 catchall_catchproj = nullptr; 673 catchall_memproj = nullptr; 674 catchall_ioproj = nullptr; 675 exobj = nullptr; 676 nb_resproj = nbres; 677 resproj[0] = nullptr; 678 for (uint i = 1; i < nb_resproj; i++) { 679 resproj[i] = nullptr; 680 } 681 } 682 683 }; 684 685 class CallGenerator; 686 687 //------------------------------CallNode--------------------------------------- 688 // Call nodes now subsume the function of debug nodes at callsites, so they 689 // contain the functionality of a full scope chain of debug nodes. 690 class CallNode : public SafePointNode { 691 692 protected: 693 bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase); 694 695 public: 696 const TypeFunc* _tf; // Function type 697 address _entry_point; // Address of method being called 698 float _cnt; // Estimate of number of times called 699 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls 700 const char* _name; // Printable name, if _method is null 701 702 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr) 703 : SafePointNode(tf->domain_cc()->cnt(), jvms, adr_type), 704 _tf(tf), 705 _entry_point(addr), 706 _cnt(COUNT_UNKNOWN), 707 _generator(nullptr), 708 _name(nullptr) 709 { 710 init_class_id(Class_Call); 711 } 712 713 const TypeFunc* tf() const { return _tf; } 714 address entry_point() const { return _entry_point; } 715 float cnt() const { return _cnt; } 716 CallGenerator* generator() const { return _generator; } 717 718 void set_tf(const TypeFunc* tf) { _tf = tf; } 719 void set_entry_point(address p) { _entry_point = p; } 720 void set_cnt(float c) { _cnt = c; } 721 void set_generator(CallGenerator* cg) { _generator = cg; } 722 723 virtual const Type* bottom_type() const; 724 virtual const Type* Value(PhaseGVN* phase) const; 725 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 726 virtual Node* Identity(PhaseGVN* phase) { return this; } 727 virtual bool cmp(const Node &n) const; 728 virtual uint size_of() const = 0; 729 virtual void calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const; 730 virtual Node* match(const ProjNode* proj, const Matcher* m, const RegMask* mask); 731 virtual uint ideal_reg() const { return NotAMachineReg; } 732 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and 733 // for some macro nodes whose expansion does not have a safepoint on the fast path. 734 virtual bool guaranteed_safepoint() { return true; } 735 // For macro nodes, the JVMState gets modified during expansion. If calls 736 // use MachConstantBase, it gets modified during matching. So when cloning 737 // the node the JVMState must be deep cloned. Default is to shallow clone. 738 virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); } 739 740 // Returns true if the call may modify n 741 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase); 742 // Does this node have a use of n other than in debug information? 743 bool has_non_debug_use(Node* n); 744 bool has_debug_use(Node* n); 745 // Returns the unique CheckCastPP of a call 746 // or result projection is there are several CheckCastPP 747 // or returns null if there is no one. 748 Node* result_cast(); 749 // Does this node returns pointer? 750 bool returns_pointer() const { 751 const TypeTuple* r = tf()->range_sig(); 752 return (!tf()->returns_inline_type_as_fields() && 753 r->cnt() > TypeFunc::Parms && 754 r->field_at(TypeFunc::Parms)->isa_ptr()); 755 } 756 757 // Collect all the interesting edges from a call for use in 758 // replacing the call by something else. Used by macro expansion 759 // and the late inlining support. 760 CallProjections* extract_projections(bool separate_io_proj, bool do_asserts = true) const; 761 762 virtual uint match_edge(uint idx) const; 763 764 bool is_call_to_arraycopystub() const; 765 766 virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {} 767 768 #ifndef PRODUCT 769 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; 770 virtual void dump_spec(outputStream* st) const; 771 #endif 772 }; 773 774 775 //------------------------------CallJavaNode----------------------------------- 776 // Make a static or dynamic subroutine call node using Java calling 777 // convention. (The "Java" calling convention is the compiler's calling 778 // convention, as opposed to the interpreter's or that of native C.) 779 class CallJavaNode : public CallNode { 780 protected: 781 virtual bool cmp( const Node &n ) const; 782 virtual uint size_of() const; // Size is bigger 783 784 ciMethod* _method; // Method being direct called 785 bool _optimized_virtual; 786 bool _method_handle_invoke; 787 bool _override_symbolic_info; // Override symbolic call site info from bytecode 788 bool _arg_escape; // ArgEscape in parameter list 789 public: 790 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method) 791 : CallNode(tf, addr, TypePtr::BOTTOM), 792 _method(method), 793 _optimized_virtual(false), 794 _method_handle_invoke(false), 795 _override_symbolic_info(false), 796 _arg_escape(false) 797 { 798 init_class_id(Class_CallJava); 799 } 800 801 virtual int Opcode() const; 802 ciMethod* method() const { return _method; } 803 void set_method(ciMethod *m) { _method = m; } 804 void set_optimized_virtual(bool f) { _optimized_virtual = f; } 805 bool is_optimized_virtual() const { return _optimized_virtual; } 806 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } 807 bool is_method_handle_invoke() const { return _method_handle_invoke; } 808 void set_override_symbolic_info(bool f) { _override_symbolic_info = f; } 809 bool override_symbolic_info() const { return _override_symbolic_info; } 810 void set_arg_escape(bool f) { _arg_escape = f; } 811 bool arg_escape() const { return _arg_escape; } 812 void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt); 813 void register_for_late_inline(); 814 815 DEBUG_ONLY( bool validate_symbolic_info() const; ) 816 817 #ifndef PRODUCT 818 virtual void dump_spec(outputStream *st) const; 819 virtual void dump_compact_spec(outputStream *st) const; 820 #endif 821 }; 822 823 //------------------------------CallStaticJavaNode----------------------------- 824 // Make a direct subroutine call using Java calling convention (for static 825 // calls and optimized virtual calls, plus calls to wrappers for run-time 826 // routines); generates static stub. 827 class CallStaticJavaNode : public CallJavaNode { 828 virtual bool cmp( const Node &n ) const; 829 virtual uint size_of() const; // Size is bigger 830 831 bool remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg); 832 833 public: 834 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method) 835 : CallJavaNode(tf, addr, method) { 836 init_class_id(Class_CallStaticJava); 837 if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) { 838 init_flags(Flag_is_macro); 839 C->add_macro_node(this); 840 } 841 const TypeTuple *r = tf->range_sig(); 842 if (InlineTypeReturnedAsFields && 843 method != nullptr && 844 method->is_method_handle_intrinsic() && 845 r->cnt() > TypeFunc::Parms && 846 r->field_at(TypeFunc::Parms)->isa_oopptr() && 847 r->field_at(TypeFunc::Parms)->is_oopptr()->can_be_inline_type()) { 848 // Make sure this call is processed by PhaseMacroExpand::expand_mh_intrinsic_return 849 init_flags(Flag_is_macro); 850 C->add_macro_node(this); 851 } 852 } 853 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) 854 : CallJavaNode(tf, addr, nullptr) { 855 init_class_id(Class_CallStaticJava); 856 // This node calls a runtime stub, which often has narrow memory effects. 857 _adr_type = adr_type; 858 _name = name; 859 } 860 861 // If this is an uncommon trap, return the request code, else zero. 862 int uncommon_trap_request() const; 863 bool is_uncommon_trap() const; 864 static int extract_uncommon_trap_request(const Node* call); 865 866 bool is_boxing_method() const { 867 return is_macro() && (method() != nullptr) && method()->is_boxing_method(); 868 } 869 // Late inlining modifies the JVMState, so we need to deep clone it 870 // when the call node is cloned (because it is macro node). 871 virtual bool needs_deep_clone_jvms(Compile* C) { 872 return is_boxing_method() || CallNode::needs_deep_clone_jvms(C); 873 } 874 875 virtual int Opcode() const; 876 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 877 878 #ifndef PRODUCT 879 virtual void dump_spec(outputStream *st) const; 880 virtual void dump_compact_spec(outputStream *st) const; 881 #endif 882 }; 883 884 //------------------------------CallDynamicJavaNode---------------------------- 885 // Make a dispatched call using Java calling convention. 886 class CallDynamicJavaNode : public CallJavaNode { 887 virtual bool cmp( const Node &n ) const; 888 virtual uint size_of() const; // Size is bigger 889 public: 890 CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index) 891 : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) { 892 init_class_id(Class_CallDynamicJava); 893 } 894 895 // Late inlining modifies the JVMState, so we need to deep clone it 896 // when the call node is cloned. 897 virtual bool needs_deep_clone_jvms(Compile* C) { 898 return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C); 899 } 900 901 int _vtable_index; 902 virtual int Opcode() const; 903 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 904 #ifndef PRODUCT 905 virtual void dump_spec(outputStream *st) const; 906 #endif 907 }; 908 909 //------------------------------CallRuntimeNode-------------------------------- 910 // Make a direct subroutine call node into compiled C++ code. 911 class CallRuntimeNode : public CallNode { 912 protected: 913 virtual bool cmp( const Node &n ) const; 914 virtual uint size_of() const; // Size is bigger 915 public: 916 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, 917 const TypePtr* adr_type, JVMState* jvms = nullptr) 918 : CallNode(tf, addr, adr_type, jvms) 919 { 920 init_class_id(Class_CallRuntime); 921 _name = name; 922 } 923 924 virtual int Opcode() const; 925 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 926 927 #ifndef PRODUCT 928 virtual void dump_spec(outputStream *st) const; 929 #endif 930 }; 931 932 //------------------------------CallLeafNode----------------------------------- 933 // Make a direct subroutine call node into compiled C++ code, without 934 // safepoints 935 class CallLeafNode : public CallRuntimeNode { 936 public: 937 CallLeafNode(const TypeFunc* tf, address addr, const char* name, 938 const TypePtr* adr_type) 939 : CallRuntimeNode(tf, addr, name, adr_type) 940 { 941 init_class_id(Class_CallLeaf); 942 } 943 virtual int Opcode() const; 944 virtual bool guaranteed_safepoint() { return false; } 945 #ifndef PRODUCT 946 virtual void dump_spec(outputStream *st) const; 947 #endif 948 }; 949 950 /* A pure function call, they are assumed not to be safepoints, not to read or write memory, 951 * have no exception... They just take parameters, return a value without side effect. It is 952 * always correct to create some, or remove them, if the result is not used. 953 * 954 * They still have control input to allow easy lowering into other kind of calls that require 955 * a control, but this is more a technical than a moral constraint. 956 * 957 * Pure calls must have only control and data input and output: I/O, Memory and so on must be top. 958 * Nevertheless, pure calls can typically be expensive math operations so care must be taken 959 * when letting the node float. 960 */ 961 class CallLeafPureNode : public CallLeafNode { 962 protected: 963 bool is_unused() const; 964 bool is_dead() const; 965 TupleNode* make_tuple_of_input_state_and_top_return_values(const Compile* C) const; 966 967 public: 968 CallLeafPureNode(const TypeFunc* tf, address addr, const char* name, 969 const TypePtr* adr_type) 970 : CallLeafNode(tf, addr, name, adr_type) { 971 init_class_id(Class_CallLeafPure); 972 } 973 int Opcode() const override; 974 Node* Ideal(PhaseGVN* phase, bool can_reshape) override; 975 }; 976 977 //------------------------------CallLeafNoFPNode------------------------------- 978 // CallLeafNode, not using floating point or using it in the same manner as 979 // the generated code 980 class CallLeafNoFPNode : public CallLeafNode { 981 public: 982 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, 983 const TypePtr* adr_type) 984 : CallLeafNode(tf, addr, name, adr_type) 985 { 986 init_class_id(Class_CallLeafNoFP); 987 } 988 virtual int Opcode() const; 989 virtual uint match_edge(uint idx) const; 990 }; 991 992 //------------------------------CallLeafVectorNode------------------------------- 993 // CallLeafNode but calling with vector calling convention instead. 994 class CallLeafVectorNode : public CallLeafNode { 995 private: 996 uint _num_bits; 997 protected: 998 virtual bool cmp( const Node &n ) const; 999 virtual uint size_of() const; // Size is bigger 1000 public: 1001 CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name, 1002 const TypePtr* adr_type, uint num_bits) 1003 : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits) 1004 { 1005 } 1006 virtual int Opcode() const; 1007 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 1008 }; 1009 1010 1011 //------------------------------Allocate--------------------------------------- 1012 // High-level memory allocation 1013 // 1014 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will 1015 // get expanded into a code sequence containing a call. Unlike other CallNodes, 1016 // they have 2 memory projections and 2 i_o projections (which are distinguished by 1017 // the _is_io_use flag in the projection.) This is needed when expanding the node in 1018 // order to differentiate the uses of the projection on the normal control path from 1019 // those on the exception return path. 1020 // 1021 class AllocateNode : public CallNode { 1022 public: 1023 enum { 1024 // Output: 1025 RawAddress = TypeFunc::Parms, // the newly-allocated raw address 1026 // Inputs: 1027 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object 1028 KlassNode, // type (maybe dynamic) of the obj. 1029 InitialTest, // slow-path test (may be constant) 1030 ALength, // array length (or TOP if none) 1031 ValidLengthTest, 1032 InlineType, // InlineTypeNode if this is an inline type allocation 1033 InitValue, // Init value for null-free inline type arrays 1034 RawInitValue, // Same as above but as raw machine word 1035 ParmLimit 1036 }; 1037 1038 static const TypeFunc* alloc_type(const Type* t) { 1039 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); 1040 fields[AllocSize] = TypeInt::POS; 1041 fields[KlassNode] = TypeInstPtr::NOTNULL; 1042 fields[InitialTest] = TypeInt::BOOL; 1043 fields[ALength] = t; // length (can be a bad length) 1044 fields[ValidLengthTest] = TypeInt::BOOL; 1045 fields[InlineType] = Type::BOTTOM; 1046 fields[InitValue] = TypeInstPtr::NOTNULL; 1047 fields[RawInitValue] = TypeX_X; 1048 1049 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); 1050 1051 // create result type (range) 1052 fields = TypeTuple::fields(1); 1053 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 1054 1055 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1056 1057 return TypeFunc::make(domain, range); 1058 } 1059 1060 // Result of Escape Analysis 1061 bool _is_scalar_replaceable; 1062 bool _is_non_escaping; 1063 // True when MemBar for new is redundant with MemBar at initialzer exit 1064 bool _is_allocation_MemBar_redundant; 1065 bool _larval; 1066 1067 virtual uint size_of() const; // Size is bigger 1068 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, 1069 Node *size, Node *klass_node, Node *initial_test, 1070 InlineTypeNode* inline_type_node = nullptr); 1071 // Expansion modifies the JVMState, so we need to deep clone it 1072 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1073 virtual int Opcode() const; 1074 virtual uint ideal_reg() const { return Op_RegP; } 1075 virtual bool guaranteed_safepoint() { return false; } 1076 1077 // allocations do not modify their arguments 1078 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;} 1079 1080 // Pattern-match a possible usage of AllocateNode. 1081 // Return null if no allocation is recognized. 1082 // The operand is the pointer produced by the (possible) allocation. 1083 // It must be a projection of the Allocate or its subsequent CastPP. 1084 // (Note: This function is defined in file graphKit.cpp, near 1085 // GraphKit::new_instance/new_array, whose output it recognizes.) 1086 // The 'ptr' may not have an offset unless the 'offset' argument is given. 1087 static AllocateNode* Ideal_allocation(Node* ptr); 1088 1089 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip 1090 // an offset, which is reported back to the caller. 1091 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) 1092 static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase, 1093 intptr_t& offset); 1094 1095 // Dig the klass operand out of a (possible) allocation site. 1096 static Node* Ideal_klass(Node* ptr, PhaseValues* phase) { 1097 AllocateNode* allo = Ideal_allocation(ptr); 1098 return (allo == nullptr) ? nullptr : allo->in(KlassNode); 1099 } 1100 1101 // Conservatively small estimate of offset of first non-header byte. 1102 int minimum_header_size() { 1103 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 1104 instanceOopDesc::base_offset_in_bytes(); 1105 } 1106 1107 // Return the corresponding initialization barrier (or null if none). 1108 // Walks out edges to find it... 1109 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 1110 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 1111 InitializeNode* initialization(); 1112 1113 // Convenience for initialization->maybe_set_complete(phase) 1114 bool maybe_set_complete(PhaseGVN* phase); 1115 1116 // Return true if allocation doesn't escape thread, its escape state 1117 // needs be noEscape or ArgEscape. InitializeNode._does_not_escape 1118 // is true when its allocation's escape state is noEscape or 1119 // ArgEscape. In case allocation's InitializeNode is null, check 1120 // AlllocateNode._is_non_escaping flag. 1121 // AlllocateNode._is_non_escaping is true when its escape state is 1122 // noEscape. 1123 bool does_not_escape_thread() { 1124 InitializeNode* init = nullptr; 1125 return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape()); 1126 } 1127 1128 // If object doesn't escape in <.init> method and there is memory barrier 1129 // inserted at exit of its <.init>, memory barrier for new is not necessary. 1130 // Inovke this method when MemBar at exit of initializer and post-dominate 1131 // allocation node. 1132 void compute_MemBar_redundancy(ciMethod* initializer); 1133 bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; } 1134 1135 Node* make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem); 1136 1137 NOT_PRODUCT(virtual void dump_spec(outputStream* st) const;) 1138 }; 1139 1140 //------------------------------AllocateArray--------------------------------- 1141 // 1142 // High-level array allocation 1143 // 1144 class AllocateArrayNode : public AllocateNode { 1145 public: 1146 AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node, 1147 Node* initial_test, Node* count_val, Node* valid_length_test, 1148 Node* init_value, Node* raw_init_value) 1149 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, 1150 initial_test) 1151 { 1152 init_class_id(Class_AllocateArray); 1153 set_req(AllocateNode::ALength, count_val); 1154 set_req(AllocateNode::ValidLengthTest, valid_length_test); 1155 init_req(AllocateNode::InitValue, init_value); 1156 init_req(AllocateNode::RawInitValue, raw_init_value); 1157 } 1158 virtual uint size_of() const { return sizeof(*this); } 1159 virtual int Opcode() const; 1160 1161 // Dig the length operand out of a array allocation site. 1162 Node* Ideal_length() { 1163 return in(AllocateNode::ALength); 1164 } 1165 1166 // Dig the length operand out of a array allocation site and narrow the 1167 // type with a CastII, if necesssary 1168 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true); 1169 1170 // Pattern-match a possible usage of AllocateArrayNode. 1171 // Return null if no allocation is recognized. 1172 static AllocateArrayNode* Ideal_array_allocation(Node* ptr) { 1173 AllocateNode* allo = Ideal_allocation(ptr); 1174 return (allo == nullptr || !allo->is_AllocateArray()) 1175 ? nullptr : allo->as_AllocateArray(); 1176 } 1177 }; 1178 1179 //------------------------------AbstractLockNode----------------------------------- 1180 class AbstractLockNode: public CallNode { 1181 private: 1182 enum { 1183 Regular = 0, // Normal lock 1184 NonEscObj, // Lock is used for non escaping object 1185 Coarsened, // Lock was coarsened 1186 Nested // Nested lock 1187 } _kind; 1188 1189 static const char* _kind_names[Nested+1]; 1190 1191 #ifndef PRODUCT 1192 NamedCounter* _counter; 1193 #endif 1194 1195 protected: 1196 // helper functions for lock elimination 1197 // 1198 1199 bool find_matching_unlock(const Node* ctrl, LockNode* lock, 1200 GrowableArray<AbstractLockNode*> &lock_ops); 1201 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1202 GrowableArray<AbstractLockNode*> &lock_ops); 1203 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1204 GrowableArray<AbstractLockNode*> &lock_ops); 1205 LockNode *find_matching_lock(UnlockNode* unlock); 1206 1207 // Update the counter to indicate that this lock was eliminated. 1208 void set_eliminated_lock_counter() PRODUCT_RETURN; 1209 1210 public: 1211 AbstractLockNode(const TypeFunc *tf) 1212 : CallNode(tf, nullptr, TypeRawPtr::BOTTOM), 1213 _kind(Regular) 1214 { 1215 #ifndef PRODUCT 1216 _counter = nullptr; 1217 #endif 1218 } 1219 virtual int Opcode() const = 0; 1220 Node * obj_node() const {return in(TypeFunc::Parms + 0); } 1221 Node * box_node() const {return in(TypeFunc::Parms + 1); } 1222 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } 1223 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } 1224 1225 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} 1226 1227 virtual uint size_of() const { return sizeof(*this); } 1228 1229 bool is_eliminated() const { return (_kind != Regular); } 1230 bool is_non_esc_obj() const { return (_kind == NonEscObj); } 1231 bool is_coarsened() const { return (_kind == Coarsened); } 1232 bool is_nested() const { return (_kind == Nested); } 1233 1234 const char * kind_as_string() const; 1235 void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const; 1236 1237 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } 1238 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } 1239 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } 1240 1241 // Check that all locks/unlocks associated with object come from balanced regions. 1242 // They can become unbalanced after coarsening optimization or on OSR entry. 1243 bool is_balanced(); 1244 1245 // locking does not modify its arguments 1246 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; } 1247 1248 #ifndef PRODUCT 1249 void create_lock_counter(JVMState* s); 1250 NamedCounter* counter() const { return _counter; } 1251 virtual void dump_spec(outputStream* st) const; 1252 virtual void dump_compact_spec(outputStream* st) const; 1253 #endif 1254 }; 1255 1256 //------------------------------Lock--------------------------------------- 1257 // High-level lock operation 1258 // 1259 // This is a subclass of CallNode because it is a macro node which gets expanded 1260 // into a code sequence containing a call. This node takes 3 "parameters": 1261 // 0 - object to lock 1262 // 1 - a BoxLockNode 1263 // 2 - a FastLockNode 1264 // 1265 class LockNode : public AbstractLockNode { 1266 static const TypeFunc* _lock_type_Type; 1267 public: 1268 1269 static inline const TypeFunc* lock_type() { 1270 assert(_lock_type_Type != nullptr, "should be initialized"); 1271 return _lock_type_Type; 1272 } 1273 1274 static void initialize_lock_Type() { 1275 assert(_lock_type_Type == nullptr, "should be called once"); 1276 // create input type (domain) 1277 const Type **fields = TypeTuple::fields(3); 1278 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 1279 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 1280 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock 1281 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); 1282 1283 // create result type (range) 1284 fields = TypeTuple::fields(0); 1285 1286 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1287 1288 _lock_type_Type = TypeFunc::make(domain,range); 1289 } 1290 1291 virtual int Opcode() const; 1292 virtual uint size_of() const; // Size is bigger 1293 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { 1294 init_class_id(Class_Lock); 1295 init_flags(Flag_is_macro); 1296 C->add_macro_node(this); 1297 } 1298 virtual bool guaranteed_safepoint() { return false; } 1299 1300 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1301 // Expansion modifies the JVMState, so we need to deep clone it 1302 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1303 1304 bool is_nested_lock_region(); // Is this Lock nested? 1305 bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? 1306 }; 1307 1308 //------------------------------Unlock--------------------------------------- 1309 // High-level unlock operation 1310 class UnlockNode : public AbstractLockNode { 1311 private: 1312 #ifdef ASSERT 1313 JVMState* const _dbg_jvms; // Pointer to list of JVM State objects 1314 #endif 1315 public: 1316 virtual int Opcode() const; 1317 virtual uint size_of() const; // Size is bigger 1318 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) 1319 #ifdef ASSERT 1320 , _dbg_jvms(nullptr) 1321 #endif 1322 { 1323 init_class_id(Class_Unlock); 1324 init_flags(Flag_is_macro); 1325 C->add_macro_node(this); 1326 } 1327 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1328 // unlock is never a safepoint 1329 virtual bool guaranteed_safepoint() { return false; } 1330 #ifdef ASSERT 1331 void set_dbg_jvms(JVMState* s) { 1332 *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor 1333 } 1334 JVMState* dbg_jvms() const { return _dbg_jvms; } 1335 #else 1336 JVMState* dbg_jvms() const { return nullptr; } 1337 #endif 1338 }; 1339 #endif // SHARE_OPTO_CALLNODE_HPP