1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 #include "utilities/growableArray.hpp"
  36 
  37 // Portions of code courtesy of Clifford Click
  38 
  39 // Optimization - Graph Style
  40 
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class         CallLeafVectorNode;
  52 class     AllocateNode;
  53 class       AllocateArrayNode;
  54 class     AbstractLockNode;
  55 class       LockNode;
  56 class       UnlockNode;
  57 class FastLockNode;
  58 
  59 //------------------------------StartNode--------------------------------------
  60 // The method start node
  61 class StartNode : public MultiNode {
  62   virtual bool cmp( const Node &n ) const;
  63   virtual uint size_of() const; // Size is bigger
  64 public:
  65   const TypeTuple *_domain;
  66   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  67     init_class_id(Class_Start);
  68     init_req(0,this);
  69     init_req(1,root);
  70   }
  71   virtual int Opcode() const;
  72   virtual bool pinned() const { return true; };
  73   virtual const Type *bottom_type() const;
  74   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  75   virtual const Type* Value(PhaseGVN* phase) const;
  76   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  77   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  78   virtual const RegMask &in_RegMask(uint) const;
  79   virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
  80   virtual uint ideal_reg() const { return 0; }
  81 #ifndef PRODUCT
  82   virtual void  dump_spec(outputStream *st) const;
  83   virtual void  dump_compact_spec(outputStream *st) const;
  84 #endif
  85 };
  86 
  87 //------------------------------StartOSRNode-----------------------------------
  88 // The method start node for on stack replacement code
  89 class StartOSRNode : public StartNode {
  90 public:
  91   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  92   virtual int   Opcode() const;
  93 };
  94 
  95 
  96 //------------------------------ParmNode---------------------------------------
  97 // Incoming parameters
  98 class ParmNode : public ProjNode {
  99   static const char * const names[TypeFunc::Parms+1];
 100 public:
 101   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 102     init_class_id(Class_Parm);
 103   }
 104   virtual int Opcode() const;
 105   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 106   virtual uint ideal_reg() const;
 107 #ifndef PRODUCT
 108   virtual void dump_spec(outputStream *st) const;
 109   virtual void dump_compact_spec(outputStream *st) const;
 110 #endif
 111 };
 112 
 113 
 114 //------------------------------ReturnNode-------------------------------------
 115 // Return from subroutine node
 116 class ReturnNode : public Node {
 117 public:
 118   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 119   virtual int Opcode() const;
 120   virtual bool  is_CFG() const { return true; }
 121   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 122   virtual bool depends_only_on_test() const { return false; }
 123   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 124   virtual const Type* Value(PhaseGVN* phase) const;
 125   virtual uint ideal_reg() const { return NotAMachineReg; }
 126   virtual uint match_edge(uint idx) const;
 127 #ifndef PRODUCT
 128   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 129 #endif
 130 };
 131 
 132 
 133 //------------------------------RethrowNode------------------------------------
 134 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 135 // ends the current basic block like a ReturnNode.  Restores registers and
 136 // unwinds stack.  Rethrow happens in the caller's method.
 137 class RethrowNode : public Node {
 138  public:
 139   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 140   virtual int Opcode() const;
 141   virtual bool  is_CFG() const { return true; }
 142   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 143   virtual bool depends_only_on_test() const { return false; }
 144   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 145   virtual const Type* Value(PhaseGVN* phase) const;
 146   virtual uint match_edge(uint idx) const;
 147   virtual uint ideal_reg() const { return NotAMachineReg; }
 148 #ifndef PRODUCT
 149   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 150 #endif
 151 };
 152 
 153 
 154 //------------------------------TailCallNode-----------------------------------
 155 // Pop stack frame and jump indirect
 156 class TailCallNode : public ReturnNode {
 157 public:
 158   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 159     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 160     init_req(TypeFunc::Parms, target);
 161     init_req(TypeFunc::Parms+1, moop);
 162   }
 163 
 164   virtual int Opcode() const;
 165   virtual uint match_edge(uint idx) const;
 166 };
 167 
 168 //------------------------------TailJumpNode-----------------------------------
 169 // Pop stack frame and jump indirect
 170 class TailJumpNode : public ReturnNode {
 171 public:
 172   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 173     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 174     init_req(TypeFunc::Parms, target);
 175     init_req(TypeFunc::Parms+1, ex_oop);
 176   }
 177 
 178   virtual int Opcode() const;
 179   virtual uint match_edge(uint idx) const;
 180 };
 181 
 182 //-------------------------------JVMState-------------------------------------
 183 // A linked list of JVMState nodes captures the whole interpreter state,
 184 // plus GC roots, for all active calls at some call site in this compilation
 185 // unit.  (If there is no inlining, then the list has exactly one link.)
 186 // This provides a way to map the optimized program back into the interpreter,
 187 // or to let the GC mark the stack.
 188 class JVMState : public ResourceObj {
 189   friend class VMStructs;
 190 public:
 191   typedef enum {
 192     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 193     Reexecute_False     =  0, // false       -- do not reexecute
 194     Reexecute_True      =  1  // true        -- reexecute the bytecode
 195   } ReexecuteState; //Reexecute State
 196 
 197 private:
 198   JVMState*         _caller;    // List pointer for forming scope chains
 199   uint              _depth;     // One more than caller depth, or one.
 200   uint              _locoff;    // Offset to locals in input edge mapping
 201   uint              _stkoff;    // Offset to stack in input edge mapping
 202   uint              _monoff;    // Offset to monitors in input edge mapping
 203   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 204   uint              _endoff;    // Offset to end of input edge mapping
 205   uint              _sp;        // Java Expression Stack Pointer for this state
 206   int               _bci;       // Byte Code Index of this JVM point
 207   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 208   ciMethod*         _method;    // Method Pointer
 209   SafePointNode*    _map;       // Map node associated with this scope
 210 public:
 211   friend class Compile;
 212   friend class PreserveReexecuteState;
 213 
 214   // Because JVMState objects live over the entire lifetime of the
 215   // Compile object, they are allocated into the comp_arena, which
 216   // does not get resource marked or reset during the compile process
 217   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 218   void operator delete( void * ) { } // fast deallocation
 219 
 220   // Create a new JVMState, ready for abstract interpretation.
 221   JVMState(ciMethod* method, JVMState* caller);
 222   JVMState(int stack_size);  // root state; has a null method
 223 
 224   // Access functions for the JVM
 225   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 226   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 227   uint              locoff() const { return _locoff; }
 228   uint              stkoff() const { return _stkoff; }
 229   uint              argoff() const { return _stkoff + _sp; }
 230   uint              monoff() const { return _monoff; }
 231   uint              scloff() const { return _scloff; }
 232   uint              endoff() const { return _endoff; }
 233   uint              oopoff() const { return debug_end(); }
 234 
 235   int            loc_size() const { return stkoff() - locoff(); }
 236   int            stk_size() const { return monoff() - stkoff(); }
 237   int            mon_size() const { return scloff() - monoff(); }
 238   int            scl_size() const { return endoff() - scloff(); }
 239 
 240   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 241   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 242   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 243   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 244 
 245   uint                      sp() const { return _sp; }
 246   int                      bci() const { return _bci; }
 247   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 248   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 249   bool              has_method() const { return _method != nullptr; }
 250   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 251   JVMState*             caller() const { return _caller; }
 252   SafePointNode*           map() const { return _map; }
 253   uint                   depth() const { return _depth; }
 254   uint             debug_start() const; // returns locoff of root caller
 255   uint               debug_end() const; // returns endoff of self
 256   uint              debug_size() const {
 257     return loc_size() + sp() + mon_size() + scl_size();
 258   }
 259   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 260 
 261   // Returns the JVM state at the desired depth (1 == root).
 262   JVMState* of_depth(int d) const;
 263 
 264   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 265   bool same_calls_as(const JVMState* that) const;
 266 
 267   // Monitors (monitors are stored as (boxNode, objNode) pairs
 268   enum { logMonitorEdges = 1 };
 269   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 270   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 271   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 272   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 273   bool is_monitor_box(uint off)    const {
 274     assert(is_mon(off), "should be called only for monitor edge");
 275     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 276   }
 277   bool is_monitor_use(uint off)    const { return (is_mon(off)
 278                                                    && is_monitor_box(off))
 279                                              || (caller() && caller()->is_monitor_use(off)); }
 280 
 281   // Initialization functions for the JVM
 282   void              set_locoff(uint off) { _locoff = off; }
 283   void              set_stkoff(uint off) { _stkoff = off; }
 284   void              set_monoff(uint off) { _monoff = off; }
 285   void              set_scloff(uint off) { _scloff = off; }
 286   void              set_endoff(uint off) { _endoff = off; }
 287   void              set_offsets(uint off) {
 288     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 289   }
 290   void              set_map(SafePointNode* map) { _map = map; }
 291   void              bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode
 292   void              set_sp(uint sp) { _sp = sp; }
 293                     // _reexecute is initialized to "undefined" for a new bci
 294   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 295   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 296 
 297   // Miscellaneous utility functions
 298   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 299   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 300   void      set_map_deep(SafePointNode *map);// reset map for all callers
 301   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 302   int       interpreter_frame_size() const;
 303 
 304 #ifndef PRODUCT
 305   void      print_method_with_lineno(outputStream* st, bool show_name) const;
 306   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 307   void      dump_spec(outputStream *st) const;
 308   void      dump_on(outputStream* st) const;
 309   void      dump() const {
 310     dump_on(tty);
 311   }
 312 #endif
 313 };
 314 
 315 //------------------------------SafePointNode----------------------------------
 316 // A SafePointNode is a subclass of a MultiNode for convenience (and
 317 // potential code sharing) only - conceptually it is independent of
 318 // the Node semantics.
 319 class SafePointNode : public MultiNode {
 320   friend JVMState;
 321   friend class GraphKit;
 322   friend class VMStructs;
 323 
 324   virtual bool           cmp( const Node &n ) const;
 325   virtual uint           size_of() const;       // Size is bigger
 326 
 327 protected:
 328   JVMState* const _jvms;      // Pointer to list of JVM State objects
 329   // Many calls take *all* of memory as input,
 330   // but some produce a limited subset of that memory as output.
 331   // The adr_type reports the call's behavior as a store, not a load.
 332   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 333   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 334   bool            _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States
 335 
 336   void set_jvms(JVMState* s) {
 337   assert(s != nullptr, "assign null value to _jvms");
 338     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 339   }
 340 public:
 341   SafePointNode(uint edges, JVMState* jvms,
 342                 // A plain safepoint advertises no memory effects (null):
 343                 const TypePtr* adr_type = nullptr)
 344     : MultiNode( edges ),
 345       _jvms(jvms),
 346       _adr_type(adr_type),
 347       _has_ea_local_in_scope(false)
 348   {
 349     init_class_id(Class_SafePoint);
 350   }
 351 
 352   JVMState* jvms() const { return _jvms; }
 353   virtual bool needs_deep_clone_jvms(Compile* C) { return false; }
 354   void clone_jvms(Compile* C) {
 355     if (jvms() != nullptr) {
 356       if (needs_deep_clone_jvms(C)) {
 357         set_jvms(jvms()->clone_deep(C));
 358         jvms()->set_map_deep(this);
 359       } else {
 360         jvms()->clone_shallow(C)->bind_map(this);
 361       }
 362     }
 363   }
 364 
 365  private:
 366   void verify_input(JVMState* jvms, uint idx) const {
 367     assert(verify_jvms(jvms), "jvms must match");
 368     Node* n = in(idx);
 369     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 370            in(idx + 1)->is_top(), "2nd half of long/double");
 371   }
 372 
 373  public:
 374   // Functionality from old debug nodes which has changed
 375   Node *local(JVMState* jvms, uint idx) const {
 376     verify_input(jvms, jvms->locoff() + idx);
 377     return in(jvms->locoff() + idx);
 378   }
 379   Node *stack(JVMState* jvms, uint idx) const {
 380     verify_input(jvms, jvms->stkoff() + idx);
 381     return in(jvms->stkoff() + idx);
 382   }
 383   Node *argument(JVMState* jvms, uint idx) const {
 384     verify_input(jvms, jvms->argoff() + idx);
 385     return in(jvms->argoff() + idx);
 386   }
 387   Node *monitor_box(JVMState* jvms, uint idx) const {
 388     assert(verify_jvms(jvms), "jvms must match");
 389     return in(jvms->monitor_box_offset(idx));
 390   }
 391   Node *monitor_obj(JVMState* jvms, uint idx) const {
 392     assert(verify_jvms(jvms), "jvms must match");
 393     return in(jvms->monitor_obj_offset(idx));
 394   }
 395 
 396   void  set_local(JVMState* jvms, uint idx, Node *c);
 397 
 398   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 399     assert(verify_jvms(jvms), "jvms must match");
 400     set_req(jvms->stkoff() + idx, c);
 401   }
 402   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 403     assert(verify_jvms(jvms), "jvms must match");
 404     set_req(jvms->argoff() + idx, c);
 405   }
 406   void ensure_stack(JVMState* jvms, uint stk_size) {
 407     assert(verify_jvms(jvms), "jvms must match");
 408     int grow_by = (int)stk_size - (int)jvms->stk_size();
 409     if (grow_by > 0)  grow_stack(jvms, grow_by);
 410   }
 411   void grow_stack(JVMState* jvms, uint grow_by);
 412   // Handle monitor stack
 413   void push_monitor( const FastLockNode *lock );
 414   void pop_monitor ();
 415   Node *peek_monitor_box() const;
 416   Node *peek_monitor_obj() const;
 417   // Peek Operand Stacks, JVMS 2.6.2
 418   Node* peek_operand(uint off = 0) const;
 419 
 420   // Access functions for the JVM
 421   Node *control  () const { return in(TypeFunc::Control  ); }
 422   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 423   Node *memory   () const { return in(TypeFunc::Memory   ); }
 424   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 425   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 426 
 427   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 428   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 429   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 430 
 431   MergeMemNode* merged_memory() const {
 432     return in(TypeFunc::Memory)->as_MergeMem();
 433   }
 434 
 435   // The parser marks useless maps as dead when it's done with them:
 436   bool is_killed() { return in(TypeFunc::Control) == nullptr; }
 437 
 438   // Exception states bubbling out of subgraphs such as inlined calls
 439   // are recorded here.  (There might be more than one, hence the "next".)
 440   // This feature is used only for safepoints which serve as "maps"
 441   // for JVM states during parsing, intrinsic expansion, etc.
 442   SafePointNode*         next_exception() const;
 443   void               set_next_exception(SafePointNode* n);
 444   bool                   has_exceptions() const { return next_exception() != nullptr; }
 445 
 446   // Helper methods to operate on replaced nodes
 447   ReplacedNodes replaced_nodes() const {
 448     return _replaced_nodes;
 449   }
 450 
 451   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 452     _replaced_nodes = replaced_nodes;
 453   }
 454 
 455   void clone_replaced_nodes() {
 456     _replaced_nodes.clone();
 457   }
 458   void record_replaced_node(Node* initial, Node* improved) {
 459     _replaced_nodes.record(initial, improved);
 460   }
 461   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 462     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 463   }
 464   void delete_replaced_nodes() {
 465     _replaced_nodes.reset();
 466   }
 467   void apply_replaced_nodes(uint idx) {
 468     _replaced_nodes.apply(this, idx);
 469   }
 470   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 471     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 472   }
 473   bool has_replaced_nodes() const {
 474     return !_replaced_nodes.is_empty();
 475   }
 476   void set_has_ea_local_in_scope(bool b) {
 477     _has_ea_local_in_scope = b;
 478   }
 479   bool has_ea_local_in_scope() const {
 480     return _has_ea_local_in_scope;
 481   }
 482 
 483   void disconnect_from_root(PhaseIterGVN *igvn);
 484 
 485   // Standard Node stuff
 486   virtual int            Opcode() const;
 487   virtual bool           pinned() const { return true; }
 488   virtual const Type*    Value(PhaseGVN* phase) const;
 489   virtual const Type*    bottom_type() const { return Type::CONTROL; }
 490   virtual const TypePtr* adr_type() const { return _adr_type; }
 491   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 492   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 493   virtual Node*          Identity(PhaseGVN* phase);
 494   virtual uint           ideal_reg() const { return 0; }
 495   virtual const RegMask &in_RegMask(uint) const;
 496   virtual const RegMask &out_RegMask() const;
 497   virtual uint           match_edge(uint idx) const;
 498 
 499 #ifndef PRODUCT
 500   virtual void           dump_spec(outputStream *st) const;
 501 #endif
 502 };
 503 
 504 //------------------------------SafePointScalarObjectNode----------------------
 505 // A SafePointScalarObjectNode represents the state of a scalarized object
 506 // at a safepoint.
 507 class SafePointScalarObjectNode: public TypeNode {
 508   uint _first_index;              // First input edge relative index of a SafePoint node where
 509                                   // states of the scalarized object fields are collected.
 510   uint _depth;                    // Depth of the JVM state the _first_index field refers to
 511   uint _n_fields;                 // Number of non-static fields of the scalarized object.
 512 
 513   Node* _alloc;                   // Just for debugging purposes.
 514 
 515   virtual uint hash() const;
 516   virtual bool cmp( const Node &n ) const;
 517 
 518   uint first_index() const { return _first_index; }
 519 
 520 public:
 521   SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields);
 522 
 523   virtual int Opcode() const;
 524   virtual uint           ideal_reg() const;
 525   virtual const RegMask &in_RegMask(uint) const;
 526   virtual const RegMask &out_RegMask() const;
 527   virtual uint           match_edge(uint idx) const;
 528 
 529   uint first_index(JVMState* jvms) const {
 530     assert(jvms != nullptr, "missed JVMS");
 531     return jvms->of_depth(_depth)->scloff() + _first_index;
 532   }
 533   uint n_fields()    const { return _n_fields; }
 534 
 535 #ifdef ASSERT
 536   Node* alloc() const { return _alloc; }
 537 #endif
 538 
 539   virtual uint size_of() const { return sizeof(*this); }
 540 
 541   // Assumes that "this" is an argument to a safepoint node "s", and that
 542   // "new_call" is being created to correspond to "s".  But the difference
 543   // between the start index of the jvmstates of "new_call" and "s" is
 544   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 545   // corresponds appropriately to "this" in "new_call".  Assumes that
 546   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 547   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 548   SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const;
 549 
 550 #ifndef PRODUCT
 551   virtual void              dump_spec(outputStream *st) const;
 552 #endif
 553 };
 554 
 555 //------------------------------SafePointScalarMergeNode----------------------
 556 //
 557 // This class represents an allocation merge that is used as debug information
 558 // and had at least one of its input scalar replaced.
 559 //
 560 // The required inputs of this node, except the control, are pointers to
 561 // SafePointScalarObjectNodes that describe scalarized inputs of the original
 562 // allocation merge. The other(s) properties of the class are described below.
 563 //
 564 // _merge_pointer_idx : index in the SafePointNode's input array where the
 565 //   description of the _allocation merge_ starts. The index is zero based and
 566 //   relative to the SafePoint's scloff. The two entries in the SafePointNode's
 567 //   input array starting at '_merge_pointer_idx` are Phi nodes representing:
 568 //
 569 //   1) The original merge Phi. During rematerialization this input will only be
 570 //   used if the "selector Phi" (see below) indicates that the execution of the
 571 //   Phi took the path of a non scalarized input.
 572 //
 573 //   2) A "selector Phi". The output of this Phi will be '-1' if the execution
 574 //   of the method exercised a non scalarized input of the original Phi.
 575 //   Otherwise, the output will be >=0, and it will indicate the index-1 in the
 576 //   SafePointScalarMergeNode input array where the description of the
 577 //   scalarized object that should be used is.
 578 //
 579 // As an example, consider a Phi merging 3 inputs, of which the last 2 are
 580 // scalar replaceable.
 581 //
 582 //    Phi(Region, NSR, SR, SR)
 583 //
 584 // During scalar replacement the SR inputs will be changed to null:
 585 //
 586 //    Phi(Region, NSR, nullptr, nullptr)
 587 //
 588 // A corresponding selector Phi will be created with a configuration like this:
 589 //
 590 //    Phi(Region, -1, 0, 1)
 591 //
 592 // During execution of the compiled method, if the execution reaches a Trap, the
 593 // output of the selector Phi will tell if we need to rematerialize one of the
 594 // scalar replaced inputs or if we should just use the pointer returned by the
 595 // original Phi.
 596 
 597 class SafePointScalarMergeNode: public TypeNode {
 598   int _merge_pointer_idx;         // This is the first input edge relative
 599                                   // index of a SafePoint node where metadata information relative
 600                                   // to restoring the merge is stored. The corresponding input
 601                                   // in the associated SafePoint will point to a Phi representing
 602                                   // potential non-scalar replaced objects.
 603 
 604   virtual uint hash() const;
 605   virtual bool cmp( const Node &n ) const;
 606 
 607 public:
 608   SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx);
 609 
 610   virtual int            Opcode() const;
 611   virtual uint           ideal_reg() const;
 612   virtual const RegMask &in_RegMask(uint) const;
 613   virtual const RegMask &out_RegMask() const;
 614   virtual uint           match_edge(uint idx) const;
 615 
 616   virtual uint size_of() const { return sizeof(*this); }
 617 
 618   int merge_pointer_idx(JVMState* jvms) const {
 619     assert(jvms != nullptr, "JVMS reference is null.");
 620     return jvms->scloff() + _merge_pointer_idx;
 621   }
 622 
 623   int selector_idx(JVMState* jvms) const {
 624     assert(jvms != nullptr, "JVMS reference is null.");
 625     return jvms->scloff() + _merge_pointer_idx + 1;
 626   }
 627 
 628   // Assumes that "this" is an argument to a safepoint node "s", and that
 629   // "new_call" is being created to correspond to "s".  But the difference
 630   // between the start index of the jvmstates of "new_call" and "s" is
 631   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 632   // corresponds appropriately to "this" in "new_call".  Assumes that
 633   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 634   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 635   SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const;
 636 
 637 #ifndef PRODUCT
 638   virtual void              dump_spec(outputStream *st) const;
 639 #endif
 640 };
 641 
 642 // Simple container for the outgoing projections of a call.  Useful
 643 // for serious surgery on calls.
 644 class CallProjections {
 645 public:
 646   Node* fallthrough_proj;
 647   Node* fallthrough_catchproj;
 648   Node* fallthrough_memproj;
 649   Node* fallthrough_ioproj;
 650   Node* catchall_catchproj;
 651   Node* catchall_memproj;
 652   Node* catchall_ioproj;
 653   Node* exobj;
 654   uint nb_resproj;
 655   Node* resproj[1]; // at least one projection
 656 
 657   CallProjections(uint nbres) {
 658     fallthrough_proj      = nullptr;
 659     fallthrough_catchproj = nullptr;
 660     fallthrough_memproj   = nullptr;
 661     fallthrough_ioproj    = nullptr;
 662     catchall_catchproj    = nullptr;
 663     catchall_memproj      = nullptr;
 664     catchall_ioproj       = nullptr;
 665     exobj                 = nullptr;
 666     nb_resproj            = nbres;
 667     resproj[0]            = nullptr;
 668     for (uint i = 1; i < nb_resproj; i++) {
 669       resproj[i]          = nullptr;
 670     }
 671   }
 672 
 673 };
 674 
 675 class CallGenerator;
 676 
 677 //------------------------------CallNode---------------------------------------
 678 // Call nodes now subsume the function of debug nodes at callsites, so they
 679 // contain the functionality of a full scope chain of debug nodes.
 680 class CallNode : public SafePointNode {
 681   friend class VMStructs;
 682 
 683 protected:
 684   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase);
 685 
 686 public:
 687   const TypeFunc* _tf;          // Function type
 688   address         _entry_point; // Address of method being called
 689   float           _cnt;         // Estimate of number of times called
 690   CallGenerator*  _generator;   // corresponding CallGenerator for some late inline calls
 691   const char*     _name;        // Printable name, if _method is null
 692 
 693   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr)
 694     : SafePointNode(tf->domain_cc()->cnt(), jvms, adr_type),
 695       _tf(tf),
 696       _entry_point(addr),
 697       _cnt(COUNT_UNKNOWN),
 698       _generator(nullptr),
 699       _name(nullptr)
 700   {
 701     init_class_id(Class_Call);
 702   }
 703 
 704   const TypeFunc* tf()         const { return _tf; }
 705   address  entry_point()       const { return _entry_point; }
 706   float    cnt()               const { return _cnt; }
 707   CallGenerator* generator()   const { return _generator; }
 708 
 709   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 710   void set_entry_point(address p)       { _entry_point = p; }
 711   void set_cnt(float c)                 { _cnt = c; }
 712   void set_generator(CallGenerator* cg) { _generator = cg; }
 713 
 714   virtual const Type* bottom_type() const;
 715   virtual const Type* Value(PhaseGVN* phase) const;
 716   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 717   virtual Node* Identity(PhaseGVN* phase) { return this; }
 718   virtual bool        cmp(const Node &n) const;
 719   virtual uint        size_of() const = 0;
 720   virtual void        calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const;
 721   virtual Node*       match(const ProjNode* proj, const Matcher* m, const RegMask* mask);
 722   virtual uint        ideal_reg() const { return NotAMachineReg; }
 723   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 724   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 725   virtual bool        guaranteed_safepoint()  { return true; }
 726   // For macro nodes, the JVMState gets modified during expansion. If calls
 727   // use MachConstantBase, it gets modified during matching. So when cloning
 728   // the node the JVMState must be deep cloned. Default is to shallow clone.
 729   virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); }
 730 
 731   // Returns true if the call may modify n
 732   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase);
 733   // Does this node have a use of n other than in debug information?
 734   bool                has_non_debug_use(Node* n);
 735   bool                has_debug_use(Node* n);
 736   // Returns the unique CheckCastPP of a call
 737   // or result projection is there are several CheckCastPP
 738   // or returns null if there is no one.
 739   Node* result_cast();
 740   // Does this node returns pointer?
 741   bool returns_pointer() const {
 742     const TypeTuple* r = tf()->range_sig();
 743     return (!tf()->returns_inline_type_as_fields() &&
 744             r->cnt() > TypeFunc::Parms &&
 745             r->field_at(TypeFunc::Parms)->isa_ptr());
 746   }
 747 
 748   // Collect all the interesting edges from a call for use in
 749   // replacing the call by something else.  Used by macro expansion
 750   // and the late inlining support.
 751   CallProjections* extract_projections(bool separate_io_proj, bool do_asserts = true);
 752 
 753   virtual uint match_edge(uint idx) const;
 754 
 755   bool is_call_to_arraycopystub() const;
 756 
 757   virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {}
 758 
 759 #ifndef PRODUCT
 760   virtual void        dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;
 761   virtual void        dump_spec(outputStream* st) const;
 762 #endif
 763 };
 764 
 765 
 766 //------------------------------CallJavaNode-----------------------------------
 767 // Make a static or dynamic subroutine call node using Java calling
 768 // convention.  (The "Java" calling convention is the compiler's calling
 769 // convention, as opposed to the interpreter's or that of native C.)
 770 class CallJavaNode : public CallNode {
 771   friend class VMStructs;
 772 protected:
 773   virtual bool cmp( const Node &n ) const;
 774   virtual uint size_of() const; // Size is bigger
 775 
 776   bool    _optimized_virtual;
 777   bool    _method_handle_invoke;
 778   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 779   ciMethod* _method;               // Method being direct called
 780   bool    _arg_escape;             // ArgEscape in parameter list
 781 public:
 782   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method)
 783     : CallNode(tf, addr, TypePtr::BOTTOM),
 784       _optimized_virtual(false),
 785       _method_handle_invoke(false),
 786       _override_symbolic_info(false),
 787       _method(method),
 788       _arg_escape(false)
 789   {
 790     init_class_id(Class_CallJava);
 791   }
 792 
 793   virtual int   Opcode() const;
 794   ciMethod* method() const                 { return _method; }
 795   void  set_method(ciMethod *m)            { _method = m; }
 796   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 797   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 798   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 799   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 800   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 801   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 802   void  set_arg_escape(bool f)             { _arg_escape = f; }
 803   bool  arg_escape() const                 { return _arg_escape; }
 804   void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt);
 805 
 806   DEBUG_ONLY( bool validate_symbolic_info() const; )
 807 
 808 #ifndef PRODUCT
 809   virtual void  dump_spec(outputStream *st) const;
 810   virtual void  dump_compact_spec(outputStream *st) const;
 811 #endif
 812 };
 813 
 814 //------------------------------CallStaticJavaNode-----------------------------
 815 // Make a direct subroutine call using Java calling convention (for static
 816 // calls and optimized virtual calls, plus calls to wrappers for run-time
 817 // routines); generates static stub.
 818 class CallStaticJavaNode : public CallJavaNode {
 819   virtual bool cmp( const Node &n ) const;
 820   virtual uint size_of() const; // Size is bigger
 821 
 822   bool remove_useless_allocation(PhaseGVN *phase, Node* ctl, Node* mem, Node* unc_arg);
 823 
 824 public:
 825   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method)
 826     : CallJavaNode(tf, addr, method) {
 827     init_class_id(Class_CallStaticJava);
 828     if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) {
 829       init_flags(Flag_is_macro);
 830       C->add_macro_node(this);
 831     }
 832     const TypeTuple *r = tf->range_sig();
 833     if (InlineTypeReturnedAsFields &&
 834         method != nullptr &&
 835         method->is_method_handle_intrinsic() &&
 836         r->cnt() > TypeFunc::Parms &&
 837         r->field_at(TypeFunc::Parms)->isa_oopptr() &&
 838         r->field_at(TypeFunc::Parms)->is_oopptr()->can_be_inline_type()) {
 839       // Make sure this call is processed by PhaseMacroExpand::expand_mh_intrinsic_return
 840       init_flags(Flag_is_macro);
 841       C->add_macro_node(this);
 842     }
 843   }
 844   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type)
 845     : CallJavaNode(tf, addr, nullptr) {
 846     init_class_id(Class_CallStaticJava);
 847     // This node calls a runtime stub, which often has narrow memory effects.
 848     _adr_type = adr_type;
 849     _name = name;
 850   }
 851 
 852   // If this is an uncommon trap, return the request code, else zero.
 853   int uncommon_trap_request() const;
 854   bool is_uncommon_trap() const;
 855   static int extract_uncommon_trap_request(const Node* call);
 856 
 857   bool is_boxing_method() const {
 858     return is_macro() && (method() != nullptr) && method()->is_boxing_method();
 859   }
 860   // Late inlining modifies the JVMState, so we need to deep clone it
 861   // when the call node is cloned (because it is macro node).
 862   virtual bool needs_deep_clone_jvms(Compile* C) {
 863     return is_boxing_method() || CallNode::needs_deep_clone_jvms(C);
 864   }
 865 
 866   virtual int         Opcode() const;
 867   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 868 
 869 #ifndef PRODUCT
 870   virtual void        dump_spec(outputStream *st) const;
 871   virtual void        dump_compact_spec(outputStream *st) const;
 872 #endif
 873 };
 874 
 875 //------------------------------CallDynamicJavaNode----------------------------
 876 // Make a dispatched call using Java calling convention.
 877 class CallDynamicJavaNode : public CallJavaNode {
 878   virtual bool cmp( const Node &n ) const;
 879   virtual uint size_of() const; // Size is bigger
 880 public:
 881   CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index)
 882     : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) {
 883     init_class_id(Class_CallDynamicJava);
 884   }
 885 
 886   // Late inlining modifies the JVMState, so we need to deep clone it
 887   // when the call node is cloned.
 888   virtual bool needs_deep_clone_jvms(Compile* C) {
 889     return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C);
 890   }
 891 
 892   int _vtable_index;
 893   virtual int   Opcode() const;
 894   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 895 #ifndef PRODUCT
 896   virtual void  dump_spec(outputStream *st) const;
 897 #endif
 898 };
 899 
 900 //------------------------------CallRuntimeNode--------------------------------
 901 // Make a direct subroutine call node into compiled C++ code.
 902 class CallRuntimeNode : public CallNode {
 903 protected:
 904   virtual bool cmp( const Node &n ) const;
 905   virtual uint size_of() const; // Size is bigger
 906 public:
 907   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 908                   const TypePtr* adr_type, JVMState* jvms = nullptr)
 909     : CallNode(tf, addr, adr_type, jvms)
 910   {
 911     init_class_id(Class_CallRuntime);
 912     _name = name;
 913   }
 914 
 915   virtual int   Opcode() const;
 916   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 917 
 918 #ifndef PRODUCT
 919   virtual void  dump_spec(outputStream *st) const;
 920 #endif
 921 };
 922 
 923 //------------------------------CallLeafNode-----------------------------------
 924 // Make a direct subroutine call node into compiled C++ code, without
 925 // safepoints
 926 class CallLeafNode : public CallRuntimeNode {
 927 public:
 928   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 929                const TypePtr* adr_type)
 930     : CallRuntimeNode(tf, addr, name, adr_type)
 931   {
 932     init_class_id(Class_CallLeaf);
 933   }
 934   virtual int   Opcode() const;
 935   virtual bool        guaranteed_safepoint()  { return false; }
 936 #ifndef PRODUCT
 937   virtual void  dump_spec(outputStream *st) const;
 938 #endif
 939 };
 940 
 941 //------------------------------CallLeafNoFPNode-------------------------------
 942 // CallLeafNode, not using floating point or using it in the same manner as
 943 // the generated code
 944 class CallLeafNoFPNode : public CallLeafNode {
 945 public:
 946   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 947                    const TypePtr* adr_type)
 948     : CallLeafNode(tf, addr, name, adr_type)
 949   {
 950     init_class_id(Class_CallLeafNoFP);
 951   }
 952   virtual int   Opcode() const;
 953   virtual uint match_edge(uint idx) const;
 954 };
 955 
 956 //------------------------------CallLeafVectorNode-------------------------------
 957 // CallLeafNode but calling with vector calling convention instead.
 958 class CallLeafVectorNode : public CallLeafNode {
 959 private:
 960   uint _num_bits;
 961 protected:
 962   virtual bool cmp( const Node &n ) const;
 963   virtual uint size_of() const; // Size is bigger
 964 public:
 965   CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name,
 966                    const TypePtr* adr_type, uint num_bits)
 967     : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits)
 968   {
 969   }
 970   virtual int   Opcode() const;
 971   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 972 };
 973 
 974 
 975 //------------------------------Allocate---------------------------------------
 976 // High-level memory allocation
 977 //
 978 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 979 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 980 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 981 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 982 //  order to differentiate the uses of the projection on the normal control path from
 983 //  those on the exception return path.
 984 //
 985 class AllocateNode : public CallNode {
 986 public:
 987   enum {
 988     // Output:
 989     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 990     // Inputs:
 991     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 992     KlassNode,                        // type (maybe dynamic) of the obj.
 993     InitialTest,                      // slow-path test (may be constant)
 994     ALength,                          // array length (or TOP if none)
 995     ValidLengthTest,
 996     InlineType,                       // InlineTypeNode if this is an inline type allocation
 997     DefaultValue,                     // default value in case of non-flat inline type array
 998     RawDefaultValue,                  // same as above but as raw machine word
 999     ParmLimit
1000   };
1001 
1002   static const TypeFunc* alloc_type(const Type* t) {
1003     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
1004     fields[AllocSize]   = TypeInt::POS;
1005     fields[KlassNode]   = TypeInstPtr::NOTNULL;
1006     fields[InitialTest] = TypeInt::BOOL;
1007     fields[ALength]     = t;  // length (can be a bad length)
1008     fields[ValidLengthTest] = TypeInt::BOOL;
1009     fields[InlineType] = Type::BOTTOM;
1010     fields[DefaultValue] = TypeInstPtr::NOTNULL;
1011     fields[RawDefaultValue] = TypeX_X;
1012 
1013     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
1014 
1015     // create result type (range)
1016     fields = TypeTuple::fields(1);
1017     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
1018 
1019     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1020 
1021     return TypeFunc::make(domain, range);
1022   }
1023 
1024   // Result of Escape Analysis
1025   bool _is_scalar_replaceable;
1026   bool _is_non_escaping;
1027   // True when MemBar for new is redundant with MemBar at initialzer exit
1028   bool _is_allocation_MemBar_redundant;
1029   bool _larval;
1030 
1031   virtual uint size_of() const; // Size is bigger
1032   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
1033                Node *size, Node *klass_node, Node *initial_test,
1034                InlineTypeNode* inline_type_node = nullptr);
1035   // Expansion modifies the JVMState, so we need to deep clone it
1036   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1037   virtual int Opcode() const;
1038   virtual uint ideal_reg() const { return Op_RegP; }
1039   virtual bool        guaranteed_safepoint()  { return false; }
1040 
1041   // allocations do not modify their arguments
1042   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;}
1043 
1044   // Pattern-match a possible usage of AllocateNode.
1045   // Return null if no allocation is recognized.
1046   // The operand is the pointer produced by the (possible) allocation.
1047   // It must be a projection of the Allocate or its subsequent CastPP.
1048   // (Note:  This function is defined in file graphKit.cpp, near
1049   // GraphKit::new_instance/new_array, whose output it recognizes.)
1050   // The 'ptr' may not have an offset unless the 'offset' argument is given.
1051   static AllocateNode* Ideal_allocation(Node* ptr);
1052 
1053   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
1054   // an offset, which is reported back to the caller.
1055   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
1056   static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase,
1057                                         intptr_t& offset);
1058 
1059   // Dig the klass operand out of a (possible) allocation site.
1060   static Node* Ideal_klass(Node* ptr, PhaseValues* phase) {
1061     AllocateNode* allo = Ideal_allocation(ptr);
1062     return (allo == nullptr) ? nullptr : allo->in(KlassNode);
1063   }
1064 
1065   // Conservatively small estimate of offset of first non-header byte.
1066   int minimum_header_size() {
1067     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
1068                                 instanceOopDesc::base_offset_in_bytes();
1069   }
1070 
1071   // Return the corresponding initialization barrier (or null if none).
1072   // Walks out edges to find it...
1073   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1074   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1075   InitializeNode* initialization();
1076 
1077   // Convenience for initialization->maybe_set_complete(phase)
1078   bool maybe_set_complete(PhaseGVN* phase);
1079 
1080   // Return true if allocation doesn't escape thread, its escape state
1081   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
1082   // is true when its allocation's escape state is noEscape or
1083   // ArgEscape. In case allocation's InitializeNode is null, check
1084   // AlllocateNode._is_non_escaping flag.
1085   // AlllocateNode._is_non_escaping is true when its escape state is
1086   // noEscape.
1087   bool does_not_escape_thread() {
1088     InitializeNode* init = nullptr;
1089     return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape());
1090   }
1091 
1092   // If object doesn't escape in <.init> method and there is memory barrier
1093   // inserted at exit of its <.init>, memory barrier for new is not necessary.
1094   // Inovke this method when MemBar at exit of initializer and post-dominate
1095   // allocation node.
1096   void compute_MemBar_redundancy(ciMethod* initializer);
1097   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
1098 
1099   Node* make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem);
1100 };
1101 
1102 //------------------------------AllocateArray---------------------------------
1103 //
1104 // High-level array allocation
1105 //
1106 class AllocateArrayNode : public AllocateNode {
1107 private:
1108   bool _null_free;
1109 
1110 public:
1111   AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node,
1112                     Node* initial_test, Node* count_val, Node* valid_length_test,
1113                     Node* default_value, Node* raw_default_value)
1114     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
1115                    initial_test)
1116   {
1117     init_class_id(Class_AllocateArray);
1118     set_req(AllocateNode::ALength,        count_val);
1119     set_req(AllocateNode::ValidLengthTest, valid_length_test);
1120     init_req(AllocateNode::DefaultValue,  default_value);
1121     init_req(AllocateNode::RawDefaultValue, raw_default_value);
1122     _null_free = false;
1123   }
1124   virtual uint size_of() const { return sizeof(*this); }
1125   virtual int Opcode() const;
1126 
1127   // Dig the length operand out of a array allocation site.
1128   Node* Ideal_length() {
1129     return in(AllocateNode::ALength);
1130   }
1131 
1132   // Dig the length operand out of a array allocation site and narrow the
1133   // type with a CastII, if necesssary
1134   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true);
1135 
1136   // Pattern-match a possible usage of AllocateArrayNode.
1137   // Return null if no allocation is recognized.
1138   static AllocateArrayNode* Ideal_array_allocation(Node* ptr) {
1139     AllocateNode* allo = Ideal_allocation(ptr);
1140     return (allo == nullptr || !allo->is_AllocateArray())
1141            ? nullptr : allo->as_AllocateArray();
1142   }
1143 
1144   void set_null_free() { _null_free = true; }
1145   bool is_null_free() const { return _null_free; }
1146 };
1147 
1148 //------------------------------AbstractLockNode-----------------------------------
1149 class AbstractLockNode: public CallNode {
1150 private:
1151   enum {
1152     Regular = 0,  // Normal lock
1153     NonEscObj,    // Lock is used for non escaping object
1154     Coarsened,    // Lock was coarsened
1155     Nested        // Nested lock
1156   } _kind;
1157 
1158   static const char* _kind_names[Nested+1];
1159 
1160 #ifndef PRODUCT
1161   NamedCounter* _counter;
1162 #endif
1163 
1164 protected:
1165   // helper functions for lock elimination
1166   //
1167 
1168   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1169                             GrowableArray<AbstractLockNode*> &lock_ops);
1170   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1171                                        GrowableArray<AbstractLockNode*> &lock_ops);
1172   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1173                                GrowableArray<AbstractLockNode*> &lock_ops);
1174   LockNode *find_matching_lock(UnlockNode* unlock);
1175 
1176   // Update the counter to indicate that this lock was eliminated.
1177   void set_eliminated_lock_counter() PRODUCT_RETURN;
1178 
1179 public:
1180   AbstractLockNode(const TypeFunc *tf)
1181     : CallNode(tf, nullptr, TypeRawPtr::BOTTOM),
1182       _kind(Regular)
1183   {
1184 #ifndef PRODUCT
1185     _counter = nullptr;
1186 #endif
1187   }
1188   virtual int Opcode() const = 0;
1189   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1190   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1191   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1192   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1193 
1194   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1195 
1196   virtual uint size_of() const { return sizeof(*this); }
1197 
1198   bool is_eliminated()  const { return (_kind != Regular); }
1199   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1200   bool is_coarsened()   const { return (_kind == Coarsened); }
1201   bool is_nested()      const { return (_kind == Nested); }
1202 
1203   const char * kind_as_string() const;
1204   void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const;
1205 
1206   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1207   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1208   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1209 
1210   // locking does not modify its arguments
1211   virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; }
1212 
1213 #ifndef PRODUCT
1214   void create_lock_counter(JVMState* s);
1215   NamedCounter* counter() const { return _counter; }
1216   virtual void dump_spec(outputStream* st) const;
1217   virtual void dump_compact_spec(outputStream* st) const;
1218 #endif
1219 };
1220 
1221 //------------------------------Lock---------------------------------------
1222 // High-level lock operation
1223 //
1224 // This is a subclass of CallNode because it is a macro node which gets expanded
1225 // into a code sequence containing a call.  This node takes 3 "parameters":
1226 //    0  -  object to lock
1227 //    1 -   a BoxLockNode
1228 //    2 -   a FastLockNode
1229 //
1230 class LockNode : public AbstractLockNode {
1231 public:
1232 
1233   static const TypeFunc *lock_type() {
1234     // create input type (domain)
1235     const Type **fields = TypeTuple::fields(3);
1236     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1237     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1238     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1239     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1240 
1241     // create result type (range)
1242     fields = TypeTuple::fields(0);
1243 
1244     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1245 
1246     return TypeFunc::make(domain, range);
1247   }
1248 
1249   virtual int Opcode() const;
1250   virtual uint size_of() const; // Size is bigger
1251   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1252     init_class_id(Class_Lock);
1253     init_flags(Flag_is_macro);
1254     C->add_macro_node(this);
1255   }
1256   virtual bool        guaranteed_safepoint()  { return false; }
1257 
1258   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1259   // Expansion modifies the JVMState, so we need to deep clone it
1260   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1261 
1262   bool is_nested_lock_region(); // Is this Lock nested?
1263   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1264 };
1265 
1266 //------------------------------Unlock---------------------------------------
1267 // High-level unlock operation
1268 class UnlockNode : public AbstractLockNode {
1269 private:
1270 #ifdef ASSERT
1271   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1272 #endif
1273 public:
1274   virtual int Opcode() const;
1275   virtual uint size_of() const; // Size is bigger
1276   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1277 #ifdef ASSERT
1278     , _dbg_jvms(nullptr)
1279 #endif
1280   {
1281     init_class_id(Class_Unlock);
1282     init_flags(Flag_is_macro);
1283     C->add_macro_node(this);
1284   }
1285   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1286   // unlock is never a safepoint
1287   virtual bool        guaranteed_safepoint()  { return false; }
1288 #ifdef ASSERT
1289   void set_dbg_jvms(JVMState* s) {
1290     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1291   }
1292   JVMState* dbg_jvms() const { return _dbg_jvms; }
1293 #else
1294   JVMState* dbg_jvms() const { return nullptr; }
1295 #endif
1296 };
1297 #endif // SHARE_OPTO_CALLNODE_HPP