1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 #include "utilities/growableArray.hpp"
  36 
  37 // Portions of code courtesy of Clifford Click
  38 
  39 // Optimization - Graph Style
  40 
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class         CallLeafVectorNode;
  52 class     AllocateNode;
  53 class       AllocateArrayNode;
  54 class     AbstractLockNode;
  55 class       LockNode;
  56 class       UnlockNode;
  57 class FastLockNode;
  58 
  59 //------------------------------StartNode--------------------------------------
  60 // The method start node
  61 class StartNode : public MultiNode {
  62   virtual bool cmp( const Node &n ) const;
  63   virtual uint size_of() const; // Size is bigger
  64 public:
  65   const TypeTuple *_domain;
  66   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  67     init_class_id(Class_Start);
  68     init_req(0,this);
  69     init_req(1,root);
  70   }
  71   virtual int Opcode() const;
  72   virtual bool pinned() const { return true; };
  73   virtual const Type *bottom_type() const;
  74   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  75   virtual const Type* Value(PhaseGVN* phase) const;
  76   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  77   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  78   virtual const RegMask &in_RegMask(uint) const;
  79   virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
  80   virtual uint ideal_reg() const { return 0; }
  81 #ifndef PRODUCT
  82   virtual void  dump_spec(outputStream *st) const;
  83   virtual void  dump_compact_spec(outputStream *st) const;
  84 #endif
  85 };
  86 
  87 //------------------------------StartOSRNode-----------------------------------
  88 // The method start node for on stack replacement code
  89 class StartOSRNode : public StartNode {
  90 public:
  91   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  92   virtual int   Opcode() const;
  93 };
  94 
  95 
  96 //------------------------------ParmNode---------------------------------------
  97 // Incoming parameters
  98 class ParmNode : public ProjNode {
  99   static const char * const names[TypeFunc::Parms+1];
 100 public:
 101   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 102     init_class_id(Class_Parm);
 103   }
 104   virtual int Opcode() const;
 105   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 106   virtual uint ideal_reg() const;
 107 #ifndef PRODUCT
 108   virtual void dump_spec(outputStream *st) const;
 109   virtual void dump_compact_spec(outputStream *st) const;
 110 #endif
 111 };
 112 
 113 
 114 //------------------------------ReturnNode-------------------------------------
 115 // Return from subroutine node
 116 class ReturnNode : public Node {
 117 public:
 118   ReturnNode(uint edges, Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr);
 119   virtual int Opcode() const;
 120   virtual bool  is_CFG() const { return true; }
 121   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 122   virtual bool depends_only_on_test() const { return false; }
 123   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 124   virtual const Type* Value(PhaseGVN* phase) const;
 125   virtual uint ideal_reg() const { return NotAMachineReg; }
 126   virtual uint match_edge(uint idx) const;
 127 #ifndef PRODUCT
 128   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 129 #endif
 130 };
 131 
 132 
 133 //------------------------------RethrowNode------------------------------------
 134 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 135 // ends the current basic block like a ReturnNode.  Restores registers and
 136 // unwinds stack.  Rethrow happens in the caller's method.
 137 class RethrowNode : public Node {
 138  public:
 139   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 140   virtual int Opcode() const;
 141   virtual bool  is_CFG() const { return true; }
 142   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 143   virtual bool depends_only_on_test() const { return false; }
 144   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 145   virtual const Type* Value(PhaseGVN* phase) const;
 146   virtual uint match_edge(uint idx) const;
 147   virtual uint ideal_reg() const { return NotAMachineReg; }
 148 #ifndef PRODUCT
 149   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 150 #endif
 151 };
 152 
 153 
 154 //------------------------------ForwardExceptionNode---------------------------
 155 // Pop stack frame and jump to StubRoutines::forward_exception_entry()
 156 class ForwardExceptionNode : public ReturnNode {
 157 public:
 158   ForwardExceptionNode(Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr)
 159     : ReturnNode(TypeFunc::Parms, cntrl, i_o, memory, frameptr, retadr) {
 160   }
 161 
 162   virtual int Opcode() const;
 163 };
 164 
 165 //------------------------------TailCallNode-----------------------------------
 166 // Pop stack frame and jump indirect
 167 class TailCallNode : public ReturnNode {
 168 public:
 169   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 170     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 171     init_req(TypeFunc::Parms, target);
 172     init_req(TypeFunc::Parms+1, moop);
 173   }
 174 
 175   virtual int Opcode() const;
 176   virtual uint match_edge(uint idx) const;
 177 };
 178 
 179 //------------------------------TailJumpNode-----------------------------------
 180 // Pop stack frame and jump indirect
 181 class TailJumpNode : public ReturnNode {
 182 public:
 183   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 184     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 185     init_req(TypeFunc::Parms, target);
 186     init_req(TypeFunc::Parms+1, ex_oop);
 187   }
 188 
 189   virtual int Opcode() const;
 190   virtual uint match_edge(uint idx) const;
 191 };
 192 
 193 //-------------------------------JVMState-------------------------------------
 194 // A linked list of JVMState nodes captures the whole interpreter state,
 195 // plus GC roots, for all active calls at some call site in this compilation
 196 // unit.  (If there is no inlining, then the list has exactly one link.)
 197 // This provides a way to map the optimized program back into the interpreter,
 198 // or to let the GC mark the stack.
 199 class JVMState : public ResourceObj {
 200 public:
 201   typedef enum {
 202     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 203     Reexecute_False     =  0, // false       -- do not reexecute
 204     Reexecute_True      =  1  // true        -- reexecute the bytecode
 205   } ReexecuteState; //Reexecute State
 206 
 207 private:
 208   JVMState*         _caller;    // List pointer for forming scope chains
 209   uint              _depth;     // One more than caller depth, or one.
 210   uint              _locoff;    // Offset to locals in input edge mapping
 211   uint              _stkoff;    // Offset to stack in input edge mapping
 212   uint              _monoff;    // Offset to monitors in input edge mapping
 213   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 214   uint              _endoff;    // Offset to end of input edge mapping
 215   uint              _sp;        // Java Expression Stack Pointer for this state
 216   int               _bci;       // Byte Code Index of this JVM point
 217   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 218   ciMethod*         _method;    // Method Pointer
 219   ciInstance*       _receiver_info; // Constant receiver instance for compiled lambda forms
 220   SafePointNode*    _map;       // Map node associated with this scope
 221 public:
 222   friend class Compile;
 223   friend class PreserveReexecuteState;
 224 
 225   // Because JVMState objects live over the entire lifetime of the
 226   // Compile object, they are allocated into the comp_arena, which
 227   // does not get resource marked or reset during the compile process
 228   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 229   void operator delete( void * ) { } // fast deallocation
 230 
 231   // Create a new JVMState, ready for abstract interpretation.
 232   JVMState(ciMethod* method, JVMState* caller);
 233   JVMState(int stack_size);  // root state; has a null method
 234 
 235   // Access functions for the JVM
 236   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 237   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 238   uint              locoff() const { return _locoff; }
 239   uint              stkoff() const { return _stkoff; }
 240   uint              argoff() const { return _stkoff + _sp; }
 241   uint              monoff() const { return _monoff; }
 242   uint              scloff() const { return _scloff; }
 243   uint              endoff() const { return _endoff; }
 244   uint              oopoff() const { return debug_end(); }
 245 
 246   int            loc_size() const { return stkoff() - locoff(); }
 247   int            stk_size() const { return monoff() - stkoff(); }
 248   int            mon_size() const { return scloff() - monoff(); }
 249   int            scl_size() const { return endoff() - scloff(); }
 250 
 251   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 252   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 253   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 254   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 255 
 256   uint                      sp() const { return _sp; }
 257   int                      bci() const { return _bci; }
 258   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 259   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 260   bool              has_method() const { return _method != nullptr; }
 261   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 262   ciInstance*    receiver_info() const { assert(has_method(), ""); return _receiver_info; }
 263   JVMState*             caller() const { return _caller; }
 264   SafePointNode*           map() const { return _map; }
 265   uint                   depth() const { return _depth; }
 266   uint             debug_start() const; // returns locoff of root caller
 267   uint               debug_end() const; // returns endoff of self
 268   uint              debug_size() const {
 269     return loc_size() + sp() + mon_size() + scl_size();
 270   }
 271   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 272 
 273   // Returns the JVM state at the desired depth (1 == root).
 274   JVMState* of_depth(int d) const;
 275 
 276   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 277   bool same_calls_as(const JVMState* that) const;
 278 
 279   // Monitors (monitors are stored as (boxNode, objNode) pairs
 280   enum { logMonitorEdges = 1 };
 281   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 282   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 283   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 284   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 285   bool is_monitor_box(uint off)    const {
 286     assert(is_mon(off), "should be called only for monitor edge");
 287     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 288   }
 289   bool is_monitor_use(uint off)    const { return (is_mon(off)
 290                                                    && is_monitor_box(off))
 291                                              || (caller() && caller()->is_monitor_use(off)); }
 292 
 293   // Initialization functions for the JVM
 294   void              set_locoff(uint off) { _locoff = off; }
 295   void              set_stkoff(uint off) { _stkoff = off; }
 296   void              set_monoff(uint off) { _monoff = off; }
 297   void              set_scloff(uint off) { _scloff = off; }
 298   void              set_endoff(uint off) { _endoff = off; }
 299   void              set_offsets(uint off) {
 300     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 301   }
 302   void              set_map(SafePointNode* map) { _map = map; }
 303   void              bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode
 304   void              set_sp(uint sp) { _sp = sp; }
 305                     // _reexecute is initialized to "undefined" for a new bci
 306   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 307   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 308   void              set_receiver_info(ciInstance* recv) { assert(has_method() || recv == nullptr, ""); _receiver_info = recv; }
 309 
 310   // Miscellaneous utility functions
 311   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 312   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 313   void      set_map_deep(SafePointNode *map);// reset map for all callers
 314   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 315   int       interpreter_frame_size() const;
 316   ciInstance* compute_receiver_info(ciMethod* callee) const;
 317 
 318 #ifndef PRODUCT
 319   void      print_method_with_lineno(outputStream* st, bool show_name) const;
 320   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 321   void      dump_spec(outputStream *st) const;
 322   void      dump_on(outputStream* st) const;
 323   void      dump() const {
 324     dump_on(tty);
 325   }
 326 #endif
 327 };
 328 
 329 //------------------------------SafePointNode----------------------------------
 330 // A SafePointNode is a subclass of a MultiNode for convenience (and
 331 // potential code sharing) only - conceptually it is independent of
 332 // the Node semantics.
 333 class SafePointNode : public MultiNode {
 334   friend JVMState;
 335   friend class GraphKit;
 336   friend class LibraryCallKit;
 337 
 338   virtual bool           cmp( const Node &n ) const;
 339   virtual uint           size_of() const;       // Size is bigger
 340 
 341 protected:
 342   JVMState* const _jvms;      // Pointer to list of JVM State objects
 343   // Many calls take *all* of memory as input,
 344   // but some produce a limited subset of that memory as output.
 345   // The adr_type reports the call's behavior as a store, not a load.
 346   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 347   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 348   bool            _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States
 349 
 350   void set_jvms(JVMState* s) {
 351   assert(s != nullptr, "assign null value to _jvms");
 352     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 353   }
 354 public:
 355   SafePointNode(uint edges, JVMState* jvms,
 356                 // A plain safepoint advertises no memory effects (null):
 357                 const TypePtr* adr_type = nullptr)
 358     : MultiNode( edges ),
 359       _jvms(jvms),
 360       _adr_type(adr_type),
 361       _has_ea_local_in_scope(false)
 362   {
 363     init_class_id(Class_SafePoint);
 364   }
 365 
 366   JVMState* jvms() const { return _jvms; }
 367   virtual bool needs_deep_clone_jvms(Compile* C) { return false; }
 368   void clone_jvms(Compile* C) {
 369     if (jvms() != nullptr) {
 370       if (needs_deep_clone_jvms(C)) {
 371         set_jvms(jvms()->clone_deep(C));
 372         jvms()->set_map_deep(this);
 373       } else {
 374         jvms()->clone_shallow(C)->bind_map(this);
 375       }
 376     }
 377   }
 378 
 379  private:
 380   void verify_input(const JVMState* jvms, uint idx) const {
 381     assert(verify_jvms(jvms), "jvms must match");
 382     Node* n = in(idx);
 383     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 384            in(idx + 1)->is_top(), "2nd half of long/double");
 385   }
 386 
 387  public:
 388   // Functionality from old debug nodes which has changed
 389   Node* local(const JVMState* jvms, uint idx) const {
 390     uint loc_idx = jvms->locoff() + idx;
 391     assert(jvms->is_loc(loc_idx), "not a local slot");
 392     verify_input(jvms, loc_idx);
 393     return in(loc_idx);
 394   }
 395   Node* stack(const JVMState* jvms, uint idx) const {
 396     uint stk_idx = jvms->stkoff() + idx;
 397     assert(jvms->is_stk(stk_idx), "not a stack slot");
 398     verify_input(jvms, stk_idx);
 399     return in(stk_idx);
 400   }
 401   Node* argument(const JVMState* jvms, uint idx) const {
 402     uint arg_idx = jvms->argoff() + idx;
 403     assert(jvms->is_stk(arg_idx), "not an argument slot");
 404     verify_input(jvms, arg_idx);
 405     return in(jvms->argoff() + idx);
 406   }
 407   Node* monitor_box(const JVMState* jvms, uint idx) const {
 408     assert(verify_jvms(jvms), "jvms must match");
 409     uint mon_box_idx = jvms->monitor_box_offset(idx);
 410     assert(jvms->is_monitor_box(mon_box_idx), "not a monitor box offset");
 411     return in(mon_box_idx);
 412   }
 413   Node* monitor_obj(const JVMState* jvms, uint idx) const {
 414     assert(verify_jvms(jvms), "jvms must match");
 415     uint mon_obj_idx = jvms->monitor_obj_offset(idx);
 416     assert(jvms->is_mon(mon_obj_idx) && !jvms->is_monitor_box(mon_obj_idx), "not a monitor obj offset");
 417     return in(mon_obj_idx);
 418   }
 419 
 420   void  set_local(const JVMState* jvms, uint idx, Node *c);
 421 
 422   void  set_stack(const JVMState* jvms, uint idx, Node *c) {
 423     assert(verify_jvms(jvms), "jvms must match");
 424     set_req(jvms->stkoff() + idx, c);
 425   }
 426   void  set_argument(const JVMState* jvms, uint idx, Node *c) {
 427     assert(verify_jvms(jvms), "jvms must match");
 428     set_req(jvms->argoff() + idx, c);
 429   }
 430   void ensure_stack(JVMState* jvms, uint stk_size) {
 431     assert(verify_jvms(jvms), "jvms must match");
 432     int grow_by = (int)stk_size - (int)jvms->stk_size();
 433     if (grow_by > 0)  grow_stack(jvms, grow_by);
 434   }
 435   void grow_stack(JVMState* jvms, uint grow_by);
 436   // Handle monitor stack
 437   void push_monitor( const FastLockNode *lock );
 438   void pop_monitor ();
 439   Node *peek_monitor_box() const;
 440   Node *peek_monitor_obj() const;
 441   // Peek Operand Stacks, JVMS 2.6.2
 442   Node* peek_operand(uint off = 0) const;
 443 
 444   // Access functions for the JVM
 445   Node *control  () const { return in(TypeFunc::Control  ); }
 446   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 447   Node *memory   () const { return in(TypeFunc::Memory   ); }
 448   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 449   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 450 
 451   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 452   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 453   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 454 
 455   MergeMemNode* merged_memory() const {
 456     return in(TypeFunc::Memory)->as_MergeMem();
 457   }
 458 
 459   // The parser marks useless maps as dead when it's done with them:
 460   bool is_killed() { return in(TypeFunc::Control) == nullptr; }
 461 
 462   // Exception states bubbling out of subgraphs such as inlined calls
 463   // are recorded here.  (There might be more than one, hence the "next".)
 464   // This feature is used only for safepoints which serve as "maps"
 465   // for JVM states during parsing, intrinsic expansion, etc.
 466   SafePointNode*         next_exception() const;
 467   void               set_next_exception(SafePointNode* n);
 468   bool                   has_exceptions() const { return next_exception() != nullptr; }
 469 
 470   // Helper methods to operate on replaced nodes
 471   ReplacedNodes replaced_nodes() const {
 472     return _replaced_nodes;
 473   }
 474 
 475   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 476     _replaced_nodes = replaced_nodes;
 477   }
 478 
 479   void clone_replaced_nodes() {
 480     _replaced_nodes.clone();
 481   }
 482   void record_replaced_node(Node* initial, Node* improved) {
 483     _replaced_nodes.record(initial, improved);
 484   }
 485   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 486     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 487   }
 488   void delete_replaced_nodes() {
 489     _replaced_nodes.reset();
 490   }
 491   void apply_replaced_nodes(uint idx) {
 492     _replaced_nodes.apply(this, idx);
 493   }
 494   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 495     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 496   }
 497   bool has_replaced_nodes() const {
 498     return !_replaced_nodes.is_empty();
 499   }
 500   void set_has_ea_local_in_scope(bool b) {
 501     _has_ea_local_in_scope = b;
 502   }
 503   bool has_ea_local_in_scope() const {
 504     return _has_ea_local_in_scope;
 505   }
 506 
 507   void disconnect_from_root(PhaseIterGVN *igvn);
 508 
 509   // Standard Node stuff
 510   virtual int            Opcode() const;
 511   virtual bool           pinned() const { return true; }
 512   virtual const Type*    Value(PhaseGVN* phase) const;
 513   virtual const Type*    bottom_type() const { return Type::CONTROL; }
 514   virtual const TypePtr* adr_type() const { return _adr_type; }
 515   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 516   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 517   virtual Node*          Identity(PhaseGVN* phase);
 518   virtual uint           ideal_reg() const { return 0; }
 519   virtual const RegMask &in_RegMask(uint) const;
 520   virtual const RegMask &out_RegMask() const;
 521   virtual uint           match_edge(uint idx) const;
 522 
 523 #ifndef PRODUCT
 524   virtual void           dump_spec(outputStream *st) const;
 525 #endif
 526 };
 527 
 528 //------------------------------SafePointScalarObjectNode----------------------
 529 // A SafePointScalarObjectNode represents the state of a scalarized object
 530 // at a safepoint.
 531 class SafePointScalarObjectNode: public TypeNode {
 532   uint _first_index;              // First input edge relative index of a SafePoint node where
 533                                   // states of the scalarized object fields are collected.
 534   uint _depth;                    // Depth of the JVM state the _first_index field refers to
 535   uint _n_fields;                 // Number of non-static fields of the scalarized object.
 536 
 537   Node* _alloc;                   // Just for debugging purposes.
 538 
 539   virtual uint hash() const;
 540   virtual bool cmp( const Node &n ) const;
 541 
 542   uint first_index() const { return _first_index; }
 543 
 544 public:
 545   SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields);
 546 
 547   virtual int Opcode() const;
 548   virtual uint           ideal_reg() const;
 549   virtual const RegMask &in_RegMask(uint) const;
 550   virtual const RegMask &out_RegMask() const;
 551   virtual uint           match_edge(uint idx) const;
 552 
 553   uint first_index(JVMState* jvms) const {
 554     assert(jvms != nullptr, "missed JVMS");
 555     return jvms->of_depth(_depth)->scloff() + _first_index;
 556   }
 557   uint n_fields()    const { return _n_fields; }
 558 
 559 #ifdef ASSERT
 560   Node* alloc() const { return _alloc; }
 561 #endif
 562 
 563   virtual uint size_of() const { return sizeof(*this); }
 564 
 565   // Assumes that "this" is an argument to a safepoint node "s", and that
 566   // "new_call" is being created to correspond to "s".  But the difference
 567   // between the start index of the jvmstates of "new_call" and "s" is
 568   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 569   // corresponds appropriately to "this" in "new_call".  Assumes that
 570   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 571   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 572   SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const;
 573 
 574 #ifndef PRODUCT
 575   virtual void              dump_spec(outputStream *st) const;
 576 #endif
 577 };
 578 
 579 //------------------------------SafePointScalarMergeNode----------------------
 580 //
 581 // This class represents an allocation merge that is used as debug information
 582 // and had at least one of its input scalar replaced.
 583 //
 584 // The required inputs of this node, except the control, are pointers to
 585 // SafePointScalarObjectNodes that describe scalarized inputs of the original
 586 // allocation merge. The other(s) properties of the class are described below.
 587 //
 588 // _merge_pointer_idx : index in the SafePointNode's input array where the
 589 //   description of the _allocation merge_ starts. The index is zero based and
 590 //   relative to the SafePoint's scloff. The two entries in the SafePointNode's
 591 //   input array starting at '_merge_pointer_idx` are Phi nodes representing:
 592 //
 593 //   1) The original merge Phi. During rematerialization this input will only be
 594 //   used if the "selector Phi" (see below) indicates that the execution of the
 595 //   Phi took the path of a non scalarized input.
 596 //
 597 //   2) A "selector Phi". The output of this Phi will be '-1' if the execution
 598 //   of the method exercised a non scalarized input of the original Phi.
 599 //   Otherwise, the output will be >=0, and it will indicate the index-1 in the
 600 //   SafePointScalarMergeNode input array where the description of the
 601 //   scalarized object that should be used is.
 602 //
 603 // As an example, consider a Phi merging 3 inputs, of which the last 2 are
 604 // scalar replaceable.
 605 //
 606 //    Phi(Region, NSR, SR, SR)
 607 //
 608 // During scalar replacement the SR inputs will be changed to null:
 609 //
 610 //    Phi(Region, NSR, nullptr, nullptr)
 611 //
 612 // A corresponding selector Phi will be created with a configuration like this:
 613 //
 614 //    Phi(Region, -1, 0, 1)
 615 //
 616 // During execution of the compiled method, if the execution reaches a Trap, the
 617 // output of the selector Phi will tell if we need to rematerialize one of the
 618 // scalar replaced inputs or if we should just use the pointer returned by the
 619 // original Phi.
 620 
 621 class SafePointScalarMergeNode: public TypeNode {
 622   int _merge_pointer_idx;         // This is the first input edge relative
 623                                   // index of a SafePoint node where metadata information relative
 624                                   // to restoring the merge is stored. The corresponding input
 625                                   // in the associated SafePoint will point to a Phi representing
 626                                   // potential non-scalar replaced objects.
 627 
 628   virtual uint hash() const;
 629   virtual bool cmp( const Node &n ) const;
 630 
 631 public:
 632   SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx);
 633 
 634   virtual int            Opcode() const;
 635   virtual uint           ideal_reg() const;
 636   virtual const RegMask &in_RegMask(uint) const;
 637   virtual const RegMask &out_RegMask() const;
 638   virtual uint           match_edge(uint idx) const;
 639 
 640   virtual uint size_of() const { return sizeof(*this); }
 641 
 642   int merge_pointer_idx(JVMState* jvms) const {
 643     assert(jvms != nullptr, "JVMS reference is null.");
 644     return jvms->scloff() + _merge_pointer_idx;
 645   }
 646 
 647   int selector_idx(JVMState* jvms) const {
 648     assert(jvms != nullptr, "JVMS reference is null.");
 649     return jvms->scloff() + _merge_pointer_idx + 1;
 650   }
 651 
 652   // Assumes that "this" is an argument to a safepoint node "s", and that
 653   // "new_call" is being created to correspond to "s".  But the difference
 654   // between the start index of the jvmstates of "new_call" and "s" is
 655   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 656   // corresponds appropriately to "this" in "new_call".  Assumes that
 657   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 658   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 659   SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const;
 660 
 661 #ifndef PRODUCT
 662   virtual void              dump_spec(outputStream *st) const;
 663 #endif
 664 };
 665 
 666 // Simple container for the outgoing projections of a call.  Useful
 667 // for serious surgery on calls.
 668 class CallProjections {
 669 public:
 670   Node* fallthrough_proj;
 671   Node* fallthrough_catchproj;
 672   Node* fallthrough_memproj;
 673   Node* fallthrough_ioproj;
 674   Node* catchall_catchproj;
 675   Node* catchall_memproj;
 676   Node* catchall_ioproj;
 677   Node* exobj;
 678   uint nb_resproj;
 679   Node* resproj[1]; // at least one projection
 680 
 681   CallProjections(uint nbres) {
 682     fallthrough_proj      = nullptr;
 683     fallthrough_catchproj = nullptr;
 684     fallthrough_memproj   = nullptr;
 685     fallthrough_ioproj    = nullptr;
 686     catchall_catchproj    = nullptr;
 687     catchall_memproj      = nullptr;
 688     catchall_ioproj       = nullptr;
 689     exobj                 = nullptr;
 690     nb_resproj            = nbres;
 691     resproj[0]            = nullptr;
 692     for (uint i = 1; i < nb_resproj; i++) {
 693       resproj[i]          = nullptr;
 694     }
 695   }
 696 
 697 };
 698 
 699 class CallGenerator;
 700 
 701 //------------------------------CallNode---------------------------------------
 702 // Call nodes now subsume the function of debug nodes at callsites, so they
 703 // contain the functionality of a full scope chain of debug nodes.
 704 class CallNode : public SafePointNode {
 705 
 706 protected:
 707   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase);
 708 
 709 public:
 710   const TypeFunc* _tf;          // Function type
 711   address         _entry_point; // Address of method being called
 712   float           _cnt;         // Estimate of number of times called
 713   CallGenerator*  _generator;   // corresponding CallGenerator for some late inline calls
 714   const char*     _name;        // Printable name, if _method is null
 715 
 716   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr)
 717     : SafePointNode(tf->domain_cc()->cnt(), jvms, adr_type),
 718       _tf(tf),
 719       _entry_point(addr),
 720       _cnt(COUNT_UNKNOWN),
 721       _generator(nullptr),
 722       _name(nullptr)
 723   {
 724     init_class_id(Class_Call);
 725   }
 726 
 727   const TypeFunc* tf()         const { return _tf; }
 728   address  entry_point()       const { return _entry_point; }
 729   float    cnt()               const { return _cnt; }
 730   CallGenerator* generator()   const { return _generator; }
 731 
 732   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 733   void set_entry_point(address p)       { _entry_point = p; }
 734   void set_cnt(float c)                 { _cnt = c; }
 735   void set_generator(CallGenerator* cg) { _generator = cg; }
 736 
 737   virtual const Type* bottom_type() const;
 738   virtual const Type* Value(PhaseGVN* phase) const;
 739   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 740   virtual Node* Identity(PhaseGVN* phase) { return this; }
 741   virtual bool        cmp(const Node &n) const;
 742   virtual uint        size_of() const = 0;
 743   virtual void        calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const;
 744   virtual Node*       match(const ProjNode* proj, const Matcher* m, const RegMask* mask);
 745   virtual uint        ideal_reg() const { return NotAMachineReg; }
 746   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 747   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 748   virtual bool        guaranteed_safepoint()  { return true; }
 749   // For macro nodes, the JVMState gets modified during expansion. If calls
 750   // use MachConstantBase, it gets modified during matching. So when cloning
 751   // the node the JVMState must be deep cloned. Default is to shallow clone.
 752   virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); }
 753 
 754   // Returns true if the call may modify n
 755   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase);
 756   // Does this node have a use of n other than in debug information?
 757   bool                has_non_debug_use(Node* n);
 758   bool                has_debug_use(Node* n);
 759   // Returns the unique CheckCastPP of a call
 760   // or result projection is there are several CheckCastPP
 761   // or returns null if there is no one.
 762   Node* result_cast();
 763   // Does this node returns pointer?
 764   bool returns_pointer() const {
 765     const TypeTuple* r = tf()->range_sig();
 766     return (!tf()->returns_inline_type_as_fields() &&
 767             r->cnt() > TypeFunc::Parms &&
 768             r->field_at(TypeFunc::Parms)->isa_ptr());
 769   }
 770 
 771   // Collect all the interesting edges from a call for use in
 772   // replacing the call by something else.  Used by macro expansion
 773   // and the late inlining support.
 774   CallProjections* extract_projections(bool separate_io_proj, bool do_asserts = true) const;
 775 
 776   virtual uint match_edge(uint idx) const;
 777 
 778   bool is_call_to_arraycopystub() const;
 779 
 780   virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {}
 781 
 782 #ifndef PRODUCT
 783   virtual void        dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;
 784   virtual void        dump_spec(outputStream* st) const;
 785 #endif
 786 };
 787 
 788 
 789 //------------------------------CallJavaNode-----------------------------------
 790 // Make a static or dynamic subroutine call node using Java calling
 791 // convention.  (The "Java" calling convention is the compiler's calling
 792 // convention, as opposed to the interpreter's or that of native C.)
 793 class CallJavaNode : public CallNode {
 794 protected:
 795   virtual bool cmp( const Node &n ) const;
 796   virtual uint size_of() const; // Size is bigger
 797 
 798   ciMethod* _method;               // Method being direct called
 799   bool    _optimized_virtual;
 800   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 801   bool    _arg_escape;             // ArgEscape in parameter list
 802 public:
 803   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method)
 804     : CallNode(tf, addr, TypePtr::BOTTOM),
 805       _method(method),
 806       _optimized_virtual(false),
 807       _override_symbolic_info(false),
 808       _arg_escape(false)
 809   {
 810     init_class_id(Class_CallJava);
 811   }
 812 
 813   virtual int   Opcode() const;
 814   ciMethod* method() const                 { return _method; }
 815   void  set_method(ciMethod *m)            { _method = m; }
 816   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 817   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 818   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 819   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 820   void  set_arg_escape(bool f)             { _arg_escape = f; }
 821   bool  arg_escape() const                 { return _arg_escape; }
 822   void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt);
 823   void register_for_late_inline();
 824 
 825   DEBUG_ONLY( bool validate_symbolic_info() const; )
 826 
 827 #ifndef PRODUCT
 828   virtual void  dump_spec(outputStream *st) const;
 829   virtual void  dump_compact_spec(outputStream *st) const;
 830 #endif
 831 };
 832 
 833 //------------------------------CallStaticJavaNode-----------------------------
 834 // Make a direct subroutine call using Java calling convention (for static
 835 // calls and optimized virtual calls, plus calls to wrappers for run-time
 836 // routines); generates static stub.
 837 class CallStaticJavaNode : public CallJavaNode {
 838   virtual bool cmp( const Node &n ) const;
 839   virtual uint size_of() const; // Size is bigger
 840 
 841   bool remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg);
 842 
 843 public:
 844   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method)
 845     : CallJavaNode(tf, addr, method) {
 846     init_class_id(Class_CallStaticJava);
 847     if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) {
 848       init_flags(Flag_is_macro);
 849       C->add_macro_node(this);
 850     }
 851     const TypeTuple *r = tf->range_sig();
 852     if (InlineTypeReturnedAsFields &&
 853         method != nullptr &&
 854         method->is_method_handle_intrinsic() &&
 855         r->cnt() > TypeFunc::Parms &&
 856         r->field_at(TypeFunc::Parms)->isa_oopptr() &&
 857         r->field_at(TypeFunc::Parms)->is_oopptr()->can_be_inline_type()) {
 858       // Make sure this call is processed by PhaseMacroExpand::expand_mh_intrinsic_return
 859       init_flags(Flag_is_macro);
 860       C->add_macro_node(this);
 861     }
 862   }
 863   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type)
 864     : CallJavaNode(tf, addr, nullptr) {
 865     init_class_id(Class_CallStaticJava);
 866     // This node calls a runtime stub, which often has narrow memory effects.
 867     _adr_type = adr_type;
 868     _name = name;
 869   }
 870 
 871   // If this is an uncommon trap, return the request code, else zero.
 872   int uncommon_trap_request() const;
 873   bool is_uncommon_trap() const;
 874   static int extract_uncommon_trap_request(const Node* call);
 875 
 876   bool is_boxing_method() const {
 877     return is_macro() && (method() != nullptr) && method()->is_boxing_method();
 878   }
 879   // Late inlining modifies the JVMState, so we need to deep clone it
 880   // when the call node is cloned (because it is macro node).
 881   virtual bool needs_deep_clone_jvms(Compile* C) {
 882     return is_boxing_method() || CallNode::needs_deep_clone_jvms(C);
 883   }
 884 
 885   virtual int         Opcode() const;
 886   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 887 
 888 #ifndef PRODUCT
 889   virtual void        dump_spec(outputStream *st) const;
 890   virtual void        dump_compact_spec(outputStream *st) const;
 891 #endif
 892 };
 893 
 894 //------------------------------CallDynamicJavaNode----------------------------
 895 // Make a dispatched call using Java calling convention.
 896 class CallDynamicJavaNode : public CallJavaNode {
 897   virtual bool cmp( const Node &n ) const;
 898   virtual uint size_of() const; // Size is bigger
 899 public:
 900   CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index)
 901     : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) {
 902     init_class_id(Class_CallDynamicJava);
 903   }
 904 
 905   // Late inlining modifies the JVMState, so we need to deep clone it
 906   // when the call node is cloned.
 907   virtual bool needs_deep_clone_jvms(Compile* C) {
 908     return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C);
 909   }
 910 
 911   int _vtable_index;
 912   virtual int   Opcode() const;
 913   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 914 #ifndef PRODUCT
 915   virtual void  dump_spec(outputStream *st) const;
 916 #endif
 917 };
 918 
 919 //------------------------------CallRuntimeNode--------------------------------
 920 // Make a direct subroutine call node into compiled C++ code.
 921 class CallRuntimeNode : public CallNode {
 922 protected:
 923   virtual bool cmp( const Node &n ) const;
 924   virtual uint size_of() const; // Size is bigger
 925 public:
 926   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 927                   const TypePtr* adr_type, JVMState* jvms = nullptr)
 928     : CallNode(tf, addr, adr_type, jvms)
 929   {
 930     init_class_id(Class_CallRuntime);
 931     _name = name;
 932   }
 933 
 934   virtual int   Opcode() const;
 935   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 936 
 937 #ifndef PRODUCT
 938   virtual void  dump_spec(outputStream *st) const;
 939 #endif
 940 };
 941 
 942 //------------------------------CallLeafNode-----------------------------------
 943 // Make a direct subroutine call node into compiled C++ code, without
 944 // safepoints
 945 class CallLeafNode : public CallRuntimeNode {
 946 public:
 947   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 948                const TypePtr* adr_type)
 949     : CallRuntimeNode(tf, addr, name, adr_type)
 950   {
 951     init_class_id(Class_CallLeaf);
 952   }
 953   virtual int   Opcode() const;
 954   virtual bool        guaranteed_safepoint()  { return false; }
 955 #ifndef PRODUCT
 956   virtual void  dump_spec(outputStream *st) const;
 957 #endif
 958 };
 959 
 960 /* A pure function call, they are assumed not to be safepoints, not to read or write memory,
 961  * have no exception... They just take parameters, return a value without side effect. It is
 962  * always correct to create some, or remove them, if the result is not used.
 963  *
 964  * They still have control input to allow easy lowering into other kind of calls that require
 965  * a control, but this is more a technical than a moral constraint.
 966  *
 967  * Pure calls must have only control and data input and output: I/O, Memory and so on must be top.
 968  * Nevertheless, pure calls can typically be expensive math operations so care must be taken
 969  * when letting the node float.
 970  */
 971 class CallLeafPureNode : public CallLeafNode {
 972 protected:
 973   bool is_unused() const;
 974   bool is_dead() const;
 975   TupleNode* make_tuple_of_input_state_and_top_return_values(const Compile* C) const;
 976 
 977 public:
 978   CallLeafPureNode(const TypeFunc* tf, address addr, const char* name,
 979                    const TypePtr* adr_type)
 980       : CallLeafNode(tf, addr, name, adr_type) {
 981     init_class_id(Class_CallLeafPure);
 982   }
 983   int Opcode() const override;
 984   Node* Ideal(PhaseGVN* phase, bool can_reshape) override;
 985 };
 986 
 987 //------------------------------CallLeafNoFPNode-------------------------------
 988 // CallLeafNode, not using floating point or using it in the same manner as
 989 // the generated code
 990 class CallLeafNoFPNode : public CallLeafNode {
 991 public:
 992   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 993                    const TypePtr* adr_type)
 994     : CallLeafNode(tf, addr, name, adr_type)
 995   {
 996     init_class_id(Class_CallLeafNoFP);
 997   }
 998   virtual int   Opcode() const;
 999   virtual uint match_edge(uint idx) const;
1000 };
1001 
1002 //------------------------------CallLeafVectorNode-------------------------------
1003 // CallLeafNode but calling with vector calling convention instead.
1004 class CallLeafVectorNode : public CallLeafNode {
1005 private:
1006   uint _num_bits;
1007 protected:
1008   virtual bool cmp( const Node &n ) const;
1009   virtual uint size_of() const; // Size is bigger
1010 public:
1011   CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name,
1012                    const TypePtr* adr_type, uint num_bits)
1013     : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits)
1014   {
1015   }
1016   virtual int   Opcode() const;
1017   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
1018 };
1019 
1020 
1021 //------------------------------Allocate---------------------------------------
1022 // High-level memory allocation
1023 //
1024 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
1025 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
1026 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
1027 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
1028 //  order to differentiate the uses of the projection on the normal control path from
1029 //  those on the exception return path.
1030 //
1031 class AllocateNode : public CallNode {
1032 public:
1033   enum {
1034     // Output:
1035     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
1036     // Inputs:
1037     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
1038     KlassNode,                        // type (maybe dynamic) of the obj.
1039     InitialTest,                      // slow-path test (may be constant)
1040     ALength,                          // array length (or TOP if none)
1041     ValidLengthTest,
1042     InlineType,                       // InlineTypeNode if this is an inline type allocation
1043     InitValue,                        // Init value for null-free inline type arrays
1044     RawInitValue,                     // Same as above but as raw machine word
1045     ParmLimit
1046   };
1047 
1048   static const TypeFunc* alloc_type(const Type* t) {
1049     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
1050     fields[AllocSize]   = TypeInt::POS;
1051     fields[KlassNode]   = TypeInstPtr::NOTNULL;
1052     fields[InitialTest] = TypeInt::BOOL;
1053     fields[ALength]     = t;  // length (can be a bad length)
1054     fields[ValidLengthTest] = TypeInt::BOOL;
1055     fields[InlineType] = Type::BOTTOM;
1056     fields[InitValue] = TypeInstPtr::NOTNULL;
1057     fields[RawInitValue] = TypeX_X;
1058 
1059     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
1060 
1061     // create result type (range)
1062     fields = TypeTuple::fields(1);
1063     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
1064 
1065     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1066 
1067     return TypeFunc::make(domain, range);
1068   }
1069 
1070   // Result of Escape Analysis
1071   bool _is_scalar_replaceable;
1072   bool _is_non_escaping;
1073   // True when MemBar for new is redundant with MemBar at initialzer exit
1074   bool _is_allocation_MemBar_redundant;
1075   bool _larval;
1076 
1077   virtual uint size_of() const; // Size is bigger
1078   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
1079                Node *size, Node *klass_node, Node *initial_test,
1080                InlineTypeNode* inline_type_node = nullptr);
1081   // Expansion modifies the JVMState, so we need to deep clone it
1082   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1083   virtual int Opcode() const;
1084   virtual uint ideal_reg() const { return Op_RegP; }
1085   virtual bool        guaranteed_safepoint()  { return false; }
1086 
1087   // allocations do not modify their arguments
1088   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;}
1089 
1090   // Pattern-match a possible usage of AllocateNode.
1091   // Return null if no allocation is recognized.
1092   // The operand is the pointer produced by the (possible) allocation.
1093   // It must be a projection of the Allocate or its subsequent CastPP.
1094   // (Note:  This function is defined in file graphKit.cpp, near
1095   // GraphKit::new_instance/new_array, whose output it recognizes.)
1096   // The 'ptr' may not have an offset unless the 'offset' argument is given.
1097   static AllocateNode* Ideal_allocation(Node* ptr);
1098 
1099   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
1100   // an offset, which is reported back to the caller.
1101   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
1102   static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase,
1103                                         intptr_t& offset);
1104 
1105   // Dig the klass operand out of a (possible) allocation site.
1106   static Node* Ideal_klass(Node* ptr, PhaseValues* phase) {
1107     AllocateNode* allo = Ideal_allocation(ptr);
1108     return (allo == nullptr) ? nullptr : allo->in(KlassNode);
1109   }
1110 
1111   // Conservatively small estimate of offset of first non-header byte.
1112   int minimum_header_size() {
1113     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
1114                                 instanceOopDesc::base_offset_in_bytes();
1115   }
1116 
1117   // Return the corresponding initialization barrier (or null if none).
1118   // Walks out edges to find it...
1119   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1120   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1121   InitializeNode* initialization();
1122 
1123   // Convenience for initialization->maybe_set_complete(phase)
1124   bool maybe_set_complete(PhaseGVN* phase);
1125 
1126   // Return true if allocation doesn't escape thread, its escape state
1127   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
1128   // is true when its allocation's escape state is noEscape or
1129   // ArgEscape. In case allocation's InitializeNode is null, check
1130   // AlllocateNode._is_non_escaping flag.
1131   // AlllocateNode._is_non_escaping is true when its escape state is
1132   // noEscape.
1133   bool does_not_escape_thread() {
1134     InitializeNode* init = nullptr;
1135     return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape());
1136   }
1137 
1138   // If object doesn't escape in <.init> method and there is memory barrier
1139   // inserted at exit of its <.init>, memory barrier for new is not necessary.
1140   // Inovke this method when MemBar at exit of initializer and post-dominate
1141   // allocation node.
1142   void compute_MemBar_redundancy(ciMethod* initializer);
1143   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
1144 
1145   Node* make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem);
1146 
1147   NOT_PRODUCT(virtual void dump_spec(outputStream* st) const;)
1148 };
1149 
1150 //------------------------------AllocateArray---------------------------------
1151 //
1152 // High-level array allocation
1153 //
1154 class AllocateArrayNode : public AllocateNode {
1155 public:
1156   AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node,
1157                     Node* initial_test, Node* count_val, Node* valid_length_test,
1158                     Node* init_value, Node* raw_init_value)
1159     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
1160                    initial_test)
1161   {
1162     init_class_id(Class_AllocateArray);
1163     set_req(AllocateNode::ALength, count_val);
1164     set_req(AllocateNode::ValidLengthTest, valid_length_test);
1165     init_req(AllocateNode::InitValue, init_value);
1166     init_req(AllocateNode::RawInitValue, raw_init_value);
1167   }
1168   virtual uint size_of() const { return sizeof(*this); }
1169   virtual int Opcode() const;
1170 
1171   // Dig the length operand out of a array allocation site.
1172   Node* Ideal_length() {
1173     return in(AllocateNode::ALength);
1174   }
1175 
1176   // Dig the length operand out of a array allocation site and narrow the
1177   // type with a CastII, if necesssary
1178   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true);
1179 
1180   // Pattern-match a possible usage of AllocateArrayNode.
1181   // Return null if no allocation is recognized.
1182   static AllocateArrayNode* Ideal_array_allocation(Node* ptr) {
1183     AllocateNode* allo = Ideal_allocation(ptr);
1184     return (allo == nullptr || !allo->is_AllocateArray())
1185            ? nullptr : allo->as_AllocateArray();
1186   }
1187 };
1188 
1189 //------------------------------AbstractLockNode-----------------------------------
1190 class AbstractLockNode: public CallNode {
1191 private:
1192   enum {
1193     Regular = 0,  // Normal lock
1194     NonEscObj,    // Lock is used for non escaping object
1195     Coarsened,    // Lock was coarsened
1196     Nested        // Nested lock
1197   } _kind;
1198 
1199   static const char* _kind_names[Nested+1];
1200 
1201 #ifndef PRODUCT
1202   NamedCounter* _counter;
1203 #endif
1204 
1205 protected:
1206   // helper functions for lock elimination
1207   //
1208 
1209   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1210                             GrowableArray<AbstractLockNode*> &lock_ops);
1211   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1212                                        GrowableArray<AbstractLockNode*> &lock_ops);
1213   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1214                                GrowableArray<AbstractLockNode*> &lock_ops);
1215   LockNode *find_matching_lock(UnlockNode* unlock);
1216 
1217   // Update the counter to indicate that this lock was eliminated.
1218   void set_eliminated_lock_counter() PRODUCT_RETURN;
1219 
1220 public:
1221   AbstractLockNode(const TypeFunc *tf)
1222     : CallNode(tf, nullptr, TypeRawPtr::BOTTOM),
1223       _kind(Regular)
1224   {
1225 #ifndef PRODUCT
1226     _counter = nullptr;
1227 #endif
1228   }
1229   virtual int Opcode() const = 0;
1230   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1231   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1232   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1233   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1234 
1235   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1236 
1237   virtual uint size_of() const { return sizeof(*this); }
1238 
1239   bool is_eliminated()  const { return (_kind != Regular); }
1240   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1241   bool is_coarsened()   const { return (_kind == Coarsened); }
1242   bool is_nested()      const { return (_kind == Nested); }
1243 
1244   const char * kind_as_string() const;
1245   void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const;
1246 
1247   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1248   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1249   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1250 
1251   // Check that all locks/unlocks associated with object come from balanced regions.
1252   // They can become unbalanced after coarsening optimization or on OSR entry.
1253   bool is_balanced();
1254 
1255   // locking does not modify its arguments
1256   virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; }
1257 
1258 #ifndef PRODUCT
1259   void create_lock_counter(JVMState* s);
1260   NamedCounter* counter() const { return _counter; }
1261   virtual void dump_spec(outputStream* st) const;
1262   virtual void dump_compact_spec(outputStream* st) const;
1263 #endif
1264 };
1265 
1266 //------------------------------Lock---------------------------------------
1267 // High-level lock operation
1268 //
1269 // This is a subclass of CallNode because it is a macro node which gets expanded
1270 // into a code sequence containing a call.  This node takes 3 "parameters":
1271 //    0  -  object to lock
1272 //    1 -   a BoxLockNode
1273 //    2 -   a FastLockNode
1274 //
1275 class LockNode : public AbstractLockNode {
1276   static const TypeFunc* _lock_type_Type;
1277 public:
1278 
1279   static inline const TypeFunc* lock_type() {
1280     assert(_lock_type_Type != nullptr, "should be initialized");
1281     return _lock_type_Type;
1282   }
1283 
1284   static void initialize_lock_Type() {
1285     assert(_lock_type_Type == nullptr, "should be called once");
1286     // create input type (domain)
1287     const Type **fields = TypeTuple::fields(3);
1288     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1289     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1290     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1291     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1292 
1293     // create result type (range)
1294     fields = TypeTuple::fields(0);
1295 
1296     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1297 
1298     _lock_type_Type = TypeFunc::make(domain,range);
1299   }
1300 
1301   virtual int Opcode() const;
1302   virtual uint size_of() const; // Size is bigger
1303   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1304     init_class_id(Class_Lock);
1305     init_flags(Flag_is_macro);
1306     C->add_macro_node(this);
1307   }
1308   virtual bool        guaranteed_safepoint()  { return false; }
1309 
1310   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1311   // Expansion modifies the JVMState, so we need to deep clone it
1312   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1313 
1314   bool is_nested_lock_region(); // Is this Lock nested?
1315   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1316 };
1317 
1318 //------------------------------Unlock---------------------------------------
1319 // High-level unlock operation
1320 class UnlockNode : public AbstractLockNode {
1321 private:
1322 #ifdef ASSERT
1323   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1324 #endif
1325 public:
1326   virtual int Opcode() const;
1327   virtual uint size_of() const; // Size is bigger
1328   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1329 #ifdef ASSERT
1330     , _dbg_jvms(nullptr)
1331 #endif
1332   {
1333     init_class_id(Class_Unlock);
1334     init_flags(Flag_is_macro);
1335     C->add_macro_node(this);
1336   }
1337   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1338   // unlock is never a safepoint
1339   virtual bool        guaranteed_safepoint()  { return false; }
1340 #ifdef ASSERT
1341   void set_dbg_jvms(JVMState* s) {
1342     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1343   }
1344   JVMState* dbg_jvms() const { return _dbg_jvms; }
1345 #else
1346   JVMState* dbg_jvms() const { return nullptr; }
1347 #endif
1348 };
1349 #endif // SHARE_OPTO_CALLNODE_HPP