1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_CALLNODE_HPP 26 #define SHARE_OPTO_CALLNODE_HPP 27 28 #include "opto/connode.hpp" 29 #include "opto/mulnode.hpp" 30 #include "opto/multnode.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/phaseX.hpp" 33 #include "opto/replacednodes.hpp" 34 #include "opto/type.hpp" 35 #include "utilities/growableArray.hpp" 36 37 // Portions of code courtesy of Clifford Click 38 39 // Optimization - Graph Style 40 41 class NamedCounter; 42 class MultiNode; 43 class SafePointNode; 44 class CallNode; 45 class CallJavaNode; 46 class CallStaticJavaNode; 47 class CallDynamicJavaNode; 48 class CallRuntimeNode; 49 class CallLeafNode; 50 class CallLeafNoFPNode; 51 class CallLeafVectorNode; 52 class AllocateNode; 53 class AllocateArrayNode; 54 class AbstractLockNode; 55 class LockNode; 56 class UnlockNode; 57 class FastLockNode; 58 59 //------------------------------StartNode-------------------------------------- 60 // The method start node 61 class StartNode : public MultiNode { 62 virtual bool cmp( const Node &n ) const; 63 virtual uint size_of() const; // Size is bigger 64 public: 65 const TypeTuple *_domain; 66 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { 67 init_class_id(Class_Start); 68 init_req(0,this); 69 init_req(1,root); 70 } 71 virtual int Opcode() const; 72 virtual bool pinned() const { return true; }; 73 virtual const Type *bottom_type() const; 74 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 75 virtual const Type* Value(PhaseGVN* phase) const; 76 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 77 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; 78 virtual const RegMask &in_RegMask(uint) const; 79 virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask); 80 virtual uint ideal_reg() const { return 0; } 81 #ifndef PRODUCT 82 virtual void dump_spec(outputStream *st) const; 83 virtual void dump_compact_spec(outputStream *st) const; 84 #endif 85 }; 86 87 //------------------------------StartOSRNode----------------------------------- 88 // The method start node for on stack replacement code 89 class StartOSRNode : public StartNode { 90 public: 91 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} 92 virtual int Opcode() const; 93 }; 94 95 96 //------------------------------ParmNode--------------------------------------- 97 // Incoming parameters 98 class ParmNode : public ProjNode { 99 static const char * const names[TypeFunc::Parms+1]; 100 public: 101 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { 102 init_class_id(Class_Parm); 103 } 104 virtual int Opcode() const; 105 virtual bool is_CFG() const { return (_con == TypeFunc::Control); } 106 virtual uint ideal_reg() const; 107 #ifndef PRODUCT 108 virtual void dump_spec(outputStream *st) const; 109 virtual void dump_compact_spec(outputStream *st) const; 110 #endif 111 }; 112 113 114 //------------------------------ReturnNode------------------------------------- 115 // Return from subroutine node 116 class ReturnNode : public Node { 117 public: 118 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr ); 119 virtual int Opcode() const; 120 virtual bool is_CFG() const { return true; } 121 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 122 virtual bool depends_only_on_test() const { return false; } 123 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 124 virtual const Type* Value(PhaseGVN* phase) const; 125 virtual uint ideal_reg() const { return NotAMachineReg; } 126 virtual uint match_edge(uint idx) const; 127 #ifndef PRODUCT 128 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 129 #endif 130 }; 131 132 133 //------------------------------RethrowNode------------------------------------ 134 // Rethrow of exception at call site. Ends a procedure before rethrowing; 135 // ends the current basic block like a ReturnNode. Restores registers and 136 // unwinds stack. Rethrow happens in the caller's method. 137 class RethrowNode : public Node { 138 public: 139 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); 140 virtual int Opcode() const; 141 virtual bool is_CFG() const { return true; } 142 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 143 virtual bool depends_only_on_test() const { return false; } 144 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 145 virtual const Type* Value(PhaseGVN* phase) const; 146 virtual uint match_edge(uint idx) const; 147 virtual uint ideal_reg() const { return NotAMachineReg; } 148 #ifndef PRODUCT 149 virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const; 150 #endif 151 }; 152 153 154 //------------------------------ForwardExceptionNode--------------------------- 155 // Pop stack frame and jump to StubRoutines::forward_exception_entry() 156 class ForwardExceptionNode : public ReturnNode { 157 public: 158 ForwardExceptionNode(Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr) 159 : ReturnNode(TypeFunc::Parms, cntrl, i_o, memory, frameptr, retadr) { 160 } 161 162 virtual int Opcode() const; 163 }; 164 165 //------------------------------TailCallNode----------------------------------- 166 // Pop stack frame and jump indirect 167 class TailCallNode : public ReturnNode { 168 public: 169 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) 170 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { 171 init_req(TypeFunc::Parms, target); 172 init_req(TypeFunc::Parms+1, moop); 173 } 174 175 virtual int Opcode() const; 176 virtual uint match_edge(uint idx) const; 177 }; 178 179 //------------------------------TailJumpNode----------------------------------- 180 // Pop stack frame and jump indirect 181 class TailJumpNode : public ReturnNode { 182 public: 183 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) 184 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { 185 init_req(TypeFunc::Parms, target); 186 init_req(TypeFunc::Parms+1, ex_oop); 187 } 188 189 virtual int Opcode() const; 190 virtual uint match_edge(uint idx) const; 191 }; 192 193 //-------------------------------JVMState------------------------------------- 194 // A linked list of JVMState nodes captures the whole interpreter state, 195 // plus GC roots, for all active calls at some call site in this compilation 196 // unit. (If there is no inlining, then the list has exactly one link.) 197 // This provides a way to map the optimized program back into the interpreter, 198 // or to let the GC mark the stack. 199 class JVMState : public ResourceObj { 200 friend class VMStructs; 201 public: 202 typedef enum { 203 Reexecute_Undefined = -1, // not defined -- will be translated into false later 204 Reexecute_False = 0, // false -- do not reexecute 205 Reexecute_True = 1 // true -- reexecute the bytecode 206 } ReexecuteState; //Reexecute State 207 208 private: 209 JVMState* _caller; // List pointer for forming scope chains 210 uint _depth; // One more than caller depth, or one. 211 uint _locoff; // Offset to locals in input edge mapping 212 uint _stkoff; // Offset to stack in input edge mapping 213 uint _monoff; // Offset to monitors in input edge mapping 214 uint _scloff; // Offset to fields of scalar objs in input edge mapping 215 uint _endoff; // Offset to end of input edge mapping 216 uint _sp; // Java Expression Stack Pointer for this state 217 int _bci; // Byte Code Index of this JVM point 218 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed 219 ciMethod* _method; // Method Pointer 220 SafePointNode* _map; // Map node associated with this scope 221 public: 222 friend class Compile; 223 friend class PreserveReexecuteState; 224 225 // Because JVMState objects live over the entire lifetime of the 226 // Compile object, they are allocated into the comp_arena, which 227 // does not get resource marked or reset during the compile process 228 void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } 229 void operator delete( void * ) { } // fast deallocation 230 231 // Create a new JVMState, ready for abstract interpretation. 232 JVMState(ciMethod* method, JVMState* caller); 233 JVMState(int stack_size); // root state; has a null method 234 235 // Access functions for the JVM 236 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| 237 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff 238 uint locoff() const { return _locoff; } 239 uint stkoff() const { return _stkoff; } 240 uint argoff() const { return _stkoff + _sp; } 241 uint monoff() const { return _monoff; } 242 uint scloff() const { return _scloff; } 243 uint endoff() const { return _endoff; } 244 uint oopoff() const { return debug_end(); } 245 246 int loc_size() const { return stkoff() - locoff(); } 247 int stk_size() const { return monoff() - stkoff(); } 248 int mon_size() const { return scloff() - monoff(); } 249 int scl_size() const { return endoff() - scloff(); } 250 251 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } 252 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } 253 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } 254 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } 255 256 uint sp() const { return _sp; } 257 int bci() const { return _bci; } 258 bool should_reexecute() const { return _reexecute==Reexecute_True; } 259 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } 260 bool has_method() const { return _method != nullptr; } 261 ciMethod* method() const { assert(has_method(), ""); return _method; } 262 JVMState* caller() const { return _caller; } 263 SafePointNode* map() const { return _map; } 264 uint depth() const { return _depth; } 265 uint debug_start() const; // returns locoff of root caller 266 uint debug_end() const; // returns endoff of self 267 uint debug_size() const { 268 return loc_size() + sp() + mon_size() + scl_size(); 269 } 270 uint debug_depth() const; // returns sum of debug_size values at all depths 271 272 // Returns the JVM state at the desired depth (1 == root). 273 JVMState* of_depth(int d) const; 274 275 // Tells if two JVM states have the same call chain (depth, methods, & bcis). 276 bool same_calls_as(const JVMState* that) const; 277 278 // Monitors (monitors are stored as (boxNode, objNode) pairs 279 enum { logMonitorEdges = 1 }; 280 int nof_monitors() const { return mon_size() >> logMonitorEdges; } 281 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } 282 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } 283 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } 284 bool is_monitor_box(uint off) const { 285 assert(is_mon(off), "should be called only for monitor edge"); 286 return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); 287 } 288 bool is_monitor_use(uint off) const { return (is_mon(off) 289 && is_monitor_box(off)) 290 || (caller() && caller()->is_monitor_use(off)); } 291 292 // Initialization functions for the JVM 293 void set_locoff(uint off) { _locoff = off; } 294 void set_stkoff(uint off) { _stkoff = off; } 295 void set_monoff(uint off) { _monoff = off; } 296 void set_scloff(uint off) { _scloff = off; } 297 void set_endoff(uint off) { _endoff = off; } 298 void set_offsets(uint off) { 299 _locoff = _stkoff = _monoff = _scloff = _endoff = off; 300 } 301 void set_map(SafePointNode* map) { _map = map; } 302 void bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode 303 void set_sp(uint sp) { _sp = sp; } 304 // _reexecute is initialized to "undefined" for a new bci 305 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } 306 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} 307 308 // Miscellaneous utility functions 309 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain 310 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller 311 void set_map_deep(SafePointNode *map);// reset map for all callers 312 void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. 313 int interpreter_frame_size() const; 314 315 #ifndef PRODUCT 316 void print_method_with_lineno(outputStream* st, bool show_name) const; 317 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; 318 void dump_spec(outputStream *st) const; 319 void dump_on(outputStream* st) const; 320 void dump() const { 321 dump_on(tty); 322 } 323 #endif 324 }; 325 326 //------------------------------SafePointNode---------------------------------- 327 // A SafePointNode is a subclass of a MultiNode for convenience (and 328 // potential code sharing) only - conceptually it is independent of 329 // the Node semantics. 330 class SafePointNode : public MultiNode { 331 friend JVMState; 332 friend class GraphKit; 333 friend class VMStructs; 334 335 virtual bool cmp( const Node &n ) const; 336 virtual uint size_of() const; // Size is bigger 337 338 protected: 339 JVMState* const _jvms; // Pointer to list of JVM State objects 340 // Many calls take *all* of memory as input, 341 // but some produce a limited subset of that memory as output. 342 // The adr_type reports the call's behavior as a store, not a load. 343 const TypePtr* _adr_type; // What type of memory does this node produce? 344 ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() 345 bool _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States 346 347 void set_jvms(JVMState* s) { 348 assert(s != nullptr, "assign null value to _jvms"); 349 *(JVMState**)&_jvms = s; // override const attribute in the accessor 350 } 351 public: 352 SafePointNode(uint edges, JVMState* jvms, 353 // A plain safepoint advertises no memory effects (null): 354 const TypePtr* adr_type = nullptr) 355 : MultiNode( edges ), 356 _jvms(jvms), 357 _adr_type(adr_type), 358 _has_ea_local_in_scope(false) 359 { 360 init_class_id(Class_SafePoint); 361 } 362 363 JVMState* jvms() const { return _jvms; } 364 virtual bool needs_deep_clone_jvms(Compile* C) { return false; } 365 void clone_jvms(Compile* C) { 366 if (jvms() != nullptr) { 367 if (needs_deep_clone_jvms(C)) { 368 set_jvms(jvms()->clone_deep(C)); 369 jvms()->set_map_deep(this); 370 } else { 371 jvms()->clone_shallow(C)->bind_map(this); 372 } 373 } 374 } 375 376 private: 377 void verify_input(JVMState* jvms, uint idx) const { 378 assert(verify_jvms(jvms), "jvms must match"); 379 Node* n = in(idx); 380 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || 381 in(idx + 1)->is_top(), "2nd half of long/double"); 382 } 383 384 public: 385 // Functionality from old debug nodes which has changed 386 Node *local(JVMState* jvms, uint idx) const { 387 verify_input(jvms, jvms->locoff() + idx); 388 return in(jvms->locoff() + idx); 389 } 390 Node *stack(JVMState* jvms, uint idx) const { 391 verify_input(jvms, jvms->stkoff() + idx); 392 return in(jvms->stkoff() + idx); 393 } 394 Node *argument(JVMState* jvms, uint idx) const { 395 verify_input(jvms, jvms->argoff() + idx); 396 return in(jvms->argoff() + idx); 397 } 398 Node *monitor_box(JVMState* jvms, uint idx) const { 399 assert(verify_jvms(jvms), "jvms must match"); 400 return in(jvms->monitor_box_offset(idx)); 401 } 402 Node *monitor_obj(JVMState* jvms, uint idx) const { 403 assert(verify_jvms(jvms), "jvms must match"); 404 return in(jvms->monitor_obj_offset(idx)); 405 } 406 407 void set_local(JVMState* jvms, uint idx, Node *c); 408 409 void set_stack(JVMState* jvms, uint idx, Node *c) { 410 assert(verify_jvms(jvms), "jvms must match"); 411 set_req(jvms->stkoff() + idx, c); 412 } 413 void set_argument(JVMState* jvms, uint idx, Node *c) { 414 assert(verify_jvms(jvms), "jvms must match"); 415 set_req(jvms->argoff() + idx, c); 416 } 417 void ensure_stack(JVMState* jvms, uint stk_size) { 418 assert(verify_jvms(jvms), "jvms must match"); 419 int grow_by = (int)stk_size - (int)jvms->stk_size(); 420 if (grow_by > 0) grow_stack(jvms, grow_by); 421 } 422 void grow_stack(JVMState* jvms, uint grow_by); 423 // Handle monitor stack 424 void push_monitor( const FastLockNode *lock ); 425 void pop_monitor (); 426 Node *peek_monitor_box() const; 427 Node *peek_monitor_obj() const; 428 // Peek Operand Stacks, JVMS 2.6.2 429 Node* peek_operand(uint off = 0) const; 430 431 // Access functions for the JVM 432 Node *control () const { return in(TypeFunc::Control ); } 433 Node *i_o () const { return in(TypeFunc::I_O ); } 434 Node *memory () const { return in(TypeFunc::Memory ); } 435 Node *returnadr() const { return in(TypeFunc::ReturnAdr); } 436 Node *frameptr () const { return in(TypeFunc::FramePtr ); } 437 438 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } 439 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } 440 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } 441 442 MergeMemNode* merged_memory() const { 443 return in(TypeFunc::Memory)->as_MergeMem(); 444 } 445 446 // The parser marks useless maps as dead when it's done with them: 447 bool is_killed() { return in(TypeFunc::Control) == nullptr; } 448 449 // Exception states bubbling out of subgraphs such as inlined calls 450 // are recorded here. (There might be more than one, hence the "next".) 451 // This feature is used only for safepoints which serve as "maps" 452 // for JVM states during parsing, intrinsic expansion, etc. 453 SafePointNode* next_exception() const; 454 void set_next_exception(SafePointNode* n); 455 bool has_exceptions() const { return next_exception() != nullptr; } 456 457 // Helper methods to operate on replaced nodes 458 ReplacedNodes replaced_nodes() const { 459 return _replaced_nodes; 460 } 461 462 void set_replaced_nodes(ReplacedNodes replaced_nodes) { 463 _replaced_nodes = replaced_nodes; 464 } 465 466 void clone_replaced_nodes() { 467 _replaced_nodes.clone(); 468 } 469 void record_replaced_node(Node* initial, Node* improved) { 470 _replaced_nodes.record(initial, improved); 471 } 472 void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { 473 _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); 474 } 475 void delete_replaced_nodes() { 476 _replaced_nodes.reset(); 477 } 478 void apply_replaced_nodes(uint idx) { 479 _replaced_nodes.apply(this, idx); 480 } 481 void merge_replaced_nodes_with(SafePointNode* sfpt) { 482 _replaced_nodes.merge_with(sfpt->_replaced_nodes); 483 } 484 bool has_replaced_nodes() const { 485 return !_replaced_nodes.is_empty(); 486 } 487 void set_has_ea_local_in_scope(bool b) { 488 _has_ea_local_in_scope = b; 489 } 490 bool has_ea_local_in_scope() const { 491 return _has_ea_local_in_scope; 492 } 493 494 void disconnect_from_root(PhaseIterGVN *igvn); 495 496 // Standard Node stuff 497 virtual int Opcode() const; 498 virtual bool pinned() const { return true; } 499 virtual const Type* Value(PhaseGVN* phase) const; 500 virtual const Type* bottom_type() const { return Type::CONTROL; } 501 virtual const TypePtr* adr_type() const { return _adr_type; } 502 void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; } 503 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 504 virtual Node* Identity(PhaseGVN* phase); 505 virtual uint ideal_reg() const { return 0; } 506 virtual const RegMask &in_RegMask(uint) const; 507 virtual const RegMask &out_RegMask() const; 508 virtual uint match_edge(uint idx) const; 509 510 #ifndef PRODUCT 511 virtual void dump_spec(outputStream *st) const; 512 #endif 513 }; 514 515 //------------------------------SafePointScalarObjectNode---------------------- 516 // A SafePointScalarObjectNode represents the state of a scalarized object 517 // at a safepoint. 518 class SafePointScalarObjectNode: public TypeNode { 519 uint _first_index; // First input edge relative index of a SafePoint node where 520 // states of the scalarized object fields are collected. 521 uint _depth; // Depth of the JVM state the _first_index field refers to 522 uint _n_fields; // Number of non-static fields of the scalarized object. 523 524 Node* _alloc; // Just for debugging purposes. 525 526 virtual uint hash() const; 527 virtual bool cmp( const Node &n ) const; 528 529 uint first_index() const { return _first_index; } 530 531 public: 532 SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields); 533 534 virtual int Opcode() const; 535 virtual uint ideal_reg() const; 536 virtual const RegMask &in_RegMask(uint) const; 537 virtual const RegMask &out_RegMask() const; 538 virtual uint match_edge(uint idx) const; 539 540 uint first_index(JVMState* jvms) const { 541 assert(jvms != nullptr, "missed JVMS"); 542 return jvms->of_depth(_depth)->scloff() + _first_index; 543 } 544 uint n_fields() const { return _n_fields; } 545 546 #ifdef ASSERT 547 Node* alloc() const { return _alloc; } 548 #endif 549 550 virtual uint size_of() const { return sizeof(*this); } 551 552 // Assumes that "this" is an argument to a safepoint node "s", and that 553 // "new_call" is being created to correspond to "s". But the difference 554 // between the start index of the jvmstates of "new_call" and "s" is 555 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 556 // corresponds appropriately to "this" in "new_call". Assumes that 557 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 558 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 559 SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const; 560 561 #ifndef PRODUCT 562 virtual void dump_spec(outputStream *st) const; 563 #endif 564 }; 565 566 //------------------------------SafePointScalarMergeNode---------------------- 567 // 568 // This class represents an allocation merge that is used as debug information 569 // and had at least one of its input scalar replaced. 570 // 571 // The required inputs of this node, except the control, are pointers to 572 // SafePointScalarObjectNodes that describe scalarized inputs of the original 573 // allocation merge. The other(s) properties of the class are described below. 574 // 575 // _merge_pointer_idx : index in the SafePointNode's input array where the 576 // description of the _allocation merge_ starts. The index is zero based and 577 // relative to the SafePoint's scloff. The two entries in the SafePointNode's 578 // input array starting at '_merge_pointer_idx` are Phi nodes representing: 579 // 580 // 1) The original merge Phi. During rematerialization this input will only be 581 // used if the "selector Phi" (see below) indicates that the execution of the 582 // Phi took the path of a non scalarized input. 583 // 584 // 2) A "selector Phi". The output of this Phi will be '-1' if the execution 585 // of the method exercised a non scalarized input of the original Phi. 586 // Otherwise, the output will be >=0, and it will indicate the index-1 in the 587 // SafePointScalarMergeNode input array where the description of the 588 // scalarized object that should be used is. 589 // 590 // As an example, consider a Phi merging 3 inputs, of which the last 2 are 591 // scalar replaceable. 592 // 593 // Phi(Region, NSR, SR, SR) 594 // 595 // During scalar replacement the SR inputs will be changed to null: 596 // 597 // Phi(Region, NSR, nullptr, nullptr) 598 // 599 // A corresponding selector Phi will be created with a configuration like this: 600 // 601 // Phi(Region, -1, 0, 1) 602 // 603 // During execution of the compiled method, if the execution reaches a Trap, the 604 // output of the selector Phi will tell if we need to rematerialize one of the 605 // scalar replaced inputs or if we should just use the pointer returned by the 606 // original Phi. 607 608 class SafePointScalarMergeNode: public TypeNode { 609 int _merge_pointer_idx; // This is the first input edge relative 610 // index of a SafePoint node where metadata information relative 611 // to restoring the merge is stored. The corresponding input 612 // in the associated SafePoint will point to a Phi representing 613 // potential non-scalar replaced objects. 614 615 virtual uint hash() const; 616 virtual bool cmp( const Node &n ) const; 617 618 public: 619 SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx); 620 621 virtual int Opcode() const; 622 virtual uint ideal_reg() const; 623 virtual const RegMask &in_RegMask(uint) const; 624 virtual const RegMask &out_RegMask() const; 625 virtual uint match_edge(uint idx) const; 626 627 virtual uint size_of() const { return sizeof(*this); } 628 629 int merge_pointer_idx(JVMState* jvms) const { 630 assert(jvms != nullptr, "JVMS reference is null."); 631 return jvms->scloff() + _merge_pointer_idx; 632 } 633 634 int selector_idx(JVMState* jvms) const { 635 assert(jvms != nullptr, "JVMS reference is null."); 636 return jvms->scloff() + _merge_pointer_idx + 1; 637 } 638 639 // Assumes that "this" is an argument to a safepoint node "s", and that 640 // "new_call" is being created to correspond to "s". But the difference 641 // between the start index of the jvmstates of "new_call" and "s" is 642 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 643 // corresponds appropriately to "this" in "new_call". Assumes that 644 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 645 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 646 SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const; 647 648 #ifndef PRODUCT 649 virtual void dump_spec(outputStream *st) const; 650 #endif 651 }; 652 653 // Simple container for the outgoing projections of a call. Useful 654 // for serious surgery on calls. 655 class CallProjections { 656 public: 657 Node* fallthrough_proj; 658 Node* fallthrough_catchproj; 659 Node* fallthrough_memproj; 660 Node* fallthrough_ioproj; 661 Node* catchall_catchproj; 662 Node* catchall_memproj; 663 Node* catchall_ioproj; 664 Node* exobj; 665 uint nb_resproj; 666 Node* resproj[1]; // at least one projection 667 668 CallProjections(uint nbres) { 669 fallthrough_proj = nullptr; 670 fallthrough_catchproj = nullptr; 671 fallthrough_memproj = nullptr; 672 fallthrough_ioproj = nullptr; 673 catchall_catchproj = nullptr; 674 catchall_memproj = nullptr; 675 catchall_ioproj = nullptr; 676 exobj = nullptr; 677 nb_resproj = nbres; 678 resproj[0] = nullptr; 679 for (uint i = 1; i < nb_resproj; i++) { 680 resproj[i] = nullptr; 681 } 682 } 683 684 }; 685 686 class CallGenerator; 687 688 //------------------------------CallNode--------------------------------------- 689 // Call nodes now subsume the function of debug nodes at callsites, so they 690 // contain the functionality of a full scope chain of debug nodes. 691 class CallNode : public SafePointNode { 692 friend class VMStructs; 693 694 protected: 695 bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase); 696 697 public: 698 const TypeFunc* _tf; // Function type 699 address _entry_point; // Address of method being called 700 float _cnt; // Estimate of number of times called 701 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls 702 const char* _name; // Printable name, if _method is null 703 704 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr) 705 : SafePointNode(tf->domain_cc()->cnt(), jvms, adr_type), 706 _tf(tf), 707 _entry_point(addr), 708 _cnt(COUNT_UNKNOWN), 709 _generator(nullptr), 710 _name(nullptr) 711 { 712 init_class_id(Class_Call); 713 } 714 715 const TypeFunc* tf() const { return _tf; } 716 address entry_point() const { return _entry_point; } 717 float cnt() const { return _cnt; } 718 CallGenerator* generator() const { return _generator; } 719 720 void set_tf(const TypeFunc* tf) { _tf = tf; } 721 void set_entry_point(address p) { _entry_point = p; } 722 void set_cnt(float c) { _cnt = c; } 723 void set_generator(CallGenerator* cg) { _generator = cg; } 724 725 virtual const Type* bottom_type() const; 726 virtual const Type* Value(PhaseGVN* phase) const; 727 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 728 virtual Node* Identity(PhaseGVN* phase) { return this; } 729 virtual bool cmp(const Node &n) const; 730 virtual uint size_of() const = 0; 731 virtual void calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const; 732 virtual Node* match(const ProjNode* proj, const Matcher* m, const RegMask* mask); 733 virtual uint ideal_reg() const { return NotAMachineReg; } 734 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and 735 // for some macro nodes whose expansion does not have a safepoint on the fast path. 736 virtual bool guaranteed_safepoint() { return true; } 737 // For macro nodes, the JVMState gets modified during expansion. If calls 738 // use MachConstantBase, it gets modified during matching. So when cloning 739 // the node the JVMState must be deep cloned. Default is to shallow clone. 740 virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); } 741 742 // Returns true if the call may modify n 743 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase); 744 // Does this node have a use of n other than in debug information? 745 bool has_non_debug_use(Node* n); 746 bool has_debug_use(Node* n); 747 // Returns the unique CheckCastPP of a call 748 // or result projection is there are several CheckCastPP 749 // or returns null if there is no one. 750 Node* result_cast(); 751 // Does this node returns pointer? 752 bool returns_pointer() const { 753 const TypeTuple* r = tf()->range_sig(); 754 return (!tf()->returns_inline_type_as_fields() && 755 r->cnt() > TypeFunc::Parms && 756 r->field_at(TypeFunc::Parms)->isa_ptr()); 757 } 758 759 // Collect all the interesting edges from a call for use in 760 // replacing the call by something else. Used by macro expansion 761 // and the late inlining support. 762 CallProjections* extract_projections(bool separate_io_proj, bool do_asserts = true); 763 764 virtual uint match_edge(uint idx) const; 765 766 bool is_call_to_arraycopystub() const; 767 768 virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {} 769 770 #ifndef PRODUCT 771 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; 772 virtual void dump_spec(outputStream* st) const; 773 #endif 774 }; 775 776 777 //------------------------------CallJavaNode----------------------------------- 778 // Make a static or dynamic subroutine call node using Java calling 779 // convention. (The "Java" calling convention is the compiler's calling 780 // convention, as opposed to the interpreter's or that of native C.) 781 class CallJavaNode : public CallNode { 782 friend class VMStructs; 783 protected: 784 virtual bool cmp( const Node &n ) const; 785 virtual uint size_of() const; // Size is bigger 786 787 ciMethod* _method; // Method being direct called 788 bool _optimized_virtual; 789 bool _method_handle_invoke; 790 bool _override_symbolic_info; // Override symbolic call site info from bytecode 791 bool _arg_escape; // ArgEscape in parameter list 792 public: 793 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method) 794 : CallNode(tf, addr, TypePtr::BOTTOM), 795 _method(method), 796 _optimized_virtual(false), 797 _method_handle_invoke(false), 798 _override_symbolic_info(false), 799 _arg_escape(false) 800 { 801 init_class_id(Class_CallJava); 802 } 803 804 virtual int Opcode() const; 805 ciMethod* method() const { return _method; } 806 void set_method(ciMethod *m) { _method = m; } 807 void set_optimized_virtual(bool f) { _optimized_virtual = f; } 808 bool is_optimized_virtual() const { return _optimized_virtual; } 809 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } 810 bool is_method_handle_invoke() const { return _method_handle_invoke; } 811 void set_override_symbolic_info(bool f) { _override_symbolic_info = f; } 812 bool override_symbolic_info() const { return _override_symbolic_info; } 813 void set_arg_escape(bool f) { _arg_escape = f; } 814 bool arg_escape() const { return _arg_escape; } 815 void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt); 816 817 DEBUG_ONLY( bool validate_symbolic_info() const; ) 818 819 #ifndef PRODUCT 820 virtual void dump_spec(outputStream *st) const; 821 virtual void dump_compact_spec(outputStream *st) const; 822 #endif 823 }; 824 825 //------------------------------CallStaticJavaNode----------------------------- 826 // Make a direct subroutine call using Java calling convention (for static 827 // calls and optimized virtual calls, plus calls to wrappers for run-time 828 // routines); generates static stub. 829 class CallStaticJavaNode : public CallJavaNode { 830 virtual bool cmp( const Node &n ) const; 831 virtual uint size_of() const; // Size is bigger 832 833 bool remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg); 834 835 public: 836 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method) 837 : CallJavaNode(tf, addr, method) { 838 init_class_id(Class_CallStaticJava); 839 if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) { 840 init_flags(Flag_is_macro); 841 C->add_macro_node(this); 842 } 843 const TypeTuple *r = tf->range_sig(); 844 if (InlineTypeReturnedAsFields && 845 method != nullptr && 846 method->is_method_handle_intrinsic() && 847 r->cnt() > TypeFunc::Parms && 848 r->field_at(TypeFunc::Parms)->isa_oopptr() && 849 r->field_at(TypeFunc::Parms)->is_oopptr()->can_be_inline_type()) { 850 // Make sure this call is processed by PhaseMacroExpand::expand_mh_intrinsic_return 851 init_flags(Flag_is_macro); 852 C->add_macro_node(this); 853 } 854 } 855 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type) 856 : CallJavaNode(tf, addr, nullptr) { 857 init_class_id(Class_CallStaticJava); 858 // This node calls a runtime stub, which often has narrow memory effects. 859 _adr_type = adr_type; 860 _name = name; 861 } 862 863 // If this is an uncommon trap, return the request code, else zero. 864 int uncommon_trap_request() const; 865 bool is_uncommon_trap() const; 866 static int extract_uncommon_trap_request(const Node* call); 867 868 bool is_boxing_method() const { 869 return is_macro() && (method() != nullptr) && method()->is_boxing_method(); 870 } 871 // Late inlining modifies the JVMState, so we need to deep clone it 872 // when the call node is cloned (because it is macro node). 873 virtual bool needs_deep_clone_jvms(Compile* C) { 874 return is_boxing_method() || CallNode::needs_deep_clone_jvms(C); 875 } 876 877 virtual int Opcode() const; 878 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 879 880 #ifndef PRODUCT 881 virtual void dump_spec(outputStream *st) const; 882 virtual void dump_compact_spec(outputStream *st) const; 883 #endif 884 }; 885 886 //------------------------------CallDynamicJavaNode---------------------------- 887 // Make a dispatched call using Java calling convention. 888 class CallDynamicJavaNode : public CallJavaNode { 889 virtual bool cmp( const Node &n ) const; 890 virtual uint size_of() const; // Size is bigger 891 public: 892 CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index) 893 : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) { 894 init_class_id(Class_CallDynamicJava); 895 } 896 897 // Late inlining modifies the JVMState, so we need to deep clone it 898 // when the call node is cloned. 899 virtual bool needs_deep_clone_jvms(Compile* C) { 900 return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C); 901 } 902 903 int _vtable_index; 904 virtual int Opcode() const; 905 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 906 #ifndef PRODUCT 907 virtual void dump_spec(outputStream *st) const; 908 #endif 909 }; 910 911 //------------------------------CallRuntimeNode-------------------------------- 912 // Make a direct subroutine call node into compiled C++ code. 913 class CallRuntimeNode : public CallNode { 914 protected: 915 virtual bool cmp( const Node &n ) const; 916 virtual uint size_of() const; // Size is bigger 917 public: 918 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, 919 const TypePtr* adr_type, JVMState* jvms = nullptr) 920 : CallNode(tf, addr, adr_type, jvms) 921 { 922 init_class_id(Class_CallRuntime); 923 _name = name; 924 } 925 926 virtual int Opcode() const; 927 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 928 929 #ifndef PRODUCT 930 virtual void dump_spec(outputStream *st) const; 931 #endif 932 }; 933 934 //------------------------------CallLeafNode----------------------------------- 935 // Make a direct subroutine call node into compiled C++ code, without 936 // safepoints 937 class CallLeafNode : public CallRuntimeNode { 938 public: 939 CallLeafNode(const TypeFunc* tf, address addr, const char* name, 940 const TypePtr* adr_type) 941 : CallRuntimeNode(tf, addr, name, adr_type) 942 { 943 init_class_id(Class_CallLeaf); 944 } 945 virtual int Opcode() const; 946 virtual bool guaranteed_safepoint() { return false; } 947 #ifndef PRODUCT 948 virtual void dump_spec(outputStream *st) const; 949 #endif 950 }; 951 952 //------------------------------CallLeafNoFPNode------------------------------- 953 // CallLeafNode, not using floating point or using it in the same manner as 954 // the generated code 955 class CallLeafNoFPNode : public CallLeafNode { 956 public: 957 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, 958 const TypePtr* adr_type) 959 : CallLeafNode(tf, addr, name, adr_type) 960 { 961 init_class_id(Class_CallLeafNoFP); 962 } 963 virtual int Opcode() const; 964 virtual uint match_edge(uint idx) const; 965 }; 966 967 //------------------------------CallLeafVectorNode------------------------------- 968 // CallLeafNode but calling with vector calling convention instead. 969 class CallLeafVectorNode : public CallLeafNode { 970 private: 971 uint _num_bits; 972 protected: 973 virtual bool cmp( const Node &n ) const; 974 virtual uint size_of() const; // Size is bigger 975 public: 976 CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name, 977 const TypePtr* adr_type, uint num_bits) 978 : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits) 979 { 980 } 981 virtual int Opcode() const; 982 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 983 }; 984 985 986 //------------------------------Allocate--------------------------------------- 987 // High-level memory allocation 988 // 989 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will 990 // get expanded into a code sequence containing a call. Unlike other CallNodes, 991 // they have 2 memory projections and 2 i_o projections (which are distinguished by 992 // the _is_io_use flag in the projection.) This is needed when expanding the node in 993 // order to differentiate the uses of the projection on the normal control path from 994 // those on the exception return path. 995 // 996 class AllocateNode : public CallNode { 997 public: 998 enum { 999 // Output: 1000 RawAddress = TypeFunc::Parms, // the newly-allocated raw address 1001 // Inputs: 1002 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object 1003 KlassNode, // type (maybe dynamic) of the obj. 1004 InitialTest, // slow-path test (may be constant) 1005 ALength, // array length (or TOP if none) 1006 ValidLengthTest, 1007 InlineType, // InlineTypeNode if this is an inline type allocation 1008 DefaultValue, // default value in case of non-flat inline type array 1009 RawDefaultValue, // same as above but as raw machine word 1010 ParmLimit 1011 }; 1012 1013 static const TypeFunc* alloc_type(const Type* t) { 1014 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); 1015 fields[AllocSize] = TypeInt::POS; 1016 fields[KlassNode] = TypeInstPtr::NOTNULL; 1017 fields[InitialTest] = TypeInt::BOOL; 1018 fields[ALength] = t; // length (can be a bad length) 1019 fields[ValidLengthTest] = TypeInt::BOOL; 1020 fields[InlineType] = Type::BOTTOM; 1021 fields[DefaultValue] = TypeInstPtr::NOTNULL; 1022 fields[RawDefaultValue] = TypeX_X; 1023 1024 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); 1025 1026 // create result type (range) 1027 fields = TypeTuple::fields(1); 1028 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 1029 1030 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1031 1032 return TypeFunc::make(domain, range); 1033 } 1034 1035 // Result of Escape Analysis 1036 bool _is_scalar_replaceable; 1037 bool _is_non_escaping; 1038 // True when MemBar for new is redundant with MemBar at initialzer exit 1039 bool _is_allocation_MemBar_redundant; 1040 bool _larval; 1041 1042 virtual uint size_of() const; // Size is bigger 1043 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, 1044 Node *size, Node *klass_node, Node *initial_test, 1045 InlineTypeNode* inline_type_node = nullptr); 1046 // Expansion modifies the JVMState, so we need to deep clone it 1047 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1048 virtual int Opcode() const; 1049 virtual uint ideal_reg() const { return Op_RegP; } 1050 virtual bool guaranteed_safepoint() { return false; } 1051 1052 // allocations do not modify their arguments 1053 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;} 1054 1055 // Pattern-match a possible usage of AllocateNode. 1056 // Return null if no allocation is recognized. 1057 // The operand is the pointer produced by the (possible) allocation. 1058 // It must be a projection of the Allocate or its subsequent CastPP. 1059 // (Note: This function is defined in file graphKit.cpp, near 1060 // GraphKit::new_instance/new_array, whose output it recognizes.) 1061 // The 'ptr' may not have an offset unless the 'offset' argument is given. 1062 static AllocateNode* Ideal_allocation(Node* ptr); 1063 1064 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip 1065 // an offset, which is reported back to the caller. 1066 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) 1067 static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase, 1068 intptr_t& offset); 1069 1070 // Dig the klass operand out of a (possible) allocation site. 1071 static Node* Ideal_klass(Node* ptr, PhaseValues* phase) { 1072 AllocateNode* allo = Ideal_allocation(ptr); 1073 return (allo == nullptr) ? nullptr : allo->in(KlassNode); 1074 } 1075 1076 // Conservatively small estimate of offset of first non-header byte. 1077 int minimum_header_size() { 1078 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 1079 instanceOopDesc::base_offset_in_bytes(); 1080 } 1081 1082 // Return the corresponding initialization barrier (or null if none). 1083 // Walks out edges to find it... 1084 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 1085 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 1086 InitializeNode* initialization(); 1087 1088 // Convenience for initialization->maybe_set_complete(phase) 1089 bool maybe_set_complete(PhaseGVN* phase); 1090 1091 // Return true if allocation doesn't escape thread, its escape state 1092 // needs be noEscape or ArgEscape. InitializeNode._does_not_escape 1093 // is true when its allocation's escape state is noEscape or 1094 // ArgEscape. In case allocation's InitializeNode is null, check 1095 // AlllocateNode._is_non_escaping flag. 1096 // AlllocateNode._is_non_escaping is true when its escape state is 1097 // noEscape. 1098 bool does_not_escape_thread() { 1099 InitializeNode* init = nullptr; 1100 return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape()); 1101 } 1102 1103 // If object doesn't escape in <.init> method and there is memory barrier 1104 // inserted at exit of its <.init>, memory barrier for new is not necessary. 1105 // Inovke this method when MemBar at exit of initializer and post-dominate 1106 // allocation node. 1107 void compute_MemBar_redundancy(ciMethod* initializer); 1108 bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; } 1109 1110 Node* make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem); 1111 }; 1112 1113 //------------------------------AllocateArray--------------------------------- 1114 // 1115 // High-level array allocation 1116 // 1117 class AllocateArrayNode : public AllocateNode { 1118 public: 1119 AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node, 1120 Node* initial_test, Node* count_val, Node* valid_length_test, 1121 Node* default_value, Node* raw_default_value) 1122 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, 1123 initial_test) 1124 { 1125 init_class_id(Class_AllocateArray); 1126 set_req(AllocateNode::ALength, count_val); 1127 set_req(AllocateNode::ValidLengthTest, valid_length_test); 1128 init_req(AllocateNode::DefaultValue, default_value); 1129 init_req(AllocateNode::RawDefaultValue, raw_default_value); 1130 } 1131 virtual uint size_of() const { return sizeof(*this); } 1132 virtual int Opcode() const; 1133 1134 // Dig the length operand out of a array allocation site. 1135 Node* Ideal_length() { 1136 return in(AllocateNode::ALength); 1137 } 1138 1139 // Dig the length operand out of a array allocation site and narrow the 1140 // type with a CastII, if necesssary 1141 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true); 1142 1143 // Pattern-match a possible usage of AllocateArrayNode. 1144 // Return null if no allocation is recognized. 1145 static AllocateArrayNode* Ideal_array_allocation(Node* ptr) { 1146 AllocateNode* allo = Ideal_allocation(ptr); 1147 return (allo == nullptr || !allo->is_AllocateArray()) 1148 ? nullptr : allo->as_AllocateArray(); 1149 } 1150 }; 1151 1152 //------------------------------AbstractLockNode----------------------------------- 1153 class AbstractLockNode: public CallNode { 1154 private: 1155 enum { 1156 Regular = 0, // Normal lock 1157 NonEscObj, // Lock is used for non escaping object 1158 Coarsened, // Lock was coarsened 1159 Nested // Nested lock 1160 } _kind; 1161 1162 static const char* _kind_names[Nested+1]; 1163 1164 #ifndef PRODUCT 1165 NamedCounter* _counter; 1166 #endif 1167 1168 protected: 1169 // helper functions for lock elimination 1170 // 1171 1172 bool find_matching_unlock(const Node* ctrl, LockNode* lock, 1173 GrowableArray<AbstractLockNode*> &lock_ops); 1174 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1175 GrowableArray<AbstractLockNode*> &lock_ops); 1176 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1177 GrowableArray<AbstractLockNode*> &lock_ops); 1178 LockNode *find_matching_lock(UnlockNode* unlock); 1179 1180 // Update the counter to indicate that this lock was eliminated. 1181 void set_eliminated_lock_counter() PRODUCT_RETURN; 1182 1183 public: 1184 AbstractLockNode(const TypeFunc *tf) 1185 : CallNode(tf, nullptr, TypeRawPtr::BOTTOM), 1186 _kind(Regular) 1187 { 1188 #ifndef PRODUCT 1189 _counter = nullptr; 1190 #endif 1191 } 1192 virtual int Opcode() const = 0; 1193 Node * obj_node() const {return in(TypeFunc::Parms + 0); } 1194 Node * box_node() const {return in(TypeFunc::Parms + 1); } 1195 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } 1196 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } 1197 1198 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} 1199 1200 virtual uint size_of() const { return sizeof(*this); } 1201 1202 bool is_eliminated() const { return (_kind != Regular); } 1203 bool is_non_esc_obj() const { return (_kind == NonEscObj); } 1204 bool is_coarsened() const { return (_kind == Coarsened); } 1205 bool is_nested() const { return (_kind == Nested); } 1206 1207 const char * kind_as_string() const; 1208 void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const; 1209 1210 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } 1211 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } 1212 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } 1213 1214 // Check that all locks/unlocks associated with object come from balanced regions. 1215 // They can become unbalanced after coarsening optimization or on OSR entry. 1216 bool is_balanced(); 1217 1218 // locking does not modify its arguments 1219 virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; } 1220 1221 #ifndef PRODUCT 1222 void create_lock_counter(JVMState* s); 1223 NamedCounter* counter() const { return _counter; } 1224 virtual void dump_spec(outputStream* st) const; 1225 virtual void dump_compact_spec(outputStream* st) const; 1226 #endif 1227 }; 1228 1229 //------------------------------Lock--------------------------------------- 1230 // High-level lock operation 1231 // 1232 // This is a subclass of CallNode because it is a macro node which gets expanded 1233 // into a code sequence containing a call. This node takes 3 "parameters": 1234 // 0 - object to lock 1235 // 1 - a BoxLockNode 1236 // 2 - a FastLockNode 1237 // 1238 class LockNode : public AbstractLockNode { 1239 public: 1240 1241 static const TypeFunc *lock_type() { 1242 // create input type (domain) 1243 const Type **fields = TypeTuple::fields(3); 1244 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 1245 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 1246 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock 1247 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); 1248 1249 // create result type (range) 1250 fields = TypeTuple::fields(0); 1251 1252 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1253 1254 return TypeFunc::make(domain, range); 1255 } 1256 1257 virtual int Opcode() const; 1258 virtual uint size_of() const; // Size is bigger 1259 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { 1260 init_class_id(Class_Lock); 1261 init_flags(Flag_is_macro); 1262 C->add_macro_node(this); 1263 } 1264 virtual bool guaranteed_safepoint() { return false; } 1265 1266 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1267 // Expansion modifies the JVMState, so we need to deep clone it 1268 virtual bool needs_deep_clone_jvms(Compile* C) { return true; } 1269 1270 bool is_nested_lock_region(); // Is this Lock nested? 1271 bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? 1272 }; 1273 1274 //------------------------------Unlock--------------------------------------- 1275 // High-level unlock operation 1276 class UnlockNode : public AbstractLockNode { 1277 private: 1278 #ifdef ASSERT 1279 JVMState* const _dbg_jvms; // Pointer to list of JVM State objects 1280 #endif 1281 public: 1282 virtual int Opcode() const; 1283 virtual uint size_of() const; // Size is bigger 1284 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) 1285 #ifdef ASSERT 1286 , _dbg_jvms(nullptr) 1287 #endif 1288 { 1289 init_class_id(Class_Unlock); 1290 init_flags(Flag_is_macro); 1291 C->add_macro_node(this); 1292 } 1293 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1294 // unlock is never a safepoint 1295 virtual bool guaranteed_safepoint() { return false; } 1296 #ifdef ASSERT 1297 void set_dbg_jvms(JVMState* s) { 1298 *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor 1299 } 1300 JVMState* dbg_jvms() const { return _dbg_jvms; } 1301 #else 1302 JVMState* dbg_jvms() const { return nullptr; } 1303 #endif 1304 }; 1305 #endif // SHARE_OPTO_CALLNODE_HPP