1 /*
2 * Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "castnode.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/callnode.hpp"
28 #include "opto/castnode.hpp"
29 #include "opto/cfgnode.hpp"
30 #include "opto/connode.hpp"
31 #include "opto/loopnode.hpp"
32 #include "opto/matcher.hpp"
33 #include "opto/phaseX.hpp"
34 #include "opto/subnode.hpp"
35 #include "opto/type.hpp"
36 #include "utilities/checkedCast.hpp"
37
38 //=============================================================================
39 // If input is already higher or equal to cast type, then this is an identity.
40 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
41 if (_dependency == UnconditionalDependency) {
42 return this;
43 }
44 Node* dom = dominating_cast(phase, phase);
45 if (dom != nullptr) {
46 return dom;
47 }
48 return higher_equal_types(phase, in(1)) ? in(1) : this;
49 }
50
51 //------------------------------Value------------------------------------------
52 // Take 'join' of input and cast-up type
53 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
54 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
55
56 const Type* in_type = phase->type(in(1));
57 const Type* ft = in_type->filter_speculative(_type);
58
59 // Check if both _type and in_type had a speculative type, but for the just
60 // computed ft the speculative type was dropped.
61 if (ft->speculative() == nullptr &&
62 _type->speculative() != nullptr &&
63 in_type->speculative() != nullptr) {
64 // Speculative type may have disagreed between cast and input, and was
65 // dropped in filtering. Recompute so that ft can take speculative type
66 // of in_type. If we did not do it now, a subsequent ::Value call would
67 // do it, and violate idempotence of ::Value.
68 ft = in_type->filter_speculative(ft);
69 }
70
71 #ifdef ASSERT
72 // Previous versions of this function had some special case logic,
73 // which is no longer necessary. Make sure of the required effects.
74 switch (Opcode()) {
75 case Op_CastII:
76 {
77 if (in_type == Type::TOP) {
78 assert(ft == Type::TOP, "special case #1");
79 }
80 const Type* rt = in_type->join_speculative(_type);
81 if (rt->empty()) {
82 assert(ft == Type::TOP, "special case #2");
83 }
84 break;
85 }
86 case Op_CastPP:
87 if (in_type == TypePtr::NULL_PTR &&
88 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) {
89 assert(ft == Type::TOP, "special case #3");
90 break;
91 }
92 }
93 #endif //ASSERT
94
95 return ft;
96 }
97
98 //------------------------------Ideal------------------------------------------
99 // Return a node which is more "ideal" than the current node. Strip out
100 // control copies
101 Node* ConstraintCastNode::Ideal(PhaseGVN* phase, bool can_reshape) {
102 if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) {
103 return this;
104 }
105 if (in(1) != nullptr && phase->type(in(1)) != Type::TOP) {
106 return TypeNode::Ideal(phase, can_reshape);
107 }
108 return nullptr;
109 }
110
111 uint ConstraintCastNode::hash() const {
112 return TypeNode::hash() + (int)_dependency + (_extra_types != nullptr ? _extra_types->hash() : 0);
113 }
114
115 bool ConstraintCastNode::cmp(const Node &n) const {
116 if (!TypeNode::cmp(n)) {
117 return false;
118 }
119 ConstraintCastNode& cast = (ConstraintCastNode&) n;
120 if (cast._dependency != _dependency) {
121 return false;
122 }
123 if (_extra_types == nullptr || cast._extra_types == nullptr) {
124 return _extra_types == cast._extra_types;
125 }
126 return _extra_types->eq(cast._extra_types);
127 }
128
129 uint ConstraintCastNode::size_of() const {
130 return sizeof(*this);
131 }
132
133 Node* ConstraintCastNode::make_cast_for_basic_type(Node* c, Node* n, const Type* t, DependencyType dependency, BasicType bt) {
134 switch(bt) {
135 case T_INT:
136 return new CastIINode(c, n, t, dependency);
137 case T_LONG:
138 return new CastLLNode(c, n, t, dependency);
139 default:
140 fatal("Bad basic type %s", type2name(bt));
141 }
142 return nullptr;
143 }
144
145 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
146 if (_dependency == UnconditionalDependency) {
147 return nullptr;
148 }
149 Node* val = in(1);
150 Node* ctl = in(0);
151 int opc = Opcode();
152 if (ctl == nullptr) {
153 return nullptr;
154 }
155 // Range check CastIIs may all end up under a single range check and
156 // in that case only the narrower CastII would be kept by the code
157 // below which would be incorrect.
158 if (is_CastII() && as_CastII()->has_range_check()) {
159 return nullptr;
160 }
161 if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) {
162 return nullptr;
163 }
164 for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
165 Node* u = val->fast_out(i);
166 if (u != this &&
167 u->outcnt() > 0 &&
168 u->Opcode() == opc &&
169 u->in(0) != nullptr &&
170 higher_equal_types(gvn, u)) {
171 if (pt->is_dominator(u->in(0), ctl)) {
172 return u->as_Type();
173 }
174 if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
175 u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
176 u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
177 // CheckCastPP following an allocation always dominates all
178 // use of the allocation result
179 return u->as_Type();
180 }
181 }
182 }
183 return nullptr;
184 }
185
186 bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const {
187 const Type* t = phase->type(other);
188 if (!t->higher_equal_speculative(type())) {
189 return false;
190 }
191 if (_extra_types != nullptr) {
192 for (uint i = 0; i < _extra_types->cnt(); ++i) {
193 if (!t->higher_equal_speculative(_extra_types->field_at(i))) {
194 return false;
195 }
196 }
197 }
198 return true;
199 }
200
201 #ifndef PRODUCT
202 void ConstraintCastNode::dump_spec(outputStream *st) const {
203 TypeNode::dump_spec(st);
204 if (_extra_types != nullptr) {
205 st->print(" extra types: ");
206 _extra_types->dump_on(st);
207 }
208 if (_dependency != RegularDependency) {
209 st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional");
210 }
211 }
212 #endif
213
214 const Type* CastIINode::Value(PhaseGVN* phase) const {
215 const Type *res = ConstraintCastNode::Value(phase);
216 if (res == Type::TOP) {
217 return Type::TOP;
218 }
219 assert(res->isa_int(), "res must be int");
220
221 // Similar to ConvI2LNode::Value() for the same reasons
222 // see if we can remove type assertion after loop opts
223 res = widen_type(phase, res, T_INT);
224
225 return res;
226 }
227
228 Node* ConstraintCastNode::find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, const TypeInteger* type) const {
229 Node* n = clone();
230 n->set_req(1, parent);
231 n->as_ConstraintCast()->set_type(type);
232 Node* existing = igvn->hash_find_insert(n);
233 if (existing != nullptr) {
234 n->destruct(igvn);
235 return existing;
236 }
237 return igvn->register_new_node_with_optimizer(n);
238 }
239
240 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
241 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
242 if (progress != nullptr) {
243 return progress;
244 }
245 if (can_reshape && !phase->C->post_loop_opts_phase()) {
246 // makes sure we run ::Value to potentially remove type assertion after loop opts
247 phase->C->record_for_post_loop_opts_igvn(this);
248 }
249 if (!_range_check_dependency || phase->C->post_loop_opts_phase()) {
250 return optimize_integer_cast(phase, T_INT);
251 }
252 phase->C->record_for_post_loop_opts_igvn(this);
253 return nullptr;
254 }
255
256 Node* CastIINode::Identity(PhaseGVN* phase) {
257 Node* progress = ConstraintCastNode::Identity(phase);
258 if (progress != this) {
259 return progress;
260 }
261 return this;
262 }
263
264 bool CastIINode::cmp(const Node &n) const {
265 return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
266 }
267
268 uint CastIINode::size_of() const {
269 return sizeof(*this);
270 }
271
272 #ifndef PRODUCT
273 void CastIINode::dump_spec(outputStream* st) const {
274 ConstraintCastNode::dump_spec(st);
275 if (_range_check_dependency) {
276 st->print(" range check dependency");
277 }
278 }
279 #endif
280
281 CastIINode* CastIINode::pin_array_access_node() const {
282 assert(_dependency == RegularDependency, "already pinned");
283 if (has_range_check()) {
284 return new CastIINode(in(0), in(1), bottom_type(), StrongDependency, has_range_check());
285 }
286 return nullptr;
287 }
288
289 void CastIINode::remove_range_check_cast(Compile* C) {
290 if (has_range_check()) {
291 // Range check CastII nodes feed into an address computation subgraph. Remove them to let that subgraph float freely.
292 // For memory access or integer divisions nodes that depend on the cast, record the dependency on the cast's control
293 // as a precedence edge, so they can't float above the cast in case that cast's narrowed type helped eliminate a
294 // range check or a null divisor check.
295 assert(in(0) != nullptr, "All RangeCheck CastII must have a control dependency");
296 ResourceMark rm;
297 Unique_Node_List wq;
298 wq.push(this);
299 for (uint next = 0; next < wq.size(); ++next) {
300 Node* m = wq.at(next);
301 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
302 Node* use = m->fast_out(i);
303 if (use->is_Mem() || use->is_div_or_mod(T_INT) || use->is_div_or_mod(T_LONG)) {
304 use->ensure_control_or_add_prec(in(0));
305 } else if (!use->is_CFG() && !use->is_Phi()) {
306 wq.push(use);
307 }
308 }
309 }
310 subsume_by(in(1), C);
311 if (outcnt() == 0) {
312 disconnect_inputs(C);
313 }
314 }
315 }
316
317
318 const Type* CastLLNode::Value(PhaseGVN* phase) const {
319 const Type* res = ConstraintCastNode::Value(phase);
320 if (res == Type::TOP) {
321 return Type::TOP;
322 }
323 assert(res->isa_long(), "res must be long");
324
325 return widen_type(phase, res, T_LONG);
326 }
327
328 bool CastLLNode::is_inner_loop_backedge(ProjNode* proj) {
329 if (proj != nullptr) {
330 Node* ctrl_use = proj->unique_ctrl_out_or_null();
331 if (ctrl_use != nullptr && ctrl_use->Opcode() == Op_Loop &&
332 ctrl_use->in(2) == proj &&
333 ctrl_use->as_Loop()->is_loop_nest_inner_loop()) {
334 return true;
335 }
336 }
337 return false;
338 }
339
340 bool CastLLNode::cmp_used_at_inner_loop_exit_test(CmpNode* cmp) {
341 for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
342 Node* bol = cmp->fast_out(i);
343 if (bol->Opcode() == Op_Bool) {
344 for (DUIterator_Fast jmax, j = bol->fast_outs(jmax); j < jmax; j++) {
345 Node* iff = bol->fast_out(j);
346 if (iff->Opcode() == Op_If) {
347 ProjNode* true_proj = iff->as_If()->proj_out_or_null(true);
348 ProjNode* false_proj = iff->as_If()->proj_out_or_null(false);
349 if (is_inner_loop_backedge(true_proj) || is_inner_loop_backedge(false_proj)) {
350 return true;
351 }
352 }
353 }
354 }
355 }
356 return false;
357 }
358
359 // Find if this is a cast node added by PhaseIdealLoop::create_loop_nest() to narrow the number of iterations of the
360 // inner loop
361 bool CastLLNode::used_at_inner_loop_exit_test() const {
362 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
363 Node* convl2i = fast_out(i);
364 if (convl2i->Opcode() == Op_ConvL2I) {
365 for (DUIterator_Fast jmax, j = convl2i->fast_outs(jmax); j < jmax; j++) {
366 Node* cmp_or_sub = convl2i->fast_out(j);
367 if (cmp_or_sub->Opcode() == Op_CmpI) {
368 if (cmp_used_at_inner_loop_exit_test(cmp_or_sub->as_Cmp())) {
369 // (Loop .. .. (IfProj (If (Bool (CmpI (ConvL2I (CastLL )))))))
370 return true;
371 }
372 } else if (cmp_or_sub->Opcode() == Op_SubI && cmp_or_sub->in(1)->find_int_con(-1) == 0) {
373 for (DUIterator_Fast kmax, k = cmp_or_sub->fast_outs(kmax); k < kmax; k++) {
374 Node* cmp = cmp_or_sub->fast_out(k);
375 if (cmp->Opcode() == Op_CmpI) {
376 if (cmp_used_at_inner_loop_exit_test(cmp->as_Cmp())) {
377 // (Loop .. .. (IfProj (If (Bool (CmpI (SubI 0 (ConvL2I (CastLL ))))))))
378 return true;
379 }
380 }
381 }
382 }
383 }
384 }
385 }
386 return false;
387 }
388
389 Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
390 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
391 if (progress != nullptr) {
392 return progress;
393 }
394 if (!phase->C->post_loop_opts_phase()) {
395 // makes sure we run ::Value to potentially remove type assertion after loop opts
396 phase->C->record_for_post_loop_opts_igvn(this);
397 }
398 // transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of
399 // the ConvI2L.
400 Node* in1 = in(1);
401 if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) {
402 const Type* t = Value(phase);
403 const Type* t_in = phase->type(in1);
404 if (t != Type::TOP && t_in != Type::TOP) {
405 const TypeLong* tl = t->is_long();
406 const TypeLong* t_in_l = t_in->is_long();
407 assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input");
408 assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower");
409 if (tl != t_in_l) {
410 const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen);
411 Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti));
412 Node* convi2l = in1->clone();
413 convi2l->set_req(1, castii);
414 return convi2l;
415 }
416 }
417 }
418 // If it's a cast created by PhaseIdealLoop::short_running_loop(), don't transform it until the counted loop is created
419 // in next loop opts pass
420 if (!can_reshape || !used_at_inner_loop_exit_test()) {
421 return optimize_integer_cast(phase, T_LONG);
422 }
423 return nullptr;
424 }
425
426 //------------------------------Value------------------------------------------
427 // Take 'join' of input and cast-up type, unless working with an Interface
428 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
429 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
430
431 const Type *inn = phase->type(in(1));
432 if( inn == Type::TOP ) return Type::TOP; // No information yet
433
434 if (inn->isa_oopptr() && _type->isa_oopptr()) {
435 return ConstraintCastNode::Value(phase);
436 }
437
438 const TypePtr *in_type = inn->isa_ptr();
439 const TypePtr *my_type = _type->isa_ptr();
440 const Type *result = _type;
441 if (in_type != nullptr && my_type != nullptr) {
442 TypePtr::PTR in_ptr = in_type->ptr();
443 if (in_ptr == TypePtr::Null) {
444 result = in_type;
445 } else if (in_ptr != TypePtr::Constant) {
446 result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr));
447 }
448 }
449
450 return result;
451 }
452
453 //=============================================================================
454 //------------------------------Value------------------------------------------
455 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
456 const Type* t = phase->type(in(1));
457 if (t == Type::TOP) return Type::TOP;
458 if (t->base() == Type_X && t->singleton()) {
459 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
460 if (bits == 0) return TypePtr::NULL_PTR;
461 return TypeRawPtr::make((address) bits);
462 }
463 return CastX2PNode::bottom_type();
464 }
465
466 //------------------------------Idealize---------------------------------------
467 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
468 if (t == Type::TOP) return false;
469 const TypeX* tl = t->is_intptr_t();
470 jint lo = min_jint;
471 jint hi = max_jint;
472 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
473 return (tl->_lo >= lo) && (tl->_hi <= hi);
474 }
475
476 static inline Node* addP_of_X2P(PhaseGVN *phase,
477 Node* base,
478 Node* dispX,
479 bool negate = false) {
480 if (negate) {
481 dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
482 }
483 return new AddPNode(phase->C->top(),
484 phase->transform(new CastX2PNode(base)),
485 dispX);
486 }
487
488 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
489 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
490 int op = in(1)->Opcode();
491 Node* x;
492 Node* y;
493 switch (op) {
494 case Op_SubX:
495 x = in(1)->in(1);
496 // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
497 if (phase->find_intptr_t_con(x, -1) == 0)
498 break;
499 y = in(1)->in(2);
500 if (fits_in_int(phase->type(y), true)) {
501 return addP_of_X2P(phase, x, y, true);
502 }
503 break;
504 case Op_AddX:
505 x = in(1)->in(1);
506 y = in(1)->in(2);
507 if (fits_in_int(phase->type(y))) {
508 return addP_of_X2P(phase, x, y);
509 }
510 if (fits_in_int(phase->type(x))) {
511 return addP_of_X2P(phase, y, x);
512 }
513 break;
514 }
515 return nullptr;
516 }
517
518 //------------------------------Identity---------------------------------------
519 Node* CastX2PNode::Identity(PhaseGVN* phase) {
520 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
521 return this;
522 }
523
524 //=============================================================================
525 //------------------------------Value------------------------------------------
526 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
527 const Type* t = phase->type(in(1));
528 if (t == Type::TOP) return Type::TOP;
529 if (t->base() == Type::RawPtr && t->singleton()) {
530 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
531 return TypeX::make(bits);
532 }
533 return CastP2XNode::bottom_type();
534 }
535
536 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
537 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
538 }
539
540 //------------------------------Identity---------------------------------------
541 Node* CastP2XNode::Identity(PhaseGVN* phase) {
542 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
543 return this;
544 }
545
546 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency,
547 const TypeTuple* types) {
548 if (type->isa_int()) {
549 return new CastIINode(c, in, type, dependency, false, types);
550 } else if (type->isa_long()) {
551 return new CastLLNode(c, in, type, dependency, types);
552 } else if (type->isa_half_float()) {
553 return new CastHHNode(c, in, type, dependency, types);
554 } else if (type->isa_float()) {
555 return new CastFFNode(c, in, type, dependency, types);
556 } else if (type->isa_double()) {
557 return new CastDDNode(c, in, type, dependency, types);
558 } else if (type->isa_vect()) {
559 return new CastVVNode(c, in, type, dependency, types);
560 } else if (type->isa_ptr()) {
561 return new CastPPNode(c, in, type, dependency, types);
562 }
563 fatal("unreachable. Invalid cast type.");
564 return nullptr;
565 }
566
567 Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) {
568 PhaseIterGVN *igvn = phase->is_IterGVN();
569 const TypeInteger* this_type = this->type()->isa_integer(bt);
570 if (this_type == nullptr) {
571 return nullptr;
572 }
573
574 Node* z = in(1);
575 const TypeInteger* rx = nullptr;
576 const TypeInteger* ry = nullptr;
577 // Similar to ConvI2LNode::Ideal() for the same reasons
578 if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) {
579 if (igvn == nullptr) {
580 // Postpone this optimization to iterative GVN, where we can handle deep
581 // AddI chains without an exponential number of recursive Ideal() calls.
582 phase->record_for_igvn(this);
583 return nullptr;
584 }
585 int op = z->Opcode();
586 Node* x = z->in(1);
587 Node* y = z->in(2);
588
589 Node* cx = find_or_make_integer_cast(igvn, x, rx);
590 Node* cy = find_or_make_integer_cast(igvn, y, ry);
591 if (op == Op_Add(bt)) {
592 return AddNode::make(cx, cy, bt);
593 } else {
594 assert(op == Op_Sub(bt), "");
595 return SubNode::make(cx, cy, bt);
596 }
597 return nullptr;
598 }
599 return nullptr;
600 }
601
602 const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const {
603 if (!phase->C->post_loop_opts_phase()) {
604 return res;
605 }
606
607 // At VerifyConstraintCasts == 1, we verify the ConstraintCastNodes that are present during code
608 // emission. This allows us detecting possible mis-scheduling due to these nodes being pinned at
609 // the wrong control nodes.
610 // At VerifyConstraintCasts == 2, we do not perform widening so that we can verify the
611 // correctness of more ConstraintCastNodes. This further helps us detect possible
612 // mis-transformations that may happen due to these nodes being pinned at the wrong control
613 // nodes.
614 if (VerifyConstraintCasts > 1) {
615 return res;
616 }
617
618 const TypeInteger* this_type = res->is_integer(bt);
619 const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt);
620 if (in_type != nullptr &&
621 (in_type->lo_as_long() != this_type->lo_as_long() ||
622 in_type->hi_as_long() != this_type->hi_as_long())) {
623 jlong lo1 = this_type->lo_as_long();
624 jlong hi1 = this_type->hi_as_long();
625 int w1 = this_type->_widen;
626 if (lo1 >= 0) {
627 // Keep a range assertion of >=0.
628 lo1 = 0; hi1 = max_signed_integer(bt);
629 } else if (hi1 < 0) {
630 // Keep a range assertion of <0.
631 lo1 = min_signed_integer(bt); hi1 = -1;
632 } else {
633 lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt);
634 }
635 return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1),
636 MIN2(in_type->hi_as_long(), hi1),
637 MAX2((int)in_type->_widen, w1), bt);
638 }
639 return res;
640 }