1 /* 2 * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/callnode.hpp" 28 #include "opto/castnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/matcher.hpp" 31 #include "opto/phaseX.hpp" 32 #include "opto/subnode.hpp" 33 #include "opto/type.hpp" 34 #include "castnode.hpp" 35 36 //============================================================================= 37 // If input is already higher or equal to cast type, then this is an identity. 38 Node* ConstraintCastNode::Identity(PhaseGVN* phase) { 39 Node* dom = dominating_cast(phase, phase); 40 if (dom != NULL) { 41 return dom; 42 } 43 if (_dependency != RegularDependency) { 44 return this; 45 } 46 return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this; 47 } 48 49 //------------------------------Value------------------------------------------ 50 // Take 'join' of input and cast-up type 51 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const { 52 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP; 53 const Type* ft = phase->type(in(1))->filter_speculative(_type); 54 55 #ifdef ASSERT 56 // Previous versions of this function had some special case logic, 57 // which is no longer necessary. Make sure of the required effects. 58 switch (Opcode()) { 59 case Op_CastII: 60 { 61 const Type* t1 = phase->type(in(1)); 62 if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1"); 63 const Type* rt = t1->join_speculative(_type); 64 if (rt->empty()) assert(ft == Type::TOP, "special case #2"); 65 break; 66 } 67 case Op_CastPP: 68 if (phase->type(in(1)) == TypePtr::NULL_PTR && 69 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) 70 assert(ft == Type::TOP, "special case #3"); 71 break; 72 } 73 #endif //ASSERT 74 75 return ft; 76 } 77 78 //------------------------------Ideal------------------------------------------ 79 // Return a node which is more "ideal" than the current node. Strip out 80 // control copies 81 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) { 82 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL; 83 } 84 85 bool ConstraintCastNode::cmp(const Node &n) const { 86 return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._dependency == _dependency; 87 } 88 89 uint ConstraintCastNode::size_of() const { 90 return sizeof(*this); 91 } 92 93 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, DependencyType dependency) { 94 switch(opcode) { 95 case Op_CastII: { 96 Node* cast = new CastIINode(n, t, dependency); 97 cast->set_req(0, c); 98 return cast; 99 } 100 case Op_CastLL: { 101 Node* cast = new CastLLNode(n, t, dependency); 102 cast->set_req(0, c); 103 return cast; 104 } 105 case Op_CastPP: { 106 Node* cast = new CastPPNode(n, t, dependency); 107 cast->set_req(0, c); 108 return cast; 109 } 110 case Op_CastFF: { 111 Node* cast = new CastFFNode(n, t, dependency); 112 cast->set_req(0, c); 113 return cast; 114 } 115 case Op_CastDD: { 116 Node* cast = new CastDDNode(n, t, dependency); 117 cast->set_req(0, c); 118 return cast; 119 } 120 case Op_CastVV: { 121 Node* cast = new CastVVNode(n, t, dependency); 122 cast->set_req(0, c); 123 return cast; 124 } 125 case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, dependency); 126 default: 127 fatal("Bad opcode %d", opcode); 128 } 129 return NULL; 130 } 131 132 Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, DependencyType dependency, BasicType bt) { 133 switch(bt) { 134 case T_INT: { 135 return make_cast(Op_CastII, c, n, t, dependency); 136 } 137 case T_LONG: { 138 return make_cast(Op_CastLL, c, n, t, dependency); 139 } 140 default: 141 fatal("Bad basic type %s", type2name(bt)); 142 } 143 return NULL; 144 } 145 146 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const { 147 if (_dependency == UnconditionalDependency) { 148 return NULL; 149 } 150 Node* val = in(1); 151 Node* ctl = in(0); 152 int opc = Opcode(); 153 if (ctl == NULL) { 154 return NULL; 155 } 156 // Range check CastIIs may all end up under a single range check and 157 // in that case only the narrower CastII would be kept by the code 158 // below which would be incorrect. 159 if (is_CastII() && as_CastII()->has_range_check()) { 160 return NULL; 161 } 162 if (type()->isa_rawptr() && (gvn->type_or_null(val) == NULL || gvn->type(val)->isa_oopptr())) { 163 return NULL; 164 } 165 for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { 166 Node* u = val->fast_out(i); 167 if (u != this && 168 u->outcnt() > 0 && 169 u->Opcode() == opc && 170 u->in(0) != NULL && 171 u->bottom_type()->higher_equal(type())) { 172 if (pt->is_dominator(u->in(0), ctl)) { 173 return u->as_Type(); 174 } 175 if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() && 176 u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() && 177 u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) { 178 // CheckCastPP following an allocation always dominates all 179 // use of the allocation result 180 return u->as_Type(); 181 } 182 } 183 } 184 return NULL; 185 } 186 187 #ifndef PRODUCT 188 void ConstraintCastNode::dump_spec(outputStream *st) const { 189 TypeNode::dump_spec(st); 190 if (_dependency != RegularDependency) { 191 st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional"); 192 } 193 } 194 #endif 195 196 const Type* CastIINode::Value(PhaseGVN* phase) const { 197 const Type *res = ConstraintCastNode::Value(phase); 198 if (res == Type::TOP) { 199 return Type::TOP; 200 } 201 assert(res->isa_int(), "res must be int"); 202 203 // Similar to ConvI2LNode::Value() for the same reasons 204 // see if we can remove type assertion after loop opts 205 // But here we have to pay extra attention: 206 // Do not narrow the type of range check dependent CastIINodes to 207 // avoid corruption of the graph if a CastII is replaced by TOP but 208 // the corresponding range check is not removed. 209 if (!_range_check_dependency) { 210 res = widen_type(phase, res, T_INT); 211 } 212 213 // Try to improve the type of the CastII if we recognize a CmpI/If 214 // pattern. 215 if (_dependency != RegularDependency) { 216 if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) { 217 assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj"); 218 Node* proj = in(0); 219 if (proj->in(0)->in(1)->is_Bool()) { 220 Node* b = proj->in(0)->in(1); 221 if (b->in(1)->Opcode() == Op_CmpI) { 222 Node* cmp = b->in(1); 223 if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) { 224 const TypeInt* in2_t = phase->type(cmp->in(2))->is_int(); 225 const Type* t = TypeInt::INT; 226 BoolTest test = b->as_Bool()->_test; 227 if (proj->is_IfFalse()) { 228 test = test.negate(); 229 } 230 BoolTest::mask m = test._test; 231 jlong lo_long = min_jint; 232 jlong hi_long = max_jint; 233 if (m == BoolTest::le || m == BoolTest::lt) { 234 hi_long = in2_t->_hi; 235 if (m == BoolTest::lt) { 236 hi_long -= 1; 237 } 238 } else if (m == BoolTest::ge || m == BoolTest::gt) { 239 lo_long = in2_t->_lo; 240 if (m == BoolTest::gt) { 241 lo_long += 1; 242 } 243 } else if (m == BoolTest::eq) { 244 lo_long = in2_t->_lo; 245 hi_long = in2_t->_hi; 246 } else if (m == BoolTest::ne) { 247 // can't do any better 248 } else { 249 stringStream ss; 250 test.dump_on(&ss); 251 fatal("unexpected comparison %s", ss.freeze()); 252 } 253 int lo_int = (int)lo_long; 254 int hi_int = (int)hi_long; 255 256 if (lo_long != (jlong)lo_int) { 257 lo_int = min_jint; 258 } 259 if (hi_long != (jlong)hi_int) { 260 hi_int = max_jint; 261 } 262 263 t = TypeInt::make(lo_int, hi_int, Type::WidenMax); 264 265 res = res->filter_speculative(t); 266 return res; 267 } 268 } 269 } 270 } 271 } 272 return res; 273 } 274 275 static Node* find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInteger* type, ConstraintCastNode::DependencyType dependency, BasicType bt) { 276 Node* n = ConstraintCastNode::make(control, parent, type, dependency, bt); 277 Node* existing = igvn->hash_find_insert(n); 278 if (existing != NULL) { 279 n->destruct(igvn); 280 return existing; 281 } 282 return igvn->register_new_node_with_optimizer(n); 283 } 284 285 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) { 286 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape); 287 if (progress != NULL) { 288 return progress; 289 } 290 if (can_reshape && !_range_check_dependency && !phase->C->post_loop_opts_phase()) { 291 // makes sure we run ::Value to potentially remove type assertion after loop opts 292 phase->C->record_for_post_loop_opts_igvn(this); 293 } 294 if (!_range_check_dependency) { 295 return optimize_integer_cast(phase, T_INT); 296 } 297 return NULL; 298 } 299 300 Node* CastIINode::Identity(PhaseGVN* phase) { 301 Node* progress = ConstraintCastNode::Identity(phase); 302 if (progress != this) { 303 return progress; 304 } 305 if (_range_check_dependency) { 306 if (phase->C->post_loop_opts_phase()) { 307 return this->in(1); 308 } else { 309 phase->C->record_for_post_loop_opts_igvn(this); 310 } 311 } 312 return this; 313 } 314 315 bool CastIINode::cmp(const Node &n) const { 316 return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency; 317 } 318 319 uint CastIINode::size_of() const { 320 return sizeof(*this); 321 } 322 323 #ifndef PRODUCT 324 void CastIINode::dump_spec(outputStream* st) const { 325 ConstraintCastNode::dump_spec(st); 326 if (_range_check_dependency) { 327 st->print(" range check dependency"); 328 } 329 } 330 #endif 331 332 const Type* CastLLNode::Value(PhaseGVN* phase) const { 333 const Type* res = ConstraintCastNode::Value(phase); 334 if (res == Type::TOP) { 335 return Type::TOP; 336 } 337 assert(res->isa_long(), "res must be long"); 338 339 return widen_type(phase, res, T_LONG); 340 } 341 342 Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 343 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape); 344 if (progress != NULL) { 345 return progress; 346 } 347 if (can_reshape && !phase->C->post_loop_opts_phase()) { 348 // makes sure we run ::Value to potentially remove type assertion after loop opts 349 phase->C->record_for_post_loop_opts_igvn(this); 350 } 351 // transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of 352 // the ConvI2L. 353 Node* in1 = in(1); 354 if (in1 != NULL && in1->Opcode() == Op_ConvI2L) { 355 const Type* t = Value(phase); 356 const Type* t_in = phase->type(in1); 357 if (t != Type::TOP && t_in != Type::TOP) { 358 const TypeLong* tl = t->is_long(); 359 const TypeLong* t_in_l = t_in->is_long(); 360 assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input"); 361 assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower"); 362 if (tl != t_in_l) { 363 const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen); 364 Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti)); 365 Node* convi2l = in1->clone(); 366 convi2l->set_req(1, castii); 367 return convi2l; 368 } 369 } 370 } 371 return optimize_integer_cast(phase, T_LONG); 372 } 373 374 //============================================================================= 375 //------------------------------Identity--------------------------------------- 376 // If input is already higher or equal to cast type, then this is an identity. 377 Node* CheckCastPPNode::Identity(PhaseGVN* phase) { 378 Node* dom = dominating_cast(phase, phase); 379 if (dom != NULL) { 380 return dom; 381 } 382 if (_dependency != RegularDependency) { 383 return this; 384 } 385 const Type* t = phase->type(in(1)); 386 if (EnableVectorReboxing && in(1)->Opcode() == Op_VectorBox) { 387 if (t->higher_equal_speculative(phase->type(this))) { 388 return in(1); 389 } 390 } else if (t == phase->type(this)) { 391 // Toned down to rescue meeting at a Phi 3 different oops all implementing 392 // the same interface. 393 return in(1); 394 } 395 return this; 396 } 397 398 //------------------------------Value------------------------------------------ 399 // Take 'join' of input and cast-up type, unless working with an Interface 400 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const { 401 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP; 402 403 const Type *inn = phase->type(in(1)); 404 if( inn == Type::TOP ) return Type::TOP; // No information yet 405 406 const TypePtr *in_type = inn->isa_ptr(); 407 const TypePtr *my_type = _type->isa_ptr(); 408 const Type *result = _type; 409 if( in_type != NULL && my_type != NULL ) { 410 TypePtr::PTR in_ptr = in_type->ptr(); 411 if (in_ptr == TypePtr::Null) { 412 result = in_type; 413 } else if (in_ptr == TypePtr::Constant) { 414 if (my_type->isa_rawptr()) { 415 result = my_type; 416 } else { 417 const TypeOopPtr *jptr = my_type->isa_oopptr(); 418 assert(jptr, ""); 419 result = !in_type->higher_equal(_type) 420 ? my_type->cast_to_ptr_type(TypePtr::NotNull) 421 : in_type; 422 } 423 } else { 424 result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) ); 425 } 426 } 427 428 // This is the code from TypePtr::xmeet() that prevents us from 429 // having 2 ways to represent the same type. We have to replicate it 430 // here because we don't go through meet/join. 431 if (result->remove_speculative() == result->speculative()) { 432 result = result->remove_speculative(); 433 } 434 435 // Same as above: because we don't go through meet/join, remove the 436 // speculative type if we know we won't use it. 437 return result->cleanup_speculative(); 438 439 // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES. 440 // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR! 441 442 // 443 // Remove this code after overnight run indicates no performance 444 // loss from not performing JOIN at CheckCastPPNode 445 // 446 // const TypeInstPtr *in_oop = in->isa_instptr(); 447 // const TypeInstPtr *my_oop = _type->isa_instptr(); 448 // // If either input is an 'interface', return destination type 449 // assert (in_oop == NULL || in_oop->klass() != NULL, ""); 450 // assert (my_oop == NULL || my_oop->klass() != NULL, ""); 451 // if( (in_oop && in_oop->klass()->is_interface()) 452 // ||(my_oop && my_oop->klass()->is_interface()) ) { 453 // TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR; 454 // // Preserve cast away nullness for interfaces 455 // if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) { 456 // return my_oop->cast_to_ptr_type(TypePtr::NotNull); 457 // } 458 // return _type; 459 // } 460 // 461 // // Neither the input nor the destination type is an interface, 462 // 463 // // history: JOIN used to cause weird corner case bugs 464 // // return (in == TypeOopPtr::NULL_PTR) ? in : _type; 465 // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops. 466 // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr 467 // const Type *join = in->join(_type); 468 // // Check if join preserved NotNull'ness for pointers 469 // if( join->isa_ptr() && _type->isa_ptr() ) { 470 // TypePtr::PTR join_ptr = join->is_ptr()->_ptr; 471 // TypePtr::PTR type_ptr = _type->is_ptr()->_ptr; 472 // // If there isn't any NotNull'ness to preserve 473 // // OR if join preserved NotNull'ness then return it 474 // if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null || 475 // join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) { 476 // return join; 477 // } 478 // // ELSE return same old type as before 479 // return _type; 480 // } 481 // // Not joining two pointers 482 // return join; 483 } 484 485 //============================================================================= 486 //------------------------------Value------------------------------------------ 487 const Type* CastX2PNode::Value(PhaseGVN* phase) const { 488 const Type* t = phase->type(in(1)); 489 if (t == Type::TOP) return Type::TOP; 490 if (t->base() == Type_X && t->singleton()) { 491 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con(); 492 if (bits == 0) return TypePtr::NULL_PTR; 493 return TypeRawPtr::make((address) bits); 494 } 495 return CastX2PNode::bottom_type(); 496 } 497 498 //------------------------------Idealize--------------------------------------- 499 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) { 500 if (t == Type::TOP) return false; 501 const TypeX* tl = t->is_intptr_t(); 502 jint lo = min_jint; 503 jint hi = max_jint; 504 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow 505 return (tl->_lo >= lo) && (tl->_hi <= hi); 506 } 507 508 static inline Node* addP_of_X2P(PhaseGVN *phase, 509 Node* base, 510 Node* dispX, 511 bool negate = false) { 512 if (negate) { 513 dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX)); 514 } 515 return new AddPNode(phase->C->top(), 516 phase->transform(new CastX2PNode(base)), 517 dispX); 518 } 519 520 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) { 521 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int 522 int op = in(1)->Opcode(); 523 Node* x; 524 Node* y; 525 switch (op) { 526 case Op_SubX: 527 x = in(1)->in(1); 528 // Avoid ideal transformations ping-pong between this and AddP for raw pointers. 529 if (phase->find_intptr_t_con(x, -1) == 0) 530 break; 531 y = in(1)->in(2); 532 if (fits_in_int(phase->type(y), true)) { 533 return addP_of_X2P(phase, x, y, true); 534 } 535 break; 536 case Op_AddX: 537 x = in(1)->in(1); 538 y = in(1)->in(2); 539 if (fits_in_int(phase->type(y))) { 540 return addP_of_X2P(phase, x, y); 541 } 542 if (fits_in_int(phase->type(x))) { 543 return addP_of_X2P(phase, y, x); 544 } 545 break; 546 } 547 return NULL; 548 } 549 550 //------------------------------Identity--------------------------------------- 551 Node* CastX2PNode::Identity(PhaseGVN* phase) { 552 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1); 553 return this; 554 } 555 556 //============================================================================= 557 //------------------------------Value------------------------------------------ 558 const Type* CastP2XNode::Value(PhaseGVN* phase) const { 559 const Type* t = phase->type(in(1)); 560 if (t == Type::TOP) return Type::TOP; 561 if (t->base() == Type::RawPtr && t->singleton()) { 562 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con(); 563 return TypeX::make(bits); 564 } 565 return CastP2XNode::bottom_type(); 566 } 567 568 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) { 569 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL; 570 } 571 572 //------------------------------Identity--------------------------------------- 573 Node* CastP2XNode::Identity(PhaseGVN* phase) { 574 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1); 575 return this; 576 } 577 578 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency) { 579 Node* cast= NULL; 580 if (type->isa_int()) { 581 cast = make_cast(Op_CastII, c, in, type, dependency); 582 } else if (type->isa_long()) { 583 cast = make_cast(Op_CastLL, c, in, type, dependency); 584 } else if (type->isa_float()) { 585 cast = make_cast(Op_CastFF, c, in, type, dependency); 586 } else if (type->isa_double()) { 587 cast = make_cast(Op_CastDD, c, in, type, dependency); 588 } else if (type->isa_vect()) { 589 cast = make_cast(Op_CastVV, c, in, type, dependency); 590 } else if (type->isa_ptr()) { 591 cast = make_cast(Op_CastPP, c, in, type, dependency); 592 } 593 return cast; 594 } 595 596 Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) { 597 PhaseIterGVN *igvn = phase->is_IterGVN(); 598 const TypeInteger* this_type = this->type()->is_integer(bt); 599 Node* z = in(1); 600 const TypeInteger* rx = NULL; 601 const TypeInteger* ry = NULL; 602 // Similar to ConvI2LNode::Ideal() for the same reasons 603 if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) { 604 if (igvn == NULL) { 605 // Postpone this optimization to iterative GVN, where we can handle deep 606 // AddI chains without an exponential number of recursive Ideal() calls. 607 phase->record_for_igvn(this); 608 return NULL; 609 } 610 int op = z->Opcode(); 611 Node* x = z->in(1); 612 Node* y = z->in(2); 613 614 Node* cx = find_or_make_integer_cast(igvn, x, in(0), rx, _dependency, bt); 615 Node* cy = find_or_make_integer_cast(igvn, y, in(0), ry, _dependency, bt); 616 if (op == Op_Add(bt)) { 617 return AddNode::make(cx, cy, bt); 618 } else { 619 assert(op == Op_Sub(bt), ""); 620 return SubNode::make(cx, cy, bt); 621 } 622 return NULL; 623 } 624 return NULL; 625 } 626 627 const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const { 628 if (!phase->C->post_loop_opts_phase()) { 629 return res; 630 } 631 const TypeInteger* this_type = res->is_integer(bt); 632 const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt); 633 if (in_type != NULL && 634 (in_type->lo_as_long() != this_type->lo_as_long() || 635 in_type->hi_as_long() != this_type->hi_as_long())) { 636 jlong lo1 = this_type->lo_as_long(); 637 jlong hi1 = this_type->hi_as_long(); 638 int w1 = this_type->_widen; 639 if (lo1 >= 0) { 640 // Keep a range assertion of >=0. 641 lo1 = 0; hi1 = max_signed_integer(bt); 642 } else if (hi1 < 0) { 643 // Keep a range assertion of <0. 644 lo1 = min_signed_integer(bt); hi1 = -1; 645 } else { 646 lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt); 647 } 648 return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1), 649 MIN2(in_type->hi_as_long(), hi1), 650 MAX2((int)in_type->_widen, w1), bt); 651 } 652 return res; 653 }