1 /*
  2  * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "opto/addnode.hpp"
 27 #include "opto/callnode.hpp"
 28 #include "opto/castnode.hpp"
 29 #include "opto/connode.hpp"
 30 #include "opto/graphKit.hpp"
 31 #include "opto/inlinetypenode.hpp"
 32 #include "opto/matcher.hpp"
 33 #include "opto/phaseX.hpp"
 34 #include "opto/rootnode.hpp"
 35 #include "opto/subnode.hpp"
 36 #include "opto/type.hpp"
 37 #include "castnode.hpp"
 38 #include "utilities/checkedCast.hpp"
 39 
 40 //=============================================================================
 41 // If input is already higher or equal to cast type, then this is an identity.
 42 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
 43   if (_dependency == UnconditionalDependency) {
 44     return this;
 45   }
 46   Node* dom = dominating_cast(phase, phase);
 47   if (dom != nullptr) {
 48     return dom;
 49   }
 50   return higher_equal_types(phase, in(1)) ? in(1) : this;
 51 }
 52 
 53 //------------------------------Value------------------------------------------
 54 // Take 'join' of input and cast-up type
 55 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
 56   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
 57 
 58   const Type* in_type = phase->type(in(1));
 59   const Type* ft = in_type->filter_speculative(_type);
 60 
 61   // Check if both _type and in_type had a speculative type, but for the just
 62   // computed ft the speculative type was dropped.
 63   if (ft->speculative() == nullptr &&
 64       _type->speculative() != nullptr &&
 65       in_type->speculative() != nullptr) {
 66     // Speculative type may have disagreed between cast and input, and was
 67     // dropped in filtering. Recompute so that ft can take speculative type
 68     // of in_type. If we did not do it now, a subsequent ::Value call would
 69     // do it, and violate idempotence of ::Value.
 70     ft = in_type->filter_speculative(ft);
 71   }
 72 
 73 #ifdef ASSERT
 74   // Previous versions of this function had some special case logic,
 75   // which is no longer necessary.  Make sure of the required effects.
 76   switch (Opcode()) {
 77     case Op_CastII:
 78     {
 79       if (in_type == Type::TOP) {
 80         assert(ft == Type::TOP, "special case #1");
 81       }
 82       const Type* rt = in_type->join_speculative(_type);
 83       if (rt->empty()) {
 84         assert(ft == Type::TOP, "special case #2");
 85       }
 86       break;
 87     }
 88     case Op_CastPP:
 89     if (in_type == TypePtr::NULL_PTR &&
 90         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) {
 91       assert(ft == Type::TOP, "special case #3");
 92       break;
 93     }
 94   }
 95 #endif //ASSERT
 96 
 97   return ft;
 98 }
 99 
100 //------------------------------Ideal------------------------------------------
101 // Return a node which is more "ideal" than the current node.  Strip out
102 // control copies
103 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
104   if (in(0) && remove_dead_region(phase, can_reshape)) {
105     return this;
106   }
107 
108   // Push cast through InlineTypeNode
109   InlineTypeNode* vt = in(1)->isa_InlineType();
110   if (vt != nullptr && phase->type(vt)->filter_speculative(_type) != Type::TOP) {
111     // TODO 8325106 Can we avoid cloning?
112     Node* cast = clone();
113     cast->set_req(1, vt->get_oop());
114     vt = vt->clone()->as_InlineType();
115     if (!_type->maybe_null()) {
116       vt->as_InlineType()->set_is_init(*phase);
117     }
118     vt->set_oop(*phase, phase->transform(cast));
119     return vt;
120   }
121 
122   return nullptr;
123 }
124 
125 uint ConstraintCastNode::hash() const {
126   return TypeNode::hash() + (int)_dependency + (_extra_types != nullptr ? _extra_types->hash() : 0);
127 }
128 
129 bool ConstraintCastNode::cmp(const Node &n) const {
130   if (!TypeNode::cmp(n)) {
131     return false;
132   }
133   ConstraintCastNode& cast = (ConstraintCastNode&) n;
134   if (cast._dependency != _dependency) {
135     return false;
136   }
137   if (_extra_types == nullptr || cast._extra_types == nullptr) {
138     return _extra_types == cast._extra_types;
139   }
140   return _extra_types->eq(cast._extra_types);
141 }
142 
143 uint ConstraintCastNode::size_of() const {
144   return sizeof(*this);
145 }
146 
147 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node* n, const Type* t, DependencyType dependency,
148                                     const TypeTuple* extra_types) {
149   switch(opcode) {
150   case Op_CastII: {
151     Node* cast = new CastIINode(n, t, dependency, false, extra_types);
152     cast->set_req(0, c);
153     return cast;
154   }
155   case Op_CastLL: {
156     Node* cast = new CastLLNode(n, t, dependency, extra_types);
157     cast->set_req(0, c);
158     return cast;
159   }
160   case Op_CastPP: {
161     Node* cast = new CastPPNode(n, t, dependency, extra_types);
162     cast->set_req(0, c);
163     return cast;
164   }
165   case Op_CastFF: {
166     Node* cast = new CastFFNode(n, t, dependency, extra_types);
167     cast->set_req(0, c);
168     return cast;
169   }
170   case Op_CastDD: {
171     Node* cast = new CastDDNode(n, t, dependency, extra_types);
172     cast->set_req(0, c);
173     return cast;
174   }
175   case Op_CastVV: {
176     Node* cast = new CastVVNode(n, t, dependency, extra_types);
177     cast->set_req(0, c);
178     return cast;
179   }
180   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, dependency, extra_types);
181   default:
182     fatal("Bad opcode %d", opcode);
183   }
184   return nullptr;
185 }
186 
187 Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, DependencyType dependency, BasicType bt) {
188   switch(bt) {
189   case T_INT: {
190     return make_cast(Op_CastII, c, n, t, dependency, nullptr);
191   }
192   case T_LONG: {
193     return make_cast(Op_CastLL, c, n, t, dependency, nullptr);
194   }
195   default:
196     fatal("Bad basic type %s", type2name(bt));
197   }
198   return nullptr;
199 }
200 
201 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
202   if (_dependency == UnconditionalDependency) {
203     return nullptr;
204   }
205   Node* val = in(1);
206   Node* ctl = in(0);
207   int opc = Opcode();
208   if (ctl == nullptr) {
209     return nullptr;
210   }
211   // Range check CastIIs may all end up under a single range check and
212   // in that case only the narrower CastII would be kept by the code
213   // below which would be incorrect.
214   if (is_CastII() && as_CastII()->has_range_check()) {
215     return nullptr;
216   }
217   if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) {
218     return nullptr;
219   }
220   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
221     Node* u = val->fast_out(i);
222     if (u != this &&
223         u->outcnt() > 0 &&
224         u->Opcode() == opc &&
225         u->in(0) != nullptr &&
226         higher_equal_types(gvn, u)) {
227       if (pt->is_dominator(u->in(0), ctl)) {
228         return u->as_Type();
229       }
230       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
231           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
232           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
233         // CheckCastPP following an allocation always dominates all
234         // use of the allocation result
235         return u->as_Type();
236       }
237     }
238   }
239   return nullptr;
240 }
241 
242 bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const {
243   const Type* t = phase->type(other);
244   if (!t->higher_equal_speculative(type())) {
245     return false;
246   }
247   if (_extra_types != nullptr) {
248     for (uint i = 0; i < _extra_types->cnt(); ++i) {
249       if (!t->higher_equal_speculative(_extra_types->field_at(i))) {
250         return false;
251       }
252     }
253   }
254   return true;
255 }
256 
257 #ifndef PRODUCT
258 void ConstraintCastNode::dump_spec(outputStream *st) const {
259   TypeNode::dump_spec(st);
260   if (_extra_types != nullptr) {
261     st->print(" extra types: ");
262     _extra_types->dump_on(st);
263   }
264   if (_dependency != RegularDependency) {
265     st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional");
266   }
267 }
268 #endif
269 
270 const Type* CastIINode::Value(PhaseGVN* phase) const {
271   const Type *res = ConstraintCastNode::Value(phase);
272   if (res == Type::TOP) {
273     return Type::TOP;
274   }
275   assert(res->isa_int(), "res must be int");
276 
277   // Similar to ConvI2LNode::Value() for the same reasons
278   // see if we can remove type assertion after loop opts
279   // But here we have to pay extra attention:
280   // Do not narrow the type of range check dependent CastIINodes to
281   // avoid corruption of the graph if a CastII is replaced by TOP but
282   // the corresponding range check is not removed.
283   if (!_range_check_dependency) {
284     res = widen_type(phase, res, T_INT);
285   }
286 
287   return res;
288 }
289 
290 static Node* find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInteger* type, ConstraintCastNode::DependencyType dependency, BasicType bt) {
291   Node* n = ConstraintCastNode::make(control, parent, type, dependency, bt);
292   Node* existing = igvn->hash_find_insert(n);
293   if (existing != nullptr) {
294     n->destruct(igvn);
295     return existing;
296   }
297   return igvn->register_new_node_with_optimizer(n);
298 }
299 
300 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
301   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
302   if (progress != nullptr) {
303     return progress;
304   }
305   if (can_reshape && !_range_check_dependency && !phase->C->post_loop_opts_phase()) {
306     // makes sure we run ::Value to potentially remove type assertion after loop opts
307     phase->C->record_for_post_loop_opts_igvn(this);
308   }
309   if (!_range_check_dependency) {
310     return optimize_integer_cast(phase, T_INT);
311   }
312   return nullptr;
313 }
314 
315 Node* CastIINode::Identity(PhaseGVN* phase) {
316   Node* progress = ConstraintCastNode::Identity(phase);
317   if (progress != this) {
318     return progress;
319   }
320   if (_range_check_dependency) {
321     if (phase->C->post_loop_opts_phase()) {
322       return this->in(1);
323     } else {
324       phase->C->record_for_post_loop_opts_igvn(this);
325     }
326   }
327   return this;
328 }
329 
330 bool CastIINode::cmp(const Node &n) const {
331   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
332 }
333 
334 uint CastIINode::size_of() const {
335   return sizeof(*this);
336 }
337 
338 #ifndef PRODUCT
339 void CastIINode::dump_spec(outputStream* st) const {
340   ConstraintCastNode::dump_spec(st);
341   if (_range_check_dependency) {
342     st->print(" range check dependency");
343   }
344 }
345 #endif
346 
347 const Type* CastLLNode::Value(PhaseGVN* phase) const {
348   const Type* res = ConstraintCastNode::Value(phase);
349   if (res == Type::TOP) {
350     return Type::TOP;
351   }
352   assert(res->isa_long(), "res must be long");
353 
354   return widen_type(phase, res, T_LONG);
355 }
356 
357 Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
358   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
359   if (progress != nullptr) {
360     return progress;
361   }
362   if (!phase->C->post_loop_opts_phase()) {
363     // makes sure we run ::Value to potentially remove type assertion after loop opts
364     phase->C->record_for_post_loop_opts_igvn(this);
365   }
366   // transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of
367   // the ConvI2L.
368   Node* in1 = in(1);
369   if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) {
370     const Type* t = Value(phase);
371     const Type* t_in = phase->type(in1);
372     if (t != Type::TOP && t_in != Type::TOP) {
373       const TypeLong* tl = t->is_long();
374       const TypeLong* t_in_l = t_in->is_long();
375       assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input");
376       assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower");
377       if (tl != t_in_l) {
378         const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen);
379         Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti));
380         Node* convi2l = in1->clone();
381         convi2l->set_req(1, castii);
382         return convi2l;
383       }
384     }
385   }
386   return optimize_integer_cast(phase, T_LONG);
387 }
388 
389 //=============================================================================
390 //------------------------------Identity---------------------------------------
391 // If input is already higher or equal to cast type, then this is an identity.
392 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
393   if (in(1)->is_InlineType() && _type->isa_instptr() && phase->type(in(1))->inline_klass()->is_subtype_of(_type->is_instptr()->instance_klass())) {
394     return in(1);
395   }
396   return ConstraintCastNode::Identity(phase);
397 }
398 
399 //------------------------------Value------------------------------------------
400 // Take 'join' of input and cast-up type, unless working with an Interface
401 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
402   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
403 
404   const Type *inn = phase->type(in(1));
405   if( inn == Type::TOP ) return Type::TOP;  // No information yet
406 
407   if (inn->isa_oopptr() && _type->isa_oopptr()) {
408     return ConstraintCastNode::Value(phase);
409   }
410 
411   const TypePtr *in_type = inn->isa_ptr();
412   const TypePtr *my_type = _type->isa_ptr();
413   const Type *result = _type;
414   if (in_type != nullptr && my_type != nullptr) {
415     // TODO 8302672
416     if (!StressReflectiveCode && my_type->isa_aryptr() && in_type->isa_aryptr()) {
417       // Propagate array properties (not flat/null-free)
418       // Don't do this when StressReflectiveCode is enabled because it might lead to
419       // a dying data path while the corresponding flat/null-free check is not folded.
420       my_type = my_type->is_aryptr()->update_properties(in_type->is_aryptr());
421       if (my_type == nullptr) {
422         return Type::TOP; // Inconsistent properties
423       }
424     }
425     TypePtr::PTR in_ptr = in_type->ptr();
426     if (in_ptr == TypePtr::Null) {
427       result = in_type;
428     } else if (in_ptr != TypePtr::Constant) {
429       result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr));
430     }
431   }
432 
433   return result;
434 }
435 
436 //=============================================================================
437 //------------------------------Value------------------------------------------
438 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
439   const Type* t = phase->type(in(1));
440   if (t == Type::TOP) return Type::TOP;
441   if (t->base() == Type_X && t->singleton()) {
442     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
443     if (bits == 0)   return TypePtr::NULL_PTR;
444     return TypeRawPtr::make((address) bits);
445   }
446   return CastX2PNode::bottom_type();
447 }
448 
449 //------------------------------Idealize---------------------------------------
450 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
451   if (t == Type::TOP)  return false;
452   const TypeX* tl = t->is_intptr_t();
453   jint lo = min_jint;
454   jint hi = max_jint;
455   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
456   return (tl->_lo >= lo) && (tl->_hi <= hi);
457 }
458 
459 static inline Node* addP_of_X2P(PhaseGVN *phase,
460                                 Node* base,
461                                 Node* dispX,
462                                 bool negate = false) {
463   if (negate) {
464     dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
465   }
466   return new AddPNode(phase->C->top(),
467                       phase->transform(new CastX2PNode(base)),
468                       dispX);
469 }
470 
471 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
472   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
473   int op = in(1)->Opcode();
474   Node* x;
475   Node* y;
476   switch (op) {
477     case Op_SubX:
478     x = in(1)->in(1);
479     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
480     if (phase->find_intptr_t_con(x, -1) == 0)
481     break;
482     y = in(1)->in(2);
483     if (fits_in_int(phase->type(y), true)) {
484       return addP_of_X2P(phase, x, y, true);
485     }
486     break;
487     case Op_AddX:
488     x = in(1)->in(1);
489     y = in(1)->in(2);
490     if (fits_in_int(phase->type(y))) {
491       return addP_of_X2P(phase, x, y);
492     }
493     if (fits_in_int(phase->type(x))) {
494       return addP_of_X2P(phase, y, x);
495     }
496     break;
497   }
498   return nullptr;
499 }
500 
501 //------------------------------Identity---------------------------------------
502 Node* CastX2PNode::Identity(PhaseGVN* phase) {
503   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
504   return this;
505 }
506 
507 //=============================================================================
508 //------------------------------Value------------------------------------------
509 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
510   const Type* t = phase->type(in(1));
511   if (t == Type::TOP) return Type::TOP;
512   if (t->base() == Type::RawPtr && t->singleton()) {
513     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
514     return TypeX::make(bits);
515   }
516 
517   if (t->is_zero_type() || !t->maybe_null()) {
518     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
519       Node* u = fast_out(i);
520       if (u->Opcode() == Op_OrL) {
521         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
522           Node* cmp = u->fast_out(j);
523           if (cmp->Opcode() == Op_CmpL) {
524             // Give CmpL a chance to get optimized
525             phase->record_for_igvn(cmp);
526           }
527         }
528       }
529     }
530   }
531 
532   return CastP2XNode::bottom_type();
533 }
534 
535 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
536   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
537 }
538 
539 //------------------------------Identity---------------------------------------
540 Node* CastP2XNode::Identity(PhaseGVN* phase) {
541   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
542   return this;
543 }
544 
545 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency,
546                                              const TypeTuple* types) {
547   Node* cast= nullptr;
548   if (type->isa_int()) {
549     cast = make_cast(Op_CastII, c, in, type, dependency, types);
550   } else if (type->isa_long()) {
551     cast = make_cast(Op_CastLL, c, in, type, dependency, types);
552   } else if (type->isa_float()) {
553     cast = make_cast(Op_CastFF, c, in, type, dependency, types);
554   } else if (type->isa_double()) {
555     cast = make_cast(Op_CastDD, c, in, type, dependency, types);
556   } else if (type->isa_vect()) {
557     cast = make_cast(Op_CastVV, c, in, type, dependency, types);
558   } else if (type->isa_ptr()) {
559     cast = make_cast(Op_CastPP, c, in, type, dependency, types);
560   }
561   return cast;
562 }
563 
564 Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) {
565   PhaseIterGVN *igvn = phase->is_IterGVN();
566   const TypeInteger* this_type = this->type()->is_integer(bt);
567   Node* z = in(1);
568   const TypeInteger* rx = nullptr;
569   const TypeInteger* ry = nullptr;
570   // Similar to ConvI2LNode::Ideal() for the same reasons
571   if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) {
572     if (igvn == nullptr) {
573       // Postpone this optimization to iterative GVN, where we can handle deep
574       // AddI chains without an exponential number of recursive Ideal() calls.
575       phase->record_for_igvn(this);
576       return nullptr;
577     }
578     int op = z->Opcode();
579     Node* x = z->in(1);
580     Node* y = z->in(2);
581 
582     Node* cx = find_or_make_integer_cast(igvn, x, in(0), rx, _dependency, bt);
583     Node* cy = find_or_make_integer_cast(igvn, y, in(0), ry, _dependency, bt);
584     if (op == Op_Add(bt)) {
585       return AddNode::make(cx, cy, bt);
586     } else {
587       assert(op == Op_Sub(bt), "");
588       return SubNode::make(cx, cy, bt);
589     }
590     return nullptr;
591   }
592   return nullptr;
593 }
594 
595 const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const {
596   if (!phase->C->post_loop_opts_phase()) {
597     return res;
598   }
599   const TypeInteger* this_type = res->is_integer(bt);
600   const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt);
601   if (in_type != nullptr &&
602       (in_type->lo_as_long() != this_type->lo_as_long() ||
603        in_type->hi_as_long() != this_type->hi_as_long())) {
604     jlong lo1 = this_type->lo_as_long();
605     jlong hi1 = this_type->hi_as_long();
606     int w1 = this_type->_widen;
607     if (lo1 >= 0) {
608       // Keep a range assertion of >=0.
609       lo1 = 0;        hi1 = max_signed_integer(bt);
610     } else if (hi1 < 0) {
611       // Keep a range assertion of <0.
612       lo1 = min_signed_integer(bt); hi1 = -1;
613     } else {
614       lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt);
615     }
616     return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1),
617                              MIN2(in_type->hi_as_long(), hi1),
618                              MAX2((int)in_type->_widen, w1), bt);
619   }
620   return res;
621 }