1 /* 2 * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/callnode.hpp" 28 #include "opto/castnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/graphKit.hpp" 31 #include "opto/inlinetypenode.hpp" 32 #include "opto/matcher.hpp" 33 #include "opto/phaseX.hpp" 34 #include "opto/rootnode.hpp" 35 #include "opto/subnode.hpp" 36 #include "opto/type.hpp" 37 #include "castnode.hpp" 38 #include "utilities/checkedCast.hpp" 39 40 //============================================================================= 41 // If input is already higher or equal to cast type, then this is an identity. 42 Node* ConstraintCastNode::Identity(PhaseGVN* phase) { 43 if (_dependency == UnconditionalDependency) { 44 return this; 45 } 46 Node* dom = dominating_cast(phase, phase); 47 if (dom != nullptr) { 48 return dom; 49 } 50 return higher_equal_types(phase, in(1)) ? in(1) : this; 51 } 52 53 //------------------------------Value------------------------------------------ 54 // Take 'join' of input and cast-up type 55 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const { 56 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP; 57 58 const Type* in_type = phase->type(in(1)); 59 const Type* ft = in_type->filter_speculative(_type); 60 61 // Check if both _type and in_type had a speculative type, but for the just 62 // computed ft the speculative type was dropped. 63 if (ft->speculative() == nullptr && 64 _type->speculative() != nullptr && 65 in_type->speculative() != nullptr) { 66 // Speculative type may have disagreed between cast and input, and was 67 // dropped in filtering. Recompute so that ft can take speculative type 68 // of in_type. If we did not do it now, a subsequent ::Value call would 69 // do it, and violate idempotence of ::Value. 70 ft = in_type->filter_speculative(ft); 71 } 72 73 #ifdef ASSERT 74 // Previous versions of this function had some special case logic, 75 // which is no longer necessary. Make sure of the required effects. 76 switch (Opcode()) { 77 case Op_CastII: 78 { 79 if (in_type == Type::TOP) { 80 assert(ft == Type::TOP, "special case #1"); 81 } 82 const Type* rt = in_type->join_speculative(_type); 83 if (rt->empty()) { 84 assert(ft == Type::TOP, "special case #2"); 85 } 86 break; 87 } 88 case Op_CastPP: 89 if (in_type == TypePtr::NULL_PTR && 90 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) { 91 assert(ft == Type::TOP, "special case #3"); 92 break; 93 } 94 } 95 #endif //ASSERT 96 97 return ft; 98 } 99 100 //------------------------------Ideal------------------------------------------ 101 // Return a node which is more "ideal" than the current node. Strip out 102 // control copies 103 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) { 104 if (in(0) && remove_dead_region(phase, can_reshape)) { 105 return this; 106 } 107 108 // Push cast through InlineTypeNode 109 InlineTypeNode* vt = in(1)->isa_InlineType(); 110 if (vt != nullptr && phase->type(vt)->filter_speculative(_type) != Type::TOP) { 111 Node* cast = clone(); 112 cast->set_req(1, vt->get_oop()); 113 vt = vt->clone()->as_InlineType(); 114 if (!_type->maybe_null()) { 115 vt->as_InlineType()->set_is_init(*phase); 116 } 117 vt->set_oop(*phase, phase->transform(cast)); 118 return vt; 119 } 120 121 return nullptr; 122 } 123 124 uint ConstraintCastNode::hash() const { 125 return TypeNode::hash() + (int)_dependency + (_extra_types != nullptr ? _extra_types->hash() : 0); 126 } 127 128 bool ConstraintCastNode::cmp(const Node &n) const { 129 if (!TypeNode::cmp(n)) { 130 return false; 131 } 132 ConstraintCastNode& cast = (ConstraintCastNode&) n; 133 if (cast._dependency != _dependency) { 134 return false; 135 } 136 if (_extra_types == nullptr || cast._extra_types == nullptr) { 137 return _extra_types == cast._extra_types; 138 } 139 return _extra_types->eq(cast._extra_types); 140 } 141 142 uint ConstraintCastNode::size_of() const { 143 return sizeof(*this); 144 } 145 146 Node* ConstraintCastNode::make_cast_for_basic_type(Node* c, Node* n, const Type* t, DependencyType dependency, BasicType bt) { 147 switch(bt) { 148 case T_INT: 149 return new CastIINode(c, n, t, dependency); 150 case T_LONG: 151 return new CastLLNode(c, n, t, dependency); 152 default: 153 fatal("Bad basic type %s", type2name(bt)); 154 } 155 return nullptr; 156 } 157 158 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const { 159 if (_dependency == UnconditionalDependency) { 160 return nullptr; 161 } 162 Node* val = in(1); 163 Node* ctl = in(0); 164 int opc = Opcode(); 165 if (ctl == nullptr) { 166 return nullptr; 167 } 168 // Range check CastIIs may all end up under a single range check and 169 // in that case only the narrower CastII would be kept by the code 170 // below which would be incorrect. 171 if (is_CastII() && as_CastII()->has_range_check()) { 172 return nullptr; 173 } 174 if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) { 175 return nullptr; 176 } 177 for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { 178 Node* u = val->fast_out(i); 179 if (u != this && 180 u->outcnt() > 0 && 181 u->Opcode() == opc && 182 u->in(0) != nullptr && 183 higher_equal_types(gvn, u)) { 184 if (pt->is_dominator(u->in(0), ctl)) { 185 return u->as_Type(); 186 } 187 if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() && 188 u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() && 189 u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) { 190 // CheckCastPP following an allocation always dominates all 191 // use of the allocation result 192 return u->as_Type(); 193 } 194 } 195 } 196 return nullptr; 197 } 198 199 bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const { 200 const Type* t = phase->type(other); 201 if (!t->higher_equal_speculative(type())) { 202 return false; 203 } 204 if (_extra_types != nullptr) { 205 for (uint i = 0; i < _extra_types->cnt(); ++i) { 206 if (!t->higher_equal_speculative(_extra_types->field_at(i))) { 207 return false; 208 } 209 } 210 } 211 return true; 212 } 213 214 #ifndef PRODUCT 215 void ConstraintCastNode::dump_spec(outputStream *st) const { 216 TypeNode::dump_spec(st); 217 if (_extra_types != nullptr) { 218 st->print(" extra types: "); 219 _extra_types->dump_on(st); 220 } 221 if (_dependency != RegularDependency) { 222 st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional"); 223 } 224 } 225 #endif 226 227 const Type* CastIINode::Value(PhaseGVN* phase) const { 228 const Type *res = ConstraintCastNode::Value(phase); 229 if (res == Type::TOP) { 230 return Type::TOP; 231 } 232 assert(res->isa_int(), "res must be int"); 233 234 // Similar to ConvI2LNode::Value() for the same reasons 235 // see if we can remove type assertion after loop opts 236 // But here we have to pay extra attention: 237 // Do not narrow the type of range check dependent CastIINodes to 238 // avoid corruption of the graph if a CastII is replaced by TOP but 239 // the corresponding range check is not removed. 240 if (!_range_check_dependency) { 241 res = widen_type(phase, res, T_INT); 242 } 243 244 return res; 245 } 246 247 static Node* find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInteger* type, ConstraintCastNode::DependencyType dependency, BasicType bt) { 248 Node* n = ConstraintCastNode::make_cast_for_basic_type(control, parent, type, dependency, bt); 249 Node* existing = igvn->hash_find_insert(n); 250 if (existing != nullptr) { 251 n->destruct(igvn); 252 return existing; 253 } 254 return igvn->register_new_node_with_optimizer(n); 255 } 256 257 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) { 258 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape); 259 if (progress != nullptr) { 260 return progress; 261 } 262 if (can_reshape && !_range_check_dependency && !phase->C->post_loop_opts_phase()) { 263 // makes sure we run ::Value to potentially remove type assertion after loop opts 264 phase->C->record_for_post_loop_opts_igvn(this); 265 } 266 if (!_range_check_dependency) { 267 return optimize_integer_cast(phase, T_INT); 268 } 269 return nullptr; 270 } 271 272 Node* CastIINode::Identity(PhaseGVN* phase) { 273 Node* progress = ConstraintCastNode::Identity(phase); 274 if (progress != this) { 275 return progress; 276 } 277 if (_range_check_dependency) { 278 if (phase->C->post_loop_opts_phase()) { 279 return this->in(1); 280 } else { 281 phase->C->record_for_post_loop_opts_igvn(this); 282 } 283 } 284 return this; 285 } 286 287 bool CastIINode::cmp(const Node &n) const { 288 return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency; 289 } 290 291 uint CastIINode::size_of() const { 292 return sizeof(*this); 293 } 294 295 #ifndef PRODUCT 296 void CastIINode::dump_spec(outputStream* st) const { 297 ConstraintCastNode::dump_spec(st); 298 if (_range_check_dependency) { 299 st->print(" range check dependency"); 300 } 301 } 302 #endif 303 304 CastIINode* CastIINode::pin_array_access_node() const { 305 assert(_dependency == RegularDependency, "already pinned"); 306 if (has_range_check()) { 307 return new CastIINode(in(0), in(1), bottom_type(), StrongDependency, has_range_check()); 308 } 309 return nullptr; 310 } 311 312 313 const Type* CastLLNode::Value(PhaseGVN* phase) const { 314 const Type* res = ConstraintCastNode::Value(phase); 315 if (res == Type::TOP) { 316 return Type::TOP; 317 } 318 assert(res->isa_long(), "res must be long"); 319 320 return widen_type(phase, res, T_LONG); 321 } 322 323 Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 324 Node* progress = ConstraintCastNode::Ideal(phase, can_reshape); 325 if (progress != nullptr) { 326 return progress; 327 } 328 if (!phase->C->post_loop_opts_phase()) { 329 // makes sure we run ::Value to potentially remove type assertion after loop opts 330 phase->C->record_for_post_loop_opts_igvn(this); 331 } 332 // transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of 333 // the ConvI2L. 334 Node* in1 = in(1); 335 if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) { 336 const Type* t = Value(phase); 337 const Type* t_in = phase->type(in1); 338 if (t != Type::TOP && t_in != Type::TOP) { 339 const TypeLong* tl = t->is_long(); 340 const TypeLong* t_in_l = t_in->is_long(); 341 assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input"); 342 assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower"); 343 if (tl != t_in_l) { 344 const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen); 345 Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti)); 346 Node* convi2l = in1->clone(); 347 convi2l->set_req(1, castii); 348 return convi2l; 349 } 350 } 351 } 352 return optimize_integer_cast(phase, T_LONG); 353 } 354 355 //============================================================================= 356 //------------------------------Identity--------------------------------------- 357 // If input is already higher or equal to cast type, then this is an identity. 358 Node* CheckCastPPNode::Identity(PhaseGVN* phase) { 359 if (in(1)->is_InlineType() && _type->isa_instptr() && phase->type(in(1))->inline_klass()->is_subtype_of(_type->is_instptr()->instance_klass())) { 360 return in(1); 361 } 362 return ConstraintCastNode::Identity(phase); 363 } 364 365 //------------------------------Value------------------------------------------ 366 // Take 'join' of input and cast-up type, unless working with an Interface 367 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const { 368 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP; 369 370 const Type *inn = phase->type(in(1)); 371 if( inn == Type::TOP ) return Type::TOP; // No information yet 372 373 if (inn->isa_oopptr() && _type->isa_oopptr()) { 374 return ConstraintCastNode::Value(phase); 375 } 376 377 const TypePtr *in_type = inn->isa_ptr(); 378 const TypePtr *my_type = _type->isa_ptr(); 379 const Type *result = _type; 380 if (in_type != nullptr && my_type != nullptr) { 381 // TODO 8302672 382 if (!StressReflectiveCode && my_type->isa_aryptr() && in_type->isa_aryptr()) { 383 // Propagate array properties (not flat/null-free) 384 // Don't do this when StressReflectiveCode is enabled because it might lead to 385 // a dying data path while the corresponding flat/null-free check is not folded. 386 my_type = my_type->is_aryptr()->update_properties(in_type->is_aryptr()); 387 if (my_type == nullptr) { 388 return Type::TOP; // Inconsistent properties 389 } 390 } 391 TypePtr::PTR in_ptr = in_type->ptr(); 392 if (in_ptr == TypePtr::Null) { 393 result = in_type; 394 } else if (in_ptr != TypePtr::Constant) { 395 result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr)); 396 } 397 } 398 399 return result; 400 } 401 402 //============================================================================= 403 //------------------------------Value------------------------------------------ 404 const Type* CastX2PNode::Value(PhaseGVN* phase) const { 405 const Type* t = phase->type(in(1)); 406 if (t == Type::TOP) return Type::TOP; 407 if (t->base() == Type_X && t->singleton()) { 408 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con(); 409 if (bits == 0) return TypePtr::NULL_PTR; 410 return TypeRawPtr::make((address) bits); 411 } 412 return CastX2PNode::bottom_type(); 413 } 414 415 //------------------------------Idealize--------------------------------------- 416 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) { 417 if (t == Type::TOP) return false; 418 const TypeX* tl = t->is_intptr_t(); 419 jint lo = min_jint; 420 jint hi = max_jint; 421 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow 422 return (tl->_lo >= lo) && (tl->_hi <= hi); 423 } 424 425 static inline Node* addP_of_X2P(PhaseGVN *phase, 426 Node* base, 427 Node* dispX, 428 bool negate = false) { 429 if (negate) { 430 dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX)); 431 } 432 return new AddPNode(phase->C->top(), 433 phase->transform(new CastX2PNode(base)), 434 dispX); 435 } 436 437 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) { 438 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int 439 int op = in(1)->Opcode(); 440 Node* x; 441 Node* y; 442 switch (op) { 443 case Op_SubX: 444 x = in(1)->in(1); 445 // Avoid ideal transformations ping-pong between this and AddP for raw pointers. 446 if (phase->find_intptr_t_con(x, -1) == 0) 447 break; 448 y = in(1)->in(2); 449 if (fits_in_int(phase->type(y), true)) { 450 return addP_of_X2P(phase, x, y, true); 451 } 452 break; 453 case Op_AddX: 454 x = in(1)->in(1); 455 y = in(1)->in(2); 456 if (fits_in_int(phase->type(y))) { 457 return addP_of_X2P(phase, x, y); 458 } 459 if (fits_in_int(phase->type(x))) { 460 return addP_of_X2P(phase, y, x); 461 } 462 break; 463 } 464 return nullptr; 465 } 466 467 //------------------------------Identity--------------------------------------- 468 Node* CastX2PNode::Identity(PhaseGVN* phase) { 469 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1); 470 return this; 471 } 472 473 //============================================================================= 474 //------------------------------Value------------------------------------------ 475 const Type* CastP2XNode::Value(PhaseGVN* phase) const { 476 const Type* t = phase->type(in(1)); 477 if (t == Type::TOP) return Type::TOP; 478 if (t->base() == Type::RawPtr && t->singleton()) { 479 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con(); 480 return TypeX::make(bits); 481 } 482 483 if (t->is_zero_type() || !t->maybe_null()) { 484 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 485 Node* u = fast_out(i); 486 if (u->Opcode() == Op_OrL) { 487 for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { 488 Node* cmp = u->fast_out(j); 489 if (cmp->Opcode() == Op_CmpL) { 490 // Give CmpL a chance to get optimized 491 phase->record_for_igvn(cmp); 492 } 493 } 494 } 495 } 496 } 497 498 return CastP2XNode::bottom_type(); 499 } 500 501 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) { 502 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr; 503 } 504 505 //------------------------------Identity--------------------------------------- 506 Node* CastP2XNode::Identity(PhaseGVN* phase) { 507 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1); 508 return this; 509 } 510 511 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency, 512 const TypeTuple* types) { 513 if (type->isa_int()) { 514 return new CastIINode(c, in, type, dependency, false, types); 515 } else if (type->isa_long()) { 516 return new CastLLNode(c, in, type, dependency, types); 517 } else if (type->isa_float()) { 518 return new CastFFNode(c, in, type, dependency, types); 519 } else if (type->isa_double()) { 520 return new CastDDNode(c, in, type, dependency, types); 521 } else if (type->isa_vect()) { 522 return new CastVVNode(c, in, type, dependency, types); 523 } else if (type->isa_ptr()) { 524 return new CastPPNode(c, in, type, dependency, types); 525 } 526 fatal("unreachable. Invalid cast type."); 527 return nullptr; 528 } 529 530 Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) { 531 PhaseIterGVN *igvn = phase->is_IterGVN(); 532 const TypeInteger* this_type = this->type()->is_integer(bt); 533 Node* z = in(1); 534 const TypeInteger* rx = nullptr; 535 const TypeInteger* ry = nullptr; 536 // Similar to ConvI2LNode::Ideal() for the same reasons 537 if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) { 538 if (igvn == nullptr) { 539 // Postpone this optimization to iterative GVN, where we can handle deep 540 // AddI chains without an exponential number of recursive Ideal() calls. 541 phase->record_for_igvn(this); 542 return nullptr; 543 } 544 int op = z->Opcode(); 545 Node* x = z->in(1); 546 Node* y = z->in(2); 547 548 Node* cx = find_or_make_integer_cast(igvn, x, in(0), rx, _dependency, bt); 549 Node* cy = find_or_make_integer_cast(igvn, y, in(0), ry, _dependency, bt); 550 if (op == Op_Add(bt)) { 551 return AddNode::make(cx, cy, bt); 552 } else { 553 assert(op == Op_Sub(bt), ""); 554 return SubNode::make(cx, cy, bt); 555 } 556 return nullptr; 557 } 558 return nullptr; 559 } 560 561 const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const { 562 if (!phase->C->post_loop_opts_phase()) { 563 return res; 564 } 565 const TypeInteger* this_type = res->is_integer(bt); 566 const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt); 567 if (in_type != nullptr && 568 (in_type->lo_as_long() != this_type->lo_as_long() || 569 in_type->hi_as_long() != this_type->hi_as_long())) { 570 jlong lo1 = this_type->lo_as_long(); 571 jlong hi1 = this_type->hi_as_long(); 572 int w1 = this_type->_widen; 573 if (lo1 >= 0) { 574 // Keep a range assertion of >=0. 575 lo1 = 0; hi1 = max_signed_integer(bt); 576 } else if (hi1 < 0) { 577 // Keep a range assertion of <0. 578 lo1 = min_signed_integer(bt); hi1 = -1; 579 } else { 580 lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt); 581 } 582 return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1), 583 MIN2(in_type->hi_as_long(), hi1), 584 MAX2((int)in_type->_widen, w1), bt); 585 } 586 return res; 587 }