1 /*
  2  * Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "opto/addnode.hpp"
 26 #include "opto/callnode.hpp"
 27 #include "opto/castnode.hpp"
 28 #include "opto/cfgnode.hpp"
 29 #include "opto/connode.hpp"
 30 #include "opto/graphKit.hpp"
 31 #include "opto/inlinetypenode.hpp"
 32 #include "opto/loopnode.hpp"
 33 #include "opto/matcher.hpp"
 34 #include "opto/phaseX.hpp"
 35 #include "opto/rootnode.hpp"
 36 #include "opto/subnode.hpp"
 37 #include "opto/type.hpp"
 38 #include "utilities/checkedCast.hpp"
 39 
 40 const ConstraintCastNode::DependencyType ConstraintCastNode::DependencyType::FloatingNarrowing(true, true, "floating narrowing dependency"); // not pinned, narrows type
 41 const ConstraintCastNode::DependencyType ConstraintCastNode::DependencyType::FloatingNonNarrowing(true, false, "floating non-narrowing dependency"); // not pinned, doesn't narrow type
 42 const ConstraintCastNode::DependencyType ConstraintCastNode::DependencyType::NonFloatingNarrowing(false, true, "non-floating narrowing dependency"); // pinned, narrows type
 43 const ConstraintCastNode::DependencyType ConstraintCastNode::DependencyType::NonFloatingNonNarrowing(false, false, "non-floating non-narrowing dependency"); // pinned, doesn't narrow type
 44 
 45 //=============================================================================
 46 // If input is already higher or equal to cast type, then this is an identity.
 47 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
 48   if (!_dependency.narrows_type()) {
 49     // If this cast doesn't carry a type dependency (i.e. not used for type narrowing), we cannot optimize it.
 50     return this;
 51   }
 52 
 53   // This cast node carries a type dependency. We can remove it if:
 54   // - Its input has a narrower type
 55   // - There's a dominating cast with same input but narrower type
 56   Node* dom = dominating_cast(phase, phase);
 57   if (dom != nullptr) {
 58     return dom;
 59   }
 60   return higher_equal_types(phase, in(1)) ? in(1) : this;
 61 }
 62 
 63 //------------------------------Value------------------------------------------
 64 // Take 'join' of input and cast-up type
 65 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
 66   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
 67 
 68   const Type* in_type = phase->type(in(1));
 69   const Type* ft = in_type->filter_speculative(_type);
 70 
 71   // Check if both _type and in_type had a speculative type, but for the just
 72   // computed ft the speculative type was dropped.
 73   if (ft->speculative() == nullptr &&
 74       _type->speculative() != nullptr &&
 75       in_type->speculative() != nullptr) {
 76     // Speculative type may have disagreed between cast and input, and was
 77     // dropped in filtering. Recompute so that ft can take speculative type
 78     // of in_type. If we did not do it now, a subsequent ::Value call would
 79     // do it, and violate idempotence of ::Value.
 80     ft = in_type->filter_speculative(ft);
 81   }
 82 
 83 #ifdef ASSERT
 84   // Previous versions of this function had some special case logic,
 85   // which is no longer necessary.  Make sure of the required effects.
 86   switch (Opcode()) {
 87     case Op_CastII:
 88     {
 89       if (in_type == Type::TOP) {
 90         assert(ft == Type::TOP, "special case #1");
 91       }
 92       const Type* rt = in_type->join_speculative(_type);
 93       if (rt->empty()) {
 94         assert(ft == Type::TOP, "special case #2");
 95       }
 96       break;
 97     }
 98     case Op_CastPP:
 99     if (in_type == TypePtr::NULL_PTR &&
100         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) {
101       assert(ft == Type::TOP, "special case #3");
102       break;
103     }
104   }
105 #endif //ASSERT
106 
107   return ft;
108 }
109 
110 //------------------------------Ideal------------------------------------------
111 // Return a node which is more "ideal" than the current node.  Strip out
112 // control copies
113 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
114   if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) {
115     return this;
116   }
117 
118   // Push cast through InlineTypeNode
119   InlineTypeNode* vt = in(1)->isa_InlineType();
120   if (vt != nullptr && phase->type(vt)->filter_speculative(_type) != Type::TOP) {
121     Node* cast = clone();
122     cast->set_req(1, vt->get_oop());
123     vt = vt->clone()->as_InlineType();
124     if (!_type->maybe_null()) {
125       vt->as_InlineType()->set_null_marker(*phase);
126     }
127     vt->set_oop(*phase, phase->transform(cast));
128     return vt;
129   }
130 
131   if (in(1) != nullptr && phase->type(in(1)) != Type::TOP) {
132     return TypeNode::Ideal(phase, can_reshape);
133   }
134 
135   return nullptr;
136 }
137 
138 uint ConstraintCastNode::hash() const {
139   return TypeNode::hash() + _dependency.hash() + (_extra_types != nullptr ? _extra_types->hash() : 0);
140 }
141 
142 bool ConstraintCastNode::cmp(const Node &n) const {
143   if (!TypeNode::cmp(n)) {
144     return false;
145   }
146   ConstraintCastNode& cast = (ConstraintCastNode&) n;
147   if (!cast._dependency.cmp(_dependency)) {
148     return false;
149   }
150   if (_extra_types == nullptr || cast._extra_types == nullptr) {
151     return _extra_types == cast._extra_types;
152   }
153   return _extra_types->eq(cast._extra_types);
154 }
155 
156 uint ConstraintCastNode::size_of() const {
157   return sizeof(*this);
158 }
159 
160 Node* ConstraintCastNode::make_cast_for_basic_type(Node* c, Node* n, const Type* t, const DependencyType& dependency, BasicType bt) {
161   switch(bt) {
162   case T_INT:
163     return new CastIINode(c, n, t, dependency);
164   case T_LONG:
165     return new CastLLNode(c, n, t, dependency);
166   default:
167     fatal("Bad basic type %s", type2name(bt));
168   }
169   return nullptr;
170 }
171 
172 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
173   // See discussion at definition of ConstraintCastNode::DependencyType: replacing this cast with a dominating one is
174   // not safe if _dependency.narrows_type() is not true.
175   assert(_dependency.narrows_type(), "cast can't be replaced by dominating one");
176   Node* val = in(1);
177   Node* ctl = in(0);
178   int opc = Opcode();
179   if (ctl == nullptr) {
180     return nullptr;
181   }
182   // Range check CastIIs may all end up under a single range check and
183   // in that case only the narrower CastII would be kept by the code
184   // below which would be incorrect.
185   if (is_CastII() && as_CastII()->has_range_check()) {
186     return nullptr;
187   }
188   if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) {
189     return nullptr;
190   }
191   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
192     Node* u = val->fast_out(i);
193     if (u != this &&
194         u->outcnt() > 0 &&
195         u->Opcode() == opc &&
196         u->in(0) != nullptr &&
197         higher_equal_types(gvn, u)) {
198       if (pt->is_dominator(u->in(0), ctl)) {
199         return u->as_Type();
200       }
201       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
202           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
203           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
204         // CheckCastPP following an allocation always dominates all
205         // use of the allocation result
206         return u->as_Type();
207       }
208     }
209   }
210   return nullptr;
211 }
212 
213 bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const {
214   const Type* t = phase->type(other);
215   if (!t->higher_equal_speculative(type())) {
216     return false;
217   }
218   if (_extra_types != nullptr) {
219     for (uint i = 0; i < _extra_types->cnt(); ++i) {
220       if (!t->higher_equal_speculative(_extra_types->field_at(i))) {
221         return false;
222       }
223     }
224   }
225   return true;
226 }
227 
228 #ifndef PRODUCT
229 void ConstraintCastNode::dump_spec(outputStream *st) const {
230   TypeNode::dump_spec(st);
231   if (_extra_types != nullptr) {
232     st->print(" extra types: ");
233     _extra_types->dump_on(st);
234   }
235   st->print(" ");
236   _dependency.dump_on(st);
237 }
238 #endif
239 
240 CastIINode* CastIINode::make_with(Node* parent, const TypeInteger* type, const DependencyType& dependency) const {
241   return new CastIINode(in(0), parent, type, dependency, _range_check_dependency, _extra_types);
242 }
243 
244 CastLLNode* CastLLNode::make_with(Node* parent, const TypeInteger* type, const DependencyType& dependency) const {
245   return new CastLLNode(in(0), parent, type, dependency, _extra_types);
246 }
247 
248 Node* ConstraintCastNode::find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, const TypeInteger* type, const DependencyType& dependency) const {
249   Node* n = make_with(parent, type, dependency);
250   Node* existing = igvn->hash_find_insert(n);
251   if (existing != nullptr) {
252     n->destruct(igvn);
253     return existing;
254   }
255   return igvn->register_new_node_with_optimizer(n);
256 }
257 
258 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
259   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
260   if (progress != nullptr) {
261     return progress;
262   }
263   if (!phase->C->post_loop_opts_phase()) {
264     // makes sure we run widen_type() to potentially common type assertions after loop opts
265     phase->C->record_for_post_loop_opts_igvn(this);
266   }
267   if (!_range_check_dependency || phase->C->post_loop_opts_phase()) {
268     return optimize_integer_cast(phase, T_INT);
269   }
270   return nullptr;
271 }
272 
273 Node* CastIINode::Identity(PhaseGVN* phase) {
274   Node* progress = ConstraintCastNode::Identity(phase);
275   if (progress != this) {
276     return progress;
277   }
278   return this;
279 }
280 
281 bool CastIINode::cmp(const Node &n) const {
282   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
283 }
284 
285 uint CastIINode::size_of() const {
286   return sizeof(*this);
287 }
288 
289 #ifndef PRODUCT
290 void CastIINode::dump_spec(outputStream* st) const {
291   ConstraintCastNode::dump_spec(st);
292   if (_range_check_dependency) {
293     st->print(" range check dependency");
294   }
295 }
296 #endif
297 
298 CastIINode* CastIINode::pin_array_access_node() const {
299   assert(_dependency.is_floating(), "already pinned");
300   if (has_range_check()) {
301     return new CastIINode(in(0), in(1), bottom_type(), _dependency.with_pinned_dependency(), has_range_check());
302   }
303   return nullptr;
304 }
305 
306 void CastIINode::remove_range_check_cast(Compile* C) {
307   if (has_range_check()) {
308     // Range check CastII nodes feed into an address computation subgraph. Remove them to let that subgraph float freely.
309     // For memory access or integer divisions nodes that depend on the cast, record the dependency on the cast's control
310     // as a precedence edge, so they can't float above the cast in case that cast's narrowed type helped eliminate a
311     // range check or a null divisor check.
312     assert(in(0) != nullptr, "All RangeCheck CastII must have a control dependency");
313     ResourceMark rm;
314     Unique_Node_List wq;
315     wq.push(this);
316     for (uint next = 0; next < wq.size(); ++next) {
317       Node* m = wq.at(next);
318       for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
319         Node* use = m->fast_out(i);
320         if (use->is_Mem() || use->is_div_or_mod(T_INT) || use->is_div_or_mod(T_LONG)) {
321           use->ensure_control_or_add_prec(in(0));
322         } else if (!use->is_CFG() && !use->is_Phi()) {
323           wq.push(use);
324         }
325       }
326     }
327     subsume_by(in(1), C);
328     if (outcnt() == 0) {
329       disconnect_inputs(C);
330     }
331   }
332 }
333 
334 bool CastLLNode::is_inner_loop_backedge(IfProjNode* proj) {
335   if (proj != nullptr) {
336     Node* ctrl_use = proj->unique_ctrl_out_or_null();
337     if (ctrl_use != nullptr && ctrl_use->Opcode() == Op_Loop &&
338         ctrl_use->in(2) == proj &&
339         ctrl_use->as_Loop()->is_loop_nest_inner_loop()) {
340       return true;
341     }
342   }
343   return false;
344 }
345 
346 bool CastLLNode::cmp_used_at_inner_loop_exit_test(CmpNode* cmp) {
347   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
348     Node* bol = cmp->fast_out(i);
349     if (bol->Opcode() == Op_Bool) {
350       for (DUIterator_Fast jmax, j = bol->fast_outs(jmax); j < jmax; j++) {
351         Node* iff = bol->fast_out(j);
352         if (iff->Opcode() == Op_If) {
353           IfTrueNode* true_proj = iff->as_If()->true_proj_or_null();
354           IfFalseNode* false_proj = iff->as_If()->false_proj_or_null();
355           if (is_inner_loop_backedge(true_proj) || is_inner_loop_backedge(false_proj)) {
356             return true;
357           }
358         }
359       }
360     }
361   }
362   return false;
363 }
364 
365 // Find if this is a cast node added by PhaseIdealLoop::create_loop_nest() to narrow the number of iterations of the
366 // inner loop
367 bool CastLLNode::used_at_inner_loop_exit_test() const {
368   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
369     Node* convl2i = fast_out(i);
370     if (convl2i->Opcode() == Op_ConvL2I) {
371       for (DUIterator_Fast jmax, j = convl2i->fast_outs(jmax); j < jmax; j++) {
372         Node* cmp_or_sub = convl2i->fast_out(j);
373         if (cmp_or_sub->Opcode() == Op_CmpI) {
374           if (cmp_used_at_inner_loop_exit_test(cmp_or_sub->as_Cmp())) {
375             // (Loop .. .. (IfProj (If (Bool (CmpI (ConvL2I (CastLL )))))))
376             return true;
377           }
378         } else if (cmp_or_sub->Opcode() == Op_SubI && cmp_or_sub->in(1)->find_int_con(-1) == 0) {
379           for (DUIterator_Fast kmax, k = cmp_or_sub->fast_outs(kmax); k < kmax; k++) {
380             Node* cmp = cmp_or_sub->fast_out(k);
381             if (cmp->Opcode() == Op_CmpI) {
382               if (cmp_used_at_inner_loop_exit_test(cmp->as_Cmp())) {
383                 // (Loop .. .. (IfProj (If (Bool (CmpI (SubI 0 (ConvL2I (CastLL ))))))))
384                 return true;
385               }
386             }
387           }
388         }
389       }
390     }
391   }
392   return false;
393 }
394 
395 Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
396   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
397   if (progress != nullptr) {
398     return progress;
399   }
400   if (!phase->C->post_loop_opts_phase()) {
401     // makes sure we run widen_type() to potentially common type assertions after loop opts
402     phase->C->record_for_post_loop_opts_igvn(this);
403   }
404   // transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of
405   // the ConvI2L.
406   Node* in1 = in(1);
407   if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) {
408     const Type* t = Value(phase);
409     const Type* t_in = phase->type(in1);
410     if (t != Type::TOP && t_in != Type::TOP) {
411       const TypeLong* tl = t->is_long();
412       const TypeLong* t_in_l = t_in->is_long();
413       assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input");
414       assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower");
415       if (tl != t_in_l) {
416         const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen);
417         Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti));
418         Node* convi2l = in1->clone();
419         convi2l->set_req(1, castii);
420         return convi2l;
421       }
422     }
423   }
424   // If it's a cast created by PhaseIdealLoop::short_running_loop(), don't transform it until the counted loop is created
425   // in next loop opts pass
426   if (!can_reshape || !used_at_inner_loop_exit_test()) {
427     return optimize_integer_cast(phase, T_LONG);
428   }
429   return nullptr;
430 }
431 
432 //=============================================================================
433 //------------------------------Identity---------------------------------------
434 // If input is already higher or equal to cast type, then this is an identity.
435 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
436   if (in(1)->is_InlineType() && _type->isa_instptr() && phase->type(in(1))->inline_klass()->is_subtype_of(_type->is_instptr()->instance_klass())) {
437     return in(1);
438   }
439   return ConstraintCastNode::Identity(phase);
440 }
441 
442 //------------------------------Value------------------------------------------
443 // Take 'join' of input and cast-up type, unless working with an Interface
444 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
445   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
446 
447   const Type *inn = phase->type(in(1));
448   if( inn == Type::TOP ) return Type::TOP;  // No information yet
449 
450   if (inn->isa_oopptr() && _type->isa_oopptr()) {
451     return ConstraintCastNode::Value(phase);
452   }
453 
454   const TypePtr *in_type = inn->isa_ptr();
455   const TypePtr *my_type = _type->isa_ptr();
456   const Type *result = _type;
457   if (in_type != nullptr && my_type != nullptr) {
458     // TODO 8302672
459     if (!StressReflectiveCode && my_type->isa_aryptr() && in_type->isa_aryptr()) {
460       // Propagate array properties (not flat/null-free)
461       // Don't do this when StressReflectiveCode is enabled because it might lead to
462       // a dying data path while the corresponding flat/null-free check is not folded.
463       my_type = my_type->is_aryptr()->update_properties(in_type->is_aryptr());
464       if (my_type == nullptr) {
465         return Type::TOP; // Inconsistent properties
466       }
467     }
468     TypePtr::PTR in_ptr = in_type->ptr();
469     if (in_ptr == TypePtr::Null) {
470       result = in_type;
471     } else if (in_ptr != TypePtr::Constant) {
472       result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr));
473     }
474   }
475 
476   return result;
477 }
478 
479 //=============================================================================
480 //------------------------------Value------------------------------------------
481 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
482   const Type* t = phase->type(in(1));
483   if (t == Type::TOP) return Type::TOP;
484   if (t->base() == Type_X && t->singleton()) {
485     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
486     if (bits == 0)   return TypePtr::NULL_PTR;
487     return TypeRawPtr::make((address) bits);
488   }
489   return CastX2PNode::bottom_type();
490 }
491 
492 //------------------------------Idealize---------------------------------------
493 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
494   if (t == Type::TOP)  return false;
495   const TypeX* tl = t->is_intptr_t();
496   jint lo = min_jint;
497   jint hi = max_jint;
498   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
499   return (tl->_lo >= lo) && (tl->_hi <= hi);
500 }
501 
502 static inline Node* addP_of_X2P(PhaseGVN *phase,
503                                 Node* base,
504                                 Node* dispX,
505                                 bool negate = false) {
506   if (negate) {
507     dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
508   }
509   return new AddPNode(phase->C->top(),
510                       phase->transform(new CastX2PNode(base)),
511                       dispX);
512 }
513 
514 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
515   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
516   int op = in(1)->Opcode();
517   Node* x;
518   Node* y;
519   switch (op) {
520     case Op_SubX:
521     x = in(1)->in(1);
522     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
523     if (phase->find_intptr_t_con(x, -1) == 0)
524     break;
525     y = in(1)->in(2);
526     if (fits_in_int(phase->type(y), true)) {
527       return addP_of_X2P(phase, x, y, true);
528     }
529     break;
530     case Op_AddX:
531     x = in(1)->in(1);
532     y = in(1)->in(2);
533     if (fits_in_int(phase->type(y))) {
534       return addP_of_X2P(phase, x, y);
535     }
536     if (fits_in_int(phase->type(x))) {
537       return addP_of_X2P(phase, y, x);
538     }
539     break;
540   }
541   return nullptr;
542 }
543 
544 //------------------------------Identity---------------------------------------
545 Node* CastX2PNode::Identity(PhaseGVN* phase) {
546   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
547   return this;
548 }
549 
550 //=============================================================================
551 //------------------------------Value------------------------------------------
552 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
553   const Type* t = phase->type(in(1));
554   if (t == Type::TOP) return Type::TOP;
555   if (t->base() == Type::RawPtr && t->singleton()) {
556     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
557     return TypeX::make(bits);
558   }
559   return CastP2XNode::bottom_type();
560 }
561 
562 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
563   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
564 }
565 
566 //------------------------------Identity---------------------------------------
567 Node* CastP2XNode::Identity(PhaseGVN* phase) {
568   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
569   return this;
570 }
571 
572 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, const DependencyType& dependency,
573                                              const TypeTuple* types) {
574   if (type->isa_int()) {
575     return new CastIINode(c, in, type, dependency, false, types);
576   } else if (type->isa_long()) {
577     return new CastLLNode(c, in, type, dependency, types);
578   } else if (type->isa_half_float()) {
579     return new CastHHNode(c, in, type, dependency, types);
580   } else if (type->isa_float()) {
581     return new CastFFNode(c, in, type, dependency, types);
582   } else if (type->isa_double()) {
583     return new CastDDNode(c, in, type, dependency, types);
584   } else if (type->isa_vect()) {
585     return new CastVVNode(c, in, type, dependency, types);
586   } else if (type->isa_ptr()) {
587     return new CastPPNode(c, in, type, dependency, types);
588   }
589   fatal("unreachable. Invalid cast type.");
590   return nullptr;
591 }
592 
593 Node* ConstraintCastNode::optimize_integer_cast_of_add(PhaseGVN* phase, BasicType bt) {
594   PhaseIterGVN *igvn = phase->is_IterGVN();
595   const TypeInteger* this_type = this->type()->isa_integer(bt);
596   if (this_type == nullptr) {
597     return nullptr;
598   }
599 
600   Node* z = in(1);
601   const TypeInteger* rx = nullptr;
602   const TypeInteger* ry = nullptr;
603   // Similar to ConvI2LNode::Ideal() for the same reasons
604   if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) {
605     if (igvn == nullptr) {
606       // Postpone this optimization to iterative GVN, where we can handle deep
607       // AddI chains without an exponential number of recursive Ideal() calls.
608       phase->record_for_igvn(this);
609       return nullptr;
610     }
611     int op = z->Opcode();
612     Node* x = z->in(1);
613     Node* y = z->in(2);
614 
615     const TypeInteger* tx = phase->type(x)->is_integer(bt);
616     const TypeInteger* ty = phase->type(y)->is_integer(bt);
617 
618     // (Cast (Add x y) tz) is transformed into (Add (Cast x rx) (Cast y ry))
619     //
620     // tz = [tzlo, tzhi]
621     // rx = [rxlo, rxhi]
622     // ry = [rylo, ryhi]
623     // with type of x, tx = [txlo, txhi]
624     // with type of y, ty = [tylo, tyhi]
625     //
626     // From Compile::push_thru_add():
627     // rxlo = max(tzlo - tyhi, txlo)
628     // rxhi = min(tzhi - tylo, txhi)
629     // rylo = max(tzlo - txhi, tylo)
630     // ryhi = min(tzhi - txlo, tyhi)
631     //
632     // If x is a constant, then txlo = txhi
633     // rxlo = txlo, rxhi = txhi
634     // The bounds of the type of the Add after transformation then is:
635     // rxlo + rylo >= txlo + tzlo - txhi >= tzlo
636     // rxhi + ryhi <= txhi + tzhi - txlo <= tzhi
637     // The resulting type is not wider than the type of the Cast
638     // before transformation
639     //
640     // If neither x nor y are constant then the type of the resulting
641     // Add can be wider than the type of the type of the Cast before
642     // transformation.
643     // For instance, tx = [0, 10], ty = [0, 10], tz = [0, 10]
644     // then rx = [0, 10], ry = [0, 10]
645     // and rx + ry = [0, 20] which is wider than tz
646     //
647     // Same reasoning applies to (Cast (Sub x y) tz)
648     const DependencyType& dependency = (!tx->is_con() && !ty->is_con()) ? _dependency.with_non_narrowing() : _dependency;
649     Node* cx = find_or_make_integer_cast(igvn, x, rx, dependency);
650     Node* cy = find_or_make_integer_cast(igvn, y, ry, dependency);
651     if (op == Op_Add(bt)) {
652       return AddNode::make(cx, cy, bt);
653     } else {
654       assert(op == Op_Sub(bt), "");
655       return SubNode::make(cx, cy, bt);
656     }
657     return nullptr;
658   }
659   return nullptr;
660 }
661 
662 Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) {
663   Node* res = optimize_integer_cast_of_add(phase, bt);
664   if (res != nullptr) {
665     return res;
666   }
667   const Type* t = Value(phase);
668   if (t != Type::TOP && phase->C->post_loop_opts_phase()) {
669     const Type* bottom_t = bottom_type();
670     const TypeInteger* wide_t = widen_type(phase, bottom_t, bt);
671     if (wide_t != bottom_t) {
672       // Widening the type of the Cast (to allow some commoning) causes the Cast to change how it can be optimized (if
673       // type of its input is narrower than the Cast's type, we can't remove it to not loose the control dependency).
674       return make_with(in(1), wide_t, _dependency.with_non_narrowing());
675     }
676   }
677   return nullptr;
678 }
679 
680 const TypeInteger* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const {
681   const TypeInteger* this_type = res->is_integer(bt);
682   // At VerifyConstraintCasts == 1, we verify the ConstraintCastNodes that are present during code
683   // emission. This allows us detecting possible mis-scheduling due to these nodes being pinned at
684   // the wrong control nodes.
685   // At VerifyConstraintCasts == 2, we do not perform widening so that we can verify the
686   // correctness of more ConstraintCastNodes. This further helps us detect possible
687   // mis-transformations that may happen due to these nodes being pinned at the wrong control
688   // nodes.
689   if (VerifyConstraintCasts > 1) {
690     return this_type;
691   }
692 
693   const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt);
694   if (in_type != nullptr &&
695       (in_type->lo_as_long() != this_type->lo_as_long() ||
696        in_type->hi_as_long() != this_type->hi_as_long())) {
697     jlong lo1 = this_type->lo_as_long();
698     jlong hi1 = this_type->hi_as_long();
699     int w1 = this_type->_widen;
700     if (lo1 >= 0) {
701       // Keep a range assertion of >=0.
702       lo1 = 0;        hi1 = max_signed_integer(bt);
703     } else if (hi1 < 0) {
704       // Keep a range assertion of <0.
705       lo1 = min_signed_integer(bt); hi1 = -1;
706     } else {
707       lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt);
708     }
709     return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1),
710                              MIN2(in_type->hi_as_long(), hi1),
711                              MAX2((int)in_type->_widen, w1), bt);
712   }
713   return this_type;
714 }