1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/narrowptrnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/regalloc.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "opto/vectornode.hpp"
  47 #include "utilities/vmError.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 //=============================================================================
  54 //------------------------------Value------------------------------------------
  55 // Compute the type of the RegionNode.
  56 const Type* RegionNode::Value(PhaseGVN* phase) const {
  57   for( uint i=1; i<req(); ++i ) {       // For all paths in
  58     Node *n = in(i);            // Get Control source
  59     if( !n ) continue;          // Missing inputs are TOP
  60     if( phase->type(n) == Type::CONTROL )
  61       return Type::CONTROL;
  62   }
  63   return Type::TOP;             // All paths dead?  Then so are we
  64 }
  65 
  66 //------------------------------Identity---------------------------------------
  67 // Check for Region being Identity.
  68 Node* RegionNode::Identity(PhaseGVN* phase) {
  69   // Cannot have Region be an identity, even if it has only 1 input.
  70   // Phi users cannot have their Region input folded away for them,
  71   // since they need to select the proper data input
  72   return this;
  73 }
  74 
  75 //------------------------------merge_region-----------------------------------
  76 // If a Region flows into a Region, merge into one big happy merge.  This is
  77 // hard to do if there is stuff that has to happen
  78 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  79   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  80     return nullptr;
  81   Node *progress = nullptr;        // Progress flag
  82   PhaseIterGVN *igvn = phase->is_IterGVN();
  83 
  84   uint rreq = region->req();
  85   for( uint i = 1; i < rreq; i++ ) {
  86     Node *r = region->in(i);
  87     if( r && r->Opcode() == Op_Region && // Found a region?
  88         r->in(0) == r &&        // Not already collapsed?
  89         r != region &&          // Avoid stupid situations
  90         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  91       assert(!r->as_Region()->has_phi(), "no phi users");
  92       if( !progress ) {         // No progress
  93         if (region->has_phi()) {
  94           return nullptr;        // Only flatten if no Phi users
  95           // igvn->hash_delete( phi );
  96         }
  97         igvn->hash_delete( region );
  98         progress = region;      // Making progress
  99       }
 100       igvn->hash_delete( r );
 101 
 102       // Append inputs to 'r' onto 'region'
 103       for( uint j = 1; j < r->req(); j++ ) {
 104         // Move an input from 'r' to 'region'
 105         region->add_req(r->in(j));
 106         r->set_req(j, phase->C->top());
 107         // Update phis of 'region'
 108         //for( uint k = 0; k < max; k++ ) {
 109         //  Node *phi = region->out(k);
 110         //  if( phi->is_Phi() ) {
 111         //    phi->add_req(phi->in(i));
 112         //  }
 113         //}
 114 
 115         rreq++;                 // One more input to Region
 116       } // Found a region to merge into Region
 117       igvn->_worklist.push(r);
 118       // Clobber pointer to the now dead 'r'
 119       region->set_req(i, phase->C->top());
 120     }
 121   }
 122 
 123   return progress;
 124 }
 125 
 126 
 127 
 128 //--------------------------------has_phi--------------------------------------
 129 // Helper function: Return any PhiNode that uses this region or null
 130 PhiNode* RegionNode::has_phi() const {
 131   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 132     Node* phi = fast_out(i);
 133     if (phi->is_Phi()) {   // Check for Phi users
 134       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 135       return phi->as_Phi();  // this one is good enough
 136     }
 137   }
 138 
 139   return nullptr;
 140 }
 141 
 142 
 143 //-----------------------------has_unique_phi----------------------------------
 144 // Helper function: Return the only PhiNode that uses this region or null
 145 PhiNode* RegionNode::has_unique_phi() const {
 146   // Check that only one use is a Phi
 147   PhiNode* only_phi = nullptr;
 148   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 149     Node* phi = fast_out(i);
 150     if (phi->is_Phi()) {   // Check for Phi users
 151       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 152       if (only_phi == nullptr) {
 153         only_phi = phi->as_Phi();
 154       } else {
 155         return nullptr;  // multiple phis
 156       }
 157     }
 158   }
 159 
 160   return only_phi;
 161 }
 162 
 163 
 164 //------------------------------check_phi_clipping-----------------------------
 165 // Helper function for RegionNode's identification of FP clipping
 166 // Check inputs to the Phi
 167 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 168   min     = nullptr;
 169   max     = nullptr;
 170   val     = nullptr;
 171   min_idx = 0;
 172   max_idx = 0;
 173   val_idx = 0;
 174   uint  phi_max = phi->req();
 175   if( phi_max == 4 ) {
 176     for( uint j = 1; j < phi_max; ++j ) {
 177       Node *n = phi->in(j);
 178       int opcode = n->Opcode();
 179       switch( opcode ) {
 180       case Op_ConI:
 181         {
 182           if( min == nullptr ) {
 183             min     = n->Opcode() == Op_ConI ? (ConNode*)n : nullptr;
 184             min_idx = j;
 185           } else {
 186             max     = n->Opcode() == Op_ConI ? (ConNode*)n : nullptr;
 187             max_idx = j;
 188             if( min->get_int() > max->get_int() ) {
 189               // Swap min and max
 190               ConNode *temp;
 191               uint     temp_idx;
 192               temp     = min;     min     = max;     max     = temp;
 193               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 194             }
 195           }
 196         }
 197         break;
 198       default:
 199         {
 200           val = n;
 201           val_idx = j;
 202         }
 203         break;
 204       }
 205     }
 206   }
 207   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 208 }
 209 
 210 
 211 //------------------------------check_if_clipping------------------------------
 212 // Helper function for RegionNode's identification of FP clipping
 213 // Check that inputs to Region come from two IfNodes,
 214 //
 215 //            If
 216 //      False    True
 217 //       If        |
 218 //  False  True    |
 219 //    |      |     |
 220 //  RegionNode_inputs
 221 //
 222 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 223   top_if = nullptr;
 224   bot_if = nullptr;
 225 
 226   // Check control structure above RegionNode for (if  ( if  ) )
 227   Node *in1 = region->in(1);
 228   Node *in2 = region->in(2);
 229   Node *in3 = region->in(3);
 230   // Check that all inputs are projections
 231   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 232     Node *in10 = in1->in(0);
 233     Node *in20 = in2->in(0);
 234     Node *in30 = in3->in(0);
 235     // Check that #1 and #2 are ifTrue and ifFalse from same If
 236     if( in10 != nullptr && in10->is_If() &&
 237         in20 != nullptr && in20->is_If() &&
 238         in30 != nullptr && in30->is_If() && in10 == in20 &&
 239         (in1->Opcode() != in2->Opcode()) ) {
 240       Node  *in100 = in10->in(0);
 241       Node *in1000 = (in100 != nullptr && in100->is_Proj()) ? in100->in(0) : nullptr;
 242       // Check that control for in10 comes from other branch of IF from in3
 243       if( in1000 != nullptr && in1000->is_If() &&
 244           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 245         // Control pattern checks
 246         top_if = (IfNode*)in1000;
 247         bot_if = (IfNode*)in10;
 248       }
 249     }
 250   }
 251 
 252   return (top_if != nullptr);
 253 }
 254 
 255 
 256 //------------------------------check_convf2i_clipping-------------------------
 257 // Helper function for RegionNode's identification of FP clipping
 258 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 259 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 260   convf2i = nullptr;
 261 
 262   // Check for the RShiftNode
 263   Node *rshift = phi->in(idx);
 264   assert( rshift, "Previous checks ensure phi input is present");
 265   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 266 
 267   // Check for the LShiftNode
 268   Node *lshift = rshift->in(1);
 269   assert( lshift, "Previous checks ensure phi input is present");
 270   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 271 
 272   // Check for the ConvF2INode
 273   Node *conv = lshift->in(1);
 274   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 275 
 276   // Check that shift amounts are only to get sign bits set after F2I
 277   jint max_cutoff     = max->get_int();
 278   jint min_cutoff     = min->get_int();
 279   jint left_shift     = lshift->in(2)->get_int();
 280   jint right_shift    = rshift->in(2)->get_int();
 281   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 282   if( left_shift != right_shift ||
 283       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 284       max_post_shift < max_cutoff ||
 285       max_post_shift < -min_cutoff ) {
 286     // Shifts are necessary but current transformation eliminates them
 287     return false;
 288   }
 289 
 290   // OK to return the result of ConvF2I without shifting
 291   convf2i = (ConvF2INode*)conv;
 292   return true;
 293 }
 294 
 295 
 296 //------------------------------check_compare_clipping-------------------------
 297 // Helper function for RegionNode's identification of FP clipping
 298 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 299   Node *i1 = iff->in(1);
 300   if ( !i1->is_Bool() ) { return false; }
 301   BoolNode *bool1 = i1->as_Bool();
 302   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 303   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 304   const Node *cmpF = bool1->in(1);
 305   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 306   // Test that the float value being compared against
 307   // is equivalent to the int value used as a limit
 308   Node *nodef = cmpF->in(2);
 309   if( nodef->Opcode() != Op_ConF ) { return false; }
 310   jfloat conf = nodef->getf();
 311   jint   coni = limit->get_int();
 312   if( ((int)conf) != coni )        { return false; }
 313   input = cmpF->in(1);
 314   return true;
 315 }
 316 
 317 //------------------------------is_unreachable_region--------------------------
 318 // Check if the RegionNode is part of an unsafe loop and unreachable from root.
 319 bool RegionNode::is_unreachable_region(const PhaseGVN* phase) {
 320   Node* top = phase->C->top();
 321   assert(req() == 2 || (req() == 3 && in(1) != nullptr && in(2) == top), "sanity check arguments");
 322   if (_is_unreachable_region) {
 323     // Return cached result from previous evaluation which should still be valid
 324     assert(is_unreachable_from_root(phase), "walk the graph again and check if its indeed unreachable");
 325     return true;
 326   }
 327 
 328   // First, cut the simple case of fallthrough region when NONE of
 329   // region's phis references itself directly or through a data node.
 330   if (is_possible_unsafe_loop(phase)) {
 331     // If we have a possible unsafe loop, check if the region node is actually unreachable from root.
 332     if (is_unreachable_from_root(phase)) {
 333       _is_unreachable_region = true;
 334       return true;
 335     }
 336   }
 337   return false;
 338 }
 339 
 340 bool RegionNode::is_possible_unsafe_loop(const PhaseGVN* phase) const {
 341   uint max = outcnt();
 342   uint i;
 343   for (i = 0; i < max; i++) {
 344     Node* n = raw_out(i);
 345     if (n != nullptr && n->is_Phi()) {
 346       PhiNode* phi = n->as_Phi();
 347       assert(phi->in(0) == this, "sanity check phi");
 348       if (phi->outcnt() == 0) {
 349         continue; // Safe case - no loops
 350       }
 351       if (phi->outcnt() == 1) {
 352         Node* u = phi->raw_out(0);
 353         // Skip if only one use is an other Phi or Call or Uncommon trap.
 354         // It is safe to consider this case as fallthrough.
 355         if (u != nullptr && (u->is_Phi() || u->is_CFG())) {
 356           continue;
 357         }
 358       }
 359       // Check when phi references itself directly or through an other node.
 360       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) {
 361         break; // Found possible unsafe data loop.
 362       }
 363     }
 364   }
 365   if (i >= max) {
 366     return false; // An unsafe case was NOT found - don't need graph walk.
 367   }
 368   return true;
 369 }
 370 
 371 bool RegionNode::is_unreachable_from_root(const PhaseGVN* phase) const {
 372   ResourceMark rm;
 373   Node_List nstack;
 374   VectorSet visited;
 375 
 376   // Mark all control nodes reachable from root outputs
 377   Node* n = (Node*)phase->C->root();
 378   nstack.push(n);
 379   visited.set(n->_idx);
 380   while (nstack.size() != 0) {
 381     n = nstack.pop();
 382     uint max = n->outcnt();
 383     for (uint i = 0; i < max; i++) {
 384       Node* m = n->raw_out(i);
 385       if (m != nullptr && m->is_CFG()) {
 386         if (m == this) {
 387           return false; // We reached the Region node - it is not dead.
 388         }
 389         if (!visited.test_set(m->_idx))
 390           nstack.push(m);
 391       }
 392     }
 393   }
 394   return true; // The Region node is unreachable - it is dead.
 395 }
 396 
 397 #ifdef ASSERT
 398 // Is this region in an infinite subgraph?
 399 // (no path to root except through false NeverBranch exit)
 400 bool RegionNode::is_in_infinite_subgraph() {
 401   ResourceMark rm;
 402   Unique_Node_List worklist;
 403   worklist.push(this);
 404   return RegionNode::are_all_nodes_in_infinite_subgraph(worklist);
 405 }
 406 
 407 // Are all nodes in worklist in infinite subgraph?
 408 // (no path to root except through false NeverBranch exit)
 409 // worklist is directly used for the traversal
 410 bool RegionNode::are_all_nodes_in_infinite_subgraph(Unique_Node_List& worklist) {
 411   // BFS traversal down the CFG, except through NeverBranch exits
 412   for (uint i = 0; i < worklist.size(); ++i) {
 413     Node* n = worklist.at(i);
 414     assert(n->is_CFG(), "only traverse CFG");
 415     if (n->is_Root()) {
 416       // Found root -> there was an exit!
 417       return false;
 418     } else if (n->is_NeverBranch()) {
 419       // Only follow the loop-internal projection, not the NeverBranch exit
 420       ProjNode* proj = n->as_NeverBranch()->proj_out_or_null(0);
 421       assert(proj != nullptr, "must find loop-internal projection of NeverBranch");
 422       worklist.push(proj);
 423     } else {
 424       // Traverse all CFG outputs
 425       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 426         Node* use = n->fast_out(i);
 427         if (use->is_CFG()) {
 428           worklist.push(use);
 429         }
 430       }
 431     }
 432   }
 433   // No exit found for any loop -> all are infinite
 434   return true;
 435 }
 436 #endif //ASSERT
 437 
 438 void RegionNode::set_loop_status(RegionNode::LoopStatus status) {
 439   assert(loop_status() == RegionNode::LoopStatus::NeverIrreducibleEntry, "why set our status again?");
 440   _loop_status = status;
 441 }
 442 
 443 #ifdef ASSERT
 444 void RegionNode::verify_can_be_irreducible_entry() const {
 445   assert(loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry, "must be marked irreducible");
 446   assert(!is_Loop(), "LoopNode cannot be irreducible loop entry");
 447 }
 448 #endif //ASSERT
 449 
 450 void RegionNode::try_clean_mem_phis(PhaseIterGVN* igvn) {
 451   // Incremental inlining + PhaseStringOpts sometimes produce:
 452   //
 453   // cmpP with 1 top input
 454   //           |
 455   //          If
 456   //         /  \
 457   //   IfFalse  IfTrue  /- Some Node
 458   //         \  /      /    /
 459   //        Region    / /-MergeMem
 460   //             \---Phi
 461   //
 462   //
 463   // It's expected by PhaseStringOpts that the Region goes away and is
 464   // replaced by If's control input but because there's still a Phi,
 465   // the Region stays in the graph. The top input from the cmpP is
 466   // propagated forward and a subgraph that is useful goes away. The
 467   // code in PhiNode::try_clean_memory_phi() replaces the Phi with the
 468   // MergeMem in order to remove the Region if its last phi dies.
 469 
 470   if (!is_diamond()) {
 471     return;
 472   }
 473 
 474   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 475     Node* phi = fast_out(i);
 476     if (phi->is_Phi() && phi->as_Phi()->try_clean_memory_phi(igvn)) {
 477       --i;
 478       --imax;
 479     }
 480   }
 481 }
 482 
 483 // Does this region merge a simple diamond formed by a proper IfNode?
 484 //
 485 //              Cmp
 486 //              /
 487 //     ctrl   Bool
 488 //       \    /
 489 //       IfNode
 490 //      /      \
 491 //  IfFalse   IfTrue
 492 //      \      /
 493 //       Region
 494 bool RegionNode::is_diamond() const {
 495   if (req() != 3) {
 496     return false;
 497   }
 498 
 499   Node* left_path = in(1);
 500   Node* right_path = in(2);
 501   if (left_path == nullptr || right_path == nullptr) {
 502     return false;
 503   }
 504   Node* diamond_if = left_path->in(0);
 505   if (diamond_if == nullptr || !diamond_if->is_If() || diamond_if != right_path->in(0)) {
 506     // Not an IfNode merging a diamond or TOP.
 507     return false;
 508   }
 509 
 510   // Check for a proper bool/cmp
 511   const Node* bol = diamond_if->in(1);
 512   if (!bol->is_Bool()) {
 513     return false;
 514   }
 515   const Node* cmp = bol->in(1);
 516   if (!cmp->is_Cmp()) {
 517     return false;
 518   }
 519   return true;
 520 }
 521 //------------------------------Ideal------------------------------------------
 522 // Return a node which is more "ideal" than the current node.  Must preserve
 523 // the CFG, but we can still strip out dead paths.
 524 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 525   if( !can_reshape && !in(0) ) return nullptr;     // Already degraded to a Copy
 526   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 527 
 528   // Check for RegionNode with no Phi users and both inputs come from either
 529   // arm of the same IF.  If found, then the control-flow split is useless.
 530   bool has_phis = false;
 531   if (can_reshape) {            // Need DU info to check for Phi users
 532     try_clean_mem_phis(phase->is_IterGVN());
 533     has_phis = (has_phi() != nullptr);       // Cache result
 534 
 535     if (!has_phis) {            // No Phi users?  Nothing merging?
 536       for (uint i = 1; i < req()-1; i++) {
 537         Node *if1 = in(i);
 538         if( !if1 ) continue;
 539         Node *iff = if1->in(0);
 540         if( !iff || !iff->is_If() ) continue;
 541         for( uint j=i+1; j<req(); j++ ) {
 542           if( in(j) && in(j)->in(0) == iff &&
 543               if1->Opcode() != in(j)->Opcode() ) {
 544             // Add the IF Projections to the worklist. They (and the IF itself)
 545             // will be eliminated if dead.
 546             phase->is_IterGVN()->add_users_to_worklist(iff);
 547             set_req(i, iff->in(0));// Skip around the useless IF diamond
 548             set_req(j, nullptr);
 549             return this;      // Record progress
 550           }
 551         }
 552       }
 553     }
 554   }
 555 
 556   // Remove TOP or null input paths. If only 1 input path remains, this Region
 557   // degrades to a copy.
 558   bool add_to_worklist = true;
 559   bool modified = false;
 560   int cnt = 0;                  // Count of values merging
 561   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 562   DEBUG_ONLY( uint outcnt_orig = outcnt(); )
 563   int del_it = 0;               // The last input path we delete
 564   bool found_top = false; // irreducible loops need to check reachability if we find TOP
 565   // For all inputs...
 566   for( uint i=1; i<req(); ++i ){// For all paths in
 567     Node *n = in(i);            // Get the input
 568     if( n != nullptr ) {
 569       // Remove useless control copy inputs
 570       if( n->is_Region() && n->as_Region()->is_copy() ) {
 571         set_req(i, n->nonnull_req());
 572         modified = true;
 573         i--;
 574         continue;
 575       }
 576       if( n->is_Proj() ) {      // Remove useless rethrows
 577         Node *call = n->in(0);
 578         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 579           set_req(i, call->in(0));
 580           modified = true;
 581           i--;
 582           continue;
 583         }
 584       }
 585       if( phase->type(n) == Type::TOP ) {
 586         set_req_X(i, nullptr, phase); // Ignore TOP inputs
 587         modified = true;
 588         found_top = true;
 589         i--;
 590         continue;
 591       }
 592       cnt++;                    // One more value merging
 593     } else if (can_reshape) {   // Else found dead path with DU info
 594       PhaseIterGVN *igvn = phase->is_IterGVN();
 595       del_req(i);               // Yank path from self
 596       del_it = i;
 597 
 598       for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
 599         Node* use = fast_out(j);
 600 
 601         if (use->req() != req() && use->is_Phi()) {
 602           assert(use->in(0) == this, "unexpected control input");
 603           igvn->hash_delete(use);          // Yank from hash before hacking edges
 604           use->set_req_X(i, nullptr, igvn);// Correct DU info
 605           use->del_req(i);                 // Yank path from Phis
 606         }
 607       }
 608 
 609       if (add_to_worklist) {
 610         igvn->add_users_to_worklist(this);
 611         add_to_worklist = false;
 612       }
 613 
 614       i--;
 615     }
 616   }
 617 
 618   assert(outcnt() == outcnt_orig, "not expect to remove any use");
 619 
 620   if (can_reshape && found_top && loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry) {
 621     // Is it a dead irreducible loop?
 622     // If an irreducible loop loses one of the multiple entries
 623     // that went into the loop head, or any secondary entries,
 624     // we need to verify if the irreducible loop is still reachable,
 625     // as the special logic in is_unreachable_region only works
 626     // for reducible loops.
 627     if (is_unreachable_from_root(phase)) {
 628       // The irreducible loop is dead - must remove it
 629       PhaseIterGVN* igvn = phase->is_IterGVN();
 630       remove_unreachable_subgraph(igvn);
 631       return nullptr;
 632     }
 633   } else if (can_reshape && cnt == 1) {
 634     // Is it dead loop?
 635     // If it is LoopNopde it had 2 (+1 itself) inputs and
 636     // one of them was cut. The loop is dead if it was EntryContol.
 637     // Loop node may have only one input because entry path
 638     // is removed in PhaseIdealLoop::Dominators().
 639     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 640     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 641                              (del_it == 0 && is_unreachable_region(phase)))) ||
 642         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 643       PhaseIterGVN* igvn = phase->is_IterGVN();
 644       remove_unreachable_subgraph(igvn);
 645       return nullptr;
 646     }
 647   }
 648 
 649   if( cnt <= 1 ) {              // Only 1 path in?
 650     set_req(0, nullptr);        // Null control input for region copy
 651     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 652       // No inputs or all inputs are null.
 653       return nullptr;
 654     } else if (can_reshape) {   // Optimization phase - remove the node
 655       PhaseIterGVN *igvn = phase->is_IterGVN();
 656       // Strip mined (inner) loop is going away, remove outer loop.
 657       if (is_CountedLoop() &&
 658           as_Loop()->is_strip_mined()) {
 659         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
 660         Node* outer_out = as_CountedLoop()->outer_loop_exit();
 661         if (outer_sfpt != nullptr && outer_out != nullptr) {
 662           Node* in = outer_sfpt->in(0);
 663           igvn->replace_node(outer_out, in);
 664           LoopNode* outer = as_CountedLoop()->outer_loop();
 665           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
 666         }
 667       }
 668       if (is_CountedLoop()) {
 669         Node* opaq = as_CountedLoop()->is_canonical_loop_entry();
 670         if (opaq != nullptr) {
 671           // This is not a loop anymore. No need to keep the Opaque1 node on the test that guards the loop as it won't be
 672           // subject to further loop opts.
 673           assert(opaq->Opcode() == Op_OpaqueZeroTripGuard, "");
 674           igvn->replace_node(opaq, opaq->in(1));
 675         }
 676       }
 677       Node *parent_ctrl;
 678       if( cnt == 0 ) {
 679         assert( req() == 1, "no inputs expected" );
 680         // During IGVN phase such region will be subsumed by TOP node
 681         // so region's phis will have TOP as control node.
 682         // Kill phis here to avoid it.
 683         // Also set other user's input to top.
 684         parent_ctrl = phase->C->top();
 685       } else {
 686         // The fallthrough case since we already checked dead loops above.
 687         parent_ctrl = in(1);
 688         assert(parent_ctrl != nullptr, "Region is a copy of some non-null control");
 689         assert(parent_ctrl != this, "Close dead loop");
 690       }
 691       if (add_to_worklist) {
 692         igvn->add_users_to_worklist(this); // Check for further allowed opts
 693       }
 694       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 695         Node* n = last_out(i);
 696         igvn->hash_delete(n); // Remove from worklist before modifying edges
 697         if (n->outcnt() == 0) {
 698           int uses_found = n->replace_edge(this, phase->C->top(), igvn);
 699           if (uses_found > 1) { // (--i) done at the end of the loop.
 700             i -= (uses_found - 1);
 701           }
 702           continue;
 703         }
 704         if( n->is_Phi() ) {   // Collapse all Phis
 705           // Eagerly replace phis to avoid regionless phis.
 706           Node* in;
 707           if( cnt == 0 ) {
 708             assert( n->req() == 1, "No data inputs expected" );
 709             in = parent_ctrl; // replaced by top
 710           } else {
 711             assert( n->req() == 2 &&  n->in(1) != nullptr, "Only one data input expected" );
 712             in = n->in(1);               // replaced by unique input
 713             if( n->as_Phi()->is_unsafe_data_reference(in) )
 714               in = phase->C->top();      // replaced by top
 715           }
 716           igvn->replace_node(n, in);
 717         }
 718         else if( n->is_Region() ) { // Update all incoming edges
 719           assert(n != this, "Must be removed from DefUse edges");
 720           int uses_found = n->replace_edge(this, parent_ctrl, igvn);
 721           if (uses_found > 1) { // (--i) done at the end of the loop.
 722             i -= (uses_found - 1);
 723           }
 724         }
 725         else {
 726           assert(n->in(0) == this, "Expect RegionNode to be control parent");
 727           n->set_req(0, parent_ctrl);
 728         }
 729 #ifdef ASSERT
 730         for( uint k=0; k < n->req(); k++ ) {
 731           assert(n->in(k) != this, "All uses of RegionNode should be gone");
 732         }
 733 #endif
 734       }
 735       // Remove the RegionNode itself from DefUse info
 736       igvn->remove_dead_node(this);
 737       return nullptr;
 738     }
 739     return this;                // Record progress
 740   }
 741 
 742 
 743   // If a Region flows into a Region, merge into one big happy merge.
 744   if (can_reshape) {
 745     Node *m = merge_region(this, phase);
 746     if (m != nullptr)  return m;
 747   }
 748 
 749   // Check if this region is the root of a clipping idiom on floats
 750   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 751     // Check that only one use is a Phi and that it simplifies to two constants +
 752     PhiNode* phi = has_unique_phi();
 753     if (phi != nullptr) {          // One Phi user
 754       // Check inputs to the Phi
 755       ConNode *min;
 756       ConNode *max;
 757       Node    *val;
 758       uint     min_idx;
 759       uint     max_idx;
 760       uint     val_idx;
 761       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 762         IfNode *top_if;
 763         IfNode *bot_if;
 764         if( check_if_clipping( this, bot_if, top_if ) ) {
 765           // Control pattern checks, now verify compares
 766           Node   *top_in = nullptr;   // value being compared against
 767           Node   *bot_in = nullptr;
 768           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 769               check_compare_clipping( false, top_if, max, top_in ) ) {
 770             if( bot_in == top_in ) {
 771               PhaseIterGVN *gvn = phase->is_IterGVN();
 772               assert( gvn != nullptr, "Only had DefUse info in IterGVN");
 773               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 774 
 775               // Check for the ConvF2INode
 776               ConvF2INode *convf2i;
 777               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 778                 convf2i->in(1) == bot_in ) {
 779                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 780                 // max test
 781                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 782                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 783                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 784                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 785                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 786                 // min test
 787                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 788                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 789                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 790                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 791                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 792                 // update input edges to region node
 793                 set_req_X( min_idx, if_min, gvn );
 794                 set_req_X( max_idx, if_max, gvn );
 795                 set_req_X( val_idx, ifF,    gvn );
 796                 // remove unnecessary 'LShiftI; RShiftI' idiom
 797                 gvn->hash_delete(phi);
 798                 phi->set_req_X( val_idx, convf2i, gvn );
 799                 gvn->hash_find_insert(phi);
 800                 // Return transformed region node
 801                 return this;
 802               }
 803             }
 804           }
 805         }
 806       }
 807     }
 808   }
 809 
 810   if (can_reshape) {
 811     modified |= optimize_trichotomy(phase->is_IterGVN());
 812   }
 813 
 814   return modified ? this : nullptr;
 815 }
 816 
 817 //--------------------------remove_unreachable_subgraph----------------------
 818 // This region and therefore all nodes on the input control path(s) are unreachable
 819 // from root. To avoid incomplete removal of unreachable subgraphs, walk up the CFG
 820 // and aggressively replace all nodes by top.
 821 // If a control node "def" with a single control output "use" has its single output
 822 // "use" replaced with top, then "use" removes itself. This has the consequence that
 823 // when we visit "use", it already has all inputs removed. They are lost and we cannot
 824 // traverse them. This is why we fist find all unreachable nodes, and then remove
 825 // them in a second step.
 826 void RegionNode::remove_unreachable_subgraph(PhaseIterGVN* igvn) {
 827   Node* top = igvn->C->top();
 828   ResourceMark rm;
 829   Unique_Node_List unreachable; // visit each only once
 830   unreachable.push(this);
 831   // Recursively find all control inputs.
 832   for (uint i = 0; i < unreachable.size(); i++) {
 833     Node* n = unreachable.at(i);
 834     for (uint i = 0; i < n->req(); ++i) {
 835       Node* m = n->in(i);
 836       assert(m == nullptr || !m->is_Root(), "Should be unreachable from root");
 837       if (m != nullptr && m->is_CFG()) {
 838         unreachable.push(m);
 839       }
 840     }
 841   }
 842   // Remove all unreachable nodes.
 843   for (uint i = 0; i < unreachable.size(); i++) {
 844     Node* n = unreachable.at(i);
 845     if (n->is_Region()) {
 846       // Eagerly replace phis with top to avoid regionless phis.
 847       n->set_req(0, nullptr);
 848       bool progress = true;
 849       uint max = n->outcnt();
 850       DUIterator j;
 851       while (progress) {
 852         progress = false;
 853         for (j = n->outs(); n->has_out(j); j++) {
 854           Node* u = n->out(j);
 855           if (u->is_Phi()) {
 856             igvn->replace_node(u, top);
 857             if (max != n->outcnt()) {
 858               progress = true;
 859               j = n->refresh_out_pos(j);
 860               max = n->outcnt();
 861             }
 862           }
 863         }
 864       }
 865     }
 866     igvn->replace_node(n, top);
 867   }
 868 }
 869 
 870 //------------------------------optimize_trichotomy--------------------------
 871 // Optimize nested comparisons of the following kind:
 872 //
 873 // int compare(int a, int b) {
 874 //   return (a < b) ? -1 : (a == b) ? 0 : 1;
 875 // }
 876 //
 877 // Shape 1:
 878 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
 879 //
 880 // Shape 2:
 881 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
 882 //
 883 // Above code leads to the following IR shapes where both Ifs compare the
 884 // same value and two out of three region inputs idx1 and idx2 map to
 885 // the same value and control flow.
 886 //
 887 // (1)   If                 (2)   If
 888 //      /  \                     /  \
 889 //   Proj  Proj               Proj  Proj
 890 //     |      \                |      \
 891 //     |       If              |      If                      If
 892 //     |      /  \             |     /  \                    /  \
 893 //     |   Proj  Proj          |  Proj  Proj      ==>     Proj  Proj
 894 //     |   /      /            \    |    /                  |    /
 895 //    Region     /              \   |   /                   |   /
 896 //         \    /                \  |  /                    |  /
 897 //         Region                Region                    Region
 898 //
 899 // The method returns true if 'this' is modified and false otherwise.
 900 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
 901   int idx1 = 1, idx2 = 2;
 902   Node* region = nullptr;
 903   if (req() == 3 && in(1) != nullptr && in(2) != nullptr) {
 904     // Shape 1: Check if one of the inputs is a region that merges two control
 905     // inputs and has no other users (especially no Phi users).
 906     region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
 907     if (region == nullptr || region->outcnt() != 2 || region->req() != 3) {
 908       return false; // No suitable region input found
 909     }
 910   } else if (req() == 4) {
 911     // Shape 2: Check if two control inputs map to the same value of the unique phi
 912     // user and treat these as if they would come from another region (shape (1)).
 913     PhiNode* phi = has_unique_phi();
 914     if (phi == nullptr) {
 915       return false; // No unique phi user
 916     }
 917     if (phi->in(idx1) != phi->in(idx2)) {
 918       idx2 = 3;
 919       if (phi->in(idx1) != phi->in(idx2)) {
 920         idx1 = 2;
 921         if (phi->in(idx1) != phi->in(idx2)) {
 922           return false; // No equal phi inputs found
 923         }
 924       }
 925     }
 926     assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
 927     region = this;
 928   }
 929   if (region == nullptr || region->in(idx1) == nullptr || region->in(idx2) == nullptr) {
 930     return false; // Region does not merge two control inputs
 931   }
 932   // At this point we know that region->in(idx1) and region->(idx2) map to the same
 933   // value and control flow. Now search for ifs that feed into these region inputs.
 934   ProjNode* proj1 = region->in(idx1)->isa_Proj();
 935   ProjNode* proj2 = region->in(idx2)->isa_Proj();
 936   if (proj1 == nullptr || proj1->outcnt() != 1 ||
 937       proj2 == nullptr || proj2->outcnt() != 1) {
 938     return false; // No projection inputs with region as unique user found
 939   }
 940   assert(proj1 != proj2, "should be different projections");
 941   IfNode* iff1 = proj1->in(0)->isa_If();
 942   IfNode* iff2 = proj2->in(0)->isa_If();
 943   if (iff1 == nullptr || iff1->outcnt() != 2 ||
 944       iff2 == nullptr || iff2->outcnt() != 2) {
 945     return false; // No ifs found
 946   }
 947   if (iff1 == iff2) {
 948     igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
 949     igvn->replace_input_of(region, idx1, iff1->in(0));
 950     igvn->replace_input_of(region, idx2, igvn->C->top());
 951     return (region == this); // Remove useless if (both projections map to the same control/value)
 952   }
 953   BoolNode* bol1 = iff1->in(1)->isa_Bool();
 954   BoolNode* bol2 = iff2->in(1)->isa_Bool();
 955   if (bol1 == nullptr || bol2 == nullptr) {
 956     return false; // No bool inputs found
 957   }
 958   Node* cmp1 = bol1->in(1);
 959   Node* cmp2 = bol2->in(1);
 960   bool commute = false;
 961   if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
 962     return false; // No comparison
 963   } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
 964              cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
 965              cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
 966              cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN ||
 967              cmp1->is_SubTypeCheck() || cmp2->is_SubTypeCheck()) {
 968     // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
 969     // SubTypeCheck is not commutative
 970     return false;
 971   } else if (cmp1 != cmp2) {
 972     if (cmp1->in(1) == cmp2->in(2) &&
 973         cmp1->in(2) == cmp2->in(1)) {
 974       commute = true; // Same but swapped inputs, commute the test
 975     } else {
 976       return false; // Ifs are not comparing the same values
 977     }
 978   }
 979   proj1 = proj1->other_if_proj();
 980   proj2 = proj2->other_if_proj();
 981   if (!((proj1->unique_ctrl_out_or_null() == iff2 &&
 982          proj2->unique_ctrl_out_or_null() == this) ||
 983         (proj2->unique_ctrl_out_or_null() == iff1 &&
 984          proj1->unique_ctrl_out_or_null() == this))) {
 985     return false; // Ifs are not connected through other projs
 986   }
 987   // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
 988   // through 'region' and map to the same value. Merge the boolean tests and replace
 989   // the ifs by a single comparison.
 990   BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
 991   BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
 992   test1 = commute ? test1.commute() : test1;
 993   // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
 994   BoolTest::mask res = test1.merge(test2);
 995   if (res == BoolTest::illegal) {
 996     return false; // Unable to merge tests
 997   }
 998   // Adjust iff1 to always pass (only iff2 will remain)
 999   igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
1000   if (res == BoolTest::never) {
1001     // Merged test is always false, adjust iff2 to always fail
1002     igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
1003   } else {
1004     // Replace bool input of iff2 with merged test
1005     BoolNode* new_bol = new BoolNode(bol2->in(1), res);
1006     igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
1007     if (new_bol->outcnt() == 0) {
1008       igvn->remove_dead_node(new_bol);
1009     }
1010   }
1011   return false;
1012 }
1013 
1014 const RegMask &RegionNode::out_RegMask() const {
1015   return RegMask::Empty;
1016 }
1017 
1018 #ifndef PRODUCT
1019 void RegionNode::dump_spec(outputStream* st) const {
1020   Node::dump_spec(st);
1021   switch (loop_status()) {
1022   case RegionNode::LoopStatus::MaybeIrreducibleEntry:
1023     st->print("#irreducible ");
1024     break;
1025   case RegionNode::LoopStatus::Reducible:
1026     st->print("#reducible ");
1027     break;
1028   case RegionNode::LoopStatus::NeverIrreducibleEntry:
1029     break; // nothing
1030   }
1031 }
1032 #endif
1033 
1034 // Find the one non-null required input.  RegionNode only
1035 Node *Node::nonnull_req() const {
1036   assert( is_Region(), "" );
1037   for( uint i = 1; i < _cnt; i++ )
1038     if( in(i) )
1039       return in(i);
1040   ShouldNotReachHere();
1041   return nullptr;
1042 }
1043 
1044 
1045 //=============================================================================
1046 // note that these functions assume that the _adr_type field is flattened
1047 uint PhiNode::hash() const {
1048   const Type* at = _adr_type;
1049   return TypeNode::hash() + (at ? at->hash() : 0);
1050 }
1051 bool PhiNode::cmp( const Node &n ) const {
1052   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
1053 }
1054 static inline
1055 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
1056   if (at == nullptr || at == TypePtr::BOTTOM)  return at;
1057   return Compile::current()->alias_type(at)->adr_type();
1058 }
1059 
1060 //----------------------------make---------------------------------------------
1061 // create a new phi with edges matching r and set (initially) to x
1062 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
1063   uint preds = r->req();   // Number of predecessor paths
1064   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
1065   PhiNode* p = new PhiNode(r, t, at);
1066   for (uint j = 1; j < preds; j++) {
1067     // Fill in all inputs, except those which the region does not yet have
1068     if (r->in(j) != nullptr)
1069       p->init_req(j, x);
1070   }
1071   return p;
1072 }
1073 PhiNode* PhiNode::make(Node* r, Node* x) {
1074   const Type*    t  = x->bottom_type();
1075   const TypePtr* at = nullptr;
1076   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
1077   return make(r, x, t, at);
1078 }
1079 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
1080   const Type*    t  = x->bottom_type();
1081   const TypePtr* at = nullptr;
1082   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
1083   return new PhiNode(r, t, at);
1084 }
1085 
1086 
1087 //------------------------slice_memory-----------------------------------------
1088 // create a new phi with narrowed memory type
1089 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
1090   PhiNode* mem = (PhiNode*) clone();
1091   *(const TypePtr**)&mem->_adr_type = adr_type;
1092   // convert self-loops, or else we get a bad graph
1093   for (uint i = 1; i < req(); i++) {
1094     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
1095   }
1096   mem->verify_adr_type();
1097   return mem;
1098 }
1099 
1100 //------------------------split_out_instance-----------------------------------
1101 // Split out an instance type from a bottom phi.
1102 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
1103   const TypeOopPtr *t_oop = at->isa_oopptr();
1104   assert(t_oop != nullptr && t_oop->is_known_instance(), "expecting instance oopptr");
1105 
1106   // Check if an appropriate node already exists.
1107   Node *region = in(0);
1108   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
1109     Node* use = region->fast_out(k);
1110     if( use->is_Phi()) {
1111       PhiNode *phi2 = use->as_Phi();
1112       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
1113         return phi2;
1114       }
1115     }
1116   }
1117   Compile *C = igvn->C;
1118   Node_Array node_map;
1119   Node_Stack stack(C->live_nodes() >> 4);
1120   PhiNode *nphi = slice_memory(at);
1121   igvn->register_new_node_with_optimizer( nphi );
1122   node_map.map(_idx, nphi);
1123   stack.push((Node *)this, 1);
1124   while(!stack.is_empty()) {
1125     PhiNode *ophi = stack.node()->as_Phi();
1126     uint i = stack.index();
1127     assert(i >= 1, "not control edge");
1128     stack.pop();
1129     nphi = node_map[ophi->_idx]->as_Phi();
1130     for (; i < ophi->req(); i++) {
1131       Node *in = ophi->in(i);
1132       if (in == nullptr || igvn->type(in) == Type::TOP)
1133         continue;
1134       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, nullptr, igvn);
1135       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : nullptr;
1136       if (optphi != nullptr && optphi->adr_type() == TypePtr::BOTTOM) {
1137         opt = node_map[optphi->_idx];
1138         if (opt == nullptr) {
1139           stack.push(ophi, i);
1140           nphi = optphi->slice_memory(at);
1141           igvn->register_new_node_with_optimizer( nphi );
1142           node_map.map(optphi->_idx, nphi);
1143           ophi = optphi;
1144           i = 0; // will get incremented at top of loop
1145           continue;
1146         }
1147       }
1148       nphi->set_req(i, opt);
1149     }
1150   }
1151   return nphi;
1152 }
1153 
1154 //------------------------verify_adr_type--------------------------------------
1155 #ifdef ASSERT
1156 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1157   if (visited.test_set(_idx))  return;  //already visited
1158 
1159   // recheck constructor invariants:
1160   verify_adr_type(false);
1161 
1162   // recheck local phi/phi consistency:
1163   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1164          "adr_type must be consistent across phi nest");
1165 
1166   // walk around
1167   for (uint i = 1; i < req(); i++) {
1168     Node* n = in(i);
1169     if (n == nullptr)  continue;
1170     const Node* np = in(i);
1171     if (np->is_Phi()) {
1172       np->as_Phi()->verify_adr_type(visited, at);
1173     } else if (n->bottom_type() == Type::TOP
1174                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1175       // ignore top inputs
1176     } else {
1177       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1178       // recheck phi/non-phi consistency at leaves:
1179       assert((nat != nullptr) == (at != nullptr), "");
1180       assert(nat == at || nat == TypePtr::BOTTOM,
1181              "adr_type must be consistent at leaves of phi nest");
1182     }
1183   }
1184 }
1185 
1186 // Verify a whole nest of phis rooted at this one.
1187 void PhiNode::verify_adr_type(bool recursive) const {
1188   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
1189   if (Node::in_dump())               return;  // muzzle asserts when printing
1190 
1191   assert((_type == Type::MEMORY) == (_adr_type != nullptr), "adr_type for memory phis only");
1192 
1193   if (!VerifyAliases)       return;  // verify thoroughly only if requested
1194 
1195   assert(_adr_type == flatten_phi_adr_type(_adr_type),
1196          "Phi::adr_type must be pre-normalized");
1197 
1198   if (recursive) {
1199     VectorSet visited;
1200     verify_adr_type(visited, _adr_type);
1201   }
1202 }
1203 #endif
1204 
1205 
1206 //------------------------------Value------------------------------------------
1207 // Compute the type of the PhiNode
1208 const Type* PhiNode::Value(PhaseGVN* phase) const {
1209   Node *r = in(0);              // RegionNode
1210   if( !r )                      // Copy or dead
1211     return in(1) ? phase->type(in(1)) : Type::TOP;
1212 
1213   // Note: During parsing, phis are often transformed before their regions.
1214   // This means we have to use type_or_null to defend against untyped regions.
1215   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
1216     return Type::TOP;
1217 
1218   // Check for trip-counted loop.  If so, be smarter.
1219   BaseCountedLoopNode* l = r->is_BaseCountedLoop() ? r->as_BaseCountedLoop() : nullptr;
1220   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1221     // protect against init_trip() or limit() returning null
1222     if (l->can_be_counted_loop(phase)) {
1223       const Node* init = l->init_trip();
1224       const Node* limit = l->limit();
1225       const Node* stride = l->stride();
1226       if (init != nullptr && limit != nullptr && stride != nullptr) {
1227         const TypeInteger* lo = phase->type(init)->isa_integer(l->bt());
1228         const TypeInteger* hi = phase->type(limit)->isa_integer(l->bt());
1229         const TypeInteger* stride_t = phase->type(stride)->isa_integer(l->bt());
1230         if (lo != nullptr && hi != nullptr && stride_t != nullptr) { // Dying loops might have TOP here
1231           assert(stride_t->is_con(), "bad stride type");
1232           BoolTest::mask bt = l->loopexit()->test_trip();
1233           // If the loop exit condition is "not equal", the condition
1234           // would not trigger if init > limit (if stride > 0) or if
1235           // init < limit if (stride > 0) so we can't deduce bounds
1236           // for the iv from the exit condition.
1237           if (bt != BoolTest::ne) {
1238             jlong stride_con = stride_t->get_con_as_long(l->bt());
1239             if (stride_con < 0) {          // Down-counter loop
1240               swap(lo, hi);
1241               jlong iv_range_lower_limit = lo->lo_as_long();
1242               // Prevent overflow when adding one below
1243               if (iv_range_lower_limit < max_signed_integer(l->bt())) {
1244                 // The loop exit condition is: iv + stride > limit (iv is this Phi). So the loop iterates until
1245                 // iv + stride <= limit
1246                 // We know that: limit >= lo->lo_as_long() and stride <= -1
1247                 // So when the loop exits, iv has to be at most lo->lo_as_long() + 1
1248                 iv_range_lower_limit += 1; // lo is after decrement
1249                 // Exact bounds for the phi can be computed when ABS(stride) greater than 1 if bounds are constant.
1250                 if (lo->is_con() && hi->is_con() && hi->lo_as_long() > lo->hi_as_long() && stride_con != -1) {
1251                   julong uhi = static_cast<julong>(hi->lo_as_long());
1252                   julong ulo = static_cast<julong>(lo->hi_as_long());
1253                   julong diff = ((uhi - ulo - 1) / (-stride_con)) * (-stride_con);
1254                   julong ufirst = hi->lo_as_long() - diff;
1255                   iv_range_lower_limit = reinterpret_cast<jlong &>(ufirst);
1256                   assert(iv_range_lower_limit >= lo->lo_as_long() + 1, "should end up with narrower range");
1257                 }
1258               }
1259               return TypeInteger::make(MIN2(iv_range_lower_limit, hi->lo_as_long()), hi->hi_as_long(), 3, l->bt())->filter_speculative(_type);
1260             } else if (stride_con >= 0) {
1261               jlong iv_range_upper_limit = hi->hi_as_long();
1262               // Prevent overflow when subtracting one below
1263               if (iv_range_upper_limit > min_signed_integer(l->bt())) {
1264                 // The loop exit condition is: iv + stride < limit (iv is this Phi). So the loop iterates until
1265                 // iv + stride >= limit
1266                 // We know that: limit <= hi->hi_as_long() and stride >= 1
1267                 // So when the loop exits, iv has to be at most hi->hi_as_long() - 1
1268                 iv_range_upper_limit -= 1;
1269                 // Exact bounds for the phi can be computed when ABS(stride) greater than 1 if bounds are constant.
1270                 if (lo->is_con() && hi->is_con() && hi->lo_as_long() > lo->hi_as_long() && stride_con != 1) {
1271                   julong uhi = static_cast<julong>(hi->lo_as_long());
1272                   julong ulo = static_cast<julong>(lo->hi_as_long());
1273                   julong diff = ((uhi - ulo - 1) / stride_con) * stride_con;
1274                   julong ulast = lo->hi_as_long() + diff;
1275                   iv_range_upper_limit = reinterpret_cast<jlong &>(ulast);
1276                   assert(iv_range_upper_limit <= hi->hi_as_long() - 1, "should end up with narrower range");
1277                 }
1278               }
1279               return TypeInteger::make(lo->lo_as_long(), MAX2(lo->hi_as_long(), iv_range_upper_limit), 3, l->bt())->filter_speculative(_type);
1280             }
1281           }
1282         }
1283       }
1284     } else if (l->in(LoopNode::LoopBackControl) != nullptr &&
1285                in(LoopNode::EntryControl) != nullptr &&
1286                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1287       // During CCP, if we saturate the type of a counted loop's Phi
1288       // before the special code for counted loop above has a chance
1289       // to run (that is as long as the type of the backedge's control
1290       // is top), we might end up with non monotonic types
1291       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1292     }
1293   }
1294 
1295   // Default case: merge all inputs
1296   const Type *t = Type::TOP;        // Merged type starting value
1297   for (uint i = 1; i < req(); ++i) {// For all paths in
1298     // Reachable control path?
1299     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1300       const Type* ti = phase->type(in(i));
1301       t = t->meet_speculative(ti);
1302     }
1303   }
1304 
1305   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1306   // That is, we expect that "t->higher_equal(_type)" holds true.
1307   // There are various exceptions:
1308   // - Inputs which are phis might in fact be widened unnecessarily.
1309   //   For example, an input might be a widened int while the phi is a short.
1310   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1311   //   and postCCP has removed the cast which encodes the result of the check.
1312   // - The type of this phi is an interface, and the inputs are classes.
1313   // - Value calls on inputs might produce fuzzy results.
1314   //   (Occurrences of this case suggest improvements to Value methods.)
1315   //
1316   // It is not possible to see Type::BOTTOM values as phi inputs,
1317   // because the ciTypeFlow pre-pass produces verifier-quality types.
1318   const Type* ft = t->filter_speculative(_type);  // Worst case type
1319 
1320 #ifdef ASSERT
1321   // The following logic has been moved into TypeOopPtr::filter.
1322   const Type* jt = t->join_speculative(_type);
1323   if (jt->empty()) {           // Emptied out???
1324     // Otherwise it's something stupid like non-overlapping int ranges
1325     // found on dying counted loops.
1326     assert(ft == Type::TOP, ""); // Canonical empty value
1327   }
1328 
1329   else {
1330 
1331     if (jt != ft && jt->base() == ft->base()) {
1332       if (jt->isa_int() &&
1333           jt->is_int()->_lo == ft->is_int()->_lo &&
1334           jt->is_int()->_hi == ft->is_int()->_hi)
1335         jt = ft;
1336       if (jt->isa_long() &&
1337           jt->is_long()->_lo == ft->is_long()->_lo &&
1338           jt->is_long()->_hi == ft->is_long()->_hi)
1339         jt = ft;
1340     }
1341     if (jt != ft) {
1342       tty->print("merge type:  "); t->dump(); tty->cr();
1343       tty->print("kill type:   "); _type->dump(); tty->cr();
1344       tty->print("join type:   "); jt->dump(); tty->cr();
1345       tty->print("filter type: "); ft->dump(); tty->cr();
1346     }
1347     assert(jt == ft, "");
1348   }
1349 #endif //ASSERT
1350 
1351   // Deal with conversion problems found in data loops.
1352   ft = phase->saturate_and_maybe_push_to_igvn_worklist(this, ft);
1353   return ft;
1354 }
1355 
1356 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1357 // index of the true path or 0 otherwise.
1358 int PhiNode::is_diamond_phi() const {
1359   Node* region = in(0);
1360   assert(region != nullptr && region->is_Region(), "phi must have region");
1361   if (!region->as_Region()->is_diamond()) {
1362     return 0;
1363   }
1364 
1365   if (region->in(1)->is_IfTrue()) {
1366     assert(region->in(2)->is_IfFalse(), "bad If");
1367     return 1;
1368   } else {
1369     // Flipped projections.
1370     assert(region->in(2)->is_IfTrue(), "bad If");
1371     return 2;
1372   }
1373 }
1374 
1375 // Do the following transformation if we find the corresponding graph shape, remove the involved memory phi and return
1376 // true. Otherwise, return false if the transformation cannot be applied.
1377 //
1378 //           If                                     If
1379 //          /  \                                   /  \
1380 //    IfFalse  IfTrue  /- Some Node          IfFalse  IfTrue
1381 //          \  /      /    /                       \  /        Some Node
1382 //         Region    / /-MergeMem     ===>        Region          |
1383 //          /   \---Phi                             |          MergeMem
1384 // [other phis]      \                        [other phis]        |
1385 //                   use                                         use
1386 bool PhiNode::try_clean_memory_phi(PhaseIterGVN* igvn) {
1387   if (_type != Type::MEMORY) {
1388     return false;
1389   }
1390   assert(is_diamond_phi() > 0, "sanity");
1391   assert(req() == 3, "same as region");
1392   const Node* region = in(0);
1393   for (uint i = 1; i < 3; i++) {
1394     Node* phi_input = in(i);
1395     if (phi_input != nullptr && phi_input->is_MergeMem() && region->in(i)->outcnt() == 1) {
1396       // Nothing is control-dependent on path #i except the region itself.
1397       MergeMemNode* merge_mem = phi_input->as_MergeMem();
1398       uint j = 3 - i;
1399       Node* other_phi_input = in(j);
1400       if (other_phi_input != nullptr && other_phi_input == merge_mem->base_memory()) {
1401         // merge_mem is a successor memory to other_phi_input, and is not pinned inside the diamond, so push it out.
1402         // This will allow the diamond to collapse completely if there are no other phis left.
1403         igvn->replace_node(this, merge_mem);
1404         return true;
1405       }
1406     }
1407   }
1408   return false;
1409 }
1410 //----------------------------check_cmove_id-----------------------------------
1411 // Check for CMove'ing a constant after comparing against the constant.
1412 // Happens all the time now, since if we compare equality vs a constant in
1413 // the parser, we "know" the variable is constant on one path and we force
1414 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1415 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1416 // general in that we don't need constants.  Since CMove's are only inserted
1417 // in very special circumstances, we do it here on generic Phi's.
1418 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1419   assert(true_path !=0, "only diamond shape graph expected");
1420 
1421   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1422   // phi->region->if_proj->ifnode->bool->cmp
1423   Node*     region = in(0);
1424   Node*     iff    = region->in(1)->in(0);
1425   BoolNode* b      = iff->in(1)->as_Bool();
1426   Node*     cmp    = b->in(1);
1427   Node*     tval   = in(true_path);
1428   Node*     fval   = in(3-true_path);
1429   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1430   if (id == nullptr)
1431     return nullptr;
1432 
1433   // Either value might be a cast that depends on a branch of 'iff'.
1434   // Since the 'id' value will float free of the diamond, either
1435   // decast or return failure.
1436   Node* ctl = id->in(0);
1437   if (ctl != nullptr && ctl->in(0) == iff) {
1438     if (id->is_ConstraintCast()) {
1439       return id->in(1);
1440     } else {
1441       // Don't know how to disentangle this value.
1442       return nullptr;
1443     }
1444   }
1445 
1446   return id;
1447 }
1448 
1449 //------------------------------Identity---------------------------------------
1450 // Check for Region being Identity.
1451 Node* PhiNode::Identity(PhaseGVN* phase) {
1452   if (must_wait_for_region_in_irreducible_loop(phase)) {
1453     return this;
1454   }
1455   // Check for no merging going on
1456   // (There used to be special-case code here when this->region->is_Loop.
1457   // It would check for a tributary phi on the backedge that the main phi
1458   // trivially, perhaps with a single cast.  The unique_input method
1459   // does all this and more, by reducing such tributaries to 'this'.)
1460   Node* uin = unique_input(phase, false);
1461   if (uin != nullptr) {
1462     return uin;
1463   }
1464 
1465   int true_path = is_diamond_phi();
1466   // Delay CMove'ing identity if Ideal has not had the chance to handle unsafe cases, yet.
1467   if (true_path != 0 && !(phase->is_IterGVN() && wait_for_region_igvn(phase))) {
1468     Node* id = is_cmove_id(phase, true_path);
1469     if (id != nullptr) {
1470       return id;
1471     }
1472   }
1473 
1474   // Looking for phis with identical inputs.  If we find one that has
1475   // type TypePtr::BOTTOM, replace the current phi with the bottom phi.
1476   if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() !=
1477       TypePtr::BOTTOM && !adr_type()->is_known_instance()) {
1478     uint phi_len = req();
1479     Node* phi_reg = region();
1480     for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) {
1481       Node* u = phi_reg->fast_out(i);
1482       if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY &&
1483           u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg &&
1484           u->req() == phi_len) {
1485         for (uint j = 1; j < phi_len; j++) {
1486           if (in(j) != u->in(j)) {
1487             u = nullptr;
1488             break;
1489           }
1490         }
1491         if (u != nullptr) {
1492           return u;
1493         }
1494       }
1495     }
1496   }
1497 
1498   return this;                     // No identity
1499 }
1500 
1501 //-----------------------------unique_input------------------------------------
1502 // Find the unique value, discounting top, self-loops, and casts.
1503 // Return top if there are no inputs, and self if there are multiple.
1504 Node* PhiNode::unique_input(PhaseValues* phase, bool uncast) {
1505   //  1) One unique direct input,
1506   // or if uncast is true:
1507   //  2) some of the inputs have an intervening ConstraintCast
1508   //  3) an input is a self loop
1509   //
1510   //  1) input   or   2) input     or   3) input __
1511   //     /   \           /   \               \  /  \
1512   //     \   /          |    cast             phi  cast
1513   //      phi            \   /               /  \  /
1514   //                      phi               /    --
1515 
1516   Node* r = in(0);                      // RegionNode
1517   Node* input = nullptr; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1518 
1519   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1520     Node* rc = r->in(i);
1521     if (rc == nullptr || phase->type(rc) == Type::TOP)
1522       continue;                 // ignore unreachable control path
1523     Node* n = in(i);
1524     if (n == nullptr)
1525       continue;
1526     Node* un = n;
1527     if (uncast) {
1528 #ifdef ASSERT
1529       Node* m = un->uncast();
1530 #endif
1531       while (un != nullptr && un->req() == 2 && un->is_ConstraintCast()) {
1532         Node* next = un->in(1);
1533         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1534           // risk exposing raw ptr at safepoint
1535           break;
1536         }
1537         un = next;
1538       }
1539       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1540     }
1541     if (un == nullptr || un == this || phase->type(un) == Type::TOP) {
1542       continue; // ignore if top, or in(i) and "this" are in a data cycle
1543     }
1544     // Check for a unique input (maybe uncasted)
1545     if (input == nullptr) {
1546       input = un;
1547     } else if (input != un) {
1548       input = NodeSentinel; // no unique input
1549     }
1550   }
1551   if (input == nullptr) {
1552     return phase->C->top();        // no inputs
1553   }
1554 
1555   if (input != NodeSentinel) {
1556     return input;           // one unique direct input
1557   }
1558 
1559   // Nothing.
1560   return nullptr;
1561 }
1562 
1563 //------------------------------is_x2logic-------------------------------------
1564 // Check for simple convert-to-boolean pattern
1565 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1566 // Convert Phi to an ConvIB.
1567 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1568   assert(true_path !=0, "only diamond shape graph expected");
1569 
1570   // If we're late in the optimization process, we may have already expanded Conv2B nodes
1571   if (phase->C->post_loop_opts_phase() && !Matcher::match_rule_supported(Op_Conv2B)) {
1572     return nullptr;
1573   }
1574 
1575   // Convert the true/false index into an expected 0/1 return.
1576   // Map 2->0 and 1->1.
1577   int flipped = 2-true_path;
1578 
1579   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1580   // phi->region->if_proj->ifnode->bool->cmp
1581   Node *region = phi->in(0);
1582   Node *iff = region->in(1)->in(0);
1583   BoolNode *b = (BoolNode*)iff->in(1);
1584   const CmpNode *cmp = (CmpNode*)b->in(1);
1585 
1586   Node *zero = phi->in(1);
1587   Node *one  = phi->in(2);
1588   const Type *tzero = phase->type( zero );
1589   const Type *tone  = phase->type( one  );
1590 
1591   // Check for compare vs 0
1592   const Type *tcmp = phase->type(cmp->in(2));
1593   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1594     // Allow cmp-vs-1 if the other input is bounded by 0-1
1595     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1596       return nullptr;
1597     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1598   }
1599 
1600   // Check for setting zero/one opposite expected
1601   if( tzero == TypeInt::ZERO ) {
1602     if( tone == TypeInt::ONE ) {
1603     } else return nullptr;
1604   } else if( tzero == TypeInt::ONE ) {
1605     if( tone == TypeInt::ZERO ) {
1606       flipped = 1-flipped;
1607     } else return nullptr;
1608   } else return nullptr;
1609 
1610   // Check for boolean test backwards
1611   if( b->_test._test == BoolTest::ne ) {
1612   } else if( b->_test._test == BoolTest::eq ) {
1613     flipped = 1-flipped;
1614   } else return nullptr;
1615 
1616   // Build int->bool conversion
1617   Node* n = new Conv2BNode(cmp->in(1));
1618   if (flipped) {
1619     n = new XorINode(phase->transform(n), phase->intcon(1));
1620   }
1621 
1622   return n;
1623 }
1624 
1625 //------------------------------is_cond_add------------------------------------
1626 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1627 // To be profitable the control flow has to disappear; there can be no other
1628 // values merging here.  We replace the test-and-branch with:
1629 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1630 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1631 // Then convert Y to 0-or-Y and finally add.
1632 // This is a key transform for SpecJava _201_compress.
1633 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1634   assert(true_path !=0, "only diamond shape graph expected");
1635 
1636   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1637   // phi->region->if_proj->ifnode->bool->cmp
1638   RegionNode *region = (RegionNode*)phi->in(0);
1639   Node *iff = region->in(1)->in(0);
1640   BoolNode* b = iff->in(1)->as_Bool();
1641   const CmpNode *cmp = (CmpNode*)b->in(1);
1642 
1643   // Make sure only merging this one phi here
1644   if (region->has_unique_phi() != phi)  return nullptr;
1645 
1646   // Make sure each arm of the diamond has exactly one output, which we assume
1647   // is the region.  Otherwise, the control flow won't disappear.
1648   if (region->in(1)->outcnt() != 1) return nullptr;
1649   if (region->in(2)->outcnt() != 1) return nullptr;
1650 
1651   // Check for "(P < Q)" of type signed int
1652   if (b->_test._test != BoolTest::lt)  return nullptr;
1653   if (cmp->Opcode() != Op_CmpI)        return nullptr;
1654 
1655   Node *p = cmp->in(1);
1656   Node *q = cmp->in(2);
1657   Node *n1 = phi->in(  true_path);
1658   Node *n2 = phi->in(3-true_path);
1659 
1660   int op = n1->Opcode();
1661   if( op != Op_AddI           // Need zero as additive identity
1662       /*&&op != Op_SubI &&
1663       op != Op_AddP &&
1664       op != Op_XorI &&
1665       op != Op_OrI*/ )
1666     return nullptr;
1667 
1668   Node *x = n2;
1669   Node *y = nullptr;
1670   if( x == n1->in(1) ) {
1671     y = n1->in(2);
1672   } else if( x == n1->in(2) ) {
1673     y = n1->in(1);
1674   } else return nullptr;
1675 
1676   // Not so profitable if compare and add are constants
1677   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1678     return nullptr;
1679 
1680   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1681   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1682   return new AddINode(j_and,x);
1683 }
1684 
1685 //------------------------------is_absolute------------------------------------
1686 // Check for absolute value.
1687 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1688   assert(true_path !=0, "only diamond shape graph expected");
1689 
1690   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1691   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1692 
1693   // ABS ends with the merge of 2 control flow paths.
1694   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1695   int false_path = 3 - true_path;
1696 
1697   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1698   // phi->region->if_proj->ifnode->bool->cmp
1699   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1700   Node *cmp = bol->in(1);
1701 
1702   // Check bool sense
1703   if (cmp->Opcode() == Op_CmpF || cmp->Opcode() == Op_CmpD) {
1704     switch (bol->_test._test) {
1705     case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1706     case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1707     case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1708     case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1709     default:           return nullptr;                           break;
1710     }
1711   } else if (cmp->Opcode() == Op_CmpI || cmp->Opcode() == Op_CmpL) {
1712     switch (bol->_test._test) {
1713     case BoolTest::lt:
1714     case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1715     case BoolTest::gt:
1716     case BoolTest::ge: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1717     default:           return nullptr;                           break;
1718     }
1719   }
1720 
1721   // Test is next
1722   const Type *tzero = nullptr;
1723   switch (cmp->Opcode()) {
1724   case Op_CmpI:    tzero = TypeInt::ZERO; break;  // Integer ABS
1725   case Op_CmpL:    tzero = TypeLong::ZERO; break; // Long ABS
1726   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1727   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1728   default: return nullptr;
1729   }
1730 
1731   // Find zero input of compare; the other input is being abs'd
1732   Node *x = nullptr;
1733   bool flip = false;
1734   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1735     x = cmp->in(3 - cmp_zero_idx);
1736   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1737     // The test is inverted, we should invert the result...
1738     x = cmp->in(cmp_zero_idx);
1739     flip = true;
1740   } else {
1741     return nullptr;
1742   }
1743 
1744   // Next get the 2 pieces being selected, one is the original value
1745   // and the other is the negated value.
1746   if( phi_root->in(phi_x_idx) != x ) return nullptr;
1747 
1748   // Check other phi input for subtract node
1749   Node *sub = phi_root->in(3 - phi_x_idx);
1750 
1751   bool is_sub = sub->Opcode() == Op_SubF || sub->Opcode() == Op_SubD ||
1752                 sub->Opcode() == Op_SubI || sub->Opcode() == Op_SubL;
1753 
1754   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1755   if (!is_sub || phase->type(sub->in(1)) != tzero || sub->in(2) != x) return nullptr;
1756 
1757   if (tzero == TypeF::ZERO) {
1758     x = new AbsFNode(x);
1759     if (flip) {
1760       x = new SubFNode(sub->in(1), phase->transform(x));
1761     }
1762   } else if (tzero == TypeD::ZERO) {
1763     x = new AbsDNode(x);
1764     if (flip) {
1765       x = new SubDNode(sub->in(1), phase->transform(x));
1766     }
1767   } else if (tzero == TypeInt::ZERO && Matcher::match_rule_supported(Op_AbsI)) {
1768     x = new AbsINode(x);
1769     if (flip) {
1770       x = new SubINode(sub->in(1), phase->transform(x));
1771     }
1772   } else if (tzero == TypeLong::ZERO && Matcher::match_rule_supported(Op_AbsL)) {
1773     x = new AbsLNode(x);
1774     if (flip) {
1775       x = new SubLNode(sub->in(1), phase->transform(x));
1776     }
1777   } else return nullptr;
1778 
1779   return x;
1780 }
1781 
1782 //------------------------------split_once-------------------------------------
1783 // Helper for split_flow_path
1784 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1785   igvn->hash_delete(n);         // Remove from hash before hacking edges
1786 
1787   uint j = 1;
1788   for (uint i = phi->req()-1; i > 0; i--) {
1789     if (phi->in(i) == val) {   // Found a path with val?
1790       // Add to NEW Region/Phi, no DU info
1791       newn->set_req( j++, n->in(i) );
1792       // Remove from OLD Region/Phi
1793       n->del_req(i);
1794     }
1795   }
1796 
1797   // Register the new node but do not transform it.  Cannot transform until the
1798   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1799   igvn->register_new_node_with_optimizer( newn );
1800 
1801   // Now I can point to the new node.
1802   n->add_req(newn);
1803   igvn->_worklist.push(n);
1804 }
1805 
1806 //------------------------------split_flow_path--------------------------------
1807 // Check for merging identical values and split flow paths
1808 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1809   // This optimization tries to find two or more inputs of phi with the same constant value
1810   // It then splits them into a separate Phi, and according Region. If this is a loop-entry,
1811   // and the loop entry has multiple fall-in edges, and some of those fall-in edges have that
1812   // constant, and others not, we may split the fall-in edges into separate Phi's, and create
1813   // an irreducible loop. For reducible loops, this never seems to happen, as the multiple
1814   // fall-in edges are already merged before the loop head during parsing. But with irreducible
1815   // loops present the order or merging during parsing can sometimes prevent this.
1816   if (phase->C->has_irreducible_loop()) {
1817     // Avoid this optimization if any irreducible loops are present. Else we may create
1818     // an irreducible loop that we do not detect.
1819     return nullptr;
1820   }
1821   BasicType bt = phi->type()->basic_type();
1822   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1823     return nullptr;             // Bail out on funny non-value stuff
1824   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1825     return nullptr;             // third unequal input to be worth doing
1826 
1827   // Scan for a constant
1828   uint i;
1829   for( i = 1; i < phi->req()-1; i++ ) {
1830     Node *n = phi->in(i);
1831     if( !n ) return nullptr;
1832     if( phase->type(n) == Type::TOP ) return nullptr;
1833     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1834       break;
1835   }
1836   if( i >= phi->req() )         // Only split for constants
1837     return nullptr;
1838 
1839   Node *val = phi->in(i);       // Constant to split for
1840   uint hit = 0;                 // Number of times it occurs
1841   Node *r = phi->region();
1842 
1843   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1844     Node *n = phi->in(i);
1845     if( !n ) return nullptr;
1846     if( phase->type(n) == Type::TOP ) return nullptr;
1847     if( phi->in(i) == val ) {
1848       hit++;
1849       if (Node::may_be_loop_entry(r->in(i))) {
1850         return nullptr; // don't split loop entry path
1851       }
1852     }
1853   }
1854 
1855   if( hit <= 1 ||               // Make sure we find 2 or more
1856       hit == phi->req()-1 )     // and not ALL the same value
1857     return nullptr;
1858 
1859   // Now start splitting out the flow paths that merge the same value.
1860   // Split first the RegionNode.
1861   PhaseIterGVN *igvn = phase->is_IterGVN();
1862   RegionNode *newr = new RegionNode(hit+1);
1863   split_once(igvn, phi, val, r, newr);
1864 
1865   // Now split all other Phis than this one
1866   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1867     Node* phi2 = r->fast_out(k);
1868     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1869       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1870       split_once(igvn, phi, val, phi2, newphi);
1871     }
1872   }
1873 
1874   // Clean up this guy
1875   igvn->hash_delete(phi);
1876   for( i = phi->req()-1; i > 0; i-- ) {
1877     if( phi->in(i) == val ) {
1878       phi->del_req(i);
1879     }
1880   }
1881   phi->add_req(val);
1882 
1883   return phi;
1884 }
1885 
1886 // Returns the BasicType of a given convert node and a type, with special handling to ensure that conversions to
1887 // and from half float will return the SHORT basic type, as that wouldn't be returned typically from TypeInt.
1888 static BasicType get_convert_type(Node* convert, const Type* type) {
1889   int convert_op = convert->Opcode();
1890   if (type->isa_int() && (convert_op == Op_ConvHF2F || convert_op == Op_ConvF2HF)) {
1891     return T_SHORT;
1892   }
1893 
1894   return type->basic_type();
1895 }
1896 
1897 //=============================================================================
1898 //------------------------------simple_data_loop_check-------------------------
1899 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1900 //  Returns:
1901 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1902 // Safe       - safe case when the phi and it's inputs reference only safe data
1903 //              nodes;
1904 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1905 //              is no reference back to the phi - need a graph walk
1906 //              to determine if it is in a loop;
1907 // UnsafeLoop - unsafe case when the phi references itself directly or through
1908 //              unsafe data node.
1909 //  Note: a safe data node is a node which could/never reference itself during
1910 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1911 //  I mark Phi nodes as safe node not only because they can reference itself
1912 //  but also to prevent mistaking the fallthrough case inside an outer loop
1913 //  as dead loop when the phi references itself through an other phi.
1914 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1915   // It is unsafe loop if the phi node references itself directly.
1916   if (in == (Node*)this)
1917     return UnsafeLoop; // Unsafe loop
1918   // Unsafe loop if the phi node references itself through an unsafe data node.
1919   // Exclude cases with null inputs or data nodes which could reference
1920   // itself (safe for dead loops).
1921   if (in != nullptr && !in->is_dead_loop_safe()) {
1922     // Check inputs of phi's inputs also.
1923     // It is much less expensive then full graph walk.
1924     uint cnt = in->req();
1925     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1926     for (; i < cnt; ++i) {
1927       Node* m = in->in(i);
1928       if (m == (Node*)this)
1929         return UnsafeLoop; // Unsafe loop
1930       if (m != nullptr && !m->is_dead_loop_safe()) {
1931         // Check the most common case (about 30% of all cases):
1932         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1933         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : nullptr;
1934         if (m1 == (Node*)this)
1935           return UnsafeLoop; // Unsafe loop
1936         if (m1 != nullptr && m1 == m->in(2) &&
1937             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1938           continue; // Safe case
1939         }
1940         // The phi references an unsafe node - need full analysis.
1941         return Unsafe;
1942       }
1943     }
1944   }
1945   return Safe; // Safe case - we can optimize the phi node.
1946 }
1947 
1948 //------------------------------is_unsafe_data_reference-----------------------
1949 // If phi can be reached through the data input - it is data loop.
1950 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1951   assert(req() > 1, "");
1952   // First, check simple cases when phi references itself directly or
1953   // through an other node.
1954   LoopSafety safety = simple_data_loop_check(in);
1955   if (safety == UnsafeLoop)
1956     return true;  // phi references itself - unsafe loop
1957   else if (safety == Safe)
1958     return false; // Safe case - phi could be replaced with the unique input.
1959 
1960   // Unsafe case when we should go through data graph to determine
1961   // if the phi references itself.
1962 
1963   ResourceMark rm;
1964 
1965   Node_List nstack;
1966   VectorSet visited;
1967 
1968   nstack.push(in); // Start with unique input.
1969   visited.set(in->_idx);
1970   while (nstack.size() != 0) {
1971     Node* n = nstack.pop();
1972     uint cnt = n->req();
1973     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1974     for (; i < cnt; i++) {
1975       Node* m = n->in(i);
1976       if (m == (Node*)this) {
1977         return true;    // Data loop
1978       }
1979       if (m != nullptr && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1980         if (!visited.test_set(m->_idx))
1981           nstack.push(m);
1982       }
1983     }
1984   }
1985   return false; // The phi is not reachable from its inputs
1986 }
1987 
1988 // Is this Phi's region or some inputs to the region enqueued for IGVN
1989 // and so could cause the region to be optimized out?
1990 bool PhiNode::wait_for_region_igvn(PhaseGVN* phase) {
1991   PhaseIterGVN* igvn = phase->is_IterGVN();
1992   Unique_Node_List& worklist = igvn->_worklist;
1993   bool delay = false;
1994   Node* r = in(0);
1995   for (uint j = 1; j < req(); j++) {
1996     Node* rc = r->in(j);
1997     Node* n = in(j);
1998 
1999     if (rc == nullptr || !rc->is_Proj()) { continue; }
2000     if (worklist.member(rc)) {
2001       delay = true;
2002       break;
2003     }
2004 
2005     if (rc->in(0) == nullptr || !rc->in(0)->is_If()) { continue; }
2006     if (worklist.member(rc->in(0))) {
2007       delay = true;
2008       break;
2009     }
2010 
2011     if (rc->in(0)->in(1) == nullptr || !rc->in(0)->in(1)->is_Bool()) { continue; }
2012     if (worklist.member(rc->in(0)->in(1))) {
2013       delay = true;
2014       break;
2015     }
2016 
2017     if (rc->in(0)->in(1)->in(1) == nullptr || !rc->in(0)->in(1)->in(1)->is_Cmp()) { continue; }
2018     if (worklist.member(rc->in(0)->in(1)->in(1))) {
2019       delay = true;
2020       break;
2021     }
2022   }
2023 
2024   if (delay) {
2025     worklist.push(this);
2026   }
2027   return delay;
2028 }
2029 
2030 // If the Phi's Region is in an irreducible loop, and the Region
2031 // has had an input removed, but not yet transformed, it could be
2032 // that the Region (and this Phi) are not reachable from Root.
2033 // If we allow the Phi to collapse before the Region, this may lead
2034 // to dead-loop data. Wait for the Region to check for reachability,
2035 // and potentially remove the dead code.
2036 bool PhiNode::must_wait_for_region_in_irreducible_loop(PhaseGVN* phase) const {
2037   RegionNode* region = in(0)->as_Region();
2038   if (region->loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry) {
2039     Node* top = phase->C->top();
2040     for (uint j = 1; j < req(); j++) {
2041       Node* rc = region->in(j); // for each control input
2042       if (rc == nullptr || phase->type(rc) == Type::TOP) {
2043         // Region is missing a control input
2044         Node* n = in(j);
2045         if (n != nullptr && n != top) {
2046           // Phi still has its input, so region just lost its input
2047           return true;
2048         }
2049       }
2050     }
2051   }
2052   return false;
2053 }
2054 
2055 //------------------------------Ideal------------------------------------------
2056 // Return a node which is more "ideal" than the current node.  Must preserve
2057 // the CFG, but we can still strip out dead paths.
2058 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2059   Node *r = in(0);              // RegionNode
2060   assert(r != nullptr && r->is_Region(), "this phi must have a region");
2061   assert(r->in(0) == nullptr || !r->in(0)->is_Root(), "not a specially hidden merge");
2062 
2063   // Note: During parsing, phis are often transformed before their regions.
2064   // This means we have to use type_or_null to defend against untyped regions.
2065   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
2066     return nullptr;                // No change
2067 
2068   Node *top = phase->C->top();
2069   bool new_phi = (outcnt() == 0); // transforming new Phi
2070   // No change for igvn if new phi is not hooked
2071   if (new_phi && can_reshape)
2072     return nullptr;
2073 
2074   if (must_wait_for_region_in_irreducible_loop(phase)) {
2075     return nullptr;
2076   }
2077 
2078   // The are 2 situations when only one valid phi's input is left
2079   // (in addition to Region input).
2080   // One: region is not loop - replace phi with this input.
2081   // Two: region is loop - replace phi with top since this data path is dead
2082   //                       and we need to break the dead data loop.
2083   Node* progress = nullptr;        // Record if any progress made
2084   for( uint j = 1; j < req(); ++j ){ // For all paths in
2085     // Check unreachable control paths
2086     Node* rc = r->in(j);
2087     Node* n = in(j);            // Get the input
2088     if (rc == nullptr || phase->type(rc) == Type::TOP) {
2089       if (n != top) {           // Not already top?
2090         PhaseIterGVN *igvn = phase->is_IterGVN();
2091         if (can_reshape && igvn != nullptr) {
2092           igvn->_worklist.push(r);
2093         }
2094         // Nuke it down
2095         set_req_X(j, top, phase);
2096         progress = this;        // Record progress
2097       }
2098     }
2099   }
2100 
2101   if (can_reshape && outcnt() == 0) {
2102     // set_req() above may kill outputs if Phi is referenced
2103     // only by itself on the dead (top) control path.
2104     return top;
2105   }
2106 
2107   bool uncasted = false;
2108   Node* uin = unique_input(phase, false);
2109   if (uin == nullptr && can_reshape &&
2110       // If there is a chance that the region can be optimized out do
2111       // not add a cast node that we can't remove yet.
2112       !wait_for_region_igvn(phase)) {
2113     uncasted = true;
2114     uin = unique_input(phase, true);
2115   }
2116   if (uin == top) {             // Simplest case: no alive inputs.
2117     if (can_reshape)            // IGVN transformation
2118       return top;
2119     else
2120       return nullptr;              // Identity will return TOP
2121   } else if (uin != nullptr) {
2122     // Only one not-null unique input path is left.
2123     // Determine if this input is backedge of a loop.
2124     // (Skip new phis which have no uses and dead regions).
2125     if (outcnt() > 0 && r->in(0) != nullptr) {
2126       if (is_data_loop(r->as_Region(), uin, phase)) {
2127         // Break this data loop to avoid creation of a dead loop.
2128         if (can_reshape) {
2129           return top;
2130         } else {
2131           // We can't return top if we are in Parse phase - cut inputs only
2132           // let Identity to handle the case.
2133           replace_edge(uin, top, phase);
2134           return nullptr;
2135         }
2136       }
2137     }
2138 
2139     if (uncasted) {
2140       // Add cast nodes between the phi to be removed and its unique input.
2141       // Wait until after parsing for the type information to propagate from the casts.
2142       assert(can_reshape, "Invalid during parsing");
2143       const Type* phi_type = bottom_type();
2144       // Add casts to carry the control dependency of the Phi that is
2145       // going away
2146       Node* cast = nullptr;
2147       const TypeTuple* extra_types = collect_types(phase);
2148       if (phi_type->isa_ptr()) {
2149         const Type* uin_type = phase->type(uin);
2150         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
2151           cast = new CastPPNode(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types);
2152         } else {
2153           // Use a CastPP for a cast to not null and a CheckCastPP for
2154           // a cast to a new klass (and both if both null-ness and
2155           // klass change).
2156 
2157           // If the type of phi is not null but the type of uin may be
2158           // null, uin's type must be casted to not null
2159           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
2160               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
2161             cast = new CastPPNode(r, uin, TypePtr::NOTNULL, ConstraintCastNode::StrongDependency, extra_types);
2162           }
2163 
2164           // If the type of phi and uin, both casted to not null,
2165           // differ the klass of uin must be (check)cast'ed to match
2166           // that of phi
2167           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
2168             Node* n = uin;
2169             if (cast != nullptr) {
2170               cast = phase->transform(cast);
2171               n = cast;
2172             }
2173             cast = new CheckCastPPNode(r, n, phi_type, ConstraintCastNode::StrongDependency, extra_types);
2174           }
2175           if (cast == nullptr) {
2176             cast = new CastPPNode(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types);
2177           }
2178         }
2179       } else {
2180         cast = ConstraintCastNode::make_cast_for_type(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types);
2181       }
2182       assert(cast != nullptr, "cast should be set");
2183       cast = phase->transform(cast);
2184       // set all inputs to the new cast(s) so the Phi is removed by Identity
2185       PhaseIterGVN* igvn = phase->is_IterGVN();
2186       for (uint i = 1; i < req(); i++) {
2187         set_req_X(i, cast, igvn);
2188       }
2189       uin = cast;
2190     }
2191 
2192     // One unique input.
2193     debug_only(Node* ident = Identity(phase));
2194     // The unique input must eventually be detected by the Identity call.
2195 #ifdef ASSERT
2196     if (ident != uin && !ident->is_top() && !must_wait_for_region_in_irreducible_loop(phase)) {
2197       // print this output before failing assert
2198       r->dump(3);
2199       this->dump(3);
2200       ident->dump();
2201       uin->dump();
2202     }
2203 #endif
2204     // Identity may not return the expected uin, if it has to wait for the region, in irreducible case
2205     assert(ident == uin || ident->is_top() || must_wait_for_region_in_irreducible_loop(phase), "Identity must clean this up");
2206     return nullptr;
2207   }
2208 
2209   Node* opt = nullptr;
2210   int true_path = is_diamond_phi();
2211   if (true_path != 0 &&
2212       // If one of the diamond's branch is in the process of dying then, the Phi's input for that branch might transform
2213       // to top. If that happens replacing the Phi with an operation that consumes the Phi's inputs will cause the Phi
2214       // to be replaced by top. To prevent that, delay the transformation until the branch has a chance to be removed.
2215       !(can_reshape && wait_for_region_igvn(phase))) {
2216     // Check for CMove'ing identity. If it would be unsafe,
2217     // handle it here. In the safe case, let Identity handle it.
2218     Node* unsafe_id = is_cmove_id(phase, true_path);
2219     if( unsafe_id != nullptr && is_unsafe_data_reference(unsafe_id) )
2220       opt = unsafe_id;
2221 
2222     // Check for simple convert-to-boolean pattern
2223     if( opt == nullptr )
2224       opt = is_x2logic(phase, this, true_path);
2225 
2226     // Check for absolute value
2227     if( opt == nullptr )
2228       opt = is_absolute(phase, this, true_path);
2229 
2230     // Check for conditional add
2231     if( opt == nullptr && can_reshape )
2232       opt = is_cond_add(phase, this, true_path);
2233 
2234     // These 4 optimizations could subsume the phi:
2235     // have to check for a dead data loop creation.
2236     if( opt != nullptr ) {
2237       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
2238         // Found dead loop.
2239         if( can_reshape )
2240           return top;
2241         // We can't return top if we are in Parse phase - cut inputs only
2242         // to stop further optimizations for this phi. Identity will return TOP.
2243         assert(req() == 3, "only diamond merge phi here");
2244         set_req(1, top);
2245         set_req(2, top);
2246         return nullptr;
2247       } else {
2248         return opt;
2249       }
2250     }
2251   }
2252 
2253   // Check for merging identical values and split flow paths
2254   if (can_reshape) {
2255     opt = split_flow_path(phase, this);
2256     // This optimization only modifies phi - don't need to check for dead loop.
2257     assert(opt == nullptr || opt == this, "do not elide phi");
2258     if (opt != nullptr)  return opt;
2259   }
2260 
2261   if (in(1) != nullptr && in(1)->Opcode() == Op_AddP && can_reshape) {
2262     // Try to undo Phi of AddP:
2263     // (Phi (AddP base address offset) (AddP base2 address2 offset2))
2264     // becomes:
2265     // newbase := (Phi base base2)
2266     // newaddress := (Phi address address2)
2267     // newoffset := (Phi offset offset2)
2268     // (AddP newbase newaddress newoffset)
2269     //
2270     // This occurs as a result of unsuccessful split_thru_phi and
2271     // interferes with taking advantage of addressing modes. See the
2272     // clone_shift_expressions code in matcher.cpp
2273     Node* addp = in(1);
2274     Node* base = addp->in(AddPNode::Base);
2275     Node* address = addp->in(AddPNode::Address);
2276     Node* offset = addp->in(AddPNode::Offset);
2277     if (base != nullptr && address != nullptr && offset != nullptr &&
2278         !base->is_top() && !address->is_top() && !offset->is_top()) {
2279       const Type* base_type = base->bottom_type();
2280       const Type* address_type = address->bottom_type();
2281       // make sure that all the inputs are similar to the first one,
2282       // i.e. AddP with base == address and same offset as first AddP
2283       bool doit = true;
2284       for (uint i = 2; i < req(); i++) {
2285         if (in(i) == nullptr ||
2286             in(i)->Opcode() != Op_AddP ||
2287             in(i)->in(AddPNode::Base) == nullptr ||
2288             in(i)->in(AddPNode::Address) == nullptr ||
2289             in(i)->in(AddPNode::Offset) == nullptr ||
2290             in(i)->in(AddPNode::Base)->is_top() ||
2291             in(i)->in(AddPNode::Address)->is_top() ||
2292             in(i)->in(AddPNode::Offset)->is_top()) {
2293           doit = false;
2294           break;
2295         }
2296         if (in(i)->in(AddPNode::Base) != base) {
2297           base = nullptr;
2298         }
2299         if (in(i)->in(AddPNode::Offset) != offset) {
2300           offset = nullptr;
2301         }
2302         if (in(i)->in(AddPNode::Address) != address) {
2303           address = nullptr;
2304         }
2305         // Accumulate type for resulting Phi
2306         base_type = base_type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2307         address_type = address_type->meet_speculative(in(i)->in(AddPNode::Address)->bottom_type());
2308       }
2309       if (doit && base == nullptr) {
2310         // Check for neighboring AddP nodes in a tree.
2311         // If they have a base, use that it.
2312         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2313           Node* u = this->fast_out(k);
2314           if (u->is_AddP()) {
2315             Node* base2 = u->in(AddPNode::Base);
2316             if (base2 != nullptr && !base2->is_top()) {
2317               if (base == nullptr)
2318                 base = base2;
2319               else if (base != base2)
2320                 { doit = false; break; }
2321             }
2322           }
2323         }
2324       }
2325       if (doit) {
2326         if (base == nullptr) {
2327           base = new PhiNode(in(0), base_type, nullptr);
2328           for (uint i = 1; i < req(); i++) {
2329             base->init_req(i, in(i)->in(AddPNode::Base));
2330           }
2331           phase->is_IterGVN()->register_new_node_with_optimizer(base);
2332         }
2333         if (address == nullptr) {
2334           address = new PhiNode(in(0), address_type, nullptr);
2335           for (uint i = 1; i < req(); i++) {
2336             address->init_req(i, in(i)->in(AddPNode::Address));
2337           }
2338           phase->is_IterGVN()->register_new_node_with_optimizer(address);
2339         }
2340         if (offset == nullptr) {
2341           offset = new PhiNode(in(0), TypeX_X, nullptr);
2342           for (uint i = 1; i < req(); i++) {
2343             offset->init_req(i, in(i)->in(AddPNode::Offset));
2344           }
2345           phase->is_IterGVN()->register_new_node_with_optimizer(offset);
2346         }
2347         return new AddPNode(base, address, offset);
2348       }
2349     }
2350   }
2351 
2352   // Split phis through memory merges, so that the memory merges will go away.
2353   // Piggy-back this transformation on the search for a unique input....
2354   // It will be as if the merged memory is the unique value of the phi.
2355   // (Do not attempt this optimization unless parsing is complete.
2356   // It would make the parser's memory-merge logic sick.)
2357   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2358   if (progress == nullptr && can_reshape && type() == Type::MEMORY) {
2359     // see if this phi should be sliced
2360     uint merge_width = 0;
2361     bool saw_self = false;
2362     for( uint i=1; i<req(); ++i ) {// For all paths in
2363       Node *ii = in(i);
2364       // TOP inputs should not be counted as safe inputs because if the
2365       // Phi references itself through all other inputs then splitting the
2366       // Phi through memory merges would create dead loop at later stage.
2367       if (ii == top) {
2368         return nullptr; // Delay optimization until graph is cleaned.
2369       }
2370       if (ii->is_MergeMem()) {
2371         MergeMemNode* n = ii->as_MergeMem();
2372         merge_width = MAX2(merge_width, n->req());
2373         saw_self = saw_self || (n->base_memory() == this);
2374       }
2375     }
2376 
2377     // This restriction is temporarily necessary to ensure termination:
2378     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
2379 
2380     if (merge_width > Compile::AliasIdxRaw) {
2381       // found at least one non-empty MergeMem
2382       const TypePtr* at = adr_type();
2383       if (at != TypePtr::BOTTOM) {
2384         // Patch the existing phi to select an input from the merge:
2385         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2386         //     Phi:AT1(...m1...)
2387         int alias_idx = phase->C->get_alias_index(at);
2388         for (uint i=1; i<req(); ++i) {
2389           Node *ii = in(i);
2390           if (ii->is_MergeMem()) {
2391             MergeMemNode* n = ii->as_MergeMem();
2392             // compress paths and change unreachable cycles to TOP
2393             // If not, we can update the input infinitely along a MergeMem cycle
2394             // Equivalent code is in MemNode::Ideal_common
2395             Node *m  = phase->transform(n);
2396             if (outcnt() == 0) {  // Above transform() may kill us!
2397               return top;
2398             }
2399             // If transformed to a MergeMem, get the desired slice
2400             // Otherwise the returned node represents memory for every slice
2401             Node *new_mem = (m->is_MergeMem()) ?
2402                              m->as_MergeMem()->memory_at(alias_idx) : m;
2403             // Update input if it is progress over what we have now
2404             if (new_mem != ii) {
2405               set_req_X(i, new_mem, phase->is_IterGVN());
2406               progress = this;
2407             }
2408           }
2409         }
2410       } else {
2411         // We know that at least one MergeMem->base_memory() == this
2412         // (saw_self == true). If all other inputs also references this phi
2413         // (directly or through data nodes) - it is a dead loop.
2414         bool saw_safe_input = false;
2415         for (uint j = 1; j < req(); ++j) {
2416           Node* n = in(j);
2417           if (n->is_MergeMem()) {
2418             MergeMemNode* mm = n->as_MergeMem();
2419             if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) {
2420               // Skip this input if it references back to this phi or if the memory path is dead
2421               continue;
2422             }
2423           }
2424           if (!is_unsafe_data_reference(n)) {
2425             saw_safe_input = true; // found safe input
2426             break;
2427           }
2428         }
2429         if (!saw_safe_input) {
2430           // There is a dead loop: All inputs are either dead or reference back to this phi
2431           return top;
2432         }
2433 
2434         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2435         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2436         PhaseIterGVN* igvn = phase->is_IterGVN();
2437         assert(igvn != nullptr, "sanity check");
2438         Node* hook = new Node(1);
2439         PhiNode* new_base = (PhiNode*) clone();
2440         // Must eagerly register phis, since they participate in loops.
2441         igvn->register_new_node_with_optimizer(new_base);
2442         hook->add_req(new_base);
2443 
2444         MergeMemNode* result = MergeMemNode::make(new_base);
2445         for (uint i = 1; i < req(); ++i) {
2446           Node *ii = in(i);
2447           if (ii->is_MergeMem()) {
2448             MergeMemNode* n = ii->as_MergeMem();
2449             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2450               // If we have not seen this slice yet, make a phi for it.
2451               bool made_new_phi = false;
2452               if (mms.is_empty()) {
2453                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2454                 made_new_phi = true;
2455                 igvn->register_new_node_with_optimizer(new_phi);
2456                 hook->add_req(new_phi);
2457                 mms.set_memory(new_phi);
2458               }
2459               Node* phi = mms.memory();
2460               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2461               phi->set_req(i, mms.memory2());
2462             }
2463           }
2464         }
2465         // Distribute all self-loops.
2466         { // (Extra braces to hide mms.)
2467           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2468             Node* phi = mms.memory();
2469             for (uint i = 1; i < req(); ++i) {
2470               if (phi->in(i) == this)  phi->set_req(i, phi);
2471             }
2472           }
2473         }
2474         // Already replace this phi node to cut it off from the graph to not interfere in dead loop checks during the
2475         // transformations of the new phi nodes below. Otherwise, we could wrongly conclude that there is no dead loop
2476         // because we are finding this phi node again. Also set the type of the new MergeMem node in case we are also
2477         // visiting it in the transformations below.
2478         igvn->replace_node(this, result);
2479         igvn->set_type(result, result->bottom_type());
2480 
2481         // now transform the new nodes, and return the mergemem
2482         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2483           Node* phi = mms.memory();
2484           mms.set_memory(phase->transform(phi));
2485         }
2486         hook->destruct(igvn);
2487         // Replace self with the result.
2488         return result;
2489       }
2490     }
2491     //
2492     // Other optimizations on the memory chain
2493     //
2494     const TypePtr* at = adr_type();
2495     for( uint i=1; i<req(); ++i ) {// For all paths in
2496       Node *ii = in(i);
2497       Node *new_in = MemNode::optimize_memory_chain(ii, at, nullptr, phase);
2498       if (ii != new_in ) {
2499         set_req(i, new_in);
2500         progress = this;
2501       }
2502     }
2503   }
2504 
2505 #ifdef _LP64
2506   // Push DecodeN/DecodeNKlass down through phi.
2507   // The rest of phi graph will transform by split EncodeP node though phis up.
2508   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == nullptr) {
2509     bool may_push = true;
2510     bool has_decodeN = false;
2511     bool is_decodeN = false;
2512     for (uint i=1; i<req(); ++i) {// For all paths in
2513       Node *ii = in(i);
2514       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2515         // Do optimization if a non dead path exist.
2516         if (ii->in(1)->bottom_type() != Type::TOP) {
2517           has_decodeN = true;
2518           is_decodeN = ii->is_DecodeN();
2519         }
2520       } else if (!ii->is_Phi()) {
2521         may_push = false;
2522       }
2523     }
2524 
2525     if (has_decodeN && may_push) {
2526       PhaseIterGVN *igvn = phase->is_IterGVN();
2527       // Make narrow type for new phi.
2528       const Type* narrow_t;
2529       if (is_decodeN) {
2530         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2531       } else {
2532         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2533       }
2534       PhiNode* new_phi = new PhiNode(r, narrow_t);
2535       uint orig_cnt = req();
2536       for (uint i=1; i<req(); ++i) {// For all paths in
2537         Node *ii = in(i);
2538         Node* new_ii = nullptr;
2539         if (ii->is_DecodeNarrowPtr()) {
2540           assert(ii->bottom_type() == bottom_type(), "sanity");
2541           new_ii = ii->in(1);
2542         } else {
2543           assert(ii->is_Phi(), "sanity");
2544           if (ii->as_Phi() == this) {
2545             new_ii = new_phi;
2546           } else {
2547             if (is_decodeN) {
2548               new_ii = new EncodePNode(ii, narrow_t);
2549             } else {
2550               new_ii = new EncodePKlassNode(ii, narrow_t);
2551             }
2552             igvn->register_new_node_with_optimizer(new_ii);
2553           }
2554         }
2555         new_phi->set_req(i, new_ii);
2556       }
2557       igvn->register_new_node_with_optimizer(new_phi, this);
2558       if (is_decodeN) {
2559         progress = new DecodeNNode(new_phi, bottom_type());
2560       } else {
2561         progress = new DecodeNKlassNode(new_phi, bottom_type());
2562       }
2563     }
2564   }
2565 #endif
2566 
2567   // Try to convert a Phi with two duplicated convert nodes into a phi of the pre-conversion type and the convert node
2568   // proceeding the phi, to de-duplicate the convert node and compact the IR.
2569   if (can_reshape && progress == nullptr) {
2570     ConvertNode* convert = in(1)->isa_Convert();
2571     if (convert != nullptr) {
2572       int conv_op = convert->Opcode();
2573       bool ok = true;
2574 
2575       // Check the rest of the inputs
2576       for (uint i = 2; i < req(); i++) {
2577         // Make sure that all inputs are of the same type of convert node
2578         if (in(i)->Opcode() != conv_op) {
2579           ok = false;
2580           break;
2581         }
2582       }
2583 
2584       if (ok) {
2585         // Find the local bottom type to set as the type of the phi
2586         const Type* source_type = Type::get_const_basic_type(convert->in_type()->basic_type());
2587         const Type* dest_type = convert->bottom_type();
2588 
2589         PhiNode* newphi = new PhiNode(in(0), source_type, nullptr);
2590         // Set inputs to the new phi be the inputs of the convert
2591         for (uint i = 1; i < req(); i++) {
2592           newphi->init_req(i, in(i)->in(1));
2593         }
2594 
2595         phase->is_IterGVN()->register_new_node_with_optimizer(newphi, this);
2596 
2597         return ConvertNode::create_convert(get_convert_type(convert, source_type), get_convert_type(convert, dest_type), newphi);
2598       }
2599     }
2600   }
2601 
2602   // Phi (VB ... VB) => VB (Phi ...) (Phi ...)
2603   if (EnableVectorReboxing && can_reshape && progress == nullptr && type()->isa_oopptr()) {
2604     progress = merge_through_phi(this, phase->is_IterGVN());
2605   }
2606 
2607   return progress;              // Return any progress
2608 }
2609 
2610 static int compare_types(const Type* const& e1, const Type* const& e2) {
2611   return (intptr_t)e1 - (intptr_t)e2;
2612 }
2613 
2614 // Collect types at casts that are going to be eliminated at that Phi and store them in a TypeTuple.
2615 // Sort the types using an arbitrary order so a list of some types always hashes to the same TypeTuple (and TypeTuple
2616 // pointer comparison is enough to tell if 2 list of types are the same or not)
2617 const TypeTuple* PhiNode::collect_types(PhaseGVN* phase) const {
2618   const Node* region = in(0);
2619   const Type* phi_type = bottom_type();
2620   ResourceMark rm;
2621   GrowableArray<const Type*> types;
2622   for (uint i = 1; i < req(); i++) {
2623     if (region->in(i) == nullptr || phase->type(region->in(i)) == Type::TOP) {
2624       continue;
2625     }
2626     Node* in = Node::in(i);
2627     const Type* t = phase->type(in);
2628     if (in == nullptr || in == this || t == Type::TOP) {
2629       continue;
2630     }
2631     if (t != phi_type && t->higher_equal_speculative(phi_type)) {
2632       types.insert_sorted<compare_types>(t);
2633     }
2634     while (in != nullptr && in->is_ConstraintCast()) {
2635       Node* next = in->in(1);
2636       if (phase->type(next)->isa_rawptr() && phase->type(in)->isa_oopptr()) {
2637         break;
2638       }
2639       ConstraintCastNode* cast = in->as_ConstraintCast();
2640       for (int j = 0; j < cast->extra_types_count(); ++j) {
2641         const Type* extra_t = cast->extra_type_at(j);
2642         if (extra_t != phi_type && extra_t->higher_equal_speculative(phi_type)) {
2643           types.insert_sorted<compare_types>(extra_t);
2644         }
2645       }
2646       in = next;
2647     }
2648   }
2649   const Type **flds = (const Type **)(phase->C->type_arena()->AmallocWords(types.length()*sizeof(Type*)));
2650   for (int i = 0; i < types.length(); ++i) {
2651     flds[i] = types.at(i);
2652   }
2653   return TypeTuple::make(types.length(), flds);
2654 }
2655 
2656 Node* PhiNode::clone_through_phi(Node* root_phi, const Type* t, uint c, PhaseIterGVN* igvn) {
2657   Node_Stack stack(1);
2658   VectorSet  visited;
2659   Node_List  node_map;
2660 
2661   stack.push(root_phi, 1); // ignore control
2662   visited.set(root_phi->_idx);
2663 
2664   Node* new_phi = new PhiNode(root_phi->in(0), t);
2665   node_map.map(root_phi->_idx, new_phi);
2666 
2667   while (stack.is_nonempty()) {
2668     Node* n   = stack.node();
2669     uint  idx = stack.index();
2670     assert(n->is_Phi(), "not a phi");
2671     if (idx < n->req()) {
2672       stack.set_index(idx + 1);
2673       Node* def = n->in(idx);
2674       if (def == nullptr) {
2675         continue; // ignore dead path
2676       } else if (def->is_Phi()) { // inner node
2677         Node* new_phi = node_map[n->_idx];
2678         if (!visited.test_set(def->_idx)) { // not visited yet
2679           node_map.map(def->_idx, new PhiNode(def->in(0), t));
2680           stack.push(def, 1); // ignore control
2681         }
2682         Node* new_in = node_map[def->_idx];
2683         new_phi->set_req(idx, new_in);
2684       } else if (def->Opcode() == Op_VectorBox) { // leaf
2685         assert(n->is_Phi(), "not a phi");
2686         Node* new_phi = node_map[n->_idx];
2687         new_phi->set_req(idx, def->in(c));
2688       } else {
2689         assert(false, "not optimizeable");
2690         return nullptr;
2691       }
2692     } else {
2693       Node* new_phi = node_map[n->_idx];
2694       igvn->register_new_node_with_optimizer(new_phi, n);
2695       stack.pop();
2696     }
2697   }
2698   return new_phi;
2699 }
2700 
2701 Node* PhiNode::merge_through_phi(Node* root_phi, PhaseIterGVN* igvn) {
2702   Node_Stack stack(1);
2703   VectorSet  visited;
2704 
2705   stack.push(root_phi, 1); // ignore control
2706   visited.set(root_phi->_idx);
2707 
2708   VectorBoxNode* cached_vbox = nullptr;
2709   while (stack.is_nonempty()) {
2710     Node* n   = stack.node();
2711     uint  idx = stack.index();
2712     if (idx < n->req()) {
2713       stack.set_index(idx + 1);
2714       Node* in = n->in(idx);
2715       if (in == nullptr) {
2716         continue; // ignore dead path
2717       } else if (in->isa_Phi()) {
2718         if (!visited.test_set(in->_idx)) {
2719           stack.push(in, 1); // ignore control
2720         }
2721       } else if (in->Opcode() == Op_VectorBox) {
2722         VectorBoxNode* vbox = static_cast<VectorBoxNode*>(in);
2723         if (cached_vbox == nullptr) {
2724           cached_vbox = vbox;
2725         } else if (vbox->vec_type() != cached_vbox->vec_type()) {
2726           // TODO: vector type mismatch can be handled with additional reinterpret casts
2727           assert(!Type::equals(vbox->vec_type(), cached_vbox->vec_type()), "inconsistent");
2728           return nullptr; // not optimizable: vector type mismatch
2729         } else if (vbox->box_type() != cached_vbox->box_type()) {
2730           assert(!Type::equals(vbox->box_type(), cached_vbox->box_type()), "inconsistent");
2731           return nullptr; // not optimizable: box type mismatch
2732         }
2733       } else {
2734         return nullptr; // not optimizable: neither Phi nor VectorBox
2735       }
2736     } else {
2737       stack.pop();
2738     }
2739   }
2740   if (cached_vbox == nullptr) {
2741     // We have a Phi dead-loop (no data-input). Phi nodes are considered safe,
2742     // so just avoid this optimization.
2743     return nullptr;
2744   }
2745   const TypeInstPtr* btype = cached_vbox->box_type();
2746   const TypeVect*    vtype = cached_vbox->vec_type();
2747   Node* new_vbox_phi = clone_through_phi(root_phi, btype, VectorBoxNode::Box,   igvn);
2748   Node* new_vect_phi = clone_through_phi(root_phi, vtype, VectorBoxNode::Value, igvn);
2749   return new VectorBoxNode(igvn->C, new_vbox_phi, new_vect_phi, btype, vtype);
2750 }
2751 
2752 bool PhiNode::is_data_loop(RegionNode* r, Node* uin, const PhaseGVN* phase) {
2753   // First, take the short cut when we know it is a loop and the EntryControl data path is dead.
2754   // The loop node may only have one input because the entry path was removed in PhaseIdealLoop::Dominators().
2755   // Then, check if there is a data loop when the phi references itself directly or through other data nodes.
2756   assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
2757   const bool is_loop = (r->is_Loop() && r->req() == 3);
2758   const Node* top = phase->C->top();
2759   if (is_loop) {
2760     return !uin->eqv_uncast(in(LoopNode::EntryControl));
2761   } else {
2762     // We have a data loop either with an unsafe data reference or if a region is unreachable.
2763     return is_unsafe_data_reference(uin)
2764            || (r->req() == 3 && (r->in(1) != top && r->in(2) == top && r->is_unreachable_region(phase)));
2765   }
2766 }
2767 
2768 //------------------------------is_tripcount-----------------------------------
2769 bool PhiNode::is_tripcount(BasicType bt) const {
2770   return (in(0) != nullptr && in(0)->is_BaseCountedLoop() &&
2771           in(0)->as_BaseCountedLoop()->bt() == bt &&
2772           in(0)->as_BaseCountedLoop()->phi() == this);
2773 }
2774 
2775 //------------------------------out_RegMask------------------------------------
2776 const RegMask &PhiNode::in_RegMask(uint i) const {
2777   return i ? out_RegMask() : RegMask::Empty;
2778 }
2779 
2780 const RegMask &PhiNode::out_RegMask() const {
2781   uint ideal_reg = _type->ideal_reg();
2782   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2783   if( ideal_reg == 0 ) return RegMask::Empty;
2784   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2785   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2786 }
2787 
2788 #ifndef PRODUCT
2789 void PhiNode::dump_spec(outputStream *st) const {
2790   TypeNode::dump_spec(st);
2791   if (is_tripcount(T_INT) || is_tripcount(T_LONG)) {
2792     st->print(" #tripcount");
2793   }
2794 }
2795 #endif
2796 
2797 
2798 //=============================================================================
2799 const Type* GotoNode::Value(PhaseGVN* phase) const {
2800   // If the input is reachable, then we are executed.
2801   // If the input is not reachable, then we are not executed.
2802   return phase->type(in(0));
2803 }
2804 
2805 Node* GotoNode::Identity(PhaseGVN* phase) {
2806   return in(0);                // Simple copy of incoming control
2807 }
2808 
2809 const RegMask &GotoNode::out_RegMask() const {
2810   return RegMask::Empty;
2811 }
2812 
2813 //=============================================================================
2814 const RegMask &JumpNode::out_RegMask() const {
2815   return RegMask::Empty;
2816 }
2817 
2818 //=============================================================================
2819 const RegMask &JProjNode::out_RegMask() const {
2820   return RegMask::Empty;
2821 }
2822 
2823 //=============================================================================
2824 const RegMask &CProjNode::out_RegMask() const {
2825   return RegMask::Empty;
2826 }
2827 
2828 
2829 
2830 //=============================================================================
2831 
2832 uint PCTableNode::hash() const { return Node::hash() + _size; }
2833 bool PCTableNode::cmp( const Node &n ) const
2834 { return _size == ((PCTableNode&)n)._size; }
2835 
2836 const Type *PCTableNode::bottom_type() const {
2837   const Type** f = TypeTuple::fields(_size);
2838   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2839   return TypeTuple::make(_size, f);
2840 }
2841 
2842 //------------------------------Value------------------------------------------
2843 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2844 // Control, otherwise the table targets are not reachable
2845 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2846   if( phase->type(in(0)) == Type::CONTROL )
2847     return bottom_type();
2848   return Type::TOP;             // All paths dead?  Then so are we
2849 }
2850 
2851 //------------------------------Ideal------------------------------------------
2852 // Return a node which is more "ideal" than the current node.  Strip out
2853 // control copies
2854 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2855   return remove_dead_region(phase, can_reshape) ? this : nullptr;
2856 }
2857 
2858 //=============================================================================
2859 uint JumpProjNode::hash() const {
2860   return Node::hash() + _dest_bci;
2861 }
2862 
2863 bool JumpProjNode::cmp( const Node &n ) const {
2864   return ProjNode::cmp(n) &&
2865     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2866 }
2867 
2868 #ifndef PRODUCT
2869 void JumpProjNode::dump_spec(outputStream *st) const {
2870   ProjNode::dump_spec(st);
2871   st->print("@bci %d ",_dest_bci);
2872 }
2873 
2874 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2875   ProjNode::dump_compact_spec(st);
2876   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2877 }
2878 #endif
2879 
2880 //=============================================================================
2881 //------------------------------Value------------------------------------------
2882 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2883 // have the default "fall_through_index" path.
2884 const Type* CatchNode::Value(PhaseGVN* phase) const {
2885   // Unreachable?  Then so are all paths from here.
2886   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2887   // First assume all paths are reachable
2888   const Type** f = TypeTuple::fields(_size);
2889   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2890   // Identify cases that will always throw an exception
2891   // () rethrow call
2892   // () virtual or interface call with null receiver
2893   // () call is a check cast with incompatible arguments
2894   if( in(1)->is_Proj() ) {
2895     Node *i10 = in(1)->in(0);
2896     if( i10->is_Call() ) {
2897       CallNode *call = i10->as_Call();
2898       // Rethrows always throw exceptions, never return
2899       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2900         f[CatchProjNode::fall_through_index] = Type::TOP;
2901       } else if (call->is_AllocateArray()) {
2902         Node* klass_node = call->in(AllocateNode::KlassNode);
2903         Node* length = call->in(AllocateNode::ALength);
2904         const Type* length_type = phase->type(length);
2905         const Type* klass_type = phase->type(klass_node);
2906         Node* valid_length_test = call->in(AllocateNode::ValidLengthTest);
2907         const Type* valid_length_test_t = phase->type(valid_length_test);
2908         if (length_type == Type::TOP || klass_type == Type::TOP || valid_length_test_t == Type::TOP ||
2909             valid_length_test_t->is_int()->is_con(0)) {
2910           f[CatchProjNode::fall_through_index] = Type::TOP;
2911         }
2912       } else if( call->req() > TypeFunc::Parms ) {
2913         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2914         // Check for null receiver to virtual or interface calls
2915         if( call->is_CallDynamicJava() &&
2916             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2917           f[CatchProjNode::fall_through_index] = Type::TOP;
2918         }
2919       } // End of if not a runtime stub
2920     } // End of if have call above me
2921   } // End of slot 1 is not a projection
2922   return TypeTuple::make(_size, f);
2923 }
2924 
2925 //=============================================================================
2926 uint CatchProjNode::hash() const {
2927   return Node::hash() + _handler_bci;
2928 }
2929 
2930 
2931 bool CatchProjNode::cmp( const Node &n ) const {
2932   return ProjNode::cmp(n) &&
2933     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2934 }
2935 
2936 
2937 //------------------------------Identity---------------------------------------
2938 // If only 1 target is possible, choose it if it is the main control
2939 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2940   // If my value is control and no other value is, then treat as ID
2941   const TypeTuple *t = phase->type(in(0))->is_tuple();
2942   if (t->field_at(_con) != Type::CONTROL)  return this;
2943   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2944   // also remove any exception table entry.  Thus we must know the call
2945   // feeding the Catch will not really throw an exception.  This is ok for
2946   // the main fall-thru control (happens when we know a call can never throw
2947   // an exception) or for "rethrow", because a further optimization will
2948   // yank the rethrow (happens when we inline a function that can throw an
2949   // exception and the caller has no handler).  Not legal, e.g., for passing
2950   // a null receiver to a v-call, or passing bad types to a slow-check-cast.
2951   // These cases MUST throw an exception via the runtime system, so the VM
2952   // will be looking for a table entry.
2953   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2954   CallNode *call;
2955   if (_con != TypeFunc::Control && // Bail out if not the main control.
2956       !(proj->is_Proj() &&      // AND NOT a rethrow
2957         proj->in(0)->is_Call() &&
2958         (call = proj->in(0)->as_Call()) &&
2959         call->entry_point() == OptoRuntime::rethrow_stub()))
2960     return this;
2961 
2962   // Search for any other path being control
2963   for (uint i = 0; i < t->cnt(); i++) {
2964     if (i != _con && t->field_at(i) == Type::CONTROL)
2965       return this;
2966   }
2967   // Only my path is possible; I am identity on control to the jump
2968   return in(0)->in(0);
2969 }
2970 
2971 
2972 #ifndef PRODUCT
2973 void CatchProjNode::dump_spec(outputStream *st) const {
2974   ProjNode::dump_spec(st);
2975   st->print("@bci %d ",_handler_bci);
2976 }
2977 #endif
2978 
2979 //=============================================================================
2980 //------------------------------Identity---------------------------------------
2981 // Check for CreateEx being Identity.
2982 Node* CreateExNode::Identity(PhaseGVN* phase) {
2983   if( phase->type(in(1)) == Type::TOP ) return in(1);
2984   if( phase->type(in(0)) == Type::TOP ) return in(0);
2985   if (phase->type(in(0)->in(0)) == Type::TOP) {
2986     assert(in(0)->is_CatchProj(), "control is CatchProj");
2987     return phase->C->top(); // dead code
2988   }
2989   // We only come from CatchProj, unless the CatchProj goes away.
2990   // If the CatchProj is optimized away, then we just carry the
2991   // exception oop through.
2992   CallNode *call = in(1)->in(0)->as_Call();
2993 
2994   return (in(0)->is_CatchProj() && in(0)->in(0)->is_Catch() &&
2995           in(0)->in(0)->in(1) == in(1)) ? this : call->in(TypeFunc::Parms);
2996 }
2997 
2998 //=============================================================================
2999 //------------------------------Value------------------------------------------
3000 // Check for being unreachable.
3001 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
3002   if (!in(0) || in(0)->is_top()) return Type::TOP;
3003   return bottom_type();
3004 }
3005 
3006 //------------------------------Ideal------------------------------------------
3007 // Check for no longer being part of a loop
3008 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3009   if (can_reshape && !in(0)->is_Region()) {
3010     // Dead code elimination can sometimes delete this projection so
3011     // if it's not there, there's nothing to do.
3012     Node* fallthru = proj_out_or_null(0);
3013     if (fallthru != nullptr) {
3014       phase->is_IterGVN()->replace_node(fallthru, in(0));
3015     }
3016     return phase->C->top();
3017   }
3018   return nullptr;
3019 }
3020 
3021 #ifndef PRODUCT
3022 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
3023   st->print("%s", Name());
3024 }
3025 #endif
3026 
3027 #ifndef PRODUCT
3028 void BlackholeNode::format(PhaseRegAlloc* ra, outputStream* st) const {
3029   st->print("blackhole ");
3030   bool first = true;
3031   for (uint i = 0; i < req(); i++) {
3032     Node* n = in(i);
3033     if (n != nullptr && OptoReg::is_valid(ra->get_reg_first(n))) {
3034       if (first) {
3035         first = false;
3036       } else {
3037         st->print(", ");
3038       }
3039       char buf[128];
3040       ra->dump_register(n, buf, sizeof(buf));
3041       st->print("%s", buf);
3042     }
3043   }
3044   st->cr();
3045 }
3046 #endif
3047