1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "oops/objArrayKlass.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/cfgnode.hpp" 34 #include "opto/connode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/machnode.hpp" 38 #include "opto/movenode.hpp" 39 #include "opto/narrowptrnode.hpp" 40 #include "opto/mulnode.hpp" 41 #include "opto/phaseX.hpp" 42 #include "opto/regalloc.hpp" 43 #include "opto/regmask.hpp" 44 #include "opto/runtime.hpp" 45 #include "opto/subnode.hpp" 46 #include "opto/vectornode.hpp" 47 #include "utilities/vmError.hpp" 48 49 // Portions of code courtesy of Clifford Click 50 51 // Optimization - Graph Style 52 53 //============================================================================= 54 //------------------------------Value------------------------------------------ 55 // Compute the type of the RegionNode. 56 const Type* RegionNode::Value(PhaseGVN* phase) const { 57 for( uint i=1; i<req(); ++i ) { // For all paths in 58 Node *n = in(i); // Get Control source 59 if( !n ) continue; // Missing inputs are TOP 60 if( phase->type(n) == Type::CONTROL ) 61 return Type::CONTROL; 62 } 63 return Type::TOP; // All paths dead? Then so are we 64 } 65 66 //------------------------------Identity--------------------------------------- 67 // Check for Region being Identity. 68 Node* RegionNode::Identity(PhaseGVN* phase) { 69 // Cannot have Region be an identity, even if it has only 1 input. 70 // Phi users cannot have their Region input folded away for them, 71 // since they need to select the proper data input 72 return this; 73 } 74 75 //------------------------------merge_region----------------------------------- 76 // If a Region flows into a Region, merge into one big happy merge. This is 77 // hard to do if there is stuff that has to happen 78 static Node *merge_region(RegionNode *region, PhaseGVN *phase) { 79 if( region->Opcode() != Op_Region ) // Do not do to LoopNodes 80 return nullptr; 81 Node *progress = nullptr; // Progress flag 82 PhaseIterGVN *igvn = phase->is_IterGVN(); 83 84 uint rreq = region->req(); 85 for( uint i = 1; i < rreq; i++ ) { 86 Node *r = region->in(i); 87 if( r && r->Opcode() == Op_Region && // Found a region? 88 r->in(0) == r && // Not already collapsed? 89 r != region && // Avoid stupid situations 90 r->outcnt() == 2 ) { // Self user and 'region' user only? 91 assert(!r->as_Region()->has_phi(), "no phi users"); 92 if( !progress ) { // No progress 93 if (region->has_phi()) { 94 return nullptr; // Only flatten if no Phi users 95 // igvn->hash_delete( phi ); 96 } 97 igvn->hash_delete( region ); 98 progress = region; // Making progress 99 } 100 igvn->hash_delete( r ); 101 102 // Append inputs to 'r' onto 'region' 103 for( uint j = 1; j < r->req(); j++ ) { 104 // Move an input from 'r' to 'region' 105 region->add_req(r->in(j)); 106 r->set_req(j, phase->C->top()); 107 // Update phis of 'region' 108 //for( uint k = 0; k < max; k++ ) { 109 // Node *phi = region->out(k); 110 // if( phi->is_Phi() ) { 111 // phi->add_req(phi->in(i)); 112 // } 113 //} 114 115 rreq++; // One more input to Region 116 } // Found a region to merge into Region 117 igvn->_worklist.push(r); 118 // Clobber pointer to the now dead 'r' 119 region->set_req(i, phase->C->top()); 120 } 121 } 122 123 return progress; 124 } 125 126 127 128 //--------------------------------has_phi-------------------------------------- 129 // Helper function: Return any PhiNode that uses this region or null 130 PhiNode* RegionNode::has_phi() const { 131 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 132 Node* phi = fast_out(i); 133 if (phi->is_Phi()) { // Check for Phi users 134 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)"); 135 return phi->as_Phi(); // this one is good enough 136 } 137 } 138 139 return nullptr; 140 } 141 142 143 //-----------------------------has_unique_phi---------------------------------- 144 // Helper function: Return the only PhiNode that uses this region or null 145 PhiNode* RegionNode::has_unique_phi() const { 146 // Check that only one use is a Phi 147 PhiNode* only_phi = nullptr; 148 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 149 Node* phi = fast_out(i); 150 if (phi->is_Phi()) { // Check for Phi users 151 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)"); 152 if (only_phi == nullptr) { 153 only_phi = phi->as_Phi(); 154 } else { 155 return nullptr; // multiple phis 156 } 157 } 158 } 159 160 return only_phi; 161 } 162 163 164 //------------------------------check_phi_clipping----------------------------- 165 // Helper function for RegionNode's identification of FP clipping 166 // Check inputs to the Phi 167 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) { 168 min = nullptr; 169 max = nullptr; 170 val = nullptr; 171 min_idx = 0; 172 max_idx = 0; 173 val_idx = 0; 174 uint phi_max = phi->req(); 175 if( phi_max == 4 ) { 176 for( uint j = 1; j < phi_max; ++j ) { 177 Node *n = phi->in(j); 178 int opcode = n->Opcode(); 179 switch( opcode ) { 180 case Op_ConI: 181 { 182 if( min == nullptr ) { 183 min = n->Opcode() == Op_ConI ? (ConNode*)n : nullptr; 184 min_idx = j; 185 } else { 186 max = n->Opcode() == Op_ConI ? (ConNode*)n : nullptr; 187 max_idx = j; 188 if( min->get_int() > max->get_int() ) { 189 // Swap min and max 190 ConNode *temp; 191 uint temp_idx; 192 temp = min; min = max; max = temp; 193 temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx; 194 } 195 } 196 } 197 break; 198 default: 199 { 200 val = n; 201 val_idx = j; 202 } 203 break; 204 } 205 } 206 } 207 return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) ); 208 } 209 210 211 //------------------------------check_if_clipping------------------------------ 212 // Helper function for RegionNode's identification of FP clipping 213 // Check that inputs to Region come from two IfNodes, 214 // 215 // If 216 // False True 217 // If | 218 // False True | 219 // | | | 220 // RegionNode_inputs 221 // 222 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) { 223 top_if = nullptr; 224 bot_if = nullptr; 225 226 // Check control structure above RegionNode for (if ( if ) ) 227 Node *in1 = region->in(1); 228 Node *in2 = region->in(2); 229 Node *in3 = region->in(3); 230 // Check that all inputs are projections 231 if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) { 232 Node *in10 = in1->in(0); 233 Node *in20 = in2->in(0); 234 Node *in30 = in3->in(0); 235 // Check that #1 and #2 are ifTrue and ifFalse from same If 236 if( in10 != nullptr && in10->is_If() && 237 in20 != nullptr && in20->is_If() && 238 in30 != nullptr && in30->is_If() && in10 == in20 && 239 (in1->Opcode() != in2->Opcode()) ) { 240 Node *in100 = in10->in(0); 241 Node *in1000 = (in100 != nullptr && in100->is_Proj()) ? in100->in(0) : nullptr; 242 // Check that control for in10 comes from other branch of IF from in3 243 if( in1000 != nullptr && in1000->is_If() && 244 in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) { 245 // Control pattern checks 246 top_if = (IfNode*)in1000; 247 bot_if = (IfNode*)in10; 248 } 249 } 250 } 251 252 return (top_if != nullptr); 253 } 254 255 256 //------------------------------check_convf2i_clipping------------------------- 257 // Helper function for RegionNode's identification of FP clipping 258 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift" 259 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) { 260 convf2i = nullptr; 261 262 // Check for the RShiftNode 263 Node *rshift = phi->in(idx); 264 assert( rshift, "Previous checks ensure phi input is present"); 265 if( rshift->Opcode() != Op_RShiftI ) { return false; } 266 267 // Check for the LShiftNode 268 Node *lshift = rshift->in(1); 269 assert( lshift, "Previous checks ensure phi input is present"); 270 if( lshift->Opcode() != Op_LShiftI ) { return false; } 271 272 // Check for the ConvF2INode 273 Node *conv = lshift->in(1); 274 if( conv->Opcode() != Op_ConvF2I ) { return false; } 275 276 // Check that shift amounts are only to get sign bits set after F2I 277 jint max_cutoff = max->get_int(); 278 jint min_cutoff = min->get_int(); 279 jint left_shift = lshift->in(2)->get_int(); 280 jint right_shift = rshift->in(2)->get_int(); 281 jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1); 282 if( left_shift != right_shift || 283 0 > left_shift || left_shift >= BitsPerJavaInteger || 284 max_post_shift < max_cutoff || 285 max_post_shift < -min_cutoff ) { 286 // Shifts are necessary but current transformation eliminates them 287 return false; 288 } 289 290 // OK to return the result of ConvF2I without shifting 291 convf2i = (ConvF2INode*)conv; 292 return true; 293 } 294 295 296 //------------------------------check_compare_clipping------------------------- 297 // Helper function for RegionNode's identification of FP clipping 298 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) { 299 Node *i1 = iff->in(1); 300 if ( !i1->is_Bool() ) { return false; } 301 BoolNode *bool1 = i1->as_Bool(); 302 if( less_than && bool1->_test._test != BoolTest::le ) { return false; } 303 else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; } 304 const Node *cmpF = bool1->in(1); 305 if( cmpF->Opcode() != Op_CmpF ) { return false; } 306 // Test that the float value being compared against 307 // is equivalent to the int value used as a limit 308 Node *nodef = cmpF->in(2); 309 if( nodef->Opcode() != Op_ConF ) { return false; } 310 jfloat conf = nodef->getf(); 311 jint coni = limit->get_int(); 312 if( ((int)conf) != coni ) { return false; } 313 input = cmpF->in(1); 314 return true; 315 } 316 317 //------------------------------is_unreachable_region-------------------------- 318 // Check if the RegionNode is part of an unsafe loop and unreachable from root. 319 bool RegionNode::is_unreachable_region(const PhaseGVN* phase) { 320 Node* top = phase->C->top(); 321 assert(req() == 2 || (req() == 3 && in(1) != nullptr && in(2) == top), "sanity check arguments"); 322 if (_is_unreachable_region) { 323 // Return cached result from previous evaluation which should still be valid 324 assert(is_unreachable_from_root(phase), "walk the graph again and check if its indeed unreachable"); 325 return true; 326 } 327 328 // First, cut the simple case of fallthrough region when NONE of 329 // region's phis references itself directly or through a data node. 330 if (is_possible_unsafe_loop(phase)) { 331 // If we have a possible unsafe loop, check if the region node is actually unreachable from root. 332 if (is_unreachable_from_root(phase)) { 333 _is_unreachable_region = true; 334 return true; 335 } 336 } 337 return false; 338 } 339 340 bool RegionNode::is_possible_unsafe_loop(const PhaseGVN* phase) const { 341 uint max = outcnt(); 342 uint i; 343 for (i = 0; i < max; i++) { 344 Node* n = raw_out(i); 345 if (n != nullptr && n->is_Phi()) { 346 PhiNode* phi = n->as_Phi(); 347 assert(phi->in(0) == this, "sanity check phi"); 348 if (phi->outcnt() == 0) { 349 continue; // Safe case - no loops 350 } 351 if (phi->outcnt() == 1) { 352 Node* u = phi->raw_out(0); 353 // Skip if only one use is an other Phi or Call or Uncommon trap. 354 // It is safe to consider this case as fallthrough. 355 if (u != nullptr && (u->is_Phi() || u->is_CFG())) { 356 continue; 357 } 358 } 359 // Check when phi references itself directly or through an other node. 360 if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) { 361 break; // Found possible unsafe data loop. 362 } 363 } 364 } 365 if (i >= max) { 366 return false; // An unsafe case was NOT found - don't need graph walk. 367 } 368 return true; 369 } 370 371 bool RegionNode::is_unreachable_from_root(const PhaseGVN* phase) const { 372 ResourceMark rm; 373 Node_List nstack; 374 VectorSet visited; 375 376 // Mark all control nodes reachable from root outputs 377 Node* n = (Node*)phase->C->root(); 378 nstack.push(n); 379 visited.set(n->_idx); 380 while (nstack.size() != 0) { 381 n = nstack.pop(); 382 uint max = n->outcnt(); 383 for (uint i = 0; i < max; i++) { 384 Node* m = n->raw_out(i); 385 if (m != nullptr && m->is_CFG()) { 386 if (m == this) { 387 return false; // We reached the Region node - it is not dead. 388 } 389 if (!visited.test_set(m->_idx)) 390 nstack.push(m); 391 } 392 } 393 } 394 return true; // The Region node is unreachable - it is dead. 395 } 396 397 #ifdef ASSERT 398 // Is this region in an infinite subgraph? 399 // (no path to root except through false NeverBranch exit) 400 bool RegionNode::is_in_infinite_subgraph() { 401 ResourceMark rm; 402 Unique_Node_List worklist; 403 worklist.push(this); 404 return RegionNode::are_all_nodes_in_infinite_subgraph(worklist); 405 } 406 407 // Are all nodes in worklist in infinite subgraph? 408 // (no path to root except through false NeverBranch exit) 409 // worklist is directly used for the traversal 410 bool RegionNode::are_all_nodes_in_infinite_subgraph(Unique_Node_List& worklist) { 411 // BFS traversal down the CFG, except through NeverBranch exits 412 for (uint i = 0; i < worklist.size(); ++i) { 413 Node* n = worklist.at(i); 414 assert(n->is_CFG(), "only traverse CFG"); 415 if (n->is_Root()) { 416 // Found root -> there was an exit! 417 return false; 418 } else if (n->is_NeverBranch()) { 419 // Only follow the loop-internal projection, not the NeverBranch exit 420 ProjNode* proj = n->as_NeverBranch()->proj_out_or_null(0); 421 assert(proj != nullptr, "must find loop-internal projection of NeverBranch"); 422 worklist.push(proj); 423 } else { 424 // Traverse all CFG outputs 425 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 426 Node* use = n->fast_out(i); 427 if (use->is_CFG()) { 428 worklist.push(use); 429 } 430 } 431 } 432 } 433 // No exit found for any loop -> all are infinite 434 return true; 435 } 436 #endif //ASSERT 437 438 void RegionNode::set_loop_status(RegionNode::LoopStatus status) { 439 assert(loop_status() == RegionNode::LoopStatus::NeverIrreducibleEntry, "why set our status again?"); 440 _loop_status = status; 441 } 442 443 #ifdef ASSERT 444 void RegionNode::verify_can_be_irreducible_entry() const { 445 assert(loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry, "must be marked irreducible"); 446 assert(!is_Loop(), "LoopNode cannot be irreducible loop entry"); 447 } 448 #endif //ASSERT 449 450 void RegionNode::try_clean_mem_phis(PhaseIterGVN* igvn) { 451 // Incremental inlining + PhaseStringOpts sometimes produce: 452 // 453 // cmpP with 1 top input 454 // | 455 // If 456 // / \ 457 // IfFalse IfTrue /- Some Node 458 // \ / / / 459 // Region / /-MergeMem 460 // \---Phi 461 // 462 // 463 // It's expected by PhaseStringOpts that the Region goes away and is 464 // replaced by If's control input but because there's still a Phi, 465 // the Region stays in the graph. The top input from the cmpP is 466 // propagated forward and a subgraph that is useful goes away. The 467 // code in PhiNode::try_clean_memory_phi() replaces the Phi with the 468 // MergeMem in order to remove the Region if its last phi dies. 469 470 if (!is_diamond()) { 471 return; 472 } 473 474 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 475 Node* phi = fast_out(i); 476 if (phi->is_Phi() && phi->as_Phi()->try_clean_memory_phi(igvn)) { 477 --i; 478 --imax; 479 } 480 } 481 } 482 483 // Does this region merge a simple diamond formed by a proper IfNode? 484 // 485 // Cmp 486 // / 487 // ctrl Bool 488 // \ / 489 // IfNode 490 // / \ 491 // IfFalse IfTrue 492 // \ / 493 // Region 494 bool RegionNode::is_diamond() const { 495 if (req() != 3) { 496 return false; 497 } 498 499 Node* left_path = in(1); 500 Node* right_path = in(2); 501 if (left_path == nullptr || right_path == nullptr) { 502 return false; 503 } 504 Node* diamond_if = left_path->in(0); 505 if (diamond_if == nullptr || !diamond_if->is_If() || diamond_if != right_path->in(0)) { 506 // Not an IfNode merging a diamond or TOP. 507 return false; 508 } 509 510 // Check for a proper bool/cmp 511 const Node* bol = diamond_if->in(1); 512 if (!bol->is_Bool()) { 513 return false; 514 } 515 const Node* cmp = bol->in(1); 516 if (!cmp->is_Cmp()) { 517 return false; 518 } 519 return true; 520 } 521 //------------------------------Ideal------------------------------------------ 522 // Return a node which is more "ideal" than the current node. Must preserve 523 // the CFG, but we can still strip out dead paths. 524 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) { 525 if( !can_reshape && !in(0) ) return nullptr; // Already degraded to a Copy 526 assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge"); 527 528 // Check for RegionNode with no Phi users and both inputs come from either 529 // arm of the same IF. If found, then the control-flow split is useless. 530 bool has_phis = false; 531 if (can_reshape) { // Need DU info to check for Phi users 532 try_clean_mem_phis(phase->is_IterGVN()); 533 has_phis = (has_phi() != nullptr); // Cache result 534 535 if (!has_phis) { // No Phi users? Nothing merging? 536 for (uint i = 1; i < req()-1; i++) { 537 Node *if1 = in(i); 538 if( !if1 ) continue; 539 Node *iff = if1->in(0); 540 if( !iff || !iff->is_If() ) continue; 541 for( uint j=i+1; j<req(); j++ ) { 542 if( in(j) && in(j)->in(0) == iff && 543 if1->Opcode() != in(j)->Opcode() ) { 544 // Add the IF Projections to the worklist. They (and the IF itself) 545 // will be eliminated if dead. 546 phase->is_IterGVN()->add_users_to_worklist(iff); 547 set_req(i, iff->in(0));// Skip around the useless IF diamond 548 set_req(j, nullptr); 549 return this; // Record progress 550 } 551 } 552 } 553 } 554 } 555 556 // Remove TOP or null input paths. If only 1 input path remains, this Region 557 // degrades to a copy. 558 bool add_to_worklist = true; 559 bool modified = false; 560 int cnt = 0; // Count of values merging 561 DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count 562 DEBUG_ONLY( uint outcnt_orig = outcnt(); ) 563 int del_it = 0; // The last input path we delete 564 bool found_top = false; // irreducible loops need to check reachability if we find TOP 565 // For all inputs... 566 for( uint i=1; i<req(); ++i ){// For all paths in 567 Node *n = in(i); // Get the input 568 if( n != nullptr ) { 569 // Remove useless control copy inputs 570 if( n->is_Region() && n->as_Region()->is_copy() ) { 571 set_req(i, n->nonnull_req()); 572 modified = true; 573 i--; 574 continue; 575 } 576 if( n->is_Proj() ) { // Remove useless rethrows 577 Node *call = n->in(0); 578 if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) { 579 set_req(i, call->in(0)); 580 modified = true; 581 i--; 582 continue; 583 } 584 } 585 if( phase->type(n) == Type::TOP ) { 586 set_req_X(i, nullptr, phase); // Ignore TOP inputs 587 modified = true; 588 found_top = true; 589 i--; 590 continue; 591 } 592 cnt++; // One more value merging 593 } else if (can_reshape) { // Else found dead path with DU info 594 PhaseIterGVN *igvn = phase->is_IterGVN(); 595 del_req(i); // Yank path from self 596 del_it = i; 597 598 for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) { 599 Node* use = fast_out(j); 600 601 if (use->req() != req() && use->is_Phi()) { 602 assert(use->in(0) == this, "unexpected control input"); 603 igvn->hash_delete(use); // Yank from hash before hacking edges 604 use->set_req_X(i, nullptr, igvn);// Correct DU info 605 use->del_req(i); // Yank path from Phis 606 } 607 } 608 609 if (add_to_worklist) { 610 igvn->add_users_to_worklist(this); 611 add_to_worklist = false; 612 } 613 614 i--; 615 } 616 } 617 618 assert(outcnt() == outcnt_orig, "not expect to remove any use"); 619 620 if (can_reshape && found_top && loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry) { 621 // Is it a dead irreducible loop? 622 // If an irreducible loop loses one of the multiple entries 623 // that went into the loop head, or any secondary entries, 624 // we need to verify if the irreducible loop is still reachable, 625 // as the special logic in is_unreachable_region only works 626 // for reducible loops. 627 if (is_unreachable_from_root(phase)) { 628 // The irreducible loop is dead - must remove it 629 PhaseIterGVN* igvn = phase->is_IterGVN(); 630 remove_unreachable_subgraph(igvn); 631 return nullptr; 632 } 633 } else if (can_reshape && cnt == 1) { 634 // Is it dead loop? 635 // If it is LoopNopde it had 2 (+1 itself) inputs and 636 // one of them was cut. The loop is dead if it was EntryContol. 637 // Loop node may have only one input because entry path 638 // is removed in PhaseIdealLoop::Dominators(). 639 assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs"); 640 if ((this->is_Loop() && (del_it == LoopNode::EntryControl || 641 (del_it == 0 && is_unreachable_region(phase)))) || 642 (!this->is_Loop() && has_phis && is_unreachable_region(phase))) { 643 PhaseIterGVN* igvn = phase->is_IterGVN(); 644 remove_unreachable_subgraph(igvn); 645 return nullptr; 646 } 647 } 648 649 if( cnt <= 1 ) { // Only 1 path in? 650 set_req(0, nullptr); // Null control input for region copy 651 if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is. 652 // No inputs or all inputs are null. 653 return nullptr; 654 } else if (can_reshape) { // Optimization phase - remove the node 655 PhaseIterGVN *igvn = phase->is_IterGVN(); 656 // Strip mined (inner) loop is going away, remove outer loop. 657 if (is_CountedLoop() && 658 as_Loop()->is_strip_mined()) { 659 Node* outer_sfpt = as_CountedLoop()->outer_safepoint(); 660 Node* outer_out = as_CountedLoop()->outer_loop_exit(); 661 if (outer_sfpt != nullptr && outer_out != nullptr) { 662 Node* in = outer_sfpt->in(0); 663 igvn->replace_node(outer_out, in); 664 LoopNode* outer = as_CountedLoop()->outer_loop(); 665 igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top()); 666 } 667 } 668 if (is_CountedLoop()) { 669 Node* opaq = as_CountedLoop()->is_canonical_loop_entry(); 670 if (opaq != nullptr) { 671 // This is not a loop anymore. No need to keep the Opaque1 node on the test that guards the loop as it won't be 672 // subject to further loop opts. 673 assert(opaq->Opcode() == Op_OpaqueZeroTripGuard, ""); 674 igvn->replace_node(opaq, opaq->in(1)); 675 } 676 } 677 Node *parent_ctrl; 678 if( cnt == 0 ) { 679 assert( req() == 1, "no inputs expected" ); 680 // During IGVN phase such region will be subsumed by TOP node 681 // so region's phis will have TOP as control node. 682 // Kill phis here to avoid it. 683 // Also set other user's input to top. 684 parent_ctrl = phase->C->top(); 685 } else { 686 // The fallthrough case since we already checked dead loops above. 687 parent_ctrl = in(1); 688 assert(parent_ctrl != nullptr, "Region is a copy of some non-null control"); 689 assert(parent_ctrl != this, "Close dead loop"); 690 } 691 if (add_to_worklist) { 692 igvn->add_users_to_worklist(this); // Check for further allowed opts 693 } 694 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) { 695 Node* n = last_out(i); 696 igvn->hash_delete(n); // Remove from worklist before modifying edges 697 if (n->outcnt() == 0) { 698 int uses_found = n->replace_edge(this, phase->C->top(), igvn); 699 if (uses_found > 1) { // (--i) done at the end of the loop. 700 i -= (uses_found - 1); 701 } 702 continue; 703 } 704 if( n->is_Phi() ) { // Collapse all Phis 705 // Eagerly replace phis to avoid regionless phis. 706 Node* in; 707 if( cnt == 0 ) { 708 assert( n->req() == 1, "No data inputs expected" ); 709 in = parent_ctrl; // replaced by top 710 } else { 711 assert( n->req() == 2 && n->in(1) != nullptr, "Only one data input expected" ); 712 in = n->in(1); // replaced by unique input 713 if( n->as_Phi()->is_unsafe_data_reference(in) ) 714 in = phase->C->top(); // replaced by top 715 } 716 igvn->replace_node(n, in); 717 } 718 else if( n->is_Region() ) { // Update all incoming edges 719 assert(n != this, "Must be removed from DefUse edges"); 720 int uses_found = n->replace_edge(this, parent_ctrl, igvn); 721 if (uses_found > 1) { // (--i) done at the end of the loop. 722 i -= (uses_found - 1); 723 } 724 } 725 else { 726 assert(n->in(0) == this, "Expect RegionNode to be control parent"); 727 n->set_req(0, parent_ctrl); 728 } 729 #ifdef ASSERT 730 for( uint k=0; k < n->req(); k++ ) { 731 assert(n->in(k) != this, "All uses of RegionNode should be gone"); 732 } 733 #endif 734 } 735 // Remove the RegionNode itself from DefUse info 736 igvn->remove_dead_node(this); 737 return nullptr; 738 } 739 return this; // Record progress 740 } 741 742 743 // If a Region flows into a Region, merge into one big happy merge. 744 if (can_reshape) { 745 Node *m = merge_region(this, phase); 746 if (m != nullptr) return m; 747 } 748 749 // Check if this region is the root of a clipping idiom on floats 750 if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) { 751 // Check that only one use is a Phi and that it simplifies to two constants + 752 PhiNode* phi = has_unique_phi(); 753 if (phi != nullptr) { // One Phi user 754 // Check inputs to the Phi 755 ConNode *min; 756 ConNode *max; 757 Node *val; 758 uint min_idx; 759 uint max_idx; 760 uint val_idx; 761 if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) { 762 IfNode *top_if; 763 IfNode *bot_if; 764 if( check_if_clipping( this, bot_if, top_if ) ) { 765 // Control pattern checks, now verify compares 766 Node *top_in = nullptr; // value being compared against 767 Node *bot_in = nullptr; 768 if( check_compare_clipping( true, bot_if, min, bot_in ) && 769 check_compare_clipping( false, top_if, max, top_in ) ) { 770 if( bot_in == top_in ) { 771 PhaseIterGVN *gvn = phase->is_IterGVN(); 772 assert( gvn != nullptr, "Only had DefUse info in IterGVN"); 773 // Only remaining check is that bot_in == top_in == (Phi's val + mods) 774 775 // Check for the ConvF2INode 776 ConvF2INode *convf2i; 777 if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) && 778 convf2i->in(1) == bot_in ) { 779 // Matched pattern, including LShiftI; RShiftI, replace with integer compares 780 // max test 781 Node *cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min )); 782 Node *boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt )); 783 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt )); 784 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff)); 785 Node *ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff)); 786 // min test 787 cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max )); 788 boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt )); 789 iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt )); 790 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff)); 791 ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff)); 792 // update input edges to region node 793 set_req_X( min_idx, if_min, gvn ); 794 set_req_X( max_idx, if_max, gvn ); 795 set_req_X( val_idx, ifF, gvn ); 796 // remove unnecessary 'LShiftI; RShiftI' idiom 797 gvn->hash_delete(phi); 798 phi->set_req_X( val_idx, convf2i, gvn ); 799 gvn->hash_find_insert(phi); 800 // Return transformed region node 801 return this; 802 } 803 } 804 } 805 } 806 } 807 } 808 } 809 810 if (can_reshape) { 811 modified |= optimize_trichotomy(phase->is_IterGVN()); 812 } 813 814 return modified ? this : nullptr; 815 } 816 817 //--------------------------remove_unreachable_subgraph---------------------- 818 // This region and therefore all nodes on the input control path(s) are unreachable 819 // from root. To avoid incomplete removal of unreachable subgraphs, walk up the CFG 820 // and aggressively replace all nodes by top. 821 // If a control node "def" with a single control output "use" has its single output 822 // "use" replaced with top, then "use" removes itself. This has the consequence that 823 // when we visit "use", it already has all inputs removed. They are lost and we cannot 824 // traverse them. This is why we fist find all unreachable nodes, and then remove 825 // them in a second step. 826 void RegionNode::remove_unreachable_subgraph(PhaseIterGVN* igvn) { 827 Node* top = igvn->C->top(); 828 ResourceMark rm; 829 Unique_Node_List unreachable; // visit each only once 830 unreachable.push(this); 831 // Recursively find all control inputs. 832 for (uint i = 0; i < unreachable.size(); i++) { 833 Node* n = unreachable.at(i); 834 for (uint i = 0; i < n->req(); ++i) { 835 Node* m = n->in(i); 836 assert(m == nullptr || !m->is_Root(), "Should be unreachable from root"); 837 if (m != nullptr && m->is_CFG()) { 838 unreachable.push(m); 839 } 840 } 841 } 842 // Remove all unreachable nodes. 843 for (uint i = 0; i < unreachable.size(); i++) { 844 Node* n = unreachable.at(i); 845 if (n->is_Region()) { 846 // Eagerly replace phis with top to avoid regionless phis. 847 n->set_req(0, nullptr); 848 bool progress = true; 849 uint max = n->outcnt(); 850 DUIterator j; 851 while (progress) { 852 progress = false; 853 for (j = n->outs(); n->has_out(j); j++) { 854 Node* u = n->out(j); 855 if (u->is_Phi()) { 856 igvn->replace_node(u, top); 857 if (max != n->outcnt()) { 858 progress = true; 859 j = n->refresh_out_pos(j); 860 max = n->outcnt(); 861 } 862 } 863 } 864 } 865 } 866 igvn->replace_node(n, top); 867 } 868 } 869 870 //------------------------------optimize_trichotomy-------------------------- 871 // Optimize nested comparisons of the following kind: 872 // 873 // int compare(int a, int b) { 874 // return (a < b) ? -1 : (a == b) ? 0 : 1; 875 // } 876 // 877 // Shape 1: 878 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... } 879 // 880 // Shape 2: 881 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... } 882 // 883 // Above code leads to the following IR shapes where both Ifs compare the 884 // same value and two out of three region inputs idx1 and idx2 map to 885 // the same value and control flow. 886 // 887 // (1) If (2) If 888 // / \ / \ 889 // Proj Proj Proj Proj 890 // | \ | \ 891 // | If | If If 892 // | / \ | / \ / \ 893 // | Proj Proj | Proj Proj ==> Proj Proj 894 // | / / \ | / | / 895 // Region / \ | / | / 896 // \ / \ | / | / 897 // Region Region Region 898 // 899 // The method returns true if 'this' is modified and false otherwise. 900 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) { 901 int idx1 = 1, idx2 = 2; 902 Node* region = nullptr; 903 if (req() == 3 && in(1) != nullptr && in(2) != nullptr) { 904 // Shape 1: Check if one of the inputs is a region that merges two control 905 // inputs and has no other users (especially no Phi users). 906 region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region(); 907 if (region == nullptr || region->outcnt() != 2 || region->req() != 3) { 908 return false; // No suitable region input found 909 } 910 } else if (req() == 4) { 911 // Shape 2: Check if two control inputs map to the same value of the unique phi 912 // user and treat these as if they would come from another region (shape (1)). 913 PhiNode* phi = has_unique_phi(); 914 if (phi == nullptr) { 915 return false; // No unique phi user 916 } 917 if (phi->in(idx1) != phi->in(idx2)) { 918 idx2 = 3; 919 if (phi->in(idx1) != phi->in(idx2)) { 920 idx1 = 2; 921 if (phi->in(idx1) != phi->in(idx2)) { 922 return false; // No equal phi inputs found 923 } 924 } 925 } 926 assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value 927 region = this; 928 } 929 if (region == nullptr || region->in(idx1) == nullptr || region->in(idx2) == nullptr) { 930 return false; // Region does not merge two control inputs 931 } 932 // At this point we know that region->in(idx1) and region->(idx2) map to the same 933 // value and control flow. Now search for ifs that feed into these region inputs. 934 ProjNode* proj1 = region->in(idx1)->isa_Proj(); 935 ProjNode* proj2 = region->in(idx2)->isa_Proj(); 936 if (proj1 == nullptr || proj1->outcnt() != 1 || 937 proj2 == nullptr || proj2->outcnt() != 1) { 938 return false; // No projection inputs with region as unique user found 939 } 940 assert(proj1 != proj2, "should be different projections"); 941 IfNode* iff1 = proj1->in(0)->isa_If(); 942 IfNode* iff2 = proj2->in(0)->isa_If(); 943 if (iff1 == nullptr || iff1->outcnt() != 2 || 944 iff2 == nullptr || iff2->outcnt() != 2) { 945 return false; // No ifs found 946 } 947 if (iff1 == iff2) { 948 igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated 949 igvn->replace_input_of(region, idx1, iff1->in(0)); 950 igvn->replace_input_of(region, idx2, igvn->C->top()); 951 return (region == this); // Remove useless if (both projections map to the same control/value) 952 } 953 BoolNode* bol1 = iff1->in(1)->isa_Bool(); 954 BoolNode* bol2 = iff2->in(1)->isa_Bool(); 955 if (bol1 == nullptr || bol2 == nullptr) { 956 return false; // No bool inputs found 957 } 958 Node* cmp1 = bol1->in(1); 959 Node* cmp2 = bol2->in(1); 960 bool commute = false; 961 if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) { 962 return false; // No comparison 963 } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD || 964 cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD || 965 cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN || 966 cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN || 967 cmp1->is_SubTypeCheck() || cmp2->is_SubTypeCheck()) { 968 // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests. 969 // SubTypeCheck is not commutative 970 return false; 971 } else if (cmp1 != cmp2) { 972 if (cmp1->in(1) == cmp2->in(2) && 973 cmp1->in(2) == cmp2->in(1)) { 974 commute = true; // Same but swapped inputs, commute the test 975 } else { 976 return false; // Ifs are not comparing the same values 977 } 978 } 979 proj1 = proj1->other_if_proj(); 980 proj2 = proj2->other_if_proj(); 981 if (!((proj1->unique_ctrl_out_or_null() == iff2 && 982 proj2->unique_ctrl_out_or_null() == this) || 983 (proj2->unique_ctrl_out_or_null() == iff1 && 984 proj1->unique_ctrl_out_or_null() == this))) { 985 return false; // Ifs are not connected through other projs 986 } 987 // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged 988 // through 'region' and map to the same value. Merge the boolean tests and replace 989 // the ifs by a single comparison. 990 BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate(); 991 BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate(); 992 test1 = commute ? test1.commute() : test1; 993 // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine. 994 BoolTest::mask res = test1.merge(test2); 995 if (res == BoolTest::illegal) { 996 return false; // Unable to merge tests 997 } 998 // Adjust iff1 to always pass (only iff2 will remain) 999 igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con)); 1000 if (res == BoolTest::never) { 1001 // Merged test is always false, adjust iff2 to always fail 1002 igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con)); 1003 } else { 1004 // Replace bool input of iff2 with merged test 1005 BoolNode* new_bol = new BoolNode(bol2->in(1), res); 1006 igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn))); 1007 if (new_bol->outcnt() == 0) { 1008 igvn->remove_dead_node(new_bol); 1009 } 1010 } 1011 return false; 1012 } 1013 1014 const RegMask &RegionNode::out_RegMask() const { 1015 return RegMask::Empty; 1016 } 1017 1018 #ifndef PRODUCT 1019 void RegionNode::dump_spec(outputStream* st) const { 1020 Node::dump_spec(st); 1021 switch (loop_status()) { 1022 case RegionNode::LoopStatus::MaybeIrreducibleEntry: 1023 st->print("#irreducible "); 1024 break; 1025 case RegionNode::LoopStatus::Reducible: 1026 st->print("#reducible "); 1027 break; 1028 case RegionNode::LoopStatus::NeverIrreducibleEntry: 1029 break; // nothing 1030 } 1031 } 1032 #endif 1033 1034 // Find the one non-null required input. RegionNode only 1035 Node *Node::nonnull_req() const { 1036 assert( is_Region(), "" ); 1037 for( uint i = 1; i < _cnt; i++ ) 1038 if( in(i) ) 1039 return in(i); 1040 ShouldNotReachHere(); 1041 return nullptr; 1042 } 1043 1044 1045 //============================================================================= 1046 // note that these functions assume that the _adr_type field is flattened 1047 uint PhiNode::hash() const { 1048 const Type* at = _adr_type; 1049 return TypeNode::hash() + (at ? at->hash() : 0); 1050 } 1051 bool PhiNode::cmp( const Node &n ) const { 1052 return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type; 1053 } 1054 static inline 1055 const TypePtr* flatten_phi_adr_type(const TypePtr* at) { 1056 if (at == nullptr || at == TypePtr::BOTTOM) return at; 1057 return Compile::current()->alias_type(at)->adr_type(); 1058 } 1059 1060 //----------------------------make--------------------------------------------- 1061 // create a new phi with edges matching r and set (initially) to x 1062 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) { 1063 uint preds = r->req(); // Number of predecessor paths 1064 assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at"); 1065 PhiNode* p = new PhiNode(r, t, at); 1066 for (uint j = 1; j < preds; j++) { 1067 // Fill in all inputs, except those which the region does not yet have 1068 if (r->in(j) != nullptr) 1069 p->init_req(j, x); 1070 } 1071 return p; 1072 } 1073 PhiNode* PhiNode::make(Node* r, Node* x) { 1074 const Type* t = x->bottom_type(); 1075 const TypePtr* at = nullptr; 1076 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type()); 1077 return make(r, x, t, at); 1078 } 1079 PhiNode* PhiNode::make_blank(Node* r, Node* x) { 1080 const Type* t = x->bottom_type(); 1081 const TypePtr* at = nullptr; 1082 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type()); 1083 return new PhiNode(r, t, at); 1084 } 1085 1086 1087 //------------------------slice_memory----------------------------------------- 1088 // create a new phi with narrowed memory type 1089 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const { 1090 PhiNode* mem = (PhiNode*) clone(); 1091 *(const TypePtr**)&mem->_adr_type = adr_type; 1092 // convert self-loops, or else we get a bad graph 1093 for (uint i = 1; i < req(); i++) { 1094 if ((const Node*)in(i) == this) mem->set_req(i, mem); 1095 } 1096 mem->verify_adr_type(); 1097 return mem; 1098 } 1099 1100 //------------------------split_out_instance----------------------------------- 1101 // Split out an instance type from a bottom phi. 1102 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const { 1103 const TypeOopPtr *t_oop = at->isa_oopptr(); 1104 assert(t_oop != nullptr && t_oop->is_known_instance(), "expecting instance oopptr"); 1105 1106 // Check if an appropriate node already exists. 1107 Node *region = in(0); 1108 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 1109 Node* use = region->fast_out(k); 1110 if( use->is_Phi()) { 1111 PhiNode *phi2 = use->as_Phi(); 1112 if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) { 1113 return phi2; 1114 } 1115 } 1116 } 1117 Compile *C = igvn->C; 1118 Node_Array node_map; 1119 Node_Stack stack(C->live_nodes() >> 4); 1120 PhiNode *nphi = slice_memory(at); 1121 igvn->register_new_node_with_optimizer( nphi ); 1122 node_map.map(_idx, nphi); 1123 stack.push((Node *)this, 1); 1124 while(!stack.is_empty()) { 1125 PhiNode *ophi = stack.node()->as_Phi(); 1126 uint i = stack.index(); 1127 assert(i >= 1, "not control edge"); 1128 stack.pop(); 1129 nphi = node_map[ophi->_idx]->as_Phi(); 1130 for (; i < ophi->req(); i++) { 1131 Node *in = ophi->in(i); 1132 if (in == nullptr || igvn->type(in) == Type::TOP) 1133 continue; 1134 Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, nullptr, igvn); 1135 PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : nullptr; 1136 if (optphi != nullptr && optphi->adr_type() == TypePtr::BOTTOM) { 1137 opt = node_map[optphi->_idx]; 1138 if (opt == nullptr) { 1139 stack.push(ophi, i); 1140 nphi = optphi->slice_memory(at); 1141 igvn->register_new_node_with_optimizer( nphi ); 1142 node_map.map(optphi->_idx, nphi); 1143 ophi = optphi; 1144 i = 0; // will get incremented at top of loop 1145 continue; 1146 } 1147 } 1148 nphi->set_req(i, opt); 1149 } 1150 } 1151 return nphi; 1152 } 1153 1154 //------------------------verify_adr_type-------------------------------------- 1155 #ifdef ASSERT 1156 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const { 1157 if (visited.test_set(_idx)) return; //already visited 1158 1159 // recheck constructor invariants: 1160 verify_adr_type(false); 1161 1162 // recheck local phi/phi consistency: 1163 assert(_adr_type == at || _adr_type == TypePtr::BOTTOM, 1164 "adr_type must be consistent across phi nest"); 1165 1166 // walk around 1167 for (uint i = 1; i < req(); i++) { 1168 Node* n = in(i); 1169 if (n == nullptr) continue; 1170 const Node* np = in(i); 1171 if (np->is_Phi()) { 1172 np->as_Phi()->verify_adr_type(visited, at); 1173 } else if (n->bottom_type() == Type::TOP 1174 || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) { 1175 // ignore top inputs 1176 } else { 1177 const TypePtr* nat = flatten_phi_adr_type(n->adr_type()); 1178 // recheck phi/non-phi consistency at leaves: 1179 assert((nat != nullptr) == (at != nullptr), ""); 1180 assert(nat == at || nat == TypePtr::BOTTOM, 1181 "adr_type must be consistent at leaves of phi nest"); 1182 } 1183 } 1184 } 1185 1186 // Verify a whole nest of phis rooted at this one. 1187 void PhiNode::verify_adr_type(bool recursive) const { 1188 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 1189 if (Node::in_dump()) return; // muzzle asserts when printing 1190 1191 assert((_type == Type::MEMORY) == (_adr_type != nullptr), "adr_type for memory phis only"); 1192 1193 if (!VerifyAliases) return; // verify thoroughly only if requested 1194 1195 assert(_adr_type == flatten_phi_adr_type(_adr_type), 1196 "Phi::adr_type must be pre-normalized"); 1197 1198 if (recursive) { 1199 VectorSet visited; 1200 verify_adr_type(visited, _adr_type); 1201 } 1202 } 1203 #endif 1204 1205 1206 //------------------------------Value------------------------------------------ 1207 // Compute the type of the PhiNode 1208 const Type* PhiNode::Value(PhaseGVN* phase) const { 1209 Node *r = in(0); // RegionNode 1210 if( !r ) // Copy or dead 1211 return in(1) ? phase->type(in(1)) : Type::TOP; 1212 1213 // Note: During parsing, phis are often transformed before their regions. 1214 // This means we have to use type_or_null to defend against untyped regions. 1215 if( phase->type_or_null(r) == Type::TOP ) // Dead code? 1216 return Type::TOP; 1217 1218 // Check for trip-counted loop. If so, be smarter. 1219 BaseCountedLoopNode* l = r->is_BaseCountedLoop() ? r->as_BaseCountedLoop() : nullptr; 1220 if (l && ((const Node*)l->phi() == this)) { // Trip counted loop! 1221 // protect against init_trip() or limit() returning null 1222 if (l->can_be_counted_loop(phase)) { 1223 const Node* init = l->init_trip(); 1224 const Node* limit = l->limit(); 1225 const Node* stride = l->stride(); 1226 if (init != nullptr && limit != nullptr && stride != nullptr) { 1227 const TypeInteger* lo = phase->type(init)->isa_integer(l->bt()); 1228 const TypeInteger* hi = phase->type(limit)->isa_integer(l->bt()); 1229 const TypeInteger* stride_t = phase->type(stride)->isa_integer(l->bt()); 1230 if (lo != nullptr && hi != nullptr && stride_t != nullptr) { // Dying loops might have TOP here 1231 assert(stride_t->is_con(), "bad stride type"); 1232 BoolTest::mask bt = l->loopexit()->test_trip(); 1233 // If the loop exit condition is "not equal", the condition 1234 // would not trigger if init > limit (if stride > 0) or if 1235 // init < limit if (stride > 0) so we can't deduce bounds 1236 // for the iv from the exit condition. 1237 if (bt != BoolTest::ne) { 1238 jlong stride_con = stride_t->get_con_as_long(l->bt()); 1239 if (stride_con < 0) { // Down-counter loop 1240 swap(lo, hi); 1241 jlong iv_range_lower_limit = lo->lo_as_long(); 1242 // Prevent overflow when adding one below 1243 if (iv_range_lower_limit < max_signed_integer(l->bt())) { 1244 // The loop exit condition is: iv + stride > limit (iv is this Phi). So the loop iterates until 1245 // iv + stride <= limit 1246 // We know that: limit >= lo->lo_as_long() and stride <= -1 1247 // So when the loop exits, iv has to be at most lo->lo_as_long() + 1 1248 iv_range_lower_limit += 1; // lo is after decrement 1249 // Exact bounds for the phi can be computed when ABS(stride) greater than 1 if bounds are constant. 1250 if (lo->is_con() && hi->is_con() && hi->lo_as_long() > lo->hi_as_long() && stride_con != -1) { 1251 julong uhi = static_cast<julong>(hi->lo_as_long()); 1252 julong ulo = static_cast<julong>(lo->hi_as_long()); 1253 julong diff = ((uhi - ulo - 1) / (-stride_con)) * (-stride_con); 1254 julong ufirst = hi->lo_as_long() - diff; 1255 iv_range_lower_limit = reinterpret_cast<jlong &>(ufirst); 1256 assert(iv_range_lower_limit >= lo->lo_as_long() + 1, "should end up with narrower range"); 1257 } 1258 } 1259 return TypeInteger::make(MIN2(iv_range_lower_limit, hi->lo_as_long()), hi->hi_as_long(), 3, l->bt())->filter_speculative(_type); 1260 } else if (stride_con >= 0) { 1261 jlong iv_range_upper_limit = hi->hi_as_long(); 1262 // Prevent overflow when subtracting one below 1263 if (iv_range_upper_limit > min_signed_integer(l->bt())) { 1264 // The loop exit condition is: iv + stride < limit (iv is this Phi). So the loop iterates until 1265 // iv + stride >= limit 1266 // We know that: limit <= hi->hi_as_long() and stride >= 1 1267 // So when the loop exits, iv has to be at most hi->hi_as_long() - 1 1268 iv_range_upper_limit -= 1; 1269 // Exact bounds for the phi can be computed when ABS(stride) greater than 1 if bounds are constant. 1270 if (lo->is_con() && hi->is_con() && hi->lo_as_long() > lo->hi_as_long() && stride_con != 1) { 1271 julong uhi = static_cast<julong>(hi->lo_as_long()); 1272 julong ulo = static_cast<julong>(lo->hi_as_long()); 1273 julong diff = ((uhi - ulo - 1) / stride_con) * stride_con; 1274 julong ulast = lo->hi_as_long() + diff; 1275 iv_range_upper_limit = reinterpret_cast<jlong &>(ulast); 1276 assert(iv_range_upper_limit <= hi->hi_as_long() - 1, "should end up with narrower range"); 1277 } 1278 } 1279 return TypeInteger::make(lo->lo_as_long(), MAX2(lo->hi_as_long(), iv_range_upper_limit), 3, l->bt())->filter_speculative(_type); 1280 } 1281 } 1282 } 1283 } 1284 } else if (l->in(LoopNode::LoopBackControl) != nullptr && 1285 in(LoopNode::EntryControl) != nullptr && 1286 phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) { 1287 // During CCP, if we saturate the type of a counted loop's Phi 1288 // before the special code for counted loop above has a chance 1289 // to run (that is as long as the type of the backedge's control 1290 // is top), we might end up with non monotonic types 1291 return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type); 1292 } 1293 } 1294 1295 // Default case: merge all inputs 1296 const Type *t = Type::TOP; // Merged type starting value 1297 for (uint i = 1; i < req(); ++i) {// For all paths in 1298 // Reachable control path? 1299 if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) { 1300 const Type* ti = phase->type(in(i)); 1301 t = t->meet_speculative(ti); 1302 } 1303 } 1304 1305 // The worst-case type (from ciTypeFlow) should be consistent with "t". 1306 // That is, we expect that "t->higher_equal(_type)" holds true. 1307 // There are various exceptions: 1308 // - Inputs which are phis might in fact be widened unnecessarily. 1309 // For example, an input might be a widened int while the phi is a short. 1310 // - Inputs might be BotPtrs but this phi is dependent on a null check, 1311 // and postCCP has removed the cast which encodes the result of the check. 1312 // - The type of this phi is an interface, and the inputs are classes. 1313 // - Value calls on inputs might produce fuzzy results. 1314 // (Occurrences of this case suggest improvements to Value methods.) 1315 // 1316 // It is not possible to see Type::BOTTOM values as phi inputs, 1317 // because the ciTypeFlow pre-pass produces verifier-quality types. 1318 const Type* ft = t->filter_speculative(_type); // Worst case type 1319 1320 #ifdef ASSERT 1321 // The following logic has been moved into TypeOopPtr::filter. 1322 const Type* jt = t->join_speculative(_type); 1323 if (jt->empty()) { // Emptied out??? 1324 // Otherwise it's something stupid like non-overlapping int ranges 1325 // found on dying counted loops. 1326 assert(ft == Type::TOP, ""); // Canonical empty value 1327 } 1328 1329 else { 1330 1331 if (jt != ft && jt->base() == ft->base()) { 1332 if (jt->isa_int() && 1333 jt->is_int()->_lo == ft->is_int()->_lo && 1334 jt->is_int()->_hi == ft->is_int()->_hi) 1335 jt = ft; 1336 if (jt->isa_long() && 1337 jt->is_long()->_lo == ft->is_long()->_lo && 1338 jt->is_long()->_hi == ft->is_long()->_hi) 1339 jt = ft; 1340 } 1341 if (jt != ft) { 1342 tty->print("merge type: "); t->dump(); tty->cr(); 1343 tty->print("kill type: "); _type->dump(); tty->cr(); 1344 tty->print("join type: "); jt->dump(); tty->cr(); 1345 tty->print("filter type: "); ft->dump(); tty->cr(); 1346 } 1347 assert(jt == ft, ""); 1348 } 1349 #endif //ASSERT 1350 1351 // Deal with conversion problems found in data loops. 1352 ft = phase->saturate_and_maybe_push_to_igvn_worklist(this, ft); 1353 return ft; 1354 } 1355 1356 // Does this Phi represent a simple well-shaped diamond merge? Return the 1357 // index of the true path or 0 otherwise. 1358 int PhiNode::is_diamond_phi() const { 1359 Node* region = in(0); 1360 assert(region != nullptr && region->is_Region(), "phi must have region"); 1361 if (!region->as_Region()->is_diamond()) { 1362 return 0; 1363 } 1364 1365 if (region->in(1)->is_IfTrue()) { 1366 assert(region->in(2)->is_IfFalse(), "bad If"); 1367 return 1; 1368 } else { 1369 // Flipped projections. 1370 assert(region->in(2)->is_IfTrue(), "bad If"); 1371 return 2; 1372 } 1373 } 1374 1375 // Do the following transformation if we find the corresponding graph shape, remove the involved memory phi and return 1376 // true. Otherwise, return false if the transformation cannot be applied. 1377 // 1378 // If If 1379 // / \ / \ 1380 // IfFalse IfTrue /- Some Node IfFalse IfTrue 1381 // \ / / / \ / Some Node 1382 // Region / /-MergeMem ===> Region | 1383 // / \---Phi | MergeMem 1384 // [other phis] \ [other phis] | 1385 // use use 1386 bool PhiNode::try_clean_memory_phi(PhaseIterGVN* igvn) { 1387 if (_type != Type::MEMORY) { 1388 return false; 1389 } 1390 assert(is_diamond_phi() > 0, "sanity"); 1391 assert(req() == 3, "same as region"); 1392 const Node* region = in(0); 1393 for (uint i = 1; i < 3; i++) { 1394 Node* phi_input = in(i); 1395 if (phi_input != nullptr && phi_input->is_MergeMem() && region->in(i)->outcnt() == 1) { 1396 // Nothing is control-dependent on path #i except the region itself. 1397 MergeMemNode* merge_mem = phi_input->as_MergeMem(); 1398 uint j = 3 - i; 1399 Node* other_phi_input = in(j); 1400 if (other_phi_input != nullptr && other_phi_input == merge_mem->base_memory()) { 1401 // merge_mem is a successor memory to other_phi_input, and is not pinned inside the diamond, so push it out. 1402 // This will allow the diamond to collapse completely if there are no other phis left. 1403 igvn->replace_node(this, merge_mem); 1404 return true; 1405 } 1406 } 1407 } 1408 return false; 1409 } 1410 //----------------------------check_cmove_id----------------------------------- 1411 // Check for CMove'ing a constant after comparing against the constant. 1412 // Happens all the time now, since if we compare equality vs a constant in 1413 // the parser, we "know" the variable is constant on one path and we force 1414 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a 1415 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more 1416 // general in that we don't need constants. Since CMove's are only inserted 1417 // in very special circumstances, we do it here on generic Phi's. 1418 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) { 1419 assert(true_path !=0, "only diamond shape graph expected"); 1420 1421 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1422 // phi->region->if_proj->ifnode->bool->cmp 1423 Node* region = in(0); 1424 Node* iff = region->in(1)->in(0); 1425 BoolNode* b = iff->in(1)->as_Bool(); 1426 Node* cmp = b->in(1); 1427 Node* tval = in(true_path); 1428 Node* fval = in(3-true_path); 1429 Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b); 1430 if (id == nullptr) 1431 return nullptr; 1432 1433 // Either value might be a cast that depends on a branch of 'iff'. 1434 // Since the 'id' value will float free of the diamond, either 1435 // decast or return failure. 1436 Node* ctl = id->in(0); 1437 if (ctl != nullptr && ctl->in(0) == iff) { 1438 if (id->is_ConstraintCast()) { 1439 return id->in(1); 1440 } else { 1441 // Don't know how to disentangle this value. 1442 return nullptr; 1443 } 1444 } 1445 1446 return id; 1447 } 1448 1449 //------------------------------Identity--------------------------------------- 1450 // Check for Region being Identity. 1451 Node* PhiNode::Identity(PhaseGVN* phase) { 1452 if (must_wait_for_region_in_irreducible_loop(phase)) { 1453 return this; 1454 } 1455 // Check for no merging going on 1456 // (There used to be special-case code here when this->region->is_Loop. 1457 // It would check for a tributary phi on the backedge that the main phi 1458 // trivially, perhaps with a single cast. The unique_input method 1459 // does all this and more, by reducing such tributaries to 'this'.) 1460 Node* uin = unique_input(phase, false); 1461 if (uin != nullptr) { 1462 return uin; 1463 } 1464 1465 int true_path = is_diamond_phi(); 1466 // Delay CMove'ing identity if Ideal has not had the chance to handle unsafe cases, yet. 1467 if (true_path != 0 && !(phase->is_IterGVN() && wait_for_region_igvn(phase))) { 1468 Node* id = is_cmove_id(phase, true_path); 1469 if (id != nullptr) { 1470 return id; 1471 } 1472 } 1473 1474 // Looking for phis with identical inputs. If we find one that has 1475 // type TypePtr::BOTTOM, replace the current phi with the bottom phi. 1476 if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() != 1477 TypePtr::BOTTOM && !adr_type()->is_known_instance()) { 1478 uint phi_len = req(); 1479 Node* phi_reg = region(); 1480 for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) { 1481 Node* u = phi_reg->fast_out(i); 1482 if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY && 1483 u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg && 1484 u->req() == phi_len) { 1485 for (uint j = 1; j < phi_len; j++) { 1486 if (in(j) != u->in(j)) { 1487 u = nullptr; 1488 break; 1489 } 1490 } 1491 if (u != nullptr) { 1492 return u; 1493 } 1494 } 1495 } 1496 } 1497 1498 return this; // No identity 1499 } 1500 1501 //-----------------------------unique_input------------------------------------ 1502 // Find the unique value, discounting top, self-loops, and casts. 1503 // Return top if there are no inputs, and self if there are multiple. 1504 Node* PhiNode::unique_input(PhaseValues* phase, bool uncast) { 1505 // 1) One unique direct input, 1506 // or if uncast is true: 1507 // 2) some of the inputs have an intervening ConstraintCast 1508 // 3) an input is a self loop 1509 // 1510 // 1) input or 2) input or 3) input __ 1511 // / \ / \ \ / \ 1512 // \ / | cast phi cast 1513 // phi \ / / \ / 1514 // phi / -- 1515 1516 Node* r = in(0); // RegionNode 1517 Node* input = nullptr; // The unique direct input (maybe uncasted = ConstraintCasts removed) 1518 1519 for (uint i = 1, cnt = req(); i < cnt; ++i) { 1520 Node* rc = r->in(i); 1521 if (rc == nullptr || phase->type(rc) == Type::TOP) 1522 continue; // ignore unreachable control path 1523 Node* n = in(i); 1524 if (n == nullptr) 1525 continue; 1526 Node* un = n; 1527 if (uncast) { 1528 #ifdef ASSERT 1529 Node* m = un->uncast(); 1530 #endif 1531 while (un != nullptr && un->req() == 2 && un->is_ConstraintCast()) { 1532 Node* next = un->in(1); 1533 if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) { 1534 // risk exposing raw ptr at safepoint 1535 break; 1536 } 1537 un = next; 1538 } 1539 assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation"); 1540 } 1541 if (un == nullptr || un == this || phase->type(un) == Type::TOP) { 1542 continue; // ignore if top, or in(i) and "this" are in a data cycle 1543 } 1544 // Check for a unique input (maybe uncasted) 1545 if (input == nullptr) { 1546 input = un; 1547 } else if (input != un) { 1548 input = NodeSentinel; // no unique input 1549 } 1550 } 1551 if (input == nullptr) { 1552 return phase->C->top(); // no inputs 1553 } 1554 1555 if (input != NodeSentinel) { 1556 return input; // one unique direct input 1557 } 1558 1559 // Nothing. 1560 return nullptr; 1561 } 1562 1563 //------------------------------is_x2logic------------------------------------- 1564 // Check for simple convert-to-boolean pattern 1565 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1) 1566 // Convert Phi to an ConvIB. 1567 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) { 1568 assert(true_path !=0, "only diamond shape graph expected"); 1569 1570 // If we're late in the optimization process, we may have already expanded Conv2B nodes 1571 if (phase->C->post_loop_opts_phase() && !Matcher::match_rule_supported(Op_Conv2B)) { 1572 return nullptr; 1573 } 1574 1575 // Convert the true/false index into an expected 0/1 return. 1576 // Map 2->0 and 1->1. 1577 int flipped = 2-true_path; 1578 1579 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1580 // phi->region->if_proj->ifnode->bool->cmp 1581 Node *region = phi->in(0); 1582 Node *iff = region->in(1)->in(0); 1583 BoolNode *b = (BoolNode*)iff->in(1); 1584 const CmpNode *cmp = (CmpNode*)b->in(1); 1585 1586 Node *zero = phi->in(1); 1587 Node *one = phi->in(2); 1588 const Type *tzero = phase->type( zero ); 1589 const Type *tone = phase->type( one ); 1590 1591 // Check for compare vs 0 1592 const Type *tcmp = phase->type(cmp->in(2)); 1593 if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) { 1594 // Allow cmp-vs-1 if the other input is bounded by 0-1 1595 if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) ) 1596 return nullptr; 1597 flipped = 1-flipped; // Test is vs 1 instead of 0! 1598 } 1599 1600 // Check for setting zero/one opposite expected 1601 if( tzero == TypeInt::ZERO ) { 1602 if( tone == TypeInt::ONE ) { 1603 } else return nullptr; 1604 } else if( tzero == TypeInt::ONE ) { 1605 if( tone == TypeInt::ZERO ) { 1606 flipped = 1-flipped; 1607 } else return nullptr; 1608 } else return nullptr; 1609 1610 // Check for boolean test backwards 1611 if( b->_test._test == BoolTest::ne ) { 1612 } else if( b->_test._test == BoolTest::eq ) { 1613 flipped = 1-flipped; 1614 } else return nullptr; 1615 1616 // Build int->bool conversion 1617 Node* n = new Conv2BNode(cmp->in(1)); 1618 if (flipped) { 1619 n = new XorINode(phase->transform(n), phase->intcon(1)); 1620 } 1621 1622 return n; 1623 } 1624 1625 //------------------------------is_cond_add------------------------------------ 1626 // Check for simple conditional add pattern: "(P < Q) ? X+Y : X;" 1627 // To be profitable the control flow has to disappear; there can be no other 1628 // values merging here. We replace the test-and-branch with: 1629 // "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by 1630 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'. 1631 // Then convert Y to 0-or-Y and finally add. 1632 // This is a key transform for SpecJava _201_compress. 1633 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) { 1634 assert(true_path !=0, "only diamond shape graph expected"); 1635 1636 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1637 // phi->region->if_proj->ifnode->bool->cmp 1638 RegionNode *region = (RegionNode*)phi->in(0); 1639 Node *iff = region->in(1)->in(0); 1640 BoolNode* b = iff->in(1)->as_Bool(); 1641 const CmpNode *cmp = (CmpNode*)b->in(1); 1642 1643 // Make sure only merging this one phi here 1644 if (region->has_unique_phi() != phi) return nullptr; 1645 1646 // Make sure each arm of the diamond has exactly one output, which we assume 1647 // is the region. Otherwise, the control flow won't disappear. 1648 if (region->in(1)->outcnt() != 1) return nullptr; 1649 if (region->in(2)->outcnt() != 1) return nullptr; 1650 1651 // Check for "(P < Q)" of type signed int 1652 if (b->_test._test != BoolTest::lt) return nullptr; 1653 if (cmp->Opcode() != Op_CmpI) return nullptr; 1654 1655 Node *p = cmp->in(1); 1656 Node *q = cmp->in(2); 1657 Node *n1 = phi->in( true_path); 1658 Node *n2 = phi->in(3-true_path); 1659 1660 int op = n1->Opcode(); 1661 if( op != Op_AddI // Need zero as additive identity 1662 /*&&op != Op_SubI && 1663 op != Op_AddP && 1664 op != Op_XorI && 1665 op != Op_OrI*/ ) 1666 return nullptr; 1667 1668 Node *x = n2; 1669 Node *y = nullptr; 1670 if( x == n1->in(1) ) { 1671 y = n1->in(2); 1672 } else if( x == n1->in(2) ) { 1673 y = n1->in(1); 1674 } else return nullptr; 1675 1676 // Not so profitable if compare and add are constants 1677 if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() ) 1678 return nullptr; 1679 1680 Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) ); 1681 Node *j_and = phase->transform( new AndINode(cmplt,y) ); 1682 return new AddINode(j_and,x); 1683 } 1684 1685 //------------------------------is_absolute------------------------------------ 1686 // Check for absolute value. 1687 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) { 1688 assert(true_path !=0, "only diamond shape graph expected"); 1689 1690 int cmp_zero_idx = 0; // Index of compare input where to look for zero 1691 int phi_x_idx = 0; // Index of phi input where to find naked x 1692 1693 // ABS ends with the merge of 2 control flow paths. 1694 // Find the false path from the true path. With only 2 inputs, 3 - x works nicely. 1695 int false_path = 3 - true_path; 1696 1697 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1698 // phi->region->if_proj->ifnode->bool->cmp 1699 BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool(); 1700 Node *cmp = bol->in(1); 1701 1702 // Check bool sense 1703 if (cmp->Opcode() == Op_CmpF || cmp->Opcode() == Op_CmpD) { 1704 switch (bol->_test._test) { 1705 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break; 1706 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break; 1707 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break; 1708 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break; 1709 default: return nullptr; break; 1710 } 1711 } else if (cmp->Opcode() == Op_CmpI || cmp->Opcode() == Op_CmpL) { 1712 switch (bol->_test._test) { 1713 case BoolTest::lt: 1714 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break; 1715 case BoolTest::gt: 1716 case BoolTest::ge: cmp_zero_idx = 2; phi_x_idx = true_path; break; 1717 default: return nullptr; break; 1718 } 1719 } 1720 1721 // Test is next 1722 const Type *tzero = nullptr; 1723 switch (cmp->Opcode()) { 1724 case Op_CmpI: tzero = TypeInt::ZERO; break; // Integer ABS 1725 case Op_CmpL: tzero = TypeLong::ZERO; break; // Long ABS 1726 case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS 1727 case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS 1728 default: return nullptr; 1729 } 1730 1731 // Find zero input of compare; the other input is being abs'd 1732 Node *x = nullptr; 1733 bool flip = false; 1734 if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) { 1735 x = cmp->in(3 - cmp_zero_idx); 1736 } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) { 1737 // The test is inverted, we should invert the result... 1738 x = cmp->in(cmp_zero_idx); 1739 flip = true; 1740 } else { 1741 return nullptr; 1742 } 1743 1744 // Next get the 2 pieces being selected, one is the original value 1745 // and the other is the negated value. 1746 if( phi_root->in(phi_x_idx) != x ) return nullptr; 1747 1748 // Check other phi input for subtract node 1749 Node *sub = phi_root->in(3 - phi_x_idx); 1750 1751 bool is_sub = sub->Opcode() == Op_SubF || sub->Opcode() == Op_SubD || 1752 sub->Opcode() == Op_SubI || sub->Opcode() == Op_SubL; 1753 1754 // Allow only Sub(0,X) and fail out for all others; Neg is not OK 1755 if (!is_sub || phase->type(sub->in(1)) != tzero || sub->in(2) != x) return nullptr; 1756 1757 if (tzero == TypeF::ZERO) { 1758 x = new AbsFNode(x); 1759 if (flip) { 1760 x = new SubFNode(sub->in(1), phase->transform(x)); 1761 } 1762 } else if (tzero == TypeD::ZERO) { 1763 x = new AbsDNode(x); 1764 if (flip) { 1765 x = new SubDNode(sub->in(1), phase->transform(x)); 1766 } 1767 } else if (tzero == TypeInt::ZERO && Matcher::match_rule_supported(Op_AbsI)) { 1768 x = new AbsINode(x); 1769 if (flip) { 1770 x = new SubINode(sub->in(1), phase->transform(x)); 1771 } 1772 } else if (tzero == TypeLong::ZERO && Matcher::match_rule_supported(Op_AbsL)) { 1773 x = new AbsLNode(x); 1774 if (flip) { 1775 x = new SubLNode(sub->in(1), phase->transform(x)); 1776 } 1777 } else return nullptr; 1778 1779 return x; 1780 } 1781 1782 //------------------------------split_once------------------------------------- 1783 // Helper for split_flow_path 1784 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) { 1785 igvn->hash_delete(n); // Remove from hash before hacking edges 1786 1787 uint j = 1; 1788 for (uint i = phi->req()-1; i > 0; i--) { 1789 if (phi->in(i) == val) { // Found a path with val? 1790 // Add to NEW Region/Phi, no DU info 1791 newn->set_req( j++, n->in(i) ); 1792 // Remove from OLD Region/Phi 1793 n->del_req(i); 1794 } 1795 } 1796 1797 // Register the new node but do not transform it. Cannot transform until the 1798 // entire Region/Phi conglomerate has been hacked as a single huge transform. 1799 igvn->register_new_node_with_optimizer( newn ); 1800 1801 // Now I can point to the new node. 1802 n->add_req(newn); 1803 igvn->_worklist.push(n); 1804 } 1805 1806 //------------------------------split_flow_path-------------------------------- 1807 // Check for merging identical values and split flow paths 1808 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) { 1809 // This optimization tries to find two or more inputs of phi with the same constant value 1810 // It then splits them into a separate Phi, and according Region. If this is a loop-entry, 1811 // and the loop entry has multiple fall-in edges, and some of those fall-in edges have that 1812 // constant, and others not, we may split the fall-in edges into separate Phi's, and create 1813 // an irreducible loop. For reducible loops, this never seems to happen, as the multiple 1814 // fall-in edges are already merged before the loop head during parsing. But with irreducible 1815 // loops present the order or merging during parsing can sometimes prevent this. 1816 if (phase->C->has_irreducible_loop()) { 1817 // Avoid this optimization if any irreducible loops are present. Else we may create 1818 // an irreducible loop that we do not detect. 1819 return nullptr; 1820 } 1821 BasicType bt = phi->type()->basic_type(); 1822 if( bt == T_ILLEGAL || type2size[bt] <= 0 ) 1823 return nullptr; // Bail out on funny non-value stuff 1824 if( phi->req() <= 3 ) // Need at least 2 matched inputs and a 1825 return nullptr; // third unequal input to be worth doing 1826 1827 // Scan for a constant 1828 uint i; 1829 for( i = 1; i < phi->req()-1; i++ ) { 1830 Node *n = phi->in(i); 1831 if( !n ) return nullptr; 1832 if( phase->type(n) == Type::TOP ) return nullptr; 1833 if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass ) 1834 break; 1835 } 1836 if( i >= phi->req() ) // Only split for constants 1837 return nullptr; 1838 1839 Node *val = phi->in(i); // Constant to split for 1840 uint hit = 0; // Number of times it occurs 1841 Node *r = phi->region(); 1842 1843 for( ; i < phi->req(); i++ ){ // Count occurrences of constant 1844 Node *n = phi->in(i); 1845 if( !n ) return nullptr; 1846 if( phase->type(n) == Type::TOP ) return nullptr; 1847 if( phi->in(i) == val ) { 1848 hit++; 1849 if (Node::may_be_loop_entry(r->in(i))) { 1850 return nullptr; // don't split loop entry path 1851 } 1852 } 1853 } 1854 1855 if( hit <= 1 || // Make sure we find 2 or more 1856 hit == phi->req()-1 ) // and not ALL the same value 1857 return nullptr; 1858 1859 // Now start splitting out the flow paths that merge the same value. 1860 // Split first the RegionNode. 1861 PhaseIterGVN *igvn = phase->is_IterGVN(); 1862 RegionNode *newr = new RegionNode(hit+1); 1863 split_once(igvn, phi, val, r, newr); 1864 1865 // Now split all other Phis than this one 1866 for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) { 1867 Node* phi2 = r->fast_out(k); 1868 if( phi2->is_Phi() && phi2->as_Phi() != phi ) { 1869 PhiNode *newphi = PhiNode::make_blank(newr, phi2); 1870 split_once(igvn, phi, val, phi2, newphi); 1871 } 1872 } 1873 1874 // Clean up this guy 1875 igvn->hash_delete(phi); 1876 for( i = phi->req()-1; i > 0; i-- ) { 1877 if( phi->in(i) == val ) { 1878 phi->del_req(i); 1879 } 1880 } 1881 phi->add_req(val); 1882 1883 return phi; 1884 } 1885 1886 // Returns the BasicType of a given convert node and a type, with special handling to ensure that conversions to 1887 // and from half float will return the SHORT basic type, as that wouldn't be returned typically from TypeInt. 1888 static BasicType get_convert_type(Node* convert, const Type* type) { 1889 int convert_op = convert->Opcode(); 1890 if (type->isa_int() && (convert_op == Op_ConvHF2F || convert_op == Op_ConvF2HF)) { 1891 return T_SHORT; 1892 } 1893 1894 return type->basic_type(); 1895 } 1896 1897 //============================================================================= 1898 //------------------------------simple_data_loop_check------------------------- 1899 // Try to determining if the phi node in a simple safe/unsafe data loop. 1900 // Returns: 1901 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop }; 1902 // Safe - safe case when the phi and it's inputs reference only safe data 1903 // nodes; 1904 // Unsafe - the phi and it's inputs reference unsafe data nodes but there 1905 // is no reference back to the phi - need a graph walk 1906 // to determine if it is in a loop; 1907 // UnsafeLoop - unsafe case when the phi references itself directly or through 1908 // unsafe data node. 1909 // Note: a safe data node is a node which could/never reference itself during 1910 // GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP. 1911 // I mark Phi nodes as safe node not only because they can reference itself 1912 // but also to prevent mistaking the fallthrough case inside an outer loop 1913 // as dead loop when the phi references itself through an other phi. 1914 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const { 1915 // It is unsafe loop if the phi node references itself directly. 1916 if (in == (Node*)this) 1917 return UnsafeLoop; // Unsafe loop 1918 // Unsafe loop if the phi node references itself through an unsafe data node. 1919 // Exclude cases with null inputs or data nodes which could reference 1920 // itself (safe for dead loops). 1921 if (in != nullptr && !in->is_dead_loop_safe()) { 1922 // Check inputs of phi's inputs also. 1923 // It is much less expensive then full graph walk. 1924 uint cnt = in->req(); 1925 uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1; 1926 for (; i < cnt; ++i) { 1927 Node* m = in->in(i); 1928 if (m == (Node*)this) 1929 return UnsafeLoop; // Unsafe loop 1930 if (m != nullptr && !m->is_dead_loop_safe()) { 1931 // Check the most common case (about 30% of all cases): 1932 // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con). 1933 Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : nullptr; 1934 if (m1 == (Node*)this) 1935 return UnsafeLoop; // Unsafe loop 1936 if (m1 != nullptr && m1 == m->in(2) && 1937 m1->is_dead_loop_safe() && m->in(3)->is_Con()) { 1938 continue; // Safe case 1939 } 1940 // The phi references an unsafe node - need full analysis. 1941 return Unsafe; 1942 } 1943 } 1944 } 1945 return Safe; // Safe case - we can optimize the phi node. 1946 } 1947 1948 //------------------------------is_unsafe_data_reference----------------------- 1949 // If phi can be reached through the data input - it is data loop. 1950 bool PhiNode::is_unsafe_data_reference(Node *in) const { 1951 assert(req() > 1, ""); 1952 // First, check simple cases when phi references itself directly or 1953 // through an other node. 1954 LoopSafety safety = simple_data_loop_check(in); 1955 if (safety == UnsafeLoop) 1956 return true; // phi references itself - unsafe loop 1957 else if (safety == Safe) 1958 return false; // Safe case - phi could be replaced with the unique input. 1959 1960 // Unsafe case when we should go through data graph to determine 1961 // if the phi references itself. 1962 1963 ResourceMark rm; 1964 1965 Node_List nstack; 1966 VectorSet visited; 1967 1968 nstack.push(in); // Start with unique input. 1969 visited.set(in->_idx); 1970 while (nstack.size() != 0) { 1971 Node* n = nstack.pop(); 1972 uint cnt = n->req(); 1973 uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1; 1974 for (; i < cnt; i++) { 1975 Node* m = n->in(i); 1976 if (m == (Node*)this) { 1977 return true; // Data loop 1978 } 1979 if (m != nullptr && !m->is_dead_loop_safe()) { // Only look for unsafe cases. 1980 if (!visited.test_set(m->_idx)) 1981 nstack.push(m); 1982 } 1983 } 1984 } 1985 return false; // The phi is not reachable from its inputs 1986 } 1987 1988 // Is this Phi's region or some inputs to the region enqueued for IGVN 1989 // and so could cause the region to be optimized out? 1990 bool PhiNode::wait_for_region_igvn(PhaseGVN* phase) { 1991 PhaseIterGVN* igvn = phase->is_IterGVN(); 1992 Unique_Node_List& worklist = igvn->_worklist; 1993 bool delay = false; 1994 Node* r = in(0); 1995 for (uint j = 1; j < req(); j++) { 1996 Node* rc = r->in(j); 1997 Node* n = in(j); 1998 1999 if (rc == nullptr || !rc->is_Proj()) { continue; } 2000 if (worklist.member(rc)) { 2001 delay = true; 2002 break; 2003 } 2004 2005 if (rc->in(0) == nullptr || !rc->in(0)->is_If()) { continue; } 2006 if (worklist.member(rc->in(0))) { 2007 delay = true; 2008 break; 2009 } 2010 2011 if (rc->in(0)->in(1) == nullptr || !rc->in(0)->in(1)->is_Bool()) { continue; } 2012 if (worklist.member(rc->in(0)->in(1))) { 2013 delay = true; 2014 break; 2015 } 2016 2017 if (rc->in(0)->in(1)->in(1) == nullptr || !rc->in(0)->in(1)->in(1)->is_Cmp()) { continue; } 2018 if (worklist.member(rc->in(0)->in(1)->in(1))) { 2019 delay = true; 2020 break; 2021 } 2022 } 2023 2024 if (delay) { 2025 worklist.push(this); 2026 } 2027 return delay; 2028 } 2029 2030 // If the Phi's Region is in an irreducible loop, and the Region 2031 // has had an input removed, but not yet transformed, it could be 2032 // that the Region (and this Phi) are not reachable from Root. 2033 // If we allow the Phi to collapse before the Region, this may lead 2034 // to dead-loop data. Wait for the Region to check for reachability, 2035 // and potentially remove the dead code. 2036 bool PhiNode::must_wait_for_region_in_irreducible_loop(PhaseGVN* phase) const { 2037 RegionNode* region = in(0)->as_Region(); 2038 if (region->loop_status() == RegionNode::LoopStatus::MaybeIrreducibleEntry) { 2039 Node* top = phase->C->top(); 2040 for (uint j = 1; j < req(); j++) { 2041 Node* rc = region->in(j); // for each control input 2042 if (rc == nullptr || phase->type(rc) == Type::TOP) { 2043 // Region is missing a control input 2044 Node* n = in(j); 2045 if (n != nullptr && n != top) { 2046 // Phi still has its input, so region just lost its input 2047 return true; 2048 } 2049 } 2050 } 2051 } 2052 return false; 2053 } 2054 2055 //------------------------------Ideal------------------------------------------ 2056 // Return a node which is more "ideal" than the current node. Must preserve 2057 // the CFG, but we can still strip out dead paths. 2058 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2059 Node *r = in(0); // RegionNode 2060 assert(r != nullptr && r->is_Region(), "this phi must have a region"); 2061 assert(r->in(0) == nullptr || !r->in(0)->is_Root(), "not a specially hidden merge"); 2062 2063 // Note: During parsing, phis are often transformed before their regions. 2064 // This means we have to use type_or_null to defend against untyped regions. 2065 if( phase->type_or_null(r) == Type::TOP ) // Dead code? 2066 return nullptr; // No change 2067 2068 Node *top = phase->C->top(); 2069 bool new_phi = (outcnt() == 0); // transforming new Phi 2070 // No change for igvn if new phi is not hooked 2071 if (new_phi && can_reshape) 2072 return nullptr; 2073 2074 if (must_wait_for_region_in_irreducible_loop(phase)) { 2075 return nullptr; 2076 } 2077 2078 // The are 2 situations when only one valid phi's input is left 2079 // (in addition to Region input). 2080 // One: region is not loop - replace phi with this input. 2081 // Two: region is loop - replace phi with top since this data path is dead 2082 // and we need to break the dead data loop. 2083 Node* progress = nullptr; // Record if any progress made 2084 for( uint j = 1; j < req(); ++j ){ // For all paths in 2085 // Check unreachable control paths 2086 Node* rc = r->in(j); 2087 Node* n = in(j); // Get the input 2088 if (rc == nullptr || phase->type(rc) == Type::TOP) { 2089 if (n != top) { // Not already top? 2090 PhaseIterGVN *igvn = phase->is_IterGVN(); 2091 if (can_reshape && igvn != nullptr) { 2092 igvn->_worklist.push(r); 2093 } 2094 // Nuke it down 2095 set_req_X(j, top, phase); 2096 progress = this; // Record progress 2097 } 2098 } 2099 } 2100 2101 if (can_reshape && outcnt() == 0) { 2102 // set_req() above may kill outputs if Phi is referenced 2103 // only by itself on the dead (top) control path. 2104 return top; 2105 } 2106 2107 bool uncasted = false; 2108 Node* uin = unique_input(phase, false); 2109 if (uin == nullptr && can_reshape && 2110 // If there is a chance that the region can be optimized out do 2111 // not add a cast node that we can't remove yet. 2112 !wait_for_region_igvn(phase)) { 2113 uncasted = true; 2114 uin = unique_input(phase, true); 2115 } 2116 if (uin == top) { // Simplest case: no alive inputs. 2117 if (can_reshape) // IGVN transformation 2118 return top; 2119 else 2120 return nullptr; // Identity will return TOP 2121 } else if (uin != nullptr) { 2122 // Only one not-null unique input path is left. 2123 // Determine if this input is backedge of a loop. 2124 // (Skip new phis which have no uses and dead regions). 2125 if (outcnt() > 0 && r->in(0) != nullptr) { 2126 if (is_data_loop(r->as_Region(), uin, phase)) { 2127 // Break this data loop to avoid creation of a dead loop. 2128 if (can_reshape) { 2129 return top; 2130 } else { 2131 // We can't return top if we are in Parse phase - cut inputs only 2132 // let Identity to handle the case. 2133 replace_edge(uin, top, phase); 2134 return nullptr; 2135 } 2136 } 2137 } 2138 2139 if (uncasted) { 2140 // Add cast nodes between the phi to be removed and its unique input. 2141 // Wait until after parsing for the type information to propagate from the casts. 2142 assert(can_reshape, "Invalid during parsing"); 2143 const Type* phi_type = bottom_type(); 2144 // Add casts to carry the control dependency of the Phi that is 2145 // going away 2146 Node* cast = nullptr; 2147 const TypeTuple* extra_types = collect_types(phase); 2148 if (phi_type->isa_ptr()) { 2149 const Type* uin_type = phase->type(uin); 2150 if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) { 2151 cast = new CastPPNode(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types); 2152 } else { 2153 // Use a CastPP for a cast to not null and a CheckCastPP for 2154 // a cast to a new klass (and both if both null-ness and 2155 // klass change). 2156 2157 // If the type of phi is not null but the type of uin may be 2158 // null, uin's type must be casted to not null 2159 if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() && 2160 uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) { 2161 cast = new CastPPNode(r, uin, TypePtr::NOTNULL, ConstraintCastNode::StrongDependency, extra_types); 2162 } 2163 2164 // If the type of phi and uin, both casted to not null, 2165 // differ the klass of uin must be (check)cast'ed to match 2166 // that of phi 2167 if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) { 2168 Node* n = uin; 2169 if (cast != nullptr) { 2170 cast = phase->transform(cast); 2171 n = cast; 2172 } 2173 cast = new CheckCastPPNode(r, n, phi_type, ConstraintCastNode::StrongDependency, extra_types); 2174 } 2175 if (cast == nullptr) { 2176 cast = new CastPPNode(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types); 2177 } 2178 } 2179 } else { 2180 cast = ConstraintCastNode::make_cast_for_type(r, uin, phi_type, ConstraintCastNode::StrongDependency, extra_types); 2181 } 2182 assert(cast != nullptr, "cast should be set"); 2183 cast = phase->transform(cast); 2184 // set all inputs to the new cast(s) so the Phi is removed by Identity 2185 PhaseIterGVN* igvn = phase->is_IterGVN(); 2186 for (uint i = 1; i < req(); i++) { 2187 set_req_X(i, cast, igvn); 2188 } 2189 uin = cast; 2190 } 2191 2192 // One unique input. 2193 debug_only(Node* ident = Identity(phase)); 2194 // The unique input must eventually be detected by the Identity call. 2195 #ifdef ASSERT 2196 if (ident != uin && !ident->is_top() && !must_wait_for_region_in_irreducible_loop(phase)) { 2197 // print this output before failing assert 2198 r->dump(3); 2199 this->dump(3); 2200 ident->dump(); 2201 uin->dump(); 2202 } 2203 #endif 2204 // Identity may not return the expected uin, if it has to wait for the region, in irreducible case 2205 assert(ident == uin || ident->is_top() || must_wait_for_region_in_irreducible_loop(phase), "Identity must clean this up"); 2206 return nullptr; 2207 } 2208 2209 Node* opt = nullptr; 2210 int true_path = is_diamond_phi(); 2211 if (true_path != 0 && 2212 // If one of the diamond's branch is in the process of dying then, the Phi's input for that branch might transform 2213 // to top. If that happens replacing the Phi with an operation that consumes the Phi's inputs will cause the Phi 2214 // to be replaced by top. To prevent that, delay the transformation until the branch has a chance to be removed. 2215 !(can_reshape && wait_for_region_igvn(phase))) { 2216 // Check for CMove'ing identity. If it would be unsafe, 2217 // handle it here. In the safe case, let Identity handle it. 2218 Node* unsafe_id = is_cmove_id(phase, true_path); 2219 if( unsafe_id != nullptr && is_unsafe_data_reference(unsafe_id) ) 2220 opt = unsafe_id; 2221 2222 // Check for simple convert-to-boolean pattern 2223 if( opt == nullptr ) 2224 opt = is_x2logic(phase, this, true_path); 2225 2226 // Check for absolute value 2227 if( opt == nullptr ) 2228 opt = is_absolute(phase, this, true_path); 2229 2230 // Check for conditional add 2231 if( opt == nullptr && can_reshape ) 2232 opt = is_cond_add(phase, this, true_path); 2233 2234 // These 4 optimizations could subsume the phi: 2235 // have to check for a dead data loop creation. 2236 if( opt != nullptr ) { 2237 if( opt == unsafe_id || is_unsafe_data_reference(opt) ) { 2238 // Found dead loop. 2239 if( can_reshape ) 2240 return top; 2241 // We can't return top if we are in Parse phase - cut inputs only 2242 // to stop further optimizations for this phi. Identity will return TOP. 2243 assert(req() == 3, "only diamond merge phi here"); 2244 set_req(1, top); 2245 set_req(2, top); 2246 return nullptr; 2247 } else { 2248 return opt; 2249 } 2250 } 2251 } 2252 2253 // Check for merging identical values and split flow paths 2254 if (can_reshape) { 2255 opt = split_flow_path(phase, this); 2256 // This optimization only modifies phi - don't need to check for dead loop. 2257 assert(opt == nullptr || opt == this, "do not elide phi"); 2258 if (opt != nullptr) return opt; 2259 } 2260 2261 if (in(1) != nullptr && in(1)->Opcode() == Op_AddP && can_reshape) { 2262 // Try to undo Phi of AddP: 2263 // (Phi (AddP base address offset) (AddP base2 address2 offset2)) 2264 // becomes: 2265 // newbase := (Phi base base2) 2266 // newaddress := (Phi address address2) 2267 // newoffset := (Phi offset offset2) 2268 // (AddP newbase newaddress newoffset) 2269 // 2270 // This occurs as a result of unsuccessful split_thru_phi and 2271 // interferes with taking advantage of addressing modes. See the 2272 // clone_shift_expressions code in matcher.cpp 2273 Node* addp = in(1); 2274 Node* base = addp->in(AddPNode::Base); 2275 Node* address = addp->in(AddPNode::Address); 2276 Node* offset = addp->in(AddPNode::Offset); 2277 if (base != nullptr && address != nullptr && offset != nullptr && 2278 !base->is_top() && !address->is_top() && !offset->is_top()) { 2279 const Type* base_type = base->bottom_type(); 2280 const Type* address_type = address->bottom_type(); 2281 // make sure that all the inputs are similar to the first one, 2282 // i.e. AddP with base == address and same offset as first AddP 2283 bool doit = true; 2284 for (uint i = 2; i < req(); i++) { 2285 if (in(i) == nullptr || 2286 in(i)->Opcode() != Op_AddP || 2287 in(i)->in(AddPNode::Base) == nullptr || 2288 in(i)->in(AddPNode::Address) == nullptr || 2289 in(i)->in(AddPNode::Offset) == nullptr || 2290 in(i)->in(AddPNode::Base)->is_top() || 2291 in(i)->in(AddPNode::Address)->is_top() || 2292 in(i)->in(AddPNode::Offset)->is_top()) { 2293 doit = false; 2294 break; 2295 } 2296 if (in(i)->in(AddPNode::Base) != base) { 2297 base = nullptr; 2298 } 2299 if (in(i)->in(AddPNode::Offset) != offset) { 2300 offset = nullptr; 2301 } 2302 if (in(i)->in(AddPNode::Address) != address) { 2303 address = nullptr; 2304 } 2305 // Accumulate type for resulting Phi 2306 base_type = base_type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type()); 2307 address_type = address_type->meet_speculative(in(i)->in(AddPNode::Address)->bottom_type()); 2308 } 2309 if (doit && base == nullptr) { 2310 // Check for neighboring AddP nodes in a tree. 2311 // If they have a base, use that it. 2312 for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) { 2313 Node* u = this->fast_out(k); 2314 if (u->is_AddP()) { 2315 Node* base2 = u->in(AddPNode::Base); 2316 if (base2 != nullptr && !base2->is_top()) { 2317 if (base == nullptr) 2318 base = base2; 2319 else if (base != base2) 2320 { doit = false; break; } 2321 } 2322 } 2323 } 2324 } 2325 if (doit) { 2326 if (base == nullptr) { 2327 base = new PhiNode(in(0), base_type, nullptr); 2328 for (uint i = 1; i < req(); i++) { 2329 base->init_req(i, in(i)->in(AddPNode::Base)); 2330 } 2331 phase->is_IterGVN()->register_new_node_with_optimizer(base); 2332 } 2333 if (address == nullptr) { 2334 address = new PhiNode(in(0), address_type, nullptr); 2335 for (uint i = 1; i < req(); i++) { 2336 address->init_req(i, in(i)->in(AddPNode::Address)); 2337 } 2338 phase->is_IterGVN()->register_new_node_with_optimizer(address); 2339 } 2340 if (offset == nullptr) { 2341 offset = new PhiNode(in(0), TypeX_X, nullptr); 2342 for (uint i = 1; i < req(); i++) { 2343 offset->init_req(i, in(i)->in(AddPNode::Offset)); 2344 } 2345 phase->is_IterGVN()->register_new_node_with_optimizer(offset); 2346 } 2347 return new AddPNode(base, address, offset); 2348 } 2349 } 2350 } 2351 2352 // Split phis through memory merges, so that the memory merges will go away. 2353 // Piggy-back this transformation on the search for a unique input.... 2354 // It will be as if the merged memory is the unique value of the phi. 2355 // (Do not attempt this optimization unless parsing is complete. 2356 // It would make the parser's memory-merge logic sick.) 2357 // (MergeMemNode is not dead_loop_safe - need to check for dead loop.) 2358 if (progress == nullptr && can_reshape && type() == Type::MEMORY) { 2359 // see if this phi should be sliced 2360 uint merge_width = 0; 2361 bool saw_self = false; 2362 for( uint i=1; i<req(); ++i ) {// For all paths in 2363 Node *ii = in(i); 2364 // TOP inputs should not be counted as safe inputs because if the 2365 // Phi references itself through all other inputs then splitting the 2366 // Phi through memory merges would create dead loop at later stage. 2367 if (ii == top) { 2368 return nullptr; // Delay optimization until graph is cleaned. 2369 } 2370 if (ii->is_MergeMem()) { 2371 MergeMemNode* n = ii->as_MergeMem(); 2372 merge_width = MAX2(merge_width, n->req()); 2373 saw_self = saw_self || (n->base_memory() == this); 2374 } 2375 } 2376 2377 // This restriction is temporarily necessary to ensure termination: 2378 if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0; 2379 2380 if (merge_width > Compile::AliasIdxRaw) { 2381 // found at least one non-empty MergeMem 2382 const TypePtr* at = adr_type(); 2383 if (at != TypePtr::BOTTOM) { 2384 // Patch the existing phi to select an input from the merge: 2385 // Phi:AT1(...MergeMem(m0, m1, m2)...) into 2386 // Phi:AT1(...m1...) 2387 int alias_idx = phase->C->get_alias_index(at); 2388 for (uint i=1; i<req(); ++i) { 2389 Node *ii = in(i); 2390 if (ii->is_MergeMem()) { 2391 MergeMemNode* n = ii->as_MergeMem(); 2392 // compress paths and change unreachable cycles to TOP 2393 // If not, we can update the input infinitely along a MergeMem cycle 2394 // Equivalent code is in MemNode::Ideal_common 2395 Node *m = phase->transform(n); 2396 if (outcnt() == 0) { // Above transform() may kill us! 2397 return top; 2398 } 2399 // If transformed to a MergeMem, get the desired slice 2400 // Otherwise the returned node represents memory for every slice 2401 Node *new_mem = (m->is_MergeMem()) ? 2402 m->as_MergeMem()->memory_at(alias_idx) : m; 2403 // Update input if it is progress over what we have now 2404 if (new_mem != ii) { 2405 set_req_X(i, new_mem, phase->is_IterGVN()); 2406 progress = this; 2407 } 2408 } 2409 } 2410 } else { 2411 // We know that at least one MergeMem->base_memory() == this 2412 // (saw_self == true). If all other inputs also references this phi 2413 // (directly or through data nodes) - it is a dead loop. 2414 bool saw_safe_input = false; 2415 for (uint j = 1; j < req(); ++j) { 2416 Node* n = in(j); 2417 if (n->is_MergeMem()) { 2418 MergeMemNode* mm = n->as_MergeMem(); 2419 if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) { 2420 // Skip this input if it references back to this phi or if the memory path is dead 2421 continue; 2422 } 2423 } 2424 if (!is_unsafe_data_reference(n)) { 2425 saw_safe_input = true; // found safe input 2426 break; 2427 } 2428 } 2429 if (!saw_safe_input) { 2430 // There is a dead loop: All inputs are either dead or reference back to this phi 2431 return top; 2432 } 2433 2434 // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into 2435 // MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...)) 2436 PhaseIterGVN* igvn = phase->is_IterGVN(); 2437 assert(igvn != nullptr, "sanity check"); 2438 Node* hook = new Node(1); 2439 PhiNode* new_base = (PhiNode*) clone(); 2440 // Must eagerly register phis, since they participate in loops. 2441 igvn->register_new_node_with_optimizer(new_base); 2442 hook->add_req(new_base); 2443 2444 MergeMemNode* result = MergeMemNode::make(new_base); 2445 for (uint i = 1; i < req(); ++i) { 2446 Node *ii = in(i); 2447 if (ii->is_MergeMem()) { 2448 MergeMemNode* n = ii->as_MergeMem(); 2449 for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) { 2450 // If we have not seen this slice yet, make a phi for it. 2451 bool made_new_phi = false; 2452 if (mms.is_empty()) { 2453 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C)); 2454 made_new_phi = true; 2455 igvn->register_new_node_with_optimizer(new_phi); 2456 hook->add_req(new_phi); 2457 mms.set_memory(new_phi); 2458 } 2459 Node* phi = mms.memory(); 2460 assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice"); 2461 phi->set_req(i, mms.memory2()); 2462 } 2463 } 2464 } 2465 // Distribute all self-loops. 2466 { // (Extra braces to hide mms.) 2467 for (MergeMemStream mms(result); mms.next_non_empty(); ) { 2468 Node* phi = mms.memory(); 2469 for (uint i = 1; i < req(); ++i) { 2470 if (phi->in(i) == this) phi->set_req(i, phi); 2471 } 2472 } 2473 } 2474 // Already replace this phi node to cut it off from the graph to not interfere in dead loop checks during the 2475 // transformations of the new phi nodes below. Otherwise, we could wrongly conclude that there is no dead loop 2476 // because we are finding this phi node again. Also set the type of the new MergeMem node in case we are also 2477 // visiting it in the transformations below. 2478 igvn->replace_node(this, result); 2479 igvn->set_type(result, result->bottom_type()); 2480 2481 // now transform the new nodes, and return the mergemem 2482 for (MergeMemStream mms(result); mms.next_non_empty(); ) { 2483 Node* phi = mms.memory(); 2484 mms.set_memory(phase->transform(phi)); 2485 } 2486 hook->destruct(igvn); 2487 // Replace self with the result. 2488 return result; 2489 } 2490 } 2491 // 2492 // Other optimizations on the memory chain 2493 // 2494 const TypePtr* at = adr_type(); 2495 for( uint i=1; i<req(); ++i ) {// For all paths in 2496 Node *ii = in(i); 2497 Node *new_in = MemNode::optimize_memory_chain(ii, at, nullptr, phase); 2498 if (ii != new_in ) { 2499 set_req(i, new_in); 2500 progress = this; 2501 } 2502 } 2503 } 2504 2505 #ifdef _LP64 2506 // Push DecodeN/DecodeNKlass down through phi. 2507 // The rest of phi graph will transform by split EncodeP node though phis up. 2508 if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == nullptr) { 2509 bool may_push = true; 2510 bool has_decodeN = false; 2511 bool is_decodeN = false; 2512 for (uint i=1; i<req(); ++i) {// For all paths in 2513 Node *ii = in(i); 2514 if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) { 2515 // Do optimization if a non dead path exist. 2516 if (ii->in(1)->bottom_type() != Type::TOP) { 2517 has_decodeN = true; 2518 is_decodeN = ii->is_DecodeN(); 2519 } 2520 } else if (!ii->is_Phi()) { 2521 may_push = false; 2522 } 2523 } 2524 2525 if (has_decodeN && may_push) { 2526 PhaseIterGVN *igvn = phase->is_IterGVN(); 2527 // Make narrow type for new phi. 2528 const Type* narrow_t; 2529 if (is_decodeN) { 2530 narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr()); 2531 } else { 2532 narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr()); 2533 } 2534 PhiNode* new_phi = new PhiNode(r, narrow_t); 2535 uint orig_cnt = req(); 2536 for (uint i=1; i<req(); ++i) {// For all paths in 2537 Node *ii = in(i); 2538 Node* new_ii = nullptr; 2539 if (ii->is_DecodeNarrowPtr()) { 2540 assert(ii->bottom_type() == bottom_type(), "sanity"); 2541 new_ii = ii->in(1); 2542 } else { 2543 assert(ii->is_Phi(), "sanity"); 2544 if (ii->as_Phi() == this) { 2545 new_ii = new_phi; 2546 } else { 2547 if (is_decodeN) { 2548 new_ii = new EncodePNode(ii, narrow_t); 2549 } else { 2550 new_ii = new EncodePKlassNode(ii, narrow_t); 2551 } 2552 igvn->register_new_node_with_optimizer(new_ii); 2553 } 2554 } 2555 new_phi->set_req(i, new_ii); 2556 } 2557 igvn->register_new_node_with_optimizer(new_phi, this); 2558 if (is_decodeN) { 2559 progress = new DecodeNNode(new_phi, bottom_type()); 2560 } else { 2561 progress = new DecodeNKlassNode(new_phi, bottom_type()); 2562 } 2563 } 2564 } 2565 #endif 2566 2567 // Try to convert a Phi with two duplicated convert nodes into a phi of the pre-conversion type and the convert node 2568 // proceeding the phi, to de-duplicate the convert node and compact the IR. 2569 if (can_reshape && progress == nullptr) { 2570 ConvertNode* convert = in(1)->isa_Convert(); 2571 if (convert != nullptr) { 2572 int conv_op = convert->Opcode(); 2573 bool ok = true; 2574 2575 // Check the rest of the inputs 2576 for (uint i = 2; i < req(); i++) { 2577 // Make sure that all inputs are of the same type of convert node 2578 if (in(i)->Opcode() != conv_op) { 2579 ok = false; 2580 break; 2581 } 2582 } 2583 2584 if (ok) { 2585 // Find the local bottom type to set as the type of the phi 2586 const Type* source_type = Type::get_const_basic_type(convert->in_type()->basic_type()); 2587 const Type* dest_type = convert->bottom_type(); 2588 2589 PhiNode* newphi = new PhiNode(in(0), source_type, nullptr); 2590 // Set inputs to the new phi be the inputs of the convert 2591 for (uint i = 1; i < req(); i++) { 2592 newphi->init_req(i, in(i)->in(1)); 2593 } 2594 2595 phase->is_IterGVN()->register_new_node_with_optimizer(newphi, this); 2596 2597 return ConvertNode::create_convert(get_convert_type(convert, source_type), get_convert_type(convert, dest_type), newphi); 2598 } 2599 } 2600 } 2601 2602 // Phi (VB ... VB) => VB (Phi ...) (Phi ...) 2603 if (EnableVectorReboxing && can_reshape && progress == nullptr && type()->isa_oopptr()) { 2604 progress = merge_through_phi(this, phase->is_IterGVN()); 2605 } 2606 2607 return progress; // Return any progress 2608 } 2609 2610 static int compare_types(const Type* const& e1, const Type* const& e2) { 2611 return (intptr_t)e1 - (intptr_t)e2; 2612 } 2613 2614 // Collect types at casts that are going to be eliminated at that Phi and store them in a TypeTuple. 2615 // Sort the types using an arbitrary order so a list of some types always hashes to the same TypeTuple (and TypeTuple 2616 // pointer comparison is enough to tell if 2 list of types are the same or not) 2617 const TypeTuple* PhiNode::collect_types(PhaseGVN* phase) const { 2618 const Node* region = in(0); 2619 const Type* phi_type = bottom_type(); 2620 ResourceMark rm; 2621 GrowableArray<const Type*> types; 2622 for (uint i = 1; i < req(); i++) { 2623 if (region->in(i) == nullptr || phase->type(region->in(i)) == Type::TOP) { 2624 continue; 2625 } 2626 Node* in = Node::in(i); 2627 const Type* t = phase->type(in); 2628 if (in == nullptr || in == this || t == Type::TOP) { 2629 continue; 2630 } 2631 if (t != phi_type && t->higher_equal_speculative(phi_type)) { 2632 types.insert_sorted<compare_types>(t); 2633 } 2634 while (in != nullptr && in->is_ConstraintCast()) { 2635 Node* next = in->in(1); 2636 if (phase->type(next)->isa_rawptr() && phase->type(in)->isa_oopptr()) { 2637 break; 2638 } 2639 ConstraintCastNode* cast = in->as_ConstraintCast(); 2640 for (int j = 0; j < cast->extra_types_count(); ++j) { 2641 const Type* extra_t = cast->extra_type_at(j); 2642 if (extra_t != phi_type && extra_t->higher_equal_speculative(phi_type)) { 2643 types.insert_sorted<compare_types>(extra_t); 2644 } 2645 } 2646 in = next; 2647 } 2648 } 2649 const Type **flds = (const Type **)(phase->C->type_arena()->AmallocWords(types.length()*sizeof(Type*))); 2650 for (int i = 0; i < types.length(); ++i) { 2651 flds[i] = types.at(i); 2652 } 2653 return TypeTuple::make(types.length(), flds); 2654 } 2655 2656 Node* PhiNode::clone_through_phi(Node* root_phi, const Type* t, uint c, PhaseIterGVN* igvn) { 2657 Node_Stack stack(1); 2658 VectorSet visited; 2659 Node_List node_map; 2660 2661 stack.push(root_phi, 1); // ignore control 2662 visited.set(root_phi->_idx); 2663 2664 Node* new_phi = new PhiNode(root_phi->in(0), t); 2665 node_map.map(root_phi->_idx, new_phi); 2666 2667 while (stack.is_nonempty()) { 2668 Node* n = stack.node(); 2669 uint idx = stack.index(); 2670 assert(n->is_Phi(), "not a phi"); 2671 if (idx < n->req()) { 2672 stack.set_index(idx + 1); 2673 Node* def = n->in(idx); 2674 if (def == nullptr) { 2675 continue; // ignore dead path 2676 } else if (def->is_Phi()) { // inner node 2677 Node* new_phi = node_map[n->_idx]; 2678 if (!visited.test_set(def->_idx)) { // not visited yet 2679 node_map.map(def->_idx, new PhiNode(def->in(0), t)); 2680 stack.push(def, 1); // ignore control 2681 } 2682 Node* new_in = node_map[def->_idx]; 2683 new_phi->set_req(idx, new_in); 2684 } else if (def->Opcode() == Op_VectorBox) { // leaf 2685 assert(n->is_Phi(), "not a phi"); 2686 Node* new_phi = node_map[n->_idx]; 2687 new_phi->set_req(idx, def->in(c)); 2688 } else { 2689 assert(false, "not optimizeable"); 2690 return nullptr; 2691 } 2692 } else { 2693 Node* new_phi = node_map[n->_idx]; 2694 igvn->register_new_node_with_optimizer(new_phi, n); 2695 stack.pop(); 2696 } 2697 } 2698 return new_phi; 2699 } 2700 2701 Node* PhiNode::merge_through_phi(Node* root_phi, PhaseIterGVN* igvn) { 2702 Node_Stack stack(1); 2703 VectorSet visited; 2704 2705 stack.push(root_phi, 1); // ignore control 2706 visited.set(root_phi->_idx); 2707 2708 VectorBoxNode* cached_vbox = nullptr; 2709 while (stack.is_nonempty()) { 2710 Node* n = stack.node(); 2711 uint idx = stack.index(); 2712 if (idx < n->req()) { 2713 stack.set_index(idx + 1); 2714 Node* in = n->in(idx); 2715 if (in == nullptr) { 2716 continue; // ignore dead path 2717 } else if (in->isa_Phi()) { 2718 if (!visited.test_set(in->_idx)) { 2719 stack.push(in, 1); // ignore control 2720 } 2721 } else if (in->Opcode() == Op_VectorBox) { 2722 VectorBoxNode* vbox = static_cast<VectorBoxNode*>(in); 2723 if (cached_vbox == nullptr) { 2724 cached_vbox = vbox; 2725 } else if (vbox->vec_type() != cached_vbox->vec_type()) { 2726 // TODO: vector type mismatch can be handled with additional reinterpret casts 2727 assert(!Type::equals(vbox->vec_type(), cached_vbox->vec_type()), "inconsistent"); 2728 return nullptr; // not optimizable: vector type mismatch 2729 } else if (vbox->box_type() != cached_vbox->box_type()) { 2730 assert(!Type::equals(vbox->box_type(), cached_vbox->box_type()), "inconsistent"); 2731 return nullptr; // not optimizable: box type mismatch 2732 } 2733 } else { 2734 return nullptr; // not optimizable: neither Phi nor VectorBox 2735 } 2736 } else { 2737 stack.pop(); 2738 } 2739 } 2740 if (cached_vbox == nullptr) { 2741 // We have a Phi dead-loop (no data-input). Phi nodes are considered safe, 2742 // so just avoid this optimization. 2743 return nullptr; 2744 } 2745 const TypeInstPtr* btype = cached_vbox->box_type(); 2746 const TypeVect* vtype = cached_vbox->vec_type(); 2747 Node* new_vbox_phi = clone_through_phi(root_phi, btype, VectorBoxNode::Box, igvn); 2748 Node* new_vect_phi = clone_through_phi(root_phi, vtype, VectorBoxNode::Value, igvn); 2749 return new VectorBoxNode(igvn->C, new_vbox_phi, new_vect_phi, btype, vtype); 2750 } 2751 2752 bool PhiNode::is_data_loop(RegionNode* r, Node* uin, const PhaseGVN* phase) { 2753 // First, take the short cut when we know it is a loop and the EntryControl data path is dead. 2754 // The loop node may only have one input because the entry path was removed in PhaseIdealLoop::Dominators(). 2755 // Then, check if there is a data loop when the phi references itself directly or through other data nodes. 2756 assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs"); 2757 const bool is_loop = (r->is_Loop() && r->req() == 3); 2758 const Node* top = phase->C->top(); 2759 if (is_loop) { 2760 return !uin->eqv_uncast(in(LoopNode::EntryControl)); 2761 } else { 2762 // We have a data loop either with an unsafe data reference or if a region is unreachable. 2763 return is_unsafe_data_reference(uin) 2764 || (r->req() == 3 && (r->in(1) != top && r->in(2) == top && r->is_unreachable_region(phase))); 2765 } 2766 } 2767 2768 //------------------------------is_tripcount----------------------------------- 2769 bool PhiNode::is_tripcount(BasicType bt) const { 2770 return (in(0) != nullptr && in(0)->is_BaseCountedLoop() && 2771 in(0)->as_BaseCountedLoop()->bt() == bt && 2772 in(0)->as_BaseCountedLoop()->phi() == this); 2773 } 2774 2775 //------------------------------out_RegMask------------------------------------ 2776 const RegMask &PhiNode::in_RegMask(uint i) const { 2777 return i ? out_RegMask() : RegMask::Empty; 2778 } 2779 2780 const RegMask &PhiNode::out_RegMask() const { 2781 uint ideal_reg = _type->ideal_reg(); 2782 assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" ); 2783 if( ideal_reg == 0 ) return RegMask::Empty; 2784 assert(ideal_reg != Op_RegFlags, "flags register is not spillable"); 2785 return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]); 2786 } 2787 2788 #ifndef PRODUCT 2789 void PhiNode::dump_spec(outputStream *st) const { 2790 TypeNode::dump_spec(st); 2791 if (is_tripcount(T_INT) || is_tripcount(T_LONG)) { 2792 st->print(" #tripcount"); 2793 } 2794 } 2795 #endif 2796 2797 2798 //============================================================================= 2799 const Type* GotoNode::Value(PhaseGVN* phase) const { 2800 // If the input is reachable, then we are executed. 2801 // If the input is not reachable, then we are not executed. 2802 return phase->type(in(0)); 2803 } 2804 2805 Node* GotoNode::Identity(PhaseGVN* phase) { 2806 return in(0); // Simple copy of incoming control 2807 } 2808 2809 const RegMask &GotoNode::out_RegMask() const { 2810 return RegMask::Empty; 2811 } 2812 2813 //============================================================================= 2814 const RegMask &JumpNode::out_RegMask() const { 2815 return RegMask::Empty; 2816 } 2817 2818 //============================================================================= 2819 const RegMask &JProjNode::out_RegMask() const { 2820 return RegMask::Empty; 2821 } 2822 2823 //============================================================================= 2824 const RegMask &CProjNode::out_RegMask() const { 2825 return RegMask::Empty; 2826 } 2827 2828 2829 2830 //============================================================================= 2831 2832 uint PCTableNode::hash() const { return Node::hash() + _size; } 2833 bool PCTableNode::cmp( const Node &n ) const 2834 { return _size == ((PCTableNode&)n)._size; } 2835 2836 const Type *PCTableNode::bottom_type() const { 2837 const Type** f = TypeTuple::fields(_size); 2838 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL; 2839 return TypeTuple::make(_size, f); 2840 } 2841 2842 //------------------------------Value------------------------------------------ 2843 // Compute the type of the PCTableNode. If reachable it is a tuple of 2844 // Control, otherwise the table targets are not reachable 2845 const Type* PCTableNode::Value(PhaseGVN* phase) const { 2846 if( phase->type(in(0)) == Type::CONTROL ) 2847 return bottom_type(); 2848 return Type::TOP; // All paths dead? Then so are we 2849 } 2850 2851 //------------------------------Ideal------------------------------------------ 2852 // Return a node which is more "ideal" than the current node. Strip out 2853 // control copies 2854 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2855 return remove_dead_region(phase, can_reshape) ? this : nullptr; 2856 } 2857 2858 //============================================================================= 2859 uint JumpProjNode::hash() const { 2860 return Node::hash() + _dest_bci; 2861 } 2862 2863 bool JumpProjNode::cmp( const Node &n ) const { 2864 return ProjNode::cmp(n) && 2865 _dest_bci == ((JumpProjNode&)n)._dest_bci; 2866 } 2867 2868 #ifndef PRODUCT 2869 void JumpProjNode::dump_spec(outputStream *st) const { 2870 ProjNode::dump_spec(st); 2871 st->print("@bci %d ",_dest_bci); 2872 } 2873 2874 void JumpProjNode::dump_compact_spec(outputStream *st) const { 2875 ProjNode::dump_compact_spec(st); 2876 st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci); 2877 } 2878 #endif 2879 2880 //============================================================================= 2881 //------------------------------Value------------------------------------------ 2882 // Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot 2883 // have the default "fall_through_index" path. 2884 const Type* CatchNode::Value(PhaseGVN* phase) const { 2885 // Unreachable? Then so are all paths from here. 2886 if( phase->type(in(0)) == Type::TOP ) return Type::TOP; 2887 // First assume all paths are reachable 2888 const Type** f = TypeTuple::fields(_size); 2889 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL; 2890 // Identify cases that will always throw an exception 2891 // () rethrow call 2892 // () virtual or interface call with null receiver 2893 // () call is a check cast with incompatible arguments 2894 if( in(1)->is_Proj() ) { 2895 Node *i10 = in(1)->in(0); 2896 if( i10->is_Call() ) { 2897 CallNode *call = i10->as_Call(); 2898 // Rethrows always throw exceptions, never return 2899 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 2900 f[CatchProjNode::fall_through_index] = Type::TOP; 2901 } else if (call->is_AllocateArray()) { 2902 Node* klass_node = call->in(AllocateNode::KlassNode); 2903 Node* length = call->in(AllocateNode::ALength); 2904 const Type* length_type = phase->type(length); 2905 const Type* klass_type = phase->type(klass_node); 2906 Node* valid_length_test = call->in(AllocateNode::ValidLengthTest); 2907 const Type* valid_length_test_t = phase->type(valid_length_test); 2908 if (length_type == Type::TOP || klass_type == Type::TOP || valid_length_test_t == Type::TOP || 2909 valid_length_test_t->is_int()->is_con(0)) { 2910 f[CatchProjNode::fall_through_index] = Type::TOP; 2911 } 2912 } else if( call->req() > TypeFunc::Parms ) { 2913 const Type *arg0 = phase->type( call->in(TypeFunc::Parms) ); 2914 // Check for null receiver to virtual or interface calls 2915 if( call->is_CallDynamicJava() && 2916 arg0->higher_equal(TypePtr::NULL_PTR) ) { 2917 f[CatchProjNode::fall_through_index] = Type::TOP; 2918 } 2919 } // End of if not a runtime stub 2920 } // End of if have call above me 2921 } // End of slot 1 is not a projection 2922 return TypeTuple::make(_size, f); 2923 } 2924 2925 //============================================================================= 2926 uint CatchProjNode::hash() const { 2927 return Node::hash() + _handler_bci; 2928 } 2929 2930 2931 bool CatchProjNode::cmp( const Node &n ) const { 2932 return ProjNode::cmp(n) && 2933 _handler_bci == ((CatchProjNode&)n)._handler_bci; 2934 } 2935 2936 2937 //------------------------------Identity--------------------------------------- 2938 // If only 1 target is possible, choose it if it is the main control 2939 Node* CatchProjNode::Identity(PhaseGVN* phase) { 2940 // If my value is control and no other value is, then treat as ID 2941 const TypeTuple *t = phase->type(in(0))->is_tuple(); 2942 if (t->field_at(_con) != Type::CONTROL) return this; 2943 // If we remove the last CatchProj and elide the Catch/CatchProj, then we 2944 // also remove any exception table entry. Thus we must know the call 2945 // feeding the Catch will not really throw an exception. This is ok for 2946 // the main fall-thru control (happens when we know a call can never throw 2947 // an exception) or for "rethrow", because a further optimization will 2948 // yank the rethrow (happens when we inline a function that can throw an 2949 // exception and the caller has no handler). Not legal, e.g., for passing 2950 // a null receiver to a v-call, or passing bad types to a slow-check-cast. 2951 // These cases MUST throw an exception via the runtime system, so the VM 2952 // will be looking for a table entry. 2953 Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode 2954 CallNode *call; 2955 if (_con != TypeFunc::Control && // Bail out if not the main control. 2956 !(proj->is_Proj() && // AND NOT a rethrow 2957 proj->in(0)->is_Call() && 2958 (call = proj->in(0)->as_Call()) && 2959 call->entry_point() == OptoRuntime::rethrow_stub())) 2960 return this; 2961 2962 // Search for any other path being control 2963 for (uint i = 0; i < t->cnt(); i++) { 2964 if (i != _con && t->field_at(i) == Type::CONTROL) 2965 return this; 2966 } 2967 // Only my path is possible; I am identity on control to the jump 2968 return in(0)->in(0); 2969 } 2970 2971 2972 #ifndef PRODUCT 2973 void CatchProjNode::dump_spec(outputStream *st) const { 2974 ProjNode::dump_spec(st); 2975 st->print("@bci %d ",_handler_bci); 2976 } 2977 #endif 2978 2979 //============================================================================= 2980 //------------------------------Identity--------------------------------------- 2981 // Check for CreateEx being Identity. 2982 Node* CreateExNode::Identity(PhaseGVN* phase) { 2983 if( phase->type(in(1)) == Type::TOP ) return in(1); 2984 if( phase->type(in(0)) == Type::TOP ) return in(0); 2985 if (phase->type(in(0)->in(0)) == Type::TOP) { 2986 assert(in(0)->is_CatchProj(), "control is CatchProj"); 2987 return phase->C->top(); // dead code 2988 } 2989 // We only come from CatchProj, unless the CatchProj goes away. 2990 // If the CatchProj is optimized away, then we just carry the 2991 // exception oop through. 2992 CallNode *call = in(1)->in(0)->as_Call(); 2993 2994 return (in(0)->is_CatchProj() && in(0)->in(0)->is_Catch() && 2995 in(0)->in(0)->in(1) == in(1)) ? this : call->in(TypeFunc::Parms); 2996 } 2997 2998 //============================================================================= 2999 //------------------------------Value------------------------------------------ 3000 // Check for being unreachable. 3001 const Type* NeverBranchNode::Value(PhaseGVN* phase) const { 3002 if (!in(0) || in(0)->is_top()) return Type::TOP; 3003 return bottom_type(); 3004 } 3005 3006 //------------------------------Ideal------------------------------------------ 3007 // Check for no longer being part of a loop 3008 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3009 if (can_reshape && !in(0)->is_Region()) { 3010 // Dead code elimination can sometimes delete this projection so 3011 // if it's not there, there's nothing to do. 3012 Node* fallthru = proj_out_or_null(0); 3013 if (fallthru != nullptr) { 3014 phase->is_IterGVN()->replace_node(fallthru, in(0)); 3015 } 3016 return phase->C->top(); 3017 } 3018 return nullptr; 3019 } 3020 3021 #ifndef PRODUCT 3022 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const { 3023 st->print("%s", Name()); 3024 } 3025 #endif 3026 3027 #ifndef PRODUCT 3028 void BlackholeNode::format(PhaseRegAlloc* ra, outputStream* st) const { 3029 st->print("blackhole "); 3030 bool first = true; 3031 for (uint i = 0; i < req(); i++) { 3032 Node* n = in(i); 3033 if (n != nullptr && OptoReg::is_valid(ra->get_reg_first(n))) { 3034 if (first) { 3035 first = false; 3036 } else { 3037 st->print(", "); 3038 } 3039 char buf[128]; 3040 ra->dump_register(n, buf, sizeof(buf)); 3041 st->print("%s", buf); 3042 } 3043 } 3044 st->cr(); 3045 } 3046 #endif 3047