1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "compiler/oopMap.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/chaitin.hpp"
  34 #include "opto/coalesce.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/indexSet.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 #ifndef PRODUCT
  46 void LRG::dump() const {
  47   ttyLocker ttyl;
  48   tty->print("%d ",num_regs());
  49   _mask.dump();
  50   if( _msize_valid ) {
  51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  53   } else {
  54     tty->print(", #?(%d) ",_mask.Size());
  55   }
  56 
  57   tty->print("EffDeg: ");
  58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  59   else tty->print("? ");
  60 
  61   if( is_multidef() ) {
  62     tty->print("MultiDef ");
  63     if (_defs != nullptr) {
  64       tty->print("(");
  65       for (int i = 0; i < _defs->length(); i++) {
  66         tty->print("N%d ", _defs->at(i)->_idx);
  67       }
  68       tty->print(") ");
  69     }
  70   }
  71   else if( _def == nullptr ) tty->print("Dead ");
  72   else tty->print("Def: N%d ",_def->_idx);
  73 
  74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  75   // Flags
  76   if( _is_oop ) tty->print("Oop ");
  77   if( _is_float ) tty->print("Float ");
  78   if( _is_vector ) tty->print("Vector ");
  79   if( _is_predicate ) tty->print("Predicate ");
  80   if( _is_scalable ) tty->print("Scalable ");
  81   if( _was_spilled1 ) tty->print("Spilled ");
  82   if( _was_spilled2 ) tty->print("Spilled2 ");
  83   if( _direct_conflict ) tty->print("Direct_conflict ");
  84   if( _fat_proj ) tty->print("Fat ");
  85   if( _was_lo ) tty->print("Lo ");
  86   if( _has_copy ) tty->print("Copy ");
  87   if( _at_risk ) tty->print("Risk ");
  88 
  89   if( _must_spill ) tty->print("Must_spill ");
  90   if( _is_bound ) tty->print("Bound ");
  91   if( _msize_valid ) {
  92     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  93   }
  94 
  95   tty->cr();
  96 }
  97 #endif
  98 
  99 // Compute score from cost and area.  Low score is best to spill.
 100 static double raw_score( double cost, double area ) {
 101   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 102 }
 103 
 104 double LRG::score() const {
 105   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 106   // Bigger area lowers score, encourages spilling this live range.
 107   // Bigger cost raise score, prevents spilling this live range.
 108   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 109   // to turn a divide by a constant into a multiply by the reciprical).
 110   double score = raw_score( _cost, _area);
 111 
 112   // Account for area.  Basically, LRGs covering large areas are better
 113   // to spill because more other LRGs get freed up.
 114   if( _area == 0.0 )            // No area?  Then no progress to spill
 115     return 1e35;
 116 
 117   if( _was_spilled2 )           // If spilled once before, we are unlikely
 118     return score + 1e30;        // to make progress again.
 119 
 120   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 121     return score + 1e17;        // Probably no progress to spill
 122 
 123   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 124     return score + 1e10;        // Likely no progress to spill
 125 
 126   return score;
 127 }
 128 
 129 #define NUMBUCKS 3
 130 
 131 // Straight out of Tarjan's union-find algorithm
 132 uint LiveRangeMap::find_compress(uint lrg) {
 133   uint cur = lrg;
 134   uint next = _uf_map.at(cur);
 135   while (next != cur) { // Scan chain of equivalences
 136     assert( next < cur, "always union smaller");
 137     cur = next; // until find a fixed-point
 138     next = _uf_map.at(cur);
 139   }
 140 
 141   // Core of union-find algorithm: update chain of
 142   // equivalences to be equal to the root.
 143   while (lrg != next) {
 144     uint tmp = _uf_map.at(lrg);
 145     _uf_map.at_put(lrg, next);
 146     lrg = tmp;
 147   }
 148   return lrg;
 149 }
 150 
 151 // Reset the Union-Find map to identity
 152 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
 153   _max_lrg_id= max_lrg_id;
 154   // Force the Union-Find mapping to be at least this large
 155   _uf_map.at_put_grow(_max_lrg_id, 0);
 156   // Initialize it to be the ID mapping.
 157   for (uint i = 0; i < _max_lrg_id; ++i) {
 158     _uf_map.at_put(i, i);
 159   }
 160 }
 161 
 162 // Make all Nodes map directly to their final live range; no need for
 163 // the Union-Find mapping after this call.
 164 void LiveRangeMap::compress_uf_map_for_nodes() {
 165   // For all Nodes, compress mapping
 166   uint unique = _names.length();
 167   for (uint i = 0; i < unique; ++i) {
 168     uint lrg = _names.at(i);
 169     uint compressed_lrg = find(lrg);
 170     if (lrg != compressed_lrg) {
 171       _names.at_put(i, compressed_lrg);
 172     }
 173   }
 174 }
 175 
 176 // Like Find above, but no path compress, so bad asymptotic behavior
 177 uint LiveRangeMap::find_const(uint lrg) const {
 178   if (!lrg) {
 179     return lrg; // Ignore the zero LRG
 180   }
 181 
 182   // Off the end?  This happens during debugging dumps when you got
 183   // brand new live ranges but have not told the allocator yet.
 184   if (lrg >= _max_lrg_id) {
 185     return lrg;
 186   }
 187 
 188   uint next = _uf_map.at(lrg);
 189   while (next != lrg) { // Scan chain of equivalences
 190     assert(next < lrg, "always union smaller");
 191     lrg = next; // until find a fixed-point
 192     next = _uf_map.at(lrg);
 193   }
 194   return next;
 195 }
 196 
 197 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
 198   : PhaseRegAlloc(unique, cfg, matcher,
 199 #ifndef PRODUCT
 200        print_chaitin_statistics
 201 #else
 202        nullptr
 203 #endif
 204        )
 205   , _live(nullptr)
 206   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
 207   , _oldphi(unique)
 208 #ifndef PRODUCT
 209   , _trace_spilling(C->directive()->TraceSpillingOption)
 210 #endif
 211   , _lrg_map(Thread::current()->resource_area(), unique)
 212   , _scheduling_info_generated(scheduling_info_generated)
 213   , _sched_int_pressure(0, Matcher::int_pressure_limit())
 214   , _sched_float_pressure(0, Matcher::float_pressure_limit())
 215   , _scratch_int_pressure(0, Matcher::int_pressure_limit())
 216   , _scratch_float_pressure(0, Matcher::float_pressure_limit())
 217 {
 218   Compile::TracePhase tp(_t_ctorChaitin);
 219 
 220   _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
 221 
 222   // Build a list of basic blocks, sorted by frequency
 223   // Experiment with sorting strategies to speed compilation
 224   uint nr_blocks = _cfg.number_of_blocks();
 225   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 226   Block **buckets[NUMBUCKS];             // Array of buckets
 227   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 228   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 229 
 230   // The space which our buckets point into.
 231   Block** start = NEW_RESOURCE_ARRAY(Block *, nr_blocks*NUMBUCKS);
 232 
 233   for (uint i = 0; i < NUMBUCKS; i++) {
 234     buckets[i] = &start[i*nr_blocks];
 235     buckcnt[i] = 0;
 236     // Bump by three orders of magnitude each time
 237     cutoff *= 0.001;
 238     buckval[i] = cutoff;
 239   }
 240 
 241   // Sort blocks into buckets
 242   for (uint i = 0; i < nr_blocks; i++) {
 243     for (uint j = 0; j < NUMBUCKS; j++) {
 244       double bval = buckval[j];
 245       Block* blk = _cfg.get_block(i);
 246       if (j == NUMBUCKS - 1 || blk->_freq > bval) {
 247         uint cnt = buckcnt[j];
 248         // Assign block to end of list for appropriate bucket
 249         buckets[j][cnt] = blk;
 250         buckcnt[j] = cnt+1;
 251         break; // kick out of inner loop
 252       }
 253     }
 254   }
 255 
 256   // Squash the partially filled buckets together into the first one.
 257   static_assert(NUMBUCKS >= 2, "must"); // If this isn't true then it'll mess up the squashing.
 258   Block** offset = &buckets[0][buckcnt[0]];
 259   for (int i = 1; i < NUMBUCKS; i++) {
 260     ::memmove(offset, buckets[i], buckcnt[i]*sizeof(Block*));
 261     offset += buckcnt[i];
 262   }
 263   assert((&buckets[0][0] + nr_blocks) == offset, "should be");
 264 
 265   // Free the now unused memory
 266   FREE_RESOURCE_ARRAY(Block*, buckets[1], (NUMBUCKS-1)*nr_blocks);
 267   // Finally, point the _blks to our memory
 268   _blks = buckets[0];
 269 
 270 #ifdef ASSERT
 271   uint blkcnt = 0;
 272   for (uint i = 0; i < NUMBUCKS; i++) {
 273     blkcnt += buckcnt[i];
 274   }
 275   assert(blkcnt == nr_blocks, "Block array not totally filled");
 276 #endif
 277 }
 278 
 279 // union 2 sets together.
 280 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 281   uint src = _lrg_map.find(src_n);
 282   uint dst = _lrg_map.find(dst_n);
 283   assert(src, "");
 284   assert(dst, "");
 285   assert(src < _lrg_map.max_lrg_id(), "oob");
 286   assert(dst < _lrg_map.max_lrg_id(), "oob");
 287   assert(src < dst, "always union smaller");
 288   _lrg_map.uf_map(dst, src);
 289 }
 290 
 291 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
 292   // Make the Node->LRG mapping
 293   _lrg_map.extend(x->_idx,lrg);
 294   // Make the Union-Find mapping an identity function
 295   _lrg_map.uf_extend(lrg, lrg);
 296 }
 297 
 298 
 299 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
 300   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
 301   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
 302   int found_projs = 0;
 303   uint cnt = orig->outcnt();
 304   for (uint i = 0; i < cnt; i++) {
 305     Node* proj = orig->raw_out(i);
 306     if (proj->is_MachProj()) {
 307       assert(proj->outcnt() == 0, "only kill projections are expected here");
 308       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
 309       found_projs++;
 310       // Copy kill projections after the cloned node
 311       Node* kills = proj->clone();
 312       kills->set_req(0, copy);
 313       b->insert_node(kills, idx++);
 314       _cfg.map_node_to_block(kills, b);
 315       new_lrg(kills, max_lrg_id++);
 316     }
 317   }
 318   return found_projs;
 319 }
 320 
 321 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 322 void PhaseChaitin::compact() {
 323   Compile::TracePhase tp(_t_chaitinCompact);
 324 
 325   // Current the _uf_map contains a series of short chains which are headed
 326   // by a self-cycle.  All the chains run from big numbers to little numbers.
 327   // The Find() call chases the chains & shortens them for the next Find call.
 328   // We are going to change this structure slightly.  Numbers above a moving
 329   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 330   // compacted live range with no further chaining.  There are no chains or
 331   // cycles below 'i', so the Find call no longer works.
 332   uint j=1;
 333   uint i;
 334   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
 335     uint lr = _lrg_map.uf_live_range_id(i);
 336     // Ignore unallocated live ranges
 337     if (!lr) {
 338       continue;
 339     }
 340     assert(lr <= i, "");
 341     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
 342   }
 343   // Now change the Node->LR mapping to reflect the compacted names
 344   uint unique = _lrg_map.size();
 345   for (i = 0; i < unique; i++) {
 346     uint lrg_id = _lrg_map.live_range_id(i);
 347     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
 348   }
 349 
 350   // Reset the Union-Find mapping
 351   _lrg_map.reset_uf_map(j);
 352 }
 353 
 354 void PhaseChaitin::Register_Allocate() {
 355 
 356   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 357   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 358   // registers) is the outgoing argument area; above that is the spill/temp
 359   // area.  These are all "frame_slots".  Arg_slots start at the zero
 360   // stack_slots and count up to the known arg_size.  Frame_slots start at
 361   // the stack_slot #arg_size and go up.  After allocation I map stack
 362   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 363   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 364 
 365   _trip_cnt = 0;
 366   _alternate = 0;
 367   _matcher._allocation_started = true;
 368 
 369   ResourceArea split_arena(mtCompiler, Arena::Tag::tag_regsplit);     // Arena for Split local resources
 370   ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive);     // Arena for liveness & IFG info
 371   ResourceMark rm(&live_arena);
 372 
 373   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 374   // liveness is JUST for coalescing, then I can get some mileage by renaming
 375   // all copy-related live ranges low and then using the max copy-related
 376   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 377   // build a subset of LIVE and IFG just for copies.
 378   PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
 379 
 380   // Need IFG for coalescing and coloring
 381   PhaseIFG ifg(&live_arena);
 382   _ifg = &ifg;
 383 
 384   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 385   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 386   // - effectively ending SSA form.  This requires either coalescing live
 387   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 388   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 389   // We will attempt to coalesce such "virtual copies" before we manifest
 390   // them for real.
 391   de_ssa();
 392 
 393 #ifdef ASSERT
 394   // Verify the graph before RA.
 395   verify(&live_arena);
 396 #endif
 397 
 398   {
 399     Compile::TracePhase tp(_t_computeLive);
 400     _live = nullptr;              // Mark live as being not available
 401     rm.reset_to_mark();           // Reclaim working storage
 402     IndexSet::reset_memory(C, &live_arena);
 403     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
 404     gather_lrg_masks( false );    // Collect LRG masks
 405     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
 406     _live = &live;                // Mark LIVE as being available
 407   }
 408 
 409   C->print_method(PHASE_INITIAL_LIVENESS, 4);
 410 
 411   // Base pointers are currently "used" by instructions which define new
 412   // derived pointers.  This makes base pointers live up to the where the
 413   // derived pointer is made, but not beyond.  Really, they need to be live
 414   // across any GC point where the derived value is live.  So this code looks
 415   // at all the GC points, and "stretches" the live range of any base pointer
 416   // to the GC point.
 417   if (stretch_base_pointer_live_ranges(&live_arena)) {
 418     Compile::TracePhase tp("computeLive (sbplr)", _t_computeLive);
 419     // Since some live range stretched, I need to recompute live
 420     _live = nullptr;
 421     rm.reset_to_mark();         // Reclaim working storage
 422     IndexSet::reset_memory(C, &live_arena);
 423     ifg.init(_lrg_map.max_lrg_id());
 424     gather_lrg_masks(false);
 425     live.compute(_lrg_map.max_lrg_id());
 426     _live = &live;
 427     C->print_method(PHASE_LIVE_RANGE_STRETCHING, 4);
 428   }
 429 
 430   // Create the interference graph using virtual copies
 431   build_ifg_virtual();  // Include stack slots this time
 432 
 433   // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 434   // faster.  Union requires a 'for all' operation which is slow on the
 435   // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 436   // meaning I can visit all the Nodes neighbors less than a Node in time
 437   // O(# of neighbors), but I have to visit all the Nodes greater than a
 438   // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 439   _ifg->SquareUp();
 440 
 441   // Aggressive (but pessimistic) copy coalescing.
 442   // This pass works on virtual copies.  Any virtual copies which are not
 443   // coalesced get manifested as actual copies
 444   {
 445     Compile::TracePhase tp(_t_chaitinCoalesce1);
 446 
 447     PhaseAggressiveCoalesce coalesce(*this);
 448     coalesce.coalesce_driver();
 449     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 450     // not match the Phi itself, insert a copy.
 451     coalesce.insert_copies(_matcher);
 452     if (C->failing()) {
 453       return;
 454     }
 455   }
 456 
 457   // After aggressive coalesce, attempt a first cut at coloring.
 458   // To color, we need the IFG and for that we need LIVE.
 459   {
 460     Compile::TracePhase tp(_t_computeLive);
 461     _live = nullptr;
 462     rm.reset_to_mark();           // Reclaim working storage
 463     IndexSet::reset_memory(C, &live_arena);
 464     ifg.init(_lrg_map.max_lrg_id());
 465     gather_lrg_masks( true );
 466     live.compute(_lrg_map.max_lrg_id());
 467     _live = &live;
 468   }
 469 
 470   C->print_method(PHASE_AGGRESSIVE_COALESCING, 4);
 471 
 472   // Build physical interference graph
 473   uint must_spill = 0;
 474   must_spill = build_ifg_physical(&live_arena);
 475   // If we have a guaranteed spill, might as well spill now
 476   if (must_spill) {
 477     if(!_lrg_map.max_lrg_id()) {
 478       return;
 479     }
 480     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 481     C->check_node_count(10*must_spill, "out of nodes before split");
 482     if (C->failing()) {
 483       return;
 484     }
 485 
 486     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 487     if (C->failing()) {
 488       return;
 489     }
 490     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 491     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 492     // or we failed to split
 493     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 494     if (C->failing()) {
 495       return;
 496     }
 497 
 498     NOT_PRODUCT(C->verify_graph_edges();)
 499 
 500     compact();                  // Compact LRGs; return new lower max lrg
 501 
 502     {
 503       Compile::TracePhase tp(_t_computeLive);
 504       _live = nullptr;
 505       rm.reset_to_mark();         // Reclaim working storage
 506       IndexSet::reset_memory(C, &live_arena);
 507       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
 508       gather_lrg_masks( true );   // Collect intersect mask
 509       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
 510       _live = &live;
 511     }
 512 
 513     C->print_method(PHASE_INITIAL_SPILLING, 4);
 514 
 515     build_ifg_physical(&live_arena);
 516     _ifg->SquareUp();
 517     _ifg->Compute_Effective_Degree();
 518     // Only do conservative coalescing if requested
 519     if (OptoCoalesce) {
 520       Compile::TracePhase tp(_t_chaitinCoalesce2);
 521       // Conservative (and pessimistic) copy coalescing of those spills
 522       PhaseConservativeCoalesce coalesce(*this);
 523       // If max live ranges greater than cutoff, don't color the stack.
 524       // This cutoff can be larger than below since it is only done once.
 525       coalesce.coalesce_driver();
 526     }
 527     _lrg_map.compress_uf_map_for_nodes();
 528 
 529     if (OptoCoalesce) {
 530       C->print_method(PHASE_CONSERVATIVE_COALESCING, 4);
 531     }
 532 
 533 #ifdef ASSERT
 534     verify(&live_arena, true);
 535 #endif
 536   } else {
 537     ifg.SquareUp();
 538     ifg.Compute_Effective_Degree();
 539 #ifdef ASSERT
 540     set_was_low();
 541 #endif
 542   }
 543 
 544   // Prepare for Simplify & Select
 545   cache_lrg_info();           // Count degree of LRGs
 546 
 547   // Simplify the InterFerence Graph by removing LRGs of low degree.
 548   // LRGs of low degree are trivially colorable.
 549   Simplify();
 550 
 551   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 552   // Return whether or not something spills.
 553   uint spills = Select( );
 554 
 555   // If we spill, split and recycle the entire thing
 556   while( spills ) {
 557     if( _trip_cnt++ > 24 ) {
 558       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 559       if( _trip_cnt > 27 ) {
 560         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 561         return;
 562       }
 563     }
 564 
 565     if (!_lrg_map.max_lrg_id()) {
 566       return;
 567     }
 568     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 569     if (C->failing()) {
 570       return;
 571     }
 572     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 573     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 574     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
 575     if (C->failing()) {
 576       return;
 577     }
 578 
 579     compact(); // Compact LRGs; return new lower max lrg
 580 
 581     // Nuke the live-ness and interference graph and LiveRanGe info
 582     {
 583       Compile::TracePhase tp(_t_computeLive);
 584       _live = nullptr;
 585       rm.reset_to_mark();         // Reclaim working storage
 586       IndexSet::reset_memory(C, &live_arena);
 587       ifg.init(_lrg_map.max_lrg_id());
 588 
 589       // Create LiveRanGe array.
 590       // Intersect register masks for all USEs and DEFs
 591       gather_lrg_masks(true);
 592       live.compute(_lrg_map.max_lrg_id());
 593       _live = &live;
 594     }
 595 
 596     C->print_method(PHASE_ITERATIVE_SPILLING, 4);
 597 
 598     must_spill = build_ifg_physical(&live_arena);
 599     _ifg->SquareUp();
 600     _ifg->Compute_Effective_Degree();
 601 
 602     // Only do conservative coalescing if requested
 603     if (OptoCoalesce) {
 604       Compile::TracePhase tp(_t_chaitinCoalesce3);
 605       // Conservative (and pessimistic) copy coalescing
 606       PhaseConservativeCoalesce coalesce(*this);
 607       // Check for few live ranges determines how aggressive coalesce is.
 608       coalesce.coalesce_driver();
 609     }
 610     _lrg_map.compress_uf_map_for_nodes();
 611 
 612     if (OptoCoalesce) {
 613       C->print_method(PHASE_CONSERVATIVE_COALESCING, 4);
 614     }
 615 
 616 #ifdef ASSERT
 617     verify(&live_arena, true);
 618 #endif
 619     cache_lrg_info();           // Count degree of LRGs
 620 
 621     // Simplify the InterFerence Graph by removing LRGs of low degree.
 622     // LRGs of low degree are trivially colorable.
 623     Simplify();
 624 
 625     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 626     // Return whether or not something spills.
 627     spills = Select();
 628   }
 629 
 630   C->print_method(PHASE_AFTER_ITERATIVE_SPILLING, 4);
 631 
 632   // Count number of Simplify-Select trips per coloring success.
 633   _allocator_attempts += _trip_cnt + 1;
 634   _allocator_successes += 1;
 635 
 636   // Peephole remove copies
 637   post_allocate_copy_removal();
 638 
 639   C->print_method(PHASE_POST_ALLOCATION_COPY_REMOVAL, 4);
 640 
 641   // Merge multidefs if multiple defs representing the same value are used in a single block.
 642   merge_multidefs();
 643 
 644   C->print_method(PHASE_MERGE_MULTI_DEFS, 4);
 645 
 646 #ifdef ASSERT
 647   // Verify the graph after RA.
 648   verify(&live_arena);
 649 #endif
 650 
 651   // max_reg is past the largest *register* used.
 652   // Convert that to a frame_slot number.
 653   if (_max_reg <= _matcher._new_SP) {
 654     _framesize = C->out_preserve_stack_slots();
 655   }
 656   else {
 657     _framesize = _max_reg -_matcher._new_SP;
 658   }
 659   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 660 
 661   // This frame must preserve the required fp alignment
 662   _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
 663   assert(_framesize <= 1000000, "sanity check");
 664 #ifndef PRODUCT
 665   _total_framesize += _framesize;
 666   if ((int)_framesize > _max_framesize) {
 667     _max_framesize = _framesize;
 668   }
 669 #endif
 670 
 671   // Convert CISC spills
 672   fixup_spills();
 673 
 674   C->print_method(PHASE_FIX_UP_SPILLS, 4);
 675 
 676   // Log regalloc results
 677   CompileLog* log = Compile::current()->log();
 678   if (log != nullptr) {
 679     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 680   }
 681 
 682   if (C->failing()) {
 683     return;
 684   }
 685 
 686   NOT_PRODUCT(C->verify_graph_edges();)
 687 
 688   // Move important info out of the live_arena to longer lasting storage.
 689   alloc_node_regs(_lrg_map.size());
 690   for (uint i=0; i < _lrg_map.size(); i++) {
 691     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
 692       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
 693       if (!lrg.alive()) {
 694         set_bad(i);
 695       } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) ||
 696                  (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) {
 697         set1(i, lrg.reg());
 698       } else {                  // Must be a register-set
 699         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
 700           // Live ranges record the highest register in their mask.
 701           // We want the low register for the AD file writer's convenience.
 702           OptoReg::Name hi = lrg.reg(); // Get hi register
 703           int num_regs = lrg.num_regs();
 704           if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
 705             // For scalable vector registers, when they are allocated in physical
 706             // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
 707             // vector. If they are allocated on stack, we need to get the actual
 708             // num_regs, which reflects the physical length of scalable registers.
 709             num_regs = lrg.scalable_reg_slots();
 710           }
 711           if (num_regs == 1) {
 712             set1(i, hi);
 713           } else {
 714             OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo
 715             // We have to use pair [lo,lo+1] even for wide vectors/vmasks because
 716             // the rest of code generation works only with pairs. It is safe
 717             // since for registers encoding only 'lo' is used.
 718             // Second reg from pair is used in ScheduleAndBundle with vector max
 719             // size 8 which corresponds to registers pair.
 720             // It is also used in BuildOopMaps but oop operations are not
 721             // vectorized.
 722             set2(i, lo);
 723           }
 724         } else {                // Misaligned; extract 2 bits
 725           OptoReg::Name hi = lrg.reg(); // Get hi register
 726           lrg.Remove(hi);       // Yank from mask
 727           int lo = lrg.mask().find_first_elem(); // Find lo
 728           set_pair(i, hi, lo);
 729         }
 730       }
 731       if( lrg._is_oop ) _node_oops.set(i);
 732     } else {
 733       set_bad(i);
 734     }
 735   }
 736 
 737   // Done!
 738   _live = nullptr;
 739   _ifg = nullptr;
 740   C->set_indexSet_arena(nullptr);  // ResourceArea is at end of scope
 741 }
 742 
 743 void PhaseChaitin::de_ssa() {
 744   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 745   // number.  A few get the ZERO live range number.  These do not
 746   // get allocated, but instead rely on correct scheduling to ensure that
 747   // only one instance is simultaneously live at a time.
 748   uint lr_counter = 1;
 749   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 750     Block* block = _cfg.get_block(i);
 751     uint cnt = block->number_of_nodes();
 752 
 753     // Handle all the normal Nodes in the block
 754     for( uint j = 0; j < cnt; j++ ) {
 755       Node *n = block->get_node(j);
 756       // Pre-color to the zero live range, or pick virtual register
 757       const RegMask &rm = n->out_RegMask();
 758       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
 759     }
 760   }
 761 
 762   // Reset the Union-Find mapping to be identity
 763   _lrg_map.reset_uf_map(lr_counter);
 764 }
 765 
 766 void PhaseChaitin::mark_ssa() {
 767   // Use ssa names to populate the live range maps or if no mask
 768   // is available, use the 0 entry.
 769   uint max_idx = 0;
 770   for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 771     Block* block = _cfg.get_block(i);
 772     uint cnt = block->number_of_nodes();
 773 
 774     // Handle all the normal Nodes in the block
 775     for ( uint j = 0; j < cnt; j++ ) {
 776       Node *n = block->get_node(j);
 777       // Pre-color to the zero live range, or pick virtual register
 778       const RegMask &rm = n->out_RegMask();
 779       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
 780       max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
 781     }
 782   }
 783   _lrg_map.set_max_lrg_id(max_idx+1);
 784 
 785   // Reset the Union-Find mapping to be identity
 786   _lrg_map.reset_uf_map(max_idx+1);
 787 }
 788 
 789 
 790 // Gather LiveRanGe information, including register masks.  Modification of
 791 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 792 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 793 
 794   // Nail down the frame pointer live range
 795   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
 796   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 797 
 798   // For all blocks
 799   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
 800     Block* block = _cfg.get_block(i);
 801 
 802     // For all instructions
 803     for (uint j = 1; j < block->number_of_nodes(); j++) {
 804       Node* n = block->get_node(j);
 805       uint input_edge_start =1; // Skip control most nodes
 806       bool is_machine_node = false;
 807       if (n->is_Mach()) {
 808         is_machine_node = true;
 809         input_edge_start = n->as_Mach()->oper_input_base();
 810       }
 811       uint idx = n->is_Copy();
 812 
 813       // Get virtual register number, same as LiveRanGe index
 814       uint vreg = _lrg_map.live_range_id(n);
 815       LRG& lrg = lrgs(vreg);
 816       if (vreg) {              // No vreg means un-allocable (e.g. memory)
 817 
 818         // Check for float-vs-int live range (used in register-pressure
 819         // calculations)
 820         const Type *n_type = n->bottom_type();
 821         if (n_type->is_floatingpoint()) {
 822           lrg._is_float = 1;
 823         }
 824 
 825         // Check for twice prior spilling.  Once prior spilling might have
 826         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 827         // further spilling is unlikely to make progress.
 828         if (_spilled_once.test(n->_idx)) {
 829           lrg._was_spilled1 = 1;
 830           if (_spilled_twice.test(n->_idx)) {
 831             lrg._was_spilled2 = 1;
 832           }
 833         }
 834 
 835 #ifndef PRODUCT
 836         // Collect bits not used by product code, but which may be useful for
 837         // debugging.
 838 
 839         // Collect has-copy bit
 840         if (idx) {
 841           lrg._has_copy = 1;
 842           uint clidx = _lrg_map.live_range_id(n->in(idx));
 843           LRG& copy_src = lrgs(clidx);
 844           copy_src._has_copy = 1;
 845         }
 846 
 847         if (trace_spilling() && lrg._def != nullptr) {
 848           // collect defs for MultiDef printing
 849           if (lrg._defs == nullptr) {
 850             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, nullptr);
 851             lrg._defs->append(lrg._def);
 852           }
 853           lrg._defs->append(n);
 854         }
 855 #endif
 856 
 857         // Check for a single def LRG; these can spill nicely
 858         // via rematerialization.  Flag as null for no def found
 859         // yet, or 'n' for single def or -1 for many defs.
 860         lrg._def = lrg._def ? NodeSentinel : n;
 861 
 862         // Limit result register mask to acceptable registers
 863         const RegMask &rm = n->out_RegMask();
 864         lrg.AND( rm );
 865 
 866         uint ireg = n->ideal_reg();
 867         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 868                 "oops must be in Op_RegP's" );
 869 
 870         // Check for vector live range (only if vector register is used).
 871         // On SPARC vector uses RegD which could be misaligned so it is not
 872         // processes as vector in RA.
 873         if (RegMask::is_vector(ireg)) {
 874           lrg._is_vector = 1;
 875           if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
 876             assert(Matcher::supports_scalable_vector(), "scalable vector should be supported");
 877             lrg._is_scalable = 1;
 878             // For scalable vector, when it is allocated in physical register,
 879             // num_regs is RegMask::SlotsPerVecA for reg mask,
 880             // which may not be the actual physical register size.
 881             // If it is allocated in stack, we need to get the actual
 882             // physical length of scalable vector register.
 883             lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
 884           }
 885         }
 886 
 887         if (ireg == Op_RegVectMask) {
 888           assert(Matcher::has_predicated_vectors(), "predicated vector should be supported");
 889           lrg._is_predicate = 1;
 890           if (Matcher::supports_scalable_vector()) {
 891             lrg._is_scalable = 1;
 892             // For scalable predicate, when it is allocated in physical register,
 893             // num_regs is RegMask::SlotsPerRegVectMask for reg mask,
 894             // which may not be the actual physical register size.
 895             // If it is allocated in stack, we need to get the actual
 896             // physical length of scalable predicate register.
 897             lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots());
 898           }
 899         }
 900         assert(n_type->isa_vect() == nullptr || lrg._is_vector ||
 901                ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,
 902                "vector must be in vector registers");
 903 
 904         // Check for bound register masks
 905         const RegMask &lrgmask = lrg.mask();
 906         if (lrgmask.is_bound(ireg)) {
 907           lrg._is_bound = 1;
 908         }
 909 
 910         // Check for maximum frequency value
 911         if (lrg._maxfreq < block->_freq) {
 912           lrg._maxfreq = block->_freq;
 913         }
 914 
 915         // Check for oop-iness, or long/double
 916         // Check for multi-kill projection
 917         switch (ireg) {
 918         case MachProjNode::fat_proj:
 919           // Fat projections have size equal to number of registers killed
 920           lrg.set_num_regs(rm.Size());
 921           lrg.set_reg_pressure(lrg.num_regs());
 922           lrg._fat_proj = 1;
 923           lrg._is_bound = 1;
 924           break;
 925         case Op_RegP:
 926 #ifdef _LP64
 927           lrg.set_num_regs(2);  // Size is 2 stack words
 928 #else
 929           lrg.set_num_regs(1);  // Size is 1 stack word
 930 #endif
 931           // Register pressure is tracked relative to the maximum values
 932           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 933           // and relative to other types which compete for the same regs.
 934           //
 935           // The following table contains suggested values based on the
 936           // architectures as defined in each .ad file.
 937           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 938           // compile-speed or performance.
 939           // Note1:
 940           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 941           // since .ad registers are defined as high and low halves.
 942           // These reg_pressure values remain compatible with the code
 943           // in is_high_pressure() which relates get_invalid_mask_size(),
 944           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 945           // Note2:
 946           // SPARC -d32 has 24 registers available for integral values,
 947           // but only 10 of these are safe for 64-bit longs.
 948           // Using set_reg_pressure(2) for both int and long means
 949           // the allocator will believe it can fit 26 longs into
 950           // registers.  Using 2 for longs and 1 for ints means the
 951           // allocator will attempt to put 52 integers into registers.
 952           // The settings below limit this problem to methods with
 953           // many long values which are being run on 32-bit SPARC.
 954           //
 955           // ------------------- reg_pressure --------------------
 956           // Each entry is reg_pressure_per_value,number_of_regs
 957           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 958           // IA32     2     1     1          1    1          6           6
 959           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 960           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 961           // AMD64    1     1     1          1    1         14          15
 962           // -----------------------------------------------------
 963           lrg.set_reg_pressure(1);  // normally one value per register
 964           if( n_type->isa_oop_ptr() ) {
 965             lrg._is_oop = 1;
 966           }
 967           break;
 968         case Op_RegL:           // Check for long or double
 969         case Op_RegD:
 970           lrg.set_num_regs(2);
 971           // Define platform specific register pressure
 972 #if defined(ARM32)
 973           lrg.set_reg_pressure(2);
 974 #elif defined(IA32)
 975           if( ireg == Op_RegL ) {
 976             lrg.set_reg_pressure(2);
 977           } else {
 978             lrg.set_reg_pressure(1);
 979           }
 980 #else
 981           lrg.set_reg_pressure(1);  // normally one value per register
 982 #endif
 983           // If this def of a double forces a mis-aligned double,
 984           // flag as '_fat_proj' - really flag as allowing misalignment
 985           // AND changes how we count interferences.  A mis-aligned
 986           // double can interfere with TWO aligned pairs, or effectively
 987           // FOUR registers!
 988           if (rm.is_misaligned_pair()) {
 989             lrg._fat_proj = 1;
 990             lrg._is_bound = 1;
 991           }
 992           break;
 993         case Op_RegVectMask:
 994           assert(Matcher::has_predicated_vectors(), "sanity");
 995           assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity");
 996           lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
 997           lrg.set_reg_pressure(1);
 998           break;
 999         case Op_RegF:
1000         case Op_RegI:
1001         case Op_RegN:
1002         case Op_RegFlags:
1003         case 0:                 // not an ideal register
1004           lrg.set_num_regs(1);
1005           lrg.set_reg_pressure(1);
1006           break;
1007         case Op_VecA:
1008           assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
1009           assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity");
1010           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned");
1011           lrg.set_num_regs(RegMask::SlotsPerVecA);
1012           lrg.set_reg_pressure(1);
1013           break;
1014         case Op_VecS:
1015           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
1016           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
1017           lrg.set_num_regs(RegMask::SlotsPerVecS);
1018           lrg.set_reg_pressure(1);
1019           break;
1020         case Op_VecD:
1021           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
1022           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
1023           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
1024           lrg.set_num_regs(RegMask::SlotsPerVecD);
1025           lrg.set_reg_pressure(1);
1026           break;
1027         case Op_VecX:
1028           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
1029           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
1030           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
1031           lrg.set_num_regs(RegMask::SlotsPerVecX);
1032           lrg.set_reg_pressure(1);
1033           break;
1034         case Op_VecY:
1035           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
1036           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
1037           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
1038           lrg.set_num_regs(RegMask::SlotsPerVecY);
1039           lrg.set_reg_pressure(1);
1040           break;
1041         case Op_VecZ:
1042           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
1043           assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
1044           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
1045           lrg.set_num_regs(RegMask::SlotsPerVecZ);
1046           lrg.set_reg_pressure(1);
1047           break;
1048         default:
1049           ShouldNotReachHere();
1050         }
1051       }
1052 
1053       // Now do the same for inputs
1054       uint cnt = n->req();
1055       // Setup for CISC SPILLING
1056       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
1057       if( UseCISCSpill && after_aggressive ) {
1058         inp = n->cisc_operand();
1059         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
1060           // Convert operand number to edge index number
1061           inp = n->as_Mach()->operand_index(inp);
1062       }
1063 
1064       // Prepare register mask for each input
1065       for( uint k = input_edge_start; k < cnt; k++ ) {
1066         uint vreg = _lrg_map.live_range_id(n->in(k));
1067         if (!vreg) {
1068           continue;
1069         }
1070 
1071         // If this instruction is CISC Spillable, add the flags
1072         // bit to its appropriate input
1073         if( UseCISCSpill && after_aggressive && inp == k ) {
1074 #ifndef PRODUCT
1075           if( TraceCISCSpill ) {
1076             tty->print("  use_cisc_RegMask: ");
1077             n->dump();
1078           }
1079 #endif
1080           n->as_Mach()->use_cisc_RegMask();
1081         }
1082 
1083         if (is_machine_node && _scheduling_info_generated) {
1084           MachNode* cur_node = n->as_Mach();
1085           // this is cleaned up by register allocation
1086           if (k >= cur_node->num_opnds()) continue;
1087         }
1088 
1089         LRG &lrg = lrgs(vreg);
1090         // // Testing for floating point code shape
1091         // Node *test = n->in(k);
1092         // if( test->is_Mach() ) {
1093         //   MachNode *m = test->as_Mach();
1094         //   int  op = m->ideal_Opcode();
1095         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1096         //     int zzz = 1;
1097         //   }
1098         // }
1099 
1100         // Limit result register mask to acceptable registers.
1101         // Do not limit registers from uncommon uses before
1102         // AggressiveCoalesce.  This effectively pre-virtual-splits
1103         // around uncommon uses of common defs.
1104         const RegMask &rm = n->in_RegMask(k);
1105         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1106           // Since we are BEFORE aggressive coalesce, leave the register
1107           // mask untrimmed by the call.  This encourages more coalescing.
1108           // Later, AFTER aggressive, this live range will have to spill
1109           // but the spiller handles slow-path calls very nicely.
1110         } else {
1111           lrg.AND( rm );
1112         }
1113 
1114         // Check for bound register masks
1115         const RegMask &lrgmask = lrg.mask();
1116         uint kreg = n->in(k)->ideal_reg();
1117         bool is_vect = RegMask::is_vector(kreg);
1118         assert(n->in(k)->bottom_type()->isa_vect() == nullptr || is_vect ||
1119                kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,
1120                "vector must be in vector registers");
1121         if (lrgmask.is_bound(kreg))
1122           lrg._is_bound = 1;
1123 
1124         // If this use of a double forces a mis-aligned double,
1125         // flag as '_fat_proj' - really flag as allowing misalignment
1126         // AND changes how we count interferences.  A mis-aligned
1127         // double can interfere with TWO aligned pairs, or effectively
1128         // FOUR registers!
1129 #ifdef ASSERT
1130         if (is_vect && !_scheduling_info_generated) {
1131           if (lrg.num_regs() != 0) {
1132             assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1133             assert(!lrg._fat_proj, "sanity");
1134             assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1135           } else {
1136             assert(n->is_Phi(), "not all inputs processed only if Phi");
1137           }
1138         }
1139 #endif
1140         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1141           lrg._fat_proj = 1;
1142           lrg._is_bound = 1;
1143         }
1144         // if the LRG is an unaligned pair, we will have to spill
1145         // so clear the LRG's register mask if it is not already spilled
1146         if (!is_vect && !n->is_SpillCopy() &&
1147             (lrg._def == nullptr || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1148             lrgmask.is_misaligned_pair()) {
1149           lrg.Clear();
1150         }
1151 
1152         // Check for maximum frequency value
1153         if (lrg._maxfreq < block->_freq) {
1154           lrg._maxfreq = block->_freq;
1155         }
1156 
1157       } // End for all allocated inputs
1158     } // end for all instructions
1159   } // end for all blocks
1160 
1161   // Final per-liverange setup
1162   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1163     LRG &lrg = lrgs(i2);
1164     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1165     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1166       lrg.clear_to_sets();
1167     }
1168     lrg.compute_set_mask_size();
1169     if (lrg.not_free()) {      // Handle case where we lose from the start
1170       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1171       lrg._direct_conflict = 1;
1172     }
1173     lrg.set_degree(0);          // no neighbors in IFG yet
1174   }
1175 }
1176 
1177 // Set the was-lo-degree bit.  Conservative coalescing should not change the
1178 // colorability of the graph.  If any live range was of low-degree before
1179 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1180 // The bit is checked in Simplify.
1181 void PhaseChaitin::set_was_low() {
1182 #ifdef ASSERT
1183   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1184     int size = lrgs(i).num_regs();
1185     uint old_was_lo = lrgs(i)._was_lo;
1186     lrgs(i)._was_lo = 0;
1187     if( lrgs(i).lo_degree() ) {
1188       lrgs(i)._was_lo = 1;      // Trivially of low degree
1189     } else {                    // Else check the Brigg's assertion
1190       // Brigg's observation is that the lo-degree neighbors of a
1191       // hi-degree live range will not interfere with the color choices
1192       // of said hi-degree live range.  The Simplify reverse-stack-coloring
1193       // order takes care of the details.  Hence you do not have to count
1194       // low-degree neighbors when determining if this guy colors.
1195       int briggs_degree = 0;
1196       IndexSet *s = _ifg->neighbors(i);
1197       IndexSetIterator elements(s);
1198       uint lidx;
1199       while((lidx = elements.next()) != 0) {
1200         if( !lrgs(lidx).lo_degree() )
1201           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1202       }
1203       if( briggs_degree < lrgs(i).degrees_of_freedom() )
1204         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1205     }
1206     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1207   }
1208 #endif
1209 }
1210 
1211 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1212 void PhaseChaitin::cache_lrg_info( ) {
1213   Compile::TracePhase tp(_t_chaitinCacheLRG);
1214 
1215   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1216     LRG &lrg = lrgs(i);
1217 
1218     // Check for being of low degree: means we can be trivially colored.
1219     // Low degree, dead or must-spill guys just get to simplify right away
1220     if( lrg.lo_degree() ||
1221        !lrg.alive() ||
1222         lrg._must_spill ) {
1223       // Split low degree list into those guys that must get a
1224       // register and those that can go to register or stack.
1225       // The idea is LRGs that can go register or stack color first when
1226       // they have a good chance of getting a register.  The register-only
1227       // lo-degree live ranges always get a register.
1228       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1229       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1230         lrg._next = _lo_stk_degree;
1231         _lo_stk_degree = i;
1232       } else {
1233         lrg._next = _lo_degree;
1234         _lo_degree = i;
1235       }
1236     } else {                    // Else high degree
1237       lrgs(_hi_degree)._prev = i;
1238       lrg._next = _hi_degree;
1239       lrg._prev = 0;
1240       _hi_degree = i;
1241     }
1242   }
1243 }
1244 
1245 // Simplify the IFG by removing LRGs of low degree.
1246 void PhaseChaitin::Simplify( ) {
1247   Compile::TracePhase tp(_t_chaitinSimplify);
1248 
1249   while( 1 ) {                  // Repeat till simplified it all
1250     // May want to explore simplifying lo_degree before _lo_stk_degree.
1251     // This might result in more spills coloring into registers during
1252     // Select().
1253     while( _lo_degree || _lo_stk_degree ) {
1254       // If possible, pull from lo_stk first
1255       uint lo;
1256       if( _lo_degree ) {
1257         lo = _lo_degree;
1258         _lo_degree = lrgs(lo)._next;
1259       } else {
1260         lo = _lo_stk_degree;
1261         _lo_stk_degree = lrgs(lo)._next;
1262       }
1263 
1264       // Put the simplified guy on the simplified list.
1265       lrgs(lo)._next = _simplified;
1266       _simplified = lo;
1267       // If this guy is "at risk" then mark his current neighbors
1268       if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1269         IndexSetIterator elements(_ifg->neighbors(lo));
1270         uint datum;
1271         while ((datum = elements.next()) != 0) {
1272           lrgs(datum)._risk_bias = lo;
1273         }
1274       }
1275 
1276       // Yank this guy from the IFG.
1277       IndexSet *adj = _ifg->remove_node(lo);
1278       if (adj->is_empty()) {
1279         continue;
1280       }
1281 
1282       // If any neighbors' degrees fall below their number of
1283       // allowed registers, then put that neighbor on the low degree
1284       // list.  Note that 'degree' can only fall and 'numregs' is
1285       // unchanged by this action.  Thus the two are equal at most once,
1286       // so LRGs hit the lo-degree worklist at most once.
1287       IndexSetIterator elements(adj);
1288       uint neighbor;
1289       while ((neighbor = elements.next()) != 0) {
1290         LRG *n = &lrgs(neighbor);
1291 #ifdef ASSERT
1292         if (VerifyRegisterAllocator) {
1293           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1294         }
1295 #endif
1296 
1297         // Check for just becoming of-low-degree just counting registers.
1298         // _must_spill live ranges are already on the low degree list.
1299         if (n->just_lo_degree() && !n->_must_spill) {
1300           assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice");
1301           // Pull from hi-degree list
1302           uint prev = n->_prev;
1303           uint next = n->_next;
1304           if (prev) {
1305             lrgs(prev)._next = next;
1306           } else {
1307             _hi_degree = next;
1308           }
1309           lrgs(next)._prev = prev;
1310           n->_next = _lo_degree;
1311           _lo_degree = neighbor;
1312         }
1313       }
1314     } // End of while lo-degree/lo_stk_degree worklist not empty
1315 
1316     // Check for got everything: is hi-degree list empty?
1317     if (!_hi_degree) break;
1318 
1319     // Time to pick a potential spill guy
1320     uint lo_score = _hi_degree;
1321     double score = lrgs(lo_score).score();
1322     double area = lrgs(lo_score)._area;
1323     double cost = lrgs(lo_score)._cost;
1324     bool bound = lrgs(lo_score)._is_bound;
1325 
1326     // Find cheapest guy
1327     DEBUG_ONLY( int lo_no_simplify=0; );
1328     for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1329       assert(!_ifg->_yanked->test(i), "");
1330       // It's just vaguely possible to move hi-degree to lo-degree without
1331       // going through a just-lo-degree stage: If you remove a double from
1332       // a float live range it's degree will drop by 2 and you can skip the
1333       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1334       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1335       if( lrgs(i).lo_degree() ) {
1336         lo_score = i;
1337         break;
1338       }
1339       DEBUG_ONLY( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1340       double iscore = lrgs(i).score();
1341       double iarea = lrgs(i)._area;
1342       double icost = lrgs(i)._cost;
1343       bool ibound = lrgs(i)._is_bound;
1344 
1345       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1346       // wins.  Ties happen because all live ranges in question have spilled
1347       // a few times before and the spill-score adds a huge number which
1348       // washes out the low order bits.  We are choosing the lesser of 2
1349       // evils; in this case pick largest area to spill.
1350       // Ties also happen when live ranges are defined and used only inside
1351       // one block. In which case their area is 0 and score set to max.
1352       // In such case choose bound live range over unbound to free registers
1353       // or with smaller cost to spill.
1354       if ( iscore < score ||
1355           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1356           (iscore == score && iarea == area &&
1357            ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1358         lo_score = i;
1359         score = iscore;
1360         area = iarea;
1361         cost = icost;
1362         bound = ibound;
1363       }
1364     }
1365     LRG *lo_lrg = &lrgs(lo_score);
1366     // The live range we choose for spilling is either hi-degree, or very
1367     // rarely it can be low-degree.  If we choose a hi-degree live range
1368     // there better not be any lo-degree choices.
1369     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1370 
1371     // Pull from hi-degree list
1372     uint prev = lo_lrg->_prev;
1373     uint next = lo_lrg->_next;
1374     if( prev ) lrgs(prev)._next = next;
1375     else _hi_degree = next;
1376     lrgs(next)._prev = prev;
1377     // Jam him on the lo-degree list, despite his high degree.
1378     // Maybe he'll get a color, and maybe he'll spill.
1379     // Only Select() will know.
1380     lrgs(lo_score)._at_risk = true;
1381     _lo_degree = lo_score;
1382     lo_lrg->_next = 0;
1383 
1384   } // End of while not simplified everything
1385 
1386 }
1387 
1388 // Is 'reg' register legal for 'lrg'?
1389 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1390   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1391       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1392     // RA uses OptoReg which represent the highest element of a registers set.
1393     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1394     // in which XMMd is used by RA to represent such vectors. A double value
1395     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1396     // The register mask uses largest bits set of overlapping register sets.
1397     // On x86 with AVX it uses 8 bits for each XMM registers set.
1398     //
1399     // The 'lrg' already has cleared-to-set register mask (done in Select()
1400     // before calling choose_color()). Passing mask.Member(reg) check above
1401     // indicates that the size (num_regs) of 'reg' set is less or equal to
1402     // 'lrg' set size.
1403     // For set size 1 any register which is member of 'lrg' mask is legal.
1404     if (lrg.num_regs()==1)
1405       return true;
1406     // For larger sets only an aligned register with the same set size is legal.
1407     int mask = lrg.num_regs()-1;
1408     if ((reg&mask) == mask)
1409       return true;
1410   }
1411   return false;
1412 }
1413 
1414 static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1415   int num_regs = lrg.num_regs();
1416   OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1417 
1418   if (lrg.is_scalable()) {
1419     // a physical register is found
1420     if (chunk == 0 && OptoReg::is_reg(assigned)) {
1421       return assigned;
1422     }
1423 
1424     // find available stack slots for scalable register
1425     if (lrg._is_vector) {
1426       num_regs = lrg.scalable_reg_slots();
1427       // if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1428       if (num_regs == RegMask::SlotsPerVecA) {
1429         return assigned;
1430       }
1431 
1432       // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1433       // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1434       // instead of SlotsPerVecA bits.
1435       assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1436       while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1437         // Verify the found reg has scalable_reg_slots() bits set.
1438         if (mask.is_valid_reg(assigned, num_regs)) {
1439           return assigned;
1440         } else {
1441           // Remove more for each iteration
1442           mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1443           mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1444           assigned = mask.find_first_set(lrg, num_regs);
1445         }
1446       }
1447       return OptoReg::Bad; // will cause chunk change, and retry next chunk
1448     } else if (lrg._is_predicate) {
1449       assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register");
1450       num_regs = lrg.scalable_reg_slots();
1451       mask.clear_to_sets(num_regs);
1452       return mask.find_first_set(lrg, num_regs);
1453     }
1454   }
1455 
1456   return assigned;
1457 }
1458 
1459 // Choose a color using the biasing heuristic
1460 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1461 
1462   // Check for "at_risk" LRG's
1463   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1464   if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1465     // Walk the colored neighbors of the "at_risk" candidate
1466     // Choose a color which is both legal and already taken by a neighbor
1467     // of the "at_risk" candidate in order to improve the chances of the
1468     // "at_risk" candidate of coloring
1469     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1470     uint datum;
1471     while ((datum = elements.next()) != 0) {
1472       OptoReg::Name reg = lrgs(datum).reg();
1473       // If this LRG's register is legal for us, choose it
1474       if (is_legal_reg(lrg, reg, chunk))
1475         return reg;
1476     }
1477   }
1478 
1479   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1480   if (copy_lrg != 0) {
1481     // If he has a color,
1482     if(!_ifg->_yanked->test(copy_lrg)) {
1483       OptoReg::Name reg = lrgs(copy_lrg).reg();
1484       //  And it is legal for you,
1485       if (is_legal_reg(lrg, reg, chunk))
1486         return reg;
1487     } else if( chunk == 0 ) {
1488       // Choose a color which is legal for him
1489       RegMask tempmask = lrg.mask();
1490       tempmask.AND(lrgs(copy_lrg).mask());
1491       tempmask.clear_to_sets(lrg.num_regs());
1492       OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1493       if (OptoReg::is_valid(reg))
1494         return reg;
1495     }
1496   }
1497 
1498   // If no bias info exists, just go with the register selection ordering
1499   if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) {
1500     // Find an aligned set
1501     return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1502   }
1503 
1504   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1505   // copy removal to remove many more copies, by preventing a just-assigned
1506   // register from being repeatedly assigned.
1507   OptoReg::Name reg = lrg.mask().find_first_elem();
1508   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1509     // This 'Remove; find; Insert' idiom is an expensive way to find the
1510     // SECOND element in the mask.
1511     lrg.Remove(reg);
1512     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1513     lrg.Insert(reg);
1514     if( OptoReg::is_reg(reg2))
1515       reg = reg2;
1516   }
1517   return OptoReg::add( reg, chunk );
1518 }
1519 
1520 // Choose a color in the current chunk
1521 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1522   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1523   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1524 
1525   if( lrg.num_regs() == 1 ||    // Common Case
1526       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1527     // Use a heuristic to "bias" the color choice
1528     return bias_color(lrg, chunk);
1529 
1530   assert(!lrg._is_vector, "should be not vector here" );
1531   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1532 
1533   // Fat-proj case or misaligned double argument.
1534   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1535          lrg.num_regs() == 2,"fat projs exactly color" );
1536   assert( !chunk, "always color in 1st chunk" );
1537   // Return the highest element in the set.
1538   return lrg.mask().find_last_elem();
1539 }
1540 
1541 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1542 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1543 // everything going back is guaranteed a color.  Select that color.  If some
1544 // hi-degree LRG cannot get a color then we record that we must spill.
1545 uint PhaseChaitin::Select( ) {
1546   Compile::TracePhase tp(_t_chaitinSelect);
1547 
1548   uint spill_reg = LRG::SPILL_REG;
1549   _max_reg = OptoReg::Name(0);  // Past max register used
1550   while( _simplified ) {
1551     // Pull next LRG from the simplified list - in reverse order of removal
1552     uint lidx = _simplified;
1553     LRG *lrg = &lrgs(lidx);
1554     _simplified = lrg->_next;
1555 
1556 #ifndef PRODUCT
1557     if (trace_spilling()) {
1558       ttyLocker ttyl;
1559       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1560                     lrg->degrees_of_freedom());
1561       lrg->dump();
1562     }
1563 #endif
1564 
1565     // Re-insert into the IFG
1566     _ifg->re_insert(lidx);
1567     if( !lrg->alive() ) continue;
1568     // capture allstackedness flag before mask is hacked
1569     const int is_allstack = lrg->mask().is_AllStack();
1570 
1571     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1572     // to avoid the GOTO, although the refactored code will not
1573     // be much clearer.  We arrive here IFF we have a stack-based
1574     // live range that cannot color in the current chunk, and it
1575     // has to move into the next free stack chunk.
1576     int chunk = 0;              // Current chunk is first chunk
1577     retry_next_chunk:
1578 
1579     // Remove neighbor colors
1580     IndexSet *s = _ifg->neighbors(lidx);
1581     DEBUG_ONLY(RegMask orig_mask = lrg->mask();)
1582 
1583     if (!s->is_empty()) {
1584       IndexSetIterator elements(s);
1585       uint neighbor;
1586       while ((neighbor = elements.next()) != 0) {
1587         // Note that neighbor might be a spill_reg.  In this case, exclusion
1588         // of its color will be a no-op, since the spill_reg chunk is in outer
1589         // space.  Also, if neighbor is in a different chunk, this exclusion
1590         // will be a no-op.  (Later on, if lrg runs out of possible colors in
1591         // its chunk, a new chunk of color may be tried, in which case
1592         // examination of neighbors is started again, at retry_next_chunk.)
1593         LRG &nlrg = lrgs(neighbor);
1594         OptoReg::Name nreg = nlrg.reg();
1595         // Only subtract masks in the same chunk
1596         if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1597 #ifndef PRODUCT
1598           uint size = lrg->mask().Size();
1599           RegMask rm = lrg->mask();
1600 #endif
1601           lrg->SUBTRACT(nlrg.mask());
1602 #ifndef PRODUCT
1603           if (trace_spilling() && lrg->mask().Size() != size) {
1604             ttyLocker ttyl;
1605             tty->print("L%d ", lidx);
1606             rm.dump();
1607             tty->print(" intersected L%d ", neighbor);
1608             nlrg.mask().dump();
1609             tty->print(" removed ");
1610             rm.SUBTRACT(lrg->mask());
1611             rm.dump();
1612             tty->print(" leaving ");
1613             lrg->mask().dump();
1614             tty->cr();
1615           }
1616 #endif
1617         }
1618       }
1619     }
1620     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1621     // Aligned pairs need aligned masks
1622     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1623     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1624       lrg->clear_to_sets();
1625     }
1626 
1627     // Check if a color is available and if so pick the color
1628     OptoReg::Name reg = choose_color( *lrg, chunk );
1629 
1630     //---------------
1631     // If we fail to color and the AllStack flag is set, trigger
1632     // a chunk-rollover event
1633     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1634       // Bump register mask up to next stack chunk
1635       chunk += RegMask::CHUNK_SIZE;
1636       lrg->Set_All();
1637       goto retry_next_chunk;
1638     }
1639 
1640     //---------------
1641     // Did we get a color?
1642     else if( OptoReg::is_valid(reg)) {
1643 #ifndef PRODUCT
1644       RegMask avail_rm = lrg->mask();
1645 #endif
1646 
1647       // Record selected register
1648       lrg->set_reg(reg);
1649 
1650       if( reg >= _max_reg )     // Compute max register limit
1651         _max_reg = OptoReg::add(reg,1);
1652       // Fold reg back into normal space
1653       reg = OptoReg::add(reg,-chunk);
1654 
1655       // If the live range is not bound, then we actually had some choices
1656       // to make.  In this case, the mask has more bits in it than the colors
1657       // chosen.  Restrict the mask to just what was picked.
1658       int n_regs = lrg->num_regs();
1659       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1660       if (n_regs == 1 || !lrg->_fat_proj) {
1661         if (Matcher::supports_scalable_vector()) {
1662           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity");
1663         } else {
1664           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1665         }
1666         lrg->Clear();           // Clear the mask
1667         lrg->Insert(reg);       // Set regmask to match selected reg
1668         // For vectors and pairs, also insert the low bit of the pair
1669         // We always choose the high bit, then mask the low bits by register size
1670         if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1671           n_regs = lrg->scalable_reg_slots();
1672         }
1673         for (int i = 1; i < n_regs; i++) {
1674           lrg->Insert(OptoReg::add(reg,-i));
1675         }
1676         lrg->set_mask_size(n_regs);
1677       } else {                  // Else fatproj
1678         // mask must be equal to fatproj bits, by definition
1679       }
1680 #ifndef PRODUCT
1681       if (trace_spilling()) {
1682         ttyLocker ttyl;
1683         tty->print("L%d selected ", lidx);
1684         lrg->mask().dump();
1685         tty->print(" from ");
1686         avail_rm.dump();
1687         tty->cr();
1688       }
1689 #endif
1690       // Note that reg is the highest-numbered register in the newly-bound mask.
1691     } // end color available case
1692 
1693     //---------------
1694     // Live range is live and no colors available
1695     else {
1696       assert( lrg->alive(), "" );
1697       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1698               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1699       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1700 
1701       // Assign the special spillreg register
1702       lrg->set_reg(OptoReg::Name(spill_reg++));
1703       // Do not empty the regmask; leave mask_size lying around
1704       // for use during Spilling
1705 #ifndef PRODUCT
1706       if( trace_spilling() ) {
1707         ttyLocker ttyl;
1708         tty->print("L%d spilling with neighbors: ", lidx);
1709         s->dump();
1710         DEBUG_ONLY(tty->print(" original mask: "));
1711         DEBUG_ONLY(orig_mask.dump());
1712         dump_lrg(lidx);
1713       }
1714 #endif
1715     } // end spill case
1716 
1717   }
1718 
1719   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1720 }
1721 
1722 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1723 void PhaseChaitin::set_was_spilled( Node *n ) {
1724   if( _spilled_once.test_set(n->_idx) )
1725     _spilled_twice.set(n->_idx);
1726 }
1727 
1728 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1729 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1730 void PhaseChaitin::fixup_spills() {
1731   // This function does only cisc spill work.
1732   if( !UseCISCSpill ) return;
1733 
1734   Compile::TracePhase tp(_t_fixupSpills);
1735 
1736   // Grab the Frame Pointer
1737   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1738 
1739   // For all blocks
1740   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1741     Block* block = _cfg.get_block(i);
1742 
1743     // For all instructions in block
1744     uint last_inst = block->end_idx();
1745     for (uint j = 1; j <= last_inst; j++) {
1746       Node* n = block->get_node(j);
1747 
1748       // Dead instruction???
1749       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1750               C->top() == n ||  // Or the random TOP node
1751               n->is_Proj(),     // Or a fat-proj kill node
1752               "No dead instructions after post-alloc" );
1753 
1754       int inp = n->cisc_operand();
1755       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1756         // Convert operand number to edge index number
1757         MachNode *mach = n->as_Mach();
1758         inp = mach->operand_index(inp);
1759         Node *src = n->in(inp);   // Value to load or store
1760         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1761         OptoReg::Name src_reg = lrg_cisc.reg();
1762         // Doubles record the HIGH register of an adjacent pair.
1763         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1764         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1765           // This is a CISC Spill, get stack offset and construct new node
1766 #ifndef PRODUCT
1767           if( TraceCISCSpill ) {
1768             tty->print("    reg-instr:  ");
1769             n->dump();
1770           }
1771 #endif
1772           int stk_offset = reg2offset(src_reg);
1773           // Bailout if we might exceed node limit when spilling this instruction
1774           C->check_node_count(0, "out of nodes fixing spills");
1775           if (C->failing())  return;
1776           // Transform node
1777           MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1778           cisc->set_req(inp,fp);          // Base register is frame pointer
1779           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1780             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1781             cisc->ins_req(1,src);         // Requires a memory edge
1782           } else {
1783             // There is no space reserved for a memory edge before the inputs for
1784             // instructions which have "stackSlotX" parameter instead of "memory".
1785             // For example, "MoveF2I_stack_reg". We always need a memory edge from
1786             // src to cisc, else we might schedule cisc before src, loading from a
1787             // spill location before storing the spill. On some platforms, we land
1788             // in this else case because mach->oper_input_base() > 1, i.e. we have
1789             // multiple inputs. In some rare cases there are even multiple memory
1790             // operands, before and after spilling.
1791             // (e.g. spilling "addFPR24_reg_mem" to "addFPR24_mem_cisc")
1792             // In either case, there is no space in the inputs for the memory edge
1793             // so we add an additional precedence / memory edge.
1794             cisc->add_prec(src);
1795           }
1796           block->map_node(cisc, j);          // Insert into basic block
1797           n->subsume_by(cisc, C); // Correct graph
1798           //
1799           ++_used_cisc_instructions;
1800 #ifndef PRODUCT
1801           if( TraceCISCSpill ) {
1802             tty->print("    cisc-instr: ");
1803             cisc->dump();
1804           }
1805 #endif
1806         } else {
1807 #ifndef PRODUCT
1808           if( TraceCISCSpill ) {
1809             tty->print("    using reg-instr: ");
1810             n->dump();
1811           }
1812 #endif
1813           ++_unused_cisc_instructions;    // input can be on stack
1814         }
1815       }
1816 
1817     } // End of for all instructions
1818 
1819   } // End of for all blocks
1820 }
1821 
1822 // Helper to stretch above; recursively discover the base Node for a
1823 // given derived Node.  Easy for AddP-related machine nodes, but needs
1824 // to be recursive for derived Phis.
1825 Node* PhaseChaitin::find_base_for_derived(Node** derived_base_map, Node* derived, uint& maxlrg) {
1826   // See if already computed; if so return it
1827   if (derived_base_map[derived->_idx]) {
1828     return derived_base_map[derived->_idx];
1829   }
1830 
1831 #ifdef ASSERT
1832   if (derived->is_Mach() && derived->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) {
1833     // Bypass the verification node
1834     Node* base = find_base_for_derived(derived_base_map, derived->in(1), maxlrg);
1835     derived_base_map[derived->_idx] = base;
1836     return base;
1837   }
1838 #endif
1839 
1840   // See if this happens to be a base.
1841   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1842   // pointers derived from null!  These are always along paths that
1843   // can't happen at run-time but the optimizer cannot deduce it so
1844   // we have to handle it gracefully.
1845   assert(!derived->bottom_type()->isa_narrowoop() ||
1846           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1847   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1848   // If its an OOP with a non-zero offset, then it is derived.
1849   if( tj == nullptr || tj->_offset == 0 ) {
1850     derived_base_map[derived->_idx] = derived;
1851     return derived;
1852   }
1853   // Derived is null+offset?  Base is null!
1854   if( derived->is_Con() ) {
1855     Node *base = _matcher.mach_null();
1856     assert(base != nullptr, "sanity");
1857     if (base->in(0) == nullptr) {
1858       // Initialize it once and make it shared:
1859       // set control to _root and place it into Start block
1860       // (where top() node is placed).
1861       base->init_req(0, _cfg.get_root_node());
1862       Block *startb = _cfg.get_block_for_node(C->top());
1863       uint node_pos = startb->find_node(C->top());
1864       startb->insert_node(base, node_pos);
1865       _cfg.map_node_to_block(base, startb);
1866       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1867 
1868       // The loadConP0 might have projection nodes depending on architecture
1869       // Add the projection nodes to the CFG
1870       for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1871         Node* use = base->fast_out(i);
1872         if (use->is_MachProj()) {
1873           startb->insert_node(use, ++node_pos);
1874           _cfg.map_node_to_block(use, startb);
1875           new_lrg(use, maxlrg++);
1876         }
1877       }
1878     }
1879     if (_lrg_map.live_range_id(base) == 0) {
1880       new_lrg(base, maxlrg++);
1881     }
1882     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base null should be shared");
1883     derived_base_map[derived->_idx] = base;
1884     return base;
1885   }
1886 
1887   // Check for AddP-related opcodes
1888   if (!derived->is_Phi()) {
1889     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1890     Node *base = derived->in(AddPNode::Base);
1891     derived_base_map[derived->_idx] = base;
1892     return base;
1893   }
1894 
1895   // Recursively find bases for Phis.
1896   // First check to see if we can avoid a base Phi here.
1897   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1898   uint i;
1899   for( i = 2; i < derived->req(); i++ )
1900     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1901       break;
1902   // Went to the end without finding any different bases?
1903   if( i == derived->req() ) {   // No need for a base Phi here
1904     derived_base_map[derived->_idx] = base;
1905     return base;
1906   }
1907 
1908   // Now we see we need a base-Phi here to merge the bases
1909   const Type *t = base->bottom_type();
1910   base = new PhiNode( derived->in(0), t );
1911   for( i = 1; i < derived->req(); i++ ) {
1912     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1913     t = t->meet(base->in(i)->bottom_type());
1914   }
1915   base->as_Phi()->set_type(t);
1916 
1917   // Search the current block for an existing base-Phi
1918   Block *b = _cfg.get_block_for_node(derived);
1919   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1920     Node *phi = b->get_node(i);
1921     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1922       b->insert_node(base,  i); // Must insert created Phi here as base
1923       _cfg.map_node_to_block(base, b);
1924       new_lrg(base,maxlrg++);
1925       break;
1926     }
1927     // See if Phi matches.
1928     uint j;
1929     for( j = 1; j < base->req(); j++ )
1930       if( phi->in(j) != base->in(j) &&
1931           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different nulls
1932         break;
1933     if( j == base->req() ) {    // All inputs match?
1934       base = phi;               // Then use existing 'phi' and drop 'base'
1935       break;
1936     }
1937   }
1938 
1939 
1940   // Cache info for later passes
1941   derived_base_map[derived->_idx] = base;
1942   return base;
1943 }
1944 
1945 // At each Safepoint, insert extra debug edges for each pair of derived value/
1946 // base pointer that is live across the Safepoint for oopmap building.  The
1947 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1948 // required edge set.
1949 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1950   int must_recompute_live = false;
1951   uint maxlrg = _lrg_map.max_lrg_id();
1952   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1953   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1954 
1955   // For all blocks in RPO do...
1956   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1957     Block* block = _cfg.get_block(i);
1958     // Note use of deep-copy constructor.  I cannot hammer the original
1959     // liveout bits, because they are needed by the following coalesce pass.
1960     IndexSet liveout(_live->live(block));
1961 
1962     for (uint j = block->end_idx() + 1; j > 1; j--) {
1963       Node* n = block->get_node(j - 1);
1964 
1965       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1966       // like to see in the same register.  Compare uses the loop-phi and so
1967       // extends its live range BUT cannot be part of the cycle.  If this
1968       // extended live range overlaps with the update of the loop-phi value
1969       // we need both alive at the same time -- which requires at least 1
1970       // copy.  But because Intel has only 2-address registers we end up with
1971       // at least 2 copies, one before the loop-phi update instruction and
1972       // one after.  Instead we split the input to the compare just after the
1973       // phi.
1974       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1975         Node *phi = n->in(1);
1976         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1977           Block *phi_block = _cfg.get_block_for_node(phi);
1978           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1979             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1980             Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1981             insert_proj( phi_block, 1, spill, maxlrg++ );
1982             n->set_req(1,spill);
1983             must_recompute_live = true;
1984           }
1985         }
1986       }
1987 
1988       // Get value being defined
1989       uint lidx = _lrg_map.live_range_id(n);
1990       // Ignore the occasional brand-new live range
1991       if (lidx && lidx < _lrg_map.max_lrg_id()) {
1992         // Remove from live-out set
1993         liveout.remove(lidx);
1994 
1995         // Copies do not define a new value and so do not interfere.
1996         // Remove the copies source from the liveout set before interfering.
1997         uint idx = n->is_Copy();
1998         if (idx) {
1999           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
2000         }
2001       }
2002 
2003       // Found a safepoint?
2004       JVMState *jvms = n->jvms();
2005       if (jvms && !liveout.is_empty()) {
2006         // Now scan for a live derived pointer
2007         IndexSetIterator elements(&liveout);
2008         uint neighbor;
2009         while ((neighbor = elements.next()) != 0) {
2010           // Find reaching DEF for base and derived values
2011           // This works because we are still in SSA during this call.
2012           Node *derived = lrgs(neighbor)._def;
2013           const TypePtr *tj = derived->bottom_type()->isa_ptr();
2014           assert(!derived->bottom_type()->isa_narrowoop() ||
2015                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
2016           // If its an OOP with a non-zero offset, then it is derived.
2017           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
2018             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
2019             assert(base->_idx < _lrg_map.size(), "");
2020             // Add reaching DEFs of derived pointer and base pointer as a
2021             // pair of inputs
2022             n->add_req(derived);
2023             n->add_req(base);
2024 
2025             // See if the base pointer is already live to this point.
2026             // Since I'm working on the SSA form, live-ness amounts to
2027             // reaching def's.  So if I find the base's live range then
2028             // I know the base's def reaches here.
2029             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
2030                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
2031                  (_lrg_map.live_range_id(base) > 0) && // not a constant
2032                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
2033               // Base pointer is not currently live.  Since I stretched
2034               // the base pointer to here and it crosses basic-block
2035               // boundaries, the global live info is now incorrect.
2036               // Recompute live.
2037               must_recompute_live = true;
2038             } // End of if base pointer is not live to debug info
2039           }
2040         } // End of scan all live data for derived ptrs crossing GC point
2041       } // End of if found a GC point
2042 
2043       // Make all inputs live
2044       if (!n->is_Phi()) {      // Phi function uses come from prior block
2045         for (uint k = 1; k < n->req(); k++) {
2046           uint lidx = _lrg_map.live_range_id(n->in(k));
2047           if (lidx < _lrg_map.max_lrg_id()) {
2048             liveout.insert(lidx);
2049           }
2050         }
2051       }
2052 
2053     } // End of forall instructions in block
2054     liveout.clear();  // Free the memory used by liveout.
2055 
2056   } // End of forall blocks
2057   _lrg_map.set_max_lrg_id(maxlrg);
2058 
2059   // If I created a new live range I need to recompute live
2060   if (maxlrg != _ifg->_maxlrg) {
2061     must_recompute_live = true;
2062   }
2063 
2064   return must_recompute_live != 0;
2065 }
2066 
2067 // Extend the node to LRG mapping
2068 
2069 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
2070   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
2071 }
2072 
2073 #ifndef PRODUCT
2074 void PhaseChaitin::dump(const Node* n) const {
2075   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
2076   tty->print("L%d",r);
2077   if (r && n->Opcode() != Op_Phi) {
2078     if( _node_regs ) {          // Got a post-allocation copy of allocation?
2079       tty->print("[");
2080       OptoReg::Name second = get_reg_second(n);
2081       if( OptoReg::is_valid(second) ) {
2082         if( OptoReg::is_reg(second) )
2083           tty->print("%s:",Matcher::regName[second]);
2084         else
2085           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
2086       }
2087       OptoReg::Name first = get_reg_first(n);
2088       if( OptoReg::is_reg(first) )
2089         tty->print("%s]",Matcher::regName[first]);
2090       else
2091          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
2092     } else
2093     n->out_RegMask().dump();
2094   }
2095   tty->print("/N%d\t",n->_idx);
2096   tty->print("%s === ", n->Name());
2097   uint k;
2098   for (k = 0; k < n->req(); k++) {
2099     Node *m = n->in(k);
2100     if (!m) {
2101       tty->print("_ ");
2102     }
2103     else {
2104       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2105       tty->print("L%d",r);
2106       // Data MultiNode's can have projections with no real registers.
2107       // Don't die while dumping them.
2108       int op = n->Opcode();
2109       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2110         if( _node_regs ) {
2111           tty->print("[");
2112           OptoReg::Name second = get_reg_second(n->in(k));
2113           if( OptoReg::is_valid(second) ) {
2114             if( OptoReg::is_reg(second) )
2115               tty->print("%s:",Matcher::regName[second]);
2116             else
2117               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2118                          reg2offset_unchecked(second));
2119           }
2120           OptoReg::Name first = get_reg_first(n->in(k));
2121           if( OptoReg::is_reg(first) )
2122             tty->print("%s]",Matcher::regName[first]);
2123           else
2124             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2125                        reg2offset_unchecked(first));
2126         } else
2127           n->in_RegMask(k).dump();
2128       }
2129       tty->print("/N%d ",m->_idx);
2130     }
2131   }
2132   if( k < n->len() && n->in(k) ) tty->print("| ");
2133   for( ; k < n->len(); k++ ) {
2134     Node *m = n->in(k);
2135     if(!m) {
2136       break;
2137     }
2138     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2139     tty->print("L%d",r);
2140     tty->print("/N%d ",m->_idx);
2141   }
2142   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2143   else n->dump_spec(tty);
2144   if( _spilled_once.test(n->_idx ) ) {
2145     tty->print(" Spill_1");
2146     if( _spilled_twice.test(n->_idx ) )
2147       tty->print(" Spill_2");
2148   }
2149   tty->print("\n");
2150 }
2151 
2152 void PhaseChaitin::dump(const Block* b) const {
2153   b->dump_head(&_cfg);
2154 
2155   // For all instructions
2156   for( uint j = 0; j < b->number_of_nodes(); j++ )
2157     dump(b->get_node(j));
2158   // Print live-out info at end of block
2159   if( _live ) {
2160     tty->print("Liveout: ");
2161     IndexSet *live = _live->live(b);
2162     IndexSetIterator elements(live);
2163     tty->print("{");
2164     uint i;
2165     while ((i = elements.next()) != 0) {
2166       tty->print("L%d ", _lrg_map.find_const(i));
2167     }
2168     tty->print_cr("}");
2169   }
2170   tty->print("\n");
2171 }
2172 
2173 void PhaseChaitin::dump() const {
2174   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2175               _matcher._new_SP, _framesize );
2176 
2177   // For all blocks
2178   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2179     dump(_cfg.get_block(i));
2180   }
2181   // End of per-block dump
2182   tty->print("\n");
2183 
2184   if (!_ifg) {
2185     tty->print("(No IFG.)\n");
2186     return;
2187   }
2188 
2189   // Dump LRG array
2190   tty->print("--- Live RanGe Array ---\n");
2191   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2192     tty->print("L%d: ",i2);
2193     if (i2 < _ifg->_maxlrg) {
2194       lrgs(i2).dump();
2195     }
2196     else {
2197       tty->print_cr("new LRG");
2198     }
2199   }
2200   tty->cr();
2201 
2202   // Dump lo-degree list
2203   tty->print("Lo degree: ");
2204   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2205     tty->print("L%d ",i3);
2206   tty->cr();
2207 
2208   // Dump lo-stk-degree list
2209   tty->print("Lo stk degree: ");
2210   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2211     tty->print("L%d ",i4);
2212   tty->cr();
2213 
2214   // Dump lo-degree list
2215   tty->print("Hi degree: ");
2216   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2217     tty->print("L%d ",i5);
2218   tty->cr();
2219 }
2220 
2221 void PhaseChaitin::dump_degree_lists() const {
2222   // Dump lo-degree list
2223   tty->print("Lo degree: ");
2224   for( uint i = _lo_degree; i; i = lrgs(i)._next )
2225     tty->print("L%d ",i);
2226   tty->cr();
2227 
2228   // Dump lo-stk-degree list
2229   tty->print("Lo stk degree: ");
2230   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2231     tty->print("L%d ",i2);
2232   tty->cr();
2233 
2234   // Dump lo-degree list
2235   tty->print("Hi degree: ");
2236   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2237     tty->print("L%d ",i3);
2238   tty->cr();
2239 }
2240 
2241 void PhaseChaitin::dump_simplified() const {
2242   tty->print("Simplified: ");
2243   for( uint i = _simplified; i; i = lrgs(i)._next )
2244     tty->print("L%d ",i);
2245   tty->cr();
2246 }
2247 
2248 static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf, size_t buf_size) {
2249   if ((int)reg < 0)
2250     os::snprintf_checked(buf, buf_size, "<OptoReg::%d>", (int)reg);
2251   else if (OptoReg::is_reg(reg))
2252     strcpy(buf, Matcher::regName[reg]);
2253   else
2254     os::snprintf_checked(buf, buf_size, "%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2255             pc->reg2offset(reg));
2256   return buf+strlen(buf);
2257 }
2258 
2259 // Dump a register name into a buffer.  Be intelligent if we get called
2260 // before allocation is complete.
2261 char *PhaseChaitin::dump_register(const Node* n, char* buf, size_t buf_size) const {
2262   if( _node_regs ) {
2263     // Post allocation, use direct mappings, no LRG info available
2264     print_reg( get_reg_first(n), this, buf, buf_size);
2265   } else {
2266     uint lidx = _lrg_map.find_const(n); // Grab LRG number
2267     if( !_ifg ) {
2268       os::snprintf_checked(buf, buf_size, "L%d",lidx);  // No register binding yet
2269     } else if( !lidx ) {        // Special, not allocated value
2270       strcpy(buf,"Special");
2271     } else {
2272       if (lrgs(lidx)._is_vector) {
2273         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2274           print_reg( lrgs(lidx).reg(), this, buf, buf_size); // a bound machine register
2275         else
2276           os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2277       } else if( (lrgs(lidx).num_regs() == 1)
2278                  ? lrgs(lidx).mask().is_bound1()
2279                  : lrgs(lidx).mask().is_bound_pair() ) {
2280         // Hah!  We have a bound machine register
2281         print_reg( lrgs(lidx).reg(), this, buf, buf_size);
2282       } else {
2283         os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2284       }
2285     }
2286   }
2287   return buf+strlen(buf);
2288 }
2289 
2290 void PhaseChaitin::dump_for_spill_split_recycle() const {
2291   if( WizardMode && (PrintCompilation || PrintOpto) ) {
2292     // Display which live ranges need to be split and the allocator's state
2293     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2294     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2295       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2296         tty->print("L%d: ", bidx);
2297         lrgs(bidx).dump();
2298       }
2299     }
2300     tty->cr();
2301     dump();
2302   }
2303 }
2304 
2305 void PhaseChaitin::dump_frame() const {
2306   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2307   const TypeTuple *domain = C->tf()->domain();
2308   const int        argcnt = domain->cnt() - TypeFunc::Parms;
2309 
2310   // Incoming arguments in registers dump
2311   for( int k = 0; k < argcnt; k++ ) {
2312     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2313     if( OptoReg::is_reg(parmreg))  {
2314       const char *reg_name = OptoReg::regname(parmreg);
2315       tty->print("#r%3.3d %s", parmreg, reg_name);
2316       parmreg = _matcher._parm_regs[k].second();
2317       if( OptoReg::is_reg(parmreg))  {
2318         tty->print(":%s", OptoReg::regname(parmreg));
2319       }
2320       tty->print("   : parm %d: ", k);
2321       domain->field_at(k + TypeFunc::Parms)->dump();
2322       tty->cr();
2323     }
2324   }
2325 
2326   // Check for un-owned padding above incoming args
2327   OptoReg::Name reg = _matcher._new_SP;
2328   if( reg > _matcher._in_arg_limit ) {
2329     reg = OptoReg::add(reg, -1);
2330     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2331   }
2332 
2333   // Incoming argument area dump
2334   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2335   while( reg > begin_in_arg ) {
2336     reg = OptoReg::add(reg, -1);
2337     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2338     int j;
2339     for( j = 0; j < argcnt; j++) {
2340       if( _matcher._parm_regs[j].first() == reg ||
2341           _matcher._parm_regs[j].second() == reg ) {
2342         tty->print("parm %d: ",j);
2343         domain->field_at(j + TypeFunc::Parms)->dump();
2344         tty->cr();
2345         break;
2346       }
2347     }
2348     if( j >= argcnt )
2349       tty->print_cr("HOLE, owned by SELF");
2350   }
2351 
2352   // Old outgoing preserve area
2353   while( reg > _matcher._old_SP ) {
2354     reg = OptoReg::add(reg, -1);
2355     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2356   }
2357 
2358   // Old SP
2359   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2360     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2361 
2362   // Preserve area dump
2363   int fixed_slots = C->fixed_slots();
2364   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2365   OptoReg::Name return_addr = _matcher.return_addr();
2366 
2367   reg = OptoReg::add(reg, -1);
2368   while (OptoReg::is_stack(reg)) {
2369     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2370     if (return_addr == reg) {
2371       tty->print_cr("return address");
2372     } else if (reg >= begin_in_preserve) {
2373       // Preserved slots are present on x86
2374       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2375         tty->print_cr("saved fp register");
2376       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2377                VerifyStackAtCalls)
2378         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2379       else
2380         tty->print_cr("in_preserve");
2381     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2382       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2383     } else {
2384       tty->print_cr("pad2, stack alignment");
2385     }
2386     reg = OptoReg::add(reg, -1);
2387   }
2388 
2389   // Spill area dump
2390   reg = OptoReg::add(_matcher._new_SP, _framesize );
2391   while( reg > _matcher._out_arg_limit ) {
2392     reg = OptoReg::add(reg, -1);
2393     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2394   }
2395 
2396   // Outgoing argument area dump
2397   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2398     reg = OptoReg::add(reg, -1);
2399     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2400   }
2401 
2402   // Outgoing new preserve area
2403   while( reg > _matcher._new_SP ) {
2404     reg = OptoReg::add(reg, -1);
2405     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2406   }
2407   tty->print_cr("#");
2408 }
2409 
2410 void PhaseChaitin::dump_bb(uint pre_order) const {
2411   tty->print_cr("---dump of B%d---",pre_order);
2412   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2413     Block* block = _cfg.get_block(i);
2414     if (block->_pre_order == pre_order) {
2415       dump(block);
2416     }
2417   }
2418 }
2419 
2420 void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2421   tty->print_cr("---dump of L%d---",lidx);
2422 
2423   if (_ifg) {
2424     if (lidx >= _lrg_map.max_lrg_id()) {
2425       tty->print("Attempt to print live range index beyond max live range.\n");
2426       return;
2427     }
2428     tty->print("L%d: ",lidx);
2429     if (lidx < _ifg->_maxlrg) {
2430       lrgs(lidx).dump();
2431     } else {
2432       tty->print_cr("new LRG");
2433     }
2434   }
2435   if( _ifg && lidx < _ifg->_maxlrg) {
2436     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2437     _ifg->neighbors(lidx)->dump();
2438     tty->cr();
2439   }
2440   // For all blocks
2441   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2442     Block* block = _cfg.get_block(i);
2443     int dump_once = 0;
2444 
2445     // For all instructions
2446     for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2447       Node *n = block->get_node(j);
2448       if (_lrg_map.find_const(n) == lidx) {
2449         if (!dump_once++) {
2450           tty->cr();
2451           block->dump_head(&_cfg);
2452         }
2453         dump(n);
2454         continue;
2455       }
2456       if (!defs_only) {
2457         uint cnt = n->req();
2458         for( uint k = 1; k < cnt; k++ ) {
2459           Node *m = n->in(k);
2460           if (!m)  {
2461             continue;  // be robust in the dumper
2462           }
2463           if (_lrg_map.find_const(m) == lidx) {
2464             if (!dump_once++) {
2465               tty->cr();
2466               block->dump_head(&_cfg);
2467             }
2468             dump(n);
2469           }
2470         }
2471       }
2472     }
2473   } // End of per-block dump
2474   tty->cr();
2475 }
2476 #endif // not PRODUCT
2477 
2478 #ifdef ASSERT
2479 // Verify that base pointers and derived pointers are still sane.
2480 void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2481   Unique_Node_List worklist(a);
2482   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2483     Block* block = _cfg.get_block(i);
2484     for (uint j = block->end_idx() + 1; j > 1; j--) {
2485       Node* n = block->get_node(j-1);
2486       if (n->is_Phi()) {
2487         break;
2488       }
2489       // Found a safepoint?
2490       if (n->is_MachSafePoint()) {
2491         MachSafePointNode* sfpt = n->as_MachSafePoint();
2492         JVMState* jvms = sfpt->jvms();
2493         if (jvms != nullptr) {
2494           // Now scan for a live derived pointer
2495           if (jvms->oopoff() < sfpt->req()) {
2496             // Check each derived/base pair
2497             for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2498               Node* check = sfpt->in(idx);
2499               bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2500               // search upwards through spills and spill phis for AddP
2501               worklist.clear();
2502               worklist.push(check);
2503               uint k = 0;
2504               while (k < worklist.size()) {
2505                 check = worklist.at(k);
2506                 assert(check, "Bad base or derived pointer");
2507                 // See PhaseChaitin::find_base_for_derived() for all cases.
2508                 int isc = check->is_Copy();
2509                 if (isc) {
2510                   worklist.push(check->in(isc));
2511                 } else if (check->is_Phi()) {
2512                   for (uint m = 1; m < check->req(); m++) {
2513                     worklist.push(check->in(m));
2514                   }
2515                 } else if (check->is_Con()) {
2516                   if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) {
2517                     // Derived is null+non-zero offset, base must be null.
2518                     assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer");
2519                   } else {
2520                     assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer");
2521                     // Base either ConP(nullptr) or loadConP
2522                     if (check->is_Mach()) {
2523                       assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer");
2524                     } else {
2525                       assert(check->Opcode() == Op_ConP &&
2526                              check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer");
2527                     }
2528                   }
2529                 } else if (check->bottom_type()->is_ptr()->_offset == 0) {
2530                   if (check->is_Proj() || (check->is_Mach() &&
2531                      (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2532                       check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2533                       check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2534                       check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2535 #ifdef _LP64
2536                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2537                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2538                       (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2539 #endif // _LP64
2540                       check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2541                       check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2542                     // Valid nodes
2543                   } else {
2544                     check->dump();
2545                     assert(false, "Bad base or derived pointer");
2546                   }
2547                 } else {
2548                   assert(is_derived, "Bad base pointer");
2549                   assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer");
2550                 }
2551                 k++;
2552                 assert(k < 100000, "Derived pointer checking in infinite loop");
2553               } // End while
2554             }
2555           } // End of check for derived pointers
2556         } // End of Kcheck for debug info
2557       } // End of if found a safepoint
2558     } // End of forall instructions in block
2559   } // End of forall blocks
2560 }
2561 
2562 // Verify that graphs and base pointers are still sane.
2563 void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2564   if (VerifyRegisterAllocator) {
2565     _cfg.verify();
2566     if (C->failing()) {
2567       return;
2568     }
2569     verify_base_ptrs(a);
2570     if (verify_ifg) {
2571       _ifg->verify(this);
2572     }
2573   }
2574 }
2575 #endif // ASSERT
2576 
2577 int PhaseChaitin::_final_loads  = 0;
2578 int PhaseChaitin::_final_stores = 0;
2579 int PhaseChaitin::_final_memoves= 0;
2580 int PhaseChaitin::_final_copies = 0;
2581 double PhaseChaitin::_final_load_cost  = 0;
2582 double PhaseChaitin::_final_store_cost = 0;
2583 double PhaseChaitin::_final_memove_cost= 0;
2584 double PhaseChaitin::_final_copy_cost  = 0;
2585 int PhaseChaitin::_conserv_coalesce = 0;
2586 int PhaseChaitin::_conserv_coalesce_pair = 0;
2587 int PhaseChaitin::_conserv_coalesce_trie = 0;
2588 int PhaseChaitin::_conserv_coalesce_quad = 0;
2589 int PhaseChaitin::_post_alloc = 0;
2590 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2591 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2592 int PhaseChaitin::_used_cisc_instructions   = 0;
2593 int PhaseChaitin::_unused_cisc_instructions = 0;
2594 int PhaseChaitin::_allocator_attempts       = 0;
2595 int PhaseChaitin::_allocator_successes      = 0;
2596 
2597 #ifndef PRODUCT
2598 uint PhaseChaitin::_high_pressure           = 0;
2599 uint PhaseChaitin::_low_pressure            = 0;
2600 
2601 void PhaseChaitin::print_chaitin_statistics() {
2602   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2603   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2604   tty->print_cr("Adjusted spill cost = %7.0f.",
2605                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2606                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2607   tty->print("Conservatively coalesced %d copies, %d pairs",
2608                 _conserv_coalesce, _conserv_coalesce_pair);
2609   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2610     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2611   tty->print_cr(", %d post alloc.", _post_alloc);
2612   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2613     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2614                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2615   if( _used_cisc_instructions || _unused_cisc_instructions )
2616     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2617                    _used_cisc_instructions, _unused_cisc_instructions);
2618   if( _allocator_successes != 0 )
2619     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2620   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2621 }
2622 #endif // not PRODUCT