1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "compiler/oopMap.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/chaitin.hpp"
  34 #include "opto/coalesce.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/indexSet.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 #ifndef PRODUCT
  46 void LRG::dump() const {
  47   ttyLocker ttyl;
  48   tty->print("%d ",num_regs());
  49   _mask.dump();
  50   if( _msize_valid ) {
  51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  53   } else {
  54     tty->print(", #?(%d) ",_mask.Size());
  55   }
  56 
  57   tty->print("EffDeg: ");
  58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  59   else tty->print("? ");
  60 
  61   if( is_multidef() ) {
  62     tty->print("MultiDef ");
  63     if (_defs != nullptr) {
  64       tty->print("(");
  65       for (int i = 0; i < _defs->length(); i++) {
  66         tty->print("N%d ", _defs->at(i)->_idx);
  67       }
  68       tty->print(") ");
  69     }
  70   }
  71   else if( _def == nullptr ) tty->print("Dead ");
  72   else tty->print("Def: N%d ",_def->_idx);
  73 
  74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  75   // Flags
  76   if( _is_oop ) tty->print("Oop ");
  77   if( _is_float ) tty->print("Float ");
  78   if( _is_vector ) tty->print("Vector ");
  79   if( _is_predicate ) tty->print("Predicate ");
  80   if( _is_scalable ) tty->print("Scalable ");
  81   if( _was_spilled1 ) tty->print("Spilled ");
  82   if( _was_spilled2 ) tty->print("Spilled2 ");
  83   if( _direct_conflict ) tty->print("Direct_conflict ");
  84   if( _fat_proj ) tty->print("Fat ");
  85   if( _was_lo ) tty->print("Lo ");
  86   if( _has_copy ) tty->print("Copy ");
  87   if( _at_risk ) tty->print("Risk ");
  88 
  89   if( _must_spill ) tty->print("Must_spill ");
  90   if( _is_bound ) tty->print("Bound ");
  91   if( _msize_valid ) {
  92     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  93   }
  94 
  95   tty->cr();
  96 }
  97 #endif
  98 
  99 // Compute score from cost and area.  Low score is best to spill.
 100 static double raw_score( double cost, double area ) {
 101   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 102 }
 103 
 104 double LRG::score() const {
 105   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 106   // Bigger area lowers score, encourages spilling this live range.
 107   // Bigger cost raise score, prevents spilling this live range.
 108   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 109   // to turn a divide by a constant into a multiply by the reciprical).
 110   double score = raw_score( _cost, _area);
 111 
 112   // Account for area.  Basically, LRGs covering large areas are better
 113   // to spill because more other LRGs get freed up.
 114   if( _area == 0.0 )            // No area?  Then no progress to spill
 115     return 1e35;
 116 
 117   if( _was_spilled2 )           // If spilled once before, we are unlikely
 118     return score + 1e30;        // to make progress again.
 119 
 120   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 121     return score + 1e17;        // Probably no progress to spill
 122 
 123   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 124     return score + 1e10;        // Likely no progress to spill
 125 
 126   return score;
 127 }
 128 
 129 #define NUMBUCKS 3
 130 
 131 // Straight out of Tarjan's union-find algorithm
 132 uint LiveRangeMap::find_compress(uint lrg) {
 133   uint cur = lrg;
 134   uint next = _uf_map.at(cur);
 135   while (next != cur) { // Scan chain of equivalences
 136     assert( next < cur, "always union smaller");
 137     cur = next; // until find a fixed-point
 138     next = _uf_map.at(cur);
 139   }
 140 
 141   // Core of union-find algorithm: update chain of
 142   // equivalences to be equal to the root.
 143   while (lrg != next) {
 144     uint tmp = _uf_map.at(lrg);
 145     _uf_map.at_put(lrg, next);
 146     lrg = tmp;
 147   }
 148   return lrg;
 149 }
 150 
 151 // Reset the Union-Find map to identity
 152 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
 153   _max_lrg_id= max_lrg_id;
 154   // Force the Union-Find mapping to be at least this large
 155   _uf_map.at_put_grow(_max_lrg_id, 0);
 156   // Initialize it to be the ID mapping.
 157   for (uint i = 0; i < _max_lrg_id; ++i) {
 158     _uf_map.at_put(i, i);
 159   }
 160 }
 161 
 162 // Make all Nodes map directly to their final live range; no need for
 163 // the Union-Find mapping after this call.
 164 void LiveRangeMap::compress_uf_map_for_nodes() {
 165   // For all Nodes, compress mapping
 166   uint unique = _names.length();
 167   for (uint i = 0; i < unique; ++i) {
 168     uint lrg = _names.at(i);
 169     uint compressed_lrg = find(lrg);
 170     if (lrg != compressed_lrg) {
 171       _names.at_put(i, compressed_lrg);
 172     }
 173   }
 174 }
 175 
 176 // Like Find above, but no path compress, so bad asymptotic behavior
 177 uint LiveRangeMap::find_const(uint lrg) const {
 178   if (!lrg) {
 179     return lrg; // Ignore the zero LRG
 180   }
 181 
 182   // Off the end?  This happens during debugging dumps when you got
 183   // brand new live ranges but have not told the allocator yet.
 184   if (lrg >= _max_lrg_id) {
 185     return lrg;
 186   }
 187 
 188   uint next = _uf_map.at(lrg);
 189   while (next != lrg) { // Scan chain of equivalences
 190     assert(next < lrg, "always union smaller");
 191     lrg = next; // until find a fixed-point
 192     next = _uf_map.at(lrg);
 193   }
 194   return next;
 195 }
 196 
 197 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
 198   : PhaseRegAlloc(unique, cfg, matcher,
 199 #ifndef PRODUCT
 200        print_chaitin_statistics
 201 #else
 202        nullptr
 203 #endif
 204        )
 205   , _live(nullptr)
 206   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
 207   , _oldphi(unique)
 208 #ifndef PRODUCT
 209   , _trace_spilling(C->directive()->TraceSpillingOption)
 210 #endif
 211   , _lrg_map(Thread::current()->resource_area(), unique)
 212   , _scheduling_info_generated(scheduling_info_generated)
 213   , _sched_int_pressure(0, Matcher::int_pressure_limit())
 214   , _sched_float_pressure(0, Matcher::float_pressure_limit())
 215   , _scratch_int_pressure(0, Matcher::int_pressure_limit())
 216   , _scratch_float_pressure(0, Matcher::float_pressure_limit())
 217 {
 218   Compile::TracePhase tp(_t_ctorChaitin);
 219 
 220   _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
 221 
 222   // Build a list of basic blocks, sorted by frequency
 223   // Experiment with sorting strategies to speed compilation
 224   uint nr_blocks = _cfg.number_of_blocks();
 225   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 226   Block **buckets[NUMBUCKS];             // Array of buckets
 227   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 228   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 229 
 230   // The space which our buckets point into.
 231   Block** start = NEW_RESOURCE_ARRAY(Block *, nr_blocks*NUMBUCKS);
 232 
 233   for (uint i = 0; i < NUMBUCKS; i++) {
 234     buckets[i] = &start[i*nr_blocks];
 235     buckcnt[i] = 0;
 236     // Bump by three orders of magnitude each time
 237     cutoff *= 0.001;
 238     buckval[i] = cutoff;
 239   }
 240 
 241   // Sort blocks into buckets
 242   for (uint i = 0; i < nr_blocks; i++) {
 243     for (uint j = 0; j < NUMBUCKS; j++) {
 244       double bval = buckval[j];
 245       Block* blk = _cfg.get_block(i);
 246       if (j == NUMBUCKS - 1 || blk->_freq > bval) {
 247         uint cnt = buckcnt[j];
 248         // Assign block to end of list for appropriate bucket
 249         buckets[j][cnt] = blk;
 250         buckcnt[j] = cnt+1;
 251         break; // kick out of inner loop
 252       }
 253     }
 254   }
 255 
 256   // Squash the partially filled buckets together into the first one.
 257   static_assert(NUMBUCKS >= 2, "must"); // If this isn't true then it'll mess up the squashing.
 258   Block** offset = &buckets[0][buckcnt[0]];
 259   for (int i = 1; i < NUMBUCKS; i++) {
 260     ::memmove(offset, buckets[i], buckcnt[i]*sizeof(Block*));
 261     offset += buckcnt[i];
 262   }
 263   assert((&buckets[0][0] + nr_blocks) == offset, "should be");
 264 
 265   // Free the now unused memory
 266   FREE_RESOURCE_ARRAY(Block*, buckets[1], (NUMBUCKS-1)*nr_blocks);
 267   // Finally, point the _blks to our memory
 268   _blks = buckets[0];
 269 
 270 #ifdef ASSERT
 271   uint blkcnt = 0;
 272   for (uint i = 0; i < NUMBUCKS; i++) {
 273     blkcnt += buckcnt[i];
 274   }
 275   assert(blkcnt == nr_blocks, "Block array not totally filled");
 276 #endif
 277 }
 278 
 279 // union 2 sets together.
 280 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 281   uint src = _lrg_map.find(src_n);
 282   uint dst = _lrg_map.find(dst_n);
 283   assert(src, "");
 284   assert(dst, "");
 285   assert(src < _lrg_map.max_lrg_id(), "oob");
 286   assert(dst < _lrg_map.max_lrg_id(), "oob");
 287   assert(src < dst, "always union smaller");
 288   _lrg_map.uf_map(dst, src);
 289 }
 290 
 291 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
 292   // Make the Node->LRG mapping
 293   _lrg_map.extend(x->_idx,lrg);
 294   // Make the Union-Find mapping an identity function
 295   _lrg_map.uf_extend(lrg, lrg);
 296 }
 297 
 298 
 299 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
 300   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
 301   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
 302   int found_projs = 0;
 303   uint cnt = orig->outcnt();
 304   for (uint i = 0; i < cnt; i++) {
 305     Node* proj = orig->raw_out(i);
 306     if (proj->is_MachProj()) {
 307       assert(proj->outcnt() == 0, "only kill projections are expected here");
 308       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
 309       found_projs++;
 310       // Copy kill projections after the cloned node
 311       Node* kills = proj->clone();
 312       kills->set_req(0, copy);
 313       b->insert_node(kills, idx++);
 314       _cfg.map_node_to_block(kills, b);
 315       new_lrg(kills, max_lrg_id++);
 316     }
 317   }
 318   return found_projs;
 319 }
 320 
 321 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 322 void PhaseChaitin::compact() {
 323   Compile::TracePhase tp(_t_chaitinCompact);
 324 
 325   // Current the _uf_map contains a series of short chains which are headed
 326   // by a self-cycle.  All the chains run from big numbers to little numbers.
 327   // The Find() call chases the chains & shortens them for the next Find call.
 328   // We are going to change this structure slightly.  Numbers above a moving
 329   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 330   // compacted live range with no further chaining.  There are no chains or
 331   // cycles below 'i', so the Find call no longer works.
 332   uint j=1;
 333   uint i;
 334   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
 335     uint lr = _lrg_map.uf_live_range_id(i);
 336     // Ignore unallocated live ranges
 337     if (!lr) {
 338       continue;
 339     }
 340     assert(lr <= i, "");
 341     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
 342   }
 343   // Now change the Node->LR mapping to reflect the compacted names
 344   uint unique = _lrg_map.size();
 345   for (i = 0; i < unique; i++) {
 346     uint lrg_id = _lrg_map.live_range_id(i);
 347     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
 348   }
 349 
 350   // Reset the Union-Find mapping
 351   _lrg_map.reset_uf_map(j);
 352 }
 353 
 354 void PhaseChaitin::Register_Allocate() {
 355 
 356   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 357   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 358   // registers) is the outgoing argument area; above that is the spill/temp
 359   // area.  These are all "frame_slots".  Arg_slots start at the zero
 360   // stack_slots and count up to the known arg_size.  Frame_slots start at
 361   // the stack_slot #arg_size and go up.  After allocation I map stack
 362   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 363   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 364 
 365   _trip_cnt = 0;
 366   _alternate = 0;
 367   _matcher._allocation_started = true;
 368 
 369   ResourceArea split_arena(mtCompiler, Arena::Tag::tag_regsplit);     // Arena for Split local resources
 370   ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive);     // Arena for liveness & IFG info
 371   ResourceMark rm(&live_arena);
 372 
 373   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 374   // liveness is JUST for coalescing, then I can get some mileage by renaming
 375   // all copy-related live ranges low and then using the max copy-related
 376   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 377   // build a subset of LIVE and IFG just for copies.
 378   PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
 379 
 380   // Need IFG for coalescing and coloring
 381   PhaseIFG ifg(&live_arena);
 382   _ifg = &ifg;
 383 
 384   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 385   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 386   // - effectively ending SSA form.  This requires either coalescing live
 387   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 388   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 389   // We will attempt to coalesce such "virtual copies" before we manifest
 390   // them for real.
 391   de_ssa();
 392 
 393 #ifdef ASSERT
 394   // Verify the graph before RA.
 395   verify(&live_arena);
 396 #endif
 397 
 398   {
 399     Compile::TracePhase tp(_t_computeLive);
 400     _live = nullptr;              // Mark live as being not available
 401     rm.reset_to_mark();           // Reclaim working storage
 402     IndexSet::reset_memory(C, &live_arena);
 403     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
 404     gather_lrg_masks( false );    // Collect LRG masks
 405     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
 406     _live = &live;                // Mark LIVE as being available
 407   }
 408 
 409   C->print_method(PHASE_INITIAL_LIVENESS, 4);
 410 
 411   // Base pointers are currently "used" by instructions which define new
 412   // derived pointers.  This makes base pointers live up to the where the
 413   // derived pointer is made, but not beyond.  Really, they need to be live
 414   // across any GC point where the derived value is live.  So this code looks
 415   // at all the GC points, and "stretches" the live range of any base pointer
 416   // to the GC point.
 417   if (stretch_base_pointer_live_ranges(&live_arena)) {
 418     Compile::TracePhase tp("computeLive (sbplr)", _t_computeLive);
 419     // Since some live range stretched, I need to recompute live
 420     _live = nullptr;
 421     rm.reset_to_mark();         // Reclaim working storage
 422     IndexSet::reset_memory(C, &live_arena);
 423     ifg.init(_lrg_map.max_lrg_id());
 424     gather_lrg_masks(false);
 425     live.compute(_lrg_map.max_lrg_id());
 426     _live = &live;
 427     C->print_method(PHASE_LIVE_RANGE_STRETCHING, 4);
 428   }
 429 
 430   // Create the interference graph using virtual copies
 431   build_ifg_virtual();  // Include stack slots this time
 432   if (C->failing()) {
 433     return;
 434   }
 435 
 436   // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 437   // faster.  Union requires a 'for all' operation which is slow on the
 438   // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 439   // meaning I can visit all the Nodes neighbors less than a Node in time
 440   // O(# of neighbors), but I have to visit all the Nodes greater than a
 441   // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 442   _ifg->SquareUp();
 443 
 444   // Aggressive (but pessimistic) copy coalescing.
 445   // This pass works on virtual copies.  Any virtual copies which are not
 446   // coalesced get manifested as actual copies
 447   {
 448     Compile::TracePhase tp(_t_chaitinCoalesce1);
 449 
 450     PhaseAggressiveCoalesce coalesce(*this);
 451     coalesce.coalesce_driver();
 452     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 453     // not match the Phi itself, insert a copy.
 454     coalesce.insert_copies(_matcher);
 455     if (C->failing()) {
 456       return;
 457     }
 458   }
 459 
 460   // After aggressive coalesce, attempt a first cut at coloring.
 461   // To color, we need the IFG and for that we need LIVE.
 462   {
 463     Compile::TracePhase tp(_t_computeLive);
 464     _live = nullptr;
 465     rm.reset_to_mark();           // Reclaim working storage
 466     IndexSet::reset_memory(C, &live_arena);
 467     ifg.init(_lrg_map.max_lrg_id());
 468     gather_lrg_masks( true );
 469     live.compute(_lrg_map.max_lrg_id());
 470     _live = &live;
 471   }
 472 
 473   C->print_method(PHASE_AGGRESSIVE_COALESCING, 4);
 474 
 475   // Build physical interference graph
 476   uint must_spill = 0;
 477   must_spill = build_ifg_physical(&live_arena);
 478   if (C->failing()) {
 479     return;
 480   }
 481   // If we have a guaranteed spill, might as well spill now
 482   if (must_spill) {
 483     if(!_lrg_map.max_lrg_id()) {
 484       return;
 485     }
 486     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 487     C->check_node_count(10*must_spill, "out of nodes before split");
 488     if (C->failing()) {
 489       return;
 490     }
 491 
 492     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 493     if (C->failing()) {
 494       return;
 495     }
 496     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 497     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 498     // or we failed to split
 499     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 500     if (C->failing()) {
 501       return;
 502     }
 503 
 504     NOT_PRODUCT(C->verify_graph_edges();)
 505 
 506     compact();                  // Compact LRGs; return new lower max lrg
 507 
 508     {
 509       Compile::TracePhase tp(_t_computeLive);
 510       _live = nullptr;
 511       rm.reset_to_mark();         // Reclaim working storage
 512       IndexSet::reset_memory(C, &live_arena);
 513       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
 514       gather_lrg_masks( true );   // Collect intersect mask
 515       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
 516       _live = &live;
 517     }
 518 
 519     C->print_method(PHASE_INITIAL_SPILLING, 4);
 520 
 521     build_ifg_physical(&live_arena);
 522     if (C->failing()) {
 523       return;
 524     }
 525     _ifg->SquareUp();
 526     _ifg->Compute_Effective_Degree();
 527     // Only do conservative coalescing if requested
 528     if (OptoCoalesce) {
 529       Compile::TracePhase tp(_t_chaitinCoalesce2);
 530       // Conservative (and pessimistic) copy coalescing of those spills
 531       PhaseConservativeCoalesce coalesce(*this);
 532       // If max live ranges greater than cutoff, don't color the stack.
 533       // This cutoff can be larger than below since it is only done once.
 534       coalesce.coalesce_driver();
 535     }
 536     _lrg_map.compress_uf_map_for_nodes();
 537 
 538     if (OptoCoalesce) {
 539       C->print_method(PHASE_CONSERVATIVE_COALESCING, 4);
 540     }
 541 
 542 #ifdef ASSERT
 543     verify(&live_arena, true);
 544 #endif
 545   } else {
 546     ifg.SquareUp();
 547     ifg.Compute_Effective_Degree();
 548 #ifdef ASSERT
 549     set_was_low();
 550 #endif
 551   }
 552 
 553   // Prepare for Simplify & Select
 554   cache_lrg_info();           // Count degree of LRGs
 555 
 556   // Simplify the InterFerence Graph by removing LRGs of low degree.
 557   // LRGs of low degree are trivially colorable.
 558   Simplify();
 559 
 560   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 561   // Return whether or not something spills.
 562   uint spills = Select( );
 563 
 564   // If we spill, split and recycle the entire thing
 565   while( spills ) {
 566     if( _trip_cnt++ > 24 ) {
 567       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 568       if( _trip_cnt > 27 ) {
 569         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 570         return;
 571       }
 572     }
 573 
 574     if (!_lrg_map.max_lrg_id()) {
 575       return;
 576     }
 577     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 578     if (C->failing()) {
 579       return;
 580     }
 581     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 582     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 583     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
 584     if (C->failing()) {
 585       return;
 586     }
 587 
 588     compact(); // Compact LRGs; return new lower max lrg
 589 
 590     // Nuke the live-ness and interference graph and LiveRanGe info
 591     {
 592       Compile::TracePhase tp(_t_computeLive);
 593       _live = nullptr;
 594       rm.reset_to_mark();         // Reclaim working storage
 595       IndexSet::reset_memory(C, &live_arena);
 596       ifg.init(_lrg_map.max_lrg_id());
 597 
 598       // Create LiveRanGe array.
 599       // Intersect register masks for all USEs and DEFs
 600       gather_lrg_masks(true);
 601       live.compute(_lrg_map.max_lrg_id());
 602       _live = &live;
 603     }
 604 
 605     C->print_method(PHASE_ITERATIVE_SPILLING, 4);
 606 
 607     must_spill = build_ifg_physical(&live_arena);
 608     if (C->failing()) {
 609       return;
 610     }
 611     _ifg->SquareUp();
 612     _ifg->Compute_Effective_Degree();
 613 
 614     // Only do conservative coalescing if requested
 615     if (OptoCoalesce) {
 616       Compile::TracePhase tp(_t_chaitinCoalesce3);
 617       // Conservative (and pessimistic) copy coalescing
 618       PhaseConservativeCoalesce coalesce(*this);
 619       // Check for few live ranges determines how aggressive coalesce is.
 620       coalesce.coalesce_driver();
 621     }
 622     _lrg_map.compress_uf_map_for_nodes();
 623 
 624     if (OptoCoalesce) {
 625       C->print_method(PHASE_CONSERVATIVE_COALESCING, 4);
 626     }
 627 
 628 #ifdef ASSERT
 629     verify(&live_arena, true);
 630 #endif
 631     cache_lrg_info();           // Count degree of LRGs
 632 
 633     // Simplify the InterFerence Graph by removing LRGs of low degree.
 634     // LRGs of low degree are trivially colorable.
 635     Simplify();
 636 
 637     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 638     // Return whether or not something spills.
 639     spills = Select();
 640   }
 641 
 642   C->print_method(PHASE_AFTER_ITERATIVE_SPILLING, 4);
 643 
 644   // Count number of Simplify-Select trips per coloring success.
 645   _allocator_attempts += _trip_cnt + 1;
 646   _allocator_successes += 1;
 647 
 648   // Peephole remove copies
 649   post_allocate_copy_removal();
 650 
 651   C->print_method(PHASE_POST_ALLOCATION_COPY_REMOVAL, 4);
 652 
 653   // Merge multidefs if multiple defs representing the same value are used in a single block.
 654   merge_multidefs();
 655 
 656   C->print_method(PHASE_MERGE_MULTI_DEFS, 4);
 657 
 658 #ifdef ASSERT
 659   // Verify the graph after RA.
 660   verify(&live_arena);
 661 #endif
 662 
 663   // max_reg is past the largest *register* used.
 664   // Convert that to a frame_slot number.
 665   if (_max_reg <= _matcher._new_SP) {
 666     _framesize = C->out_preserve_stack_slots();
 667   }
 668   else {
 669     _framesize = _max_reg -_matcher._new_SP;
 670   }
 671   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 672 
 673   // This frame must preserve the required fp alignment
 674   _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
 675   assert(_framesize <= 1000000, "sanity check");
 676 #ifndef PRODUCT
 677   _total_framesize += _framesize;
 678   if ((int)_framesize > _max_framesize) {
 679     _max_framesize = _framesize;
 680   }
 681 #endif
 682 
 683   // Convert CISC spills
 684   fixup_spills();
 685 
 686   C->print_method(PHASE_FIX_UP_SPILLS, 4);
 687 
 688   // Log regalloc results
 689   CompileLog* log = Compile::current()->log();
 690   if (log != nullptr) {
 691     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 692   }
 693 
 694   if (C->failing()) {
 695     return;
 696   }
 697 
 698   NOT_PRODUCT(C->verify_graph_edges();)
 699 
 700   // Move important info out of the live_arena to longer lasting storage.
 701   alloc_node_regs(_lrg_map.size());
 702   for (uint i=0; i < _lrg_map.size(); i++) {
 703     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
 704       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
 705       if (!lrg.alive()) {
 706         set_bad(i);
 707       } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) ||
 708                  (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) {
 709         set1(i, lrg.reg());
 710       } else {                  // Must be a register-set
 711         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
 712           // Live ranges record the highest register in their mask.
 713           // We want the low register for the AD file writer's convenience.
 714           OptoReg::Name hi = lrg.reg(); // Get hi register
 715           int num_regs = lrg.num_regs();
 716           if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
 717             // For scalable vector registers, when they are allocated in physical
 718             // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
 719             // vector. If they are allocated on stack, we need to get the actual
 720             // num_regs, which reflects the physical length of scalable registers.
 721             num_regs = lrg.scalable_reg_slots();
 722           }
 723           if (num_regs == 1) {
 724             set1(i, hi);
 725           } else {
 726             OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo
 727             // We have to use pair [lo,lo+1] even for wide vectors/vmasks because
 728             // the rest of code generation works only with pairs. It is safe
 729             // since for registers encoding only 'lo' is used.
 730             // Second reg from pair is used in ScheduleAndBundle with vector max
 731             // size 8 which corresponds to registers pair.
 732             // It is also used in BuildOopMaps but oop operations are not
 733             // vectorized.
 734             set2(i, lo);
 735           }
 736         } else {                // Misaligned; extract 2 bits
 737           OptoReg::Name hi = lrg.reg(); // Get hi register
 738           lrg.Remove(hi);       // Yank from mask
 739           int lo = lrg.mask().find_first_elem(); // Find lo
 740           set_pair(i, hi, lo);
 741         }
 742       }
 743       if( lrg._is_oop ) _node_oops.set(i);
 744     } else {
 745       set_bad(i);
 746     }
 747   }
 748 
 749   // Done!
 750   _live = nullptr;
 751   _ifg = nullptr;
 752   C->set_indexSet_arena(nullptr);  // ResourceArea is at end of scope
 753 }
 754 
 755 void PhaseChaitin::de_ssa() {
 756   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 757   // number.  A few get the ZERO live range number.  These do not
 758   // get allocated, but instead rely on correct scheduling to ensure that
 759   // only one instance is simultaneously live at a time.
 760   uint lr_counter = 1;
 761   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 762     Block* block = _cfg.get_block(i);
 763     uint cnt = block->number_of_nodes();
 764 
 765     // Handle all the normal Nodes in the block
 766     for( uint j = 0; j < cnt; j++ ) {
 767       Node *n = block->get_node(j);
 768       // Pre-color to the zero live range, or pick virtual register
 769       const RegMask &rm = n->out_RegMask();
 770       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
 771     }
 772   }
 773 
 774   // Reset the Union-Find mapping to be identity
 775   _lrg_map.reset_uf_map(lr_counter);
 776 }
 777 
 778 void PhaseChaitin::mark_ssa() {
 779   // Use ssa names to populate the live range maps or if no mask
 780   // is available, use the 0 entry.
 781   uint max_idx = 0;
 782   for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 783     Block* block = _cfg.get_block(i);
 784     uint cnt = block->number_of_nodes();
 785 
 786     // Handle all the normal Nodes in the block
 787     for ( uint j = 0; j < cnt; j++ ) {
 788       Node *n = block->get_node(j);
 789       // Pre-color to the zero live range, or pick virtual register
 790       const RegMask &rm = n->out_RegMask();
 791       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
 792       max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
 793     }
 794   }
 795   _lrg_map.set_max_lrg_id(max_idx+1);
 796 
 797   // Reset the Union-Find mapping to be identity
 798   _lrg_map.reset_uf_map(max_idx+1);
 799 }
 800 
 801 
 802 // Gather LiveRanGe information, including register masks.  Modification of
 803 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 804 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 805 
 806   // Nail down the frame pointer live range
 807   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
 808   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 809 
 810   // For all blocks
 811   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
 812     Block* block = _cfg.get_block(i);
 813 
 814     // For all instructions
 815     for (uint j = 1; j < block->number_of_nodes(); j++) {
 816       Node* n = block->get_node(j);
 817       uint input_edge_start =1; // Skip control most nodes
 818       bool is_machine_node = false;
 819       if (n->is_Mach()) {
 820         is_machine_node = true;
 821         input_edge_start = n->as_Mach()->oper_input_base();
 822       }
 823       uint idx = n->is_Copy();
 824 
 825       // Get virtual register number, same as LiveRanGe index
 826       uint vreg = _lrg_map.live_range_id(n);
 827       LRG& lrg = lrgs(vreg);
 828       if (vreg) {              // No vreg means un-allocable (e.g. memory)
 829 
 830         // Check for float-vs-int live range (used in register-pressure
 831         // calculations)
 832         const Type *n_type = n->bottom_type();
 833         if (n_type->is_floatingpoint()) {
 834           lrg._is_float = 1;
 835         }
 836 
 837         // Check for twice prior spilling.  Once prior spilling might have
 838         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 839         // further spilling is unlikely to make progress.
 840         if (_spilled_once.test(n->_idx)) {
 841           lrg._was_spilled1 = 1;
 842           if (_spilled_twice.test(n->_idx)) {
 843             lrg._was_spilled2 = 1;
 844           }
 845         }
 846 
 847 #ifndef PRODUCT
 848         // Collect bits not used by product code, but which may be useful for
 849         // debugging.
 850 
 851         // Collect has-copy bit
 852         if (idx) {
 853           lrg._has_copy = 1;
 854           uint clidx = _lrg_map.live_range_id(n->in(idx));
 855           LRG& copy_src = lrgs(clidx);
 856           copy_src._has_copy = 1;
 857         }
 858 
 859         if (trace_spilling() && lrg._def != nullptr) {
 860           // collect defs for MultiDef printing
 861           if (lrg._defs == nullptr) {
 862             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, nullptr);
 863             lrg._defs->append(lrg._def);
 864           }
 865           lrg._defs->append(n);
 866         }
 867 #endif
 868 
 869         // Check for a single def LRG; these can spill nicely
 870         // via rematerialization.  Flag as null for no def found
 871         // yet, or 'n' for single def or -1 for many defs.
 872         lrg._def = lrg._def ? NodeSentinel : n;
 873 
 874         // Limit result register mask to acceptable registers
 875         const RegMask &rm = n->out_RegMask();
 876         lrg.AND( rm );
 877 
 878         uint ireg = n->ideal_reg();
 879         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 880                 "oops must be in Op_RegP's" );
 881 
 882         // Check for vector live range (only if vector register is used).
 883         // On SPARC vector uses RegD which could be misaligned so it is not
 884         // processes as vector in RA.
 885         if (RegMask::is_vector(ireg)) {
 886           lrg._is_vector = 1;
 887           if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
 888             assert(Matcher::supports_scalable_vector(), "scalable vector should be supported");
 889             lrg._is_scalable = 1;
 890             // For scalable vector, when it is allocated in physical register,
 891             // num_regs is RegMask::SlotsPerVecA for reg mask,
 892             // which may not be the actual physical register size.
 893             // If it is allocated in stack, we need to get the actual
 894             // physical length of scalable vector register.
 895             lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
 896           }
 897         }
 898 
 899         if (ireg == Op_RegVectMask) {
 900           assert(Matcher::has_predicated_vectors(), "predicated vector should be supported");
 901           lrg._is_predicate = 1;
 902           if (Matcher::supports_scalable_vector()) {
 903             lrg._is_scalable = 1;
 904             // For scalable predicate, when it is allocated in physical register,
 905             // num_regs is RegMask::SlotsPerRegVectMask for reg mask,
 906             // which may not be the actual physical register size.
 907             // If it is allocated in stack, we need to get the actual
 908             // physical length of scalable predicate register.
 909             lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots());
 910           }
 911         }
 912         assert(n_type->isa_vect() == nullptr || lrg._is_vector ||
 913                ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,
 914                "vector must be in vector registers");
 915 
 916         // Check for bound register masks
 917         const RegMask &lrgmask = lrg.mask();
 918         if (lrgmask.is_bound(ireg)) {
 919           lrg._is_bound = 1;
 920         }
 921 
 922         // Check for maximum frequency value
 923         if (lrg._maxfreq < block->_freq) {
 924           lrg._maxfreq = block->_freq;
 925         }
 926 
 927         // Check for oop-iness, or long/double
 928         // Check for multi-kill projection
 929         switch (ireg) {
 930         case MachProjNode::fat_proj:
 931           // Fat projections have size equal to number of registers killed
 932           lrg.set_num_regs(rm.Size());
 933           lrg.set_reg_pressure(lrg.num_regs());
 934           lrg._fat_proj = 1;
 935           lrg._is_bound = 1;
 936           break;
 937         case Op_RegP:
 938 #ifdef _LP64
 939           lrg.set_num_regs(2);  // Size is 2 stack words
 940 #else
 941           lrg.set_num_regs(1);  // Size is 1 stack word
 942 #endif
 943           // Register pressure is tracked relative to the maximum values
 944           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 945           // and relative to other types which compete for the same regs.
 946           //
 947           // The following table contains suggested values based on the
 948           // architectures as defined in each .ad file.
 949           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 950           // compile-speed or performance.
 951           // Note1:
 952           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 953           // since .ad registers are defined as high and low halves.
 954           // These reg_pressure values remain compatible with the code
 955           // in is_high_pressure() which relates get_invalid_mask_size(),
 956           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 957           // Note2:
 958           // SPARC -d32 has 24 registers available for integral values,
 959           // but only 10 of these are safe for 64-bit longs.
 960           // Using set_reg_pressure(2) for both int and long means
 961           // the allocator will believe it can fit 26 longs into
 962           // registers.  Using 2 for longs and 1 for ints means the
 963           // allocator will attempt to put 52 integers into registers.
 964           // The settings below limit this problem to methods with
 965           // many long values which are being run on 32-bit SPARC.
 966           //
 967           // ------------------- reg_pressure --------------------
 968           // Each entry is reg_pressure_per_value,number_of_regs
 969           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 970           // IA32     2     1     1          1    1          6           6
 971           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 972           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 973           // AMD64    1     1     1          1    1         14          15
 974           // -----------------------------------------------------
 975           lrg.set_reg_pressure(1);  // normally one value per register
 976           if( n_type->isa_oop_ptr() ) {
 977             lrg._is_oop = 1;
 978           }
 979           break;
 980         case Op_RegL:           // Check for long or double
 981         case Op_RegD:
 982           lrg.set_num_regs(2);
 983           // Define platform specific register pressure
 984 #if defined(ARM32)
 985           lrg.set_reg_pressure(2);
 986 #elif defined(IA32)
 987           if( ireg == Op_RegL ) {
 988             lrg.set_reg_pressure(2);
 989           } else {
 990             lrg.set_reg_pressure(1);
 991           }
 992 #else
 993           lrg.set_reg_pressure(1);  // normally one value per register
 994 #endif
 995           // If this def of a double forces a mis-aligned double,
 996           // flag as '_fat_proj' - really flag as allowing misalignment
 997           // AND changes how we count interferences.  A mis-aligned
 998           // double can interfere with TWO aligned pairs, or effectively
 999           // FOUR registers!
1000           if (rm.is_misaligned_pair()) {
1001             lrg._fat_proj = 1;
1002             lrg._is_bound = 1;
1003           }
1004           break;
1005         case Op_RegVectMask:
1006           assert(Matcher::has_predicated_vectors(), "sanity");
1007           assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity");
1008           lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
1009           lrg.set_reg_pressure(1);
1010           break;
1011         case Op_RegF:
1012         case Op_RegI:
1013         case Op_RegN:
1014         case Op_RegFlags:
1015         case 0:                 // not an ideal register
1016           lrg.set_num_regs(1);
1017           lrg.set_reg_pressure(1);
1018           break;
1019         case Op_VecA:
1020           assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
1021           assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity");
1022           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned");
1023           lrg.set_num_regs(RegMask::SlotsPerVecA);
1024           lrg.set_reg_pressure(1);
1025           break;
1026         case Op_VecS:
1027           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
1028           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
1029           lrg.set_num_regs(RegMask::SlotsPerVecS);
1030           lrg.set_reg_pressure(1);
1031           break;
1032         case Op_VecD:
1033           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
1034           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
1035           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
1036           lrg.set_num_regs(RegMask::SlotsPerVecD);
1037           lrg.set_reg_pressure(1);
1038           break;
1039         case Op_VecX:
1040           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
1041           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
1042           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
1043           lrg.set_num_regs(RegMask::SlotsPerVecX);
1044           lrg.set_reg_pressure(1);
1045           break;
1046         case Op_VecY:
1047           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
1048           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
1049           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
1050           lrg.set_num_regs(RegMask::SlotsPerVecY);
1051           lrg.set_reg_pressure(1);
1052           break;
1053         case Op_VecZ:
1054           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
1055           assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
1056           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
1057           lrg.set_num_regs(RegMask::SlotsPerVecZ);
1058           lrg.set_reg_pressure(1);
1059           break;
1060         default:
1061           ShouldNotReachHere();
1062         }
1063       }
1064 
1065       // Now do the same for inputs
1066       uint cnt = n->req();
1067       // Setup for CISC SPILLING
1068       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
1069       if( UseCISCSpill && after_aggressive ) {
1070         inp = n->cisc_operand();
1071         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
1072           // Convert operand number to edge index number
1073           inp = n->as_Mach()->operand_index(inp);
1074       }
1075 
1076       // Prepare register mask for each input
1077       for( uint k = input_edge_start; k < cnt; k++ ) {
1078         uint vreg = _lrg_map.live_range_id(n->in(k));
1079         if (!vreg) {
1080           continue;
1081         }
1082 
1083         // If this instruction is CISC Spillable, add the flags
1084         // bit to its appropriate input
1085         if( UseCISCSpill && after_aggressive && inp == k ) {
1086 #ifndef PRODUCT
1087           if( TraceCISCSpill ) {
1088             tty->print("  use_cisc_RegMask: ");
1089             n->dump();
1090           }
1091 #endif
1092           n->as_Mach()->use_cisc_RegMask();
1093         }
1094 
1095         if (is_machine_node && _scheduling_info_generated) {
1096           MachNode* cur_node = n->as_Mach();
1097           // this is cleaned up by register allocation
1098           if (k >= cur_node->num_opnds()) continue;
1099         }
1100 
1101         LRG &lrg = lrgs(vreg);
1102         // // Testing for floating point code shape
1103         // Node *test = n->in(k);
1104         // if( test->is_Mach() ) {
1105         //   MachNode *m = test->as_Mach();
1106         //   int  op = m->ideal_Opcode();
1107         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1108         //     int zzz = 1;
1109         //   }
1110         // }
1111 
1112         // Limit result register mask to acceptable registers.
1113         // Do not limit registers from uncommon uses before
1114         // AggressiveCoalesce.  This effectively pre-virtual-splits
1115         // around uncommon uses of common defs.
1116         const RegMask &rm = n->in_RegMask(k);
1117         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1118           // Since we are BEFORE aggressive coalesce, leave the register
1119           // mask untrimmed by the call.  This encourages more coalescing.
1120           // Later, AFTER aggressive, this live range will have to spill
1121           // but the spiller handles slow-path calls very nicely.
1122         } else {
1123           lrg.AND( rm );
1124         }
1125 
1126         // Check for bound register masks
1127         const RegMask &lrgmask = lrg.mask();
1128         uint kreg = n->in(k)->ideal_reg();
1129         bool is_vect = RegMask::is_vector(kreg);
1130         assert(n->in(k)->bottom_type()->isa_vect() == nullptr || is_vect ||
1131                kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,
1132                "vector must be in vector registers");
1133         if (lrgmask.is_bound(kreg))
1134           lrg._is_bound = 1;
1135 
1136         // If this use of a double forces a mis-aligned double,
1137         // flag as '_fat_proj' - really flag as allowing misalignment
1138         // AND changes how we count interferences.  A mis-aligned
1139         // double can interfere with TWO aligned pairs, or effectively
1140         // FOUR registers!
1141 #ifdef ASSERT
1142         if (is_vect && !_scheduling_info_generated) {
1143           if (lrg.num_regs() != 0) {
1144             assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1145             assert(!lrg._fat_proj, "sanity");
1146             assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1147           } else {
1148             assert(n->is_Phi(), "not all inputs processed only if Phi");
1149           }
1150         }
1151 #endif
1152         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1153           lrg._fat_proj = 1;
1154           lrg._is_bound = 1;
1155         }
1156         // if the LRG is an unaligned pair, we will have to spill
1157         // so clear the LRG's register mask if it is not already spilled
1158         if (!is_vect && !n->is_SpillCopy() &&
1159             (lrg._def == nullptr || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1160             lrgmask.is_misaligned_pair()) {
1161           lrg.Clear();
1162         }
1163 
1164         // Check for maximum frequency value
1165         if (lrg._maxfreq < block->_freq) {
1166           lrg._maxfreq = block->_freq;
1167         }
1168 
1169       } // End for all allocated inputs
1170     } // end for all instructions
1171   } // end for all blocks
1172 
1173   // Final per-liverange setup
1174   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1175     LRG &lrg = lrgs(i2);
1176     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1177     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1178       lrg.clear_to_sets();
1179     }
1180     lrg.compute_set_mask_size();
1181     if (lrg.not_free()) {      // Handle case where we lose from the start
1182       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1183       lrg._direct_conflict = 1;
1184     }
1185     lrg.set_degree(0);          // no neighbors in IFG yet
1186   }
1187 }
1188 
1189 // Set the was-lo-degree bit.  Conservative coalescing should not change the
1190 // colorability of the graph.  If any live range was of low-degree before
1191 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1192 // The bit is checked in Simplify.
1193 void PhaseChaitin::set_was_low() {
1194 #ifdef ASSERT
1195   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1196     int size = lrgs(i).num_regs();
1197     uint old_was_lo = lrgs(i)._was_lo;
1198     lrgs(i)._was_lo = 0;
1199     if( lrgs(i).lo_degree() ) {
1200       lrgs(i)._was_lo = 1;      // Trivially of low degree
1201     } else {                    // Else check the Brigg's assertion
1202       // Brigg's observation is that the lo-degree neighbors of a
1203       // hi-degree live range will not interfere with the color choices
1204       // of said hi-degree live range.  The Simplify reverse-stack-coloring
1205       // order takes care of the details.  Hence you do not have to count
1206       // low-degree neighbors when determining if this guy colors.
1207       int briggs_degree = 0;
1208       IndexSet *s = _ifg->neighbors(i);
1209       IndexSetIterator elements(s);
1210       uint lidx;
1211       while((lidx = elements.next()) != 0) {
1212         if( !lrgs(lidx).lo_degree() )
1213           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1214       }
1215       if( briggs_degree < lrgs(i).degrees_of_freedom() )
1216         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1217     }
1218     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1219   }
1220 #endif
1221 }
1222 
1223 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1224 void PhaseChaitin::cache_lrg_info( ) {
1225   Compile::TracePhase tp(_t_chaitinCacheLRG);
1226 
1227   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1228     LRG &lrg = lrgs(i);
1229 
1230     // Check for being of low degree: means we can be trivially colored.
1231     // Low degree, dead or must-spill guys just get to simplify right away
1232     if( lrg.lo_degree() ||
1233        !lrg.alive() ||
1234         lrg._must_spill ) {
1235       // Split low degree list into those guys that must get a
1236       // register and those that can go to register or stack.
1237       // The idea is LRGs that can go register or stack color first when
1238       // they have a good chance of getting a register.  The register-only
1239       // lo-degree live ranges always get a register.
1240       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1241       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1242         lrg._next = _lo_stk_degree;
1243         _lo_stk_degree = i;
1244       } else {
1245         lrg._next = _lo_degree;
1246         _lo_degree = i;
1247       }
1248     } else {                    // Else high degree
1249       lrgs(_hi_degree)._prev = i;
1250       lrg._next = _hi_degree;
1251       lrg._prev = 0;
1252       _hi_degree = i;
1253     }
1254   }
1255 }
1256 
1257 // Simplify the IFG by removing LRGs of low degree.
1258 void PhaseChaitin::Simplify( ) {
1259   Compile::TracePhase tp(_t_chaitinSimplify);
1260 
1261   while( 1 ) {                  // Repeat till simplified it all
1262     // May want to explore simplifying lo_degree before _lo_stk_degree.
1263     // This might result in more spills coloring into registers during
1264     // Select().
1265     while( _lo_degree || _lo_stk_degree ) {
1266       // If possible, pull from lo_stk first
1267       uint lo;
1268       if( _lo_degree ) {
1269         lo = _lo_degree;
1270         _lo_degree = lrgs(lo)._next;
1271       } else {
1272         lo = _lo_stk_degree;
1273         _lo_stk_degree = lrgs(lo)._next;
1274       }
1275 
1276       // Put the simplified guy on the simplified list.
1277       lrgs(lo)._next = _simplified;
1278       _simplified = lo;
1279       // If this guy is "at risk" then mark his current neighbors
1280       if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1281         IndexSetIterator elements(_ifg->neighbors(lo));
1282         uint datum;
1283         while ((datum = elements.next()) != 0) {
1284           lrgs(datum)._risk_bias = lo;
1285         }
1286       }
1287 
1288       // Yank this guy from the IFG.
1289       IndexSet *adj = _ifg->remove_node(lo);
1290       if (adj->is_empty()) {
1291         continue;
1292       }
1293 
1294       // If any neighbors' degrees fall below their number of
1295       // allowed registers, then put that neighbor on the low degree
1296       // list.  Note that 'degree' can only fall and 'numregs' is
1297       // unchanged by this action.  Thus the two are equal at most once,
1298       // so LRGs hit the lo-degree worklist at most once.
1299       IndexSetIterator elements(adj);
1300       uint neighbor;
1301       while ((neighbor = elements.next()) != 0) {
1302         LRG *n = &lrgs(neighbor);
1303 #ifdef ASSERT
1304         if (VerifyRegisterAllocator) {
1305           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1306         }
1307 #endif
1308 
1309         // Check for just becoming of-low-degree just counting registers.
1310         // _must_spill live ranges are already on the low degree list.
1311         if (n->just_lo_degree() && !n->_must_spill) {
1312           assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice");
1313           // Pull from hi-degree list
1314           uint prev = n->_prev;
1315           uint next = n->_next;
1316           if (prev) {
1317             lrgs(prev)._next = next;
1318           } else {
1319             _hi_degree = next;
1320           }
1321           lrgs(next)._prev = prev;
1322           n->_next = _lo_degree;
1323           _lo_degree = neighbor;
1324         }
1325       }
1326     } // End of while lo-degree/lo_stk_degree worklist not empty
1327 
1328     // Check for got everything: is hi-degree list empty?
1329     if (!_hi_degree) break;
1330 
1331     // Time to pick a potential spill guy
1332     uint lo_score = _hi_degree;
1333     double score = lrgs(lo_score).score();
1334     double area = lrgs(lo_score)._area;
1335     double cost = lrgs(lo_score)._cost;
1336     bool bound = lrgs(lo_score)._is_bound;
1337 
1338     // Find cheapest guy
1339     DEBUG_ONLY( int lo_no_simplify=0; );
1340     for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1341       assert(!_ifg->_yanked->test(i), "");
1342       // It's just vaguely possible to move hi-degree to lo-degree without
1343       // going through a just-lo-degree stage: If you remove a double from
1344       // a float live range it's degree will drop by 2 and you can skip the
1345       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1346       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1347       if( lrgs(i).lo_degree() ) {
1348         lo_score = i;
1349         break;
1350       }
1351       DEBUG_ONLY( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1352       double iscore = lrgs(i).score();
1353       double iarea = lrgs(i)._area;
1354       double icost = lrgs(i)._cost;
1355       bool ibound = lrgs(i)._is_bound;
1356 
1357       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1358       // wins.  Ties happen because all live ranges in question have spilled
1359       // a few times before and the spill-score adds a huge number which
1360       // washes out the low order bits.  We are choosing the lesser of 2
1361       // evils; in this case pick largest area to spill.
1362       // Ties also happen when live ranges are defined and used only inside
1363       // one block. In which case their area is 0 and score set to max.
1364       // In such case choose bound live range over unbound to free registers
1365       // or with smaller cost to spill.
1366       if ( iscore < score ||
1367           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1368           (iscore == score && iarea == area &&
1369            ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1370         lo_score = i;
1371         score = iscore;
1372         area = iarea;
1373         cost = icost;
1374         bound = ibound;
1375       }
1376     }
1377     LRG *lo_lrg = &lrgs(lo_score);
1378     // The live range we choose for spilling is either hi-degree, or very
1379     // rarely it can be low-degree.  If we choose a hi-degree live range
1380     // there better not be any lo-degree choices.
1381     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1382 
1383     // Pull from hi-degree list
1384     uint prev = lo_lrg->_prev;
1385     uint next = lo_lrg->_next;
1386     if( prev ) lrgs(prev)._next = next;
1387     else _hi_degree = next;
1388     lrgs(next)._prev = prev;
1389     // Jam him on the lo-degree list, despite his high degree.
1390     // Maybe he'll get a color, and maybe he'll spill.
1391     // Only Select() will know.
1392     lrgs(lo_score)._at_risk = true;
1393     _lo_degree = lo_score;
1394     lo_lrg->_next = 0;
1395 
1396   } // End of while not simplified everything
1397 
1398 }
1399 
1400 // Is 'reg' register legal for 'lrg'?
1401 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1402   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1403       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1404     // RA uses OptoReg which represent the highest element of a registers set.
1405     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1406     // in which XMMd is used by RA to represent such vectors. A double value
1407     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1408     // The register mask uses largest bits set of overlapping register sets.
1409     // On x86 with AVX it uses 8 bits for each XMM registers set.
1410     //
1411     // The 'lrg' already has cleared-to-set register mask (done in Select()
1412     // before calling choose_color()). Passing mask.Member(reg) check above
1413     // indicates that the size (num_regs) of 'reg' set is less or equal to
1414     // 'lrg' set size.
1415     // For set size 1 any register which is member of 'lrg' mask is legal.
1416     if (lrg.num_regs()==1)
1417       return true;
1418     // For larger sets only an aligned register with the same set size is legal.
1419     int mask = lrg.num_regs()-1;
1420     if ((reg&mask) == mask)
1421       return true;
1422   }
1423   return false;
1424 }
1425 
1426 static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1427   int num_regs = lrg.num_regs();
1428   OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1429 
1430   if (lrg.is_scalable()) {
1431     // a physical register is found
1432     if (chunk == 0 && OptoReg::is_reg(assigned)) {
1433       return assigned;
1434     }
1435 
1436     // find available stack slots for scalable register
1437     if (lrg._is_vector) {
1438       num_regs = lrg.scalable_reg_slots();
1439       // if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1440       if (num_regs == RegMask::SlotsPerVecA) {
1441         return assigned;
1442       }
1443 
1444       // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1445       // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1446       // instead of SlotsPerVecA bits.
1447       assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1448       while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1449         // Verify the found reg has scalable_reg_slots() bits set.
1450         if (mask.is_valid_reg(assigned, num_regs)) {
1451           return assigned;
1452         } else {
1453           // Remove more for each iteration
1454           mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1455           mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1456           assigned = mask.find_first_set(lrg, num_regs);
1457         }
1458       }
1459       return OptoReg::Bad; // will cause chunk change, and retry next chunk
1460     } else if (lrg._is_predicate) {
1461       assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register");
1462       num_regs = lrg.scalable_reg_slots();
1463       mask.clear_to_sets(num_regs);
1464       return mask.find_first_set(lrg, num_regs);
1465     }
1466   }
1467 
1468   return assigned;
1469 }
1470 
1471 // Choose a color using the biasing heuristic
1472 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1473 
1474   // Check for "at_risk" LRG's
1475   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1476   if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1477     // Walk the colored neighbors of the "at_risk" candidate
1478     // Choose a color which is both legal and already taken by a neighbor
1479     // of the "at_risk" candidate in order to improve the chances of the
1480     // "at_risk" candidate of coloring
1481     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1482     uint datum;
1483     while ((datum = elements.next()) != 0) {
1484       OptoReg::Name reg = lrgs(datum).reg();
1485       // If this LRG's register is legal for us, choose it
1486       if (is_legal_reg(lrg, reg, chunk))
1487         return reg;
1488     }
1489   }
1490 
1491   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1492   if (copy_lrg != 0) {
1493     // If he has a color,
1494     if(!_ifg->_yanked->test(copy_lrg)) {
1495       OptoReg::Name reg = lrgs(copy_lrg).reg();
1496       //  And it is legal for you,
1497       if (is_legal_reg(lrg, reg, chunk))
1498         return reg;
1499     } else if( chunk == 0 ) {
1500       // Choose a color which is legal for him
1501       RegMask tempmask = lrg.mask();
1502       tempmask.AND(lrgs(copy_lrg).mask());
1503       tempmask.clear_to_sets(lrg.num_regs());
1504       OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1505       if (OptoReg::is_valid(reg))
1506         return reg;
1507     }
1508   }
1509 
1510   // If no bias info exists, just go with the register selection ordering
1511   if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) {
1512     // Find an aligned set
1513     return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1514   }
1515 
1516   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1517   // copy removal to remove many more copies, by preventing a just-assigned
1518   // register from being repeatedly assigned.
1519   OptoReg::Name reg = lrg.mask().find_first_elem();
1520   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1521     // This 'Remove; find; Insert' idiom is an expensive way to find the
1522     // SECOND element in the mask.
1523     lrg.Remove(reg);
1524     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1525     lrg.Insert(reg);
1526     if( OptoReg::is_reg(reg2))
1527       reg = reg2;
1528   }
1529   return OptoReg::add( reg, chunk );
1530 }
1531 
1532 // Choose a color in the current chunk
1533 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1534   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1535   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1536 
1537   if( lrg.num_regs() == 1 ||    // Common Case
1538       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1539     // Use a heuristic to "bias" the color choice
1540     return bias_color(lrg, chunk);
1541 
1542   assert(!lrg._is_vector, "should be not vector here" );
1543   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1544 
1545   // Fat-proj case or misaligned double argument.
1546   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1547          lrg.num_regs() == 2,"fat projs exactly color" );
1548   assert( !chunk, "always color in 1st chunk" );
1549   // Return the highest element in the set.
1550   return lrg.mask().find_last_elem();
1551 }
1552 
1553 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1554 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1555 // everything going back is guaranteed a color.  Select that color.  If some
1556 // hi-degree LRG cannot get a color then we record that we must spill.
1557 uint PhaseChaitin::Select( ) {
1558   Compile::TracePhase tp(_t_chaitinSelect);
1559 
1560   uint spill_reg = LRG::SPILL_REG;
1561   _max_reg = OptoReg::Name(0);  // Past max register used
1562   while( _simplified ) {
1563     // Pull next LRG from the simplified list - in reverse order of removal
1564     uint lidx = _simplified;
1565     LRG *lrg = &lrgs(lidx);
1566     _simplified = lrg->_next;
1567 
1568 #ifndef PRODUCT
1569     if (trace_spilling()) {
1570       ttyLocker ttyl;
1571       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1572                     lrg->degrees_of_freedom());
1573       lrg->dump();
1574     }
1575 #endif
1576 
1577     // Re-insert into the IFG
1578     _ifg->re_insert(lidx);
1579     if( !lrg->alive() ) continue;
1580     // capture allstackedness flag before mask is hacked
1581     const int is_allstack = lrg->mask().is_AllStack();
1582 
1583     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1584     // to avoid the GOTO, although the refactored code will not
1585     // be much clearer.  We arrive here IFF we have a stack-based
1586     // live range that cannot color in the current chunk, and it
1587     // has to move into the next free stack chunk.
1588     int chunk = 0;              // Current chunk is first chunk
1589     retry_next_chunk:
1590 
1591     // Remove neighbor colors
1592     IndexSet *s = _ifg->neighbors(lidx);
1593     DEBUG_ONLY(RegMask orig_mask = lrg->mask();)
1594 
1595     if (!s->is_empty()) {
1596       IndexSetIterator elements(s);
1597       uint neighbor;
1598       while ((neighbor = elements.next()) != 0) {
1599         // Note that neighbor might be a spill_reg.  In this case, exclusion
1600         // of its color will be a no-op, since the spill_reg chunk is in outer
1601         // space.  Also, if neighbor is in a different chunk, this exclusion
1602         // will be a no-op.  (Later on, if lrg runs out of possible colors in
1603         // its chunk, a new chunk of color may be tried, in which case
1604         // examination of neighbors is started again, at retry_next_chunk.)
1605         LRG &nlrg = lrgs(neighbor);
1606         OptoReg::Name nreg = nlrg.reg();
1607         // Only subtract masks in the same chunk
1608         if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1609 #ifndef PRODUCT
1610           uint size = lrg->mask().Size();
1611           RegMask rm = lrg->mask();
1612 #endif
1613           lrg->SUBTRACT(nlrg.mask());
1614 #ifndef PRODUCT
1615           if (trace_spilling() && lrg->mask().Size() != size) {
1616             ttyLocker ttyl;
1617             tty->print("L%d ", lidx);
1618             rm.dump();
1619             tty->print(" intersected L%d ", neighbor);
1620             nlrg.mask().dump();
1621             tty->print(" removed ");
1622             rm.SUBTRACT(lrg->mask());
1623             rm.dump();
1624             tty->print(" leaving ");
1625             lrg->mask().dump();
1626             tty->cr();
1627           }
1628 #endif
1629         }
1630       }
1631     }
1632     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1633     // Aligned pairs need aligned masks
1634     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1635     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1636       lrg->clear_to_sets();
1637     }
1638 
1639     // Check if a color is available and if so pick the color
1640     OptoReg::Name reg = choose_color( *lrg, chunk );
1641 
1642     //---------------
1643     // If we fail to color and the AllStack flag is set, trigger
1644     // a chunk-rollover event
1645     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1646       // Bump register mask up to next stack chunk
1647       chunk += RegMask::CHUNK_SIZE;
1648       lrg->Set_All();
1649       goto retry_next_chunk;
1650     }
1651 
1652     //---------------
1653     // Did we get a color?
1654     else if( OptoReg::is_valid(reg)) {
1655 #ifndef PRODUCT
1656       RegMask avail_rm = lrg->mask();
1657 #endif
1658 
1659       // Record selected register
1660       lrg->set_reg(reg);
1661 
1662       if( reg >= _max_reg )     // Compute max register limit
1663         _max_reg = OptoReg::add(reg,1);
1664       // Fold reg back into normal space
1665       reg = OptoReg::add(reg,-chunk);
1666 
1667       // If the live range is not bound, then we actually had some choices
1668       // to make.  In this case, the mask has more bits in it than the colors
1669       // chosen.  Restrict the mask to just what was picked.
1670       int n_regs = lrg->num_regs();
1671       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1672       if (n_regs == 1 || !lrg->_fat_proj) {
1673         if (Matcher::supports_scalable_vector()) {
1674           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity");
1675         } else {
1676           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1677         }
1678         lrg->Clear();           // Clear the mask
1679         lrg->Insert(reg);       // Set regmask to match selected reg
1680         // For vectors and pairs, also insert the low bit of the pair
1681         // We always choose the high bit, then mask the low bits by register size
1682         if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1683           n_regs = lrg->scalable_reg_slots();
1684         }
1685         for (int i = 1; i < n_regs; i++) {
1686           lrg->Insert(OptoReg::add(reg,-i));
1687         }
1688         lrg->set_mask_size(n_regs);
1689       } else {                  // Else fatproj
1690         // mask must be equal to fatproj bits, by definition
1691       }
1692 #ifndef PRODUCT
1693       if (trace_spilling()) {
1694         ttyLocker ttyl;
1695         tty->print("L%d selected ", lidx);
1696         lrg->mask().dump();
1697         tty->print(" from ");
1698         avail_rm.dump();
1699         tty->cr();
1700       }
1701 #endif
1702       // Note that reg is the highest-numbered register in the newly-bound mask.
1703     } // end color available case
1704 
1705     //---------------
1706     // Live range is live and no colors available
1707     else {
1708       assert( lrg->alive(), "" );
1709       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1710               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1711       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1712 
1713       // Assign the special spillreg register
1714       lrg->set_reg(OptoReg::Name(spill_reg++));
1715       // Do not empty the regmask; leave mask_size lying around
1716       // for use during Spilling
1717 #ifndef PRODUCT
1718       if( trace_spilling() ) {
1719         ttyLocker ttyl;
1720         tty->print("L%d spilling with neighbors: ", lidx);
1721         s->dump();
1722         DEBUG_ONLY(tty->print(" original mask: "));
1723         DEBUG_ONLY(orig_mask.dump());
1724         dump_lrg(lidx);
1725       }
1726 #endif
1727     } // end spill case
1728 
1729   }
1730 
1731   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1732 }
1733 
1734 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1735 void PhaseChaitin::set_was_spilled( Node *n ) {
1736   if( _spilled_once.test_set(n->_idx) )
1737     _spilled_twice.set(n->_idx);
1738 }
1739 
1740 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1741 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1742 void PhaseChaitin::fixup_spills() {
1743   // This function does only cisc spill work.
1744   if( !UseCISCSpill ) return;
1745 
1746   Compile::TracePhase tp(_t_fixupSpills);
1747 
1748   // Grab the Frame Pointer
1749   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1750 
1751   // For all blocks
1752   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1753     Block* block = _cfg.get_block(i);
1754 
1755     // For all instructions in block
1756     uint last_inst = block->end_idx();
1757     for (uint j = 1; j <= last_inst; j++) {
1758       Node* n = block->get_node(j);
1759 
1760       // Dead instruction???
1761       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1762               C->top() == n ||  // Or the random TOP node
1763               n->is_Proj(),     // Or a fat-proj kill node
1764               "No dead instructions after post-alloc" );
1765 
1766       int inp = n->cisc_operand();
1767       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1768         // Convert operand number to edge index number
1769         MachNode *mach = n->as_Mach();
1770         inp = mach->operand_index(inp);
1771         Node *src = n->in(inp);   // Value to load or store
1772         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1773         OptoReg::Name src_reg = lrg_cisc.reg();
1774         // Doubles record the HIGH register of an adjacent pair.
1775         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1776         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1777           // This is a CISC Spill, get stack offset and construct new node
1778 #ifndef PRODUCT
1779           if( TraceCISCSpill ) {
1780             tty->print("    reg-instr:  ");
1781             n->dump();
1782           }
1783 #endif
1784           int stk_offset = reg2offset(src_reg);
1785           // Bailout if we might exceed node limit when spilling this instruction
1786           C->check_node_count(0, "out of nodes fixing spills");
1787           if (C->failing())  return;
1788           // Transform node
1789           MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1790           cisc->set_req(inp,fp);          // Base register is frame pointer
1791           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1792             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1793             cisc->ins_req(1,src);         // Requires a memory edge
1794           } else {
1795             // There is no space reserved for a memory edge before the inputs for
1796             // instructions which have "stackSlotX" parameter instead of "memory".
1797             // For example, "MoveF2I_stack_reg". We always need a memory edge from
1798             // src to cisc, else we might schedule cisc before src, loading from a
1799             // spill location before storing the spill. On some platforms, we land
1800             // in this else case because mach->oper_input_base() > 1, i.e. we have
1801             // multiple inputs. In some rare cases there are even multiple memory
1802             // operands, before and after spilling.
1803             // (e.g. spilling "addFPR24_reg_mem" to "addFPR24_mem_cisc")
1804             // In either case, there is no space in the inputs for the memory edge
1805             // so we add an additional precedence / memory edge.
1806             cisc->add_prec(src);
1807           }
1808           block->map_node(cisc, j);          // Insert into basic block
1809           n->subsume_by(cisc, C); // Correct graph
1810           //
1811           ++_used_cisc_instructions;
1812 #ifndef PRODUCT
1813           if( TraceCISCSpill ) {
1814             tty->print("    cisc-instr: ");
1815             cisc->dump();
1816           }
1817 #endif
1818         } else {
1819 #ifndef PRODUCT
1820           if( TraceCISCSpill ) {
1821             tty->print("    using reg-instr: ");
1822             n->dump();
1823           }
1824 #endif
1825           ++_unused_cisc_instructions;    // input can be on stack
1826         }
1827       }
1828 
1829     } // End of for all instructions
1830 
1831   } // End of for all blocks
1832 }
1833 
1834 // Helper to stretch above; recursively discover the base Node for a
1835 // given derived Node.  Easy for AddP-related machine nodes, but needs
1836 // to be recursive for derived Phis.
1837 Node* PhaseChaitin::find_base_for_derived(Node** derived_base_map, Node* derived, uint& maxlrg) {
1838   // See if already computed; if so return it
1839   if (derived_base_map[derived->_idx]) {
1840     return derived_base_map[derived->_idx];
1841   }
1842 
1843 #ifdef ASSERT
1844   if (derived->is_Mach() && derived->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) {
1845     // Bypass the verification node
1846     Node* base = find_base_for_derived(derived_base_map, derived->in(1), maxlrg);
1847     derived_base_map[derived->_idx] = base;
1848     return base;
1849   }
1850 #endif
1851 
1852   // See if this happens to be a base.
1853   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1854   // pointers derived from null!  These are always along paths that
1855   // can't happen at run-time but the optimizer cannot deduce it so
1856   // we have to handle it gracefully.
1857   assert(!derived->bottom_type()->isa_narrowoop() ||
1858           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1859   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1860   // If its an OOP with a non-zero offset, then it is derived.
1861   if( tj == nullptr || tj->_offset == 0 ) {
1862     derived_base_map[derived->_idx] = derived;
1863     return derived;
1864   }
1865   // Derived is null+offset?  Base is null!
1866   if( derived->is_Con() ) {
1867     Node *base = _matcher.mach_null();
1868     assert(base != nullptr, "sanity");
1869     if (base->in(0) == nullptr) {
1870       // Initialize it once and make it shared:
1871       // set control to _root and place it into Start block
1872       // (where top() node is placed).
1873       base->init_req(0, _cfg.get_root_node());
1874       Block *startb = _cfg.get_block_for_node(C->top());
1875       uint node_pos = startb->find_node(C->top());
1876       startb->insert_node(base, node_pos);
1877       _cfg.map_node_to_block(base, startb);
1878       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1879 
1880       // The loadConP0 might have projection nodes depending on architecture
1881       // Add the projection nodes to the CFG
1882       for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1883         Node* use = base->fast_out(i);
1884         if (use->is_MachProj()) {
1885           startb->insert_node(use, ++node_pos);
1886           _cfg.map_node_to_block(use, startb);
1887           new_lrg(use, maxlrg++);
1888         }
1889       }
1890     }
1891     if (_lrg_map.live_range_id(base) == 0) {
1892       new_lrg(base, maxlrg++);
1893     }
1894     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base null should be shared");
1895     derived_base_map[derived->_idx] = base;
1896     return base;
1897   }
1898 
1899   // Check for AddP-related opcodes
1900   if (!derived->is_Phi()) {
1901     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1902     Node *base = derived->in(AddPNode::Base);
1903     derived_base_map[derived->_idx] = base;
1904     return base;
1905   }
1906 
1907   // Recursively find bases for Phis.
1908   // First check to see if we can avoid a base Phi here.
1909   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1910   uint i;
1911   for( i = 2; i < derived->req(); i++ )
1912     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1913       break;
1914   // Went to the end without finding any different bases?
1915   if( i == derived->req() ) {   // No need for a base Phi here
1916     derived_base_map[derived->_idx] = base;
1917     return base;
1918   }
1919 
1920   // Now we see we need a base-Phi here to merge the bases
1921   const Type *t = base->bottom_type();
1922   base = new PhiNode( derived->in(0), t );
1923   for( i = 1; i < derived->req(); i++ ) {
1924     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1925     t = t->meet(base->in(i)->bottom_type());
1926   }
1927   base->as_Phi()->set_type(t);
1928 
1929   // Search the current block for an existing base-Phi
1930   Block *b = _cfg.get_block_for_node(derived);
1931   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1932     Node *phi = b->get_node(i);
1933     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1934       b->insert_node(base,  i); // Must insert created Phi here as base
1935       _cfg.map_node_to_block(base, b);
1936       new_lrg(base,maxlrg++);
1937       break;
1938     }
1939     // See if Phi matches.
1940     uint j;
1941     for( j = 1; j < base->req(); j++ )
1942       if( phi->in(j) != base->in(j) &&
1943           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different nulls
1944         break;
1945     if( j == base->req() ) {    // All inputs match?
1946       base = phi;               // Then use existing 'phi' and drop 'base'
1947       break;
1948     }
1949   }
1950 
1951 
1952   // Cache info for later passes
1953   derived_base_map[derived->_idx] = base;
1954   return base;
1955 }
1956 
1957 // At each Safepoint, insert extra debug edges for each pair of derived value/
1958 // base pointer that is live across the Safepoint for oopmap building.  The
1959 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1960 // required edge set.
1961 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1962   int must_recompute_live = false;
1963   uint maxlrg = _lrg_map.max_lrg_id();
1964   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1965   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1966 
1967   // For all blocks in RPO do...
1968   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1969     Block* block = _cfg.get_block(i);
1970     // Note use of deep-copy constructor.  I cannot hammer the original
1971     // liveout bits, because they are needed by the following coalesce pass.
1972     IndexSet liveout(_live->live(block));
1973 
1974     for (uint j = block->end_idx() + 1; j > 1; j--) {
1975       Node* n = block->get_node(j - 1);
1976 
1977       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1978       // like to see in the same register.  Compare uses the loop-phi and so
1979       // extends its live range BUT cannot be part of the cycle.  If this
1980       // extended live range overlaps with the update of the loop-phi value
1981       // we need both alive at the same time -- which requires at least 1
1982       // copy.  But because Intel has only 2-address registers we end up with
1983       // at least 2 copies, one before the loop-phi update instruction and
1984       // one after.  Instead we split the input to the compare just after the
1985       // phi.
1986       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1987         Node *phi = n->in(1);
1988         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1989           Block *phi_block = _cfg.get_block_for_node(phi);
1990           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1991             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1992             Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1993             insert_proj( phi_block, 1, spill, maxlrg++ );
1994             n->set_req(1,spill);
1995             must_recompute_live = true;
1996           }
1997         }
1998       }
1999 
2000       // Get value being defined
2001       uint lidx = _lrg_map.live_range_id(n);
2002       // Ignore the occasional brand-new live range
2003       if (lidx && lidx < _lrg_map.max_lrg_id()) {
2004         // Remove from live-out set
2005         liveout.remove(lidx);
2006 
2007         // Copies do not define a new value and so do not interfere.
2008         // Remove the copies source from the liveout set before interfering.
2009         uint idx = n->is_Copy();
2010         if (idx) {
2011           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
2012         }
2013       }
2014 
2015       // Found a safepoint?
2016       JVMState *jvms = n->jvms();
2017       if (jvms && !liveout.is_empty()) {
2018         // Now scan for a live derived pointer
2019         IndexSetIterator elements(&liveout);
2020         uint neighbor;
2021         while ((neighbor = elements.next()) != 0) {
2022           // Find reaching DEF for base and derived values
2023           // This works because we are still in SSA during this call.
2024           Node *derived = lrgs(neighbor)._def;
2025           const TypePtr *tj = derived->bottom_type()->isa_ptr();
2026           assert(!derived->bottom_type()->isa_narrowoop() ||
2027                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
2028           // If its an OOP with a non-zero offset, then it is derived.
2029           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
2030             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
2031             assert(base->_idx < _lrg_map.size(), "");
2032             // Add reaching DEFs of derived pointer and base pointer as a
2033             // pair of inputs
2034             n->add_req(derived);
2035             n->add_req(base);
2036 
2037             // See if the base pointer is already live to this point.
2038             // Since I'm working on the SSA form, live-ness amounts to
2039             // reaching def's.  So if I find the base's live range then
2040             // I know the base's def reaches here.
2041             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
2042                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
2043                  (_lrg_map.live_range_id(base) > 0) && // not a constant
2044                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
2045               // Base pointer is not currently live.  Since I stretched
2046               // the base pointer to here and it crosses basic-block
2047               // boundaries, the global live info is now incorrect.
2048               // Recompute live.
2049               must_recompute_live = true;
2050             } // End of if base pointer is not live to debug info
2051           }
2052         } // End of scan all live data for derived ptrs crossing GC point
2053       } // End of if found a GC point
2054 
2055       // Make all inputs live
2056       if (!n->is_Phi()) {      // Phi function uses come from prior block
2057         for (uint k = 1; k < n->req(); k++) {
2058           uint lidx = _lrg_map.live_range_id(n->in(k));
2059           if (lidx < _lrg_map.max_lrg_id()) {
2060             liveout.insert(lidx);
2061           }
2062         }
2063       }
2064 
2065     } // End of forall instructions in block
2066     liveout.clear();  // Free the memory used by liveout.
2067 
2068   } // End of forall blocks
2069   _lrg_map.set_max_lrg_id(maxlrg);
2070 
2071   // If I created a new live range I need to recompute live
2072   if (maxlrg != _ifg->_maxlrg) {
2073     must_recompute_live = true;
2074   }
2075 
2076   return must_recompute_live != 0;
2077 }
2078 
2079 // Extend the node to LRG mapping
2080 
2081 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
2082   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
2083 }
2084 
2085 #ifndef PRODUCT
2086 void PhaseChaitin::dump(const Node* n) const {
2087   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
2088   tty->print("L%d",r);
2089   if (r && n->Opcode() != Op_Phi) {
2090     if( _node_regs ) {          // Got a post-allocation copy of allocation?
2091       tty->print("[");
2092       OptoReg::Name second = get_reg_second(n);
2093       if( OptoReg::is_valid(second) ) {
2094         if( OptoReg::is_reg(second) )
2095           tty->print("%s:",Matcher::regName[second]);
2096         else
2097           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
2098       }
2099       OptoReg::Name first = get_reg_first(n);
2100       if( OptoReg::is_reg(first) )
2101         tty->print("%s]",Matcher::regName[first]);
2102       else
2103          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
2104     } else
2105     n->out_RegMask().dump();
2106   }
2107   tty->print("/N%d\t",n->_idx);
2108   tty->print("%s === ", n->Name());
2109   uint k;
2110   for (k = 0; k < n->req(); k++) {
2111     Node *m = n->in(k);
2112     if (!m) {
2113       tty->print("_ ");
2114     }
2115     else {
2116       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2117       tty->print("L%d",r);
2118       // Data MultiNode's can have projections with no real registers.
2119       // Don't die while dumping them.
2120       int op = n->Opcode();
2121       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2122         if( _node_regs ) {
2123           tty->print("[");
2124           OptoReg::Name second = get_reg_second(n->in(k));
2125           if( OptoReg::is_valid(second) ) {
2126             if( OptoReg::is_reg(second) )
2127               tty->print("%s:",Matcher::regName[second]);
2128             else
2129               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2130                          reg2offset_unchecked(second));
2131           }
2132           OptoReg::Name first = get_reg_first(n->in(k));
2133           if( OptoReg::is_reg(first) )
2134             tty->print("%s]",Matcher::regName[first]);
2135           else
2136             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2137                        reg2offset_unchecked(first));
2138         } else
2139           n->in_RegMask(k).dump();
2140       }
2141       tty->print("/N%d ",m->_idx);
2142     }
2143   }
2144   if( k < n->len() && n->in(k) ) tty->print("| ");
2145   for( ; k < n->len(); k++ ) {
2146     Node *m = n->in(k);
2147     if(!m) {
2148       break;
2149     }
2150     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2151     tty->print("L%d",r);
2152     tty->print("/N%d ",m->_idx);
2153   }
2154   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2155   else n->dump_spec(tty);
2156   if( _spilled_once.test(n->_idx ) ) {
2157     tty->print(" Spill_1");
2158     if( _spilled_twice.test(n->_idx ) )
2159       tty->print(" Spill_2");
2160   }
2161   tty->print("\n");
2162 }
2163 
2164 void PhaseChaitin::dump(const Block* b) const {
2165   b->dump_head(&_cfg);
2166 
2167   // For all instructions
2168   for( uint j = 0; j < b->number_of_nodes(); j++ )
2169     dump(b->get_node(j));
2170   // Print live-out info at end of block
2171   if( _live ) {
2172     tty->print("Liveout: ");
2173     IndexSet *live = _live->live(b);
2174     IndexSetIterator elements(live);
2175     tty->print("{");
2176     uint i;
2177     while ((i = elements.next()) != 0) {
2178       tty->print("L%d ", _lrg_map.find_const(i));
2179     }
2180     tty->print_cr("}");
2181   }
2182   tty->print("\n");
2183 }
2184 
2185 void PhaseChaitin::dump() const {
2186   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2187               _matcher._new_SP, _framesize );
2188 
2189   // For all blocks
2190   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2191     dump(_cfg.get_block(i));
2192   }
2193   // End of per-block dump
2194   tty->print("\n");
2195 
2196   if (!_ifg) {
2197     tty->print("(No IFG.)\n");
2198     return;
2199   }
2200 
2201   // Dump LRG array
2202   tty->print("--- Live RanGe Array ---\n");
2203   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2204     tty->print("L%d: ",i2);
2205     if (i2 < _ifg->_maxlrg) {
2206       lrgs(i2).dump();
2207     }
2208     else {
2209       tty->print_cr("new LRG");
2210     }
2211   }
2212   tty->cr();
2213 
2214   // Dump lo-degree list
2215   tty->print("Lo degree: ");
2216   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2217     tty->print("L%d ",i3);
2218   tty->cr();
2219 
2220   // Dump lo-stk-degree list
2221   tty->print("Lo stk degree: ");
2222   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2223     tty->print("L%d ",i4);
2224   tty->cr();
2225 
2226   // Dump lo-degree list
2227   tty->print("Hi degree: ");
2228   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2229     tty->print("L%d ",i5);
2230   tty->cr();
2231 }
2232 
2233 void PhaseChaitin::dump_degree_lists() const {
2234   // Dump lo-degree list
2235   tty->print("Lo degree: ");
2236   for( uint i = _lo_degree; i; i = lrgs(i)._next )
2237     tty->print("L%d ",i);
2238   tty->cr();
2239 
2240   // Dump lo-stk-degree list
2241   tty->print("Lo stk degree: ");
2242   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2243     tty->print("L%d ",i2);
2244   tty->cr();
2245 
2246   // Dump lo-degree list
2247   tty->print("Hi degree: ");
2248   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2249     tty->print("L%d ",i3);
2250   tty->cr();
2251 }
2252 
2253 void PhaseChaitin::dump_simplified() const {
2254   tty->print("Simplified: ");
2255   for( uint i = _simplified; i; i = lrgs(i)._next )
2256     tty->print("L%d ",i);
2257   tty->cr();
2258 }
2259 
2260 static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf, size_t buf_size) {
2261   if ((int)reg < 0)
2262     os::snprintf_checked(buf, buf_size, "<OptoReg::%d>", (int)reg);
2263   else if (OptoReg::is_reg(reg))
2264     strcpy(buf, Matcher::regName[reg]);
2265   else
2266     os::snprintf_checked(buf, buf_size, "%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2267             pc->reg2offset(reg));
2268   return buf+strlen(buf);
2269 }
2270 
2271 // Dump a register name into a buffer.  Be intelligent if we get called
2272 // before allocation is complete.
2273 char *PhaseChaitin::dump_register(const Node* n, char* buf, size_t buf_size) const {
2274   if( _node_regs ) {
2275     // Post allocation, use direct mappings, no LRG info available
2276     print_reg( get_reg_first(n), this, buf, buf_size);
2277   } else {
2278     uint lidx = _lrg_map.find_const(n); // Grab LRG number
2279     if( !_ifg ) {
2280       os::snprintf_checked(buf, buf_size, "L%d",lidx);  // No register binding yet
2281     } else if( !lidx ) {        // Special, not allocated value
2282       strcpy(buf,"Special");
2283     } else {
2284       if (lrgs(lidx)._is_vector) {
2285         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2286           print_reg( lrgs(lidx).reg(), this, buf, buf_size); // a bound machine register
2287         else
2288           os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2289       } else if( (lrgs(lidx).num_regs() == 1)
2290                  ? lrgs(lidx).mask().is_bound1()
2291                  : lrgs(lidx).mask().is_bound_pair() ) {
2292         // Hah!  We have a bound machine register
2293         print_reg( lrgs(lidx).reg(), this, buf, buf_size);
2294       } else {
2295         os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2296       }
2297     }
2298   }
2299   return buf+strlen(buf);
2300 }
2301 
2302 void PhaseChaitin::dump_for_spill_split_recycle() const {
2303   if( WizardMode && (PrintCompilation || PrintOpto) ) {
2304     // Display which live ranges need to be split and the allocator's state
2305     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2306     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2307       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2308         tty->print("L%d: ", bidx);
2309         lrgs(bidx).dump();
2310       }
2311     }
2312     tty->cr();
2313     dump();
2314   }
2315 }
2316 
2317 void PhaseChaitin::dump_frame() const {
2318   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2319   const TypeTuple *domain = C->tf()->domain();
2320   const int        argcnt = domain->cnt() - TypeFunc::Parms;
2321 
2322   // Incoming arguments in registers dump
2323   for( int k = 0; k < argcnt; k++ ) {
2324     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2325     if( OptoReg::is_reg(parmreg))  {
2326       const char *reg_name = OptoReg::regname(parmreg);
2327       tty->print("#r%3.3d %s", parmreg, reg_name);
2328       parmreg = _matcher._parm_regs[k].second();
2329       if( OptoReg::is_reg(parmreg))  {
2330         tty->print(":%s", OptoReg::regname(parmreg));
2331       }
2332       tty->print("   : parm %d: ", k);
2333       domain->field_at(k + TypeFunc::Parms)->dump();
2334       tty->cr();
2335     }
2336   }
2337 
2338   // Check for un-owned padding above incoming args
2339   OptoReg::Name reg = _matcher._new_SP;
2340   if( reg > _matcher._in_arg_limit ) {
2341     reg = OptoReg::add(reg, -1);
2342     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2343   }
2344 
2345   // Incoming argument area dump
2346   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2347   while( reg > begin_in_arg ) {
2348     reg = OptoReg::add(reg, -1);
2349     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2350     int j;
2351     for( j = 0; j < argcnt; j++) {
2352       if( _matcher._parm_regs[j].first() == reg ||
2353           _matcher._parm_regs[j].second() == reg ) {
2354         tty->print("parm %d: ",j);
2355         domain->field_at(j + TypeFunc::Parms)->dump();
2356         tty->cr();
2357         break;
2358       }
2359     }
2360     if( j >= argcnt )
2361       tty->print_cr("HOLE, owned by SELF");
2362   }
2363 
2364   // Old outgoing preserve area
2365   while( reg > _matcher._old_SP ) {
2366     reg = OptoReg::add(reg, -1);
2367     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2368   }
2369 
2370   // Old SP
2371   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2372     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2373 
2374   // Preserve area dump
2375   int fixed_slots = C->fixed_slots();
2376   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2377   OptoReg::Name return_addr = _matcher.return_addr();
2378 
2379   reg = OptoReg::add(reg, -1);
2380   while (OptoReg::is_stack(reg)) {
2381     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2382     if (return_addr == reg) {
2383       tty->print_cr("return address");
2384     } else if (reg >= begin_in_preserve) {
2385       // Preserved slots are present on x86
2386       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2387         tty->print_cr("saved fp register");
2388       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2389                VerifyStackAtCalls)
2390         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2391       else
2392         tty->print_cr("in_preserve");
2393     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2394       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2395     } else {
2396       tty->print_cr("pad2, stack alignment");
2397     }
2398     reg = OptoReg::add(reg, -1);
2399   }
2400 
2401   // Spill area dump
2402   reg = OptoReg::add(_matcher._new_SP, _framesize );
2403   while( reg > _matcher._out_arg_limit ) {
2404     reg = OptoReg::add(reg, -1);
2405     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2406   }
2407 
2408   // Outgoing argument area dump
2409   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2410     reg = OptoReg::add(reg, -1);
2411     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2412   }
2413 
2414   // Outgoing new preserve area
2415   while( reg > _matcher._new_SP ) {
2416     reg = OptoReg::add(reg, -1);
2417     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2418   }
2419   tty->print_cr("#");
2420 }
2421 
2422 void PhaseChaitin::dump_bb(uint pre_order) const {
2423   tty->print_cr("---dump of B%d---",pre_order);
2424   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2425     Block* block = _cfg.get_block(i);
2426     if (block->_pre_order == pre_order) {
2427       dump(block);
2428     }
2429   }
2430 }
2431 
2432 void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2433   tty->print_cr("---dump of L%d---",lidx);
2434 
2435   if (_ifg) {
2436     if (lidx >= _lrg_map.max_lrg_id()) {
2437       tty->print("Attempt to print live range index beyond max live range.\n");
2438       return;
2439     }
2440     tty->print("L%d: ",lidx);
2441     if (lidx < _ifg->_maxlrg) {
2442       lrgs(lidx).dump();
2443     } else {
2444       tty->print_cr("new LRG");
2445     }
2446   }
2447   if( _ifg && lidx < _ifg->_maxlrg) {
2448     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2449     _ifg->neighbors(lidx)->dump();
2450     tty->cr();
2451   }
2452   // For all blocks
2453   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2454     Block* block = _cfg.get_block(i);
2455     int dump_once = 0;
2456 
2457     // For all instructions
2458     for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2459       Node *n = block->get_node(j);
2460       if (_lrg_map.find_const(n) == lidx) {
2461         if (!dump_once++) {
2462           tty->cr();
2463           block->dump_head(&_cfg);
2464         }
2465         dump(n);
2466         continue;
2467       }
2468       if (!defs_only) {
2469         uint cnt = n->req();
2470         for( uint k = 1; k < cnt; k++ ) {
2471           Node *m = n->in(k);
2472           if (!m)  {
2473             continue;  // be robust in the dumper
2474           }
2475           if (_lrg_map.find_const(m) == lidx) {
2476             if (!dump_once++) {
2477               tty->cr();
2478               block->dump_head(&_cfg);
2479             }
2480             dump(n);
2481           }
2482         }
2483       }
2484     }
2485   } // End of per-block dump
2486   tty->cr();
2487 }
2488 #endif // not PRODUCT
2489 
2490 #ifdef ASSERT
2491 // Verify that base pointers and derived pointers are still sane.
2492 void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2493   Unique_Node_List worklist(a);
2494   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2495     Block* block = _cfg.get_block(i);
2496     for (uint j = block->end_idx() + 1; j > 1; j--) {
2497       Node* n = block->get_node(j-1);
2498       if (n->is_Phi()) {
2499         break;
2500       }
2501       // Found a safepoint?
2502       if (n->is_MachSafePoint()) {
2503         MachSafePointNode* sfpt = n->as_MachSafePoint();
2504         JVMState* jvms = sfpt->jvms();
2505         if (jvms != nullptr) {
2506           // Now scan for a live derived pointer
2507           if (jvms->oopoff() < sfpt->req()) {
2508             // Check each derived/base pair
2509             for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2510               Node* check = sfpt->in(idx);
2511               bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2512               // search upwards through spills and spill phis for AddP
2513               worklist.clear();
2514               worklist.push(check);
2515               uint k = 0;
2516               while (k < worklist.size()) {
2517                 check = worklist.at(k);
2518                 assert(check, "Bad base or derived pointer");
2519                 // See PhaseChaitin::find_base_for_derived() for all cases.
2520                 int isc = check->is_Copy();
2521                 if (isc) {
2522                   worklist.push(check->in(isc));
2523                 } else if (check->is_Phi()) {
2524                   for (uint m = 1; m < check->req(); m++) {
2525                     worklist.push(check->in(m));
2526                   }
2527                 } else if (check->is_Con()) {
2528                   if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) {
2529                     // Derived is null+non-zero offset, base must be null.
2530                     assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer");
2531                   } else {
2532                     assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer");
2533                     // Base either ConP(nullptr) or loadConP
2534                     if (check->is_Mach()) {
2535                       assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer");
2536                     } else {
2537                       assert(check->Opcode() == Op_ConP &&
2538                              check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer");
2539                     }
2540                   }
2541                 } else if (check->bottom_type()->is_ptr()->_offset == 0) {
2542                   if (check->is_Proj() || (check->is_Mach() &&
2543                      (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2544                       check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2545                       check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2546                       check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2547 #ifdef _LP64
2548                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2549                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2550                       (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2551 #endif // _LP64
2552                       check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2553                       check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2554                     // Valid nodes
2555                   } else {
2556                     check->dump();
2557                     assert(false, "Bad base or derived pointer");
2558                   }
2559                 } else {
2560                   assert(is_derived, "Bad base pointer");
2561                   assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer");
2562                 }
2563                 k++;
2564                 assert(k < 100000, "Derived pointer checking in infinite loop");
2565               } // End while
2566             }
2567           } // End of check for derived pointers
2568         } // End of Kcheck for debug info
2569       } // End of if found a safepoint
2570     } // End of forall instructions in block
2571   } // End of forall blocks
2572 }
2573 
2574 // Verify that graphs and base pointers are still sane.
2575 void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2576   if (VerifyRegisterAllocator) {
2577     _cfg.verify();
2578     if (C->failing()) {
2579       return;
2580     }
2581     verify_base_ptrs(a);
2582     if (verify_ifg) {
2583       _ifg->verify(this);
2584     }
2585   }
2586 }
2587 #endif // ASSERT
2588 
2589 int PhaseChaitin::_final_loads  = 0;
2590 int PhaseChaitin::_final_stores = 0;
2591 int PhaseChaitin::_final_memoves= 0;
2592 int PhaseChaitin::_final_copies = 0;
2593 double PhaseChaitin::_final_load_cost  = 0;
2594 double PhaseChaitin::_final_store_cost = 0;
2595 double PhaseChaitin::_final_memove_cost= 0;
2596 double PhaseChaitin::_final_copy_cost  = 0;
2597 int PhaseChaitin::_conserv_coalesce = 0;
2598 int PhaseChaitin::_conserv_coalesce_pair = 0;
2599 int PhaseChaitin::_conserv_coalesce_trie = 0;
2600 int PhaseChaitin::_conserv_coalesce_quad = 0;
2601 int PhaseChaitin::_post_alloc = 0;
2602 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2603 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2604 int PhaseChaitin::_used_cisc_instructions   = 0;
2605 int PhaseChaitin::_unused_cisc_instructions = 0;
2606 int PhaseChaitin::_allocator_attempts       = 0;
2607 int PhaseChaitin::_allocator_successes      = 0;
2608 
2609 #ifndef PRODUCT
2610 uint PhaseChaitin::_high_pressure           = 0;
2611 uint PhaseChaitin::_low_pressure            = 0;
2612 
2613 void PhaseChaitin::print_chaitin_statistics() {
2614   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2615   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2616   tty->print_cr("Adjusted spill cost = %7.0f.",
2617                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2618                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2619   tty->print("Conservatively coalesced %d copies, %d pairs",
2620                 _conserv_coalesce, _conserv_coalesce_pair);
2621   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2622     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2623   tty->print_cr(", %d post alloc.", _post_alloc);
2624   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2625     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2626                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2627   if( _used_cisc_instructions || _unused_cisc_instructions )
2628     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2629                    _used_cisc_instructions, _unused_cisc_instructions);
2630   if( _allocator_successes != 0 )
2631     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2632   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2633 }
2634 #endif // not PRODUCT