1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "compiler/oopMap.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/block.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/cfgnode.hpp" 33 #include "opto/chaitin.hpp" 34 #include "opto/coalesce.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/idealGraphPrinter.hpp" 37 #include "opto/indexSet.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/memnode.hpp" 40 #include "opto/movenode.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/rootnode.hpp" 43 #include "utilities/align.hpp" 44 45 #ifndef PRODUCT 46 void LRG::dump() const { 47 ttyLocker ttyl; 48 tty->print("%d ",num_regs()); 49 _mask.dump(); 50 if( _msize_valid ) { 51 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size); 52 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size()); 53 } else { 54 tty->print(", #?(%d) ",_mask.Size()); 55 } 56 57 tty->print("EffDeg: "); 58 if( _degree_valid ) tty->print( "%d ", _eff_degree ); 59 else tty->print("? "); 60 61 if( is_multidef() ) { 62 tty->print("MultiDef "); 63 if (_defs != nullptr) { 64 tty->print("("); 65 for (int i = 0; i < _defs->length(); i++) { 66 tty->print("N%d ", _defs->at(i)->_idx); 67 } 68 tty->print(") "); 69 } 70 } 71 else if( _def == nullptr ) tty->print("Dead "); 72 else tty->print("Def: N%d ",_def->_idx); 73 74 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score()); 75 // Flags 76 if( _is_oop ) tty->print("Oop "); 77 if( _is_float ) tty->print("Float "); 78 if( _is_vector ) tty->print("Vector "); 79 if( _is_predicate ) tty->print("Predicate "); 80 if( _is_scalable ) tty->print("Scalable "); 81 if( _was_spilled1 ) tty->print("Spilled "); 82 if( _was_spilled2 ) tty->print("Spilled2 "); 83 if( _direct_conflict ) tty->print("Direct_conflict "); 84 if( _fat_proj ) tty->print("Fat "); 85 if( _was_lo ) tty->print("Lo "); 86 if( _has_copy ) tty->print("Copy "); 87 if( _at_risk ) tty->print("Risk "); 88 89 if( _must_spill ) tty->print("Must_spill "); 90 if( _is_bound ) tty->print("Bound "); 91 if( _msize_valid ) { 92 if( _degree_valid && lo_degree() ) tty->print("Trivial "); 93 } 94 95 tty->cr(); 96 } 97 #endif 98 99 // Compute score from cost and area. Low score is best to spill. 100 static double raw_score( double cost, double area ) { 101 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; 102 } 103 104 double LRG::score() const { 105 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost. 106 // Bigger area lowers score, encourages spilling this live range. 107 // Bigger cost raise score, prevents spilling this live range. 108 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer 109 // to turn a divide by a constant into a multiply by the reciprical). 110 double score = raw_score( _cost, _area); 111 112 // Account for area. Basically, LRGs covering large areas are better 113 // to spill because more other LRGs get freed up. 114 if( _area == 0.0 ) // No area? Then no progress to spill 115 return 1e35; 116 117 if( _was_spilled2 ) // If spilled once before, we are unlikely 118 return score + 1e30; // to make progress again. 119 120 if( _cost >= _area*3.0 ) // Tiny area relative to cost 121 return score + 1e17; // Probably no progress to spill 122 123 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost 124 return score + 1e10; // Likely no progress to spill 125 126 return score; 127 } 128 129 #define NUMBUCKS 3 130 131 // Straight out of Tarjan's union-find algorithm 132 uint LiveRangeMap::find_compress(uint lrg) { 133 uint cur = lrg; 134 uint next = _uf_map.at(cur); 135 while (next != cur) { // Scan chain of equivalences 136 assert( next < cur, "always union smaller"); 137 cur = next; // until find a fixed-point 138 next = _uf_map.at(cur); 139 } 140 141 // Core of union-find algorithm: update chain of 142 // equivalences to be equal to the root. 143 while (lrg != next) { 144 uint tmp = _uf_map.at(lrg); 145 _uf_map.at_put(lrg, next); 146 lrg = tmp; 147 } 148 return lrg; 149 } 150 151 // Reset the Union-Find map to identity 152 void LiveRangeMap::reset_uf_map(uint max_lrg_id) { 153 _max_lrg_id= max_lrg_id; 154 // Force the Union-Find mapping to be at least this large 155 _uf_map.at_put_grow(_max_lrg_id, 0); 156 // Initialize it to be the ID mapping. 157 for (uint i = 0; i < _max_lrg_id; ++i) { 158 _uf_map.at_put(i, i); 159 } 160 } 161 162 // Make all Nodes map directly to their final live range; no need for 163 // the Union-Find mapping after this call. 164 void LiveRangeMap::compress_uf_map_for_nodes() { 165 // For all Nodes, compress mapping 166 uint unique = _names.length(); 167 for (uint i = 0; i < unique; ++i) { 168 uint lrg = _names.at(i); 169 uint compressed_lrg = find(lrg); 170 if (lrg != compressed_lrg) { 171 _names.at_put(i, compressed_lrg); 172 } 173 } 174 } 175 176 // Like Find above, but no path compress, so bad asymptotic behavior 177 uint LiveRangeMap::find_const(uint lrg) const { 178 if (!lrg) { 179 return lrg; // Ignore the zero LRG 180 } 181 182 // Off the end? This happens during debugging dumps when you got 183 // brand new live ranges but have not told the allocator yet. 184 if (lrg >= _max_lrg_id) { 185 return lrg; 186 } 187 188 uint next = _uf_map.at(lrg); 189 while (next != lrg) { // Scan chain of equivalences 190 assert(next < lrg, "always union smaller"); 191 lrg = next; // until find a fixed-point 192 next = _uf_map.at(lrg); 193 } 194 return next; 195 } 196 197 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated) 198 : PhaseRegAlloc(unique, cfg, matcher, 199 #ifndef PRODUCT 200 print_chaitin_statistics 201 #else 202 nullptr 203 #endif 204 ) 205 , _live(nullptr) 206 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0) 207 , _oldphi(unique) 208 #ifndef PRODUCT 209 , _trace_spilling(C->directive()->TraceSpillingOption) 210 #endif 211 , _lrg_map(Thread::current()->resource_area(), unique) 212 , _scheduling_info_generated(scheduling_info_generated) 213 , _sched_int_pressure(0, Matcher::int_pressure_limit()) 214 , _sched_float_pressure(0, Matcher::float_pressure_limit()) 215 , _scratch_int_pressure(0, Matcher::int_pressure_limit()) 216 , _scratch_float_pressure(0, Matcher::float_pressure_limit()) 217 { 218 Compile::TracePhase tp(_t_ctorChaitin); 219 220 _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency()); 221 222 // Build a list of basic blocks, sorted by frequency 223 // Experiment with sorting strategies to speed compilation 224 uint nr_blocks = _cfg.number_of_blocks(); 225 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket 226 Block **buckets[NUMBUCKS]; // Array of buckets 227 uint buckcnt[NUMBUCKS]; // Array of bucket counters 228 double buckval[NUMBUCKS]; // Array of bucket value cutoffs 229 230 // The space which our buckets point into. 231 Block** start = NEW_RESOURCE_ARRAY(Block *, nr_blocks*NUMBUCKS); 232 233 for (uint i = 0; i < NUMBUCKS; i++) { 234 buckets[i] = &start[i*nr_blocks]; 235 buckcnt[i] = 0; 236 // Bump by three orders of magnitude each time 237 cutoff *= 0.001; 238 buckval[i] = cutoff; 239 } 240 241 // Sort blocks into buckets 242 for (uint i = 0; i < nr_blocks; i++) { 243 for (uint j = 0; j < NUMBUCKS; j++) { 244 double bval = buckval[j]; 245 Block* blk = _cfg.get_block(i); 246 if (j == NUMBUCKS - 1 || blk->_freq > bval) { 247 uint cnt = buckcnt[j]; 248 // Assign block to end of list for appropriate bucket 249 buckets[j][cnt] = blk; 250 buckcnt[j] = cnt+1; 251 break; // kick out of inner loop 252 } 253 } 254 } 255 256 // Squash the partially filled buckets together into the first one. 257 static_assert(NUMBUCKS >= 2, "must"); // If this isn't true then it'll mess up the squashing. 258 Block** offset = &buckets[0][buckcnt[0]]; 259 for (int i = 1; i < NUMBUCKS; i++) { 260 ::memmove(offset, buckets[i], buckcnt[i]*sizeof(Block*)); 261 offset += buckcnt[i]; 262 } 263 assert((&buckets[0][0] + nr_blocks) == offset, "should be"); 264 265 // Free the now unused memory 266 FREE_RESOURCE_ARRAY(Block*, buckets[1], (NUMBUCKS-1)*nr_blocks); 267 // Finally, point the _blks to our memory 268 _blks = buckets[0]; 269 270 #ifdef ASSERT 271 uint blkcnt = 0; 272 for (uint i = 0; i < NUMBUCKS; i++) { 273 blkcnt += buckcnt[i]; 274 } 275 assert(blkcnt == nr_blocks, "Block array not totally filled"); 276 #endif 277 } 278 279 // union 2 sets together. 280 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) { 281 uint src = _lrg_map.find(src_n); 282 uint dst = _lrg_map.find(dst_n); 283 assert(src, ""); 284 assert(dst, ""); 285 assert(src < _lrg_map.max_lrg_id(), "oob"); 286 assert(dst < _lrg_map.max_lrg_id(), "oob"); 287 assert(src < dst, "always union smaller"); 288 _lrg_map.uf_map(dst, src); 289 } 290 291 void PhaseChaitin::new_lrg(const Node *x, uint lrg) { 292 // Make the Node->LRG mapping 293 _lrg_map.extend(x->_idx,lrg); 294 // Make the Union-Find mapping an identity function 295 _lrg_map.uf_extend(lrg, lrg); 296 } 297 298 299 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) { 300 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections"); 301 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); ) 302 int found_projs = 0; 303 uint cnt = orig->outcnt(); 304 for (uint i = 0; i < cnt; i++) { 305 Node* proj = orig->raw_out(i); 306 if (proj->is_MachProj()) { 307 assert(proj->outcnt() == 0, "only kill projections are expected here"); 308 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections"); 309 found_projs++; 310 // Copy kill projections after the cloned node 311 Node* kills = proj->clone(); 312 kills->set_req(0, copy); 313 b->insert_node(kills, idx++); 314 _cfg.map_node_to_block(kills, b); 315 new_lrg(kills, max_lrg_id++); 316 } 317 } 318 return found_projs; 319 } 320 321 // Renumber the live ranges to compact them. Makes the IFG smaller. 322 void PhaseChaitin::compact() { 323 Compile::TracePhase tp(_t_chaitinCompact); 324 325 // Current the _uf_map contains a series of short chains which are headed 326 // by a self-cycle. All the chains run from big numbers to little numbers. 327 // The Find() call chases the chains & shortens them for the next Find call. 328 // We are going to change this structure slightly. Numbers above a moving 329 // wave 'i' are unchanged. Numbers below 'j' point directly to their 330 // compacted live range with no further chaining. There are no chains or 331 // cycles below 'i', so the Find call no longer works. 332 uint j=1; 333 uint i; 334 for (i = 1; i < _lrg_map.max_lrg_id(); i++) { 335 uint lr = _lrg_map.uf_live_range_id(i); 336 // Ignore unallocated live ranges 337 if (!lr) { 338 continue; 339 } 340 assert(lr <= i, ""); 341 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr)); 342 } 343 // Now change the Node->LR mapping to reflect the compacted names 344 uint unique = _lrg_map.size(); 345 for (i = 0; i < unique; i++) { 346 uint lrg_id = _lrg_map.live_range_id(i); 347 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id)); 348 } 349 350 // Reset the Union-Find mapping 351 _lrg_map.reset_uf_map(j); 352 } 353 354 void PhaseChaitin::Register_Allocate() { 355 356 // Above the OLD FP (and in registers) are the incoming arguments. Stack 357 // slots in this area are called "arg_slots". Above the NEW FP (and in 358 // registers) is the outgoing argument area; above that is the spill/temp 359 // area. These are all "frame_slots". Arg_slots start at the zero 360 // stack_slots and count up to the known arg_size. Frame_slots start at 361 // the stack_slot #arg_size and go up. After allocation I map stack 362 // slots to actual offsets. Stack-slots in the arg_slot area are biased 363 // by the frame_size; stack-slots in the frame_slot area are biased by 0. 364 365 _trip_cnt = 0; 366 _alternate = 0; 367 _matcher._allocation_started = true; 368 369 ResourceArea split_arena(mtCompiler, Arena::Tag::tag_regsplit); // Arena for Split local resources 370 ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive); // Arena for liveness & IFG info 371 ResourceMark rm(&live_arena); 372 373 // Need live-ness for the IFG; need the IFG for coalescing. If the 374 // liveness is JUST for coalescing, then I can get some mileage by renaming 375 // all copy-related live ranges low and then using the max copy-related 376 // live range as a cut-off for LIVE and the IFG. In other words, I can 377 // build a subset of LIVE and IFG just for copies. 378 PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false); 379 380 // Need IFG for coalescing and coloring 381 PhaseIFG ifg(&live_arena); 382 _ifg = &ifg; 383 384 // Come out of SSA world to the Named world. Assign (virtual) registers to 385 // Nodes. Use the same register for all inputs and the output of PhiNodes 386 // - effectively ending SSA form. This requires either coalescing live 387 // ranges or inserting copies. For the moment, we insert "virtual copies" 388 // - we pretend there is a copy prior to each Phi in predecessor blocks. 389 // We will attempt to coalesce such "virtual copies" before we manifest 390 // them for real. 391 de_ssa(); 392 393 #ifdef ASSERT 394 // Verify the graph before RA. 395 verify(&live_arena); 396 #endif 397 398 { 399 Compile::TracePhase tp(_t_computeLive); 400 _live = nullptr; // Mark live as being not available 401 rm.reset_to_mark(); // Reclaim working storage 402 IndexSet::reset_memory(C, &live_arena); 403 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG 404 gather_lrg_masks( false ); // Collect LRG masks 405 live.compute(_lrg_map.max_lrg_id()); // Compute liveness 406 _live = &live; // Mark LIVE as being available 407 } 408 409 // Base pointers are currently "used" by instructions which define new 410 // derived pointers. This makes base pointers live up to the where the 411 // derived pointer is made, but not beyond. Really, they need to be live 412 // across any GC point where the derived value is live. So this code looks 413 // at all the GC points, and "stretches" the live range of any base pointer 414 // to the GC point. 415 if (stretch_base_pointer_live_ranges(&live_arena)) { 416 Compile::TracePhase tp("computeLive (sbplr)", _t_computeLive); 417 // Since some live range stretched, I need to recompute live 418 _live = nullptr; 419 rm.reset_to_mark(); // Reclaim working storage 420 IndexSet::reset_memory(C, &live_arena); 421 ifg.init(_lrg_map.max_lrg_id()); 422 gather_lrg_masks(false); 423 live.compute(_lrg_map.max_lrg_id()); 424 _live = &live; 425 } 426 427 C->print_method(PHASE_INITIAL_LIVENESS, 4); 428 429 // Create the interference graph using virtual copies 430 build_ifg_virtual(); // Include stack slots this time 431 432 // The IFG is/was triangular. I am 'squaring it up' so Union can run 433 // faster. Union requires a 'for all' operation which is slow on the 434 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' - 435 // meaning I can visit all the Nodes neighbors less than a Node in time 436 // O(# of neighbors), but I have to visit all the Nodes greater than a 437 // given Node and search them for an instance, i.e., time O(#MaxLRG)). 438 _ifg->SquareUp(); 439 440 // Aggressive (but pessimistic) copy coalescing. 441 // This pass works on virtual copies. Any virtual copies which are not 442 // coalesced get manifested as actual copies 443 { 444 Compile::TracePhase tp(_t_chaitinCoalesce1); 445 446 PhaseAggressiveCoalesce coalesce(*this); 447 coalesce.coalesce_driver(); 448 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do 449 // not match the Phi itself, insert a copy. 450 coalesce.insert_copies(_matcher); 451 if (C->failing()) { 452 return; 453 } 454 } 455 456 // After aggressive coalesce, attempt a first cut at coloring. 457 // To color, we need the IFG and for that we need LIVE. 458 { 459 Compile::TracePhase tp(_t_computeLive); 460 _live = nullptr; 461 rm.reset_to_mark(); // Reclaim working storage 462 IndexSet::reset_memory(C, &live_arena); 463 ifg.init(_lrg_map.max_lrg_id()); 464 gather_lrg_masks( true ); 465 live.compute(_lrg_map.max_lrg_id()); 466 _live = &live; 467 } 468 469 C->print_method(PHASE_AGGRESSIVE_COALESCING, 4); 470 471 // Build physical interference graph 472 uint must_spill = 0; 473 must_spill = build_ifg_physical(&live_arena); 474 // If we have a guaranteed spill, might as well spill now 475 if (must_spill) { 476 if(!_lrg_map.max_lrg_id()) { 477 return; 478 } 479 // Bail out if unique gets too large (ie - unique > MaxNodeLimit) 480 C->check_node_count(10*must_spill, "out of nodes before split"); 481 if (C->failing()) { 482 return; 483 } 484 485 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere 486 if (C->failing()) { 487 return; 488 } 489 _lrg_map.set_max_lrg_id(new_max_lrg_id); 490 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) 491 // or we failed to split 492 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split"); 493 if (C->failing()) { 494 return; 495 } 496 497 NOT_PRODUCT(C->verify_graph_edges();) 498 499 compact(); // Compact LRGs; return new lower max lrg 500 501 { 502 Compile::TracePhase tp(_t_computeLive); 503 _live = nullptr; 504 rm.reset_to_mark(); // Reclaim working storage 505 IndexSet::reset_memory(C, &live_arena); 506 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph 507 gather_lrg_masks( true ); // Collect intersect mask 508 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE 509 _live = &live; 510 } 511 512 C->print_method(PHASE_INITIAL_SPILLING, 4); 513 514 build_ifg_physical(&live_arena); 515 _ifg->SquareUp(); 516 _ifg->Compute_Effective_Degree(); 517 // Only do conservative coalescing if requested 518 if (OptoCoalesce) { 519 Compile::TracePhase tp(_t_chaitinCoalesce2); 520 // Conservative (and pessimistic) copy coalescing of those spills 521 PhaseConservativeCoalesce coalesce(*this); 522 // If max live ranges greater than cutoff, don't color the stack. 523 // This cutoff can be larger than below since it is only done once. 524 coalesce.coalesce_driver(); 525 } 526 _lrg_map.compress_uf_map_for_nodes(); 527 528 if (OptoCoalesce) { 529 C->print_method(PHASE_CONSERVATIVE_COALESCING, 4); 530 } 531 532 #ifdef ASSERT 533 verify(&live_arena, true); 534 #endif 535 } else { 536 ifg.SquareUp(); 537 ifg.Compute_Effective_Degree(); 538 #ifdef ASSERT 539 set_was_low(); 540 #endif 541 } 542 543 // Prepare for Simplify & Select 544 cache_lrg_info(); // Count degree of LRGs 545 546 // Simplify the InterFerence Graph by removing LRGs of low degree. 547 // LRGs of low degree are trivially colorable. 548 Simplify(); 549 550 // Select colors by re-inserting LRGs back into the IFG in reverse order. 551 // Return whether or not something spills. 552 uint spills = Select( ); 553 554 // If we spill, split and recycle the entire thing 555 while( spills ) { 556 if( _trip_cnt++ > 24 ) { 557 DEBUG_ONLY( dump_for_spill_split_recycle(); ) 558 if( _trip_cnt > 27 ) { 559 C->record_method_not_compilable("failed spill-split-recycle sanity check"); 560 return; 561 } 562 } 563 564 if (!_lrg_map.max_lrg_id()) { 565 return; 566 } 567 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere 568 if (C->failing()) { 569 return; 570 } 571 _lrg_map.set_max_lrg_id(new_max_lrg_id); 572 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) 573 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split"); 574 if (C->failing()) { 575 return; 576 } 577 578 compact(); // Compact LRGs; return new lower max lrg 579 580 // Nuke the live-ness and interference graph and LiveRanGe info 581 { 582 Compile::TracePhase tp(_t_computeLive); 583 _live = nullptr; 584 rm.reset_to_mark(); // Reclaim working storage 585 IndexSet::reset_memory(C, &live_arena); 586 ifg.init(_lrg_map.max_lrg_id()); 587 588 // Create LiveRanGe array. 589 // Intersect register masks for all USEs and DEFs 590 gather_lrg_masks(true); 591 live.compute(_lrg_map.max_lrg_id()); 592 _live = &live; 593 } 594 595 C->print_method(PHASE_ITERATIVE_SPILLING, 4); 596 597 must_spill = build_ifg_physical(&live_arena); 598 _ifg->SquareUp(); 599 _ifg->Compute_Effective_Degree(); 600 601 // Only do conservative coalescing if requested 602 if (OptoCoalesce) { 603 Compile::TracePhase tp(_t_chaitinCoalesce3); 604 // Conservative (and pessimistic) copy coalescing 605 PhaseConservativeCoalesce coalesce(*this); 606 // Check for few live ranges determines how aggressive coalesce is. 607 coalesce.coalesce_driver(); 608 } 609 _lrg_map.compress_uf_map_for_nodes(); 610 611 if (OptoCoalesce) { 612 C->print_method(PHASE_CONSERVATIVE_COALESCING, 4); 613 } 614 615 #ifdef ASSERT 616 verify(&live_arena, true); 617 #endif 618 cache_lrg_info(); // Count degree of LRGs 619 620 // Simplify the InterFerence Graph by removing LRGs of low degree. 621 // LRGs of low degree are trivially colorable. 622 Simplify(); 623 624 // Select colors by re-inserting LRGs back into the IFG in reverse order. 625 // Return whether or not something spills. 626 spills = Select(); 627 } 628 629 C->print_method(PHASE_AFTER_ITERATIVE_SPILLING, 4); 630 631 // Count number of Simplify-Select trips per coloring success. 632 _allocator_attempts += _trip_cnt + 1; 633 _allocator_successes += 1; 634 635 // Peephole remove copies 636 post_allocate_copy_removal(); 637 638 C->print_method(PHASE_POST_ALLOCATION_COPY_REMOVAL, 4); 639 640 // Merge multidefs if multiple defs representing the same value are used in a single block. 641 merge_multidefs(); 642 643 C->print_method(PHASE_MERGE_MULTI_DEFS, 4); 644 645 #ifdef ASSERT 646 // Verify the graph after RA. 647 verify(&live_arena); 648 #endif 649 650 // max_reg is past the largest *register* used. 651 // Convert that to a frame_slot number. 652 if (_max_reg <= _matcher._new_SP) { 653 _framesize = C->out_preserve_stack_slots(); 654 } 655 else { 656 _framesize = _max_reg -_matcher._new_SP; 657 } 658 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough"); 659 660 // This frame must preserve the required fp alignment 661 _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots()); 662 assert(_framesize <= 1000000, "sanity check"); 663 #ifndef PRODUCT 664 _total_framesize += _framesize; 665 if ((int)_framesize > _max_framesize) { 666 _max_framesize = _framesize; 667 } 668 #endif 669 670 // Convert CISC spills 671 fixup_spills(); 672 673 C->print_method(PHASE_FIX_UP_SPILLS, 4); 674 675 // Log regalloc results 676 CompileLog* log = Compile::current()->log(); 677 if (log != nullptr) { 678 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing()); 679 } 680 681 if (C->failing()) { 682 return; 683 } 684 685 NOT_PRODUCT(C->verify_graph_edges();) 686 687 // Move important info out of the live_arena to longer lasting storage. 688 alloc_node_regs(_lrg_map.size()); 689 for (uint i=0; i < _lrg_map.size(); i++) { 690 if (_lrg_map.live_range_id(i)) { // Live range associated with Node? 691 LRG &lrg = lrgs(_lrg_map.live_range_id(i)); 692 if (!lrg.alive()) { 693 set_bad(i); 694 } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) || 695 (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) { 696 set1(i, lrg.reg()); 697 } else { // Must be a register-set 698 if (!lrg._fat_proj) { // Must be aligned adjacent register set 699 // Live ranges record the highest register in their mask. 700 // We want the low register for the AD file writer's convenience. 701 OptoReg::Name hi = lrg.reg(); // Get hi register 702 int num_regs = lrg.num_regs(); 703 if (lrg.is_scalable() && OptoReg::is_stack(hi)) { 704 // For scalable vector registers, when they are allocated in physical 705 // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable 706 // vector. If they are allocated on stack, we need to get the actual 707 // num_regs, which reflects the physical length of scalable registers. 708 num_regs = lrg.scalable_reg_slots(); 709 } 710 if (num_regs == 1) { 711 set1(i, hi); 712 } else { 713 OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo 714 // We have to use pair [lo,lo+1] even for wide vectors/vmasks because 715 // the rest of code generation works only with pairs. It is safe 716 // since for registers encoding only 'lo' is used. 717 // Second reg from pair is used in ScheduleAndBundle with vector max 718 // size 8 which corresponds to registers pair. 719 // It is also used in BuildOopMaps but oop operations are not 720 // vectorized. 721 set2(i, lo); 722 } 723 } else { // Misaligned; extract 2 bits 724 OptoReg::Name hi = lrg.reg(); // Get hi register 725 lrg.Remove(hi); // Yank from mask 726 int lo = lrg.mask().find_first_elem(); // Find lo 727 set_pair(i, hi, lo); 728 } 729 } 730 if( lrg._is_oop ) _node_oops.set(i); 731 } else { 732 set_bad(i); 733 } 734 } 735 736 // Done! 737 _live = nullptr; 738 _ifg = nullptr; 739 C->set_indexSet_arena(nullptr); // ResourceArea is at end of scope 740 } 741 742 void PhaseChaitin::de_ssa() { 743 // Set initial Names for all Nodes. Most Nodes get the virtual register 744 // number. A few get the ZERO live range number. These do not 745 // get allocated, but instead rely on correct scheduling to ensure that 746 // only one instance is simultaneously live at a time. 747 uint lr_counter = 1; 748 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) { 749 Block* block = _cfg.get_block(i); 750 uint cnt = block->number_of_nodes(); 751 752 // Handle all the normal Nodes in the block 753 for( uint j = 0; j < cnt; j++ ) { 754 Node *n = block->get_node(j); 755 // Pre-color to the zero live range, or pick virtual register 756 const RegMask &rm = n->out_RegMask(); 757 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0); 758 } 759 } 760 761 // Reset the Union-Find mapping to be identity 762 _lrg_map.reset_uf_map(lr_counter); 763 } 764 765 void PhaseChaitin::mark_ssa() { 766 // Use ssa names to populate the live range maps or if no mask 767 // is available, use the 0 entry. 768 uint max_idx = 0; 769 for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) { 770 Block* block = _cfg.get_block(i); 771 uint cnt = block->number_of_nodes(); 772 773 // Handle all the normal Nodes in the block 774 for ( uint j = 0; j < cnt; j++ ) { 775 Node *n = block->get_node(j); 776 // Pre-color to the zero live range, or pick virtual register 777 const RegMask &rm = n->out_RegMask(); 778 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0); 779 max_idx = (n->_idx > max_idx) ? n->_idx : max_idx; 780 } 781 } 782 _lrg_map.set_max_lrg_id(max_idx+1); 783 784 // Reset the Union-Find mapping to be identity 785 _lrg_map.reset_uf_map(max_idx+1); 786 } 787 788 789 // Gather LiveRanGe information, including register masks. Modification of 790 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce. 791 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { 792 793 // Nail down the frame pointer live range 794 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr)); 795 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite 796 797 // For all blocks 798 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 799 Block* block = _cfg.get_block(i); 800 801 // For all instructions 802 for (uint j = 1; j < block->number_of_nodes(); j++) { 803 Node* n = block->get_node(j); 804 uint input_edge_start =1; // Skip control most nodes 805 bool is_machine_node = false; 806 if (n->is_Mach()) { 807 is_machine_node = true; 808 input_edge_start = n->as_Mach()->oper_input_base(); 809 } 810 uint idx = n->is_Copy(); 811 812 // Get virtual register number, same as LiveRanGe index 813 uint vreg = _lrg_map.live_range_id(n); 814 LRG& lrg = lrgs(vreg); 815 if (vreg) { // No vreg means un-allocable (e.g. memory) 816 817 // Check for float-vs-int live range (used in register-pressure 818 // calculations) 819 const Type *n_type = n->bottom_type(); 820 if (n_type->is_floatingpoint()) { 821 lrg._is_float = 1; 822 } 823 824 // Check for twice prior spilling. Once prior spilling might have 825 // spilled 'soft', 2nd prior spill should have spilled 'hard' and 826 // further spilling is unlikely to make progress. 827 if (_spilled_once.test(n->_idx)) { 828 lrg._was_spilled1 = 1; 829 if (_spilled_twice.test(n->_idx)) { 830 lrg._was_spilled2 = 1; 831 } 832 } 833 834 #ifndef PRODUCT 835 // Collect bits not used by product code, but which may be useful for 836 // debugging. 837 838 // Collect has-copy bit 839 if (idx) { 840 lrg._has_copy = 1; 841 uint clidx = _lrg_map.live_range_id(n->in(idx)); 842 LRG& copy_src = lrgs(clidx); 843 copy_src._has_copy = 1; 844 } 845 846 if (trace_spilling() && lrg._def != nullptr) { 847 // collect defs for MultiDef printing 848 if (lrg._defs == nullptr) { 849 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, nullptr); 850 lrg._defs->append(lrg._def); 851 } 852 lrg._defs->append(n); 853 } 854 #endif 855 856 // Check for a single def LRG; these can spill nicely 857 // via rematerialization. Flag as null for no def found 858 // yet, or 'n' for single def or -1 for many defs. 859 lrg._def = lrg._def ? NodeSentinel : n; 860 861 // Limit result register mask to acceptable registers 862 const RegMask &rm = n->out_RegMask(); 863 lrg.AND( rm ); 864 865 uint ireg = n->ideal_reg(); 866 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP, 867 "oops must be in Op_RegP's" ); 868 869 // Check for vector live range (only if vector register is used). 870 // On SPARC vector uses RegD which could be misaligned so it is not 871 // processes as vector in RA. 872 if (RegMask::is_vector(ireg)) { 873 lrg._is_vector = 1; 874 if (Matcher::implements_scalable_vector && ireg == Op_VecA) { 875 assert(Matcher::supports_scalable_vector(), "scalable vector should be supported"); 876 lrg._is_scalable = 1; 877 // For scalable vector, when it is allocated in physical register, 878 // num_regs is RegMask::SlotsPerVecA for reg mask, 879 // which may not be the actual physical register size. 880 // If it is allocated in stack, we need to get the actual 881 // physical length of scalable vector register. 882 lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT)); 883 } 884 } 885 886 if (ireg == Op_RegVectMask) { 887 assert(Matcher::has_predicated_vectors(), "predicated vector should be supported"); 888 lrg._is_predicate = 1; 889 if (Matcher::supports_scalable_vector()) { 890 lrg._is_scalable = 1; 891 // For scalable predicate, when it is allocated in physical register, 892 // num_regs is RegMask::SlotsPerRegVectMask for reg mask, 893 // which may not be the actual physical register size. 894 // If it is allocated in stack, we need to get the actual 895 // physical length of scalable predicate register. 896 lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots()); 897 } 898 } 899 assert(n_type->isa_vect() == nullptr || lrg._is_vector || 900 ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask, 901 "vector must be in vector registers"); 902 903 // Check for bound register masks 904 const RegMask &lrgmask = lrg.mask(); 905 if (lrgmask.is_bound(ireg)) { 906 lrg._is_bound = 1; 907 } 908 909 // Check for maximum frequency value 910 if (lrg._maxfreq < block->_freq) { 911 lrg._maxfreq = block->_freq; 912 } 913 914 // Check for oop-iness, or long/double 915 // Check for multi-kill projection 916 switch (ireg) { 917 case MachProjNode::fat_proj: 918 // Fat projections have size equal to number of registers killed 919 lrg.set_num_regs(rm.Size()); 920 lrg.set_reg_pressure(lrg.num_regs()); 921 lrg._fat_proj = 1; 922 lrg._is_bound = 1; 923 break; 924 case Op_RegP: 925 #ifdef _LP64 926 lrg.set_num_regs(2); // Size is 2 stack words 927 #else 928 lrg.set_num_regs(1); // Size is 1 stack word 929 #endif 930 // Register pressure is tracked relative to the maximum values 931 // suggested for that platform, INTPRESSURE and FLOATPRESSURE, 932 // and relative to other types which compete for the same regs. 933 // 934 // The following table contains suggested values based on the 935 // architectures as defined in each .ad file. 936 // INTPRESSURE and FLOATPRESSURE may be tuned differently for 937 // compile-speed or performance. 938 // Note1: 939 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1 940 // since .ad registers are defined as high and low halves. 941 // These reg_pressure values remain compatible with the code 942 // in is_high_pressure() which relates get_invalid_mask_size(), 943 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE. 944 // Note2: 945 // SPARC -d32 has 24 registers available for integral values, 946 // but only 10 of these are safe for 64-bit longs. 947 // Using set_reg_pressure(2) for both int and long means 948 // the allocator will believe it can fit 26 longs into 949 // registers. Using 2 for longs and 1 for ints means the 950 // allocator will attempt to put 52 integers into registers. 951 // The settings below limit this problem to methods with 952 // many long values which are being run on 32-bit SPARC. 953 // 954 // ------------------- reg_pressure -------------------- 955 // Each entry is reg_pressure_per_value,number_of_regs 956 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE 957 // IA32 2 1 1 1 1 6 6 958 // SPARC 2 2 2 2 2 48 (24) 52 (26) 959 // SPARCV9 2 2 2 2 2 48 (24) 52 (26) 960 // AMD64 1 1 1 1 1 14 15 961 // ----------------------------------------------------- 962 lrg.set_reg_pressure(1); // normally one value per register 963 if( n_type->isa_oop_ptr() ) { 964 lrg._is_oop = 1; 965 } 966 break; 967 case Op_RegL: // Check for long or double 968 case Op_RegD: 969 lrg.set_num_regs(2); 970 // Define platform specific register pressure 971 #if defined(ARM32) 972 lrg.set_reg_pressure(2); 973 #elif defined(IA32) 974 if( ireg == Op_RegL ) { 975 lrg.set_reg_pressure(2); 976 } else { 977 lrg.set_reg_pressure(1); 978 } 979 #else 980 lrg.set_reg_pressure(1); // normally one value per register 981 #endif 982 // If this def of a double forces a mis-aligned double, 983 // flag as '_fat_proj' - really flag as allowing misalignment 984 // AND changes how we count interferences. A mis-aligned 985 // double can interfere with TWO aligned pairs, or effectively 986 // FOUR registers! 987 if (rm.is_misaligned_pair()) { 988 lrg._fat_proj = 1; 989 lrg._is_bound = 1; 990 } 991 break; 992 case Op_RegVectMask: 993 assert(Matcher::has_predicated_vectors(), "sanity"); 994 assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity"); 995 lrg.set_num_regs(RegMask::SlotsPerRegVectMask); 996 lrg.set_reg_pressure(1); 997 break; 998 case Op_RegF: 999 case Op_RegI: 1000 case Op_RegN: 1001 case Op_RegFlags: 1002 case 0: // not an ideal register 1003 lrg.set_num_regs(1); 1004 lrg.set_reg_pressure(1); 1005 break; 1006 case Op_VecA: 1007 assert(Matcher::supports_scalable_vector(), "does not support scalable vector"); 1008 assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity"); 1009 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned"); 1010 lrg.set_num_regs(RegMask::SlotsPerVecA); 1011 lrg.set_reg_pressure(1); 1012 break; 1013 case Op_VecS: 1014 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity"); 1015 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity"); 1016 lrg.set_num_regs(RegMask::SlotsPerVecS); 1017 lrg.set_reg_pressure(1); 1018 break; 1019 case Op_VecD: 1020 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity"); 1021 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity"); 1022 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned"); 1023 lrg.set_num_regs(RegMask::SlotsPerVecD); 1024 lrg.set_reg_pressure(1); 1025 break; 1026 case Op_VecX: 1027 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity"); 1028 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity"); 1029 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned"); 1030 lrg.set_num_regs(RegMask::SlotsPerVecX); 1031 lrg.set_reg_pressure(1); 1032 break; 1033 case Op_VecY: 1034 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity"); 1035 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity"); 1036 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned"); 1037 lrg.set_num_regs(RegMask::SlotsPerVecY); 1038 lrg.set_reg_pressure(1); 1039 break; 1040 case Op_VecZ: 1041 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity"); 1042 assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity"); 1043 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned"); 1044 lrg.set_num_regs(RegMask::SlotsPerVecZ); 1045 lrg.set_reg_pressure(1); 1046 break; 1047 default: 1048 ShouldNotReachHere(); 1049 } 1050 } 1051 1052 // Now do the same for inputs 1053 uint cnt = n->req(); 1054 // Setup for CISC SPILLING 1055 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable; 1056 if( UseCISCSpill && after_aggressive ) { 1057 inp = n->cisc_operand(); 1058 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable ) 1059 // Convert operand number to edge index number 1060 inp = n->as_Mach()->operand_index(inp); 1061 } 1062 1063 // Prepare register mask for each input 1064 for( uint k = input_edge_start; k < cnt; k++ ) { 1065 uint vreg = _lrg_map.live_range_id(n->in(k)); 1066 if (!vreg) { 1067 continue; 1068 } 1069 1070 // If this instruction is CISC Spillable, add the flags 1071 // bit to its appropriate input 1072 if( UseCISCSpill && after_aggressive && inp == k ) { 1073 #ifndef PRODUCT 1074 if( TraceCISCSpill ) { 1075 tty->print(" use_cisc_RegMask: "); 1076 n->dump(); 1077 } 1078 #endif 1079 n->as_Mach()->use_cisc_RegMask(); 1080 } 1081 1082 if (is_machine_node && _scheduling_info_generated) { 1083 MachNode* cur_node = n->as_Mach(); 1084 // this is cleaned up by register allocation 1085 if (k >= cur_node->num_opnds()) continue; 1086 } 1087 1088 LRG &lrg = lrgs(vreg); 1089 // // Testing for floating point code shape 1090 // Node *test = n->in(k); 1091 // if( test->is_Mach() ) { 1092 // MachNode *m = test->as_Mach(); 1093 // int op = m->ideal_Opcode(); 1094 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) { 1095 // int zzz = 1; 1096 // } 1097 // } 1098 1099 // Limit result register mask to acceptable registers. 1100 // Do not limit registers from uncommon uses before 1101 // AggressiveCoalesce. This effectively pre-virtual-splits 1102 // around uncommon uses of common defs. 1103 const RegMask &rm = n->in_RegMask(k); 1104 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) { 1105 // Since we are BEFORE aggressive coalesce, leave the register 1106 // mask untrimmed by the call. This encourages more coalescing. 1107 // Later, AFTER aggressive, this live range will have to spill 1108 // but the spiller handles slow-path calls very nicely. 1109 } else { 1110 lrg.AND( rm ); 1111 } 1112 1113 // Check for bound register masks 1114 const RegMask &lrgmask = lrg.mask(); 1115 uint kreg = n->in(k)->ideal_reg(); 1116 bool is_vect = RegMask::is_vector(kreg); 1117 assert(n->in(k)->bottom_type()->isa_vect() == nullptr || is_vect || 1118 kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask, 1119 "vector must be in vector registers"); 1120 if (lrgmask.is_bound(kreg)) 1121 lrg._is_bound = 1; 1122 1123 // If this use of a double forces a mis-aligned double, 1124 // flag as '_fat_proj' - really flag as allowing misalignment 1125 // AND changes how we count interferences. A mis-aligned 1126 // double can interfere with TWO aligned pairs, or effectively 1127 // FOUR registers! 1128 #ifdef ASSERT 1129 if (is_vect && !_scheduling_info_generated) { 1130 if (lrg.num_regs() != 0) { 1131 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned"); 1132 assert(!lrg._fat_proj, "sanity"); 1133 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity"); 1134 } else { 1135 assert(n->is_Phi(), "not all inputs processed only if Phi"); 1136 } 1137 } 1138 #endif 1139 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) { 1140 lrg._fat_proj = 1; 1141 lrg._is_bound = 1; 1142 } 1143 // if the LRG is an unaligned pair, we will have to spill 1144 // so clear the LRG's register mask if it is not already spilled 1145 if (!is_vect && !n->is_SpillCopy() && 1146 (lrg._def == nullptr || lrg.is_multidef() || !lrg._def->is_SpillCopy()) && 1147 lrgmask.is_misaligned_pair()) { 1148 lrg.Clear(); 1149 } 1150 1151 // Check for maximum frequency value 1152 if (lrg._maxfreq < block->_freq) { 1153 lrg._maxfreq = block->_freq; 1154 } 1155 1156 } // End for all allocated inputs 1157 } // end for all instructions 1158 } // end for all blocks 1159 1160 // Final per-liverange setup 1161 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) { 1162 LRG &lrg = lrgs(i2); 1163 assert(!lrg._is_vector || !lrg._fat_proj, "sanity"); 1164 if (lrg.num_regs() > 1 && !lrg._fat_proj) { 1165 lrg.clear_to_sets(); 1166 } 1167 lrg.compute_set_mask_size(); 1168 if (lrg.not_free()) { // Handle case where we lose from the start 1169 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); 1170 lrg._direct_conflict = 1; 1171 } 1172 lrg.set_degree(0); // no neighbors in IFG yet 1173 } 1174 } 1175 1176 // Set the was-lo-degree bit. Conservative coalescing should not change the 1177 // colorability of the graph. If any live range was of low-degree before 1178 // coalescing, it should Simplify. This call sets the was-lo-degree bit. 1179 // The bit is checked in Simplify. 1180 void PhaseChaitin::set_was_low() { 1181 #ifdef ASSERT 1182 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) { 1183 int size = lrgs(i).num_regs(); 1184 uint old_was_lo = lrgs(i)._was_lo; 1185 lrgs(i)._was_lo = 0; 1186 if( lrgs(i).lo_degree() ) { 1187 lrgs(i)._was_lo = 1; // Trivially of low degree 1188 } else { // Else check the Brigg's assertion 1189 // Brigg's observation is that the lo-degree neighbors of a 1190 // hi-degree live range will not interfere with the color choices 1191 // of said hi-degree live range. The Simplify reverse-stack-coloring 1192 // order takes care of the details. Hence you do not have to count 1193 // low-degree neighbors when determining if this guy colors. 1194 int briggs_degree = 0; 1195 IndexSet *s = _ifg->neighbors(i); 1196 IndexSetIterator elements(s); 1197 uint lidx; 1198 while((lidx = elements.next()) != 0) { 1199 if( !lrgs(lidx).lo_degree() ) 1200 briggs_degree += MAX2(size,lrgs(lidx).num_regs()); 1201 } 1202 if( briggs_degree < lrgs(i).degrees_of_freedom() ) 1203 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion 1204 } 1205 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease"); 1206 } 1207 #endif 1208 } 1209 1210 // Compute cost/area ratio, in case we spill. Build the lo-degree list. 1211 void PhaseChaitin::cache_lrg_info( ) { 1212 Compile::TracePhase tp(_t_chaitinCacheLRG); 1213 1214 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) { 1215 LRG &lrg = lrgs(i); 1216 1217 // Check for being of low degree: means we can be trivially colored. 1218 // Low degree, dead or must-spill guys just get to simplify right away 1219 if( lrg.lo_degree() || 1220 !lrg.alive() || 1221 lrg._must_spill ) { 1222 // Split low degree list into those guys that must get a 1223 // register and those that can go to register or stack. 1224 // The idea is LRGs that can go register or stack color first when 1225 // they have a good chance of getting a register. The register-only 1226 // lo-degree live ranges always get a register. 1227 OptoReg::Name hi_reg = lrg.mask().find_last_elem(); 1228 if( OptoReg::is_stack(hi_reg)) { // Can go to stack? 1229 lrg._next = _lo_stk_degree; 1230 _lo_stk_degree = i; 1231 } else { 1232 lrg._next = _lo_degree; 1233 _lo_degree = i; 1234 } 1235 } else { // Else high degree 1236 lrgs(_hi_degree)._prev = i; 1237 lrg._next = _hi_degree; 1238 lrg._prev = 0; 1239 _hi_degree = i; 1240 } 1241 } 1242 } 1243 1244 // Simplify the IFG by removing LRGs of low degree. 1245 void PhaseChaitin::Simplify( ) { 1246 Compile::TracePhase tp(_t_chaitinSimplify); 1247 1248 while( 1 ) { // Repeat till simplified it all 1249 // May want to explore simplifying lo_degree before _lo_stk_degree. 1250 // This might result in more spills coloring into registers during 1251 // Select(). 1252 while( _lo_degree || _lo_stk_degree ) { 1253 // If possible, pull from lo_stk first 1254 uint lo; 1255 if( _lo_degree ) { 1256 lo = _lo_degree; 1257 _lo_degree = lrgs(lo)._next; 1258 } else { 1259 lo = _lo_stk_degree; 1260 _lo_stk_degree = lrgs(lo)._next; 1261 } 1262 1263 // Put the simplified guy on the simplified list. 1264 lrgs(lo)._next = _simplified; 1265 _simplified = lo; 1266 // If this guy is "at risk" then mark his current neighbors 1267 if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) { 1268 IndexSetIterator elements(_ifg->neighbors(lo)); 1269 uint datum; 1270 while ((datum = elements.next()) != 0) { 1271 lrgs(datum)._risk_bias = lo; 1272 } 1273 } 1274 1275 // Yank this guy from the IFG. 1276 IndexSet *adj = _ifg->remove_node(lo); 1277 if (adj->is_empty()) { 1278 continue; 1279 } 1280 1281 // If any neighbors' degrees fall below their number of 1282 // allowed registers, then put that neighbor on the low degree 1283 // list. Note that 'degree' can only fall and 'numregs' is 1284 // unchanged by this action. Thus the two are equal at most once, 1285 // so LRGs hit the lo-degree worklist at most once. 1286 IndexSetIterator elements(adj); 1287 uint neighbor; 1288 while ((neighbor = elements.next()) != 0) { 1289 LRG *n = &lrgs(neighbor); 1290 #ifdef ASSERT 1291 if (VerifyRegisterAllocator) { 1292 assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); 1293 } 1294 #endif 1295 1296 // Check for just becoming of-low-degree just counting registers. 1297 // _must_spill live ranges are already on the low degree list. 1298 if (n->just_lo_degree() && !n->_must_spill) { 1299 assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice"); 1300 // Pull from hi-degree list 1301 uint prev = n->_prev; 1302 uint next = n->_next; 1303 if (prev) { 1304 lrgs(prev)._next = next; 1305 } else { 1306 _hi_degree = next; 1307 } 1308 lrgs(next)._prev = prev; 1309 n->_next = _lo_degree; 1310 _lo_degree = neighbor; 1311 } 1312 } 1313 } // End of while lo-degree/lo_stk_degree worklist not empty 1314 1315 // Check for got everything: is hi-degree list empty? 1316 if (!_hi_degree) break; 1317 1318 // Time to pick a potential spill guy 1319 uint lo_score = _hi_degree; 1320 double score = lrgs(lo_score).score(); 1321 double area = lrgs(lo_score)._area; 1322 double cost = lrgs(lo_score)._cost; 1323 bool bound = lrgs(lo_score)._is_bound; 1324 1325 // Find cheapest guy 1326 debug_only( int lo_no_simplify=0; ); 1327 for (uint i = _hi_degree; i; i = lrgs(i)._next) { 1328 assert(!_ifg->_yanked->test(i), ""); 1329 // It's just vaguely possible to move hi-degree to lo-degree without 1330 // going through a just-lo-degree stage: If you remove a double from 1331 // a float live range it's degree will drop by 2 and you can skip the 1332 // just-lo-degree stage. It's very rare (shows up after 5000+ methods 1333 // in -Xcomp of Java2Demo). So just choose this guy to simplify next. 1334 if( lrgs(i).lo_degree() ) { 1335 lo_score = i; 1336 break; 1337 } 1338 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; ); 1339 double iscore = lrgs(i).score(); 1340 double iarea = lrgs(i)._area; 1341 double icost = lrgs(i)._cost; 1342 bool ibound = lrgs(i)._is_bound; 1343 1344 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area 1345 // wins. Ties happen because all live ranges in question have spilled 1346 // a few times before and the spill-score adds a huge number which 1347 // washes out the low order bits. We are choosing the lesser of 2 1348 // evils; in this case pick largest area to spill. 1349 // Ties also happen when live ranges are defined and used only inside 1350 // one block. In which case their area is 0 and score set to max. 1351 // In such case choose bound live range over unbound to free registers 1352 // or with smaller cost to spill. 1353 if ( iscore < score || 1354 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) || 1355 (iscore == score && iarea == area && 1356 ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) { 1357 lo_score = i; 1358 score = iscore; 1359 area = iarea; 1360 cost = icost; 1361 bound = ibound; 1362 } 1363 } 1364 LRG *lo_lrg = &lrgs(lo_score); 1365 // The live range we choose for spilling is either hi-degree, or very 1366 // rarely it can be low-degree. If we choose a hi-degree live range 1367 // there better not be any lo-degree choices. 1368 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" ); 1369 1370 // Pull from hi-degree list 1371 uint prev = lo_lrg->_prev; 1372 uint next = lo_lrg->_next; 1373 if( prev ) lrgs(prev)._next = next; 1374 else _hi_degree = next; 1375 lrgs(next)._prev = prev; 1376 // Jam him on the lo-degree list, despite his high degree. 1377 // Maybe he'll get a color, and maybe he'll spill. 1378 // Only Select() will know. 1379 lrgs(lo_score)._at_risk = true; 1380 _lo_degree = lo_score; 1381 lo_lrg->_next = 0; 1382 1383 } // End of while not simplified everything 1384 1385 } 1386 1387 // Is 'reg' register legal for 'lrg'? 1388 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) { 1389 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) && 1390 lrg.mask().Member(OptoReg::add(reg,-chunk))) { 1391 // RA uses OptoReg which represent the highest element of a registers set. 1392 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set 1393 // in which XMMd is used by RA to represent such vectors. A double value 1394 // uses [XMM,XMMb] pairs and XMMb is used by RA for it. 1395 // The register mask uses largest bits set of overlapping register sets. 1396 // On x86 with AVX it uses 8 bits for each XMM registers set. 1397 // 1398 // The 'lrg' already has cleared-to-set register mask (done in Select() 1399 // before calling choose_color()). Passing mask.Member(reg) check above 1400 // indicates that the size (num_regs) of 'reg' set is less or equal to 1401 // 'lrg' set size. 1402 // For set size 1 any register which is member of 'lrg' mask is legal. 1403 if (lrg.num_regs()==1) 1404 return true; 1405 // For larger sets only an aligned register with the same set size is legal. 1406 int mask = lrg.num_regs()-1; 1407 if ((reg&mask) == mask) 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) { 1414 int num_regs = lrg.num_regs(); 1415 OptoReg::Name assigned = mask.find_first_set(lrg, num_regs); 1416 1417 if (lrg.is_scalable()) { 1418 // a physical register is found 1419 if (chunk == 0 && OptoReg::is_reg(assigned)) { 1420 return assigned; 1421 } 1422 1423 // find available stack slots for scalable register 1424 if (lrg._is_vector) { 1425 num_regs = lrg.scalable_reg_slots(); 1426 // if actual scalable vector register is exactly SlotsPerVecA * 32 bits 1427 if (num_regs == RegMask::SlotsPerVecA) { 1428 return assigned; 1429 } 1430 1431 // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it 1432 // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits 1433 // instead of SlotsPerVecA bits. 1434 assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg 1435 while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) { 1436 // Verify the found reg has scalable_reg_slots() bits set. 1437 if (mask.is_valid_reg(assigned, num_regs)) { 1438 return assigned; 1439 } else { 1440 // Remove more for each iteration 1441 mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg 1442 mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits 1443 assigned = mask.find_first_set(lrg, num_regs); 1444 } 1445 } 1446 return OptoReg::Bad; // will cause chunk change, and retry next chunk 1447 } else if (lrg._is_predicate) { 1448 assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register"); 1449 num_regs = lrg.scalable_reg_slots(); 1450 mask.clear_to_sets(num_regs); 1451 return mask.find_first_set(lrg, num_regs); 1452 } 1453 } 1454 1455 return assigned; 1456 } 1457 1458 // Choose a color using the biasing heuristic 1459 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { 1460 1461 // Check for "at_risk" LRG's 1462 uint risk_lrg = _lrg_map.find(lrg._risk_bias); 1463 if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) { 1464 // Walk the colored neighbors of the "at_risk" candidate 1465 // Choose a color which is both legal and already taken by a neighbor 1466 // of the "at_risk" candidate in order to improve the chances of the 1467 // "at_risk" candidate of coloring 1468 IndexSetIterator elements(_ifg->neighbors(risk_lrg)); 1469 uint datum; 1470 while ((datum = elements.next()) != 0) { 1471 OptoReg::Name reg = lrgs(datum).reg(); 1472 // If this LRG's register is legal for us, choose it 1473 if (is_legal_reg(lrg, reg, chunk)) 1474 return reg; 1475 } 1476 } 1477 1478 uint copy_lrg = _lrg_map.find(lrg._copy_bias); 1479 if (copy_lrg != 0) { 1480 // If he has a color, 1481 if(!_ifg->_yanked->test(copy_lrg)) { 1482 OptoReg::Name reg = lrgs(copy_lrg).reg(); 1483 // And it is legal for you, 1484 if (is_legal_reg(lrg, reg, chunk)) 1485 return reg; 1486 } else if( chunk == 0 ) { 1487 // Choose a color which is legal for him 1488 RegMask tempmask = lrg.mask(); 1489 tempmask.AND(lrgs(copy_lrg).mask()); 1490 tempmask.clear_to_sets(lrg.num_regs()); 1491 OptoReg::Name reg = find_first_set(lrg, tempmask, chunk); 1492 if (OptoReg::is_valid(reg)) 1493 return reg; 1494 } 1495 } 1496 1497 // If no bias info exists, just go with the register selection ordering 1498 if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) { 1499 // Find an aligned set 1500 return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk); 1501 } 1502 1503 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate 1504 // copy removal to remove many more copies, by preventing a just-assigned 1505 // register from being repeatedly assigned. 1506 OptoReg::Name reg = lrg.mask().find_first_elem(); 1507 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) { 1508 // This 'Remove; find; Insert' idiom is an expensive way to find the 1509 // SECOND element in the mask. 1510 lrg.Remove(reg); 1511 OptoReg::Name reg2 = lrg.mask().find_first_elem(); 1512 lrg.Insert(reg); 1513 if( OptoReg::is_reg(reg2)) 1514 reg = reg2; 1515 } 1516 return OptoReg::add( reg, chunk ); 1517 } 1518 1519 // Choose a color in the current chunk 1520 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { 1521 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); 1522 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)"); 1523 1524 if( lrg.num_regs() == 1 || // Common Case 1525 !lrg._fat_proj ) // Aligned+adjacent pairs ok 1526 // Use a heuristic to "bias" the color choice 1527 return bias_color(lrg, chunk); 1528 1529 assert(!lrg._is_vector, "should be not vector here" ); 1530 assert( lrg.num_regs() >= 2, "dead live ranges do not color" ); 1531 1532 // Fat-proj case or misaligned double argument. 1533 assert(lrg.compute_mask_size() == lrg.num_regs() || 1534 lrg.num_regs() == 2,"fat projs exactly color" ); 1535 assert( !chunk, "always color in 1st chunk" ); 1536 // Return the highest element in the set. 1537 return lrg.mask().find_last_elem(); 1538 } 1539 1540 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted 1541 // in reverse order of removal. As long as nothing of hi-degree was yanked, 1542 // everything going back is guaranteed a color. Select that color. If some 1543 // hi-degree LRG cannot get a color then we record that we must spill. 1544 uint PhaseChaitin::Select( ) { 1545 Compile::TracePhase tp(_t_chaitinSelect); 1546 1547 uint spill_reg = LRG::SPILL_REG; 1548 _max_reg = OptoReg::Name(0); // Past max register used 1549 while( _simplified ) { 1550 // Pull next LRG from the simplified list - in reverse order of removal 1551 uint lidx = _simplified; 1552 LRG *lrg = &lrgs(lidx); 1553 _simplified = lrg->_next; 1554 1555 #ifndef PRODUCT 1556 if (trace_spilling()) { 1557 ttyLocker ttyl; 1558 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(), 1559 lrg->degrees_of_freedom()); 1560 lrg->dump(); 1561 } 1562 #endif 1563 1564 // Re-insert into the IFG 1565 _ifg->re_insert(lidx); 1566 if( !lrg->alive() ) continue; 1567 // capture allstackedness flag before mask is hacked 1568 const int is_allstack = lrg->mask().is_AllStack(); 1569 1570 // Yeah, yeah, yeah, I know, I know. I can refactor this 1571 // to avoid the GOTO, although the refactored code will not 1572 // be much clearer. We arrive here IFF we have a stack-based 1573 // live range that cannot color in the current chunk, and it 1574 // has to move into the next free stack chunk. 1575 int chunk = 0; // Current chunk is first chunk 1576 retry_next_chunk: 1577 1578 // Remove neighbor colors 1579 IndexSet *s = _ifg->neighbors(lidx); 1580 debug_only(RegMask orig_mask = lrg->mask();) 1581 1582 if (!s->is_empty()) { 1583 IndexSetIterator elements(s); 1584 uint neighbor; 1585 while ((neighbor = elements.next()) != 0) { 1586 // Note that neighbor might be a spill_reg. In this case, exclusion 1587 // of its color will be a no-op, since the spill_reg chunk is in outer 1588 // space. Also, if neighbor is in a different chunk, this exclusion 1589 // will be a no-op. (Later on, if lrg runs out of possible colors in 1590 // its chunk, a new chunk of color may be tried, in which case 1591 // examination of neighbors is started again, at retry_next_chunk.) 1592 LRG &nlrg = lrgs(neighbor); 1593 OptoReg::Name nreg = nlrg.reg(); 1594 // Only subtract masks in the same chunk 1595 if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) { 1596 #ifndef PRODUCT 1597 uint size = lrg->mask().Size(); 1598 RegMask rm = lrg->mask(); 1599 #endif 1600 lrg->SUBTRACT(nlrg.mask()); 1601 #ifndef PRODUCT 1602 if (trace_spilling() && lrg->mask().Size() != size) { 1603 ttyLocker ttyl; 1604 tty->print("L%d ", lidx); 1605 rm.dump(); 1606 tty->print(" intersected L%d ", neighbor); 1607 nlrg.mask().dump(); 1608 tty->print(" removed "); 1609 rm.SUBTRACT(lrg->mask()); 1610 rm.dump(); 1611 tty->print(" leaving "); 1612 lrg->mask().dump(); 1613 tty->cr(); 1614 } 1615 #endif 1616 } 1617 } 1618 } 1619 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness"); 1620 // Aligned pairs need aligned masks 1621 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity"); 1622 if (lrg->num_regs() > 1 && !lrg->_fat_proj) { 1623 lrg->clear_to_sets(); 1624 } 1625 1626 // Check if a color is available and if so pick the color 1627 OptoReg::Name reg = choose_color( *lrg, chunk ); 1628 1629 //--------------- 1630 // If we fail to color and the AllStack flag is set, trigger 1631 // a chunk-rollover event 1632 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) { 1633 // Bump register mask up to next stack chunk 1634 chunk += RegMask::CHUNK_SIZE; 1635 lrg->Set_All(); 1636 goto retry_next_chunk; 1637 } 1638 1639 //--------------- 1640 // Did we get a color? 1641 else if( OptoReg::is_valid(reg)) { 1642 #ifndef PRODUCT 1643 RegMask avail_rm = lrg->mask(); 1644 #endif 1645 1646 // Record selected register 1647 lrg->set_reg(reg); 1648 1649 if( reg >= _max_reg ) // Compute max register limit 1650 _max_reg = OptoReg::add(reg,1); 1651 // Fold reg back into normal space 1652 reg = OptoReg::add(reg,-chunk); 1653 1654 // If the live range is not bound, then we actually had some choices 1655 // to make. In this case, the mask has more bits in it than the colors 1656 // chosen. Restrict the mask to just what was picked. 1657 int n_regs = lrg->num_regs(); 1658 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity"); 1659 if (n_regs == 1 || !lrg->_fat_proj) { 1660 if (Matcher::supports_scalable_vector()) { 1661 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity"); 1662 } else { 1663 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity"); 1664 } 1665 lrg->Clear(); // Clear the mask 1666 lrg->Insert(reg); // Set regmask to match selected reg 1667 // For vectors and pairs, also insert the low bit of the pair 1668 // We always choose the high bit, then mask the low bits by register size 1669 if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack 1670 n_regs = lrg->scalable_reg_slots(); 1671 } 1672 for (int i = 1; i < n_regs; i++) { 1673 lrg->Insert(OptoReg::add(reg,-i)); 1674 } 1675 lrg->set_mask_size(n_regs); 1676 } else { // Else fatproj 1677 // mask must be equal to fatproj bits, by definition 1678 } 1679 #ifndef PRODUCT 1680 if (trace_spilling()) { 1681 ttyLocker ttyl; 1682 tty->print("L%d selected ", lidx); 1683 lrg->mask().dump(); 1684 tty->print(" from "); 1685 avail_rm.dump(); 1686 tty->cr(); 1687 } 1688 #endif 1689 // Note that reg is the highest-numbered register in the newly-bound mask. 1690 } // end color available case 1691 1692 //--------------- 1693 // Live range is live and no colors available 1694 else { 1695 assert( lrg->alive(), "" ); 1696 assert( !lrg->_fat_proj || lrg->is_multidef() || 1697 lrg->_def->outcnt() > 0, "fat_proj cannot spill"); 1698 assert( !orig_mask.is_AllStack(), "All Stack does not spill" ); 1699 1700 // Assign the special spillreg register 1701 lrg->set_reg(OptoReg::Name(spill_reg++)); 1702 // Do not empty the regmask; leave mask_size lying around 1703 // for use during Spilling 1704 #ifndef PRODUCT 1705 if( trace_spilling() ) { 1706 ttyLocker ttyl; 1707 tty->print("L%d spilling with neighbors: ", lidx); 1708 s->dump(); 1709 debug_only(tty->print(" original mask: ")); 1710 debug_only(orig_mask.dump()); 1711 dump_lrg(lidx); 1712 } 1713 #endif 1714 } // end spill case 1715 1716 } 1717 1718 return spill_reg-LRG::SPILL_REG; // Return number of spills 1719 } 1720 1721 // Set the 'spilled_once' or 'spilled_twice' flag on a node. 1722 void PhaseChaitin::set_was_spilled( Node *n ) { 1723 if( _spilled_once.test_set(n->_idx) ) 1724 _spilled_twice.set(n->_idx); 1725 } 1726 1727 // Convert Ideal spill instructions into proper FramePtr + offset Loads and 1728 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. 1729 void PhaseChaitin::fixup_spills() { 1730 // This function does only cisc spill work. 1731 if( !UseCISCSpill ) return; 1732 1733 Compile::TracePhase tp(_t_fixupSpills); 1734 1735 // Grab the Frame Pointer 1736 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr); 1737 1738 // For all blocks 1739 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 1740 Block* block = _cfg.get_block(i); 1741 1742 // For all instructions in block 1743 uint last_inst = block->end_idx(); 1744 for (uint j = 1; j <= last_inst; j++) { 1745 Node* n = block->get_node(j); 1746 1747 // Dead instruction??? 1748 assert( n->outcnt() != 0 ||// Nothing dead after post alloc 1749 C->top() == n || // Or the random TOP node 1750 n->is_Proj(), // Or a fat-proj kill node 1751 "No dead instructions after post-alloc" ); 1752 1753 int inp = n->cisc_operand(); 1754 if( inp != AdlcVMDeps::Not_cisc_spillable ) { 1755 // Convert operand number to edge index number 1756 MachNode *mach = n->as_Mach(); 1757 inp = mach->operand_index(inp); 1758 Node *src = n->in(inp); // Value to load or store 1759 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src)); 1760 OptoReg::Name src_reg = lrg_cisc.reg(); 1761 // Doubles record the HIGH register of an adjacent pair. 1762 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs()); 1763 if( OptoReg::is_stack(src_reg) ) { // If input is on stack 1764 // This is a CISC Spill, get stack offset and construct new node 1765 #ifndef PRODUCT 1766 if( TraceCISCSpill ) { 1767 tty->print(" reg-instr: "); 1768 n->dump(); 1769 } 1770 #endif 1771 int stk_offset = reg2offset(src_reg); 1772 // Bailout if we might exceed node limit when spilling this instruction 1773 C->check_node_count(0, "out of nodes fixing spills"); 1774 if (C->failing()) return; 1775 // Transform node 1776 MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach(); 1777 cisc->set_req(inp,fp); // Base register is frame pointer 1778 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) { 1779 assert( cisc->oper_input_base() == 2, "Only adding one edge"); 1780 cisc->ins_req(1,src); // Requires a memory edge 1781 } else { 1782 // There is no space reserved for a memory edge before the inputs for 1783 // instructions which have "stackSlotX" parameter instead of "memory". 1784 // For example, "MoveF2I_stack_reg". We always need a memory edge from 1785 // src to cisc, else we might schedule cisc before src, loading from a 1786 // spill location before storing the spill. On some platforms, we land 1787 // in this else case because mach->oper_input_base() > 1, i.e. we have 1788 // multiple inputs. In some rare cases there are even multiple memory 1789 // operands, before and after spilling. 1790 // (e.g. spilling "addFPR24_reg_mem" to "addFPR24_mem_cisc") 1791 // In either case, there is no space in the inputs for the memory edge 1792 // so we add an additional precedence / memory edge. 1793 cisc->add_prec(src); 1794 } 1795 block->map_node(cisc, j); // Insert into basic block 1796 n->subsume_by(cisc, C); // Correct graph 1797 // 1798 ++_used_cisc_instructions; 1799 #ifndef PRODUCT 1800 if( TraceCISCSpill ) { 1801 tty->print(" cisc-instr: "); 1802 cisc->dump(); 1803 } 1804 #endif 1805 } else { 1806 #ifndef PRODUCT 1807 if( TraceCISCSpill ) { 1808 tty->print(" using reg-instr: "); 1809 n->dump(); 1810 } 1811 #endif 1812 ++_unused_cisc_instructions; // input can be on stack 1813 } 1814 } 1815 1816 } // End of for all instructions 1817 1818 } // End of for all blocks 1819 } 1820 1821 // Helper to stretch above; recursively discover the base Node for a 1822 // given derived Node. Easy for AddP-related machine nodes, but needs 1823 // to be recursive for derived Phis. 1824 Node* PhaseChaitin::find_base_for_derived(Node** derived_base_map, Node* derived, uint& maxlrg) { 1825 // See if already computed; if so return it 1826 if (derived_base_map[derived->_idx]) { 1827 return derived_base_map[derived->_idx]; 1828 } 1829 1830 #ifdef ASSERT 1831 if (derived->is_Mach() && derived->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) { 1832 // Bypass the verification node 1833 Node* base = find_base_for_derived(derived_base_map, derived->in(1), maxlrg); 1834 derived_base_map[derived->_idx] = base; 1835 return base; 1836 } 1837 #endif 1838 1839 // See if this happens to be a base. 1840 // NOTE: we use TypePtr instead of TypeOopPtr because we can have 1841 // pointers derived from null! These are always along paths that 1842 // can't happen at run-time but the optimizer cannot deduce it so 1843 // we have to handle it gracefully. 1844 assert(!derived->bottom_type()->isa_narrowoop() || 1845 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity"); 1846 const TypePtr *tj = derived->bottom_type()->isa_ptr(); 1847 // If its an OOP with a non-zero offset, then it is derived. 1848 if( tj == nullptr || tj->_offset == 0 ) { 1849 derived_base_map[derived->_idx] = derived; 1850 return derived; 1851 } 1852 // Derived is null+offset? Base is null! 1853 if( derived->is_Con() ) { 1854 Node *base = _matcher.mach_null(); 1855 assert(base != nullptr, "sanity"); 1856 if (base->in(0) == nullptr) { 1857 // Initialize it once and make it shared: 1858 // set control to _root and place it into Start block 1859 // (where top() node is placed). 1860 base->init_req(0, _cfg.get_root_node()); 1861 Block *startb = _cfg.get_block_for_node(C->top()); 1862 uint node_pos = startb->find_node(C->top()); 1863 startb->insert_node(base, node_pos); 1864 _cfg.map_node_to_block(base, startb); 1865 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet"); 1866 1867 // The loadConP0 might have projection nodes depending on architecture 1868 // Add the projection nodes to the CFG 1869 for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) { 1870 Node* use = base->fast_out(i); 1871 if (use->is_MachProj()) { 1872 startb->insert_node(use, ++node_pos); 1873 _cfg.map_node_to_block(use, startb); 1874 new_lrg(use, maxlrg++); 1875 } 1876 } 1877 } 1878 if (_lrg_map.live_range_id(base) == 0) { 1879 new_lrg(base, maxlrg++); 1880 } 1881 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base null should be shared"); 1882 derived_base_map[derived->_idx] = base; 1883 return base; 1884 } 1885 1886 // Check for AddP-related opcodes 1887 if (!derived->is_Phi()) { 1888 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name()); 1889 Node *base = derived->in(AddPNode::Base); 1890 derived_base_map[derived->_idx] = base; 1891 return base; 1892 } 1893 1894 // Recursively find bases for Phis. 1895 // First check to see if we can avoid a base Phi here. 1896 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg); 1897 uint i; 1898 for( i = 2; i < derived->req(); i++ ) 1899 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg)) 1900 break; 1901 // Went to the end without finding any different bases? 1902 if( i == derived->req() ) { // No need for a base Phi here 1903 derived_base_map[derived->_idx] = base; 1904 return base; 1905 } 1906 1907 // Now we see we need a base-Phi here to merge the bases 1908 const Type *t = base->bottom_type(); 1909 base = new PhiNode( derived->in(0), t ); 1910 for( i = 1; i < derived->req(); i++ ) { 1911 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg)); 1912 t = t->meet(base->in(i)->bottom_type()); 1913 } 1914 base->as_Phi()->set_type(t); 1915 1916 // Search the current block for an existing base-Phi 1917 Block *b = _cfg.get_block_for_node(derived); 1918 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi 1919 Node *phi = b->get_node(i); 1920 if( !phi->is_Phi() ) { // Found end of Phis with no match? 1921 b->insert_node(base, i); // Must insert created Phi here as base 1922 _cfg.map_node_to_block(base, b); 1923 new_lrg(base,maxlrg++); 1924 break; 1925 } 1926 // See if Phi matches. 1927 uint j; 1928 for( j = 1; j < base->req(); j++ ) 1929 if( phi->in(j) != base->in(j) && 1930 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different nulls 1931 break; 1932 if( j == base->req() ) { // All inputs match? 1933 base = phi; // Then use existing 'phi' and drop 'base' 1934 break; 1935 } 1936 } 1937 1938 1939 // Cache info for later passes 1940 derived_base_map[derived->_idx] = base; 1941 return base; 1942 } 1943 1944 // At each Safepoint, insert extra debug edges for each pair of derived value/ 1945 // base pointer that is live across the Safepoint for oopmap building. The 1946 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the 1947 // required edge set. 1948 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) { 1949 int must_recompute_live = false; 1950 uint maxlrg = _lrg_map.max_lrg_id(); 1951 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique()); 1952 memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); 1953 1954 // For all blocks in RPO do... 1955 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 1956 Block* block = _cfg.get_block(i); 1957 // Note use of deep-copy constructor. I cannot hammer the original 1958 // liveout bits, because they are needed by the following coalesce pass. 1959 IndexSet liveout(_live->live(block)); 1960 1961 for (uint j = block->end_idx() + 1; j > 1; j--) { 1962 Node* n = block->get_node(j - 1); 1963 1964 // Pre-split compares of loop-phis. Loop-phis form a cycle we would 1965 // like to see in the same register. Compare uses the loop-phi and so 1966 // extends its live range BUT cannot be part of the cycle. If this 1967 // extended live range overlaps with the update of the loop-phi value 1968 // we need both alive at the same time -- which requires at least 1 1969 // copy. But because Intel has only 2-address registers we end up with 1970 // at least 2 copies, one before the loop-phi update instruction and 1971 // one after. Instead we split the input to the compare just after the 1972 // phi. 1973 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) { 1974 Node *phi = n->in(1); 1975 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { 1976 Block *phi_block = _cfg.get_block_for_node(phi); 1977 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) { 1978 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; 1979 Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask); 1980 insert_proj( phi_block, 1, spill, maxlrg++ ); 1981 n->set_req(1,spill); 1982 must_recompute_live = true; 1983 } 1984 } 1985 } 1986 1987 // Get value being defined 1988 uint lidx = _lrg_map.live_range_id(n); 1989 // Ignore the occasional brand-new live range 1990 if (lidx && lidx < _lrg_map.max_lrg_id()) { 1991 // Remove from live-out set 1992 liveout.remove(lidx); 1993 1994 // Copies do not define a new value and so do not interfere. 1995 // Remove the copies source from the liveout set before interfering. 1996 uint idx = n->is_Copy(); 1997 if (idx) { 1998 liveout.remove(_lrg_map.live_range_id(n->in(idx))); 1999 } 2000 } 2001 2002 // Found a safepoint? 2003 JVMState *jvms = n->jvms(); 2004 if (jvms && !liveout.is_empty()) { 2005 // Now scan for a live derived pointer 2006 IndexSetIterator elements(&liveout); 2007 uint neighbor; 2008 while ((neighbor = elements.next()) != 0) { 2009 // Find reaching DEF for base and derived values 2010 // This works because we are still in SSA during this call. 2011 Node *derived = lrgs(neighbor)._def; 2012 const TypePtr *tj = derived->bottom_type()->isa_ptr(); 2013 assert(!derived->bottom_type()->isa_narrowoop() || 2014 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity"); 2015 // If its an OOP with a non-zero offset, then it is derived. 2016 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) { 2017 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg); 2018 assert(base->_idx < _lrg_map.size(), ""); 2019 // Add reaching DEFs of derived pointer and base pointer as a 2020 // pair of inputs 2021 n->add_req(derived); 2022 n->add_req(base); 2023 2024 // See if the base pointer is already live to this point. 2025 // Since I'm working on the SSA form, live-ness amounts to 2026 // reaching def's. So if I find the base's live range then 2027 // I know the base's def reaches here. 2028 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or 2029 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND 2030 (_lrg_map.live_range_id(base) > 0) && // not a constant 2031 _cfg.get_block_for_node(base) != block) { // base not def'd in blk) 2032 // Base pointer is not currently live. Since I stretched 2033 // the base pointer to here and it crosses basic-block 2034 // boundaries, the global live info is now incorrect. 2035 // Recompute live. 2036 must_recompute_live = true; 2037 } // End of if base pointer is not live to debug info 2038 } 2039 } // End of scan all live data for derived ptrs crossing GC point 2040 } // End of if found a GC point 2041 2042 // Make all inputs live 2043 if (!n->is_Phi()) { // Phi function uses come from prior block 2044 for (uint k = 1; k < n->req(); k++) { 2045 uint lidx = _lrg_map.live_range_id(n->in(k)); 2046 if (lidx < _lrg_map.max_lrg_id()) { 2047 liveout.insert(lidx); 2048 } 2049 } 2050 } 2051 2052 } // End of forall instructions in block 2053 liveout.clear(); // Free the memory used by liveout. 2054 2055 } // End of forall blocks 2056 _lrg_map.set_max_lrg_id(maxlrg); 2057 2058 // If I created a new live range I need to recompute live 2059 if (maxlrg != _ifg->_maxlrg) { 2060 must_recompute_live = true; 2061 } 2062 2063 return must_recompute_live != 0; 2064 } 2065 2066 // Extend the node to LRG mapping 2067 2068 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) { 2069 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node)); 2070 } 2071 2072 #ifndef PRODUCT 2073 void PhaseChaitin::dump(const Node* n) const { 2074 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0; 2075 tty->print("L%d",r); 2076 if (r && n->Opcode() != Op_Phi) { 2077 if( _node_regs ) { // Got a post-allocation copy of allocation? 2078 tty->print("["); 2079 OptoReg::Name second = get_reg_second(n); 2080 if( OptoReg::is_valid(second) ) { 2081 if( OptoReg::is_reg(second) ) 2082 tty->print("%s:",Matcher::regName[second]); 2083 else 2084 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); 2085 } 2086 OptoReg::Name first = get_reg_first(n); 2087 if( OptoReg::is_reg(first) ) 2088 tty->print("%s]",Matcher::regName[first]); 2089 else 2090 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); 2091 } else 2092 n->out_RegMask().dump(); 2093 } 2094 tty->print("/N%d\t",n->_idx); 2095 tty->print("%s === ", n->Name()); 2096 uint k; 2097 for (k = 0; k < n->req(); k++) { 2098 Node *m = n->in(k); 2099 if (!m) { 2100 tty->print("_ "); 2101 } 2102 else { 2103 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0; 2104 tty->print("L%d",r); 2105 // Data MultiNode's can have projections with no real registers. 2106 // Don't die while dumping them. 2107 int op = n->Opcode(); 2108 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) { 2109 if( _node_regs ) { 2110 tty->print("["); 2111 OptoReg::Name second = get_reg_second(n->in(k)); 2112 if( OptoReg::is_valid(second) ) { 2113 if( OptoReg::is_reg(second) ) 2114 tty->print("%s:",Matcher::regName[second]); 2115 else 2116 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), 2117 reg2offset_unchecked(second)); 2118 } 2119 OptoReg::Name first = get_reg_first(n->in(k)); 2120 if( OptoReg::is_reg(first) ) 2121 tty->print("%s]",Matcher::regName[first]); 2122 else 2123 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), 2124 reg2offset_unchecked(first)); 2125 } else 2126 n->in_RegMask(k).dump(); 2127 } 2128 tty->print("/N%d ",m->_idx); 2129 } 2130 } 2131 if( k < n->len() && n->in(k) ) tty->print("| "); 2132 for( ; k < n->len(); k++ ) { 2133 Node *m = n->in(k); 2134 if(!m) { 2135 break; 2136 } 2137 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0; 2138 tty->print("L%d",r); 2139 tty->print("/N%d ",m->_idx); 2140 } 2141 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty); 2142 else n->dump_spec(tty); 2143 if( _spilled_once.test(n->_idx ) ) { 2144 tty->print(" Spill_1"); 2145 if( _spilled_twice.test(n->_idx ) ) 2146 tty->print(" Spill_2"); 2147 } 2148 tty->print("\n"); 2149 } 2150 2151 void PhaseChaitin::dump(const Block* b) const { 2152 b->dump_head(&_cfg); 2153 2154 // For all instructions 2155 for( uint j = 0; j < b->number_of_nodes(); j++ ) 2156 dump(b->get_node(j)); 2157 // Print live-out info at end of block 2158 if( _live ) { 2159 tty->print("Liveout: "); 2160 IndexSet *live = _live->live(b); 2161 IndexSetIterator elements(live); 2162 tty->print("{"); 2163 uint i; 2164 while ((i = elements.next()) != 0) { 2165 tty->print("L%d ", _lrg_map.find_const(i)); 2166 } 2167 tty->print_cr("}"); 2168 } 2169 tty->print("\n"); 2170 } 2171 2172 void PhaseChaitin::dump() const { 2173 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n", 2174 _matcher._new_SP, _framesize ); 2175 2176 // For all blocks 2177 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 2178 dump(_cfg.get_block(i)); 2179 } 2180 // End of per-block dump 2181 tty->print("\n"); 2182 2183 if (!_ifg) { 2184 tty->print("(No IFG.)\n"); 2185 return; 2186 } 2187 2188 // Dump LRG array 2189 tty->print("--- Live RanGe Array ---\n"); 2190 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) { 2191 tty->print("L%d: ",i2); 2192 if (i2 < _ifg->_maxlrg) { 2193 lrgs(i2).dump(); 2194 } 2195 else { 2196 tty->print_cr("new LRG"); 2197 } 2198 } 2199 tty->cr(); 2200 2201 // Dump lo-degree list 2202 tty->print("Lo degree: "); 2203 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next ) 2204 tty->print("L%d ",i3); 2205 tty->cr(); 2206 2207 // Dump lo-stk-degree list 2208 tty->print("Lo stk degree: "); 2209 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next ) 2210 tty->print("L%d ",i4); 2211 tty->cr(); 2212 2213 // Dump lo-degree list 2214 tty->print("Hi degree: "); 2215 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next ) 2216 tty->print("L%d ",i5); 2217 tty->cr(); 2218 } 2219 2220 void PhaseChaitin::dump_degree_lists() const { 2221 // Dump lo-degree list 2222 tty->print("Lo degree: "); 2223 for( uint i = _lo_degree; i; i = lrgs(i)._next ) 2224 tty->print("L%d ",i); 2225 tty->cr(); 2226 2227 // Dump lo-stk-degree list 2228 tty->print("Lo stk degree: "); 2229 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next ) 2230 tty->print("L%d ",i2); 2231 tty->cr(); 2232 2233 // Dump lo-degree list 2234 tty->print("Hi degree: "); 2235 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next ) 2236 tty->print("L%d ",i3); 2237 tty->cr(); 2238 } 2239 2240 void PhaseChaitin::dump_simplified() const { 2241 tty->print("Simplified: "); 2242 for( uint i = _simplified; i; i = lrgs(i)._next ) 2243 tty->print("L%d ",i); 2244 tty->cr(); 2245 } 2246 2247 static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf, size_t buf_size) { 2248 if ((int)reg < 0) 2249 os::snprintf_checked(buf, buf_size, "<OptoReg::%d>", (int)reg); 2250 else if (OptoReg::is_reg(reg)) 2251 strcpy(buf, Matcher::regName[reg]); 2252 else 2253 os::snprintf_checked(buf, buf_size, "%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer), 2254 pc->reg2offset(reg)); 2255 return buf+strlen(buf); 2256 } 2257 2258 // Dump a register name into a buffer. Be intelligent if we get called 2259 // before allocation is complete. 2260 char *PhaseChaitin::dump_register(const Node* n, char* buf, size_t buf_size) const { 2261 if( _node_regs ) { 2262 // Post allocation, use direct mappings, no LRG info available 2263 print_reg( get_reg_first(n), this, buf, buf_size); 2264 } else { 2265 uint lidx = _lrg_map.find_const(n); // Grab LRG number 2266 if( !_ifg ) { 2267 os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet 2268 } else if( !lidx ) { // Special, not allocated value 2269 strcpy(buf,"Special"); 2270 } else { 2271 if (lrgs(lidx)._is_vector) { 2272 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs())) 2273 print_reg( lrgs(lidx).reg(), this, buf, buf_size); // a bound machine register 2274 else 2275 os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet 2276 } else if( (lrgs(lidx).num_regs() == 1) 2277 ? lrgs(lidx).mask().is_bound1() 2278 : lrgs(lidx).mask().is_bound_pair() ) { 2279 // Hah! We have a bound machine register 2280 print_reg( lrgs(lidx).reg(), this, buf, buf_size); 2281 } else { 2282 os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet 2283 } 2284 } 2285 } 2286 return buf+strlen(buf); 2287 } 2288 2289 void PhaseChaitin::dump_for_spill_split_recycle() const { 2290 if( WizardMode && (PrintCompilation || PrintOpto) ) { 2291 // Display which live ranges need to be split and the allocator's state 2292 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt); 2293 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) { 2294 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) { 2295 tty->print("L%d: ", bidx); 2296 lrgs(bidx).dump(); 2297 } 2298 } 2299 tty->cr(); 2300 dump(); 2301 } 2302 } 2303 2304 void PhaseChaitin::dump_frame() const { 2305 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); 2306 const TypeTuple *domain = C->tf()->domain(); 2307 const int argcnt = domain->cnt() - TypeFunc::Parms; 2308 2309 // Incoming arguments in registers dump 2310 for( int k = 0; k < argcnt; k++ ) { 2311 OptoReg::Name parmreg = _matcher._parm_regs[k].first(); 2312 if( OptoReg::is_reg(parmreg)) { 2313 const char *reg_name = OptoReg::regname(parmreg); 2314 tty->print("#r%3.3d %s", parmreg, reg_name); 2315 parmreg = _matcher._parm_regs[k].second(); 2316 if( OptoReg::is_reg(parmreg)) { 2317 tty->print(":%s", OptoReg::regname(parmreg)); 2318 } 2319 tty->print(" : parm %d: ", k); 2320 domain->field_at(k + TypeFunc::Parms)->dump(); 2321 tty->cr(); 2322 } 2323 } 2324 2325 // Check for un-owned padding above incoming args 2326 OptoReg::Name reg = _matcher._new_SP; 2327 if( reg > _matcher._in_arg_limit ) { 2328 reg = OptoReg::add(reg, -1); 2329 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg)); 2330 } 2331 2332 // Incoming argument area dump 2333 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots()); 2334 while( reg > begin_in_arg ) { 2335 reg = OptoReg::add(reg, -1); 2336 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); 2337 int j; 2338 for( j = 0; j < argcnt; j++) { 2339 if( _matcher._parm_regs[j].first() == reg || 2340 _matcher._parm_regs[j].second() == reg ) { 2341 tty->print("parm %d: ",j); 2342 domain->field_at(j + TypeFunc::Parms)->dump(); 2343 tty->cr(); 2344 break; 2345 } 2346 } 2347 if( j >= argcnt ) 2348 tty->print_cr("HOLE, owned by SELF"); 2349 } 2350 2351 // Old outgoing preserve area 2352 while( reg > _matcher._old_SP ) { 2353 reg = OptoReg::add(reg, -1); 2354 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg)); 2355 } 2356 2357 // Old SP 2358 tty->print_cr("# -- Old %s -- Framesize: %d --",fp, 2359 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize); 2360 2361 // Preserve area dump 2362 int fixed_slots = C->fixed_slots(); 2363 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots()); 2364 OptoReg::Name return_addr = _matcher.return_addr(); 2365 2366 reg = OptoReg::add(reg, -1); 2367 while (OptoReg::is_stack(reg)) { 2368 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); 2369 if (return_addr == reg) { 2370 tty->print_cr("return address"); 2371 } else if (reg >= begin_in_preserve) { 2372 // Preserved slots are present on x86 2373 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word)) 2374 tty->print_cr("saved fp register"); 2375 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) && 2376 VerifyStackAtCalls) 2377 tty->print_cr("0xBADB100D +VerifyStackAtCalls"); 2378 else 2379 tty->print_cr("in_preserve"); 2380 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) { 2381 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg)); 2382 } else { 2383 tty->print_cr("pad2, stack alignment"); 2384 } 2385 reg = OptoReg::add(reg, -1); 2386 } 2387 2388 // Spill area dump 2389 reg = OptoReg::add(_matcher._new_SP, _framesize ); 2390 while( reg > _matcher._out_arg_limit ) { 2391 reg = OptoReg::add(reg, -1); 2392 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg)); 2393 } 2394 2395 // Outgoing argument area dump 2396 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) { 2397 reg = OptoReg::add(reg, -1); 2398 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg)); 2399 } 2400 2401 // Outgoing new preserve area 2402 while( reg > _matcher._new_SP ) { 2403 reg = OptoReg::add(reg, -1); 2404 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg)); 2405 } 2406 tty->print_cr("#"); 2407 } 2408 2409 void PhaseChaitin::dump_bb(uint pre_order) const { 2410 tty->print_cr("---dump of B%d---",pre_order); 2411 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 2412 Block* block = _cfg.get_block(i); 2413 if (block->_pre_order == pre_order) { 2414 dump(block); 2415 } 2416 } 2417 } 2418 2419 void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const { 2420 tty->print_cr("---dump of L%d---",lidx); 2421 2422 if (_ifg) { 2423 if (lidx >= _lrg_map.max_lrg_id()) { 2424 tty->print("Attempt to print live range index beyond max live range.\n"); 2425 return; 2426 } 2427 tty->print("L%d: ",lidx); 2428 if (lidx < _ifg->_maxlrg) { 2429 lrgs(lidx).dump(); 2430 } else { 2431 tty->print_cr("new LRG"); 2432 } 2433 } 2434 if( _ifg && lidx < _ifg->_maxlrg) { 2435 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx)); 2436 _ifg->neighbors(lidx)->dump(); 2437 tty->cr(); 2438 } 2439 // For all blocks 2440 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 2441 Block* block = _cfg.get_block(i); 2442 int dump_once = 0; 2443 2444 // For all instructions 2445 for( uint j = 0; j < block->number_of_nodes(); j++ ) { 2446 Node *n = block->get_node(j); 2447 if (_lrg_map.find_const(n) == lidx) { 2448 if (!dump_once++) { 2449 tty->cr(); 2450 block->dump_head(&_cfg); 2451 } 2452 dump(n); 2453 continue; 2454 } 2455 if (!defs_only) { 2456 uint cnt = n->req(); 2457 for( uint k = 1; k < cnt; k++ ) { 2458 Node *m = n->in(k); 2459 if (!m) { 2460 continue; // be robust in the dumper 2461 } 2462 if (_lrg_map.find_const(m) == lidx) { 2463 if (!dump_once++) { 2464 tty->cr(); 2465 block->dump_head(&_cfg); 2466 } 2467 dump(n); 2468 } 2469 } 2470 } 2471 } 2472 } // End of per-block dump 2473 tty->cr(); 2474 } 2475 #endif // not PRODUCT 2476 2477 #ifdef ASSERT 2478 // Verify that base pointers and derived pointers are still sane. 2479 void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const { 2480 Unique_Node_List worklist(a); 2481 for (uint i = 0; i < _cfg.number_of_blocks(); i++) { 2482 Block* block = _cfg.get_block(i); 2483 for (uint j = block->end_idx() + 1; j > 1; j--) { 2484 Node* n = block->get_node(j-1); 2485 if (n->is_Phi()) { 2486 break; 2487 } 2488 // Found a safepoint? 2489 if (n->is_MachSafePoint()) { 2490 MachSafePointNode* sfpt = n->as_MachSafePoint(); 2491 JVMState* jvms = sfpt->jvms(); 2492 if (jvms != nullptr) { 2493 // Now scan for a live derived pointer 2494 if (jvms->oopoff() < sfpt->req()) { 2495 // Check each derived/base pair 2496 for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) { 2497 Node* check = sfpt->in(idx); 2498 bool is_derived = ((idx - jvms->oopoff()) & 1) == 0; 2499 // search upwards through spills and spill phis for AddP 2500 worklist.clear(); 2501 worklist.push(check); 2502 uint k = 0; 2503 while (k < worklist.size()) { 2504 check = worklist.at(k); 2505 assert(check, "Bad base or derived pointer"); 2506 // See PhaseChaitin::find_base_for_derived() for all cases. 2507 int isc = check->is_Copy(); 2508 if (isc) { 2509 worklist.push(check->in(isc)); 2510 } else if (check->is_Phi()) { 2511 for (uint m = 1; m < check->req(); m++) { 2512 worklist.push(check->in(m)); 2513 } 2514 } else if (check->is_Con()) { 2515 if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) { 2516 // Derived is null+non-zero offset, base must be null. 2517 assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer"); 2518 } else { 2519 assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer"); 2520 // Base either ConP(nullptr) or loadConP 2521 if (check->is_Mach()) { 2522 assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer"); 2523 } else { 2524 assert(check->Opcode() == Op_ConP && 2525 check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer"); 2526 } 2527 } 2528 } else if (check->bottom_type()->is_ptr()->_offset == 0) { 2529 if (check->is_Proj() || (check->is_Mach() && 2530 (check->as_Mach()->ideal_Opcode() == Op_CreateEx || 2531 check->as_Mach()->ideal_Opcode() == Op_ThreadLocal || 2532 check->as_Mach()->ideal_Opcode() == Op_CMoveP || 2533 check->as_Mach()->ideal_Opcode() == Op_CheckCastPP || 2534 #ifdef _LP64 2535 (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) || 2536 (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) || 2537 (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) || 2538 #endif // _LP64 2539 check->as_Mach()->ideal_Opcode() == Op_LoadP || 2540 check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) { 2541 // Valid nodes 2542 } else { 2543 check->dump(); 2544 assert(false, "Bad base or derived pointer"); 2545 } 2546 } else { 2547 assert(is_derived, "Bad base pointer"); 2548 assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer"); 2549 } 2550 k++; 2551 assert(k < 100000, "Derived pointer checking in infinite loop"); 2552 } // End while 2553 } 2554 } // End of check for derived pointers 2555 } // End of Kcheck for debug info 2556 } // End of if found a safepoint 2557 } // End of forall instructions in block 2558 } // End of forall blocks 2559 } 2560 2561 // Verify that graphs and base pointers are still sane. 2562 void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const { 2563 if (VerifyRegisterAllocator) { 2564 _cfg.verify(); 2565 if (C->failing()) { 2566 return; 2567 } 2568 verify_base_ptrs(a); 2569 if (verify_ifg) { 2570 _ifg->verify(this); 2571 } 2572 } 2573 } 2574 #endif // ASSERT 2575 2576 int PhaseChaitin::_final_loads = 0; 2577 int PhaseChaitin::_final_stores = 0; 2578 int PhaseChaitin::_final_memoves= 0; 2579 int PhaseChaitin::_final_copies = 0; 2580 double PhaseChaitin::_final_load_cost = 0; 2581 double PhaseChaitin::_final_store_cost = 0; 2582 double PhaseChaitin::_final_memove_cost= 0; 2583 double PhaseChaitin::_final_copy_cost = 0; 2584 int PhaseChaitin::_conserv_coalesce = 0; 2585 int PhaseChaitin::_conserv_coalesce_pair = 0; 2586 int PhaseChaitin::_conserv_coalesce_trie = 0; 2587 int PhaseChaitin::_conserv_coalesce_quad = 0; 2588 int PhaseChaitin::_post_alloc = 0; 2589 int PhaseChaitin::_lost_opp_pp_coalesce = 0; 2590 int PhaseChaitin::_lost_opp_cflow_coalesce = 0; 2591 int PhaseChaitin::_used_cisc_instructions = 0; 2592 int PhaseChaitin::_unused_cisc_instructions = 0; 2593 int PhaseChaitin::_allocator_attempts = 0; 2594 int PhaseChaitin::_allocator_successes = 0; 2595 2596 #ifndef PRODUCT 2597 uint PhaseChaitin::_high_pressure = 0; 2598 uint PhaseChaitin::_low_pressure = 0; 2599 2600 void PhaseChaitin::print_chaitin_statistics() { 2601 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies); 2602 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost); 2603 tty->print_cr("Adjusted spill cost = %7.0f.", 2604 _final_load_cost*4.0 + _final_store_cost * 2.0 + 2605 _final_copy_cost*1.0 + _final_memove_cost*12.0); 2606 tty->print("Conservatively coalesced %d copies, %d pairs", 2607 _conserv_coalesce, _conserv_coalesce_pair); 2608 if( _conserv_coalesce_trie || _conserv_coalesce_quad ) 2609 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad); 2610 tty->print_cr(", %d post alloc.", _post_alloc); 2611 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce ) 2612 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.", 2613 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce ); 2614 if( _used_cisc_instructions || _unused_cisc_instructions ) 2615 tty->print_cr("Used cisc instruction %d, remained in register %d", 2616 _used_cisc_instructions, _unused_cisc_instructions); 2617 if( _allocator_successes != 0 ) 2618 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes); 2619 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure); 2620 } 2621 #endif // not PRODUCT