1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/block.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "opto/coalesce.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/idealGraphPrinter.hpp"
  38 #include "opto/indexSet.hpp"
  39 #include "opto/machnode.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "utilities/align.hpp"
  45 
  46 #ifndef PRODUCT
  47 void LRG::dump() const {
  48   ttyLocker ttyl;
  49   tty->print("%d ",num_regs());
  50   _mask.dump();
  51   if( _msize_valid ) {
  52     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  53     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  54   } else {
  55     tty->print(", #?(%d) ",_mask.Size());
  56   }
  57 
  58   tty->print("EffDeg: ");
  59   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  60   else tty->print("? ");
  61 
  62   if( is_multidef() ) {
  63     tty->print("MultiDef ");
  64     if (_defs != nullptr) {
  65       tty->print("(");
  66       for (int i = 0; i < _defs->length(); i++) {
  67         tty->print("N%d ", _defs->at(i)->_idx);
  68       }
  69       tty->print(") ");
  70     }
  71   }
  72   else if( _def == nullptr ) tty->print("Dead ");
  73   else tty->print("Def: N%d ",_def->_idx);
  74 
  75   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  76   // Flags
  77   if( _is_oop ) tty->print("Oop ");
  78   if( _is_float ) tty->print("Float ");
  79   if( _is_vector ) tty->print("Vector ");
  80   if( _is_predicate ) tty->print("Predicate ");
  81   if( _is_scalable ) tty->print("Scalable ");
  82   if( _was_spilled1 ) tty->print("Spilled ");
  83   if( _was_spilled2 ) tty->print("Spilled2 ");
  84   if( _direct_conflict ) tty->print("Direct_conflict ");
  85   if( _fat_proj ) tty->print("Fat ");
  86   if( _was_lo ) tty->print("Lo ");
  87   if( _has_copy ) tty->print("Copy ");
  88   if( _at_risk ) tty->print("Risk ");
  89 
  90   if( _must_spill ) tty->print("Must_spill ");
  91   if( _is_bound ) tty->print("Bound ");
  92   if( _msize_valid ) {
  93     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  94   }
  95 
  96   tty->cr();
  97 }
  98 #endif
  99 
 100 // Compute score from cost and area.  Low score is best to spill.
 101 static double raw_score( double cost, double area ) {
 102   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 103 }
 104 
 105 double LRG::score() const {
 106   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 107   // Bigger area lowers score, encourages spilling this live range.
 108   // Bigger cost raise score, prevents spilling this live range.
 109   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 110   // to turn a divide by a constant into a multiply by the reciprical).
 111   double score = raw_score( _cost, _area);
 112 
 113   // Account for area.  Basically, LRGs covering large areas are better
 114   // to spill because more other LRGs get freed up.
 115   if( _area == 0.0 )            // No area?  Then no progress to spill
 116     return 1e35;
 117 
 118   if( _was_spilled2 )           // If spilled once before, we are unlikely
 119     return score + 1e30;        // to make progress again.
 120 
 121   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 122     return score + 1e17;        // Probably no progress to spill
 123 
 124   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 125     return score + 1e10;        // Likely no progress to spill
 126 
 127   return score;
 128 }
 129 
 130 #define NUMBUCKS 3
 131 
 132 // Straight out of Tarjan's union-find algorithm
 133 uint LiveRangeMap::find_compress(uint lrg) {
 134   uint cur = lrg;
 135   uint next = _uf_map.at(cur);
 136   while (next != cur) { // Scan chain of equivalences
 137     assert( next < cur, "always union smaller");
 138     cur = next; // until find a fixed-point
 139     next = _uf_map.at(cur);
 140   }
 141 
 142   // Core of union-find algorithm: update chain of
 143   // equivalences to be equal to the root.
 144   while (lrg != next) {
 145     uint tmp = _uf_map.at(lrg);
 146     _uf_map.at_put(lrg, next);
 147     lrg = tmp;
 148   }
 149   return lrg;
 150 }
 151 
 152 // Reset the Union-Find map to identity
 153 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
 154   _max_lrg_id= max_lrg_id;
 155   // Force the Union-Find mapping to be at least this large
 156   _uf_map.at_put_grow(_max_lrg_id, 0);
 157   // Initialize it to be the ID mapping.
 158   for (uint i = 0; i < _max_lrg_id; ++i) {
 159     _uf_map.at_put(i, i);
 160   }
 161 }
 162 
 163 // Make all Nodes map directly to their final live range; no need for
 164 // the Union-Find mapping after this call.
 165 void LiveRangeMap::compress_uf_map_for_nodes() {
 166   // For all Nodes, compress mapping
 167   uint unique = _names.length();
 168   for (uint i = 0; i < unique; ++i) {
 169     uint lrg = _names.at(i);
 170     uint compressed_lrg = find(lrg);
 171     if (lrg != compressed_lrg) {
 172       _names.at_put(i, compressed_lrg);
 173     }
 174   }
 175 }
 176 
 177 // Like Find above, but no path compress, so bad asymptotic behavior
 178 uint LiveRangeMap::find_const(uint lrg) const {
 179   if (!lrg) {
 180     return lrg; // Ignore the zero LRG
 181   }
 182 
 183   // Off the end?  This happens during debugging dumps when you got
 184   // brand new live ranges but have not told the allocator yet.
 185   if (lrg >= _max_lrg_id) {
 186     return lrg;
 187   }
 188 
 189   uint next = _uf_map.at(lrg);
 190   while (next != lrg) { // Scan chain of equivalences
 191     assert(next < lrg, "always union smaller");
 192     lrg = next; // until find a fixed-point
 193     next = _uf_map.at(lrg);
 194   }
 195   return next;
 196 }
 197 
 198 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
 199   : PhaseRegAlloc(unique, cfg, matcher,
 200 #ifndef PRODUCT
 201        print_chaitin_statistics
 202 #else
 203        nullptr
 204 #endif
 205        )
 206   , _live(nullptr)
 207   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
 208   , _oldphi(unique)
 209 #ifndef PRODUCT
 210   , _trace_spilling(C->directive()->TraceSpillingOption)
 211 #endif
 212   , _lrg_map(Thread::current()->resource_area(), unique)
 213   , _scheduling_info_generated(scheduling_info_generated)
 214   , _sched_int_pressure(0, Matcher::int_pressure_limit())
 215   , _sched_float_pressure(0, Matcher::float_pressure_limit())
 216   , _scratch_int_pressure(0, Matcher::int_pressure_limit())
 217   , _scratch_float_pressure(0, Matcher::float_pressure_limit())
 218 {
 219   Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
 220 
 221   _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
 222 
 223   // Build a list of basic blocks, sorted by frequency
 224   // Experiment with sorting strategies to speed compilation
 225   uint nr_blocks = _cfg.number_of_blocks();
 226   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 227   Block **buckets[NUMBUCKS];             // Array of buckets
 228   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 229   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 230 
 231   // The space which our buckets point into.
 232   Block** start = NEW_RESOURCE_ARRAY(Block *, nr_blocks*NUMBUCKS);
 233 
 234   for (uint i = 0; i < NUMBUCKS; i++) {
 235     buckets[i] = &start[i*nr_blocks];
 236     buckcnt[i] = 0;
 237     // Bump by three orders of magnitude each time
 238     cutoff *= 0.001;
 239     buckval[i] = cutoff;
 240   }
 241 
 242   // Sort blocks into buckets
 243   for (uint i = 0; i < nr_blocks; i++) {
 244     for (uint j = 0; j < NUMBUCKS; j++) {
 245       double bval = buckval[j];
 246       Block* blk = _cfg.get_block(i);
 247       if (j == NUMBUCKS - 1 || blk->_freq > bval) {
 248         uint cnt = buckcnt[j];
 249         // Assign block to end of list for appropriate bucket
 250         buckets[j][cnt] = blk;
 251         buckcnt[j] = cnt+1;
 252         break; // kick out of inner loop
 253       }
 254     }
 255   }
 256 
 257   // Squash the partially filled buckets together into the first one.
 258   static_assert(NUMBUCKS >= 2, "must"); // If this isn't true then it'll mess up the squashing.
 259   Block** offset = &buckets[0][buckcnt[0]];
 260   for (int i = 1; i < NUMBUCKS; i++) {
 261     ::memmove(offset, buckets[i], buckcnt[i]*sizeof(Block*));
 262     offset += buckcnt[i];
 263   }
 264   assert((&buckets[0][0] + nr_blocks) == offset, "should be");
 265 
 266   // Free the now unused memory
 267   FREE_RESOURCE_ARRAY(Block*, buckets[1], (NUMBUCKS-1)*nr_blocks);
 268   // Finally, point the _blks to our memory
 269   _blks = buckets[0];
 270 
 271 #ifdef ASSERT
 272   uint blkcnt = 0;
 273   for (uint i = 0; i < NUMBUCKS; i++) {
 274     blkcnt += buckcnt[i];
 275   }
 276   assert(blkcnt == nr_blocks, "Block array not totally filled");
 277 #endif
 278 }
 279 
 280 // union 2 sets together.
 281 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 282   uint src = _lrg_map.find(src_n);
 283   uint dst = _lrg_map.find(dst_n);
 284   assert(src, "");
 285   assert(dst, "");
 286   assert(src < _lrg_map.max_lrg_id(), "oob");
 287   assert(dst < _lrg_map.max_lrg_id(), "oob");
 288   assert(src < dst, "always union smaller");
 289   _lrg_map.uf_map(dst, src);
 290 }
 291 
 292 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
 293   // Make the Node->LRG mapping
 294   _lrg_map.extend(x->_idx,lrg);
 295   // Make the Union-Find mapping an identity function
 296   _lrg_map.uf_extend(lrg, lrg);
 297 }
 298 
 299 
 300 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
 301   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
 302   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
 303   int found_projs = 0;
 304   uint cnt = orig->outcnt();
 305   for (uint i = 0; i < cnt; i++) {
 306     Node* proj = orig->raw_out(i);
 307     if (proj->is_MachProj()) {
 308       assert(proj->outcnt() == 0, "only kill projections are expected here");
 309       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
 310       found_projs++;
 311       // Copy kill projections after the cloned node
 312       Node* kills = proj->clone();
 313       kills->set_req(0, copy);
 314       b->insert_node(kills, idx++);
 315       _cfg.map_node_to_block(kills, b);
 316       new_lrg(kills, max_lrg_id++);
 317     }
 318   }
 319   return found_projs;
 320 }
 321 
 322 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 323 void PhaseChaitin::compact() {
 324   Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
 325 
 326   // Current the _uf_map contains a series of short chains which are headed
 327   // by a self-cycle.  All the chains run from big numbers to little numbers.
 328   // The Find() call chases the chains & shortens them for the next Find call.
 329   // We are going to change this structure slightly.  Numbers above a moving
 330   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 331   // compacted live range with no further chaining.  There are no chains or
 332   // cycles below 'i', so the Find call no longer works.
 333   uint j=1;
 334   uint i;
 335   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
 336     uint lr = _lrg_map.uf_live_range_id(i);
 337     // Ignore unallocated live ranges
 338     if (!lr) {
 339       continue;
 340     }
 341     assert(lr <= i, "");
 342     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
 343   }
 344   // Now change the Node->LR mapping to reflect the compacted names
 345   uint unique = _lrg_map.size();
 346   for (i = 0; i < unique; i++) {
 347     uint lrg_id = _lrg_map.live_range_id(i);
 348     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
 349   }
 350 
 351   // Reset the Union-Find mapping
 352   _lrg_map.reset_uf_map(j);
 353 }
 354 
 355 void PhaseChaitin::Register_Allocate() {
 356 
 357   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 358   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 359   // registers) is the outgoing argument area; above that is the spill/temp
 360   // area.  These are all "frame_slots".  Arg_slots start at the zero
 361   // stack_slots and count up to the known arg_size.  Frame_slots start at
 362   // the stack_slot #arg_size and go up.  After allocation I map stack
 363   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 364   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 365 
 366   _trip_cnt = 0;
 367   _alternate = 0;
 368   _matcher._allocation_started = true;
 369 
 370   ResourceArea split_arena(mtCompiler);     // Arena for Split local resources
 371   ResourceArea live_arena(mtCompiler);      // Arena for liveness & IFG info
 372   ResourceMark rm(&live_arena);
 373 
 374   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 375   // liveness is JUST for coalescing, then I can get some mileage by renaming
 376   // all copy-related live ranges low and then using the max copy-related
 377   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 378   // build a subset of LIVE and IFG just for copies.
 379   PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
 380 
 381   // Need IFG for coalescing and coloring
 382   PhaseIFG ifg(&live_arena);
 383   _ifg = &ifg;
 384 
 385   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 386   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 387   // - effectively ending SSA form.  This requires either coalescing live
 388   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 389   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 390   // We will attempt to coalesce such "virtual copies" before we manifest
 391   // them for real.
 392   de_ssa();
 393 
 394 #ifdef ASSERT
 395   // Verify the graph before RA.
 396   verify(&live_arena);
 397 #endif
 398 
 399   {
 400     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 401     _live = nullptr;              // Mark live as being not available
 402     rm.reset_to_mark();           // Reclaim working storage
 403     IndexSet::reset_memory(C, &live_arena);
 404     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
 405     gather_lrg_masks( false );    // Collect LRG masks
 406     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
 407     _live = &live;                // Mark LIVE as being available
 408   }
 409 
 410   // Base pointers are currently "used" by instructions which define new
 411   // derived pointers.  This makes base pointers live up to the where the
 412   // derived pointer is made, but not beyond.  Really, they need to be live
 413   // across any GC point where the derived value is live.  So this code looks
 414   // at all the GC points, and "stretches" the live range of any base pointer
 415   // to the GC point.
 416   if (stretch_base_pointer_live_ranges(&live_arena)) {
 417     Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
 418     // Since some live range stretched, I need to recompute live
 419     _live = nullptr;
 420     rm.reset_to_mark();         // Reclaim working storage
 421     IndexSet::reset_memory(C, &live_arena);
 422     ifg.init(_lrg_map.max_lrg_id());
 423     gather_lrg_masks(false);
 424     live.compute(_lrg_map.max_lrg_id());
 425     _live = &live;
 426   }
 427   // Create the interference graph using virtual copies
 428   build_ifg_virtual();  // Include stack slots this time
 429 
 430   // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 431   // faster.  Union requires a 'for all' operation which is slow on the
 432   // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 433   // meaning I can visit all the Nodes neighbors less than a Node in time
 434   // O(# of neighbors), but I have to visit all the Nodes greater than a
 435   // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 436   _ifg->SquareUp();
 437 
 438   // Aggressive (but pessimistic) copy coalescing.
 439   // This pass works on virtual copies.  Any virtual copies which are not
 440   // coalesced get manifested as actual copies
 441   {
 442     Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
 443 
 444     PhaseAggressiveCoalesce coalesce(*this);
 445     coalesce.coalesce_driver();
 446     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 447     // not match the Phi itself, insert a copy.
 448     coalesce.insert_copies(_matcher);
 449     if (C->failing()) {
 450       return;
 451     }
 452   }
 453 
 454   // After aggressive coalesce, attempt a first cut at coloring.
 455   // To color, we need the IFG and for that we need LIVE.
 456   {
 457     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 458     _live = nullptr;
 459     rm.reset_to_mark();           // Reclaim working storage
 460     IndexSet::reset_memory(C, &live_arena);
 461     ifg.init(_lrg_map.max_lrg_id());
 462     gather_lrg_masks( true );
 463     live.compute(_lrg_map.max_lrg_id());
 464     _live = &live;
 465   }
 466 
 467   // Build physical interference graph
 468   uint must_spill = 0;
 469   must_spill = build_ifg_physical(&live_arena);
 470   // If we have a guaranteed spill, might as well spill now
 471   if (must_spill) {
 472     if(!_lrg_map.max_lrg_id()) {
 473       return;
 474     }
 475     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 476     C->check_node_count(10*must_spill, "out of nodes before split");
 477     if (C->failing()) {
 478       return;
 479     }
 480 
 481     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 482     if (C->failing()) {
 483       return;
 484     }
 485     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 486     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 487     // or we failed to split
 488     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 489     if (C->failing()) {
 490       return;
 491     }
 492 
 493     NOT_PRODUCT(C->verify_graph_edges();)
 494 
 495     compact();                  // Compact LRGs; return new lower max lrg
 496 
 497     {
 498       Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 499       _live = nullptr;
 500       rm.reset_to_mark();         // Reclaim working storage
 501       IndexSet::reset_memory(C, &live_arena);
 502       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
 503       gather_lrg_masks( true );   // Collect intersect mask
 504       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
 505       _live = &live;
 506     }
 507     build_ifg_physical(&live_arena);
 508     _ifg->SquareUp();
 509     _ifg->Compute_Effective_Degree();
 510     // Only do conservative coalescing if requested
 511     if (OptoCoalesce) {
 512       Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
 513       // Conservative (and pessimistic) copy coalescing of those spills
 514       PhaseConservativeCoalesce coalesce(*this);
 515       // If max live ranges greater than cutoff, don't color the stack.
 516       // This cutoff can be larger than below since it is only done once.
 517       coalesce.coalesce_driver();
 518     }
 519     _lrg_map.compress_uf_map_for_nodes();
 520 
 521 #ifdef ASSERT
 522     verify(&live_arena, true);
 523 #endif
 524   } else {
 525     ifg.SquareUp();
 526     ifg.Compute_Effective_Degree();
 527 #ifdef ASSERT
 528     set_was_low();
 529 #endif
 530   }
 531 
 532   // Prepare for Simplify & Select
 533   cache_lrg_info();           // Count degree of LRGs
 534 
 535   // Simplify the InterFerence Graph by removing LRGs of low degree.
 536   // LRGs of low degree are trivially colorable.
 537   Simplify();
 538 
 539   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 540   // Return whether or not something spills.
 541   uint spills = Select( );
 542 
 543   // If we spill, split and recycle the entire thing
 544   while( spills ) {
 545     if( _trip_cnt++ > 24 ) {
 546       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 547       if( _trip_cnt > 27 ) {
 548         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 549         return;
 550       }
 551     }
 552 
 553     if (!_lrg_map.max_lrg_id()) {
 554       return;
 555     }
 556     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 557     if (C->failing()) {
 558       return;
 559     }
 560     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 561     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 562     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
 563     if (C->failing()) {
 564       return;
 565     }
 566 
 567     compact(); // Compact LRGs; return new lower max lrg
 568 
 569     // Nuke the live-ness and interference graph and LiveRanGe info
 570     {
 571       Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 572       _live = nullptr;
 573       rm.reset_to_mark();         // Reclaim working storage
 574       IndexSet::reset_memory(C, &live_arena);
 575       ifg.init(_lrg_map.max_lrg_id());
 576 
 577       // Create LiveRanGe array.
 578       // Intersect register masks for all USEs and DEFs
 579       gather_lrg_masks(true);
 580       live.compute(_lrg_map.max_lrg_id());
 581       _live = &live;
 582     }
 583     must_spill = build_ifg_physical(&live_arena);
 584     _ifg->SquareUp();
 585     _ifg->Compute_Effective_Degree();
 586 
 587     // Only do conservative coalescing if requested
 588     if (OptoCoalesce) {
 589       Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
 590       // Conservative (and pessimistic) copy coalescing
 591       PhaseConservativeCoalesce coalesce(*this);
 592       // Check for few live ranges determines how aggressive coalesce is.
 593       coalesce.coalesce_driver();
 594     }
 595     _lrg_map.compress_uf_map_for_nodes();
 596 #ifdef ASSERT
 597     verify(&live_arena, true);
 598 #endif
 599     cache_lrg_info();           // Count degree of LRGs
 600 
 601     // Simplify the InterFerence Graph by removing LRGs of low degree.
 602     // LRGs of low degree are trivially colorable.
 603     Simplify();
 604 
 605     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 606     // Return whether or not something spills.
 607     spills = Select();
 608   }
 609 
 610   // Count number of Simplify-Select trips per coloring success.
 611   _allocator_attempts += _trip_cnt + 1;
 612   _allocator_successes += 1;
 613 
 614   // Peephole remove copies
 615   post_allocate_copy_removal();
 616 
 617   // Merge multidefs if multiple defs representing the same value are used in a single block.
 618   merge_multidefs();
 619 
 620 #ifdef ASSERT
 621   // Verify the graph after RA.
 622   verify(&live_arena);
 623 #endif
 624 
 625   // max_reg is past the largest *register* used.
 626   // Convert that to a frame_slot number.
 627   if (_max_reg <= _matcher._new_SP) {
 628     _framesize = C->out_preserve_stack_slots();
 629   }
 630   else {
 631     _framesize = _max_reg -_matcher._new_SP;
 632   }
 633   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 634 
 635   // This frame must preserve the required fp alignment
 636   _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
 637   assert(_framesize <= 1000000, "sanity check");
 638 #ifndef PRODUCT
 639   _total_framesize += _framesize;
 640   if ((int)_framesize > _max_framesize) {
 641     _max_framesize = _framesize;
 642   }
 643 #endif
 644 
 645   // Convert CISC spills
 646   fixup_spills();
 647 
 648   // Log regalloc results
 649   CompileLog* log = Compile::current()->log();
 650   if (log != nullptr) {
 651     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 652   }
 653 
 654   if (C->failing()) {
 655     return;
 656   }
 657 
 658   NOT_PRODUCT(C->verify_graph_edges();)
 659 
 660   // Move important info out of the live_arena to longer lasting storage.
 661   alloc_node_regs(_lrg_map.size());
 662   for (uint i=0; i < _lrg_map.size(); i++) {
 663     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
 664       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
 665       if (!lrg.alive()) {
 666         set_bad(i);
 667       } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) ||
 668                  (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) {
 669         set1(i, lrg.reg());
 670       } else {                  // Must be a register-set
 671         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
 672           // Live ranges record the highest register in their mask.
 673           // We want the low register for the AD file writer's convenience.
 674           OptoReg::Name hi = lrg.reg(); // Get hi register
 675           int num_regs = lrg.num_regs();
 676           if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
 677             // For scalable vector registers, when they are allocated in physical
 678             // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
 679             // vector. If they are allocated on stack, we need to get the actual
 680             // num_regs, which reflects the physical length of scalable registers.
 681             num_regs = lrg.scalable_reg_slots();
 682           }
 683           if (num_regs == 1) {
 684             set1(i, hi);
 685           } else {
 686             OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo
 687             // We have to use pair [lo,lo+1] even for wide vectors/vmasks because
 688             // the rest of code generation works only with pairs. It is safe
 689             // since for registers encoding only 'lo' is used.
 690             // Second reg from pair is used in ScheduleAndBundle with vector max
 691             // size 8 which corresponds to registers pair.
 692             // It is also used in BuildOopMaps but oop operations are not
 693             // vectorized.
 694             set2(i, lo);
 695           }
 696         } else {                // Misaligned; extract 2 bits
 697           OptoReg::Name hi = lrg.reg(); // Get hi register
 698           lrg.Remove(hi);       // Yank from mask
 699           int lo = lrg.mask().find_first_elem(); // Find lo
 700           set_pair(i, hi, lo);
 701         }
 702       }
 703       if( lrg._is_oop ) _node_oops.set(i);
 704     } else {
 705       set_bad(i);
 706     }
 707   }
 708 
 709   // Done!
 710   _live = nullptr;
 711   _ifg = nullptr;
 712   C->set_indexSet_arena(nullptr);  // ResourceArea is at end of scope
 713 }
 714 
 715 void PhaseChaitin::de_ssa() {
 716   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 717   // number.  A few get the ZERO live range number.  These do not
 718   // get allocated, but instead rely on correct scheduling to ensure that
 719   // only one instance is simultaneously live at a time.
 720   uint lr_counter = 1;
 721   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 722     Block* block = _cfg.get_block(i);
 723     uint cnt = block->number_of_nodes();
 724 
 725     // Handle all the normal Nodes in the block
 726     for( uint j = 0; j < cnt; j++ ) {
 727       Node *n = block->get_node(j);
 728       // Pre-color to the zero live range, or pick virtual register
 729       const RegMask &rm = n->out_RegMask();
 730       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
 731     }
 732   }
 733 
 734   // Reset the Union-Find mapping to be identity
 735   _lrg_map.reset_uf_map(lr_counter);
 736 }
 737 
 738 void PhaseChaitin::mark_ssa() {
 739   // Use ssa names to populate the live range maps or if no mask
 740   // is available, use the 0 entry.
 741   uint max_idx = 0;
 742   for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 743     Block* block = _cfg.get_block(i);
 744     uint cnt = block->number_of_nodes();
 745 
 746     // Handle all the normal Nodes in the block
 747     for ( uint j = 0; j < cnt; j++ ) {
 748       Node *n = block->get_node(j);
 749       // Pre-color to the zero live range, or pick virtual register
 750       const RegMask &rm = n->out_RegMask();
 751       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
 752       max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
 753     }
 754   }
 755   _lrg_map.set_max_lrg_id(max_idx+1);
 756 
 757   // Reset the Union-Find mapping to be identity
 758   _lrg_map.reset_uf_map(max_idx+1);
 759 }
 760 
 761 
 762 // Gather LiveRanGe information, including register masks.  Modification of
 763 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 764 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 765 
 766   // Nail down the frame pointer live range
 767   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
 768   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 769 
 770   // For all blocks
 771   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
 772     Block* block = _cfg.get_block(i);
 773 
 774     // For all instructions
 775     for (uint j = 1; j < block->number_of_nodes(); j++) {
 776       Node* n = block->get_node(j);
 777       uint input_edge_start =1; // Skip control most nodes
 778       bool is_machine_node = false;
 779       if (n->is_Mach()) {
 780         is_machine_node = true;
 781         input_edge_start = n->as_Mach()->oper_input_base();
 782       }
 783       uint idx = n->is_Copy();
 784 
 785       // Get virtual register number, same as LiveRanGe index
 786       uint vreg = _lrg_map.live_range_id(n);
 787       LRG& lrg = lrgs(vreg);
 788       if (vreg) {              // No vreg means un-allocable (e.g. memory)
 789 
 790         // Check for float-vs-int live range (used in register-pressure
 791         // calculations)
 792         const Type *n_type = n->bottom_type();
 793         if (n_type->is_floatingpoint()) {
 794           lrg._is_float = 1;
 795         }
 796 
 797         // Check for twice prior spilling.  Once prior spilling might have
 798         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 799         // further spilling is unlikely to make progress.
 800         if (_spilled_once.test(n->_idx)) {
 801           lrg._was_spilled1 = 1;
 802           if (_spilled_twice.test(n->_idx)) {
 803             lrg._was_spilled2 = 1;
 804           }
 805         }
 806 
 807 #ifndef PRODUCT
 808         // Collect bits not used by product code, but which may be useful for
 809         // debugging.
 810 
 811         // Collect has-copy bit
 812         if (idx) {
 813           lrg._has_copy = 1;
 814           uint clidx = _lrg_map.live_range_id(n->in(idx));
 815           LRG& copy_src = lrgs(clidx);
 816           copy_src._has_copy = 1;
 817         }
 818 
 819         if (trace_spilling() && lrg._def != nullptr) {
 820           // collect defs for MultiDef printing
 821           if (lrg._defs == nullptr) {
 822             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, nullptr);
 823             lrg._defs->append(lrg._def);
 824           }
 825           lrg._defs->append(n);
 826         }
 827 #endif
 828 
 829         // Check for a single def LRG; these can spill nicely
 830         // via rematerialization.  Flag as null for no def found
 831         // yet, or 'n' for single def or -1 for many defs.
 832         lrg._def = lrg._def ? NodeSentinel : n;
 833 
 834         // Limit result register mask to acceptable registers
 835         const RegMask &rm = n->out_RegMask();
 836         lrg.AND( rm );
 837 
 838         uint ireg = n->ideal_reg();
 839         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 840                 "oops must be in Op_RegP's" );
 841 
 842         // Check for vector live range (only if vector register is used).
 843         // On SPARC vector uses RegD which could be misaligned so it is not
 844         // processes as vector in RA.
 845         if (RegMask::is_vector(ireg)) {
 846           lrg._is_vector = 1;
 847           if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
 848             assert(Matcher::supports_scalable_vector(), "scalable vector should be supported");
 849             lrg._is_scalable = 1;
 850             // For scalable vector, when it is allocated in physical register,
 851             // num_regs is RegMask::SlotsPerVecA for reg mask,
 852             // which may not be the actual physical register size.
 853             // If it is allocated in stack, we need to get the actual
 854             // physical length of scalable vector register.
 855             lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
 856           }
 857         }
 858 
 859         if (ireg == Op_RegVectMask) {
 860           assert(Matcher::has_predicated_vectors(), "predicated vector should be supported");
 861           lrg._is_predicate = 1;
 862           if (Matcher::supports_scalable_vector()) {
 863             lrg._is_scalable = 1;
 864             // For scalable predicate, when it is allocated in physical register,
 865             // num_regs is RegMask::SlotsPerRegVectMask for reg mask,
 866             // which may not be the actual physical register size.
 867             // If it is allocated in stack, we need to get the actual
 868             // physical length of scalable predicate register.
 869             lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots());
 870           }
 871         }
 872         assert(n_type->isa_vect() == nullptr || lrg._is_vector ||
 873                ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,
 874                "vector must be in vector registers");
 875 
 876         // Check for bound register masks
 877         const RegMask &lrgmask = lrg.mask();
 878         if (lrgmask.is_bound(ireg)) {
 879           lrg._is_bound = 1;
 880         }
 881 
 882         // Check for maximum frequency value
 883         if (lrg._maxfreq < block->_freq) {
 884           lrg._maxfreq = block->_freq;
 885         }
 886 
 887         // Check for oop-iness, or long/double
 888         // Check for multi-kill projection
 889         switch (ireg) {
 890         case MachProjNode::fat_proj:
 891           // Fat projections have size equal to number of registers killed
 892           lrg.set_num_regs(rm.Size());
 893           lrg.set_reg_pressure(lrg.num_regs());
 894           lrg._fat_proj = 1;
 895           lrg._is_bound = 1;
 896           break;
 897         case Op_RegP:
 898 #ifdef _LP64
 899           lrg.set_num_regs(2);  // Size is 2 stack words
 900 #else
 901           lrg.set_num_regs(1);  // Size is 1 stack word
 902 #endif
 903           // Register pressure is tracked relative to the maximum values
 904           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 905           // and relative to other types which compete for the same regs.
 906           //
 907           // The following table contains suggested values based on the
 908           // architectures as defined in each .ad file.
 909           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 910           // compile-speed or performance.
 911           // Note1:
 912           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 913           // since .ad registers are defined as high and low halves.
 914           // These reg_pressure values remain compatible with the code
 915           // in is_high_pressure() which relates get_invalid_mask_size(),
 916           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 917           // Note2:
 918           // SPARC -d32 has 24 registers available for integral values,
 919           // but only 10 of these are safe for 64-bit longs.
 920           // Using set_reg_pressure(2) for both int and long means
 921           // the allocator will believe it can fit 26 longs into
 922           // registers.  Using 2 for longs and 1 for ints means the
 923           // allocator will attempt to put 52 integers into registers.
 924           // The settings below limit this problem to methods with
 925           // many long values which are being run on 32-bit SPARC.
 926           //
 927           // ------------------- reg_pressure --------------------
 928           // Each entry is reg_pressure_per_value,number_of_regs
 929           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 930           // IA32     2     1     1          1    1          6           6
 931           // IA64     1     1     1          1    1         50          41
 932           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 933           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 934           // AMD64    1     1     1          1    1         14          15
 935           // -----------------------------------------------------
 936           lrg.set_reg_pressure(1);  // normally one value per register
 937           if( n_type->isa_oop_ptr() ) {
 938             lrg._is_oop = 1;
 939           }
 940           break;
 941         case Op_RegL:           // Check for long or double
 942         case Op_RegD:
 943           lrg.set_num_regs(2);
 944           // Define platform specific register pressure
 945 #if defined(ARM32)
 946           lrg.set_reg_pressure(2);
 947 #elif defined(IA32)
 948           if( ireg == Op_RegL ) {
 949             lrg.set_reg_pressure(2);
 950           } else {
 951             lrg.set_reg_pressure(1);
 952           }
 953 #else
 954           lrg.set_reg_pressure(1);  // normally one value per register
 955 #endif
 956           // If this def of a double forces a mis-aligned double,
 957           // flag as '_fat_proj' - really flag as allowing misalignment
 958           // AND changes how we count interferences.  A mis-aligned
 959           // double can interfere with TWO aligned pairs, or effectively
 960           // FOUR registers!
 961           if (rm.is_misaligned_pair()) {
 962             lrg._fat_proj = 1;
 963             lrg._is_bound = 1;
 964           }
 965           break;
 966         case Op_RegVectMask:
 967           assert(Matcher::has_predicated_vectors(), "sanity");
 968           assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity");
 969           lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
 970           lrg.set_reg_pressure(1);
 971           break;
 972         case Op_RegF:
 973         case Op_RegI:
 974         case Op_RegN:
 975         case Op_RegFlags:
 976         case 0:                 // not an ideal register
 977           lrg.set_num_regs(1);
 978           lrg.set_reg_pressure(1);
 979           break;
 980         case Op_VecA:
 981           assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
 982           assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity");
 983           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned");
 984           lrg.set_num_regs(RegMask::SlotsPerVecA);
 985           lrg.set_reg_pressure(1);
 986           break;
 987         case Op_VecS:
 988           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
 989           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
 990           lrg.set_num_regs(RegMask::SlotsPerVecS);
 991           lrg.set_reg_pressure(1);
 992           break;
 993         case Op_VecD:
 994           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
 995           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
 996           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
 997           lrg.set_num_regs(RegMask::SlotsPerVecD);
 998           lrg.set_reg_pressure(1);
 999           break;
1000         case Op_VecX:
1001           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
1002           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
1003           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
1004           lrg.set_num_regs(RegMask::SlotsPerVecX);
1005           lrg.set_reg_pressure(1);
1006           break;
1007         case Op_VecY:
1008           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
1009           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
1010           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
1011           lrg.set_num_regs(RegMask::SlotsPerVecY);
1012           lrg.set_reg_pressure(1);
1013           break;
1014         case Op_VecZ:
1015           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
1016           assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
1017           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
1018           lrg.set_num_regs(RegMask::SlotsPerVecZ);
1019           lrg.set_reg_pressure(1);
1020           break;
1021         default:
1022           ShouldNotReachHere();
1023         }
1024       }
1025 
1026       // Now do the same for inputs
1027       uint cnt = n->req();
1028       // Setup for CISC SPILLING
1029       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
1030       if( UseCISCSpill && after_aggressive ) {
1031         inp = n->cisc_operand();
1032         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
1033           // Convert operand number to edge index number
1034           inp = n->as_Mach()->operand_index(inp);
1035       }
1036 
1037       // Prepare register mask for each input
1038       for( uint k = input_edge_start; k < cnt; k++ ) {
1039         uint vreg = _lrg_map.live_range_id(n->in(k));
1040         if (!vreg) {
1041           continue;
1042         }
1043 
1044         // If this instruction is CISC Spillable, add the flags
1045         // bit to its appropriate input
1046         if( UseCISCSpill && after_aggressive && inp == k ) {
1047 #ifndef PRODUCT
1048           if( TraceCISCSpill ) {
1049             tty->print("  use_cisc_RegMask: ");
1050             n->dump();
1051           }
1052 #endif
1053           n->as_Mach()->use_cisc_RegMask();
1054         }
1055 
1056         if (is_machine_node && _scheduling_info_generated) {
1057           MachNode* cur_node = n->as_Mach();
1058           // this is cleaned up by register allocation
1059           if (k >= cur_node->num_opnds()) continue;
1060         }
1061 
1062         LRG &lrg = lrgs(vreg);
1063         // // Testing for floating point code shape
1064         // Node *test = n->in(k);
1065         // if( test->is_Mach() ) {
1066         //   MachNode *m = test->as_Mach();
1067         //   int  op = m->ideal_Opcode();
1068         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1069         //     int zzz = 1;
1070         //   }
1071         // }
1072 
1073         // Limit result register mask to acceptable registers.
1074         // Do not limit registers from uncommon uses before
1075         // AggressiveCoalesce.  This effectively pre-virtual-splits
1076         // around uncommon uses of common defs.
1077         const RegMask &rm = n->in_RegMask(k);
1078         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1079           // Since we are BEFORE aggressive coalesce, leave the register
1080           // mask untrimmed by the call.  This encourages more coalescing.
1081           // Later, AFTER aggressive, this live range will have to spill
1082           // but the spiller handles slow-path calls very nicely.
1083         } else {
1084           lrg.AND( rm );
1085         }
1086 
1087         // Check for bound register masks
1088         const RegMask &lrgmask = lrg.mask();
1089         uint kreg = n->in(k)->ideal_reg();
1090         bool is_vect = RegMask::is_vector(kreg);
1091         assert(n->in(k)->bottom_type()->isa_vect() == nullptr || is_vect ||
1092                kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,
1093                "vector must be in vector registers");
1094         if (lrgmask.is_bound(kreg))
1095           lrg._is_bound = 1;
1096 
1097         // If this use of a double forces a mis-aligned double,
1098         // flag as '_fat_proj' - really flag as allowing misalignment
1099         // AND changes how we count interferences.  A mis-aligned
1100         // double can interfere with TWO aligned pairs, or effectively
1101         // FOUR registers!
1102 #ifdef ASSERT
1103         if (is_vect && !_scheduling_info_generated) {
1104           if (lrg.num_regs() != 0) {
1105             assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1106             assert(!lrg._fat_proj, "sanity");
1107             assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1108           } else {
1109             assert(n->is_Phi(), "not all inputs processed only if Phi");
1110           }
1111         }
1112 #endif
1113         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1114           lrg._fat_proj = 1;
1115           lrg._is_bound = 1;
1116         }
1117         // if the LRG is an unaligned pair, we will have to spill
1118         // so clear the LRG's register mask if it is not already spilled
1119         if (!is_vect && !n->is_SpillCopy() &&
1120             (lrg._def == nullptr || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1121             lrgmask.is_misaligned_pair()) {
1122           lrg.Clear();
1123         }
1124 
1125         // Check for maximum frequency value
1126         if (lrg._maxfreq < block->_freq) {
1127           lrg._maxfreq = block->_freq;
1128         }
1129 
1130       } // End for all allocated inputs
1131     } // end for all instructions
1132   } // end for all blocks
1133 
1134   // Final per-liverange setup
1135   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1136     LRG &lrg = lrgs(i2);
1137     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1138     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1139       lrg.clear_to_sets();
1140     }
1141     lrg.compute_set_mask_size();
1142     if (lrg.not_free()) {      // Handle case where we lose from the start
1143       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1144       lrg._direct_conflict = 1;
1145     }
1146     lrg.set_degree(0);          // no neighbors in IFG yet
1147   }
1148 }
1149 
1150 // Set the was-lo-degree bit.  Conservative coalescing should not change the
1151 // colorability of the graph.  If any live range was of low-degree before
1152 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1153 // The bit is checked in Simplify.
1154 void PhaseChaitin::set_was_low() {
1155 #ifdef ASSERT
1156   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1157     int size = lrgs(i).num_regs();
1158     uint old_was_lo = lrgs(i)._was_lo;
1159     lrgs(i)._was_lo = 0;
1160     if( lrgs(i).lo_degree() ) {
1161       lrgs(i)._was_lo = 1;      // Trivially of low degree
1162     } else {                    // Else check the Brigg's assertion
1163       // Brigg's observation is that the lo-degree neighbors of a
1164       // hi-degree live range will not interfere with the color choices
1165       // of said hi-degree live range.  The Simplify reverse-stack-coloring
1166       // order takes care of the details.  Hence you do not have to count
1167       // low-degree neighbors when determining if this guy colors.
1168       int briggs_degree = 0;
1169       IndexSet *s = _ifg->neighbors(i);
1170       IndexSetIterator elements(s);
1171       uint lidx;
1172       while((lidx = elements.next()) != 0) {
1173         if( !lrgs(lidx).lo_degree() )
1174           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1175       }
1176       if( briggs_degree < lrgs(i).degrees_of_freedom() )
1177         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1178     }
1179     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1180   }
1181 #endif
1182 }
1183 
1184 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1185 void PhaseChaitin::cache_lrg_info( ) {
1186   Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1187 
1188   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1189     LRG &lrg = lrgs(i);
1190 
1191     // Check for being of low degree: means we can be trivially colored.
1192     // Low degree, dead or must-spill guys just get to simplify right away
1193     if( lrg.lo_degree() ||
1194        !lrg.alive() ||
1195         lrg._must_spill ) {
1196       // Split low degree list into those guys that must get a
1197       // register and those that can go to register or stack.
1198       // The idea is LRGs that can go register or stack color first when
1199       // they have a good chance of getting a register.  The register-only
1200       // lo-degree live ranges always get a register.
1201       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1202       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1203         lrg._next = _lo_stk_degree;
1204         _lo_stk_degree = i;
1205       } else {
1206         lrg._next = _lo_degree;
1207         _lo_degree = i;
1208       }
1209     } else {                    // Else high degree
1210       lrgs(_hi_degree)._prev = i;
1211       lrg._next = _hi_degree;
1212       lrg._prev = 0;
1213       _hi_degree = i;
1214     }
1215   }
1216 }
1217 
1218 // Simplify the IFG by removing LRGs of low degree.
1219 void PhaseChaitin::Simplify( ) {
1220   Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1221 
1222   while( 1 ) {                  // Repeat till simplified it all
1223     // May want to explore simplifying lo_degree before _lo_stk_degree.
1224     // This might result in more spills coloring into registers during
1225     // Select().
1226     while( _lo_degree || _lo_stk_degree ) {
1227       // If possible, pull from lo_stk first
1228       uint lo;
1229       if( _lo_degree ) {
1230         lo = _lo_degree;
1231         _lo_degree = lrgs(lo)._next;
1232       } else {
1233         lo = _lo_stk_degree;
1234         _lo_stk_degree = lrgs(lo)._next;
1235       }
1236 
1237       // Put the simplified guy on the simplified list.
1238       lrgs(lo)._next = _simplified;
1239       _simplified = lo;
1240       // If this guy is "at risk" then mark his current neighbors
1241       if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1242         IndexSetIterator elements(_ifg->neighbors(lo));
1243         uint datum;
1244         while ((datum = elements.next()) != 0) {
1245           lrgs(datum)._risk_bias = lo;
1246         }
1247       }
1248 
1249       // Yank this guy from the IFG.
1250       IndexSet *adj = _ifg->remove_node(lo);
1251       if (adj->is_empty()) {
1252         continue;
1253       }
1254 
1255       // If any neighbors' degrees fall below their number of
1256       // allowed registers, then put that neighbor on the low degree
1257       // list.  Note that 'degree' can only fall and 'numregs' is
1258       // unchanged by this action.  Thus the two are equal at most once,
1259       // so LRGs hit the lo-degree worklist at most once.
1260       IndexSetIterator elements(adj);
1261       uint neighbor;
1262       while ((neighbor = elements.next()) != 0) {
1263         LRG *n = &lrgs(neighbor);
1264 #ifdef ASSERT
1265         if (VerifyRegisterAllocator) {
1266           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1267         }
1268 #endif
1269 
1270         // Check for just becoming of-low-degree just counting registers.
1271         // _must_spill live ranges are already on the low degree list.
1272         if (n->just_lo_degree() && !n->_must_spill) {
1273           assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice");
1274           // Pull from hi-degree list
1275           uint prev = n->_prev;
1276           uint next = n->_next;
1277           if (prev) {
1278             lrgs(prev)._next = next;
1279           } else {
1280             _hi_degree = next;
1281           }
1282           lrgs(next)._prev = prev;
1283           n->_next = _lo_degree;
1284           _lo_degree = neighbor;
1285         }
1286       }
1287     } // End of while lo-degree/lo_stk_degree worklist not empty
1288 
1289     // Check for got everything: is hi-degree list empty?
1290     if (!_hi_degree) break;
1291 
1292     // Time to pick a potential spill guy
1293     uint lo_score = _hi_degree;
1294     double score = lrgs(lo_score).score();
1295     double area = lrgs(lo_score)._area;
1296     double cost = lrgs(lo_score)._cost;
1297     bool bound = lrgs(lo_score)._is_bound;
1298 
1299     // Find cheapest guy
1300     debug_only( int lo_no_simplify=0; );
1301     for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1302       assert(!_ifg->_yanked->test(i), "");
1303       // It's just vaguely possible to move hi-degree to lo-degree without
1304       // going through a just-lo-degree stage: If you remove a double from
1305       // a float live range it's degree will drop by 2 and you can skip the
1306       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1307       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1308       if( lrgs(i).lo_degree() ) {
1309         lo_score = i;
1310         break;
1311       }
1312       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1313       double iscore = lrgs(i).score();
1314       double iarea = lrgs(i)._area;
1315       double icost = lrgs(i)._cost;
1316       bool ibound = lrgs(i)._is_bound;
1317 
1318       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1319       // wins.  Ties happen because all live ranges in question have spilled
1320       // a few times before and the spill-score adds a huge number which
1321       // washes out the low order bits.  We are choosing the lesser of 2
1322       // evils; in this case pick largest area to spill.
1323       // Ties also happen when live ranges are defined and used only inside
1324       // one block. In which case their area is 0 and score set to max.
1325       // In such case choose bound live range over unbound to free registers
1326       // or with smaller cost to spill.
1327       if ( iscore < score ||
1328           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1329           (iscore == score && iarea == area &&
1330            ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1331         lo_score = i;
1332         score = iscore;
1333         area = iarea;
1334         cost = icost;
1335         bound = ibound;
1336       }
1337     }
1338     LRG *lo_lrg = &lrgs(lo_score);
1339     // The live range we choose for spilling is either hi-degree, or very
1340     // rarely it can be low-degree.  If we choose a hi-degree live range
1341     // there better not be any lo-degree choices.
1342     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1343 
1344     // Pull from hi-degree list
1345     uint prev = lo_lrg->_prev;
1346     uint next = lo_lrg->_next;
1347     if( prev ) lrgs(prev)._next = next;
1348     else _hi_degree = next;
1349     lrgs(next)._prev = prev;
1350     // Jam him on the lo-degree list, despite his high degree.
1351     // Maybe he'll get a color, and maybe he'll spill.
1352     // Only Select() will know.
1353     lrgs(lo_score)._at_risk = true;
1354     _lo_degree = lo_score;
1355     lo_lrg->_next = 0;
1356 
1357   } // End of while not simplified everything
1358 
1359 }
1360 
1361 // Is 'reg' register legal for 'lrg'?
1362 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1363   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1364       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1365     // RA uses OptoReg which represent the highest element of a registers set.
1366     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1367     // in which XMMd is used by RA to represent such vectors. A double value
1368     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1369     // The register mask uses largest bits set of overlapping register sets.
1370     // On x86 with AVX it uses 8 bits for each XMM registers set.
1371     //
1372     // The 'lrg' already has cleared-to-set register mask (done in Select()
1373     // before calling choose_color()). Passing mask.Member(reg) check above
1374     // indicates that the size (num_regs) of 'reg' set is less or equal to
1375     // 'lrg' set size.
1376     // For set size 1 any register which is member of 'lrg' mask is legal.
1377     if (lrg.num_regs()==1)
1378       return true;
1379     // For larger sets only an aligned register with the same set size is legal.
1380     int mask = lrg.num_regs()-1;
1381     if ((reg&mask) == mask)
1382       return true;
1383   }
1384   return false;
1385 }
1386 
1387 static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1388   int num_regs = lrg.num_regs();
1389   OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1390 
1391   if (lrg.is_scalable()) {
1392     // a physical register is found
1393     if (chunk == 0 && OptoReg::is_reg(assigned)) {
1394       return assigned;
1395     }
1396 
1397     // find available stack slots for scalable register
1398     if (lrg._is_vector) {
1399       num_regs = lrg.scalable_reg_slots();
1400       // if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1401       if (num_regs == RegMask::SlotsPerVecA) {
1402         return assigned;
1403       }
1404 
1405       // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1406       // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1407       // instead of SlotsPerVecA bits.
1408       assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1409       while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1410         // Verify the found reg has scalable_reg_slots() bits set.
1411         if (mask.is_valid_reg(assigned, num_regs)) {
1412           return assigned;
1413         } else {
1414           // Remove more for each iteration
1415           mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1416           mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1417           assigned = mask.find_first_set(lrg, num_regs);
1418         }
1419       }
1420       return OptoReg::Bad; // will cause chunk change, and retry next chunk
1421     } else if (lrg._is_predicate) {
1422       assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register");
1423       num_regs = lrg.scalable_reg_slots();
1424       mask.clear_to_sets(num_regs);
1425       return mask.find_first_set(lrg, num_regs);
1426     }
1427   }
1428 
1429   return assigned;
1430 }
1431 
1432 // Choose a color using the biasing heuristic
1433 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1434 
1435   // Check for "at_risk" LRG's
1436   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1437   if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1438     // Walk the colored neighbors of the "at_risk" candidate
1439     // Choose a color which is both legal and already taken by a neighbor
1440     // of the "at_risk" candidate in order to improve the chances of the
1441     // "at_risk" candidate of coloring
1442     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1443     uint datum;
1444     while ((datum = elements.next()) != 0) {
1445       OptoReg::Name reg = lrgs(datum).reg();
1446       // If this LRG's register is legal for us, choose it
1447       if (is_legal_reg(lrg, reg, chunk))
1448         return reg;
1449     }
1450   }
1451 
1452   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1453   if (copy_lrg != 0) {
1454     // If he has a color,
1455     if(!_ifg->_yanked->test(copy_lrg)) {
1456       OptoReg::Name reg = lrgs(copy_lrg).reg();
1457       //  And it is legal for you,
1458       if (is_legal_reg(lrg, reg, chunk))
1459         return reg;
1460     } else if( chunk == 0 ) {
1461       // Choose a color which is legal for him
1462       RegMask tempmask = lrg.mask();
1463       tempmask.AND(lrgs(copy_lrg).mask());
1464       tempmask.clear_to_sets(lrg.num_regs());
1465       OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1466       if (OptoReg::is_valid(reg))
1467         return reg;
1468     }
1469   }
1470 
1471   // If no bias info exists, just go with the register selection ordering
1472   if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) {
1473     // Find an aligned set
1474     return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1475   }
1476 
1477   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1478   // copy removal to remove many more copies, by preventing a just-assigned
1479   // register from being repeatedly assigned.
1480   OptoReg::Name reg = lrg.mask().find_first_elem();
1481   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1482     // This 'Remove; find; Insert' idiom is an expensive way to find the
1483     // SECOND element in the mask.
1484     lrg.Remove(reg);
1485     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1486     lrg.Insert(reg);
1487     if( OptoReg::is_reg(reg2))
1488       reg = reg2;
1489   }
1490   return OptoReg::add( reg, chunk );
1491 }
1492 
1493 // Choose a color in the current chunk
1494 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1495   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1496   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1497 
1498   if( lrg.num_regs() == 1 ||    // Common Case
1499       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1500     // Use a heuristic to "bias" the color choice
1501     return bias_color(lrg, chunk);
1502 
1503   assert(!lrg._is_vector, "should be not vector here" );
1504   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1505 
1506   // Fat-proj case or misaligned double argument.
1507   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1508          lrg.num_regs() == 2,"fat projs exactly color" );
1509   assert( !chunk, "always color in 1st chunk" );
1510   // Return the highest element in the set.
1511   return lrg.mask().find_last_elem();
1512 }
1513 
1514 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1515 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1516 // everything going back is guaranteed a color.  Select that color.  If some
1517 // hi-degree LRG cannot get a color then we record that we must spill.
1518 uint PhaseChaitin::Select( ) {
1519   Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1520 
1521   uint spill_reg = LRG::SPILL_REG;
1522   _max_reg = OptoReg::Name(0);  // Past max register used
1523   while( _simplified ) {
1524     // Pull next LRG from the simplified list - in reverse order of removal
1525     uint lidx = _simplified;
1526     LRG *lrg = &lrgs(lidx);
1527     _simplified = lrg->_next;
1528 
1529 #ifndef PRODUCT
1530     if (trace_spilling()) {
1531       ttyLocker ttyl;
1532       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1533                     lrg->degrees_of_freedom());
1534       lrg->dump();
1535     }
1536 #endif
1537 
1538     // Re-insert into the IFG
1539     _ifg->re_insert(lidx);
1540     if( !lrg->alive() ) continue;
1541     // capture allstackedness flag before mask is hacked
1542     const int is_allstack = lrg->mask().is_AllStack();
1543 
1544     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1545     // to avoid the GOTO, although the refactored code will not
1546     // be much clearer.  We arrive here IFF we have a stack-based
1547     // live range that cannot color in the current chunk, and it
1548     // has to move into the next free stack chunk.
1549     int chunk = 0;              // Current chunk is first chunk
1550     retry_next_chunk:
1551 
1552     // Remove neighbor colors
1553     IndexSet *s = _ifg->neighbors(lidx);
1554     debug_only(RegMask orig_mask = lrg->mask();)
1555 
1556     if (!s->is_empty()) {
1557       IndexSetIterator elements(s);
1558       uint neighbor;
1559       while ((neighbor = elements.next()) != 0) {
1560         // Note that neighbor might be a spill_reg.  In this case, exclusion
1561         // of its color will be a no-op, since the spill_reg chunk is in outer
1562         // space.  Also, if neighbor is in a different chunk, this exclusion
1563         // will be a no-op.  (Later on, if lrg runs out of possible colors in
1564         // its chunk, a new chunk of color may be tried, in which case
1565         // examination of neighbors is started again, at retry_next_chunk.)
1566         LRG &nlrg = lrgs(neighbor);
1567         OptoReg::Name nreg = nlrg.reg();
1568         // Only subtract masks in the same chunk
1569         if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1570 #ifndef PRODUCT
1571           uint size = lrg->mask().Size();
1572           RegMask rm = lrg->mask();
1573 #endif
1574           lrg->SUBTRACT(nlrg.mask());
1575 #ifndef PRODUCT
1576           if (trace_spilling() && lrg->mask().Size() != size) {
1577             ttyLocker ttyl;
1578             tty->print("L%d ", lidx);
1579             rm.dump();
1580             tty->print(" intersected L%d ", neighbor);
1581             nlrg.mask().dump();
1582             tty->print(" removed ");
1583             rm.SUBTRACT(lrg->mask());
1584             rm.dump();
1585             tty->print(" leaving ");
1586             lrg->mask().dump();
1587             tty->cr();
1588           }
1589 #endif
1590         }
1591       }
1592     }
1593     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1594     // Aligned pairs need aligned masks
1595     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1596     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1597       lrg->clear_to_sets();
1598     }
1599 
1600     // Check if a color is available and if so pick the color
1601     OptoReg::Name reg = choose_color( *lrg, chunk );
1602 
1603     //---------------
1604     // If we fail to color and the AllStack flag is set, trigger
1605     // a chunk-rollover event
1606     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1607       // Bump register mask up to next stack chunk
1608       chunk += RegMask::CHUNK_SIZE;
1609       lrg->Set_All();
1610       goto retry_next_chunk;
1611     }
1612 
1613     //---------------
1614     // Did we get a color?
1615     else if( OptoReg::is_valid(reg)) {
1616 #ifndef PRODUCT
1617       RegMask avail_rm = lrg->mask();
1618 #endif
1619 
1620       // Record selected register
1621       lrg->set_reg(reg);
1622 
1623       if( reg >= _max_reg )     // Compute max register limit
1624         _max_reg = OptoReg::add(reg,1);
1625       // Fold reg back into normal space
1626       reg = OptoReg::add(reg,-chunk);
1627 
1628       // If the live range is not bound, then we actually had some choices
1629       // to make.  In this case, the mask has more bits in it than the colors
1630       // chosen.  Restrict the mask to just what was picked.
1631       int n_regs = lrg->num_regs();
1632       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1633       if (n_regs == 1 || !lrg->_fat_proj) {
1634         if (Matcher::supports_scalable_vector()) {
1635           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity");
1636         } else {
1637           assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1638         }
1639         lrg->Clear();           // Clear the mask
1640         lrg->Insert(reg);       // Set regmask to match selected reg
1641         // For vectors and pairs, also insert the low bit of the pair
1642         // We always choose the high bit, then mask the low bits by register size
1643         if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1644           n_regs = lrg->scalable_reg_slots();
1645         }
1646         for (int i = 1; i < n_regs; i++) {
1647           lrg->Insert(OptoReg::add(reg,-i));
1648         }
1649         lrg->set_mask_size(n_regs);
1650       } else {                  // Else fatproj
1651         // mask must be equal to fatproj bits, by definition
1652       }
1653 #ifndef PRODUCT
1654       if (trace_spilling()) {
1655         ttyLocker ttyl;
1656         tty->print("L%d selected ", lidx);
1657         lrg->mask().dump();
1658         tty->print(" from ");
1659         avail_rm.dump();
1660         tty->cr();
1661       }
1662 #endif
1663       // Note that reg is the highest-numbered register in the newly-bound mask.
1664     } // end color available case
1665 
1666     //---------------
1667     // Live range is live and no colors available
1668     else {
1669       assert( lrg->alive(), "" );
1670       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1671               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1672       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1673 
1674       // Assign the special spillreg register
1675       lrg->set_reg(OptoReg::Name(spill_reg++));
1676       // Do not empty the regmask; leave mask_size lying around
1677       // for use during Spilling
1678 #ifndef PRODUCT
1679       if( trace_spilling() ) {
1680         ttyLocker ttyl;
1681         tty->print("L%d spilling with neighbors: ", lidx);
1682         s->dump();
1683         debug_only(tty->print(" original mask: "));
1684         debug_only(orig_mask.dump());
1685         dump_lrg(lidx);
1686       }
1687 #endif
1688     } // end spill case
1689 
1690   }
1691 
1692   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1693 }
1694 
1695 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1696 void PhaseChaitin::set_was_spilled( Node *n ) {
1697   if( _spilled_once.test_set(n->_idx) )
1698     _spilled_twice.set(n->_idx);
1699 }
1700 
1701 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1702 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1703 void PhaseChaitin::fixup_spills() {
1704   // This function does only cisc spill work.
1705   if( !UseCISCSpill ) return;
1706 
1707   Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1708 
1709   // Grab the Frame Pointer
1710   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1711 
1712   // For all blocks
1713   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1714     Block* block = _cfg.get_block(i);
1715 
1716     // For all instructions in block
1717     uint last_inst = block->end_idx();
1718     for (uint j = 1; j <= last_inst; j++) {
1719       Node* n = block->get_node(j);
1720 
1721       // Dead instruction???
1722       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1723               C->top() == n ||  // Or the random TOP node
1724               n->is_Proj(),     // Or a fat-proj kill node
1725               "No dead instructions after post-alloc" );
1726 
1727       int inp = n->cisc_operand();
1728       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1729         // Convert operand number to edge index number
1730         MachNode *mach = n->as_Mach();
1731         inp = mach->operand_index(inp);
1732         Node *src = n->in(inp);   // Value to load or store
1733         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1734         OptoReg::Name src_reg = lrg_cisc.reg();
1735         // Doubles record the HIGH register of an adjacent pair.
1736         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1737         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1738           // This is a CISC Spill, get stack offset and construct new node
1739 #ifndef PRODUCT
1740           if( TraceCISCSpill ) {
1741             tty->print("    reg-instr:  ");
1742             n->dump();
1743           }
1744 #endif
1745           int stk_offset = reg2offset(src_reg);
1746           // Bailout if we might exceed node limit when spilling this instruction
1747           C->check_node_count(0, "out of nodes fixing spills");
1748           if (C->failing())  return;
1749           // Transform node
1750           MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1751           cisc->set_req(inp,fp);          // Base register is frame pointer
1752           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1753             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1754             cisc->ins_req(1,src);         // Requires a memory edge
1755           } else {
1756             // There is no space reserved for a memory edge before the inputs for
1757             // instructions which have "stackSlotX" parameter instead of "memory".
1758             // For example, "MoveF2I_stack_reg". We always need a memory edge from
1759             // src to cisc, else we might schedule cisc before src, loading from a
1760             // spill location before storing the spill. On some platforms, we land
1761             // in this else case because mach->oper_input_base() > 1, i.e. we have
1762             // multiple inputs. In some rare cases there are even multiple memory
1763             // operands, before and after spilling.
1764             // (e.g. spilling "addFPR24_reg_mem" to "addFPR24_mem_cisc")
1765             // In either case, there is no space in the inputs for the memory edge
1766             // so we add an additional precedence / memory edge.
1767             cisc->add_prec(src);
1768           }
1769           block->map_node(cisc, j);          // Insert into basic block
1770           n->subsume_by(cisc, C); // Correct graph
1771           //
1772           ++_used_cisc_instructions;
1773 #ifndef PRODUCT
1774           if( TraceCISCSpill ) {
1775             tty->print("    cisc-instr: ");
1776             cisc->dump();
1777           }
1778 #endif
1779         } else {
1780 #ifndef PRODUCT
1781           if( TraceCISCSpill ) {
1782             tty->print("    using reg-instr: ");
1783             n->dump();
1784           }
1785 #endif
1786           ++_unused_cisc_instructions;    // input can be on stack
1787         }
1788       }
1789 
1790     } // End of for all instructions
1791 
1792   } // End of for all blocks
1793 }
1794 
1795 // Helper to stretch above; recursively discover the base Node for a
1796 // given derived Node.  Easy for AddP-related machine nodes, but needs
1797 // to be recursive for derived Phis.
1798 Node* PhaseChaitin::find_base_for_derived(Node** derived_base_map, Node* derived, uint& maxlrg) {
1799   // See if already computed; if so return it
1800   if (derived_base_map[derived->_idx]) {
1801     return derived_base_map[derived->_idx];
1802   }
1803 
1804 #ifdef ASSERT
1805   if (derived->is_Mach() && derived->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) {
1806     // Bypass the verification node
1807     Node* base = find_base_for_derived(derived_base_map, derived->in(1), maxlrg);
1808     derived_base_map[derived->_idx] = base;
1809     return base;
1810   }
1811 #endif
1812 
1813   // See if this happens to be a base.
1814   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1815   // pointers derived from null!  These are always along paths that
1816   // can't happen at run-time but the optimizer cannot deduce it so
1817   // we have to handle it gracefully.
1818   assert(!derived->bottom_type()->isa_narrowoop() ||
1819          derived->bottom_type()->make_ptr()->is_ptr()->offset() == 0, "sanity");
1820   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1821   // If its an OOP with a non-zero offset, then it is derived.
1822   if (tj == nullptr || tj->offset() == 0) {
1823     derived_base_map[derived->_idx] = derived;
1824     return derived;
1825   }
1826   // Derived is null+offset?  Base is null!
1827   if( derived->is_Con() ) {
1828     Node *base = _matcher.mach_null();
1829     assert(base != nullptr, "sanity");
1830     if (base->in(0) == nullptr) {
1831       // Initialize it once and make it shared:
1832       // set control to _root and place it into Start block
1833       // (where top() node is placed).
1834       base->init_req(0, _cfg.get_root_node());
1835       Block *startb = _cfg.get_block_for_node(C->top());
1836       uint node_pos = startb->find_node(C->top());
1837       startb->insert_node(base, node_pos);
1838       _cfg.map_node_to_block(base, startb);
1839       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1840 
1841       // The loadConP0 might have projection nodes depending on architecture
1842       // Add the projection nodes to the CFG
1843       for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1844         Node* use = base->fast_out(i);
1845         if (use->is_MachProj()) {
1846           startb->insert_node(use, ++node_pos);
1847           _cfg.map_node_to_block(use, startb);
1848           new_lrg(use, maxlrg++);
1849         }
1850       }
1851     }
1852     if (_lrg_map.live_range_id(base) == 0) {
1853       new_lrg(base, maxlrg++);
1854     }
1855     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base null should be shared");
1856     derived_base_map[derived->_idx] = base;
1857     return base;
1858   }
1859 
1860   // Check for AddP-related opcodes
1861   if (!derived->is_Phi()) {
1862     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1863     Node *base = derived->in(AddPNode::Base);
1864     derived_base_map[derived->_idx] = base;
1865     return base;
1866   }
1867 
1868   // Recursively find bases for Phis.
1869   // First check to see if we can avoid a base Phi here.
1870   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1871   uint i;
1872   for( i = 2; i < derived->req(); i++ )
1873     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1874       break;
1875   // Went to the end without finding any different bases?
1876   if( i == derived->req() ) {   // No need for a base Phi here
1877     derived_base_map[derived->_idx] = base;
1878     return base;
1879   }
1880 
1881   // Now we see we need a base-Phi here to merge the bases
1882   const Type *t = base->bottom_type();
1883   base = new PhiNode( derived->in(0), t );
1884   for( i = 1; i < derived->req(); i++ ) {
1885     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1886     t = t->meet(base->in(i)->bottom_type());
1887   }
1888   base->as_Phi()->set_type(t);
1889 
1890   // Search the current block for an existing base-Phi
1891   Block *b = _cfg.get_block_for_node(derived);
1892   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1893     Node *phi = b->get_node(i);
1894     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1895       b->insert_node(base,  i); // Must insert created Phi here as base
1896       _cfg.map_node_to_block(base, b);
1897       new_lrg(base,maxlrg++);
1898       break;
1899     }
1900     // See if Phi matches.
1901     uint j;
1902     for( j = 1; j < base->req(); j++ )
1903       if( phi->in(j) != base->in(j) &&
1904           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different nulls
1905         break;
1906     if( j == base->req() ) {    // All inputs match?
1907       base = phi;               // Then use existing 'phi' and drop 'base'
1908       break;
1909     }
1910   }
1911 
1912 
1913   // Cache info for later passes
1914   derived_base_map[derived->_idx] = base;
1915   return base;
1916 }
1917 
1918 // At each Safepoint, insert extra debug edges for each pair of derived value/
1919 // base pointer that is live across the Safepoint for oopmap building.  The
1920 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1921 // required edge set.
1922 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1923   int must_recompute_live = false;
1924   uint maxlrg = _lrg_map.max_lrg_id();
1925   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1926   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1927 
1928   // For all blocks in RPO do...
1929   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1930     Block* block = _cfg.get_block(i);
1931     // Note use of deep-copy constructor.  I cannot hammer the original
1932     // liveout bits, because they are needed by the following coalesce pass.
1933     IndexSet liveout(_live->live(block));
1934 
1935     for (uint j = block->end_idx() + 1; j > 1; j--) {
1936       Node* n = block->get_node(j - 1);
1937 
1938       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1939       // like to see in the same register.  Compare uses the loop-phi and so
1940       // extends its live range BUT cannot be part of the cycle.  If this
1941       // extended live range overlaps with the update of the loop-phi value
1942       // we need both alive at the same time -- which requires at least 1
1943       // copy.  But because Intel has only 2-address registers we end up with
1944       // at least 2 copies, one before the loop-phi update instruction and
1945       // one after.  Instead we split the input to the compare just after the
1946       // phi.
1947       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1948         Node *phi = n->in(1);
1949         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1950           Block *phi_block = _cfg.get_block_for_node(phi);
1951           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1952             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1953             Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1954             insert_proj( phi_block, 1, spill, maxlrg++ );
1955             n->set_req(1,spill);
1956             must_recompute_live = true;
1957           }
1958         }
1959       }
1960 
1961       // Get value being defined
1962       uint lidx = _lrg_map.live_range_id(n);
1963       // Ignore the occasional brand-new live range
1964       if (lidx && lidx < _lrg_map.max_lrg_id()) {
1965         // Remove from live-out set
1966         liveout.remove(lidx);
1967 
1968         // Copies do not define a new value and so do not interfere.
1969         // Remove the copies source from the liveout set before interfering.
1970         uint idx = n->is_Copy();
1971         if (idx) {
1972           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1973         }
1974       }
1975 
1976       // Found a safepoint?
1977       JVMState *jvms = n->jvms();
1978       if (jvms && !liveout.is_empty()) {
1979         // Now scan for a live derived pointer
1980         IndexSetIterator elements(&liveout);
1981         uint neighbor;
1982         while ((neighbor = elements.next()) != 0) {
1983           // Find reaching DEF for base and derived values
1984           // This works because we are still in SSA during this call.
1985           Node *derived = lrgs(neighbor)._def;
1986           const TypePtr *tj = derived->bottom_type()->isa_ptr();
1987           assert(!derived->bottom_type()->isa_narrowoop() ||
1988                  derived->bottom_type()->make_ptr()->is_ptr()->offset() == 0, "sanity");
1989           // If its an OOP with a non-zero offset, then it is derived.
1990           if (tj && tj->offset() != 0 && tj->isa_oop_ptr()) {
1991             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1992             assert(base->_idx < _lrg_map.size(), "");
1993             // Add reaching DEFs of derived pointer and base pointer as a
1994             // pair of inputs
1995             n->add_req(derived);
1996             n->add_req(base);
1997 
1998             // See if the base pointer is already live to this point.
1999             // Since I'm working on the SSA form, live-ness amounts to
2000             // reaching def's.  So if I find the base's live range then
2001             // I know the base's def reaches here.
2002             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
2003                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
2004                  (_lrg_map.live_range_id(base) > 0) && // not a constant
2005                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
2006               // Base pointer is not currently live.  Since I stretched
2007               // the base pointer to here and it crosses basic-block
2008               // boundaries, the global live info is now incorrect.
2009               // Recompute live.
2010               must_recompute_live = true;
2011             } // End of if base pointer is not live to debug info
2012           }
2013         } // End of scan all live data for derived ptrs crossing GC point
2014       } // End of if found a GC point
2015 
2016       // Make all inputs live
2017       if (!n->is_Phi()) {      // Phi function uses come from prior block
2018         for (uint k = 1; k < n->req(); k++) {
2019           uint lidx = _lrg_map.live_range_id(n->in(k));
2020           if (lidx < _lrg_map.max_lrg_id()) {
2021             liveout.insert(lidx);
2022           }
2023         }
2024       }
2025 
2026     } // End of forall instructions in block
2027     liveout.clear();  // Free the memory used by liveout.
2028 
2029   } // End of forall blocks
2030   _lrg_map.set_max_lrg_id(maxlrg);
2031 
2032   // If I created a new live range I need to recompute live
2033   if (maxlrg != _ifg->_maxlrg) {
2034     must_recompute_live = true;
2035   }
2036 
2037   return must_recompute_live != 0;
2038 }
2039 
2040 // Extend the node to LRG mapping
2041 
2042 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
2043   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
2044 }
2045 
2046 #ifndef PRODUCT
2047 void PhaseChaitin::dump(const Node* n) const {
2048   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
2049   tty->print("L%d",r);
2050   if (r && n->Opcode() != Op_Phi) {
2051     if( _node_regs ) {          // Got a post-allocation copy of allocation?
2052       tty->print("[");
2053       OptoReg::Name second = get_reg_second(n);
2054       if( OptoReg::is_valid(second) ) {
2055         if( OptoReg::is_reg(second) )
2056           tty->print("%s:",Matcher::regName[second]);
2057         else
2058           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
2059       }
2060       OptoReg::Name first = get_reg_first(n);
2061       if( OptoReg::is_reg(first) )
2062         tty->print("%s]",Matcher::regName[first]);
2063       else
2064          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
2065     } else
2066     n->out_RegMask().dump();
2067   }
2068   tty->print("/N%d\t",n->_idx);
2069   tty->print("%s === ", n->Name());
2070   uint k;
2071   for (k = 0; k < n->req(); k++) {
2072     Node *m = n->in(k);
2073     if (!m) {
2074       tty->print("_ ");
2075     }
2076     else {
2077       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2078       tty->print("L%d",r);
2079       // Data MultiNode's can have projections with no real registers.
2080       // Don't die while dumping them.
2081       int op = n->Opcode();
2082       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2083         if( _node_regs ) {
2084           tty->print("[");
2085           OptoReg::Name second = get_reg_second(n->in(k));
2086           if( OptoReg::is_valid(second) ) {
2087             if( OptoReg::is_reg(second) )
2088               tty->print("%s:",Matcher::regName[second]);
2089             else
2090               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2091                          reg2offset_unchecked(second));
2092           }
2093           OptoReg::Name first = get_reg_first(n->in(k));
2094           if( OptoReg::is_reg(first) )
2095             tty->print("%s]",Matcher::regName[first]);
2096           else
2097             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2098                        reg2offset_unchecked(first));
2099         } else
2100           n->in_RegMask(k).dump();
2101       }
2102       tty->print("/N%d ",m->_idx);
2103     }
2104   }
2105   if( k < n->len() && n->in(k) ) tty->print("| ");
2106   for( ; k < n->len(); k++ ) {
2107     Node *m = n->in(k);
2108     if(!m) {
2109       break;
2110     }
2111     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2112     tty->print("L%d",r);
2113     tty->print("/N%d ",m->_idx);
2114   }
2115   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2116   else n->dump_spec(tty);
2117   if( _spilled_once.test(n->_idx ) ) {
2118     tty->print(" Spill_1");
2119     if( _spilled_twice.test(n->_idx ) )
2120       tty->print(" Spill_2");
2121   }
2122   tty->print("\n");
2123 }
2124 
2125 void PhaseChaitin::dump(const Block* b) const {
2126   b->dump_head(&_cfg);
2127 
2128   // For all instructions
2129   for( uint j = 0; j < b->number_of_nodes(); j++ )
2130     dump(b->get_node(j));
2131   // Print live-out info at end of block
2132   if( _live ) {
2133     tty->print("Liveout: ");
2134     IndexSet *live = _live->live(b);
2135     IndexSetIterator elements(live);
2136     tty->print("{");
2137     uint i;
2138     while ((i = elements.next()) != 0) {
2139       tty->print("L%d ", _lrg_map.find_const(i));
2140     }
2141     tty->print_cr("}");
2142   }
2143   tty->print("\n");
2144 }
2145 
2146 void PhaseChaitin::dump() const {
2147   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2148               _matcher._new_SP, _framesize );
2149 
2150   // For all blocks
2151   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2152     dump(_cfg.get_block(i));
2153   }
2154   // End of per-block dump
2155   tty->print("\n");
2156 
2157   if (!_ifg) {
2158     tty->print("(No IFG.)\n");
2159     return;
2160   }
2161 
2162   // Dump LRG array
2163   tty->print("--- Live RanGe Array ---\n");
2164   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2165     tty->print("L%d: ",i2);
2166     if (i2 < _ifg->_maxlrg) {
2167       lrgs(i2).dump();
2168     }
2169     else {
2170       tty->print_cr("new LRG");
2171     }
2172   }
2173   tty->cr();
2174 
2175   // Dump lo-degree list
2176   tty->print("Lo degree: ");
2177   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2178     tty->print("L%d ",i3);
2179   tty->cr();
2180 
2181   // Dump lo-stk-degree list
2182   tty->print("Lo stk degree: ");
2183   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2184     tty->print("L%d ",i4);
2185   tty->cr();
2186 
2187   // Dump lo-degree list
2188   tty->print("Hi degree: ");
2189   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2190     tty->print("L%d ",i5);
2191   tty->cr();
2192 }
2193 
2194 void PhaseChaitin::dump_degree_lists() const {
2195   // Dump lo-degree list
2196   tty->print("Lo degree: ");
2197   for( uint i = _lo_degree; i; i = lrgs(i)._next )
2198     tty->print("L%d ",i);
2199   tty->cr();
2200 
2201   // Dump lo-stk-degree list
2202   tty->print("Lo stk degree: ");
2203   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2204     tty->print("L%d ",i2);
2205   tty->cr();
2206 
2207   // Dump lo-degree list
2208   tty->print("Hi degree: ");
2209   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2210     tty->print("L%d ",i3);
2211   tty->cr();
2212 }
2213 
2214 void PhaseChaitin::dump_simplified() const {
2215   tty->print("Simplified: ");
2216   for( uint i = _simplified; i; i = lrgs(i)._next )
2217     tty->print("L%d ",i);
2218   tty->cr();
2219 }
2220 
2221 static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf, size_t buf_size) {
2222   if ((int)reg < 0)
2223     os::snprintf_checked(buf, buf_size, "<OptoReg::%d>", (int)reg);
2224   else if (OptoReg::is_reg(reg))
2225     strcpy(buf, Matcher::regName[reg]);
2226   else
2227     os::snprintf_checked(buf, buf_size, "%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2228             pc->reg2offset(reg));
2229   return buf+strlen(buf);
2230 }
2231 
2232 // Dump a register name into a buffer.  Be intelligent if we get called
2233 // before allocation is complete.
2234 char *PhaseChaitin::dump_register(const Node* n, char* buf, size_t buf_size) const {
2235   if( _node_regs ) {
2236     // Post allocation, use direct mappings, no LRG info available
2237     print_reg( get_reg_first(n), this, buf, buf_size);
2238   } else {
2239     uint lidx = _lrg_map.find_const(n); // Grab LRG number
2240     if( !_ifg ) {
2241       os::snprintf_checked(buf, buf_size, "L%d",lidx);  // No register binding yet
2242     } else if( !lidx ) {        // Special, not allocated value
2243       strcpy(buf,"Special");
2244     } else {
2245       if (lrgs(lidx)._is_vector) {
2246         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2247           print_reg( lrgs(lidx).reg(), this, buf, buf_size); // a bound machine register
2248         else
2249           os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2250       } else if( (lrgs(lidx).num_regs() == 1)
2251                  ? lrgs(lidx).mask().is_bound1()
2252                  : lrgs(lidx).mask().is_bound_pair() ) {
2253         // Hah!  We have a bound machine register
2254         print_reg( lrgs(lidx).reg(), this, buf, buf_size);
2255       } else {
2256         os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2257       }
2258     }
2259   }
2260   return buf+strlen(buf);
2261 }
2262 
2263 void PhaseChaitin::dump_for_spill_split_recycle() const {
2264   if( WizardMode && (PrintCompilation || PrintOpto) ) {
2265     // Display which live ranges need to be split and the allocator's state
2266     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2267     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2268       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2269         tty->print("L%d: ", bidx);
2270         lrgs(bidx).dump();
2271       }
2272     }
2273     tty->cr();
2274     dump();
2275   }
2276 }
2277 
2278 void PhaseChaitin::dump_frame() const {
2279   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2280   const TypeTuple *domain = C->tf()->domain_cc();
2281   const int        argcnt = domain->cnt() - TypeFunc::Parms;
2282 
2283   // Incoming arguments in registers dump
2284   for( int k = 0; k < argcnt; k++ ) {
2285     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2286     if( OptoReg::is_reg(parmreg))  {
2287       const char *reg_name = OptoReg::regname(parmreg);
2288       tty->print("#r%3.3d %s", parmreg, reg_name);
2289       parmreg = _matcher._parm_regs[k].second();
2290       if( OptoReg::is_reg(parmreg))  {
2291         tty->print(":%s", OptoReg::regname(parmreg));
2292       }
2293       tty->print("   : parm %d: ", k);
2294       domain->field_at(k + TypeFunc::Parms)->dump();
2295       tty->cr();
2296     }
2297   }
2298 
2299   // Check for un-owned padding above incoming args
2300   OptoReg::Name reg = _matcher._new_SP;
2301   if( reg > _matcher._in_arg_limit ) {
2302     reg = OptoReg::add(reg, -1);
2303     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2304   }
2305 
2306   // Incoming argument area dump
2307   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2308   while( reg > begin_in_arg ) {
2309     reg = OptoReg::add(reg, -1);
2310     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2311     int j;
2312     for( j = 0; j < argcnt; j++) {
2313       if( _matcher._parm_regs[j].first() == reg ||
2314           _matcher._parm_regs[j].second() == reg ) {
2315         tty->print("parm %d: ",j);
2316         domain->field_at(j + TypeFunc::Parms)->dump();
2317         tty->cr();
2318         break;
2319       }
2320     }
2321     if( j >= argcnt )
2322       tty->print_cr("HOLE, owned by SELF");
2323   }
2324 
2325   // Old outgoing preserve area
2326   while( reg > _matcher._old_SP ) {
2327     reg = OptoReg::add(reg, -1);
2328     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2329   }
2330 
2331   // Old SP
2332   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2333     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2334 
2335   // Preserve area dump
2336   int fixed_slots = C->fixed_slots();
2337   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2338   OptoReg::Name return_addr = _matcher.return_addr();
2339 
2340   reg = OptoReg::add(reg, -1);
2341   while (OptoReg::is_stack(reg)) {
2342     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2343     if (return_addr == reg) {
2344       tty->print_cr("return address");
2345     } else if (reg >= begin_in_preserve) {
2346       // Preserved slots are present on x86
2347       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2348         tty->print_cr("saved fp register");
2349       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2350                VerifyStackAtCalls)
2351         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2352       else
2353         tty->print_cr("in_preserve");
2354     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2355       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2356     } else {
2357       tty->print_cr("pad2, stack alignment");
2358     }
2359     reg = OptoReg::add(reg, -1);
2360   }
2361 
2362   // Spill area dump
2363   reg = OptoReg::add(_matcher._new_SP, _framesize );
2364   while( reg > _matcher._out_arg_limit ) {
2365     reg = OptoReg::add(reg, -1);
2366     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2367   }
2368 
2369   // Outgoing argument area dump
2370   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2371     reg = OptoReg::add(reg, -1);
2372     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2373   }
2374 
2375   // Outgoing new preserve area
2376   while( reg > _matcher._new_SP ) {
2377     reg = OptoReg::add(reg, -1);
2378     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2379   }
2380   tty->print_cr("#");
2381 }
2382 
2383 void PhaseChaitin::dump_bb(uint pre_order) const {
2384   tty->print_cr("---dump of B%d---",pre_order);
2385   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2386     Block* block = _cfg.get_block(i);
2387     if (block->_pre_order == pre_order) {
2388       dump(block);
2389     }
2390   }
2391 }
2392 
2393 void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2394   tty->print_cr("---dump of L%d---",lidx);
2395 
2396   if (_ifg) {
2397     if (lidx >= _lrg_map.max_lrg_id()) {
2398       tty->print("Attempt to print live range index beyond max live range.\n");
2399       return;
2400     }
2401     tty->print("L%d: ",lidx);
2402     if (lidx < _ifg->_maxlrg) {
2403       lrgs(lidx).dump();
2404     } else {
2405       tty->print_cr("new LRG");
2406     }
2407   }
2408   if( _ifg && lidx < _ifg->_maxlrg) {
2409     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2410     _ifg->neighbors(lidx)->dump();
2411     tty->cr();
2412   }
2413   // For all blocks
2414   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2415     Block* block = _cfg.get_block(i);
2416     int dump_once = 0;
2417 
2418     // For all instructions
2419     for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2420       Node *n = block->get_node(j);
2421       if (_lrg_map.find_const(n) == lidx) {
2422         if (!dump_once++) {
2423           tty->cr();
2424           block->dump_head(&_cfg);
2425         }
2426         dump(n);
2427         continue;
2428       }
2429       if (!defs_only) {
2430         uint cnt = n->req();
2431         for( uint k = 1; k < cnt; k++ ) {
2432           Node *m = n->in(k);
2433           if (!m)  {
2434             continue;  // be robust in the dumper
2435           }
2436           if (_lrg_map.find_const(m) == lidx) {
2437             if (!dump_once++) {
2438               tty->cr();
2439               block->dump_head(&_cfg);
2440             }
2441             dump(n);
2442           }
2443         }
2444       }
2445     }
2446   } // End of per-block dump
2447   tty->cr();
2448 }
2449 #endif // not PRODUCT
2450 
2451 #ifdef ASSERT
2452 // Verify that base pointers and derived pointers are still sane.
2453 void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2454   Unique_Node_List worklist(a);
2455   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2456     Block* block = _cfg.get_block(i);
2457     for (uint j = block->end_idx() + 1; j > 1; j--) {
2458       Node* n = block->get_node(j-1);
2459       if (n->is_Phi()) {
2460         break;
2461       }
2462       // Found a safepoint?
2463       if (n->is_MachSafePoint()) {
2464         MachSafePointNode* sfpt = n->as_MachSafePoint();
2465         JVMState* jvms = sfpt->jvms();
2466         if (jvms != nullptr) {
2467           // Now scan for a live derived pointer
2468           if (jvms->oopoff() < sfpt->req()) {
2469             // Check each derived/base pair
2470             for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2471               Node* check = sfpt->in(idx);
2472               bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2473               // search upwards through spills and spill phis for AddP
2474               worklist.clear();
2475               worklist.push(check);
2476               uint k = 0;
2477               while (k < worklist.size()) {
2478                 check = worklist.at(k);
2479                 assert(check, "Bad base or derived pointer");
2480                 // See PhaseChaitin::find_base_for_derived() for all cases.
2481                 int isc = check->is_Copy();
2482                 if (isc) {
2483                   worklist.push(check->in(isc));
2484                 } else if (check->is_Phi()) {
2485                   for (uint m = 1; m < check->req(); m++) {
2486                     worklist.push(check->in(m));
2487                   }
2488                 } else if (check->is_Con()) {
2489                   if (is_derived && check->bottom_type()->is_ptr()->offset() != 0) {
2490                     // Derived is null+non-zero offset, base must be null.
2491                     assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer");
2492                   } else {
2493                     assert(check->bottom_type()->is_ptr()->offset() == 0, "Bad base pointer");
2494                     // Base either ConP(nullptr) or loadConP
2495                     if (check->is_Mach()) {
2496                       assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer");
2497                     } else {
2498                       assert(check->Opcode() == Op_ConP &&
2499                              check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer");
2500                     }
2501                   }
2502                 } else if (check->bottom_type()->is_ptr()->offset() == 0) {
2503                   if (check->is_Proj() || (check->is_Mach() &&
2504                      (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2505                       check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2506                       check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2507                       check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2508 #ifdef _LP64
2509                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2510                       (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2511                       (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2512 #endif // _LP64
2513                       check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2514                       check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2515                     // Valid nodes
2516                   } else {
2517                     check->dump();
2518                     assert(false, "Bad base or derived pointer");
2519                   }
2520                 } else {
2521                   assert(is_derived, "Bad base pointer");
2522                   assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer");
2523                 }
2524                 k++;
2525                 assert(k < 100000, "Derived pointer checking in infinite loop");
2526               } // End while
2527             }
2528           } // End of check for derived pointers
2529         } // End of Kcheck for debug info
2530       } // End of if found a safepoint
2531     } // End of forall instructions in block
2532   } // End of forall blocks
2533 }
2534 
2535 // Verify that graphs and base pointers are still sane.
2536 void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2537   if (VerifyRegisterAllocator) {
2538     _cfg.verify();
2539     verify_base_ptrs(a);
2540     if (verify_ifg) {
2541       _ifg->verify(this);
2542     }
2543   }
2544 }
2545 #endif // ASSERT
2546 
2547 int PhaseChaitin::_final_loads  = 0;
2548 int PhaseChaitin::_final_stores = 0;
2549 int PhaseChaitin::_final_memoves= 0;
2550 int PhaseChaitin::_final_copies = 0;
2551 double PhaseChaitin::_final_load_cost  = 0;
2552 double PhaseChaitin::_final_store_cost = 0;
2553 double PhaseChaitin::_final_memove_cost= 0;
2554 double PhaseChaitin::_final_copy_cost  = 0;
2555 int PhaseChaitin::_conserv_coalesce = 0;
2556 int PhaseChaitin::_conserv_coalesce_pair = 0;
2557 int PhaseChaitin::_conserv_coalesce_trie = 0;
2558 int PhaseChaitin::_conserv_coalesce_quad = 0;
2559 int PhaseChaitin::_post_alloc = 0;
2560 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2561 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2562 int PhaseChaitin::_used_cisc_instructions   = 0;
2563 int PhaseChaitin::_unused_cisc_instructions = 0;
2564 int PhaseChaitin::_allocator_attempts       = 0;
2565 int PhaseChaitin::_allocator_successes      = 0;
2566 
2567 #ifndef PRODUCT
2568 uint PhaseChaitin::_high_pressure           = 0;
2569 uint PhaseChaitin::_low_pressure            = 0;
2570 
2571 void PhaseChaitin::print_chaitin_statistics() {
2572   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2573   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2574   tty->print_cr("Adjusted spill cost = %7.0f.",
2575                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2576                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2577   tty->print("Conservatively coalesced %d copies, %d pairs",
2578                 _conserv_coalesce, _conserv_coalesce_pair);
2579   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2580     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2581   tty->print_cr(", %d post alloc.", _post_alloc);
2582   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2583     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2584                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2585   if( _used_cisc_instructions || _unused_cisc_instructions )
2586     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2587                    _used_cisc_instructions, _unused_cisc_instructions);
2588   if( _allocator_successes != 0 )
2589     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2590   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2591 }
2592 #endif // not PRODUCT