1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/compiler_globals.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c2/barrierSetC2.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm_io.h" 44 #include "memory/allocation.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opcodes.hpp" 71 #include "opto/output.hpp" 72 #include "opto/parse.hpp" 73 #include "opto/phaseX.hpp" 74 #include "opto/rootnode.hpp" 75 #include "opto/runtime.hpp" 76 #include "opto/stringopts.hpp" 77 #include "opto/type.hpp" 78 #include "opto/vector.hpp" 79 #include "opto/vectornode.hpp" 80 #include "runtime/globals_extension.hpp" 81 #include "runtime/sharedRuntime.hpp" 82 #include "runtime/signature.hpp" 83 #include "runtime/stubRoutines.hpp" 84 #include "runtime/timer.hpp" 85 #include "utilities/align.hpp" 86 #include "utilities/copy.hpp" 87 #include "utilities/macros.hpp" 88 #include "utilities/resourceHash.hpp" 89 90 // -------------------- Compile::mach_constant_base_node ----------------------- 91 // Constant table base node singleton. 92 MachConstantBaseNode* Compile::mach_constant_base_node() { 93 if (_mach_constant_base_node == nullptr) { 94 _mach_constant_base_node = new MachConstantBaseNode(); 95 _mach_constant_base_node->add_req(C->root()); 96 } 97 return _mach_constant_base_node; 98 } 99 100 101 /// Support for intrinsics. 102 103 // Return the index at which m must be inserted (or already exists). 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 105 class IntrinsicDescPair { 106 private: 107 ciMethod* _m; 108 bool _is_virtual; 109 public: 110 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 111 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 112 ciMethod* m= elt->method(); 113 ciMethod* key_m = key->_m; 114 if (key_m < m) return -1; 115 else if (key_m > m) return 1; 116 else { 117 bool is_virtual = elt->is_virtual(); 118 bool key_virtual = key->_is_virtual; 119 if (key_virtual < is_virtual) return -1; 120 else if (key_virtual > is_virtual) return 1; 121 else return 0; 122 } 123 } 124 }; 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 126 #ifdef ASSERT 127 for (int i = 1; i < _intrinsics.length(); i++) { 128 CallGenerator* cg1 = _intrinsics.at(i-1); 129 CallGenerator* cg2 = _intrinsics.at(i); 130 assert(cg1->method() != cg2->method() 131 ? cg1->method() < cg2->method() 132 : cg1->is_virtual() < cg2->is_virtual(), 133 "compiler intrinsics list must stay sorted"); 134 } 135 #endif 136 IntrinsicDescPair pair(m, is_virtual); 137 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 138 } 139 140 void Compile::register_intrinsic(CallGenerator* cg) { 141 bool found = false; 142 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 143 assert(!found, "registering twice"); 144 _intrinsics.insert_before(index, cg); 145 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 146 } 147 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 149 assert(m->is_loaded(), "don't try this on unloaded methods"); 150 if (_intrinsics.length() > 0) { 151 bool found = false; 152 int index = intrinsic_insertion_index(m, is_virtual, found); 153 if (found) { 154 return _intrinsics.at(index); 155 } 156 } 157 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 158 if (m->intrinsic_id() != vmIntrinsics::_none && 159 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 160 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 161 if (cg != nullptr) { 162 // Save it for next time: 163 register_intrinsic(cg); 164 return cg; 165 } else { 166 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 167 } 168 } 169 return nullptr; 170 } 171 172 // Compile::make_vm_intrinsic is defined in library_call.cpp. 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 179 180 inline int as_int(vmIntrinsics::ID id) { 181 return vmIntrinsics::as_int(id); 182 } 183 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 185 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 186 int oflags = _intrinsic_hist_flags[as_int(id)]; 187 assert(flags != 0, "what happened?"); 188 if (is_virtual) { 189 flags |= _intrinsic_virtual; 190 } 191 bool changed = (flags != oflags); 192 if ((flags & _intrinsic_worked) != 0) { 193 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 194 if (count == 1) { 195 changed = true; // first time 196 } 197 // increment the overall count also: 198 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 199 } 200 if (changed) { 201 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 202 // Something changed about the intrinsic's virtuality. 203 if ((flags & _intrinsic_virtual) != 0) { 204 // This is the first use of this intrinsic as a virtual call. 205 if (oflags != 0) { 206 // We already saw it as a non-virtual, so note both cases. 207 flags |= _intrinsic_both; 208 } 209 } else if ((oflags & _intrinsic_both) == 0) { 210 // This is the first use of this intrinsic as a non-virtual 211 flags |= _intrinsic_both; 212 } 213 } 214 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 215 } 216 // update the overall flags also: 217 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 218 return changed; 219 } 220 221 static char* format_flags(int flags, char* buf) { 222 buf[0] = 0; 223 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 224 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 225 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 226 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 227 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 228 if (buf[0] == 0) strcat(buf, ","); 229 assert(buf[0] == ',', "must be"); 230 return &buf[1]; 231 } 232 233 void Compile::print_intrinsic_statistics() { 234 char flagsbuf[100]; 235 ttyLocker ttyl; 236 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 237 tty->print_cr("Compiler intrinsic usage:"); 238 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 239 if (total == 0) total = 1; // avoid div0 in case of no successes 240 #define PRINT_STAT_LINE(name, c, f) \ 241 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 242 for (auto id : EnumRange<vmIntrinsicID>{}) { 243 int flags = _intrinsic_hist_flags[as_int(id)]; 244 juint count = _intrinsic_hist_count[as_int(id)]; 245 if ((flags | count) != 0) { 246 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 247 } 248 } 249 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 250 if (xtty != nullptr) xtty->tail("statistics"); 251 } 252 253 void Compile::print_statistics() { 254 { ttyLocker ttyl; 255 if (xtty != nullptr) xtty->head("statistics type='opto'"); 256 Parse::print_statistics(); 257 PhaseStringOpts::print_statistics(); 258 PhaseCCP::print_statistics(); 259 PhaseRegAlloc::print_statistics(); 260 PhaseOutput::print_statistics(); 261 PhasePeephole::print_statistics(); 262 PhaseIdealLoop::print_statistics(); 263 ConnectionGraph::print_statistics(); 264 PhaseMacroExpand::print_statistics(); 265 if (xtty != nullptr) xtty->tail("statistics"); 266 } 267 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 268 // put this under its own <statistics> element. 269 print_intrinsic_statistics(); 270 } 271 } 272 #endif //PRODUCT 273 274 void Compile::gvn_replace_by(Node* n, Node* nn) { 275 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 276 Node* use = n->last_out(i); 277 bool is_in_table = initial_gvn()->hash_delete(use); 278 uint uses_found = 0; 279 for (uint j = 0; j < use->len(); j++) { 280 if (use->in(j) == n) { 281 if (j < use->req()) 282 use->set_req(j, nn); 283 else 284 use->set_prec(j, nn); 285 uses_found++; 286 } 287 } 288 if (is_in_table) { 289 // reinsert into table 290 initial_gvn()->hash_find_insert(use); 291 } 292 record_for_igvn(use); 293 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 // Identify all nodes that are reachable from below, useful. 300 // Use breadth-first pass that records state in a Unique_Node_List, 301 // recursive traversal is slower. 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 303 int estimated_worklist_size = live_nodes(); 304 useful.map( estimated_worklist_size, nullptr ); // preallocate space 305 306 // Initialize worklist 307 if (root() != nullptr) { useful.push(root()); } 308 // If 'top' is cached, declare it useful to preserve cached node 309 if (cached_top_node()) { useful.push(cached_top_node()); } 310 311 // Push all useful nodes onto the list, breadthfirst 312 for( uint next = 0; next < useful.size(); ++next ) { 313 assert( next < unique(), "Unique useful nodes < total nodes"); 314 Node *n = useful.at(next); 315 uint max = n->len(); 316 for( uint i = 0; i < max; ++i ) { 317 Node *m = n->in(i); 318 if (not_a_node(m)) continue; 319 useful.push(m); 320 } 321 } 322 } 323 324 // Update dead_node_list with any missing dead nodes using useful 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 326 void Compile::update_dead_node_list(Unique_Node_List &useful) { 327 uint max_idx = unique(); 328 VectorSet& useful_node_set = useful.member_set(); 329 330 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 331 // If node with index node_idx is not in useful set, 332 // mark it as dead in dead node list. 333 if (!useful_node_set.test(node_idx)) { 334 record_dead_node(node_idx); 335 } 336 } 337 } 338 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 340 int shift = 0; 341 for (int i = 0; i < inlines->length(); i++) { 342 CallGenerator* cg = inlines->at(i); 343 if (useful.member(cg->call_node())) { 344 if (shift > 0) { 345 inlines->at_put(i - shift, cg); 346 } 347 } else { 348 shift++; // skip over the dead element 349 } 350 } 351 if (shift > 0) { 352 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 353 } 354 } 355 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 357 assert(dead != nullptr && dead->is_Call(), "sanity"); 358 int found = 0; 359 for (int i = 0; i < inlines->length(); i++) { 360 if (inlines->at(i)->call_node() == dead) { 361 inlines->remove_at(i); 362 found++; 363 NOT_DEBUG( break; ) // elements are unique, so exit early 364 } 365 } 366 assert(found <= 1, "not unique"); 367 } 368 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 371 for (int i = node_list.length() - 1; i >= 0; i--) { 372 N* node = node_list.at(i); 373 if (!useful.member(node)) { 374 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 375 } 376 } 377 } 378 379 void Compile::remove_useless_node(Node* dead) { 380 remove_modified_node(dead); 381 382 // Constant node that has no out-edges and has only one in-edge from 383 // root is usually dead. However, sometimes reshaping walk makes 384 // it reachable by adding use edges. So, we will NOT count Con nodes 385 // as dead to be conservative about the dead node count at any 386 // given time. 387 if (!dead->is_Con()) { 388 record_dead_node(dead->_idx); 389 } 390 if (dead->is_macro()) { 391 remove_macro_node(dead); 392 } 393 if (dead->is_expensive()) { 394 remove_expensive_node(dead); 395 } 396 if (dead->is_OpaqueTemplateAssertionPredicate()) { 397 remove_template_assertion_predicate_opaq(dead); 398 } 399 if (dead->is_ParsePredicate()) { 400 remove_parse_predicate(dead->as_ParsePredicate()); 401 } 402 if (dead->for_post_loop_opts_igvn()) { 403 remove_from_post_loop_opts_igvn(dead); 404 } 405 if (dead->is_Call()) { 406 remove_useless_late_inlines( &_late_inlines, dead); 407 remove_useless_late_inlines( &_string_late_inlines, dead); 408 remove_useless_late_inlines( &_boxing_late_inlines, dead); 409 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 410 411 if (dead->is_CallStaticJava()) { 412 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 413 } 414 } 415 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 416 bs->unregister_potential_barrier_node(dead); 417 } 418 419 // Disconnect all useless nodes by disconnecting those at the boundary. 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 421 uint next = 0; 422 while (next < useful.size()) { 423 Node *n = useful.at(next++); 424 if (n->is_SafePoint()) { 425 // We're done with a parsing phase. Replaced nodes are not valid 426 // beyond that point. 427 n->as_SafePoint()->delete_replaced_nodes(); 428 } 429 // Use raw traversal of out edges since this code removes out edges 430 int max = n->outcnt(); 431 for (int j = 0; j < max; ++j) { 432 Node* child = n->raw_out(j); 433 if (!useful.member(child)) { 434 assert(!child->is_top() || child != top(), 435 "If top is cached in Compile object it is in useful list"); 436 // Only need to remove this out-edge to the useless node 437 n->raw_del_out(j); 438 --j; 439 --max; 440 } 441 } 442 if (n->outcnt() == 1 && n->has_special_unique_user()) { 443 assert(useful.member(n->unique_out()), "do not push a useless node"); 444 worklist.push(n->unique_out()); 445 } 446 } 447 448 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 449 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 450 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 451 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 452 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 453 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 454 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 455 #ifdef ASSERT 456 if (_modified_nodes != nullptr) { 457 _modified_nodes->remove_useless_nodes(useful.member_set()); 458 } 459 #endif 460 461 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 462 bs->eliminate_useless_gc_barriers(useful, this); 463 // clean up the late inline lists 464 remove_useless_late_inlines( &_late_inlines, useful); 465 remove_useless_late_inlines( &_string_late_inlines, useful); 466 remove_useless_late_inlines( &_boxing_late_inlines, useful); 467 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 468 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 469 } 470 471 // ============================================================================ 472 //------------------------------CompileWrapper--------------------------------- 473 class CompileWrapper : public StackObj { 474 Compile *const _compile; 475 public: 476 CompileWrapper(Compile* compile); 477 478 ~CompileWrapper(); 479 }; 480 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 482 // the Compile* pointer is stored in the current ciEnv: 483 ciEnv* env = compile->env(); 484 assert(env == ciEnv::current(), "must already be a ciEnv active"); 485 assert(env->compiler_data() == nullptr, "compile already active?"); 486 env->set_compiler_data(compile); 487 assert(compile == Compile::current(), "sanity"); 488 489 compile->set_type_dict(nullptr); 490 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 491 compile->clone_map().set_clone_idx(0); 492 compile->set_type_last_size(0); 493 compile->set_last_tf(nullptr, nullptr); 494 compile->set_indexSet_arena(nullptr); 495 compile->set_indexSet_free_block_list(nullptr); 496 compile->init_type_arena(); 497 Type::Initialize(compile); 498 _compile->begin_method(); 499 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 500 } 501 CompileWrapper::~CompileWrapper() { 502 // simulate crash during compilation 503 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 504 505 _compile->end_method(); 506 _compile->env()->set_compiler_data(nullptr); 507 } 508 509 510 //----------------------------print_compile_messages--------------------------- 511 void Compile::print_compile_messages() { 512 #ifndef PRODUCT 513 // Check if recompiling 514 if (!subsume_loads() && PrintOpto) { 515 // Recompiling without allowing machine instructions to subsume loads 516 tty->print_cr("*********************************************************"); 517 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 518 tty->print_cr("*********************************************************"); 519 } 520 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 521 // Recompiling without escape analysis 522 tty->print_cr("*********************************************************"); 523 tty->print_cr("** Bailout: Recompile without escape analysis **"); 524 tty->print_cr("*********************************************************"); 525 } 526 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 527 // Recompiling without iterative escape analysis 528 tty->print_cr("*********************************************************"); 529 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 530 tty->print_cr("*********************************************************"); 531 } 532 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 533 // Recompiling without reducing allocation merges 534 tty->print_cr("*********************************************************"); 535 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 536 tty->print_cr("*********************************************************"); 537 } 538 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 539 // Recompiling without boxing elimination 540 tty->print_cr("*********************************************************"); 541 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 542 tty->print_cr("*********************************************************"); 543 } 544 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 545 // Recompiling without locks coarsening 546 tty->print_cr("*********************************************************"); 547 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 548 tty->print_cr("*********************************************************"); 549 } 550 if (env()->break_at_compile()) { 551 // Open the debugger when compiling this method. 552 tty->print("### Breaking when compiling: "); 553 method()->print_short_name(); 554 tty->cr(); 555 BREAKPOINT; 556 } 557 558 if( PrintOpto ) { 559 if (is_osr_compilation()) { 560 tty->print("[OSR]%3d", _compile_id); 561 } else { 562 tty->print("%3d", _compile_id); 563 } 564 } 565 #endif 566 } 567 568 #ifndef PRODUCT 569 void Compile::print_ideal_ir(const char* phase_name) { 570 // keep the following output all in one block 571 // This output goes directly to the tty, not the compiler log. 572 // To enable tools to match it up with the compilation activity, 573 // be sure to tag this tty output with the compile ID. 574 575 // Node dumping can cause a safepoint, which can break the tty lock. 576 // Buffer all node dumps, so that all safepoints happen before we lock. 577 ResourceMark rm; 578 stringStream ss; 579 580 if (_output == nullptr) { 581 ss.print_cr("AFTER: %s", phase_name); 582 // Print out all nodes in ascending order of index. 583 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 584 } else { 585 // Dump the node blockwise if we have a scheduling 586 _output->print_scheduling(&ss); 587 } 588 589 // Check that the lock is not broken by a safepoint. 590 NoSafepointVerifier nsv; 591 ttyLocker ttyl; 592 if (xtty != nullptr) { 593 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 594 compile_id(), 595 is_osr_compilation() ? " compile_kind='osr'" : "", 596 phase_name); 597 } 598 599 tty->print("%s", ss.as_string()); 600 601 if (xtty != nullptr) { 602 xtty->tail("ideal"); 603 } 604 } 605 #endif 606 607 // ============================================================================ 608 //------------------------------Compile standard------------------------------- 609 610 // Compile a method. entry_bci is -1 for normal compilations and indicates 611 // the continuation bci for on stack replacement. 612 613 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 615 Options options, DirectiveSet* directive) 616 : Phase(Compiler), 617 _compile_id(ci_env->compile_id()), 618 _options(options), 619 _method(target), 620 _entry_bci(osr_bci), 621 _ilt(nullptr), 622 _stub_function(nullptr), 623 _stub_name(nullptr), 624 _stub_entry_point(nullptr), 625 _max_node_limit(MaxNodeLimit), 626 _post_loop_opts_phase(false), 627 _allow_macro_nodes(true), 628 _inlining_progress(false), 629 _inlining_incrementally(false), 630 _do_cleanup(false), 631 _has_reserved_stack_access(target->has_reserved_stack_access()), 632 #ifndef PRODUCT 633 _igv_idx(0), 634 _trace_opto_output(directive->TraceOptoOutputOption), 635 #endif 636 _has_method_handle_invokes(false), 637 _clinit_barrier_on_entry(false), 638 _stress_seed(0), 639 _comp_arena(mtCompiler), 640 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 641 _env(ci_env), 642 _directive(directive), 643 _log(ci_env->log()), 644 _first_failure_details(nullptr), 645 _intrinsics (comp_arena(), 0, 0, nullptr), 646 _macro_nodes (comp_arena(), 8, 0, nullptr), 647 _parse_predicates (comp_arena(), 8, 0, nullptr), 648 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 649 _expensive_nodes (comp_arena(), 8, 0, nullptr), 650 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 651 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 652 _coarsened_locks (comp_arena(), 8, 0, nullptr), 653 _congraph(nullptr), 654 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 655 _unique(0), 656 _dead_node_count(0), 657 _dead_node_list(comp_arena()), 658 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 659 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 660 _node_arena(&_node_arena_one), 661 _mach_constant_base_node(nullptr), 662 _Compile_types(mtCompiler), 663 _initial_gvn(nullptr), 664 _igvn_worklist(nullptr), 665 _types(nullptr), 666 _node_hash(nullptr), 667 _late_inlines(comp_arena(), 2, 0, nullptr), 668 _string_late_inlines(comp_arena(), 2, 0, nullptr), 669 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 670 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 671 _late_inlines_pos(0), 672 _number_of_mh_late_inlines(0), 673 _oom(false), 674 _print_inlining_stream(new (mtCompiler) stringStream()), 675 _print_inlining_list(nullptr), 676 _print_inlining_idx(0), 677 _print_inlining_output(nullptr), 678 _replay_inline_data(nullptr), 679 _java_calls(0), 680 _inner_loops(0), 681 _interpreter_frame_size(0), 682 _output(nullptr) 683 #ifndef PRODUCT 684 , _in_dump_cnt(0) 685 #endif 686 { 687 C = this; 688 CompileWrapper cw(this); 689 690 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 691 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 692 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 694 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 695 // We can always print a disassembly, either abstract (hex dump) or 696 // with the help of a suitable hsdis library. Thus, we should not 697 // couple print_assembly and print_opto_assembly controls. 698 // But: always print opto and regular assembly on compile command 'print'. 699 bool print_assembly = directive->PrintAssemblyOption; 700 set_print_assembly(print_opto_assembly || print_assembly); 701 #else 702 set_print_assembly(false); // must initialize. 703 #endif 704 705 #ifndef PRODUCT 706 set_parsed_irreducible_loop(false); 707 #endif 708 709 if (directive->ReplayInlineOption) { 710 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 711 } 712 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 713 set_print_intrinsics(directive->PrintIntrinsicsOption); 714 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 715 716 if (ProfileTraps) { 717 // Make sure the method being compiled gets its own MDO, 718 // so we can at least track the decompile_count(). 719 method()->ensure_method_data(); 720 } 721 722 if (StressLCM || StressGCM || StressIGVN || StressCCP || 723 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 724 initialize_stress_seed(directive); 725 } 726 727 Init(/*do_aliasing=*/ true); 728 729 print_compile_messages(); 730 731 _ilt = InlineTree::build_inline_tree_root(); 732 733 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 734 assert(num_alias_types() >= AliasIdxRaw, ""); 735 736 #define MINIMUM_NODE_HASH 1023 737 738 // GVN that will be run immediately on new nodes 739 uint estimated_size = method()->code_size()*4+64; 740 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 741 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 742 _types = new (comp_arena()) Type_Array(comp_arena()); 743 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 744 PhaseGVN gvn; 745 set_initial_gvn(&gvn); 746 747 print_inlining_init(); 748 { // Scope for timing the parser 749 TracePhase tp("parse", &timers[_t_parser]); 750 751 // Put top into the hash table ASAP. 752 initial_gvn()->transform(top()); 753 754 // Set up tf(), start(), and find a CallGenerator. 755 CallGenerator* cg = nullptr; 756 if (is_osr_compilation()) { 757 const TypeTuple *domain = StartOSRNode::osr_domain(); 758 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 759 init_tf(TypeFunc::make(domain, range)); 760 StartNode* s = new StartOSRNode(root(), domain); 761 initial_gvn()->set_type_bottom(s); 762 verify_start(s); 763 cg = CallGenerator::for_osr(method(), entry_bci()); 764 } else { 765 // Normal case. 766 init_tf(TypeFunc::make(method())); 767 StartNode* s = new StartNode(root(), tf()->domain()); 768 initial_gvn()->set_type_bottom(s); 769 verify_start(s); 770 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 771 // With java.lang.ref.reference.get() we must go through the 772 // intrinsic - even when get() is the root 773 // method of the compile - so that, if necessary, the value in 774 // the referent field of the reference object gets recorded by 775 // the pre-barrier code. 776 cg = find_intrinsic(method(), false); 777 } 778 if (cg == nullptr) { 779 float past_uses = method()->interpreter_invocation_count(); 780 float expected_uses = past_uses; 781 cg = CallGenerator::for_inline(method(), expected_uses); 782 } 783 } 784 if (failing()) return; 785 if (cg == nullptr) { 786 const char* reason = InlineTree::check_can_parse(method()); 787 assert(reason != nullptr, "expect reason for parse failure"); 788 stringStream ss; 789 ss.print("cannot parse method: %s", reason); 790 record_method_not_compilable(ss.as_string()); 791 return; 792 } 793 794 gvn.set_type(root(), root()->bottom_type()); 795 796 JVMState* jvms = build_start_state(start(), tf()); 797 if ((jvms = cg->generate(jvms)) == nullptr) { 798 assert(failure_reason() != nullptr, "expect reason for parse failure"); 799 stringStream ss; 800 ss.print("method parse failed: %s", failure_reason()); 801 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 802 return; 803 } 804 GraphKit kit(jvms); 805 806 if (!kit.stopped()) { 807 // Accept return values, and transfer control we know not where. 808 // This is done by a special, unique ReturnNode bound to root. 809 return_values(kit.jvms()); 810 } 811 812 if (kit.has_exceptions()) { 813 // Any exceptions that escape from this call must be rethrown 814 // to whatever caller is dynamically above us on the stack. 815 // This is done by a special, unique RethrowNode bound to root. 816 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 817 } 818 819 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 820 821 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 822 inline_string_calls(true); 823 } 824 825 if (failing()) return; 826 827 // Remove clutter produced by parsing. 828 if (!failing()) { 829 ResourceMark rm; 830 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 831 } 832 } 833 834 // Note: Large methods are capped off in do_one_bytecode(). 835 if (failing()) return; 836 837 // After parsing, node notes are no longer automagic. 838 // They must be propagated by register_new_node_with_optimizer(), 839 // clone(), or the like. 840 set_default_node_notes(nullptr); 841 842 #ifndef PRODUCT 843 if (should_print_igv(1)) { 844 _igv_printer->print_inlining(); 845 } 846 #endif 847 848 if (failing()) return; 849 NOT_PRODUCT( verify_graph_edges(); ) 850 851 // Now optimize 852 Optimize(); 853 if (failing()) return; 854 NOT_PRODUCT( verify_graph_edges(); ) 855 856 #ifndef PRODUCT 857 if (should_print_ideal()) { 858 print_ideal_ir("print_ideal"); 859 } 860 #endif 861 862 #ifdef ASSERT 863 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 864 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 865 #endif 866 867 // Dump compilation data to replay it. 868 if (directive->DumpReplayOption) { 869 env()->dump_replay_data(_compile_id); 870 } 871 if (directive->DumpInlineOption && (ilt() != nullptr)) { 872 env()->dump_inline_data(_compile_id); 873 } 874 875 // Now that we know the size of all the monitors we can add a fixed slot 876 // for the original deopt pc. 877 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 878 set_fixed_slots(next_slot); 879 880 // Compute when to use implicit null checks. Used by matching trap based 881 // nodes and NullCheck optimization. 882 set_allowed_deopt_reasons(); 883 884 // Now generate code 885 Code_Gen(); 886 } 887 888 //------------------------------Compile---------------------------------------- 889 // Compile a runtime stub 890 Compile::Compile( ciEnv* ci_env, 891 TypeFunc_generator generator, 892 address stub_function, 893 const char *stub_name, 894 int is_fancy_jump, 895 bool pass_tls, 896 bool return_pc, 897 DirectiveSet* directive) 898 : Phase(Compiler), 899 _compile_id(0), 900 _options(Options::for_runtime_stub()), 901 _method(nullptr), 902 _entry_bci(InvocationEntryBci), 903 _stub_function(stub_function), 904 _stub_name(stub_name), 905 _stub_entry_point(nullptr), 906 _max_node_limit(MaxNodeLimit), 907 _post_loop_opts_phase(false), 908 _allow_macro_nodes(true), 909 _inlining_progress(false), 910 _inlining_incrementally(false), 911 _has_reserved_stack_access(false), 912 #ifndef PRODUCT 913 _igv_idx(0), 914 _trace_opto_output(directive->TraceOptoOutputOption), 915 #endif 916 _has_method_handle_invokes(false), 917 _clinit_barrier_on_entry(false), 918 _stress_seed(0), 919 _comp_arena(mtCompiler), 920 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 921 _env(ci_env), 922 _directive(directive), 923 _log(ci_env->log()), 924 _first_failure_details(nullptr), 925 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 926 _congraph(nullptr), 927 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 928 _unique(0), 929 _dead_node_count(0), 930 _dead_node_list(comp_arena()), 931 _node_arena_one(mtCompiler), 932 _node_arena_two(mtCompiler), 933 _node_arena(&_node_arena_one), 934 _mach_constant_base_node(nullptr), 935 _Compile_types(mtCompiler), 936 _initial_gvn(nullptr), 937 _igvn_worklist(nullptr), 938 _types(nullptr), 939 _node_hash(nullptr), 940 _number_of_mh_late_inlines(0), 941 _oom(false), 942 _print_inlining_stream(new (mtCompiler) stringStream()), 943 _print_inlining_list(nullptr), 944 _print_inlining_idx(0), 945 _print_inlining_output(nullptr), 946 _replay_inline_data(nullptr), 947 _java_calls(0), 948 _inner_loops(0), 949 _interpreter_frame_size(0), 950 _output(nullptr), 951 #ifndef PRODUCT 952 _in_dump_cnt(0), 953 #endif 954 _allowed_reasons(0) { 955 C = this; 956 957 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 958 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 959 960 #ifndef PRODUCT 961 set_print_assembly(PrintFrameConverterAssembly); 962 set_parsed_irreducible_loop(false); 963 #else 964 set_print_assembly(false); // Must initialize. 965 #endif 966 set_has_irreducible_loop(false); // no loops 967 968 CompileWrapper cw(this); 969 Init(/*do_aliasing=*/ false); 970 init_tf((*generator)()); 971 972 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 973 _types = new (comp_arena()) Type_Array(comp_arena()); 974 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 975 976 if (StressLCM || StressGCM || StressBailout) { 977 initialize_stress_seed(directive); 978 } 979 980 { 981 PhaseGVN gvn; 982 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 983 gvn.transform(top()); 984 985 GraphKit kit; 986 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 987 } 988 989 NOT_PRODUCT( verify_graph_edges(); ) 990 991 Code_Gen(); 992 } 993 994 Compile::~Compile() { 995 delete _print_inlining_stream; 996 delete _first_failure_details; 997 }; 998 999 //------------------------------Init------------------------------------------- 1000 // Prepare for a single compilation 1001 void Compile::Init(bool aliasing) { 1002 _do_aliasing = aliasing; 1003 _unique = 0; 1004 _regalloc = nullptr; 1005 1006 _tf = nullptr; // filled in later 1007 _top = nullptr; // cached later 1008 _matcher = nullptr; // filled in later 1009 _cfg = nullptr; // filled in later 1010 1011 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1012 1013 _node_note_array = nullptr; 1014 _default_node_notes = nullptr; 1015 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1016 1017 _immutable_memory = nullptr; // filled in at first inquiry 1018 1019 #ifdef ASSERT 1020 _phase_optimize_finished = false; 1021 _phase_verify_ideal_loop = false; 1022 _exception_backedge = false; 1023 _type_verify = nullptr; 1024 #endif 1025 1026 // Globally visible Nodes 1027 // First set TOP to null to give safe behavior during creation of RootNode 1028 set_cached_top_node(nullptr); 1029 set_root(new RootNode()); 1030 // Now that you have a Root to point to, create the real TOP 1031 set_cached_top_node( new ConNode(Type::TOP) ); 1032 set_recent_alloc(nullptr, nullptr); 1033 1034 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1035 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1036 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1037 env()->set_dependencies(new Dependencies(env())); 1038 1039 _fixed_slots = 0; 1040 set_has_split_ifs(false); 1041 set_has_loops(false); // first approximation 1042 set_has_stringbuilder(false); 1043 set_has_boxed_value(false); 1044 _trap_can_recompile = false; // no traps emitted yet 1045 _major_progress = true; // start out assuming good things will happen 1046 set_has_unsafe_access(false); 1047 set_max_vector_size(0); 1048 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1049 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1050 set_decompile_count(0); 1051 1052 #ifndef PRODUCT 1053 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1054 #endif 1055 1056 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1057 _loop_opts_cnt = LoopOptsCount; 1058 set_do_inlining(Inline); 1059 set_max_inline_size(MaxInlineSize); 1060 set_freq_inline_size(FreqInlineSize); 1061 set_do_scheduling(OptoScheduling); 1062 1063 set_do_vector_loop(false); 1064 set_has_monitors(false); 1065 set_has_scoped_access(false); 1066 1067 if (AllowVectorizeOnDemand) { 1068 if (has_method() && _directive->VectorizeOption) { 1069 set_do_vector_loop(true); 1070 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1071 } else if (has_method() && method()->name() != nullptr && 1072 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1073 set_do_vector_loop(true); 1074 } 1075 } 1076 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1077 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1078 1079 _max_node_limit = _directive->MaxNodeLimitOption; 1080 1081 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1082 set_clinit_barrier_on_entry(true); 1083 } 1084 if (debug_info()->recording_non_safepoints()) { 1085 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1086 (comp_arena(), 8, 0, nullptr)); 1087 set_default_node_notes(Node_Notes::make(this)); 1088 } 1089 1090 const int grow_ats = 16; 1091 _max_alias_types = grow_ats; 1092 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1093 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1094 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1095 { 1096 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1097 } 1098 // Initialize the first few types. 1099 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1100 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1101 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1102 _num_alias_types = AliasIdxRaw+1; 1103 // Zero out the alias type cache. 1104 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1105 // A null adr_type hits in the cache right away. Preload the right answer. 1106 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1107 } 1108 1109 #ifdef ASSERT 1110 // Verify that the current StartNode is valid. 1111 void Compile::verify_start(StartNode* s) const { 1112 assert(failing_internal() || s == start(), "should be StartNode"); 1113 } 1114 #endif 1115 1116 /** 1117 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1118 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1119 * the ideal graph. 1120 */ 1121 StartNode* Compile::start() const { 1122 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1123 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1124 Node* start = root()->fast_out(i); 1125 if (start->is_Start()) { 1126 return start->as_Start(); 1127 } 1128 } 1129 fatal("Did not find Start node!"); 1130 return nullptr; 1131 } 1132 1133 //-------------------------------immutable_memory------------------------------------- 1134 // Access immutable memory 1135 Node* Compile::immutable_memory() { 1136 if (_immutable_memory != nullptr) { 1137 return _immutable_memory; 1138 } 1139 StartNode* s = start(); 1140 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1141 Node *p = s->fast_out(i); 1142 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1143 _immutable_memory = p; 1144 return _immutable_memory; 1145 } 1146 } 1147 ShouldNotReachHere(); 1148 return nullptr; 1149 } 1150 1151 //----------------------set_cached_top_node------------------------------------ 1152 // Install the cached top node, and make sure Node::is_top works correctly. 1153 void Compile::set_cached_top_node(Node* tn) { 1154 if (tn != nullptr) verify_top(tn); 1155 Node* old_top = _top; 1156 _top = tn; 1157 // Calling Node::setup_is_top allows the nodes the chance to adjust 1158 // their _out arrays. 1159 if (_top != nullptr) _top->setup_is_top(); 1160 if (old_top != nullptr) old_top->setup_is_top(); 1161 assert(_top == nullptr || top()->is_top(), ""); 1162 } 1163 1164 #ifdef ASSERT 1165 uint Compile::count_live_nodes_by_graph_walk() { 1166 Unique_Node_List useful(comp_arena()); 1167 // Get useful node list by walking the graph. 1168 identify_useful_nodes(useful); 1169 return useful.size(); 1170 } 1171 1172 void Compile::print_missing_nodes() { 1173 1174 // Return if CompileLog is null and PrintIdealNodeCount is false. 1175 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1176 return; 1177 } 1178 1179 // This is an expensive function. It is executed only when the user 1180 // specifies VerifyIdealNodeCount option or otherwise knows the 1181 // additional work that needs to be done to identify reachable nodes 1182 // by walking the flow graph and find the missing ones using 1183 // _dead_node_list. 1184 1185 Unique_Node_List useful(comp_arena()); 1186 // Get useful node list by walking the graph. 1187 identify_useful_nodes(useful); 1188 1189 uint l_nodes = C->live_nodes(); 1190 uint l_nodes_by_walk = useful.size(); 1191 1192 if (l_nodes != l_nodes_by_walk) { 1193 if (_log != nullptr) { 1194 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1195 _log->stamp(); 1196 _log->end_head(); 1197 } 1198 VectorSet& useful_member_set = useful.member_set(); 1199 int last_idx = l_nodes_by_walk; 1200 for (int i = 0; i < last_idx; i++) { 1201 if (useful_member_set.test(i)) { 1202 if (_dead_node_list.test(i)) { 1203 if (_log != nullptr) { 1204 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1205 } 1206 if (PrintIdealNodeCount) { 1207 // Print the log message to tty 1208 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1209 useful.at(i)->dump(); 1210 } 1211 } 1212 } 1213 else if (! _dead_node_list.test(i)) { 1214 if (_log != nullptr) { 1215 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1216 } 1217 if (PrintIdealNodeCount) { 1218 // Print the log message to tty 1219 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1220 } 1221 } 1222 } 1223 if (_log != nullptr) { 1224 _log->tail("mismatched_nodes"); 1225 } 1226 } 1227 } 1228 void Compile::record_modified_node(Node* n) { 1229 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1230 _modified_nodes->push(n); 1231 } 1232 } 1233 1234 void Compile::remove_modified_node(Node* n) { 1235 if (_modified_nodes != nullptr) { 1236 _modified_nodes->remove(n); 1237 } 1238 } 1239 #endif 1240 1241 #ifndef PRODUCT 1242 void Compile::verify_top(Node* tn) const { 1243 if (tn != nullptr) { 1244 assert(tn->is_Con(), "top node must be a constant"); 1245 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1246 assert(tn->in(0) != nullptr, "must have live top node"); 1247 } 1248 } 1249 #endif 1250 1251 1252 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1253 1254 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1255 guarantee(arr != nullptr, ""); 1256 int num_blocks = arr->length(); 1257 if (grow_by < num_blocks) grow_by = num_blocks; 1258 int num_notes = grow_by * _node_notes_block_size; 1259 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1260 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1261 while (num_notes > 0) { 1262 arr->append(notes); 1263 notes += _node_notes_block_size; 1264 num_notes -= _node_notes_block_size; 1265 } 1266 assert(num_notes == 0, "exact multiple, please"); 1267 } 1268 1269 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1270 if (source == nullptr || dest == nullptr) return false; 1271 1272 if (dest->is_Con()) 1273 return false; // Do not push debug info onto constants. 1274 1275 #ifdef ASSERT 1276 // Leave a bread crumb trail pointing to the original node: 1277 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1278 dest->set_debug_orig(source); 1279 } 1280 #endif 1281 1282 if (node_note_array() == nullptr) 1283 return false; // Not collecting any notes now. 1284 1285 // This is a copy onto a pre-existing node, which may already have notes. 1286 // If both nodes have notes, do not overwrite any pre-existing notes. 1287 Node_Notes* source_notes = node_notes_at(source->_idx); 1288 if (source_notes == nullptr || source_notes->is_clear()) return false; 1289 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1290 if (dest_notes == nullptr || dest_notes->is_clear()) { 1291 return set_node_notes_at(dest->_idx, source_notes); 1292 } 1293 1294 Node_Notes merged_notes = (*source_notes); 1295 // The order of operations here ensures that dest notes will win... 1296 merged_notes.update_from(dest_notes); 1297 return set_node_notes_at(dest->_idx, &merged_notes); 1298 } 1299 1300 1301 //--------------------------allow_range_check_smearing------------------------- 1302 // Gating condition for coalescing similar range checks. 1303 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1304 // single covering check that is at least as strong as any of them. 1305 // If the optimization succeeds, the simplified (strengthened) range check 1306 // will always succeed. If it fails, we will deopt, and then give up 1307 // on the optimization. 1308 bool Compile::allow_range_check_smearing() const { 1309 // If this method has already thrown a range-check, 1310 // assume it was because we already tried range smearing 1311 // and it failed. 1312 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1313 return !already_trapped; 1314 } 1315 1316 1317 //------------------------------flatten_alias_type----------------------------- 1318 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1319 assert(do_aliasing(), "Aliasing should be enabled"); 1320 int offset = tj->offset(); 1321 TypePtr::PTR ptr = tj->ptr(); 1322 1323 // Known instance (scalarizable allocation) alias only with itself. 1324 bool is_known_inst = tj->isa_oopptr() != nullptr && 1325 tj->is_oopptr()->is_known_instance(); 1326 1327 // Process weird unsafe references. 1328 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1329 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1330 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1331 tj = TypeOopPtr::BOTTOM; 1332 ptr = tj->ptr(); 1333 offset = tj->offset(); 1334 } 1335 1336 // Array pointers need some flattening 1337 const TypeAryPtr* ta = tj->isa_aryptr(); 1338 if (ta && ta->is_stable()) { 1339 // Erase stability property for alias analysis. 1340 tj = ta = ta->cast_to_stable(false); 1341 } 1342 if( ta && is_known_inst ) { 1343 if ( offset != Type::OffsetBot && 1344 offset > arrayOopDesc::length_offset_in_bytes() ) { 1345 offset = Type::OffsetBot; // Flatten constant access into array body only 1346 tj = ta = ta-> 1347 remove_speculative()-> 1348 cast_to_ptr_type(ptr)-> 1349 with_offset(offset); 1350 } 1351 } else if (ta) { 1352 // For arrays indexed by constant indices, we flatten the alias 1353 // space to include all of the array body. Only the header, klass 1354 // and array length can be accessed un-aliased. 1355 if( offset != Type::OffsetBot ) { 1356 if( ta->const_oop() ) { // MethodData* or Method* 1357 offset = Type::OffsetBot; // Flatten constant access into array body 1358 tj = ta = ta-> 1359 remove_speculative()-> 1360 cast_to_ptr_type(ptr)-> 1361 cast_to_exactness(false)-> 1362 with_offset(offset); 1363 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1364 // range is OK as-is. 1365 tj = ta = TypeAryPtr::RANGE; 1366 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1367 tj = TypeInstPtr::KLASS; // all klass loads look alike 1368 ta = TypeAryPtr::RANGE; // generic ignored junk 1369 ptr = TypePtr::BotPTR; 1370 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1371 tj = TypeInstPtr::MARK; 1372 ta = TypeAryPtr::RANGE; // generic ignored junk 1373 ptr = TypePtr::BotPTR; 1374 } else { // Random constant offset into array body 1375 offset = Type::OffsetBot; // Flatten constant access into array body 1376 tj = ta = ta-> 1377 remove_speculative()-> 1378 cast_to_ptr_type(ptr)-> 1379 cast_to_exactness(false)-> 1380 with_offset(offset); 1381 } 1382 } 1383 // Arrays of fixed size alias with arrays of unknown size. 1384 if (ta->size() != TypeInt::POS) { 1385 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1386 tj = ta = ta-> 1387 remove_speculative()-> 1388 cast_to_ptr_type(ptr)-> 1389 with_ary(tary)-> 1390 cast_to_exactness(false); 1391 } 1392 // Arrays of known objects become arrays of unknown objects. 1393 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1394 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1395 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1396 } 1397 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1398 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1399 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1400 } 1401 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1402 // cannot be distinguished by bytecode alone. 1403 if (ta->elem() == TypeInt::BOOL) { 1404 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1405 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1406 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1407 } 1408 // During the 2nd round of IterGVN, NotNull castings are removed. 1409 // Make sure the Bottom and NotNull variants alias the same. 1410 // Also, make sure exact and non-exact variants alias the same. 1411 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1412 tj = ta = ta-> 1413 remove_speculative()-> 1414 cast_to_ptr_type(TypePtr::BotPTR)-> 1415 cast_to_exactness(false)-> 1416 with_offset(offset); 1417 } 1418 } 1419 1420 // Oop pointers need some flattening 1421 const TypeInstPtr *to = tj->isa_instptr(); 1422 if (to && to != TypeOopPtr::BOTTOM) { 1423 ciInstanceKlass* ik = to->instance_klass(); 1424 if( ptr == TypePtr::Constant ) { 1425 if (ik != ciEnv::current()->Class_klass() || 1426 offset < ik->layout_helper_size_in_bytes()) { 1427 // No constant oop pointers (such as Strings); they alias with 1428 // unknown strings. 1429 assert(!is_known_inst, "not scalarizable allocation"); 1430 tj = to = to-> 1431 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1432 remove_speculative()-> 1433 cast_to_ptr_type(TypePtr::BotPTR)-> 1434 cast_to_exactness(false); 1435 } 1436 } else if( is_known_inst ) { 1437 tj = to; // Keep NotNull and klass_is_exact for instance type 1438 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1439 // During the 2nd round of IterGVN, NotNull castings are removed. 1440 // Make sure the Bottom and NotNull variants alias the same. 1441 // Also, make sure exact and non-exact variants alias the same. 1442 tj = to = to-> 1443 remove_speculative()-> 1444 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1445 cast_to_ptr_type(TypePtr::BotPTR)-> 1446 cast_to_exactness(false); 1447 } 1448 if (to->speculative() != nullptr) { 1449 tj = to = to->remove_speculative(); 1450 } 1451 // Canonicalize the holder of this field 1452 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1453 // First handle header references such as a LoadKlassNode, even if the 1454 // object's klass is unloaded at compile time (4965979). 1455 if (!is_known_inst) { // Do it only for non-instance types 1456 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1457 } 1458 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1459 // Static fields are in the space above the normal instance 1460 // fields in the java.lang.Class instance. 1461 if (ik != ciEnv::current()->Class_klass()) { 1462 to = nullptr; 1463 tj = TypeOopPtr::BOTTOM; 1464 offset = tj->offset(); 1465 } 1466 } else { 1467 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1468 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1469 assert(tj->offset() == offset, "no change to offset expected"); 1470 bool xk = to->klass_is_exact(); 1471 int instance_id = to->instance_id(); 1472 1473 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1474 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1475 // its interfaces are included. 1476 if (xk && ik->equals(canonical_holder)) { 1477 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1478 } else { 1479 assert(xk || !is_known_inst, "Known instance should be exact type"); 1480 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1481 } 1482 } 1483 } 1484 1485 // Klass pointers to object array klasses need some flattening 1486 const TypeKlassPtr *tk = tj->isa_klassptr(); 1487 if( tk ) { 1488 // If we are referencing a field within a Klass, we need 1489 // to assume the worst case of an Object. Both exact and 1490 // inexact types must flatten to the same alias class so 1491 // use NotNull as the PTR. 1492 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1493 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1494 env()->Object_klass(), 1495 offset); 1496 } 1497 1498 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1499 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1500 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1501 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1502 } else { 1503 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1504 } 1505 } 1506 1507 // Check for precise loads from the primary supertype array and force them 1508 // to the supertype cache alias index. Check for generic array loads from 1509 // the primary supertype array and also force them to the supertype cache 1510 // alias index. Since the same load can reach both, we need to merge 1511 // these 2 disparate memories into the same alias class. Since the 1512 // primary supertype array is read-only, there's no chance of confusion 1513 // where we bypass an array load and an array store. 1514 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1515 if (offset == Type::OffsetBot || 1516 (offset >= primary_supers_offset && 1517 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1518 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1519 offset = in_bytes(Klass::secondary_super_cache_offset()); 1520 tj = tk = tk->with_offset(offset); 1521 } 1522 } 1523 1524 // Flatten all Raw pointers together. 1525 if (tj->base() == Type::RawPtr) 1526 tj = TypeRawPtr::BOTTOM; 1527 1528 if (tj->base() == Type::AnyPtr) 1529 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1530 1531 offset = tj->offset(); 1532 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1533 1534 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1535 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1536 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1537 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1538 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1539 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1540 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1541 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1542 assert( tj->ptr() != TypePtr::TopPTR && 1543 tj->ptr() != TypePtr::AnyNull && 1544 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1545 // assert( tj->ptr() != TypePtr::Constant || 1546 // tj->base() == Type::RawPtr || 1547 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1548 1549 return tj; 1550 } 1551 1552 void Compile::AliasType::Init(int i, const TypePtr* at) { 1553 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1554 _index = i; 1555 _adr_type = at; 1556 _field = nullptr; 1557 _element = nullptr; 1558 _is_rewritable = true; // default 1559 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1560 if (atoop != nullptr && atoop->is_known_instance()) { 1561 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1562 _general_index = Compile::current()->get_alias_index(gt); 1563 } else { 1564 _general_index = 0; 1565 } 1566 } 1567 1568 BasicType Compile::AliasType::basic_type() const { 1569 if (element() != nullptr) { 1570 const Type* element = adr_type()->is_aryptr()->elem(); 1571 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1572 } if (field() != nullptr) { 1573 return field()->layout_type(); 1574 } else { 1575 return T_ILLEGAL; // unknown 1576 } 1577 } 1578 1579 //---------------------------------print_on------------------------------------ 1580 #ifndef PRODUCT 1581 void Compile::AliasType::print_on(outputStream* st) { 1582 if (index() < 10) 1583 st->print("@ <%d> ", index()); 1584 else st->print("@ <%d>", index()); 1585 st->print(is_rewritable() ? " " : " RO"); 1586 int offset = adr_type()->offset(); 1587 if (offset == Type::OffsetBot) 1588 st->print(" +any"); 1589 else st->print(" +%-3d", offset); 1590 st->print(" in "); 1591 adr_type()->dump_on(st); 1592 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1593 if (field() != nullptr && tjp) { 1594 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1595 tjp->offset() != field()->offset_in_bytes()) { 1596 st->print(" != "); 1597 field()->print(); 1598 st->print(" ***"); 1599 } 1600 } 1601 } 1602 1603 void print_alias_types() { 1604 Compile* C = Compile::current(); 1605 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1606 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1607 C->alias_type(idx)->print_on(tty); 1608 tty->cr(); 1609 } 1610 } 1611 #endif 1612 1613 1614 //----------------------------probe_alias_cache-------------------------------- 1615 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1616 intptr_t key = (intptr_t) adr_type; 1617 key ^= key >> logAliasCacheSize; 1618 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1619 } 1620 1621 1622 //-----------------------------grow_alias_types-------------------------------- 1623 void Compile::grow_alias_types() { 1624 const int old_ats = _max_alias_types; // how many before? 1625 const int new_ats = old_ats; // how many more? 1626 const int grow_ats = old_ats+new_ats; // how many now? 1627 _max_alias_types = grow_ats; 1628 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1629 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1630 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1631 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1632 } 1633 1634 1635 //--------------------------------find_alias_type------------------------------ 1636 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1637 if (!do_aliasing()) { 1638 return alias_type(AliasIdxBot); 1639 } 1640 1641 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1642 if (ace->_adr_type == adr_type) { 1643 return alias_type(ace->_index); 1644 } 1645 1646 // Handle special cases. 1647 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1648 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1649 1650 // Do it the slow way. 1651 const TypePtr* flat = flatten_alias_type(adr_type); 1652 1653 #ifdef ASSERT 1654 { 1655 ResourceMark rm; 1656 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1657 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1658 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1659 Type::str(adr_type)); 1660 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1661 const TypeOopPtr* foop = flat->is_oopptr(); 1662 // Scalarizable allocations have exact klass always. 1663 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1664 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1665 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1666 Type::str(foop), Type::str(xoop)); 1667 } 1668 } 1669 #endif 1670 1671 int idx = AliasIdxTop; 1672 for (int i = 0; i < num_alias_types(); i++) { 1673 if (alias_type(i)->adr_type() == flat) { 1674 idx = i; 1675 break; 1676 } 1677 } 1678 1679 if (idx == AliasIdxTop) { 1680 if (no_create) return nullptr; 1681 // Grow the array if necessary. 1682 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1683 // Add a new alias type. 1684 idx = _num_alias_types++; 1685 _alias_types[idx]->Init(idx, flat); 1686 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1687 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1688 if (flat->isa_instptr()) { 1689 if (flat->offset() == java_lang_Class::klass_offset() 1690 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1691 alias_type(idx)->set_rewritable(false); 1692 } 1693 if (flat->isa_aryptr()) { 1694 #ifdef ASSERT 1695 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1696 // (T_BYTE has the weakest alignment and size restrictions...) 1697 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1698 #endif 1699 if (flat->offset() == TypePtr::OffsetBot) { 1700 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1701 } 1702 } 1703 if (flat->isa_klassptr()) { 1704 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1705 alias_type(idx)->set_rewritable(false); 1706 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1707 alias_type(idx)->set_rewritable(false); 1708 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1709 alias_type(idx)->set_rewritable(false); 1710 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1711 alias_type(idx)->set_rewritable(false); 1712 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1713 alias_type(idx)->set_rewritable(false); 1714 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1715 alias_type(idx)->set_rewritable(false); 1716 } 1717 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1718 // but the base pointer type is not distinctive enough to identify 1719 // references into JavaThread.) 1720 1721 // Check for final fields. 1722 const TypeInstPtr* tinst = flat->isa_instptr(); 1723 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1724 ciField* field; 1725 if (tinst->const_oop() != nullptr && 1726 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1727 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1728 // static field 1729 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1730 field = k->get_field_by_offset(tinst->offset(), true); 1731 } else { 1732 ciInstanceKlass *k = tinst->instance_klass(); 1733 field = k->get_field_by_offset(tinst->offset(), false); 1734 } 1735 assert(field == nullptr || 1736 original_field == nullptr || 1737 (field->holder() == original_field->holder() && 1738 field->offset_in_bytes() == original_field->offset_in_bytes() && 1739 field->is_static() == original_field->is_static()), "wrong field?"); 1740 // Set field() and is_rewritable() attributes. 1741 if (field != nullptr) alias_type(idx)->set_field(field); 1742 } 1743 } 1744 1745 // Fill the cache for next time. 1746 ace->_adr_type = adr_type; 1747 ace->_index = idx; 1748 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1749 1750 // Might as well try to fill the cache for the flattened version, too. 1751 AliasCacheEntry* face = probe_alias_cache(flat); 1752 if (face->_adr_type == nullptr) { 1753 face->_adr_type = flat; 1754 face->_index = idx; 1755 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1756 } 1757 1758 return alias_type(idx); 1759 } 1760 1761 1762 Compile::AliasType* Compile::alias_type(ciField* field) { 1763 const TypeOopPtr* t; 1764 if (field->is_static()) 1765 t = TypeInstPtr::make(field->holder()->java_mirror()); 1766 else 1767 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1768 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1769 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1770 return atp; 1771 } 1772 1773 1774 //------------------------------have_alias_type-------------------------------- 1775 bool Compile::have_alias_type(const TypePtr* adr_type) { 1776 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1777 if (ace->_adr_type == adr_type) { 1778 return true; 1779 } 1780 1781 // Handle special cases. 1782 if (adr_type == nullptr) return true; 1783 if (adr_type == TypePtr::BOTTOM) return true; 1784 1785 return find_alias_type(adr_type, true, nullptr) != nullptr; 1786 } 1787 1788 //-----------------------------must_alias-------------------------------------- 1789 // True if all values of the given address type are in the given alias category. 1790 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1791 if (alias_idx == AliasIdxBot) return true; // the universal category 1792 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1793 if (alias_idx == AliasIdxTop) return false; // the empty category 1794 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1795 1796 // the only remaining possible overlap is identity 1797 int adr_idx = get_alias_index(adr_type); 1798 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1799 assert(adr_idx == alias_idx || 1800 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1801 && adr_type != TypeOopPtr::BOTTOM), 1802 "should not be testing for overlap with an unsafe pointer"); 1803 return adr_idx == alias_idx; 1804 } 1805 1806 //------------------------------can_alias-------------------------------------- 1807 // True if any values of the given address type are in the given alias category. 1808 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1809 if (alias_idx == AliasIdxTop) return false; // the empty category 1810 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1811 // Known instance doesn't alias with bottom memory 1812 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1813 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1814 1815 // the only remaining possible overlap is identity 1816 int adr_idx = get_alias_index(adr_type); 1817 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1818 return adr_idx == alias_idx; 1819 } 1820 1821 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1822 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1823 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1824 if (parse_predicate_count() == 0) { 1825 return; 1826 } 1827 for (int i = 0; i < parse_predicate_count(); i++) { 1828 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1829 parse_predicate->mark_useless(); 1830 igvn._worklist.push(parse_predicate); 1831 } 1832 _parse_predicates.clear(); 1833 } 1834 1835 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1836 if (!n->for_post_loop_opts_igvn()) { 1837 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1838 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1839 _for_post_loop_igvn.append(n); 1840 } 1841 } 1842 1843 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1844 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1845 _for_post_loop_igvn.remove(n); 1846 } 1847 1848 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1849 // Verify that all previous optimizations produced a valid graph 1850 // at least to this point, even if no loop optimizations were done. 1851 PhaseIdealLoop::verify(igvn); 1852 1853 C->set_post_loop_opts_phase(); // no more loop opts allowed 1854 1855 assert(!C->major_progress(), "not cleared"); 1856 1857 if (_for_post_loop_igvn.length() > 0) { 1858 while (_for_post_loop_igvn.length() > 0) { 1859 Node* n = _for_post_loop_igvn.pop(); 1860 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1861 igvn._worklist.push(n); 1862 } 1863 igvn.optimize(); 1864 if (failing()) return; 1865 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1866 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1867 1868 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1869 if (C->major_progress()) { 1870 C->clear_major_progress(); // ensure that major progress is now clear 1871 } 1872 } 1873 } 1874 1875 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1876 if (OptimizeUnstableIf) { 1877 _unstable_if_traps.append(trap); 1878 } 1879 } 1880 1881 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1882 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1883 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1884 Node* n = trap->uncommon_trap(); 1885 if (!useful.member(n)) { 1886 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1887 } 1888 } 1889 } 1890 1891 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1892 // or fold-compares case. Return true if succeed or not found. 1893 // 1894 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1895 // false and ask fold-compares to yield. 1896 // 1897 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1898 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1899 // when deoptimization does happen. 1900 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1901 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1902 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1903 if (trap->uncommon_trap() == unc) { 1904 if (yield && trap->modified()) { 1905 return false; 1906 } 1907 _unstable_if_traps.delete_at(i); 1908 break; 1909 } 1910 } 1911 return true; 1912 } 1913 1914 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1915 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1916 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1917 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1918 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1919 CallStaticJavaNode* unc = trap->uncommon_trap(); 1920 int next_bci = trap->next_bci(); 1921 bool modified = trap->modified(); 1922 1923 if (next_bci != -1 && !modified) { 1924 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1925 JVMState* jvms = unc->jvms(); 1926 ciMethod* method = jvms->method(); 1927 ciBytecodeStream iter(method); 1928 1929 iter.force_bci(jvms->bci()); 1930 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1931 Bytecodes::Code c = iter.cur_bc(); 1932 Node* lhs = nullptr; 1933 Node* rhs = nullptr; 1934 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1935 lhs = unc->peek_operand(0); 1936 rhs = unc->peek_operand(1); 1937 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1938 lhs = unc->peek_operand(0); 1939 } 1940 1941 ResourceMark rm; 1942 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1943 assert(live_locals.is_valid(), "broken liveness info"); 1944 int len = (int)live_locals.size(); 1945 1946 for (int i = 0; i < len; i++) { 1947 Node* local = unc->local(jvms, i); 1948 // kill local using the liveness of next_bci. 1949 // give up when the local looks like an operand to secure reexecution. 1950 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1951 uint idx = jvms->locoff() + i; 1952 #ifdef ASSERT 1953 if (PrintOpto && Verbose) { 1954 tty->print("[unstable_if] kill local#%d: ", idx); 1955 local->dump(); 1956 tty->cr(); 1957 } 1958 #endif 1959 igvn.replace_input_of(unc, idx, top()); 1960 modified = true; 1961 } 1962 } 1963 } 1964 1965 // keep the mondified trap for late query 1966 if (modified) { 1967 trap->set_modified(); 1968 } else { 1969 _unstable_if_traps.delete_at(i); 1970 } 1971 } 1972 igvn.optimize(); 1973 } 1974 1975 // StringOpts and late inlining of string methods 1976 void Compile::inline_string_calls(bool parse_time) { 1977 { 1978 // remove useless nodes to make the usage analysis simpler 1979 ResourceMark rm; 1980 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1981 } 1982 1983 { 1984 ResourceMark rm; 1985 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1986 PhaseStringOpts pso(initial_gvn()); 1987 print_method(PHASE_AFTER_STRINGOPTS, 3); 1988 } 1989 1990 // now inline anything that we skipped the first time around 1991 if (!parse_time) { 1992 _late_inlines_pos = _late_inlines.length(); 1993 } 1994 1995 while (_string_late_inlines.length() > 0) { 1996 CallGenerator* cg = _string_late_inlines.pop(); 1997 cg->do_late_inline(); 1998 if (failing()) return; 1999 } 2000 _string_late_inlines.trunc_to(0); 2001 } 2002 2003 // Late inlining of boxing methods 2004 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2005 if (_boxing_late_inlines.length() > 0) { 2006 assert(has_boxed_value(), "inconsistent"); 2007 2008 set_inlining_incrementally(true); 2009 2010 igvn_worklist()->ensure_empty(); // should be done with igvn 2011 2012 _late_inlines_pos = _late_inlines.length(); 2013 2014 while (_boxing_late_inlines.length() > 0) { 2015 CallGenerator* cg = _boxing_late_inlines.pop(); 2016 cg->do_late_inline(); 2017 if (failing()) return; 2018 } 2019 _boxing_late_inlines.trunc_to(0); 2020 2021 inline_incrementally_cleanup(igvn); 2022 2023 set_inlining_incrementally(false); 2024 } 2025 } 2026 2027 bool Compile::inline_incrementally_one() { 2028 assert(IncrementalInline, "incremental inlining should be on"); 2029 2030 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2031 2032 set_inlining_progress(false); 2033 set_do_cleanup(false); 2034 2035 for (int i = 0; i < _late_inlines.length(); i++) { 2036 _late_inlines_pos = i+1; 2037 CallGenerator* cg = _late_inlines.at(i); 2038 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2039 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2040 cg->do_late_inline(); 2041 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2042 if (failing()) { 2043 return false; 2044 } else if (inlining_progress()) { 2045 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2046 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2047 break; // process one call site at a time 2048 } 2049 } else { 2050 // Ignore late inline direct calls when inlining is not allowed. 2051 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2052 } 2053 } 2054 // Remove processed elements. 2055 _late_inlines.remove_till(_late_inlines_pos); 2056 _late_inlines_pos = 0; 2057 2058 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2059 2060 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2061 2062 set_inlining_progress(false); 2063 set_do_cleanup(false); 2064 2065 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2066 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2067 } 2068 2069 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2070 { 2071 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2072 ResourceMark rm; 2073 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2074 } 2075 { 2076 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2077 igvn.reset_from_gvn(initial_gvn()); 2078 igvn.optimize(); 2079 if (failing()) return; 2080 } 2081 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2082 } 2083 2084 // Perform incremental inlining until bound on number of live nodes is reached 2085 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2086 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2087 2088 set_inlining_incrementally(true); 2089 uint low_live_nodes = 0; 2090 2091 while (_late_inlines.length() > 0) { 2092 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2093 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2094 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2095 // PhaseIdealLoop is expensive so we only try it once we are 2096 // out of live nodes and we only try it again if the previous 2097 // helped got the number of nodes down significantly 2098 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2099 if (failing()) return; 2100 low_live_nodes = live_nodes(); 2101 _major_progress = true; 2102 } 2103 2104 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2105 bool do_print_inlining = print_inlining() || print_intrinsics(); 2106 if (do_print_inlining || log() != nullptr) { 2107 // Print inlining message for candidates that we couldn't inline for lack of space. 2108 for (int i = 0; i < _late_inlines.length(); i++) { 2109 CallGenerator* cg = _late_inlines.at(i); 2110 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2111 if (do_print_inlining) { 2112 cg->print_inlining_late(InliningResult::FAILURE, msg); 2113 } 2114 log_late_inline_failure(cg, msg); 2115 } 2116 } 2117 break; // finish 2118 } 2119 } 2120 2121 igvn_worklist()->ensure_empty(); // should be done with igvn 2122 2123 while (inline_incrementally_one()) { 2124 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2125 } 2126 if (failing()) return; 2127 2128 inline_incrementally_cleanup(igvn); 2129 2130 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2131 2132 if (failing()) return; 2133 2134 if (_late_inlines.length() == 0) { 2135 break; // no more progress 2136 } 2137 } 2138 2139 igvn_worklist()->ensure_empty(); // should be done with igvn 2140 2141 if (_string_late_inlines.length() > 0) { 2142 assert(has_stringbuilder(), "inconsistent"); 2143 2144 inline_string_calls(false); 2145 2146 if (failing()) return; 2147 2148 inline_incrementally_cleanup(igvn); 2149 } 2150 2151 set_inlining_incrementally(false); 2152 } 2153 2154 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2155 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2156 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2157 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2158 // as if "inlining_incrementally() == true" were set. 2159 assert(inlining_incrementally() == false, "not allowed"); 2160 assert(_modified_nodes == nullptr, "not allowed"); 2161 assert(_late_inlines.length() > 0, "sanity"); 2162 2163 while (_late_inlines.length() > 0) { 2164 igvn_worklist()->ensure_empty(); // should be done with igvn 2165 2166 while (inline_incrementally_one()) { 2167 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2168 } 2169 if (failing()) return; 2170 2171 inline_incrementally_cleanup(igvn); 2172 } 2173 } 2174 2175 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2176 if (_loop_opts_cnt > 0) { 2177 while (major_progress() && (_loop_opts_cnt > 0)) { 2178 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2179 PhaseIdealLoop::optimize(igvn, mode); 2180 _loop_opts_cnt--; 2181 if (failing()) return false; 2182 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2183 } 2184 } 2185 return true; 2186 } 2187 2188 // Remove edges from "root" to each SafePoint at a backward branch. 2189 // They were inserted during parsing (see add_safepoint()) to make 2190 // infinite loops without calls or exceptions visible to root, i.e., 2191 // useful. 2192 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2193 Node *r = root(); 2194 if (r != nullptr) { 2195 for (uint i = r->req(); i < r->len(); ++i) { 2196 Node *n = r->in(i); 2197 if (n != nullptr && n->is_SafePoint()) { 2198 r->rm_prec(i); 2199 if (n->outcnt() == 0) { 2200 igvn.remove_dead_node(n); 2201 } 2202 --i; 2203 } 2204 } 2205 // Parsing may have added top inputs to the root node (Path 2206 // leading to the Halt node proven dead). Make sure we get a 2207 // chance to clean them up. 2208 igvn._worklist.push(r); 2209 igvn.optimize(); 2210 } 2211 } 2212 2213 //------------------------------Optimize--------------------------------------- 2214 // Given a graph, optimize it. 2215 void Compile::Optimize() { 2216 TracePhase tp("optimizer", &timers[_t_optimizer]); 2217 2218 #ifndef PRODUCT 2219 if (env()->break_at_compile()) { 2220 BREAKPOINT; 2221 } 2222 2223 #endif 2224 2225 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2226 #ifdef ASSERT 2227 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2228 #endif 2229 2230 ResourceMark rm; 2231 2232 print_inlining_reinit(); 2233 2234 NOT_PRODUCT( verify_graph_edges(); ) 2235 2236 print_method(PHASE_AFTER_PARSING, 1); 2237 2238 { 2239 // Iterative Global Value Numbering, including ideal transforms 2240 // Initialize IterGVN with types and values from parse-time GVN 2241 PhaseIterGVN igvn(initial_gvn()); 2242 #ifdef ASSERT 2243 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2244 #endif 2245 { 2246 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2247 igvn.optimize(); 2248 } 2249 2250 if (failing()) return; 2251 2252 print_method(PHASE_ITER_GVN1, 2); 2253 2254 process_for_unstable_if_traps(igvn); 2255 2256 if (failing()) return; 2257 2258 inline_incrementally(igvn); 2259 2260 print_method(PHASE_INCREMENTAL_INLINE, 2); 2261 2262 if (failing()) return; 2263 2264 if (eliminate_boxing()) { 2265 // Inline valueOf() methods now. 2266 inline_boxing_calls(igvn); 2267 2268 if (failing()) return; 2269 2270 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2271 inline_incrementally(igvn); 2272 } 2273 2274 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2275 2276 if (failing()) return; 2277 } 2278 2279 // Remove the speculative part of types and clean up the graph from 2280 // the extra CastPP nodes whose only purpose is to carry them. Do 2281 // that early so that optimizations are not disrupted by the extra 2282 // CastPP nodes. 2283 remove_speculative_types(igvn); 2284 2285 if (failing()) return; 2286 2287 // No more new expensive nodes will be added to the list from here 2288 // so keep only the actual candidates for optimizations. 2289 cleanup_expensive_nodes(igvn); 2290 2291 if (failing()) return; 2292 2293 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2294 if (EnableVectorSupport && has_vbox_nodes()) { 2295 TracePhase tp("", &timers[_t_vector]); 2296 PhaseVector pv(igvn); 2297 pv.optimize_vector_boxes(); 2298 if (failing()) return; 2299 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2300 } 2301 assert(!has_vbox_nodes(), "sanity"); 2302 2303 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2304 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2305 igvn_worklist()->ensure_empty(); // should be done with igvn 2306 { 2307 ResourceMark rm; 2308 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2309 } 2310 igvn.reset_from_gvn(initial_gvn()); 2311 igvn.optimize(); 2312 if (failing()) return; 2313 } 2314 2315 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2316 // safepoints 2317 remove_root_to_sfpts_edges(igvn); 2318 2319 if (failing()) return; 2320 2321 // Perform escape analysis 2322 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2323 if (has_loops()) { 2324 // Cleanup graph (remove dead nodes). 2325 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2326 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2327 if (failing()) return; 2328 } 2329 bool progress; 2330 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2331 do { 2332 ConnectionGraph::do_analysis(this, &igvn); 2333 2334 if (failing()) return; 2335 2336 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2337 2338 // Optimize out fields loads from scalar replaceable allocations. 2339 igvn.optimize(); 2340 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2341 2342 if (failing()) return; 2343 2344 if (congraph() != nullptr && macro_count() > 0) { 2345 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2346 PhaseMacroExpand mexp(igvn); 2347 mexp.eliminate_macro_nodes(); 2348 if (failing()) return; 2349 2350 igvn.set_delay_transform(false); 2351 igvn.optimize(); 2352 if (failing()) return; 2353 2354 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2355 } 2356 2357 ConnectionGraph::verify_ram_nodes(this, root()); 2358 if (failing()) return; 2359 2360 progress = do_iterative_escape_analysis() && 2361 (macro_count() < mcount) && 2362 ConnectionGraph::has_candidates(this); 2363 // Try again if candidates exist and made progress 2364 // by removing some allocations and/or locks. 2365 } while (progress); 2366 } 2367 2368 // Loop transforms on the ideal graph. Range Check Elimination, 2369 // peeling, unrolling, etc. 2370 2371 // Set loop opts counter 2372 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2373 { 2374 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2375 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2376 _loop_opts_cnt--; 2377 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2378 if (failing()) return; 2379 } 2380 // Loop opts pass if partial peeling occurred in previous pass 2381 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2382 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2383 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2384 _loop_opts_cnt--; 2385 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2386 if (failing()) return; 2387 } 2388 // Loop opts pass for loop-unrolling before CCP 2389 if(major_progress() && (_loop_opts_cnt > 0)) { 2390 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2391 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2392 _loop_opts_cnt--; 2393 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2394 } 2395 if (!failing()) { 2396 // Verify that last round of loop opts produced a valid graph 2397 PhaseIdealLoop::verify(igvn); 2398 } 2399 } 2400 if (failing()) return; 2401 2402 // Conditional Constant Propagation; 2403 print_method(PHASE_BEFORE_CCP1, 2); 2404 PhaseCCP ccp( &igvn ); 2405 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2406 { 2407 TracePhase tp("ccp", &timers[_t_ccp]); 2408 ccp.do_transform(); 2409 } 2410 print_method(PHASE_CCP1, 2); 2411 2412 assert( true, "Break here to ccp.dump_old2new_map()"); 2413 2414 // Iterative Global Value Numbering, including ideal transforms 2415 { 2416 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2417 igvn.reset_from_igvn(&ccp); 2418 igvn.optimize(); 2419 } 2420 print_method(PHASE_ITER_GVN2, 2); 2421 2422 if (failing()) return; 2423 2424 // Loop transforms on the ideal graph. Range Check Elimination, 2425 // peeling, unrolling, etc. 2426 if (!optimize_loops(igvn, LoopOptsDefault)) { 2427 return; 2428 } 2429 2430 if (failing()) return; 2431 2432 C->clear_major_progress(); // ensure that major progress is now clear 2433 2434 process_for_post_loop_opts_igvn(igvn); 2435 2436 if (failing()) return; 2437 2438 #ifdef ASSERT 2439 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2440 #endif 2441 2442 { 2443 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2444 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2445 PhaseMacroExpand mex(igvn); 2446 if (mex.expand_macro_nodes()) { 2447 assert(failing(), "must bail out w/ explicit message"); 2448 return; 2449 } 2450 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2451 } 2452 2453 { 2454 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2455 if (bs->expand_barriers(this, igvn)) { 2456 assert(failing(), "must bail out w/ explicit message"); 2457 return; 2458 } 2459 print_method(PHASE_BARRIER_EXPANSION, 2); 2460 } 2461 2462 if (C->max_vector_size() > 0) { 2463 C->optimize_logic_cones(igvn); 2464 igvn.optimize(); 2465 if (failing()) return; 2466 } 2467 2468 DEBUG_ONLY( _modified_nodes = nullptr; ) 2469 2470 assert(igvn._worklist.size() == 0, "not empty"); 2471 2472 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2473 2474 if (_late_inlines.length() > 0) { 2475 // More opportunities to optimize virtual and MH calls. 2476 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2477 process_late_inline_calls_no_inline(igvn); 2478 if (failing()) return; 2479 } 2480 } // (End scope of igvn; run destructor if necessary for asserts.) 2481 2482 check_no_dead_use(); 2483 2484 process_print_inlining(); 2485 2486 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2487 // to remove hashes to unlock nodes for modifications. 2488 C->node_hash()->clear(); 2489 2490 // A method with only infinite loops has no edges entering loops from root 2491 { 2492 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2493 if (final_graph_reshaping()) { 2494 assert(failing(), "must bail out w/ explicit message"); 2495 return; 2496 } 2497 } 2498 2499 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2500 DEBUG_ONLY(set_phase_optimize_finished();) 2501 } 2502 2503 #ifdef ASSERT 2504 void Compile::check_no_dead_use() const { 2505 ResourceMark rm; 2506 Unique_Node_List wq; 2507 wq.push(root()); 2508 for (uint i = 0; i < wq.size(); ++i) { 2509 Node* n = wq.at(i); 2510 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2511 Node* u = n->fast_out(j); 2512 if (u->outcnt() == 0 && !u->is_Con()) { 2513 u->dump(); 2514 fatal("no reachable node should have no use"); 2515 } 2516 wq.push(u); 2517 } 2518 } 2519 } 2520 #endif 2521 2522 void Compile::inline_vector_reboxing_calls() { 2523 if (C->_vector_reboxing_late_inlines.length() > 0) { 2524 _late_inlines_pos = C->_late_inlines.length(); 2525 while (_vector_reboxing_late_inlines.length() > 0) { 2526 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2527 cg->do_late_inline(); 2528 if (failing()) return; 2529 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2530 } 2531 _vector_reboxing_late_inlines.trunc_to(0); 2532 } 2533 } 2534 2535 bool Compile::has_vbox_nodes() { 2536 if (C->_vector_reboxing_late_inlines.length() > 0) { 2537 return true; 2538 } 2539 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2540 Node * n = C->macro_node(macro_idx); 2541 assert(n->is_macro(), "only macro nodes expected here"); 2542 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2543 return true; 2544 } 2545 } 2546 return false; 2547 } 2548 2549 //---------------------------- Bitwise operation packing optimization --------------------------- 2550 2551 static bool is_vector_unary_bitwise_op(Node* n) { 2552 return n->Opcode() == Op_XorV && 2553 VectorNode::is_vector_bitwise_not_pattern(n); 2554 } 2555 2556 static bool is_vector_binary_bitwise_op(Node* n) { 2557 switch (n->Opcode()) { 2558 case Op_AndV: 2559 case Op_OrV: 2560 return true; 2561 2562 case Op_XorV: 2563 return !is_vector_unary_bitwise_op(n); 2564 2565 default: 2566 return false; 2567 } 2568 } 2569 2570 static bool is_vector_ternary_bitwise_op(Node* n) { 2571 return n->Opcode() == Op_MacroLogicV; 2572 } 2573 2574 static bool is_vector_bitwise_op(Node* n) { 2575 return is_vector_unary_bitwise_op(n) || 2576 is_vector_binary_bitwise_op(n) || 2577 is_vector_ternary_bitwise_op(n); 2578 } 2579 2580 static bool is_vector_bitwise_cone_root(Node* n) { 2581 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2582 return false; 2583 } 2584 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2585 if (is_vector_bitwise_op(n->fast_out(i))) { 2586 return false; 2587 } 2588 } 2589 return true; 2590 } 2591 2592 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2593 uint cnt = 0; 2594 if (is_vector_bitwise_op(n)) { 2595 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2596 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2597 for (uint i = 1; i < inp_cnt; i++) { 2598 Node* in = n->in(i); 2599 bool skip = VectorNode::is_all_ones_vector(in); 2600 if (!skip && !inputs.member(in)) { 2601 inputs.push(in); 2602 cnt++; 2603 } 2604 } 2605 assert(cnt <= 1, "not unary"); 2606 } else { 2607 uint last_req = inp_cnt; 2608 if (is_vector_ternary_bitwise_op(n)) { 2609 last_req = inp_cnt - 1; // skip last input 2610 } 2611 for (uint i = 1; i < last_req; i++) { 2612 Node* def = n->in(i); 2613 if (!inputs.member(def)) { 2614 inputs.push(def); 2615 cnt++; 2616 } 2617 } 2618 } 2619 } else { // not a bitwise operations 2620 if (!inputs.member(n)) { 2621 inputs.push(n); 2622 cnt++; 2623 } 2624 } 2625 return cnt; 2626 } 2627 2628 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2629 Unique_Node_List useful_nodes; 2630 C->identify_useful_nodes(useful_nodes); 2631 2632 for (uint i = 0; i < useful_nodes.size(); i++) { 2633 Node* n = useful_nodes.at(i); 2634 if (is_vector_bitwise_cone_root(n)) { 2635 list.push(n); 2636 } 2637 } 2638 } 2639 2640 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2641 const TypeVect* vt, 2642 Unique_Node_List& partition, 2643 Unique_Node_List& inputs) { 2644 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2645 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2646 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2647 2648 Node* in1 = inputs.at(0); 2649 Node* in2 = inputs.at(1); 2650 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2651 2652 uint func = compute_truth_table(partition, inputs); 2653 2654 Node* pn = partition.at(partition.size() - 1); 2655 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2656 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2657 } 2658 2659 static uint extract_bit(uint func, uint pos) { 2660 return (func & (1 << pos)) >> pos; 2661 } 2662 2663 // 2664 // A macro logic node represents a truth table. It has 4 inputs, 2665 // First three inputs corresponds to 3 columns of a truth table 2666 // and fourth input captures the logic function. 2667 // 2668 // eg. fn = (in1 AND in2) OR in3; 2669 // 2670 // MacroNode(in1,in2,in3,fn) 2671 // 2672 // ----------------- 2673 // in1 in2 in3 fn 2674 // ----------------- 2675 // 0 0 0 0 2676 // 0 0 1 1 2677 // 0 1 0 0 2678 // 0 1 1 1 2679 // 1 0 0 0 2680 // 1 0 1 1 2681 // 1 1 0 1 2682 // 1 1 1 1 2683 // 2684 2685 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2686 int res = 0; 2687 for (int i = 0; i < 8; i++) { 2688 int bit1 = extract_bit(in1, i); 2689 int bit2 = extract_bit(in2, i); 2690 int bit3 = extract_bit(in3, i); 2691 2692 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2693 int func_bit = extract_bit(func, func_bit_pos); 2694 2695 res |= func_bit << i; 2696 } 2697 return res; 2698 } 2699 2700 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2701 assert(n != nullptr, ""); 2702 assert(eval_map.contains(n), "absent"); 2703 return *(eval_map.get(n)); 2704 } 2705 2706 static void eval_operands(Node* n, 2707 uint& func1, uint& func2, uint& func3, 2708 ResourceHashtable<Node*,uint>& eval_map) { 2709 assert(is_vector_bitwise_op(n), ""); 2710 2711 if (is_vector_unary_bitwise_op(n)) { 2712 Node* opnd = n->in(1); 2713 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2714 opnd = n->in(2); 2715 } 2716 func1 = eval_operand(opnd, eval_map); 2717 } else if (is_vector_binary_bitwise_op(n)) { 2718 func1 = eval_operand(n->in(1), eval_map); 2719 func2 = eval_operand(n->in(2), eval_map); 2720 } else { 2721 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2722 func1 = eval_operand(n->in(1), eval_map); 2723 func2 = eval_operand(n->in(2), eval_map); 2724 func3 = eval_operand(n->in(3), eval_map); 2725 } 2726 } 2727 2728 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2729 assert(inputs.size() <= 3, "sanity"); 2730 ResourceMark rm; 2731 uint res = 0; 2732 ResourceHashtable<Node*,uint> eval_map; 2733 2734 // Populate precomputed functions for inputs. 2735 // Each input corresponds to one column of 3 input truth-table. 2736 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2737 0xCC, // (_, b, _) -> b 2738 0xF0 }; // (a, _, _) -> a 2739 for (uint i = 0; i < inputs.size(); i++) { 2740 eval_map.put(inputs.at(i), input_funcs[2-i]); 2741 } 2742 2743 for (uint i = 0; i < partition.size(); i++) { 2744 Node* n = partition.at(i); 2745 2746 uint func1 = 0, func2 = 0, func3 = 0; 2747 eval_operands(n, func1, func2, func3, eval_map); 2748 2749 switch (n->Opcode()) { 2750 case Op_OrV: 2751 assert(func3 == 0, "not binary"); 2752 res = func1 | func2; 2753 break; 2754 case Op_AndV: 2755 assert(func3 == 0, "not binary"); 2756 res = func1 & func2; 2757 break; 2758 case Op_XorV: 2759 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2760 assert(func2 == 0 && func3 == 0, "not unary"); 2761 res = (~func1) & 0xFF; 2762 } else { 2763 assert(func3 == 0, "not binary"); 2764 res = func1 ^ func2; 2765 } 2766 break; 2767 case Op_MacroLogicV: 2768 // Ordering of inputs may change during evaluation of sub-tree 2769 // containing MacroLogic node as a child node, thus a re-evaluation 2770 // makes sure that function is evaluated in context of current 2771 // inputs. 2772 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2773 break; 2774 2775 default: assert(false, "not supported: %s", n->Name()); 2776 } 2777 assert(res <= 0xFF, "invalid"); 2778 eval_map.put(n, res); 2779 } 2780 return res; 2781 } 2782 2783 // Criteria under which nodes gets packed into a macro logic node:- 2784 // 1) Parent and both child nodes are all unmasked or masked with 2785 // same predicates. 2786 // 2) Masked parent can be packed with left child if it is predicated 2787 // and both have same predicates. 2788 // 3) Masked parent can be packed with right child if its un-predicated 2789 // or has matching predication condition. 2790 // 4) An unmasked parent can be packed with an unmasked child. 2791 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2792 assert(partition.size() == 0, "not empty"); 2793 assert(inputs.size() == 0, "not empty"); 2794 if (is_vector_ternary_bitwise_op(n)) { 2795 return false; 2796 } 2797 2798 bool is_unary_op = is_vector_unary_bitwise_op(n); 2799 if (is_unary_op) { 2800 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2801 return false; // too few inputs 2802 } 2803 2804 bool pack_left_child = true; 2805 bool pack_right_child = true; 2806 2807 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2808 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2809 2810 int left_child_input_cnt = 0; 2811 int right_child_input_cnt = 0; 2812 2813 bool parent_is_predicated = n->is_predicated_vector(); 2814 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2815 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2816 2817 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2818 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2819 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2820 2821 do { 2822 if (pack_left_child && left_child_LOP && 2823 ((!parent_is_predicated && !left_child_predicated) || 2824 ((parent_is_predicated && left_child_predicated && 2825 parent_pred == left_child_pred)))) { 2826 partition.push(n->in(1)); 2827 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2828 } else { 2829 inputs.push(n->in(1)); 2830 left_child_input_cnt = 1; 2831 } 2832 2833 if (pack_right_child && right_child_LOP && 2834 (!right_child_predicated || 2835 (right_child_predicated && parent_is_predicated && 2836 parent_pred == right_child_pred))) { 2837 partition.push(n->in(2)); 2838 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2839 } else { 2840 inputs.push(n->in(2)); 2841 right_child_input_cnt = 1; 2842 } 2843 2844 if (inputs.size() > 3) { 2845 assert(partition.size() > 0, ""); 2846 inputs.clear(); 2847 partition.clear(); 2848 if (left_child_input_cnt > right_child_input_cnt) { 2849 pack_left_child = false; 2850 } else { 2851 pack_right_child = false; 2852 } 2853 } else { 2854 break; 2855 } 2856 } while(true); 2857 2858 if(partition.size()) { 2859 partition.push(n); 2860 } 2861 2862 return (partition.size() == 2 || partition.size() == 3) && 2863 (inputs.size() == 2 || inputs.size() == 3); 2864 } 2865 2866 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2867 assert(is_vector_bitwise_op(n), "not a root"); 2868 2869 visited.set(n->_idx); 2870 2871 // 1) Do a DFS walk over the logic cone. 2872 for (uint i = 1; i < n->req(); i++) { 2873 Node* in = n->in(i); 2874 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2875 process_logic_cone_root(igvn, in, visited); 2876 } 2877 } 2878 2879 // 2) Bottom up traversal: Merge node[s] with 2880 // the parent to form macro logic node. 2881 Unique_Node_List partition; 2882 Unique_Node_List inputs; 2883 if (compute_logic_cone(n, partition, inputs)) { 2884 const TypeVect* vt = n->bottom_type()->is_vect(); 2885 Node* pn = partition.at(partition.size() - 1); 2886 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2887 if (mask == nullptr || 2888 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2889 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2890 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2891 igvn.replace_node(n, macro_logic); 2892 } 2893 } 2894 } 2895 2896 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2897 ResourceMark rm; 2898 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2899 Unique_Node_List list; 2900 collect_logic_cone_roots(list); 2901 2902 while (list.size() > 0) { 2903 Node* n = list.pop(); 2904 const TypeVect* vt = n->bottom_type()->is_vect(); 2905 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2906 if (supported) { 2907 VectorSet visited(comp_arena()); 2908 process_logic_cone_root(igvn, n, visited); 2909 } 2910 } 2911 } 2912 } 2913 2914 //------------------------------Code_Gen--------------------------------------- 2915 // Given a graph, generate code for it 2916 void Compile::Code_Gen() { 2917 if (failing()) { 2918 return; 2919 } 2920 2921 // Perform instruction selection. You might think we could reclaim Matcher 2922 // memory PDQ, but actually the Matcher is used in generating spill code. 2923 // Internals of the Matcher (including some VectorSets) must remain live 2924 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2925 // set a bit in reclaimed memory. 2926 2927 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2928 // nodes. Mapping is only valid at the root of each matched subtree. 2929 NOT_PRODUCT( verify_graph_edges(); ) 2930 2931 Matcher matcher; 2932 _matcher = &matcher; 2933 { 2934 TracePhase tp("matcher", &timers[_t_matcher]); 2935 matcher.match(); 2936 if (failing()) { 2937 return; 2938 } 2939 } 2940 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2941 // nodes. Mapping is only valid at the root of each matched subtree. 2942 NOT_PRODUCT( verify_graph_edges(); ) 2943 2944 // If you have too many nodes, or if matching has failed, bail out 2945 check_node_count(0, "out of nodes matching instructions"); 2946 if (failing()) { 2947 return; 2948 } 2949 2950 print_method(PHASE_MATCHING, 2); 2951 2952 // Build a proper-looking CFG 2953 PhaseCFG cfg(node_arena(), root(), matcher); 2954 if (failing()) { 2955 return; 2956 } 2957 _cfg = &cfg; 2958 { 2959 TracePhase tp("scheduler", &timers[_t_scheduler]); 2960 bool success = cfg.do_global_code_motion(); 2961 if (!success) { 2962 return; 2963 } 2964 2965 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2966 NOT_PRODUCT( verify_graph_edges(); ) 2967 cfg.verify(); 2968 } 2969 2970 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2971 _regalloc = ®alloc; 2972 { 2973 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2974 // Perform register allocation. After Chaitin, use-def chains are 2975 // no longer accurate (at spill code) and so must be ignored. 2976 // Node->LRG->reg mappings are still accurate. 2977 _regalloc->Register_Allocate(); 2978 2979 // Bail out if the allocator builds too many nodes 2980 if (failing()) { 2981 return; 2982 } 2983 2984 print_method(PHASE_REGISTER_ALLOCATION, 2); 2985 } 2986 2987 // Prior to register allocation we kept empty basic blocks in case the 2988 // the allocator needed a place to spill. After register allocation we 2989 // are not adding any new instructions. If any basic block is empty, we 2990 // can now safely remove it. 2991 { 2992 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2993 cfg.remove_empty_blocks(); 2994 if (do_freq_based_layout()) { 2995 PhaseBlockLayout layout(cfg); 2996 } else { 2997 cfg.set_loop_alignment(); 2998 } 2999 cfg.fixup_flow(); 3000 cfg.remove_unreachable_blocks(); 3001 cfg.verify_dominator_tree(); 3002 print_method(PHASE_BLOCK_ORDERING, 3); 3003 } 3004 3005 // Apply peephole optimizations 3006 if( OptoPeephole ) { 3007 TracePhase tp("peephole", &timers[_t_peephole]); 3008 PhasePeephole peep( _regalloc, cfg); 3009 peep.do_transform(); 3010 print_method(PHASE_PEEPHOLE, 3); 3011 } 3012 3013 // Do late expand if CPU requires this. 3014 if (Matcher::require_postalloc_expand) { 3015 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3016 cfg.postalloc_expand(_regalloc); 3017 print_method(PHASE_POSTALLOC_EXPAND, 3); 3018 } 3019 3020 // Convert Nodes to instruction bits in a buffer 3021 { 3022 TracePhase tp("output", &timers[_t_output]); 3023 PhaseOutput output; 3024 output.Output(); 3025 if (failing()) return; 3026 output.install(); 3027 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3028 } 3029 3030 // He's dead, Jim. 3031 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3032 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3033 } 3034 3035 //------------------------------Final_Reshape_Counts--------------------------- 3036 // This class defines counters to help identify when a method 3037 // may/must be executed using hardware with only 24-bit precision. 3038 struct Final_Reshape_Counts : public StackObj { 3039 int _call_count; // count non-inlined 'common' calls 3040 int _float_count; // count float ops requiring 24-bit precision 3041 int _double_count; // count double ops requiring more precision 3042 int _java_call_count; // count non-inlined 'java' calls 3043 int _inner_loop_count; // count loops which need alignment 3044 VectorSet _visited; // Visitation flags 3045 Node_List _tests; // Set of IfNodes & PCTableNodes 3046 3047 Final_Reshape_Counts() : 3048 _call_count(0), _float_count(0), _double_count(0), 3049 _java_call_count(0), _inner_loop_count(0) { } 3050 3051 void inc_call_count () { _call_count ++; } 3052 void inc_float_count () { _float_count ++; } 3053 void inc_double_count() { _double_count++; } 3054 void inc_java_call_count() { _java_call_count++; } 3055 void inc_inner_loop_count() { _inner_loop_count++; } 3056 3057 int get_call_count () const { return _call_count ; } 3058 int get_float_count () const { return _float_count ; } 3059 int get_double_count() const { return _double_count; } 3060 int get_java_call_count() const { return _java_call_count; } 3061 int get_inner_loop_count() const { return _inner_loop_count; } 3062 }; 3063 3064 //------------------------------final_graph_reshaping_impl---------------------- 3065 // Implement items 1-5 from final_graph_reshaping below. 3066 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3067 3068 if ( n->outcnt() == 0 ) return; // dead node 3069 uint nop = n->Opcode(); 3070 3071 // Check for 2-input instruction with "last use" on right input. 3072 // Swap to left input. Implements item (2). 3073 if( n->req() == 3 && // two-input instruction 3074 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3075 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3076 n->in(2)->outcnt() == 1 &&// right use IS a last use 3077 !n->in(2)->is_Con() ) { // right use is not a constant 3078 // Check for commutative opcode 3079 switch( nop ) { 3080 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3081 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3082 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3083 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3084 case Op_AndL: case Op_XorL: case Op_OrL: 3085 case Op_AndI: case Op_XorI: case Op_OrI: { 3086 // Move "last use" input to left by swapping inputs 3087 n->swap_edges(1, 2); 3088 break; 3089 } 3090 default: 3091 break; 3092 } 3093 } 3094 3095 #ifdef ASSERT 3096 if( n->is_Mem() ) { 3097 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3098 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3099 // oop will be recorded in oop map if load crosses safepoint 3100 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3101 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3102 "raw memory operations should have control edge"); 3103 } 3104 if (n->is_MemBar()) { 3105 MemBarNode* mb = n->as_MemBar(); 3106 if (mb->trailing_store() || mb->trailing_load_store()) { 3107 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3108 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3109 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3110 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3111 } else if (mb->leading()) { 3112 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3113 } 3114 } 3115 #endif 3116 // Count FPU ops and common calls, implements item (3) 3117 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3118 if (!gc_handled) { 3119 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3120 } 3121 3122 // Collect CFG split points 3123 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3124 frc._tests.push(n); 3125 } 3126 } 3127 3128 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3129 if (!UseDivMod) { 3130 return; 3131 } 3132 3133 // Check if "a % b" and "a / b" both exist 3134 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3135 if (d == nullptr) { 3136 return; 3137 } 3138 3139 // Replace them with a fused divmod if supported 3140 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3141 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3142 d->subsume_by(divmod->div_proj(), this); 3143 n->subsume_by(divmod->mod_proj(), this); 3144 } else { 3145 // Replace "a % b" with "a - ((a / b) * b)" 3146 Node* mult = MulNode::make(d, d->in(2), bt); 3147 Node* sub = SubNode::make(d->in(1), mult, bt); 3148 n->subsume_by(sub, this); 3149 } 3150 } 3151 3152 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3153 switch( nop ) { 3154 // Count all float operations that may use FPU 3155 case Op_AddF: 3156 case Op_SubF: 3157 case Op_MulF: 3158 case Op_DivF: 3159 case Op_NegF: 3160 case Op_ModF: 3161 case Op_ConvI2F: 3162 case Op_ConF: 3163 case Op_CmpF: 3164 case Op_CmpF3: 3165 case Op_StoreF: 3166 case Op_LoadF: 3167 // case Op_ConvL2F: // longs are split into 32-bit halves 3168 frc.inc_float_count(); 3169 break; 3170 3171 case Op_ConvF2D: 3172 case Op_ConvD2F: 3173 frc.inc_float_count(); 3174 frc.inc_double_count(); 3175 break; 3176 3177 // Count all double operations that may use FPU 3178 case Op_AddD: 3179 case Op_SubD: 3180 case Op_MulD: 3181 case Op_DivD: 3182 case Op_NegD: 3183 case Op_ModD: 3184 case Op_ConvI2D: 3185 case Op_ConvD2I: 3186 // case Op_ConvL2D: // handled by leaf call 3187 // case Op_ConvD2L: // handled by leaf call 3188 case Op_ConD: 3189 case Op_CmpD: 3190 case Op_CmpD3: 3191 case Op_StoreD: 3192 case Op_LoadD: 3193 case Op_LoadD_unaligned: 3194 frc.inc_double_count(); 3195 break; 3196 case Op_Opaque1: // Remove Opaque Nodes before matching 3197 n->subsume_by(n->in(1), this); 3198 break; 3199 case Op_CallStaticJava: 3200 case Op_CallJava: 3201 case Op_CallDynamicJava: 3202 frc.inc_java_call_count(); // Count java call site; 3203 case Op_CallRuntime: 3204 case Op_CallLeaf: 3205 case Op_CallLeafVector: 3206 case Op_CallLeafNoFP: { 3207 assert (n->is_Call(), ""); 3208 CallNode *call = n->as_Call(); 3209 // Count call sites where the FP mode bit would have to be flipped. 3210 // Do not count uncommon runtime calls: 3211 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3212 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3213 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3214 frc.inc_call_count(); // Count the call site 3215 } else { // See if uncommon argument is shared 3216 Node *n = call->in(TypeFunc::Parms); 3217 int nop = n->Opcode(); 3218 // Clone shared simple arguments to uncommon calls, item (1). 3219 if (n->outcnt() > 1 && 3220 !n->is_Proj() && 3221 nop != Op_CreateEx && 3222 nop != Op_CheckCastPP && 3223 nop != Op_DecodeN && 3224 nop != Op_DecodeNKlass && 3225 !n->is_Mem() && 3226 !n->is_Phi()) { 3227 Node *x = n->clone(); 3228 call->set_req(TypeFunc::Parms, x); 3229 } 3230 } 3231 break; 3232 } 3233 case Op_StoreB: 3234 case Op_StoreC: 3235 case Op_StoreI: 3236 case Op_StoreL: 3237 case Op_CompareAndSwapB: 3238 case Op_CompareAndSwapS: 3239 case Op_CompareAndSwapI: 3240 case Op_CompareAndSwapL: 3241 case Op_CompareAndSwapP: 3242 case Op_CompareAndSwapN: 3243 case Op_WeakCompareAndSwapB: 3244 case Op_WeakCompareAndSwapS: 3245 case Op_WeakCompareAndSwapI: 3246 case Op_WeakCompareAndSwapL: 3247 case Op_WeakCompareAndSwapP: 3248 case Op_WeakCompareAndSwapN: 3249 case Op_CompareAndExchangeB: 3250 case Op_CompareAndExchangeS: 3251 case Op_CompareAndExchangeI: 3252 case Op_CompareAndExchangeL: 3253 case Op_CompareAndExchangeP: 3254 case Op_CompareAndExchangeN: 3255 case Op_GetAndAddS: 3256 case Op_GetAndAddB: 3257 case Op_GetAndAddI: 3258 case Op_GetAndAddL: 3259 case Op_GetAndSetS: 3260 case Op_GetAndSetB: 3261 case Op_GetAndSetI: 3262 case Op_GetAndSetL: 3263 case Op_GetAndSetP: 3264 case Op_GetAndSetN: 3265 case Op_StoreP: 3266 case Op_StoreN: 3267 case Op_StoreNKlass: 3268 case Op_LoadB: 3269 case Op_LoadUB: 3270 case Op_LoadUS: 3271 case Op_LoadI: 3272 case Op_LoadKlass: 3273 case Op_LoadNKlass: 3274 case Op_LoadL: 3275 case Op_LoadL_unaligned: 3276 case Op_LoadP: 3277 case Op_LoadN: 3278 case Op_LoadRange: 3279 case Op_LoadS: 3280 break; 3281 3282 case Op_AddP: { // Assert sane base pointers 3283 Node *addp = n->in(AddPNode::Address); 3284 assert( !addp->is_AddP() || 3285 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3286 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3287 "Base pointers must match (addp %u)", addp->_idx ); 3288 #ifdef _LP64 3289 if ((UseCompressedOops || UseCompressedClassPointers) && 3290 addp->Opcode() == Op_ConP && 3291 addp == n->in(AddPNode::Base) && 3292 n->in(AddPNode::Offset)->is_Con()) { 3293 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3294 // on the platform and on the compressed oops mode. 3295 // Use addressing with narrow klass to load with offset on x86. 3296 // Some platforms can use the constant pool to load ConP. 3297 // Do this transformation here since IGVN will convert ConN back to ConP. 3298 const Type* t = addp->bottom_type(); 3299 bool is_oop = t->isa_oopptr() != nullptr; 3300 bool is_klass = t->isa_klassptr() != nullptr; 3301 3302 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3303 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3304 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3305 Node* nn = nullptr; 3306 3307 int op = is_oop ? Op_ConN : Op_ConNKlass; 3308 3309 // Look for existing ConN node of the same exact type. 3310 Node* r = root(); 3311 uint cnt = r->outcnt(); 3312 for (uint i = 0; i < cnt; i++) { 3313 Node* m = r->raw_out(i); 3314 if (m!= nullptr && m->Opcode() == op && 3315 m->bottom_type()->make_ptr() == t) { 3316 nn = m; 3317 break; 3318 } 3319 } 3320 if (nn != nullptr) { 3321 // Decode a narrow oop to match address 3322 // [R12 + narrow_oop_reg<<3 + offset] 3323 if (is_oop) { 3324 nn = new DecodeNNode(nn, t); 3325 } else { 3326 nn = new DecodeNKlassNode(nn, t); 3327 } 3328 // Check for succeeding AddP which uses the same Base. 3329 // Otherwise we will run into the assertion above when visiting that guy. 3330 for (uint i = 0; i < n->outcnt(); ++i) { 3331 Node *out_i = n->raw_out(i); 3332 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3333 out_i->set_req(AddPNode::Base, nn); 3334 #ifdef ASSERT 3335 for (uint j = 0; j < out_i->outcnt(); ++j) { 3336 Node *out_j = out_i->raw_out(j); 3337 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3338 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3339 } 3340 #endif 3341 } 3342 } 3343 n->set_req(AddPNode::Base, nn); 3344 n->set_req(AddPNode::Address, nn); 3345 if (addp->outcnt() == 0) { 3346 addp->disconnect_inputs(this); 3347 } 3348 } 3349 } 3350 } 3351 #endif 3352 break; 3353 } 3354 3355 case Op_CastPP: { 3356 // Remove CastPP nodes to gain more freedom during scheduling but 3357 // keep the dependency they encode as control or precedence edges 3358 // (if control is set already) on memory operations. Some CastPP 3359 // nodes don't have a control (don't carry a dependency): skip 3360 // those. 3361 if (n->in(0) != nullptr) { 3362 ResourceMark rm; 3363 Unique_Node_List wq; 3364 wq.push(n); 3365 for (uint next = 0; next < wq.size(); ++next) { 3366 Node *m = wq.at(next); 3367 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3368 Node* use = m->fast_out(i); 3369 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3370 use->ensure_control_or_add_prec(n->in(0)); 3371 } else { 3372 switch(use->Opcode()) { 3373 case Op_AddP: 3374 case Op_DecodeN: 3375 case Op_DecodeNKlass: 3376 case Op_CheckCastPP: 3377 case Op_CastPP: 3378 wq.push(use); 3379 break; 3380 } 3381 } 3382 } 3383 } 3384 } 3385 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3386 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3387 Node* in1 = n->in(1); 3388 const Type* t = n->bottom_type(); 3389 Node* new_in1 = in1->clone(); 3390 new_in1->as_DecodeN()->set_type(t); 3391 3392 if (!Matcher::narrow_oop_use_complex_address()) { 3393 // 3394 // x86, ARM and friends can handle 2 adds in addressing mode 3395 // and Matcher can fold a DecodeN node into address by using 3396 // a narrow oop directly and do implicit null check in address: 3397 // 3398 // [R12 + narrow_oop_reg<<3 + offset] 3399 // NullCheck narrow_oop_reg 3400 // 3401 // On other platforms (Sparc) we have to keep new DecodeN node and 3402 // use it to do implicit null check in address: 3403 // 3404 // decode_not_null narrow_oop_reg, base_reg 3405 // [base_reg + offset] 3406 // NullCheck base_reg 3407 // 3408 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3409 // to keep the information to which null check the new DecodeN node 3410 // corresponds to use it as value in implicit_null_check(). 3411 // 3412 new_in1->set_req(0, n->in(0)); 3413 } 3414 3415 n->subsume_by(new_in1, this); 3416 if (in1->outcnt() == 0) { 3417 in1->disconnect_inputs(this); 3418 } 3419 } else { 3420 n->subsume_by(n->in(1), this); 3421 if (n->outcnt() == 0) { 3422 n->disconnect_inputs(this); 3423 } 3424 } 3425 break; 3426 } 3427 #ifdef _LP64 3428 case Op_CmpP: 3429 // Do this transformation here to preserve CmpPNode::sub() and 3430 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3431 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3432 Node* in1 = n->in(1); 3433 Node* in2 = n->in(2); 3434 if (!in1->is_DecodeNarrowPtr()) { 3435 in2 = in1; 3436 in1 = n->in(2); 3437 } 3438 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3439 3440 Node* new_in2 = nullptr; 3441 if (in2->is_DecodeNarrowPtr()) { 3442 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3443 new_in2 = in2->in(1); 3444 } else if (in2->Opcode() == Op_ConP) { 3445 const Type* t = in2->bottom_type(); 3446 if (t == TypePtr::NULL_PTR) { 3447 assert(in1->is_DecodeN(), "compare klass to null?"); 3448 // Don't convert CmpP null check into CmpN if compressed 3449 // oops implicit null check is not generated. 3450 // This will allow to generate normal oop implicit null check. 3451 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3452 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3453 // 3454 // This transformation together with CastPP transformation above 3455 // will generated code for implicit null checks for compressed oops. 3456 // 3457 // The original code after Optimize() 3458 // 3459 // LoadN memory, narrow_oop_reg 3460 // decode narrow_oop_reg, base_reg 3461 // CmpP base_reg, nullptr 3462 // CastPP base_reg // NotNull 3463 // Load [base_reg + offset], val_reg 3464 // 3465 // after these transformations will be 3466 // 3467 // LoadN memory, narrow_oop_reg 3468 // CmpN narrow_oop_reg, nullptr 3469 // decode_not_null narrow_oop_reg, base_reg 3470 // Load [base_reg + offset], val_reg 3471 // 3472 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3473 // since narrow oops can be used in debug info now (see the code in 3474 // final_graph_reshaping_walk()). 3475 // 3476 // At the end the code will be matched to 3477 // on x86: 3478 // 3479 // Load_narrow_oop memory, narrow_oop_reg 3480 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3481 // NullCheck narrow_oop_reg 3482 // 3483 // and on sparc: 3484 // 3485 // Load_narrow_oop memory, narrow_oop_reg 3486 // decode_not_null narrow_oop_reg, base_reg 3487 // Load [base_reg + offset], val_reg 3488 // NullCheck base_reg 3489 // 3490 } else if (t->isa_oopptr()) { 3491 new_in2 = ConNode::make(t->make_narrowoop()); 3492 } else if (t->isa_klassptr()) { 3493 new_in2 = ConNode::make(t->make_narrowklass()); 3494 } 3495 } 3496 if (new_in2 != nullptr) { 3497 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3498 n->subsume_by(cmpN, this); 3499 if (in1->outcnt() == 0) { 3500 in1->disconnect_inputs(this); 3501 } 3502 if (in2->outcnt() == 0) { 3503 in2->disconnect_inputs(this); 3504 } 3505 } 3506 } 3507 break; 3508 3509 case Op_DecodeN: 3510 case Op_DecodeNKlass: 3511 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3512 // DecodeN could be pinned when it can't be fold into 3513 // an address expression, see the code for Op_CastPP above. 3514 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3515 break; 3516 3517 case Op_EncodeP: 3518 case Op_EncodePKlass: { 3519 Node* in1 = n->in(1); 3520 if (in1->is_DecodeNarrowPtr()) { 3521 n->subsume_by(in1->in(1), this); 3522 } else if (in1->Opcode() == Op_ConP) { 3523 const Type* t = in1->bottom_type(); 3524 if (t == TypePtr::NULL_PTR) { 3525 assert(t->isa_oopptr(), "null klass?"); 3526 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3527 } else if (t->isa_oopptr()) { 3528 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3529 } else if (t->isa_klassptr()) { 3530 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3531 } 3532 } 3533 if (in1->outcnt() == 0) { 3534 in1->disconnect_inputs(this); 3535 } 3536 break; 3537 } 3538 3539 case Op_Proj: { 3540 if (OptimizeStringConcat || IncrementalInline) { 3541 ProjNode* proj = n->as_Proj(); 3542 if (proj->_is_io_use) { 3543 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3544 // Separate projections were used for the exception path which 3545 // are normally removed by a late inline. If it wasn't inlined 3546 // then they will hang around and should just be replaced with 3547 // the original one. Merge them. 3548 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3549 if (non_io_proj != nullptr) { 3550 proj->subsume_by(non_io_proj , this); 3551 } 3552 } 3553 } 3554 break; 3555 } 3556 3557 case Op_Phi: 3558 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3559 // The EncodeP optimization may create Phi with the same edges 3560 // for all paths. It is not handled well by Register Allocator. 3561 Node* unique_in = n->in(1); 3562 assert(unique_in != nullptr, ""); 3563 uint cnt = n->req(); 3564 for (uint i = 2; i < cnt; i++) { 3565 Node* m = n->in(i); 3566 assert(m != nullptr, ""); 3567 if (unique_in != m) 3568 unique_in = nullptr; 3569 } 3570 if (unique_in != nullptr) { 3571 n->subsume_by(unique_in, this); 3572 } 3573 } 3574 break; 3575 3576 #endif 3577 3578 #ifdef ASSERT 3579 case Op_CastII: 3580 // Verify that all range check dependent CastII nodes were removed. 3581 if (n->isa_CastII()->has_range_check()) { 3582 n->dump(3); 3583 assert(false, "Range check dependent CastII node was not removed"); 3584 } 3585 break; 3586 #endif 3587 3588 case Op_ModI: 3589 handle_div_mod_op(n, T_INT, false); 3590 break; 3591 3592 case Op_ModL: 3593 handle_div_mod_op(n, T_LONG, false); 3594 break; 3595 3596 case Op_UModI: 3597 handle_div_mod_op(n, T_INT, true); 3598 break; 3599 3600 case Op_UModL: 3601 handle_div_mod_op(n, T_LONG, true); 3602 break; 3603 3604 case Op_LoadVector: 3605 case Op_StoreVector: 3606 #ifdef ASSERT 3607 // Add VerifyVectorAlignment node between adr and load / store. 3608 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3609 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3610 n->as_StoreVector()->must_verify_alignment(); 3611 if (must_verify_alignment) { 3612 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3613 n->as_StoreVector()->memory_size(); 3614 // The memory access should be aligned to the vector width in bytes. 3615 // However, the underlying array is possibly less well aligned, but at least 3616 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3617 // a loop we can expect at least the following alignment: 3618 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3619 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3620 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3621 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3622 jlong mask = guaranteed_alignment - 1; 3623 Node* mask_con = ConLNode::make(mask); 3624 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3625 n->set_req(MemNode::Address, va); 3626 } 3627 } 3628 #endif 3629 break; 3630 3631 case Op_LoadVectorGather: 3632 case Op_StoreVectorScatter: 3633 case Op_LoadVectorGatherMasked: 3634 case Op_StoreVectorScatterMasked: 3635 case Op_VectorCmpMasked: 3636 case Op_VectorMaskGen: 3637 case Op_LoadVectorMasked: 3638 case Op_StoreVectorMasked: 3639 break; 3640 3641 case Op_AddReductionVI: 3642 case Op_AddReductionVL: 3643 case Op_AddReductionVF: 3644 case Op_AddReductionVD: 3645 case Op_MulReductionVI: 3646 case Op_MulReductionVL: 3647 case Op_MulReductionVF: 3648 case Op_MulReductionVD: 3649 case Op_MinReductionV: 3650 case Op_MaxReductionV: 3651 case Op_AndReductionV: 3652 case Op_OrReductionV: 3653 case Op_XorReductionV: 3654 break; 3655 3656 case Op_PackB: 3657 case Op_PackS: 3658 case Op_PackI: 3659 case Op_PackF: 3660 case Op_PackL: 3661 case Op_PackD: 3662 if (n->req()-1 > 2) { 3663 // Replace many operand PackNodes with a binary tree for matching 3664 PackNode* p = (PackNode*) n; 3665 Node* btp = p->binary_tree_pack(1, n->req()); 3666 n->subsume_by(btp, this); 3667 } 3668 break; 3669 case Op_Loop: 3670 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3671 case Op_CountedLoop: 3672 case Op_LongCountedLoop: 3673 case Op_OuterStripMinedLoop: 3674 if (n->as_Loop()->is_inner_loop()) { 3675 frc.inc_inner_loop_count(); 3676 } 3677 n->as_Loop()->verify_strip_mined(0); 3678 break; 3679 case Op_LShiftI: 3680 case Op_RShiftI: 3681 case Op_URShiftI: 3682 case Op_LShiftL: 3683 case Op_RShiftL: 3684 case Op_URShiftL: 3685 if (Matcher::need_masked_shift_count) { 3686 // The cpu's shift instructions don't restrict the count to the 3687 // lower 5/6 bits. We need to do the masking ourselves. 3688 Node* in2 = n->in(2); 3689 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3690 const TypeInt* t = in2->find_int_type(); 3691 if (t != nullptr && t->is_con()) { 3692 juint shift = t->get_con(); 3693 if (shift > mask) { // Unsigned cmp 3694 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3695 } 3696 } else { 3697 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3698 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3699 n->set_req(2, shift); 3700 } 3701 } 3702 if (in2->outcnt() == 0) { // Remove dead node 3703 in2->disconnect_inputs(this); 3704 } 3705 } 3706 break; 3707 case Op_MemBarStoreStore: 3708 case Op_MemBarRelease: 3709 // Break the link with AllocateNode: it is no longer useful and 3710 // confuses register allocation. 3711 if (n->req() > MemBarNode::Precedent) { 3712 n->set_req(MemBarNode::Precedent, top()); 3713 } 3714 break; 3715 case Op_MemBarAcquire: { 3716 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3717 // At parse time, the trailing MemBarAcquire for a volatile load 3718 // is created with an edge to the load. After optimizations, 3719 // that input may be a chain of Phis. If those phis have no 3720 // other use, then the MemBarAcquire keeps them alive and 3721 // register allocation can be confused. 3722 dead_nodes.push(n->in(MemBarNode::Precedent)); 3723 n->set_req(MemBarNode::Precedent, top()); 3724 } 3725 break; 3726 } 3727 case Op_Blackhole: 3728 break; 3729 case Op_RangeCheck: { 3730 RangeCheckNode* rc = n->as_RangeCheck(); 3731 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3732 n->subsume_by(iff, this); 3733 frc._tests.push(iff); 3734 break; 3735 } 3736 case Op_ConvI2L: { 3737 if (!Matcher::convi2l_type_required) { 3738 // Code generation on some platforms doesn't need accurate 3739 // ConvI2L types. Widening the type can help remove redundant 3740 // address computations. 3741 n->as_Type()->set_type(TypeLong::INT); 3742 ResourceMark rm; 3743 Unique_Node_List wq; 3744 wq.push(n); 3745 for (uint next = 0; next < wq.size(); next++) { 3746 Node *m = wq.at(next); 3747 3748 for(;;) { 3749 // Loop over all nodes with identical inputs edges as m 3750 Node* k = m->find_similar(m->Opcode()); 3751 if (k == nullptr) { 3752 break; 3753 } 3754 // Push their uses so we get a chance to remove node made 3755 // redundant 3756 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3757 Node* u = k->fast_out(i); 3758 if (u->Opcode() == Op_LShiftL || 3759 u->Opcode() == Op_AddL || 3760 u->Opcode() == Op_SubL || 3761 u->Opcode() == Op_AddP) { 3762 wq.push(u); 3763 } 3764 } 3765 // Replace all nodes with identical edges as m with m 3766 k->subsume_by(m, this); 3767 } 3768 } 3769 } 3770 break; 3771 } 3772 case Op_CmpUL: { 3773 if (!Matcher::has_match_rule(Op_CmpUL)) { 3774 // No support for unsigned long comparisons 3775 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3776 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3777 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3778 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3779 Node* andl = new AndLNode(orl, remove_sign_mask); 3780 Node* cmp = new CmpLNode(andl, n->in(2)); 3781 n->subsume_by(cmp, this); 3782 } 3783 break; 3784 } 3785 #ifdef ASSERT 3786 case Op_ConNKlass: { 3787 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3788 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3789 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3790 break; 3791 } 3792 #endif 3793 default: 3794 assert(!n->is_Call(), ""); 3795 assert(!n->is_Mem(), ""); 3796 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3797 break; 3798 } 3799 } 3800 3801 //------------------------------final_graph_reshaping_walk--------------------- 3802 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3803 // requires that the walk visits a node's inputs before visiting the node. 3804 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3805 Unique_Node_List sfpt; 3806 3807 frc._visited.set(root->_idx); // first, mark node as visited 3808 uint cnt = root->req(); 3809 Node *n = root; 3810 uint i = 0; 3811 while (true) { 3812 if (i < cnt) { 3813 // Place all non-visited non-null inputs onto stack 3814 Node* m = n->in(i); 3815 ++i; 3816 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3817 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3818 // compute worst case interpreter size in case of a deoptimization 3819 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3820 3821 sfpt.push(m); 3822 } 3823 cnt = m->req(); 3824 nstack.push(n, i); // put on stack parent and next input's index 3825 n = m; 3826 i = 0; 3827 } 3828 } else { 3829 // Now do post-visit work 3830 final_graph_reshaping_impl(n, frc, dead_nodes); 3831 if (nstack.is_empty()) 3832 break; // finished 3833 n = nstack.node(); // Get node from stack 3834 cnt = n->req(); 3835 i = nstack.index(); 3836 nstack.pop(); // Shift to the next node on stack 3837 } 3838 } 3839 3840 // Skip next transformation if compressed oops are not used. 3841 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3842 (!UseCompressedOops && !UseCompressedClassPointers)) 3843 return; 3844 3845 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3846 // It could be done for an uncommon traps or any safepoints/calls 3847 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3848 while (sfpt.size() > 0) { 3849 n = sfpt.pop(); 3850 JVMState *jvms = n->as_SafePoint()->jvms(); 3851 assert(jvms != nullptr, "sanity"); 3852 int start = jvms->debug_start(); 3853 int end = n->req(); 3854 bool is_uncommon = (n->is_CallStaticJava() && 3855 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3856 for (int j = start; j < end; j++) { 3857 Node* in = n->in(j); 3858 if (in->is_DecodeNarrowPtr()) { 3859 bool safe_to_skip = true; 3860 if (!is_uncommon ) { 3861 // Is it safe to skip? 3862 for (uint i = 0; i < in->outcnt(); i++) { 3863 Node* u = in->raw_out(i); 3864 if (!u->is_SafePoint() || 3865 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3866 safe_to_skip = false; 3867 } 3868 } 3869 } 3870 if (safe_to_skip) { 3871 n->set_req(j, in->in(1)); 3872 } 3873 if (in->outcnt() == 0) { 3874 in->disconnect_inputs(this); 3875 } 3876 } 3877 } 3878 } 3879 } 3880 3881 //------------------------------final_graph_reshaping-------------------------- 3882 // Final Graph Reshaping. 3883 // 3884 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3885 // and not commoned up and forced early. Must come after regular 3886 // optimizations to avoid GVN undoing the cloning. Clone constant 3887 // inputs to Loop Phis; these will be split by the allocator anyways. 3888 // Remove Opaque nodes. 3889 // (2) Move last-uses by commutative operations to the left input to encourage 3890 // Intel update-in-place two-address operations and better register usage 3891 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3892 // calls canonicalizing them back. 3893 // (3) Count the number of double-precision FP ops, single-precision FP ops 3894 // and call sites. On Intel, we can get correct rounding either by 3895 // forcing singles to memory (requires extra stores and loads after each 3896 // FP bytecode) or we can set a rounding mode bit (requires setting and 3897 // clearing the mode bit around call sites). The mode bit is only used 3898 // if the relative frequency of single FP ops to calls is low enough. 3899 // This is a key transform for SPEC mpeg_audio. 3900 // (4) Detect infinite loops; blobs of code reachable from above but not 3901 // below. Several of the Code_Gen algorithms fail on such code shapes, 3902 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3903 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3904 // Detection is by looking for IfNodes where only 1 projection is 3905 // reachable from below or CatchNodes missing some targets. 3906 // (5) Assert for insane oop offsets in debug mode. 3907 3908 bool Compile::final_graph_reshaping() { 3909 // an infinite loop may have been eliminated by the optimizer, 3910 // in which case the graph will be empty. 3911 if (root()->req() == 1) { 3912 // Do not compile method that is only a trivial infinite loop, 3913 // since the content of the loop may have been eliminated. 3914 record_method_not_compilable("trivial infinite loop"); 3915 return true; 3916 } 3917 3918 // Expensive nodes have their control input set to prevent the GVN 3919 // from freely commoning them. There's no GVN beyond this point so 3920 // no need to keep the control input. We want the expensive nodes to 3921 // be freely moved to the least frequent code path by gcm. 3922 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3923 for (int i = 0; i < expensive_count(); i++) { 3924 _expensive_nodes.at(i)->set_req(0, nullptr); 3925 } 3926 3927 Final_Reshape_Counts frc; 3928 3929 // Visit everybody reachable! 3930 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3931 Node_Stack nstack(live_nodes() >> 1); 3932 Unique_Node_List dead_nodes; 3933 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3934 3935 // Check for unreachable (from below) code (i.e., infinite loops). 3936 for( uint i = 0; i < frc._tests.size(); i++ ) { 3937 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3938 // Get number of CFG targets. 3939 // Note that PCTables include exception targets after calls. 3940 uint required_outcnt = n->required_outcnt(); 3941 if (n->outcnt() != required_outcnt) { 3942 // Check for a few special cases. Rethrow Nodes never take the 3943 // 'fall-thru' path, so expected kids is 1 less. 3944 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3945 if (n->in(0)->in(0)->is_Call()) { 3946 CallNode* call = n->in(0)->in(0)->as_Call(); 3947 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3948 required_outcnt--; // Rethrow always has 1 less kid 3949 } else if (call->req() > TypeFunc::Parms && 3950 call->is_CallDynamicJava()) { 3951 // Check for null receiver. In such case, the optimizer has 3952 // detected that the virtual call will always result in a null 3953 // pointer exception. The fall-through projection of this CatchNode 3954 // will not be populated. 3955 Node* arg0 = call->in(TypeFunc::Parms); 3956 if (arg0->is_Type() && 3957 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3958 required_outcnt--; 3959 } 3960 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3961 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3962 // Check for illegal array length. In such case, the optimizer has 3963 // detected that the allocation attempt will always result in an 3964 // exception. There is no fall-through projection of this CatchNode . 3965 assert(call->is_CallStaticJava(), "static call expected"); 3966 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3967 uint valid_length_test_input = call->req() - 1; 3968 Node* valid_length_test = call->in(valid_length_test_input); 3969 call->del_req(valid_length_test_input); 3970 if (valid_length_test->find_int_con(1) == 0) { 3971 required_outcnt--; 3972 } 3973 dead_nodes.push(valid_length_test); 3974 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3975 continue; 3976 } 3977 } 3978 } 3979 3980 // Recheck with a better notion of 'required_outcnt' 3981 if (n->outcnt() != required_outcnt) { 3982 record_method_not_compilable("malformed control flow"); 3983 return true; // Not all targets reachable! 3984 } 3985 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 3986 CallNode* call = n->in(0)->in(0)->as_Call(); 3987 if (call->entry_point() == OptoRuntime::new_array_Java() || 3988 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3989 assert(call->is_CallStaticJava(), "static call expected"); 3990 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3991 uint valid_length_test_input = call->req() - 1; 3992 dead_nodes.push(call->in(valid_length_test_input)); 3993 call->del_req(valid_length_test_input); // valid length test useless now 3994 } 3995 } 3996 // Check that I actually visited all kids. Unreached kids 3997 // must be infinite loops. 3998 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3999 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4000 record_method_not_compilable("infinite loop"); 4001 return true; // Found unvisited kid; must be unreach 4002 } 4003 4004 // Here so verification code in final_graph_reshaping_walk() 4005 // always see an OuterStripMinedLoopEnd 4006 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4007 IfNode* init_iff = n->as_If(); 4008 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4009 n->subsume_by(iff, this); 4010 } 4011 } 4012 4013 while (dead_nodes.size() > 0) { 4014 Node* m = dead_nodes.pop(); 4015 if (m->outcnt() == 0 && m != top()) { 4016 for (uint j = 0; j < m->req(); j++) { 4017 Node* in = m->in(j); 4018 if (in != nullptr) { 4019 dead_nodes.push(in); 4020 } 4021 } 4022 m->disconnect_inputs(this); 4023 } 4024 } 4025 4026 #ifdef IA32 4027 // If original bytecodes contained a mixture of floats and doubles 4028 // check if the optimizer has made it homogeneous, item (3). 4029 if (UseSSE == 0 && 4030 frc.get_float_count() > 32 && 4031 frc.get_double_count() == 0 && 4032 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4033 set_24_bit_selection_and_mode(false, true); 4034 } 4035 #endif // IA32 4036 4037 set_java_calls(frc.get_java_call_count()); 4038 set_inner_loops(frc.get_inner_loop_count()); 4039 4040 // No infinite loops, no reason to bail out. 4041 return false; 4042 } 4043 4044 //-----------------------------too_many_traps---------------------------------- 4045 // Report if there are too many traps at the current method and bci. 4046 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4047 bool Compile::too_many_traps(ciMethod* method, 4048 int bci, 4049 Deoptimization::DeoptReason reason) { 4050 ciMethodData* md = method->method_data(); 4051 if (md->is_empty()) { 4052 // Assume the trap has not occurred, or that it occurred only 4053 // because of a transient condition during start-up in the interpreter. 4054 return false; 4055 } 4056 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4057 if (md->has_trap_at(bci, m, reason) != 0) { 4058 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4059 // Also, if there are multiple reasons, or if there is no per-BCI record, 4060 // assume the worst. 4061 if (log()) 4062 log()->elem("observe trap='%s' count='%d'", 4063 Deoptimization::trap_reason_name(reason), 4064 md->trap_count(reason)); 4065 return true; 4066 } else { 4067 // Ignore method/bci and see if there have been too many globally. 4068 return too_many_traps(reason, md); 4069 } 4070 } 4071 4072 // Less-accurate variant which does not require a method and bci. 4073 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4074 ciMethodData* logmd) { 4075 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4076 // Too many traps globally. 4077 // Note that we use cumulative trap_count, not just md->trap_count. 4078 if (log()) { 4079 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4080 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4081 Deoptimization::trap_reason_name(reason), 4082 mcount, trap_count(reason)); 4083 } 4084 return true; 4085 } else { 4086 // The coast is clear. 4087 return false; 4088 } 4089 } 4090 4091 //--------------------------too_many_recompiles-------------------------------- 4092 // Report if there are too many recompiles at the current method and bci. 4093 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4094 // Is not eager to return true, since this will cause the compiler to use 4095 // Action_none for a trap point, to avoid too many recompilations. 4096 bool Compile::too_many_recompiles(ciMethod* method, 4097 int bci, 4098 Deoptimization::DeoptReason reason) { 4099 ciMethodData* md = method->method_data(); 4100 if (md->is_empty()) { 4101 // Assume the trap has not occurred, or that it occurred only 4102 // because of a transient condition during start-up in the interpreter. 4103 return false; 4104 } 4105 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4106 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4107 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4108 Deoptimization::DeoptReason per_bc_reason 4109 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4110 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4111 if ((per_bc_reason == Deoptimization::Reason_none 4112 || md->has_trap_at(bci, m, reason) != 0) 4113 // The trap frequency measure we care about is the recompile count: 4114 && md->trap_recompiled_at(bci, m) 4115 && md->overflow_recompile_count() >= bc_cutoff) { 4116 // Do not emit a trap here if it has already caused recompilations. 4117 // Also, if there are multiple reasons, or if there is no per-BCI record, 4118 // assume the worst. 4119 if (log()) 4120 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4121 Deoptimization::trap_reason_name(reason), 4122 md->trap_count(reason), 4123 md->overflow_recompile_count()); 4124 return true; 4125 } else if (trap_count(reason) != 0 4126 && decompile_count() >= m_cutoff) { 4127 // Too many recompiles globally, and we have seen this sort of trap. 4128 // Use cumulative decompile_count, not just md->decompile_count. 4129 if (log()) 4130 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4131 Deoptimization::trap_reason_name(reason), 4132 md->trap_count(reason), trap_count(reason), 4133 md->decompile_count(), decompile_count()); 4134 return true; 4135 } else { 4136 // The coast is clear. 4137 return false; 4138 } 4139 } 4140 4141 // Compute when not to trap. Used by matching trap based nodes and 4142 // NullCheck optimization. 4143 void Compile::set_allowed_deopt_reasons() { 4144 _allowed_reasons = 0; 4145 if (is_method_compilation()) { 4146 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4147 assert(rs < BitsPerInt, "recode bit map"); 4148 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4149 _allowed_reasons |= nth_bit(rs); 4150 } 4151 } 4152 } 4153 } 4154 4155 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4156 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4157 } 4158 4159 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4160 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4161 } 4162 4163 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4164 if (holder->is_initialized()) { 4165 return false; 4166 } 4167 if (holder->is_being_initialized()) { 4168 if (accessing_method->holder() == holder) { 4169 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4170 // <init>, or a static method. In all those cases, there was an initialization 4171 // barrier on the holder klass passed. 4172 if (accessing_method->is_static_initializer() || 4173 accessing_method->is_object_initializer() || 4174 accessing_method->is_static()) { 4175 return false; 4176 } 4177 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4178 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4179 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4180 // child class can become fully initialized while its parent class is still being initialized. 4181 if (accessing_method->is_static_initializer()) { 4182 return false; 4183 } 4184 } 4185 ciMethod* root = method(); // the root method of compilation 4186 if (root != accessing_method) { 4187 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4188 } 4189 } 4190 return true; 4191 } 4192 4193 #ifndef PRODUCT 4194 //------------------------------verify_bidirectional_edges--------------------- 4195 // For each input edge to a node (ie - for each Use-Def edge), verify that 4196 // there is a corresponding Def-Use edge. 4197 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4198 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4199 uint stack_size = live_nodes() >> 4; 4200 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4201 nstack.push(_root); 4202 4203 while (nstack.size() > 0) { 4204 Node* n = nstack.pop(); 4205 if (visited.member(n)) { 4206 continue; 4207 } 4208 visited.push(n); 4209 4210 // Walk over all input edges, checking for correspondence 4211 uint length = n->len(); 4212 for (uint i = 0; i < length; i++) { 4213 Node* in = n->in(i); 4214 if (in != nullptr && !visited.member(in)) { 4215 nstack.push(in); // Put it on stack 4216 } 4217 if (in != nullptr && !in->is_top()) { 4218 // Count instances of `next` 4219 int cnt = 0; 4220 for (uint idx = 0; idx < in->_outcnt; idx++) { 4221 if (in->_out[idx] == n) { 4222 cnt++; 4223 } 4224 } 4225 assert(cnt > 0, "Failed to find Def-Use edge."); 4226 // Check for duplicate edges 4227 // walk the input array downcounting the input edges to n 4228 for (uint j = 0; j < length; j++) { 4229 if (n->in(j) == in) { 4230 cnt--; 4231 } 4232 } 4233 assert(cnt == 0, "Mismatched edge count."); 4234 } else if (in == nullptr) { 4235 assert(i == 0 || i >= n->req() || 4236 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4237 (n->is_Unlock() && i == (n->req() - 1)) || 4238 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4239 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4240 } else { 4241 assert(in->is_top(), "sanity"); 4242 // Nothing to check. 4243 } 4244 } 4245 } 4246 } 4247 4248 //------------------------------verify_graph_edges--------------------------- 4249 // Walk the Graph and verify that there is a one-to-one correspondence 4250 // between Use-Def edges and Def-Use edges in the graph. 4251 void Compile::verify_graph_edges(bool no_dead_code) { 4252 if (VerifyGraphEdges) { 4253 Unique_Node_List visited; 4254 4255 // Call graph walk to check edges 4256 verify_bidirectional_edges(visited); 4257 if (no_dead_code) { 4258 // Now make sure that no visited node is used by an unvisited node. 4259 bool dead_nodes = false; 4260 Unique_Node_List checked; 4261 while (visited.size() > 0) { 4262 Node* n = visited.pop(); 4263 checked.push(n); 4264 for (uint i = 0; i < n->outcnt(); i++) { 4265 Node* use = n->raw_out(i); 4266 if (checked.member(use)) continue; // already checked 4267 if (visited.member(use)) continue; // already in the graph 4268 if (use->is_Con()) continue; // a dead ConNode is OK 4269 // At this point, we have found a dead node which is DU-reachable. 4270 if (!dead_nodes) { 4271 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4272 dead_nodes = true; 4273 } 4274 use->dump(2); 4275 tty->print_cr("---"); 4276 checked.push(use); // No repeats; pretend it is now checked. 4277 } 4278 } 4279 assert(!dead_nodes, "using nodes must be reachable from root"); 4280 } 4281 } 4282 } 4283 #endif 4284 4285 // The Compile object keeps track of failure reasons separately from the ciEnv. 4286 // This is required because there is not quite a 1-1 relation between the 4287 // ciEnv and its compilation task and the Compile object. Note that one 4288 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4289 // to backtrack and retry without subsuming loads. Other than this backtracking 4290 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4291 // by the logic in C2Compiler. 4292 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4293 if (log() != nullptr) { 4294 log()->elem("failure reason='%s' phase='compile'", reason); 4295 } 4296 if (_failure_reason.get() == nullptr) { 4297 // Record the first failure reason. 4298 _failure_reason.set(reason); 4299 if (CaptureBailoutInformation) { 4300 _first_failure_details = new CompilationFailureInfo(reason); 4301 } 4302 } else { 4303 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4304 } 4305 4306 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4307 C->print_method(PHASE_FAILURE, 1); 4308 } 4309 _root = nullptr; // flush the graph, too 4310 } 4311 4312 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4313 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4314 _compile(Compile::current()), 4315 _log(nullptr), 4316 _phase_name(name), 4317 _dolog(CITimeVerbose) 4318 { 4319 assert(_compile != nullptr, "sanity check"); 4320 if (_dolog) { 4321 _log = _compile->log(); 4322 } 4323 if (_log != nullptr) { 4324 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4325 _log->stamp(); 4326 _log->end_head(); 4327 } 4328 } 4329 4330 Compile::TracePhase::~TracePhase() { 4331 if (_compile->failing_internal()) { 4332 return; // timing code, not stressing bailouts. 4333 } 4334 #ifdef ASSERT 4335 if (PrintIdealNodeCount) { 4336 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4337 _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4338 } 4339 4340 if (VerifyIdealNodeCount) { 4341 _compile->print_missing_nodes(); 4342 } 4343 #endif 4344 4345 if (_log != nullptr) { 4346 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4347 } 4348 } 4349 4350 //----------------------------static_subtype_check----------------------------- 4351 // Shortcut important common cases when superklass is exact: 4352 // (0) superklass is java.lang.Object (can occur in reflective code) 4353 // (1) subklass is already limited to a subtype of superklass => always ok 4354 // (2) subklass does not overlap with superklass => always fail 4355 // (3) superklass has NO subtypes and we can check with a simple compare. 4356 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4357 if (skip) { 4358 return SSC_full_test; // Let caller generate the general case. 4359 } 4360 4361 if (subk->is_java_subtype_of(superk)) { 4362 return SSC_always_true; // (0) and (1) this test cannot fail 4363 } 4364 4365 if (!subk->maybe_java_subtype_of(superk)) { 4366 return SSC_always_false; // (2) true path dead; no dynamic test needed 4367 } 4368 4369 const Type* superelem = superk; 4370 if (superk->isa_aryklassptr()) { 4371 int ignored; 4372 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4373 } 4374 4375 if (superelem->isa_instklassptr()) { 4376 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4377 if (!ik->has_subklass()) { 4378 if (!ik->is_final()) { 4379 // Add a dependency if there is a chance of a later subclass. 4380 dependencies()->assert_leaf_type(ik); 4381 } 4382 if (!superk->maybe_java_subtype_of(subk)) { 4383 return SSC_always_false; 4384 } 4385 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4386 } 4387 } else { 4388 // A primitive array type has no subtypes. 4389 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4390 } 4391 4392 return SSC_full_test; 4393 } 4394 4395 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4396 #ifdef _LP64 4397 // The scaled index operand to AddP must be a clean 64-bit value. 4398 // Java allows a 32-bit int to be incremented to a negative 4399 // value, which appears in a 64-bit register as a large 4400 // positive number. Using that large positive number as an 4401 // operand in pointer arithmetic has bad consequences. 4402 // On the other hand, 32-bit overflow is rare, and the possibility 4403 // can often be excluded, if we annotate the ConvI2L node with 4404 // a type assertion that its value is known to be a small positive 4405 // number. (The prior range check has ensured this.) 4406 // This assertion is used by ConvI2LNode::Ideal. 4407 int index_max = max_jint - 1; // array size is max_jint, index is one less 4408 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4409 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4410 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4411 #endif 4412 return idx; 4413 } 4414 4415 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4416 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4417 if (ctrl != nullptr) { 4418 // Express control dependency by a CastII node with a narrow type. 4419 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4420 // node from floating above the range check during loop optimizations. Otherwise, the 4421 // ConvI2L node may be eliminated independently of the range check, causing the data path 4422 // to become TOP while the control path is still there (although it's unreachable). 4423 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4424 value = phase->transform(value); 4425 } 4426 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4427 return phase->transform(new ConvI2LNode(value, ltype)); 4428 } 4429 4430 // The message about the current inlining is accumulated in 4431 // _print_inlining_stream and transferred into the _print_inlining_list 4432 // once we know whether inlining succeeds or not. For regular 4433 // inlining, messages are appended to the buffer pointed by 4434 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4435 // a new buffer is added after _print_inlining_idx in the list. This 4436 // way we can update the inlining message for late inlining call site 4437 // when the inlining is attempted again. 4438 void Compile::print_inlining_init() { 4439 if (print_inlining() || print_intrinsics()) { 4440 // print_inlining_init is actually called several times. 4441 print_inlining_reset(); 4442 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4443 } 4444 } 4445 4446 void Compile::print_inlining_reinit() { 4447 if (print_inlining() || print_intrinsics()) { 4448 print_inlining_reset(); 4449 } 4450 } 4451 4452 void Compile::print_inlining_reset() { 4453 _print_inlining_stream->reset(); 4454 } 4455 4456 void Compile::print_inlining_commit() { 4457 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4458 // Transfer the message from _print_inlining_stream to the current 4459 // _print_inlining_list buffer and clear _print_inlining_stream. 4460 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4461 print_inlining_reset(); 4462 } 4463 4464 void Compile::print_inlining_push() { 4465 // Add new buffer to the _print_inlining_list at current position 4466 _print_inlining_idx++; 4467 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4468 } 4469 4470 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4471 return _print_inlining_list->at(_print_inlining_idx); 4472 } 4473 4474 void Compile::print_inlining_update(CallGenerator* cg) { 4475 if (print_inlining() || print_intrinsics()) { 4476 if (cg->is_late_inline()) { 4477 if (print_inlining_current()->cg() != cg && 4478 (print_inlining_current()->cg() != nullptr || 4479 print_inlining_current()->ss()->size() != 0)) { 4480 print_inlining_push(); 4481 } 4482 print_inlining_commit(); 4483 print_inlining_current()->set_cg(cg); 4484 } else { 4485 if (print_inlining_current()->cg() != nullptr) { 4486 print_inlining_push(); 4487 } 4488 print_inlining_commit(); 4489 } 4490 } 4491 } 4492 4493 void Compile::print_inlining_move_to(CallGenerator* cg) { 4494 // We resume inlining at a late inlining call site. Locate the 4495 // corresponding inlining buffer so that we can update it. 4496 if (print_inlining() || print_intrinsics()) { 4497 for (int i = 0; i < _print_inlining_list->length(); i++) { 4498 if (_print_inlining_list->at(i)->cg() == cg) { 4499 _print_inlining_idx = i; 4500 return; 4501 } 4502 } 4503 ShouldNotReachHere(); 4504 } 4505 } 4506 4507 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4508 if (print_inlining() || print_intrinsics()) { 4509 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4510 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4511 // replace message with new message 4512 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4513 print_inlining_commit(); 4514 print_inlining_current()->set_cg(cg); 4515 } 4516 } 4517 4518 void Compile::print_inlining_assert_ready() { 4519 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4520 } 4521 4522 void Compile::process_print_inlining() { 4523 assert(_late_inlines.length() == 0, "not drained yet"); 4524 if (print_inlining() || print_intrinsics()) { 4525 ResourceMark rm; 4526 stringStream ss; 4527 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4528 for (int i = 0; i < _print_inlining_list->length(); i++) { 4529 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4530 ss.print("%s", pib->ss()->freeze()); 4531 delete pib; 4532 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4533 } 4534 // Reset _print_inlining_list, it only contains destructed objects. 4535 // It is on the arena, so it will be freed when the arena is reset. 4536 _print_inlining_list = nullptr; 4537 // _print_inlining_stream won't be used anymore, either. 4538 print_inlining_reset(); 4539 size_t end = ss.size(); 4540 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4541 strncpy(_print_inlining_output, ss.freeze(), end+1); 4542 _print_inlining_output[end] = 0; 4543 } 4544 } 4545 4546 void Compile::dump_print_inlining() { 4547 if (_print_inlining_output != nullptr) { 4548 tty->print_raw(_print_inlining_output); 4549 } 4550 } 4551 4552 void Compile::log_late_inline(CallGenerator* cg) { 4553 if (log() != nullptr) { 4554 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4555 cg->unique_id()); 4556 JVMState* p = cg->call_node()->jvms(); 4557 while (p != nullptr) { 4558 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4559 p = p->caller(); 4560 } 4561 log()->tail("late_inline"); 4562 } 4563 } 4564 4565 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4566 log_late_inline(cg); 4567 if (log() != nullptr) { 4568 log()->inline_fail(msg); 4569 } 4570 } 4571 4572 void Compile::log_inline_id(CallGenerator* cg) { 4573 if (log() != nullptr) { 4574 // The LogCompilation tool needs a unique way to identify late 4575 // inline call sites. This id must be unique for this call site in 4576 // this compilation. Try to have it unique across compilations as 4577 // well because it can be convenient when grepping through the log 4578 // file. 4579 // Distinguish OSR compilations from others in case CICountOSR is 4580 // on. 4581 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4582 cg->set_unique_id(id); 4583 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4584 } 4585 } 4586 4587 void Compile::log_inline_failure(const char* msg) { 4588 if (C->log() != nullptr) { 4589 C->log()->inline_fail(msg); 4590 } 4591 } 4592 4593 4594 // Dump inlining replay data to the stream. 4595 // Don't change thread state and acquire any locks. 4596 void Compile::dump_inline_data(outputStream* out) { 4597 InlineTree* inl_tree = ilt(); 4598 if (inl_tree != nullptr) { 4599 out->print(" inline %d", inl_tree->count()); 4600 inl_tree->dump_replay_data(out); 4601 } 4602 } 4603 4604 void Compile::dump_inline_data_reduced(outputStream* out) { 4605 assert(ReplayReduce, ""); 4606 4607 InlineTree* inl_tree = ilt(); 4608 if (inl_tree == nullptr) { 4609 return; 4610 } 4611 // Enable iterative replay file reduction 4612 // Output "compile" lines for depth 1 subtrees, 4613 // simulating that those trees were compiled 4614 // instead of inlined. 4615 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4616 InlineTree* sub = inl_tree->subtrees().at(i); 4617 if (sub->inline_level() != 1) { 4618 continue; 4619 } 4620 4621 ciMethod* method = sub->method(); 4622 int entry_bci = -1; 4623 int comp_level = env()->task()->comp_level(); 4624 out->print("compile "); 4625 method->dump_name_as_ascii(out); 4626 out->print(" %d %d", entry_bci, comp_level); 4627 out->print(" inline %d", sub->count()); 4628 sub->dump_replay_data(out, -1); 4629 out->cr(); 4630 } 4631 } 4632 4633 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4634 if (n1->Opcode() < n2->Opcode()) return -1; 4635 else if (n1->Opcode() > n2->Opcode()) return 1; 4636 4637 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4638 for (uint i = 1; i < n1->req(); i++) { 4639 if (n1->in(i) < n2->in(i)) return -1; 4640 else if (n1->in(i) > n2->in(i)) return 1; 4641 } 4642 4643 return 0; 4644 } 4645 4646 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4647 Node* n1 = *n1p; 4648 Node* n2 = *n2p; 4649 4650 return cmp_expensive_nodes(n1, n2); 4651 } 4652 4653 void Compile::sort_expensive_nodes() { 4654 if (!expensive_nodes_sorted()) { 4655 _expensive_nodes.sort(cmp_expensive_nodes); 4656 } 4657 } 4658 4659 bool Compile::expensive_nodes_sorted() const { 4660 for (int i = 1; i < _expensive_nodes.length(); i++) { 4661 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4662 return false; 4663 } 4664 } 4665 return true; 4666 } 4667 4668 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4669 if (_expensive_nodes.length() == 0) { 4670 return false; 4671 } 4672 4673 assert(OptimizeExpensiveOps, "optimization off?"); 4674 4675 // Take this opportunity to remove dead nodes from the list 4676 int j = 0; 4677 for (int i = 0; i < _expensive_nodes.length(); i++) { 4678 Node* n = _expensive_nodes.at(i); 4679 if (!n->is_unreachable(igvn)) { 4680 assert(n->is_expensive(), "should be expensive"); 4681 _expensive_nodes.at_put(j, n); 4682 j++; 4683 } 4684 } 4685 _expensive_nodes.trunc_to(j); 4686 4687 // Then sort the list so that similar nodes are next to each other 4688 // and check for at least two nodes of identical kind with same data 4689 // inputs. 4690 sort_expensive_nodes(); 4691 4692 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4693 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4694 return true; 4695 } 4696 } 4697 4698 return false; 4699 } 4700 4701 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4702 if (_expensive_nodes.length() == 0) { 4703 return; 4704 } 4705 4706 assert(OptimizeExpensiveOps, "optimization off?"); 4707 4708 // Sort to bring similar nodes next to each other and clear the 4709 // control input of nodes for which there's only a single copy. 4710 sort_expensive_nodes(); 4711 4712 int j = 0; 4713 int identical = 0; 4714 int i = 0; 4715 bool modified = false; 4716 for (; i < _expensive_nodes.length()-1; i++) { 4717 assert(j <= i, "can't write beyond current index"); 4718 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4719 identical++; 4720 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4721 continue; 4722 } 4723 if (identical > 0) { 4724 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4725 identical = 0; 4726 } else { 4727 Node* n = _expensive_nodes.at(i); 4728 igvn.replace_input_of(n, 0, nullptr); 4729 igvn.hash_insert(n); 4730 modified = true; 4731 } 4732 } 4733 if (identical > 0) { 4734 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4735 } else if (_expensive_nodes.length() >= 1) { 4736 Node* n = _expensive_nodes.at(i); 4737 igvn.replace_input_of(n, 0, nullptr); 4738 igvn.hash_insert(n); 4739 modified = true; 4740 } 4741 _expensive_nodes.trunc_to(j); 4742 if (modified) { 4743 igvn.optimize(); 4744 } 4745 } 4746 4747 void Compile::add_expensive_node(Node * n) { 4748 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4749 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4750 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4751 if (OptimizeExpensiveOps) { 4752 _expensive_nodes.append(n); 4753 } else { 4754 // Clear control input and let IGVN optimize expensive nodes if 4755 // OptimizeExpensiveOps is off. 4756 n->set_req(0, nullptr); 4757 } 4758 } 4759 4760 /** 4761 * Track coarsened Lock and Unlock nodes. 4762 */ 4763 4764 class Lock_List : public Node_List { 4765 uint _origin_cnt; 4766 public: 4767 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4768 uint origin_cnt() const { return _origin_cnt; } 4769 }; 4770 4771 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4772 int length = locks.length(); 4773 if (length > 0) { 4774 // Have to keep this list until locks elimination during Macro nodes elimination. 4775 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4776 AbstractLockNode* alock = locks.at(0); 4777 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4778 for (int i = 0; i < length; i++) { 4779 AbstractLockNode* lock = locks.at(i); 4780 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4781 locks_list->push(lock); 4782 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4783 if (this_box != box) { 4784 // Locking regions (BoxLock) could be Unbalanced here: 4785 // - its coarsened locks were eliminated in earlier 4786 // macro nodes elimination followed by loop unroll 4787 // - it is OSR locking region (no Lock node) 4788 // Preserve Unbalanced status in such cases. 4789 if (!this_box->is_unbalanced()) { 4790 this_box->set_coarsened(); 4791 } 4792 if (!box->is_unbalanced()) { 4793 box->set_coarsened(); 4794 } 4795 } 4796 } 4797 _coarsened_locks.append(locks_list); 4798 } 4799 } 4800 4801 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4802 int count = coarsened_count(); 4803 for (int i = 0; i < count; i++) { 4804 Node_List* locks_list = _coarsened_locks.at(i); 4805 for (uint j = 0; j < locks_list->size(); j++) { 4806 Node* lock = locks_list->at(j); 4807 assert(lock->is_AbstractLock(), "sanity"); 4808 if (!useful.member(lock)) { 4809 locks_list->yank(lock); 4810 } 4811 } 4812 } 4813 } 4814 4815 void Compile::remove_coarsened_lock(Node* n) { 4816 if (n->is_AbstractLock()) { 4817 int count = coarsened_count(); 4818 for (int i = 0; i < count; i++) { 4819 Node_List* locks_list = _coarsened_locks.at(i); 4820 locks_list->yank(n); 4821 } 4822 } 4823 } 4824 4825 bool Compile::coarsened_locks_consistent() { 4826 int count = coarsened_count(); 4827 for (int i = 0; i < count; i++) { 4828 bool unbalanced = false; 4829 bool modified = false; // track locks kind modifications 4830 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4831 uint size = locks_list->size(); 4832 if (size == 0) { 4833 unbalanced = false; // All locks were eliminated - good 4834 } else if (size != locks_list->origin_cnt()) { 4835 unbalanced = true; // Some locks were removed from list 4836 } else { 4837 for (uint j = 0; j < size; j++) { 4838 Node* lock = locks_list->at(j); 4839 // All nodes in group should have the same state (modified or not) 4840 if (!lock->as_AbstractLock()->is_coarsened()) { 4841 if (j == 0) { 4842 // first on list was modified, the rest should be too for consistency 4843 modified = true; 4844 } else if (!modified) { 4845 // this lock was modified but previous locks on the list were not 4846 unbalanced = true; 4847 break; 4848 } 4849 } else if (modified) { 4850 // previous locks on list were modified but not this lock 4851 unbalanced = true; 4852 break; 4853 } 4854 } 4855 } 4856 if (unbalanced) { 4857 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4858 #ifdef ASSERT 4859 if (PrintEliminateLocks) { 4860 tty->print_cr("=== unbalanced coarsened locks ==="); 4861 for (uint l = 0; l < size; l++) { 4862 locks_list->at(l)->dump(); 4863 } 4864 } 4865 #endif 4866 record_failure(C2Compiler::retry_no_locks_coarsening()); 4867 return false; 4868 } 4869 } 4870 return true; 4871 } 4872 4873 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4874 // locks coarsening optimization removed Lock/Unlock nodes from them. 4875 // Such regions become unbalanced because coarsening only removes part 4876 // of Lock/Unlock nodes in region. As result we can't execute other 4877 // locks elimination optimizations which assume all code paths have 4878 // corresponding pair of Lock/Unlock nodes - they are balanced. 4879 void Compile::mark_unbalanced_boxes() const { 4880 int count = coarsened_count(); 4881 for (int i = 0; i < count; i++) { 4882 Node_List* locks_list = _coarsened_locks.at(i); 4883 uint size = locks_list->size(); 4884 if (size > 0) { 4885 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4886 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4887 if (alock->is_coarsened()) { 4888 // coarsened_locks_consistent(), which is called before this method, verifies 4889 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4890 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4891 for (uint j = 1; j < size; j++) { 4892 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4893 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4894 if (box != this_box) { 4895 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4896 box->set_unbalanced(); 4897 this_box->set_unbalanced(); 4898 } 4899 } 4900 } 4901 } 4902 } 4903 } 4904 4905 /** 4906 * Remove the speculative part of types and clean up the graph 4907 */ 4908 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4909 if (UseTypeSpeculation) { 4910 Unique_Node_List worklist; 4911 worklist.push(root()); 4912 int modified = 0; 4913 // Go over all type nodes that carry a speculative type, drop the 4914 // speculative part of the type and enqueue the node for an igvn 4915 // which may optimize it out. 4916 for (uint next = 0; next < worklist.size(); ++next) { 4917 Node *n = worklist.at(next); 4918 if (n->is_Type()) { 4919 TypeNode* tn = n->as_Type(); 4920 const Type* t = tn->type(); 4921 const Type* t_no_spec = t->remove_speculative(); 4922 if (t_no_spec != t) { 4923 bool in_hash = igvn.hash_delete(n); 4924 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4925 tn->set_type(t_no_spec); 4926 igvn.hash_insert(n); 4927 igvn._worklist.push(n); // give it a chance to go away 4928 modified++; 4929 } 4930 } 4931 // Iterate over outs - endless loops is unreachable from below 4932 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4933 Node *m = n->fast_out(i); 4934 if (not_a_node(m)) { 4935 continue; 4936 } 4937 worklist.push(m); 4938 } 4939 } 4940 // Drop the speculative part of all types in the igvn's type table 4941 igvn.remove_speculative_types(); 4942 if (modified > 0) { 4943 igvn.optimize(); 4944 if (failing()) return; 4945 } 4946 #ifdef ASSERT 4947 // Verify that after the IGVN is over no speculative type has resurfaced 4948 worklist.clear(); 4949 worklist.push(root()); 4950 for (uint next = 0; next < worklist.size(); ++next) { 4951 Node *n = worklist.at(next); 4952 const Type* t = igvn.type_or_null(n); 4953 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4954 if (n->is_Type()) { 4955 t = n->as_Type()->type(); 4956 assert(t == t->remove_speculative(), "no more speculative types"); 4957 } 4958 // Iterate over outs - endless loops is unreachable from below 4959 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4960 Node *m = n->fast_out(i); 4961 if (not_a_node(m)) { 4962 continue; 4963 } 4964 worklist.push(m); 4965 } 4966 } 4967 igvn.check_no_speculative_types(); 4968 #endif 4969 } 4970 } 4971 4972 // Auxiliary methods to support randomized stressing/fuzzing. 4973 4974 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4975 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4976 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4977 FLAG_SET_ERGO(StressSeed, _stress_seed); 4978 } else { 4979 _stress_seed = StressSeed; 4980 } 4981 if (_log != nullptr) { 4982 _log->elem("stress_test seed='%u'", _stress_seed); 4983 } 4984 } 4985 4986 int Compile::random() { 4987 _stress_seed = os::next_random(_stress_seed); 4988 return static_cast<int>(_stress_seed); 4989 } 4990 4991 // This method can be called the arbitrary number of times, with current count 4992 // as the argument. The logic allows selecting a single candidate from the 4993 // running list of candidates as follows: 4994 // int count = 0; 4995 // Cand* selected = null; 4996 // while(cand = cand->next()) { 4997 // if (randomized_select(++count)) { 4998 // selected = cand; 4999 // } 5000 // } 5001 // 5002 // Including count equalizes the chances any candidate is "selected". 5003 // This is useful when we don't have the complete list of candidates to choose 5004 // from uniformly. In this case, we need to adjust the randomicity of the 5005 // selection, or else we will end up biasing the selection towards the latter 5006 // candidates. 5007 // 5008 // Quick back-envelope calculation shows that for the list of n candidates 5009 // the equal probability for the candidate to persist as "best" can be 5010 // achieved by replacing it with "next" k-th candidate with the probability 5011 // of 1/k. It can be easily shown that by the end of the run, the 5012 // probability for any candidate is converged to 1/n, thus giving the 5013 // uniform distribution among all the candidates. 5014 // 5015 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5016 #define RANDOMIZED_DOMAIN_POW 29 5017 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5018 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5019 bool Compile::randomized_select(int count) { 5020 assert(count > 0, "only positive"); 5021 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5022 } 5023 5024 #ifdef ASSERT 5025 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5026 bool Compile::fail_randomly() { 5027 if ((random() % StressBailoutMean) != 0) { 5028 return false; 5029 } 5030 record_failure("StressBailout"); 5031 return true; 5032 } 5033 5034 bool Compile::failure_is_artificial() { 5035 assert(failing_internal(), "should be failing"); 5036 return C->failure_reason_is("StressBailout"); 5037 } 5038 #endif 5039 5040 CloneMap& Compile::clone_map() { return _clone_map; } 5041 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5042 5043 void NodeCloneInfo::dump_on(outputStream* st) const { 5044 st->print(" {%d:%d} ", idx(), gen()); 5045 } 5046 5047 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5048 uint64_t val = value(old->_idx); 5049 NodeCloneInfo cio(val); 5050 assert(val != 0, "old node should be in the map"); 5051 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5052 insert(nnn->_idx, cin.get()); 5053 #ifndef PRODUCT 5054 if (is_debug()) { 5055 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5056 } 5057 #endif 5058 } 5059 5060 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5061 NodeCloneInfo cio(value(old->_idx)); 5062 if (cio.get() == 0) { 5063 cio.set(old->_idx, 0); 5064 insert(old->_idx, cio.get()); 5065 #ifndef PRODUCT 5066 if (is_debug()) { 5067 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5068 } 5069 #endif 5070 } 5071 clone(old, nnn, gen); 5072 } 5073 5074 int CloneMap::max_gen() const { 5075 int g = 0; 5076 DictI di(_dict); 5077 for(; di.test(); ++di) { 5078 int t = gen(di._key); 5079 if (g < t) { 5080 g = t; 5081 #ifndef PRODUCT 5082 if (is_debug()) { 5083 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5084 } 5085 #endif 5086 } 5087 } 5088 return g; 5089 } 5090 5091 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5092 uint64_t val = value(key); 5093 if (val != 0) { 5094 NodeCloneInfo ni(val); 5095 ni.dump_on(st); 5096 } 5097 } 5098 5099 void Compile::shuffle_macro_nodes() { 5100 if (_macro_nodes.length() < 2) { 5101 return; 5102 } 5103 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5104 uint j = C->random() % (i + 1); 5105 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5106 } 5107 } 5108 5109 // Move Allocate nodes to the start of the list 5110 void Compile::sort_macro_nodes() { 5111 int count = macro_count(); 5112 int allocates = 0; 5113 for (int i = 0; i < count; i++) { 5114 Node* n = macro_node(i); 5115 if (n->is_Allocate()) { 5116 if (i != allocates) { 5117 Node* tmp = macro_node(allocates); 5118 _macro_nodes.at_put(allocates, n); 5119 _macro_nodes.at_put(i, tmp); 5120 } 5121 allocates++; 5122 } 5123 } 5124 } 5125 5126 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5127 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5128 EventCompilerPhase event(UNTIMED); 5129 if (event.should_commit()) { 5130 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5131 } 5132 #ifndef PRODUCT 5133 ResourceMark rm; 5134 stringStream ss; 5135 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5136 int iter = ++_igv_phase_iter[cpt]; 5137 if (iter > 1) { 5138 ss.print(" %d", iter); 5139 } 5140 if (n != nullptr) { 5141 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5142 if (n->is_Call()) { 5143 CallNode* call = n->as_Call(); 5144 if (call->_name != nullptr) { 5145 // E.g. uncommon traps etc. 5146 ss.print(" - %s", call->_name); 5147 } else if (call->is_CallJava()) { 5148 CallJavaNode* call_java = call->as_CallJava(); 5149 if (call_java->method() != nullptr) { 5150 ss.print(" -"); 5151 call_java->method()->print_short_name(&ss); 5152 } 5153 } 5154 } 5155 } 5156 5157 const char* name = ss.as_string(); 5158 if (should_print_igv(level)) { 5159 _igv_printer->print_method(name, level); 5160 } 5161 if (should_print_phase(cpt)) { 5162 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5163 } 5164 #endif 5165 C->_latest_stage_start_counter.stamp(); 5166 } 5167 5168 // Only used from CompileWrapper 5169 void Compile::begin_method() { 5170 #ifndef PRODUCT 5171 if (_method != nullptr && should_print_igv(1)) { 5172 _igv_printer->begin_method(); 5173 } 5174 #endif 5175 C->_latest_stage_start_counter.stamp(); 5176 } 5177 5178 // Only used from CompileWrapper 5179 void Compile::end_method() { 5180 EventCompilerPhase event(UNTIMED); 5181 if (event.should_commit()) { 5182 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5183 } 5184 5185 #ifndef PRODUCT 5186 if (_method != nullptr && should_print_igv(1)) { 5187 _igv_printer->end_method(); 5188 } 5189 #endif 5190 } 5191 5192 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5193 #ifndef PRODUCT 5194 if (_directive->should_print_phase(cpt)) { 5195 return true; 5196 } 5197 #endif 5198 return false; 5199 } 5200 5201 bool Compile::should_print_igv(const int level) { 5202 #ifndef PRODUCT 5203 if (PrintIdealGraphLevel < 0) { // disabled by the user 5204 return false; 5205 } 5206 5207 bool need = directive()->IGVPrintLevelOption >= level; 5208 if (need && !_igv_printer) { 5209 _igv_printer = IdealGraphPrinter::printer(); 5210 _igv_printer->set_compile(this); 5211 } 5212 return need; 5213 #else 5214 return false; 5215 #endif 5216 } 5217 5218 #ifndef PRODUCT 5219 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5220 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5221 5222 // Called from debugger. Prints method to the default file with the default phase name. 5223 // This works regardless of any Ideal Graph Visualizer flags set or not. 5224 void igv_print() { 5225 Compile::current()->igv_print_method_to_file(); 5226 } 5227 5228 // Same as igv_print() above but with a specified phase name. 5229 void igv_print(const char* phase_name) { 5230 Compile::current()->igv_print_method_to_file(phase_name); 5231 } 5232 5233 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5234 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5235 // This works regardless of any Ideal Graph Visualizer flags set or not. 5236 void igv_print(bool network) { 5237 if (network) { 5238 Compile::current()->igv_print_method_to_network(); 5239 } else { 5240 Compile::current()->igv_print_method_to_file(); 5241 } 5242 } 5243 5244 // Same as igv_print(bool network) above but with a specified phase name. 5245 void igv_print(bool network, const char* phase_name) { 5246 if (network) { 5247 Compile::current()->igv_print_method_to_network(phase_name); 5248 } else { 5249 Compile::current()->igv_print_method_to_file(phase_name); 5250 } 5251 } 5252 5253 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5254 void igv_print_default() { 5255 Compile::current()->print_method(PHASE_DEBUG, 0); 5256 } 5257 5258 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5259 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5260 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5261 void igv_append() { 5262 Compile::current()->igv_print_method_to_file("Debug", true); 5263 } 5264 5265 // Same as igv_append() above but with a specified phase name. 5266 void igv_append(const char* phase_name) { 5267 Compile::current()->igv_print_method_to_file(phase_name, true); 5268 } 5269 5270 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5271 const char* file_name = "custom_debug.xml"; 5272 if (_debug_file_printer == nullptr) { 5273 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5274 } else { 5275 _debug_file_printer->update_compiled_method(C->method()); 5276 } 5277 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5278 _debug_file_printer->print(phase_name, (Node*)C->root()); 5279 } 5280 5281 void Compile::igv_print_method_to_network(const char* phase_name) { 5282 if (_debug_network_printer == nullptr) { 5283 _debug_network_printer = new IdealGraphPrinter(C); 5284 } else { 5285 _debug_network_printer->update_compiled_method(C->method()); 5286 } 5287 tty->print_cr("Method printed over network stream to IGV"); 5288 _debug_network_printer->print(phase_name, (Node*)C->root()); 5289 } 5290 #endif 5291 5292 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5293 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5294 return value; 5295 } 5296 Node* result = nullptr; 5297 if (bt == T_BYTE) { 5298 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5299 result = new RShiftINode(result, phase->intcon(24)); 5300 } else if (bt == T_BOOLEAN) { 5301 result = new AndINode(value, phase->intcon(0xFF)); 5302 } else if (bt == T_CHAR) { 5303 result = new AndINode(value,phase->intcon(0xFFFF)); 5304 } else { 5305 assert(bt == T_SHORT, "unexpected narrow type"); 5306 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5307 result = new RShiftINode(result, phase->intcon(16)); 5308 } 5309 if (transform_res) { 5310 result = phase->transform(result); 5311 } 5312 return result; 5313 } 5314 5315 void Compile::record_method_not_compilable_oom() { 5316 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5317 }