1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "ci/ciReplay.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "code/aotCodeCache.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compiler_globals.hpp"
  37 #include "compiler/compilerDefinitions.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "compiler/oopMap.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"
  62 #include "opto/locknode.hpp"
  63 #include "opto/loopnode.hpp"
  64 #include "opto/machnode.hpp"
  65 #include "opto/macro.hpp"
  66 #include "opto/matcher.hpp"
  67 #include "opto/mathexactnode.hpp"
  68 #include "opto/memnode.hpp"
  69 #include "opto/mulnode.hpp"
  70 #include "opto/narrowptrnode.hpp"
  71 #include "opto/node.hpp"
  72 #include "opto/opaquenode.hpp"
  73 #include "opto/opcodes.hpp"
  74 #include "opto/output.hpp"
  75 #include "opto/parse.hpp"
  76 #include "opto/phaseX.hpp"
  77 #include "opto/rootnode.hpp"
  78 #include "opto/runtime.hpp"
  79 #include "opto/stringopts.hpp"
  80 #include "opto/type.hpp"
  81 #include "opto/vector.hpp"
  82 #include "opto/vectornode.hpp"
  83 #include "runtime/globals_extension.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/timer.hpp"
  88 #include "utilities/align.hpp"
  89 #include "utilities/copy.hpp"
  90 #include "utilities/macros.hpp"
  91 #include "utilities/resourceHash.hpp"
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == nullptr) {
  97     _mach_constant_base_node = new MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 class IntrinsicDescPair {
 109  private:
 110   ciMethod* _m;
 111   bool _is_virtual;
 112  public:
 113   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 114   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 115     ciMethod* m= elt->method();
 116     ciMethod* key_m = key->_m;
 117     if (key_m < m)      return -1;
 118     else if (key_m > m) return 1;
 119     else {
 120       bool is_virtual = elt->is_virtual();
 121       bool key_virtual = key->_is_virtual;
 122       if (key_virtual < is_virtual)      return -1;
 123       else if (key_virtual > is_virtual) return 1;
 124       else                               return 0;
 125     }
 126   }
 127 };
 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 129 #ifdef ASSERT
 130   for (int i = 1; i < _intrinsics.length(); i++) {
 131     CallGenerator* cg1 = _intrinsics.at(i-1);
 132     CallGenerator* cg2 = _intrinsics.at(i);
 133     assert(cg1->method() != cg2->method()
 134            ? cg1->method()     < cg2->method()
 135            : cg1->is_virtual() < cg2->is_virtual(),
 136            "compiler intrinsics list must stay sorted");
 137   }
 138 #endif
 139   IntrinsicDescPair pair(m, is_virtual);
 140   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   bool found = false;
 145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 146   assert(!found, "registering twice");
 147   _intrinsics.insert_before(index, cg);
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics.length() > 0) {
 154     bool found = false;
 155     int index = intrinsic_insertion_index(m, is_virtual, found);
 156      if (found) {
 157       return _intrinsics.at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != nullptr) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return nullptr;
 173 }
 174 
 175 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 182 
 183 inline int as_int(vmIntrinsics::ID id) {
 184   return vmIntrinsics::as_int(id);
 185 }
 186 
 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 188   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 189   int oflags = _intrinsic_hist_flags[as_int(id)];
 190   assert(flags != 0, "what happened?");
 191   if (is_virtual) {
 192     flags |= _intrinsic_virtual;
 193   }
 194   bool changed = (flags != oflags);
 195   if ((flags & _intrinsic_worked) != 0) {
 196     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 197     if (count == 1) {
 198       changed = true;           // first time
 199     }
 200     // increment the overall count also:
 201     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 202   }
 203   if (changed) {
 204     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 205       // Something changed about the intrinsic's virtuality.
 206       if ((flags & _intrinsic_virtual) != 0) {
 207         // This is the first use of this intrinsic as a virtual call.
 208         if (oflags != 0) {
 209           // We already saw it as a non-virtual, so note both cases.
 210           flags |= _intrinsic_both;
 211         }
 212       } else if ((oflags & _intrinsic_both) == 0) {
 213         // This is the first use of this intrinsic as a non-virtual
 214         flags |= _intrinsic_both;
 215       }
 216     }
 217     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 218   }
 219   // update the overall flags also:
 220   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 221   return changed;
 222 }
 223 
 224 static char* format_flags(int flags, char* buf) {
 225   buf[0] = 0;
 226   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 227   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 228   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 229   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 230   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 231   if (buf[0] == 0)  strcat(buf, ",");
 232   assert(buf[0] == ',', "must be");
 233   return &buf[1];
 234 }
 235 
 236 void Compile::print_intrinsic_statistics() {
 237   char flagsbuf[100];
 238   ttyLocker ttyl;
 239   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 240   tty->print_cr("Compiler intrinsic usage:");
 241   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 242   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 243   #define PRINT_STAT_LINE(name, c, f) \
 244     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 245   for (auto id : EnumRange<vmIntrinsicID>{}) {
 246     int   flags = _intrinsic_hist_flags[as_int(id)];
 247     juint count = _intrinsic_hist_count[as_int(id)];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 253   if (xtty != nullptr)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseStringOpts::print_statistics();
 261     PhaseCCP::print_statistics();
 262     PhaseRegAlloc::print_statistics();
 263     PhaseOutput::print_statistics();
 264     PhasePeephole::print_statistics();
 265     PhaseIdealLoop::print_statistics();
 266     ConnectionGraph::print_statistics();
 267     PhaseMacroExpand::print_statistics();
 268     if (xtty != nullptr)  xtty->tail("statistics");
 269   }
 270   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 271     // put this under its own <statistics> element.
 272     print_intrinsic_statistics();
 273   }
 274 }
 275 #endif //PRODUCT
 276 
 277 void Compile::gvn_replace_by(Node* n, Node* nn) {
 278   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 279     Node* use = n->last_out(i);
 280     bool is_in_table = initial_gvn()->hash_delete(use);
 281     uint uses_found = 0;
 282     for (uint j = 0; j < use->len(); j++) {
 283       if (use->in(j) == n) {
 284         if (j < use->req())
 285           use->set_req(j, nn);
 286         else
 287           use->set_prec(j, nn);
 288         uses_found++;
 289       }
 290     }
 291     if (is_in_table) {
 292       // reinsert into table
 293       initial_gvn()->hash_find_insert(use);
 294     }
 295     record_for_igvn(use);
 296     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 297     i -= uses_found;    // we deleted 1 or more copies of this edge
 298   }
 299 }
 300 
 301 
 302 // Identify all nodes that are reachable from below, useful.
 303 // Use breadth-first pass that records state in a Unique_Node_List,
 304 // recursive traversal is slower.
 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 306   int estimated_worklist_size = live_nodes();
 307   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 308 
 309   // Initialize worklist
 310   if (root() != nullptr)  { useful.push(root()); }
 311   // If 'top' is cached, declare it useful to preserve cached node
 312   if (cached_top_node())  { useful.push(cached_top_node()); }
 313 
 314   // Push all useful nodes onto the list, breadthfirst
 315   for( uint next = 0; next < useful.size(); ++next ) {
 316     assert( next < unique(), "Unique useful nodes < total nodes");
 317     Node *n  = useful.at(next);
 318     uint max = n->len();
 319     for( uint i = 0; i < max; ++i ) {
 320       Node *m = n->in(i);
 321       if (not_a_node(m))  continue;
 322       useful.push(m);
 323     }
 324   }
 325 }
 326 
 327 // Update dead_node_list with any missing dead nodes using useful
 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 329 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 330   uint max_idx = unique();
 331   VectorSet& useful_node_set = useful.member_set();
 332 
 333   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 334     // If node with index node_idx is not in useful set,
 335     // mark it as dead in dead node list.
 336     if (!useful_node_set.test(node_idx)) {
 337       record_dead_node(node_idx);
 338     }
 339   }
 340 }
 341 
 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 343   int shift = 0;
 344   for (int i = 0; i < inlines->length(); i++) {
 345     CallGenerator* cg = inlines->at(i);
 346     if (useful.member(cg->call_node())) {
 347       if (shift > 0) {
 348         inlines->at_put(i - shift, cg);
 349       }
 350     } else {
 351       shift++; // skip over the dead element
 352     }
 353   }
 354   if (shift > 0) {
 355     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 356   }
 357 }
 358 
 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 360   assert(dead != nullptr && dead->is_Call(), "sanity");
 361   int found = 0;
 362   for (int i = 0; i < inlines->length(); i++) {
 363     if (inlines->at(i)->call_node() == dead) {
 364       inlines->remove_at(i);
 365       found++;
 366       NOT_DEBUG( break; ) // elements are unique, so exit early
 367     }
 368   }
 369   assert(found <= 1, "not unique");
 370 }
 371 
 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 374   for (int i = node_list.length() - 1; i >= 0; i--) {
 375     N* node = node_list.at(i);
 376     if (!useful.member(node)) {
 377       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 378     }
 379   }
 380 }
 381 
 382 void Compile::remove_useless_node(Node* dead) {
 383   remove_modified_node(dead);
 384 
 385   // Constant node that has no out-edges and has only one in-edge from
 386   // root is usually dead. However, sometimes reshaping walk makes
 387   // it reachable by adding use edges. So, we will NOT count Con nodes
 388   // as dead to be conservative about the dead node count at any
 389   // given time.
 390   if (!dead->is_Con()) {
 391     record_dead_node(dead->_idx);
 392   }
 393   if (dead->is_macro()) {
 394     remove_macro_node(dead);
 395   }
 396   if (dead->is_expensive()) {
 397     remove_expensive_node(dead);
 398   }
 399   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 400     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 401   }
 402   if (dead->is_ParsePredicate()) {
 403     remove_parse_predicate(dead->as_ParsePredicate());
 404   }
 405   if (dead->for_post_loop_opts_igvn()) {
 406     remove_from_post_loop_opts_igvn(dead);
 407   }
 408   if (dead->for_merge_stores_igvn()) {
 409     remove_from_merge_stores_igvn(dead);
 410   }
 411   if (dead->is_Call()) {
 412     remove_useless_late_inlines(                &_late_inlines, dead);
 413     remove_useless_late_inlines(         &_string_late_inlines, dead);
 414     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 415     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 416 
 417     if (dead->is_CallStaticJava()) {
 418       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 419     }
 420   }
 421   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 422   bs->unregister_potential_barrier_node(dead);
 423 }
 424 
 425 // Disconnect all useless nodes by disconnecting those at the boundary.
 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 427   uint next = 0;
 428   while (next < useful.size()) {
 429     Node *n = useful.at(next++);
 430     if (n->is_SafePoint()) {
 431       // We're done with a parsing phase. Replaced nodes are not valid
 432       // beyond that point.
 433       n->as_SafePoint()->delete_replaced_nodes();
 434     }
 435     // Use raw traversal of out edges since this code removes out edges
 436     int max = n->outcnt();
 437     for (int j = 0; j < max; ++j) {
 438       Node* child = n->raw_out(j);
 439       if (!useful.member(child)) {
 440         assert(!child->is_top() || child != top(),
 441                "If top is cached in Compile object it is in useful list");
 442         // Only need to remove this out-edge to the useless node
 443         n->raw_del_out(j);
 444         --j;
 445         --max;
 446         if (child->is_data_proj_of_pure_function(n)) {
 447           worklist.push(n);
 448         }
 449       }
 450     }
 451     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 452       assert(useful.member(n->unique_out()), "do not push a useless node");
 453       worklist.push(n->unique_out());
 454     }
 455   }
 456 
 457   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 458   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 459   // Remove useless Template Assertion Predicate opaque nodes
 460   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 461   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 462   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 463   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 464   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 465   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 466 #ifdef ASSERT
 467   if (_modified_nodes != nullptr) {
 468     _modified_nodes->remove_useless_nodes(useful.member_set());
 469   }
 470 #endif
 471 
 472   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 473   bs->eliminate_useless_gc_barriers(useful, this);
 474   // clean up the late inline lists
 475   remove_useless_late_inlines(                &_late_inlines, useful);
 476   remove_useless_late_inlines(         &_string_late_inlines, useful);
 477   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 478   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 479   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 480 }
 481 
 482 // ============================================================================
 483 //------------------------------CompileWrapper---------------------------------
 484 class CompileWrapper : public StackObj {
 485   Compile *const _compile;
 486  public:
 487   CompileWrapper(Compile* compile);
 488 
 489   ~CompileWrapper();
 490 };
 491 
 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 493   // the Compile* pointer is stored in the current ciEnv:
 494   ciEnv* env = compile->env();
 495   assert(env == ciEnv::current(), "must already be a ciEnv active");
 496   assert(env->compiler_data() == nullptr, "compile already active?");
 497   env->set_compiler_data(compile);
 498   assert(compile == Compile::current(), "sanity");
 499 
 500   compile->set_type_dict(nullptr);
 501   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 502   compile->clone_map().set_clone_idx(0);
 503   compile->set_type_last_size(0);
 504   compile->set_last_tf(nullptr, nullptr);
 505   compile->set_indexSet_arena(nullptr);
 506   compile->set_indexSet_free_block_list(nullptr);
 507   compile->init_type_arena();
 508   Type::Initialize(compile);
 509   _compile->begin_method();
 510   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 511 }
 512 CompileWrapper::~CompileWrapper() {
 513   // simulate crash during compilation
 514   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 515 
 516   _compile->end_method();
 517   _compile->env()->set_compiler_data(nullptr);
 518 }
 519 
 520 
 521 //----------------------------print_compile_messages---------------------------
 522 void Compile::print_compile_messages() {
 523 #ifndef PRODUCT
 524   // Check if recompiling
 525   if (!subsume_loads() && PrintOpto) {
 526     // Recompiling without allowing machine instructions to subsume loads
 527     tty->print_cr("*********************************************************");
 528     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 529     tty->print_cr("*********************************************************");
 530   }
 531   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 532     // Recompiling without escape analysis
 533     tty->print_cr("*********************************************************");
 534     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 535     tty->print_cr("*********************************************************");
 536   }
 537   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 538     // Recompiling without iterative escape analysis
 539     tty->print_cr("*********************************************************");
 540     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 541     tty->print_cr("*********************************************************");
 542   }
 543   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 544     // Recompiling without reducing allocation merges
 545     tty->print_cr("*********************************************************");
 546     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 547     tty->print_cr("*********************************************************");
 548   }
 549   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 550     // Recompiling without boxing elimination
 551     tty->print_cr("*********************************************************");
 552     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 553     tty->print_cr("*********************************************************");
 554   }
 555   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 556     // Recompiling without locks coarsening
 557     tty->print_cr("*********************************************************");
 558     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 559     tty->print_cr("*********************************************************");
 560   }
 561   if (env()->break_at_compile()) {
 562     // Open the debugger when compiling this method.
 563     tty->print("### Breaking when compiling: ");
 564     method()->print_short_name();
 565     tty->cr();
 566     BREAKPOINT;
 567   }
 568 
 569   if( PrintOpto ) {
 570     if (is_osr_compilation()) {
 571       tty->print("[OSR]%3d", _compile_id);
 572     } else {
 573       tty->print("%3d", _compile_id);
 574     }
 575   }
 576 #endif
 577 }
 578 
 579 #ifndef PRODUCT
 580 void Compile::print_phase(const char* phase_name) {
 581   tty->print_cr("%u.\t%s", ++_phase_counter, phase_name);
 582 }
 583 
 584 void Compile::print_ideal_ir(const char* phase_name) {
 585   // keep the following output all in one block
 586   // This output goes directly to the tty, not the compiler log.
 587   // To enable tools to match it up with the compilation activity,
 588   // be sure to tag this tty output with the compile ID.
 589 
 590   // Node dumping can cause a safepoint, which can break the tty lock.
 591   // Buffer all node dumps, so that all safepoints happen before we lock.
 592   ResourceMark rm;
 593   stringStream ss;
 594 
 595   if (_output == nullptr) {
 596     ss.print_cr("AFTER: %s", phase_name);
 597     // Print out all nodes in ascending order of index.
 598     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 599   } else {
 600     // Dump the node blockwise if we have a scheduling
 601     _output->print_scheduling(&ss);
 602   }
 603 
 604   // Check that the lock is not broken by a safepoint.
 605   NoSafepointVerifier nsv;
 606   ttyLocker ttyl;
 607   if (xtty != nullptr) {
 608     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 609                compile_id(),
 610                is_osr_compilation() ? " compile_kind='osr'" : "",
 611                phase_name);
 612   }
 613 
 614   tty->print("%s", ss.as_string());
 615 
 616   if (xtty != nullptr) {
 617     xtty->tail("ideal");
 618   }
 619 }
 620 #endif
 621 
 622 // ============================================================================
 623 //------------------------------Compile standard-------------------------------
 624 
 625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 626 // the continuation bci for on stack replacement.
 627 
 628 
 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 630                  Options options, DirectiveSet* directive)
 631     : Phase(Compiler),
 632       _compile_id(ci_env->compile_id()),
 633       _options(options),
 634       _method(target),
 635       _entry_bci(osr_bci),
 636       _ilt(nullptr),
 637       _stub_function(nullptr),
 638       _stub_name(nullptr),
 639       _stub_id(-1),
 640       _stub_entry_point(nullptr),
 641       _max_node_limit(MaxNodeLimit),
 642       _post_loop_opts_phase(false),
 643       _merge_stores_phase(false),
 644       _allow_macro_nodes(true),
 645       _inlining_progress(false),
 646       _inlining_incrementally(false),
 647       _do_cleanup(false),
 648       _has_reserved_stack_access(target->has_reserved_stack_access()),
 649 #ifndef PRODUCT
 650       _igv_idx(0),
 651       _trace_opto_output(directive->TraceOptoOutputOption),
 652 #endif
 653       _has_method_handle_invokes(false),
 654       _clinit_barrier_on_entry(false),
 655       _stress_seed(0),
 656       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 657       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 658       _env(ci_env),
 659       _directive(directive),
 660       _log(ci_env->log()),
 661       _first_failure_details(nullptr),
 662       _intrinsics(comp_arena(), 0, 0, nullptr),
 663       _macro_nodes(comp_arena(), 8, 0, nullptr),
 664       _parse_predicates(comp_arena(), 8, 0, nullptr),
 665       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 666       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 667       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 668       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 669       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 670       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 671       _congraph(nullptr),
 672       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 673           _unique(0),
 674       _dead_node_count(0),
 675       _dead_node_list(comp_arena()),
 676       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 677       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 678       _node_arena(&_node_arena_one),
 679       _mach_constant_base_node(nullptr),
 680       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 681       _initial_gvn(nullptr),
 682       _igvn_worklist(nullptr),
 683       _types(nullptr),
 684       _node_hash(nullptr),
 685       _late_inlines(comp_arena(), 2, 0, nullptr),
 686       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 687       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 688       _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 689       _late_inlines_pos(0),
 690       _number_of_mh_late_inlines(0),
 691       _oom(false),
 692       _replay_inline_data(nullptr),
 693       _inline_printer(this),
 694       _java_calls(0),
 695       _inner_loops(0),
 696       _interpreter_frame_size(0),
 697       _output(nullptr)
 698 #ifndef PRODUCT
 699       ,
 700       _in_dump_cnt(0)
 701 #endif
 702 {
 703   C = this;
 704   CompileWrapper cw(this);
 705 
 706   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 707   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 708 
 709 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 710   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 711   // We can always print a disassembly, either abstract (hex dump) or
 712   // with the help of a suitable hsdis library. Thus, we should not
 713   // couple print_assembly and print_opto_assembly controls.
 714   // But: always print opto and regular assembly on compile command 'print'.
 715   bool print_assembly = directive->PrintAssemblyOption;
 716   set_print_assembly(print_opto_assembly || print_assembly);
 717 #else
 718   set_print_assembly(false); // must initialize.
 719 #endif
 720 
 721 #ifndef PRODUCT
 722   set_parsed_irreducible_loop(false);
 723 #endif
 724 
 725   if (directive->ReplayInlineOption) {
 726     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 727   }
 728   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 729   set_print_intrinsics(directive->PrintIntrinsicsOption);
 730   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 731 
 732   if (ProfileTraps) {
 733     // Make sure the method being compiled gets its own MDO,
 734     // so we can at least track the decompile_count().
 735     method()->ensure_method_data();
 736   }
 737 
 738   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 739       StressIncrementalInlining || StressMacroExpansion ||
 740       StressMacroElimination || StressUnstableIfTraps ||
 741       StressBailout || StressLoopPeeling) {
 742     initialize_stress_seed(directive);
 743   }
 744 
 745   Init(/*do_aliasing=*/ true);
 746 
 747   print_compile_messages();
 748 
 749   _ilt = InlineTree::build_inline_tree_root();
 750 
 751   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 752   assert(num_alias_types() >= AliasIdxRaw, "");
 753 
 754 #define MINIMUM_NODE_HASH  1023
 755 
 756   // GVN that will be run immediately on new nodes
 757   uint estimated_size = method()->code_size()*4+64;
 758   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 759   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 760   _types = new (comp_arena()) Type_Array(comp_arena());
 761   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 762   PhaseGVN gvn;
 763   set_initial_gvn(&gvn);
 764 
 765   { // Scope for timing the parser
 766     TracePhase tp(_t_parser);
 767 
 768     // Put top into the hash table ASAP.
 769     initial_gvn()->transform(top());
 770 
 771     // Set up tf(), start(), and find a CallGenerator.
 772     CallGenerator* cg = nullptr;
 773     if (is_osr_compilation()) {
 774       const TypeTuple *domain = StartOSRNode::osr_domain();
 775       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 776       init_tf(TypeFunc::make(domain, range));
 777       StartNode* s = new StartOSRNode(root(), domain);
 778       initial_gvn()->set_type_bottom(s);
 779       verify_start(s);
 780       cg = CallGenerator::for_osr(method(), entry_bci());
 781     } else {
 782       // Normal case.
 783       init_tf(TypeFunc::make(method()));
 784       StartNode* s = new StartNode(root(), tf()->domain());
 785       initial_gvn()->set_type_bottom(s);
 786       verify_start(s);
 787       float past_uses = method()->interpreter_invocation_count();
 788       float expected_uses = past_uses;
 789       cg = CallGenerator::for_inline(method(), expected_uses);
 790     }
 791     if (failing())  return;
 792     if (cg == nullptr) {
 793       const char* reason = InlineTree::check_can_parse(method());
 794       assert(reason != nullptr, "expect reason for parse failure");
 795       stringStream ss;
 796       ss.print("cannot parse method: %s", reason);
 797       record_method_not_compilable(ss.as_string());
 798       return;
 799     }
 800 
 801     gvn.set_type(root(), root()->bottom_type());
 802 
 803     JVMState* jvms = build_start_state(start(), tf());
 804     if ((jvms = cg->generate(jvms)) == nullptr) {
 805       assert(failure_reason() != nullptr, "expect reason for parse failure");
 806       stringStream ss;
 807       ss.print("method parse failed: %s", failure_reason());
 808       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 809       return;
 810     }
 811     GraphKit kit(jvms);
 812 
 813     if (!kit.stopped()) {
 814       // Accept return values, and transfer control we know not where.
 815       // This is done by a special, unique ReturnNode bound to root.
 816       return_values(kit.jvms());
 817     }
 818 
 819     if (kit.has_exceptions()) {
 820       // Any exceptions that escape from this call must be rethrown
 821       // to whatever caller is dynamically above us on the stack.
 822       // This is done by a special, unique RethrowNode bound to root.
 823       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 824     }
 825 
 826     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 827 
 828     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 829       inline_string_calls(true);
 830     }
 831 
 832     if (failing())  return;
 833 
 834     // Remove clutter produced by parsing.
 835     if (!failing()) {
 836       ResourceMark rm;
 837       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 838     }
 839   }
 840 
 841   // Note:  Large methods are capped off in do_one_bytecode().
 842   if (failing())  return;
 843 
 844   // After parsing, node notes are no longer automagic.
 845   // They must be propagated by register_new_node_with_optimizer(),
 846   // clone(), or the like.
 847   set_default_node_notes(nullptr);
 848 
 849 #ifndef PRODUCT
 850   if (should_print_igv(1)) {
 851     _igv_printer->print_inlining();
 852   }
 853 #endif
 854 
 855   if (failing())  return;
 856   NOT_PRODUCT( verify_graph_edges(); )
 857 
 858   // Now optimize
 859   Optimize();
 860   if (failing())  return;
 861   NOT_PRODUCT( verify_graph_edges(); )
 862 
 863 #ifndef PRODUCT
 864   if (should_print_ideal()) {
 865     print_ideal_ir("print_ideal");
 866   }
 867 #endif
 868 
 869 #ifdef ASSERT
 870   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 871   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 872 #endif
 873 
 874   // Dump compilation data to replay it.
 875   if (directive->DumpReplayOption) {
 876     env()->dump_replay_data(_compile_id);
 877   }
 878   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 879     env()->dump_inline_data(_compile_id);
 880   }
 881 
 882   // Now that we know the size of all the monitors we can add a fixed slot
 883   // for the original deopt pc.
 884   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 885   set_fixed_slots(next_slot);
 886 
 887   // Compute when to use implicit null checks. Used by matching trap based
 888   // nodes and NullCheck optimization.
 889   set_allowed_deopt_reasons();
 890 
 891   // Now generate code
 892   Code_Gen();
 893 }
 894 
 895 //------------------------------Compile----------------------------------------
 896 // Compile a runtime stub
 897 Compile::Compile(ciEnv* ci_env,
 898                  TypeFunc_generator generator,
 899                  address stub_function,
 900                  const char* stub_name,
 901                  int stub_id,
 902                  int is_fancy_jump,
 903                  bool pass_tls,
 904                  bool return_pc,
 905                  DirectiveSet* directive)
 906     : Phase(Compiler),
 907       _compile_id(0),
 908       _options(Options::for_runtime_stub()),
 909       _method(nullptr),
 910       _entry_bci(InvocationEntryBci),
 911       _stub_function(stub_function),
 912       _stub_name(stub_name),
 913       _stub_id(stub_id),
 914       _stub_entry_point(nullptr),
 915       _max_node_limit(MaxNodeLimit),
 916       _post_loop_opts_phase(false),
 917       _merge_stores_phase(false),
 918       _allow_macro_nodes(true),
 919       _inlining_progress(false),
 920       _inlining_incrementally(false),
 921       _has_reserved_stack_access(false),
 922 #ifndef PRODUCT
 923       _igv_idx(0),
 924       _trace_opto_output(directive->TraceOptoOutputOption),
 925 #endif
 926       _has_method_handle_invokes(false),
 927       _clinit_barrier_on_entry(false),
 928       _stress_seed(0),
 929       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 930       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 931       _env(ci_env),
 932       _directive(directive),
 933       _log(ci_env->log()),
 934       _first_failure_details(nullptr),
 935       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 936       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 937       _congraph(nullptr),
 938       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 939           _unique(0),
 940       _dead_node_count(0),
 941       _dead_node_list(comp_arena()),
 942       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 943       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 944       _node_arena(&_node_arena_one),
 945       _mach_constant_base_node(nullptr),
 946       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 947       _initial_gvn(nullptr),
 948       _igvn_worklist(nullptr),
 949       _types(nullptr),
 950       _node_hash(nullptr),
 951       _number_of_mh_late_inlines(0),
 952       _oom(false),
 953       _replay_inline_data(nullptr),
 954       _inline_printer(this),
 955       _java_calls(0),
 956       _inner_loops(0),
 957       _interpreter_frame_size(0),
 958       _output(nullptr),
 959 #ifndef PRODUCT
 960       _in_dump_cnt(0),
 961 #endif
 962       _allowed_reasons(0) {
 963   C = this;
 964 
 965   // try to reuse an existing stub
 966   {
 967     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name);
 968     if (blob != nullptr) {
 969       RuntimeStub* rs = blob->as_runtime_stub();
 970       _stub_entry_point = rs->entry_point();
 971       return;
 972     }
 973   }
 974 
 975   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 976   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 977 
 978 #ifndef PRODUCT
 979   set_print_assembly(PrintFrameConverterAssembly);
 980   set_parsed_irreducible_loop(false);
 981 #else
 982   set_print_assembly(false); // Must initialize.
 983 #endif
 984   set_has_irreducible_loop(false); // no loops
 985 
 986   CompileWrapper cw(this);
 987   Init(/*do_aliasing=*/ false);
 988   init_tf((*generator)());
 989 
 990   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 991   _types = new (comp_arena()) Type_Array(comp_arena());
 992   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 993 
 994   if (StressLCM || StressGCM || StressBailout) {
 995     initialize_stress_seed(directive);
 996   }
 997 
 998   {
 999     PhaseGVN gvn;
1000     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1001     gvn.transform(top());
1002 
1003     GraphKit kit;
1004     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1005   }
1006 
1007   NOT_PRODUCT( verify_graph_edges(); )
1008 
1009   Code_Gen();
1010 }
1011 
1012 Compile::~Compile() {
1013   delete _first_failure_details;
1014 };
1015 
1016 //------------------------------Init-------------------------------------------
1017 // Prepare for a single compilation
1018 void Compile::Init(bool aliasing) {
1019   _do_aliasing = aliasing;
1020   _unique  = 0;
1021   _regalloc = nullptr;
1022 
1023   _tf      = nullptr;  // filled in later
1024   _top     = nullptr;  // cached later
1025   _matcher = nullptr;  // filled in later
1026   _cfg     = nullptr;  // filled in later
1027 
1028   _node_note_array = nullptr;
1029   _default_node_notes = nullptr;
1030   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1031 
1032   _immutable_memory = nullptr; // filled in at first inquiry
1033 
1034 #ifdef ASSERT
1035   _phase_optimize_finished = false;
1036   _phase_verify_ideal_loop = false;
1037   _exception_backedge = false;
1038   _type_verify = nullptr;
1039 #endif
1040 
1041   // Globally visible Nodes
1042   // First set TOP to null to give safe behavior during creation of RootNode
1043   set_cached_top_node(nullptr);
1044   set_root(new RootNode());
1045   // Now that you have a Root to point to, create the real TOP
1046   set_cached_top_node( new ConNode(Type::TOP) );
1047   set_recent_alloc(nullptr, nullptr);
1048 
1049   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1050   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1051   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1052   env()->set_dependencies(new Dependencies(env()));
1053 
1054   _fixed_slots = 0;
1055   set_has_split_ifs(false);
1056   set_has_loops(false); // first approximation
1057   set_has_stringbuilder(false);
1058   set_has_boxed_value(false);
1059   _trap_can_recompile = false;  // no traps emitted yet
1060   _major_progress = true; // start out assuming good things will happen
1061   set_has_unsafe_access(false);
1062   set_max_vector_size(0);
1063   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1064   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1065   set_decompile_count(0);
1066 
1067 #ifndef PRODUCT
1068   _phase_counter = 0;
1069   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1070 #endif
1071 
1072   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1073   _loop_opts_cnt = LoopOptsCount;
1074   set_do_inlining(Inline);
1075   set_max_inline_size(MaxInlineSize);
1076   set_freq_inline_size(FreqInlineSize);
1077   set_do_scheduling(OptoScheduling);
1078 
1079   set_do_vector_loop(false);
1080   set_has_monitors(false);
1081   set_has_scoped_access(false);
1082 
1083   if (AllowVectorizeOnDemand) {
1084     if (has_method() && _directive->VectorizeOption) {
1085       set_do_vector_loop(true);
1086       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1087     } else if (has_method() && method()->name() != nullptr &&
1088                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1089       set_do_vector_loop(true);
1090     }
1091   }
1092   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1093   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1094 
1095   _max_node_limit = _directive->MaxNodeLimitOption;
1096 
1097   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1098     set_clinit_barrier_on_entry(true);
1099   }
1100   if (debug_info()->recording_non_safepoints()) {
1101     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1102                         (comp_arena(), 8, 0, nullptr));
1103     set_default_node_notes(Node_Notes::make(this));
1104   }
1105 
1106   const int grow_ats = 16;
1107   _max_alias_types = grow_ats;
1108   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1109   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1110   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1111   {
1112     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1113   }
1114   // Initialize the first few types.
1115   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1116   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1117   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1118   _num_alias_types = AliasIdxRaw+1;
1119   // Zero out the alias type cache.
1120   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1121   // A null adr_type hits in the cache right away.  Preload the right answer.
1122   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1123 }
1124 
1125 #ifdef ASSERT
1126 // Verify that the current StartNode is valid.
1127 void Compile::verify_start(StartNode* s) const {
1128   assert(failing_internal() || s == start(), "should be StartNode");
1129 }
1130 #endif
1131 
1132 /**
1133  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1134  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1135  * the ideal graph.
1136  */
1137 StartNode* Compile::start() const {
1138   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1139   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1140     Node* start = root()->fast_out(i);
1141     if (start->is_Start()) {
1142       return start->as_Start();
1143     }
1144   }
1145   fatal("Did not find Start node!");
1146   return nullptr;
1147 }
1148 
1149 //-------------------------------immutable_memory-------------------------------------
1150 // Access immutable memory
1151 Node* Compile::immutable_memory() {
1152   if (_immutable_memory != nullptr) {
1153     return _immutable_memory;
1154   }
1155   StartNode* s = start();
1156   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1157     Node *p = s->fast_out(i);
1158     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1159       _immutable_memory = p;
1160       return _immutable_memory;
1161     }
1162   }
1163   ShouldNotReachHere();
1164   return nullptr;
1165 }
1166 
1167 //----------------------set_cached_top_node------------------------------------
1168 // Install the cached top node, and make sure Node::is_top works correctly.
1169 void Compile::set_cached_top_node(Node* tn) {
1170   if (tn != nullptr)  verify_top(tn);
1171   Node* old_top = _top;
1172   _top = tn;
1173   // Calling Node::setup_is_top allows the nodes the chance to adjust
1174   // their _out arrays.
1175   if (_top != nullptr)     _top->setup_is_top();
1176   if (old_top != nullptr)  old_top->setup_is_top();
1177   assert(_top == nullptr || top()->is_top(), "");
1178 }
1179 
1180 #ifdef ASSERT
1181 uint Compile::count_live_nodes_by_graph_walk() {
1182   Unique_Node_List useful(comp_arena());
1183   // Get useful node list by walking the graph.
1184   identify_useful_nodes(useful);
1185   return useful.size();
1186 }
1187 
1188 void Compile::print_missing_nodes() {
1189 
1190   // Return if CompileLog is null and PrintIdealNodeCount is false.
1191   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1192     return;
1193   }
1194 
1195   // This is an expensive function. It is executed only when the user
1196   // specifies VerifyIdealNodeCount option or otherwise knows the
1197   // additional work that needs to be done to identify reachable nodes
1198   // by walking the flow graph and find the missing ones using
1199   // _dead_node_list.
1200 
1201   Unique_Node_List useful(comp_arena());
1202   // Get useful node list by walking the graph.
1203   identify_useful_nodes(useful);
1204 
1205   uint l_nodes = C->live_nodes();
1206   uint l_nodes_by_walk = useful.size();
1207 
1208   if (l_nodes != l_nodes_by_walk) {
1209     if (_log != nullptr) {
1210       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1211       _log->stamp();
1212       _log->end_head();
1213     }
1214     VectorSet& useful_member_set = useful.member_set();
1215     int last_idx = l_nodes_by_walk;
1216     for (int i = 0; i < last_idx; i++) {
1217       if (useful_member_set.test(i)) {
1218         if (_dead_node_list.test(i)) {
1219           if (_log != nullptr) {
1220             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1221           }
1222           if (PrintIdealNodeCount) {
1223             // Print the log message to tty
1224               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1225               useful.at(i)->dump();
1226           }
1227         }
1228       }
1229       else if (! _dead_node_list.test(i)) {
1230         if (_log != nullptr) {
1231           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1232         }
1233         if (PrintIdealNodeCount) {
1234           // Print the log message to tty
1235           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1236         }
1237       }
1238     }
1239     if (_log != nullptr) {
1240       _log->tail("mismatched_nodes");
1241     }
1242   }
1243 }
1244 void Compile::record_modified_node(Node* n) {
1245   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1246     _modified_nodes->push(n);
1247   }
1248 }
1249 
1250 void Compile::remove_modified_node(Node* n) {
1251   if (_modified_nodes != nullptr) {
1252     _modified_nodes->remove(n);
1253   }
1254 }
1255 #endif
1256 
1257 #ifndef PRODUCT
1258 void Compile::verify_top(Node* tn) const {
1259   if (tn != nullptr) {
1260     assert(tn->is_Con(), "top node must be a constant");
1261     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1262     assert(tn->in(0) != nullptr, "must have live top node");
1263   }
1264 }
1265 #endif
1266 
1267 
1268 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1269 
1270 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1271   guarantee(arr != nullptr, "");
1272   int num_blocks = arr->length();
1273   if (grow_by < num_blocks)  grow_by = num_blocks;
1274   int num_notes = grow_by * _node_notes_block_size;
1275   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1276   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1277   while (num_notes > 0) {
1278     arr->append(notes);
1279     notes     += _node_notes_block_size;
1280     num_notes -= _node_notes_block_size;
1281   }
1282   assert(num_notes == 0, "exact multiple, please");
1283 }
1284 
1285 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1286   if (source == nullptr || dest == nullptr)  return false;
1287 
1288   if (dest->is_Con())
1289     return false;               // Do not push debug info onto constants.
1290 
1291 #ifdef ASSERT
1292   // Leave a bread crumb trail pointing to the original node:
1293   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1294     dest->set_debug_orig(source);
1295   }
1296 #endif
1297 
1298   if (node_note_array() == nullptr)
1299     return false;               // Not collecting any notes now.
1300 
1301   // This is a copy onto a pre-existing node, which may already have notes.
1302   // If both nodes have notes, do not overwrite any pre-existing notes.
1303   Node_Notes* source_notes = node_notes_at(source->_idx);
1304   if (source_notes == nullptr || source_notes->is_clear())  return false;
1305   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1306   if (dest_notes == nullptr || dest_notes->is_clear()) {
1307     return set_node_notes_at(dest->_idx, source_notes);
1308   }
1309 
1310   Node_Notes merged_notes = (*source_notes);
1311   // The order of operations here ensures that dest notes will win...
1312   merged_notes.update_from(dest_notes);
1313   return set_node_notes_at(dest->_idx, &merged_notes);
1314 }
1315 
1316 
1317 //--------------------------allow_range_check_smearing-------------------------
1318 // Gating condition for coalescing similar range checks.
1319 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1320 // single covering check that is at least as strong as any of them.
1321 // If the optimization succeeds, the simplified (strengthened) range check
1322 // will always succeed.  If it fails, we will deopt, and then give up
1323 // on the optimization.
1324 bool Compile::allow_range_check_smearing() const {
1325   // If this method has already thrown a range-check,
1326   // assume it was because we already tried range smearing
1327   // and it failed.
1328   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1329   return !already_trapped;
1330 }
1331 
1332 
1333 //------------------------------flatten_alias_type-----------------------------
1334 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1335   assert(do_aliasing(), "Aliasing should be enabled");
1336   int offset = tj->offset();
1337   TypePtr::PTR ptr = tj->ptr();
1338 
1339   // Known instance (scalarizable allocation) alias only with itself.
1340   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1341                        tj->is_oopptr()->is_known_instance();
1342 
1343   // Process weird unsafe references.
1344   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1345     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1346     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1347     tj = TypeOopPtr::BOTTOM;
1348     ptr = tj->ptr();
1349     offset = tj->offset();
1350   }
1351 
1352   // Array pointers need some flattening
1353   const TypeAryPtr* ta = tj->isa_aryptr();
1354   if (ta && ta->is_stable()) {
1355     // Erase stability property for alias analysis.
1356     tj = ta = ta->cast_to_stable(false);
1357   }
1358   if( ta && is_known_inst ) {
1359     if ( offset != Type::OffsetBot &&
1360          offset > arrayOopDesc::length_offset_in_bytes() ) {
1361       offset = Type::OffsetBot; // Flatten constant access into array body only
1362       tj = ta = ta->
1363               remove_speculative()->
1364               cast_to_ptr_type(ptr)->
1365               with_offset(offset);
1366     }
1367   } else if (ta) {
1368     // For arrays indexed by constant indices, we flatten the alias
1369     // space to include all of the array body.  Only the header, klass
1370     // and array length can be accessed un-aliased.
1371     if( offset != Type::OffsetBot ) {
1372       if( ta->const_oop() ) { // MethodData* or Method*
1373         offset = Type::OffsetBot;   // Flatten constant access into array body
1374         tj = ta = ta->
1375                 remove_speculative()->
1376                 cast_to_ptr_type(ptr)->
1377                 cast_to_exactness(false)->
1378                 with_offset(offset);
1379       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1380         // range is OK as-is.
1381         tj = ta = TypeAryPtr::RANGE;
1382       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1383         tj = TypeInstPtr::KLASS; // all klass loads look alike
1384         ta = TypeAryPtr::RANGE; // generic ignored junk
1385         ptr = TypePtr::BotPTR;
1386       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1387         tj = TypeInstPtr::MARK;
1388         ta = TypeAryPtr::RANGE; // generic ignored junk
1389         ptr = TypePtr::BotPTR;
1390       } else {                  // Random constant offset into array body
1391         offset = Type::OffsetBot;   // Flatten constant access into array body
1392         tj = ta = ta->
1393                 remove_speculative()->
1394                 cast_to_ptr_type(ptr)->
1395                 cast_to_exactness(false)->
1396                 with_offset(offset);
1397       }
1398     }
1399     // Arrays of fixed size alias with arrays of unknown size.
1400     if (ta->size() != TypeInt::POS) {
1401       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1402       tj = ta = ta->
1403               remove_speculative()->
1404               cast_to_ptr_type(ptr)->
1405               with_ary(tary)->
1406               cast_to_exactness(false);
1407     }
1408     // Arrays of known objects become arrays of unknown objects.
1409     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1410       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1411       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1412     }
1413     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1414       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1415       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1416     }
1417     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1418     // cannot be distinguished by bytecode alone.
1419     if (ta->elem() == TypeInt::BOOL) {
1420       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1421       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1423     }
1424     // During the 2nd round of IterGVN, NotNull castings are removed.
1425     // Make sure the Bottom and NotNull variants alias the same.
1426     // Also, make sure exact and non-exact variants alias the same.
1427     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1428       tj = ta = ta->
1429               remove_speculative()->
1430               cast_to_ptr_type(TypePtr::BotPTR)->
1431               cast_to_exactness(false)->
1432               with_offset(offset);
1433     }
1434   }
1435 
1436   // Oop pointers need some flattening
1437   const TypeInstPtr *to = tj->isa_instptr();
1438   if (to && to != TypeOopPtr::BOTTOM) {
1439     ciInstanceKlass* ik = to->instance_klass();
1440     if( ptr == TypePtr::Constant ) {
1441       if (ik != ciEnv::current()->Class_klass() ||
1442           offset < ik->layout_helper_size_in_bytes()) {
1443         // No constant oop pointers (such as Strings); they alias with
1444         // unknown strings.
1445         assert(!is_known_inst, "not scalarizable allocation");
1446         tj = to = to->
1447                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1448                 remove_speculative()->
1449                 cast_to_ptr_type(TypePtr::BotPTR)->
1450                 cast_to_exactness(false);
1451       }
1452     } else if( is_known_inst ) {
1453       tj = to; // Keep NotNull and klass_is_exact for instance type
1454     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1455       // During the 2nd round of IterGVN, NotNull castings are removed.
1456       // Make sure the Bottom and NotNull variants alias the same.
1457       // Also, make sure exact and non-exact variants alias the same.
1458       tj = to = to->
1459               remove_speculative()->
1460               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1461               cast_to_ptr_type(TypePtr::BotPTR)->
1462               cast_to_exactness(false);
1463     }
1464     if (to->speculative() != nullptr) {
1465       tj = to = to->remove_speculative();
1466     }
1467     // Canonicalize the holder of this field
1468     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1469       // First handle header references such as a LoadKlassNode, even if the
1470       // object's klass is unloaded at compile time (4965979).
1471       if (!is_known_inst) { // Do it only for non-instance types
1472         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1473       }
1474     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1475       // Static fields are in the space above the normal instance
1476       // fields in the java.lang.Class instance.
1477       if (ik != ciEnv::current()->Class_klass()) {
1478         to = nullptr;
1479         tj = TypeOopPtr::BOTTOM;
1480         offset = tj->offset();
1481       }
1482     } else {
1483       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1484       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1485       assert(tj->offset() == offset, "no change to offset expected");
1486       bool xk = to->klass_is_exact();
1487       int instance_id = to->instance_id();
1488 
1489       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1490       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1491       // its interfaces are included.
1492       if (xk && ik->equals(canonical_holder)) {
1493         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1494       } else {
1495         assert(xk || !is_known_inst, "Known instance should be exact type");
1496         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1497       }
1498     }
1499   }
1500 
1501   // Klass pointers to object array klasses need some flattening
1502   const TypeKlassPtr *tk = tj->isa_klassptr();
1503   if( tk ) {
1504     // If we are referencing a field within a Klass, we need
1505     // to assume the worst case of an Object.  Both exact and
1506     // inexact types must flatten to the same alias class so
1507     // use NotNull as the PTR.
1508     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1509       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1510                                        env()->Object_klass(),
1511                                        offset);
1512     }
1513 
1514     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1515       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1516       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1517         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1518       } else {
1519         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1520       }
1521     }
1522 
1523     // Check for precise loads from the primary supertype array and force them
1524     // to the supertype cache alias index.  Check for generic array loads from
1525     // the primary supertype array and also force them to the supertype cache
1526     // alias index.  Since the same load can reach both, we need to merge
1527     // these 2 disparate memories into the same alias class.  Since the
1528     // primary supertype array is read-only, there's no chance of confusion
1529     // where we bypass an array load and an array store.
1530     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1531     if (offset == Type::OffsetBot ||
1532         (offset >= primary_supers_offset &&
1533          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1534         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1535       offset = in_bytes(Klass::secondary_super_cache_offset());
1536       tj = tk = tk->with_offset(offset);
1537     }
1538   }
1539 
1540   // Flatten all Raw pointers together.
1541   if (tj->base() == Type::RawPtr)
1542     tj = TypeRawPtr::BOTTOM;
1543 
1544   if (tj->base() == Type::AnyPtr)
1545     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1546 
1547   offset = tj->offset();
1548   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1549 
1550   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1551           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1552           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1553           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1554           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1555           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1556           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1557           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1558   assert( tj->ptr() != TypePtr::TopPTR &&
1559           tj->ptr() != TypePtr::AnyNull &&
1560           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1561 //    assert( tj->ptr() != TypePtr::Constant ||
1562 //            tj->base() == Type::RawPtr ||
1563 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1564 
1565   return tj;
1566 }
1567 
1568 void Compile::AliasType::Init(int i, const TypePtr* at) {
1569   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1570   _index = i;
1571   _adr_type = at;
1572   _field = nullptr;
1573   _element = nullptr;
1574   _is_rewritable = true; // default
1575   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1576   if (atoop != nullptr && atoop->is_known_instance()) {
1577     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1578     _general_index = Compile::current()->get_alias_index(gt);
1579   } else {
1580     _general_index = 0;
1581   }
1582 }
1583 
1584 BasicType Compile::AliasType::basic_type() const {
1585   if (element() != nullptr) {
1586     const Type* element = adr_type()->is_aryptr()->elem();
1587     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1588   } if (field() != nullptr) {
1589     return field()->layout_type();
1590   } else {
1591     return T_ILLEGAL; // unknown
1592   }
1593 }
1594 
1595 //---------------------------------print_on------------------------------------
1596 #ifndef PRODUCT
1597 void Compile::AliasType::print_on(outputStream* st) {
1598   if (index() < 10)
1599         st->print("@ <%d> ", index());
1600   else  st->print("@ <%d>",  index());
1601   st->print(is_rewritable() ? "   " : " RO");
1602   int offset = adr_type()->offset();
1603   if (offset == Type::OffsetBot)
1604         st->print(" +any");
1605   else  st->print(" +%-3d", offset);
1606   st->print(" in ");
1607   adr_type()->dump_on(st);
1608   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1609   if (field() != nullptr && tjp) {
1610     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1611         tjp->offset() != field()->offset_in_bytes()) {
1612       st->print(" != ");
1613       field()->print();
1614       st->print(" ***");
1615     }
1616   }
1617 }
1618 
1619 void print_alias_types() {
1620   Compile* C = Compile::current();
1621   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1622   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1623     C->alias_type(idx)->print_on(tty);
1624     tty->cr();
1625   }
1626 }
1627 #endif
1628 
1629 
1630 //----------------------------probe_alias_cache--------------------------------
1631 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1632   intptr_t key = (intptr_t) adr_type;
1633   key ^= key >> logAliasCacheSize;
1634   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1635 }
1636 
1637 
1638 //-----------------------------grow_alias_types--------------------------------
1639 void Compile::grow_alias_types() {
1640   const int old_ats  = _max_alias_types; // how many before?
1641   const int new_ats  = old_ats;          // how many more?
1642   const int grow_ats = old_ats+new_ats;  // how many now?
1643   _max_alias_types = grow_ats;
1644   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1645   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1646   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1647   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1648 }
1649 
1650 
1651 //--------------------------------find_alias_type------------------------------
1652 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1653   if (!do_aliasing()) {
1654     return alias_type(AliasIdxBot);
1655   }
1656 
1657   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1658   if (ace->_adr_type == adr_type) {
1659     return alias_type(ace->_index);
1660   }
1661 
1662   // Handle special cases.
1663   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1664   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1665 
1666   // Do it the slow way.
1667   const TypePtr* flat = flatten_alias_type(adr_type);
1668 
1669 #ifdef ASSERT
1670   {
1671     ResourceMark rm;
1672     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1673            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1674     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1675            Type::str(adr_type));
1676     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1677       const TypeOopPtr* foop = flat->is_oopptr();
1678       // Scalarizable allocations have exact klass always.
1679       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1680       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1681       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1682              Type::str(foop), Type::str(xoop));
1683     }
1684   }
1685 #endif
1686 
1687   int idx = AliasIdxTop;
1688   for (int i = 0; i < num_alias_types(); i++) {
1689     if (alias_type(i)->adr_type() == flat) {
1690       idx = i;
1691       break;
1692     }
1693   }
1694 
1695   if (idx == AliasIdxTop) {
1696     if (no_create)  return nullptr;
1697     // Grow the array if necessary.
1698     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1699     // Add a new alias type.
1700     idx = _num_alias_types++;
1701     _alias_types[idx]->Init(idx, flat);
1702     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1703     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1704     if (flat->isa_instptr()) {
1705       if (flat->offset() == java_lang_Class::klass_offset()
1706           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1707         alias_type(idx)->set_rewritable(false);
1708     }
1709     if (flat->isa_aryptr()) {
1710 #ifdef ASSERT
1711       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1712       // (T_BYTE has the weakest alignment and size restrictions...)
1713       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1714 #endif
1715       if (flat->offset() == TypePtr::OffsetBot) {
1716         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1717       }
1718     }
1719     if (flat->isa_klassptr()) {
1720       if (UseCompactObjectHeaders) {
1721         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1722           alias_type(idx)->set_rewritable(false);
1723       }
1724       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1725         alias_type(idx)->set_rewritable(false);
1726       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1727         alias_type(idx)->set_rewritable(false);
1728       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1729         alias_type(idx)->set_rewritable(false);
1730       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1731         alias_type(idx)->set_rewritable(false);
1732       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1733         alias_type(idx)->set_rewritable(false);
1734     }
1735     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1736     // but the base pointer type is not distinctive enough to identify
1737     // references into JavaThread.)
1738 
1739     // Check for final fields.
1740     const TypeInstPtr* tinst = flat->isa_instptr();
1741     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1742       ciField* field;
1743       if (tinst->const_oop() != nullptr &&
1744           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1745           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1746         // static field
1747         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1748         field = k->get_field_by_offset(tinst->offset(), true);
1749       } else {
1750         ciInstanceKlass *k = tinst->instance_klass();
1751         field = k->get_field_by_offset(tinst->offset(), false);
1752       }
1753       assert(field == nullptr ||
1754              original_field == nullptr ||
1755              (field->holder() == original_field->holder() &&
1756               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1757               field->is_static() == original_field->is_static()), "wrong field?");
1758       // Set field() and is_rewritable() attributes.
1759       if (field != nullptr)  alias_type(idx)->set_field(field);
1760     }
1761   }
1762 
1763   // Fill the cache for next time.
1764   ace->_adr_type = adr_type;
1765   ace->_index    = idx;
1766   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1767 
1768   // Might as well try to fill the cache for the flattened version, too.
1769   AliasCacheEntry* face = probe_alias_cache(flat);
1770   if (face->_adr_type == nullptr) {
1771     face->_adr_type = flat;
1772     face->_index    = idx;
1773     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1774   }
1775 
1776   return alias_type(idx);
1777 }
1778 
1779 
1780 Compile::AliasType* Compile::alias_type(ciField* field) {
1781   const TypeOopPtr* t;
1782   if (field->is_static())
1783     t = TypeInstPtr::make(field->holder()->java_mirror());
1784   else
1785     t = TypeOopPtr::make_from_klass_raw(field->holder());
1786   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1787   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1788   return atp;
1789 }
1790 
1791 
1792 //------------------------------have_alias_type--------------------------------
1793 bool Compile::have_alias_type(const TypePtr* adr_type) {
1794   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1795   if (ace->_adr_type == adr_type) {
1796     return true;
1797   }
1798 
1799   // Handle special cases.
1800   if (adr_type == nullptr)             return true;
1801   if (adr_type == TypePtr::BOTTOM)  return true;
1802 
1803   return find_alias_type(adr_type, true, nullptr) != nullptr;
1804 }
1805 
1806 //-----------------------------must_alias--------------------------------------
1807 // True if all values of the given address type are in the given alias category.
1808 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1809   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1810   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1811   if (alias_idx == AliasIdxTop)         return false; // the empty category
1812   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1813 
1814   // the only remaining possible overlap is identity
1815   int adr_idx = get_alias_index(adr_type);
1816   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1817   assert(adr_idx == alias_idx ||
1818          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1819           && adr_type                       != TypeOopPtr::BOTTOM),
1820          "should not be testing for overlap with an unsafe pointer");
1821   return adr_idx == alias_idx;
1822 }
1823 
1824 //------------------------------can_alias--------------------------------------
1825 // True if any values of the given address type are in the given alias category.
1826 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1827   if (alias_idx == AliasIdxTop)         return false; // the empty category
1828   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1829   // Known instance doesn't alias with bottom memory
1830   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1831   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1832 
1833   // the only remaining possible overlap is identity
1834   int adr_idx = get_alias_index(adr_type);
1835   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1836   return adr_idx == alias_idx;
1837 }
1838 
1839 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1840 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1841 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1842   if (parse_predicate_count() == 0) {
1843     return;
1844   }
1845   for (int i = 0; i < parse_predicate_count(); i++) {
1846     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1847     parse_predicate->mark_useless(igvn);
1848   }
1849   _parse_predicates.clear();
1850 }
1851 
1852 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1853   if (!n->for_post_loop_opts_igvn()) {
1854     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1855     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1856     _for_post_loop_igvn.append(n);
1857   }
1858 }
1859 
1860 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1861   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1862   _for_post_loop_igvn.remove(n);
1863 }
1864 
1865 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1866   // Verify that all previous optimizations produced a valid graph
1867   // at least to this point, even if no loop optimizations were done.
1868   PhaseIdealLoop::verify(igvn);
1869 
1870   if (has_loops() || _loop_opts_cnt > 0) {
1871     print_method(PHASE_AFTER_LOOP_OPTS, 2);
1872   }
1873   C->set_post_loop_opts_phase(); // no more loop opts allowed
1874 
1875   assert(!C->major_progress(), "not cleared");
1876 
1877   if (_for_post_loop_igvn.length() > 0) {
1878     while (_for_post_loop_igvn.length() > 0) {
1879       Node* n = _for_post_loop_igvn.pop();
1880       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1881       igvn._worklist.push(n);
1882     }
1883     igvn.optimize();
1884     if (failing()) return;
1885     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1886     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1887 
1888     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1889     if (C->major_progress()) {
1890       C->clear_major_progress(); // ensure that major progress is now clear
1891     }
1892   }
1893 }
1894 
1895 void Compile::record_for_merge_stores_igvn(Node* n) {
1896   if (!n->for_merge_stores_igvn()) {
1897     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1898     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1899     _for_merge_stores_igvn.append(n);
1900   }
1901 }
1902 
1903 void Compile::remove_from_merge_stores_igvn(Node* n) {
1904   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1905   _for_merge_stores_igvn.remove(n);
1906 }
1907 
1908 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1909 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1910 // the stores, and we merge the wrong sequence of stores.
1911 // Example:
1912 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1913 // Apply MergeStores:
1914 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
1915 // Remove more RangeChecks:
1916 //   StoreI            [   StoreL  ]            StoreI
1917 // But now it would have been better to do this instead:
1918 //   [         StoreL       ] [       StoreL         ]
1919 //
1920 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round,
1921 //       since we never unset _merge_stores_phase.
1922 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) {
1923   C->set_merge_stores_phase();
1924 
1925   if (_for_merge_stores_igvn.length() > 0) {
1926     while (_for_merge_stores_igvn.length() > 0) {
1927       Node* n = _for_merge_stores_igvn.pop();
1928       n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1929       igvn._worklist.push(n);
1930     }
1931     igvn.optimize();
1932     if (failing()) return;
1933     assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed");
1934     print_method(PHASE_AFTER_MERGE_STORES, 3);
1935   }
1936 }
1937 
1938 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1939   if (OptimizeUnstableIf) {
1940     _unstable_if_traps.append(trap);
1941   }
1942 }
1943 
1944 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1945   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1946     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1947     Node* n = trap->uncommon_trap();
1948     if (!useful.member(n)) {
1949       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1950     }
1951   }
1952 }
1953 
1954 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1955 // or fold-compares case. Return true if succeed or not found.
1956 //
1957 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1958 // false and ask fold-compares to yield.
1959 //
1960 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1961 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1962 // when deoptimization does happen.
1963 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1964   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1965     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1966     if (trap->uncommon_trap() == unc) {
1967       if (yield && trap->modified()) {
1968         return false;
1969       }
1970       _unstable_if_traps.delete_at(i);
1971       break;
1972     }
1973   }
1974   return true;
1975 }
1976 
1977 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1978 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1979 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1980   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1981     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1982     CallStaticJavaNode* unc = trap->uncommon_trap();
1983     int next_bci = trap->next_bci();
1984     bool modified = trap->modified();
1985 
1986     if (next_bci != -1 && !modified) {
1987       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1988       JVMState* jvms = unc->jvms();
1989       ciMethod* method = jvms->method();
1990       ciBytecodeStream iter(method);
1991 
1992       iter.force_bci(jvms->bci());
1993       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1994       Bytecodes::Code c = iter.cur_bc();
1995       Node* lhs = nullptr;
1996       Node* rhs = nullptr;
1997       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1998         lhs = unc->peek_operand(0);
1999         rhs = unc->peek_operand(1);
2000       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2001         lhs = unc->peek_operand(0);
2002       }
2003 
2004       ResourceMark rm;
2005       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2006       assert(live_locals.is_valid(), "broken liveness info");
2007       int len = (int)live_locals.size();
2008 
2009       for (int i = 0; i < len; i++) {
2010         Node* local = unc->local(jvms, i);
2011         // kill local using the liveness of next_bci.
2012         // give up when the local looks like an operand to secure reexecution.
2013         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2014           uint idx = jvms->locoff() + i;
2015 #ifdef ASSERT
2016           if (PrintOpto && Verbose) {
2017             tty->print("[unstable_if] kill local#%d: ", idx);
2018             local->dump();
2019             tty->cr();
2020           }
2021 #endif
2022           igvn.replace_input_of(unc, idx, top());
2023           modified = true;
2024         }
2025       }
2026     }
2027 
2028     // keep the mondified trap for late query
2029     if (modified) {
2030       trap->set_modified();
2031     } else {
2032       _unstable_if_traps.delete_at(i);
2033     }
2034   }
2035   igvn.optimize();
2036 }
2037 
2038 // StringOpts and late inlining of string methods
2039 void Compile::inline_string_calls(bool parse_time) {
2040   {
2041     // remove useless nodes to make the usage analysis simpler
2042     ResourceMark rm;
2043     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2044   }
2045 
2046   {
2047     ResourceMark rm;
2048     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2049     PhaseStringOpts pso(initial_gvn());
2050     print_method(PHASE_AFTER_STRINGOPTS, 3);
2051   }
2052 
2053   // now inline anything that we skipped the first time around
2054   if (!parse_time) {
2055     _late_inlines_pos = _late_inlines.length();
2056   }
2057 
2058   while (_string_late_inlines.length() > 0) {
2059     CallGenerator* cg = _string_late_inlines.pop();
2060     cg->do_late_inline();
2061     if (failing())  return;
2062   }
2063   _string_late_inlines.trunc_to(0);
2064 }
2065 
2066 // Late inlining of boxing methods
2067 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2068   if (_boxing_late_inlines.length() > 0) {
2069     assert(has_boxed_value(), "inconsistent");
2070 
2071     set_inlining_incrementally(true);
2072 
2073     igvn_worklist()->ensure_empty(); // should be done with igvn
2074 
2075     _late_inlines_pos = _late_inlines.length();
2076 
2077     while (_boxing_late_inlines.length() > 0) {
2078       CallGenerator* cg = _boxing_late_inlines.pop();
2079       cg->do_late_inline();
2080       if (failing())  return;
2081     }
2082     _boxing_late_inlines.trunc_to(0);
2083 
2084     inline_incrementally_cleanup(igvn);
2085 
2086     set_inlining_incrementally(false);
2087   }
2088 }
2089 
2090 bool Compile::inline_incrementally_one() {
2091   assert(IncrementalInline, "incremental inlining should be on");
2092 
2093   TracePhase tp(_t_incrInline_inline);
2094 
2095   set_inlining_progress(false);
2096   set_do_cleanup(false);
2097 
2098   for (int i = 0; i < _late_inlines.length(); i++) {
2099     _late_inlines_pos = i+1;
2100     CallGenerator* cg = _late_inlines.at(i);
2101     bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node());
2102     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2103     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2104       cg->do_late_inline();
2105       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2106       if (failing()) {
2107         return false;
2108       } else if (inlining_progress()) {
2109         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2110         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2111         break; // process one call site at a time
2112       } else {
2113         bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node());
2114         if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) {
2115           // Avoid potential infinite loop if node already in the IGVN list
2116           assert(false, "scheduled for IGVN during inlining attempt");
2117         } else {
2118           // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt
2119           assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass");
2120           cg->call_node()->set_generator(cg);
2121         }
2122       }
2123     } else {
2124       // Ignore late inline direct calls when inlining is not allowed.
2125       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2126     }
2127   }
2128   // Remove processed elements.
2129   _late_inlines.remove_till(_late_inlines_pos);
2130   _late_inlines_pos = 0;
2131 
2132   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2133 
2134   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2135 
2136   set_inlining_progress(false);
2137   set_do_cleanup(false);
2138 
2139   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2140   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2141 }
2142 
2143 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2144   {
2145     TracePhase tp(_t_incrInline_pru);
2146     ResourceMark rm;
2147     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2148   }
2149   {
2150     TracePhase tp(_t_incrInline_igvn);
2151     igvn.reset_from_gvn(initial_gvn());
2152     igvn.optimize();
2153     if (failing()) return;
2154   }
2155   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2156 }
2157 
2158 // Perform incremental inlining until bound on number of live nodes is reached
2159 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2160   TracePhase tp(_t_incrInline);
2161 
2162   set_inlining_incrementally(true);
2163   uint low_live_nodes = 0;
2164 
2165   while (_late_inlines.length() > 0) {
2166     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2167       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2168         TracePhase tp(_t_incrInline_ideal);
2169         // PhaseIdealLoop is expensive so we only try it once we are
2170         // out of live nodes and we only try it again if the previous
2171         // helped got the number of nodes down significantly
2172         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2173         if (failing())  return;
2174         low_live_nodes = live_nodes();
2175         _major_progress = true;
2176       }
2177 
2178       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2179         bool do_print_inlining = print_inlining() || print_intrinsics();
2180         if (do_print_inlining || log() != nullptr) {
2181           // Print inlining message for candidates that we couldn't inline for lack of space.
2182           for (int i = 0; i < _late_inlines.length(); i++) {
2183             CallGenerator* cg = _late_inlines.at(i);
2184             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2185             if (do_print_inlining) {
2186               inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg);
2187             }
2188             log_late_inline_failure(cg, msg);
2189           }
2190         }
2191         break; // finish
2192       }
2193     }
2194 
2195     igvn_worklist()->ensure_empty(); // should be done with igvn
2196 
2197     while (inline_incrementally_one()) {
2198       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2199     }
2200     if (failing())  return;
2201 
2202     inline_incrementally_cleanup(igvn);
2203 
2204     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2205 
2206     if (failing())  return;
2207 
2208     if (_late_inlines.length() == 0) {
2209       break; // no more progress
2210     }
2211   }
2212 
2213   igvn_worklist()->ensure_empty(); // should be done with igvn
2214 
2215   if (_string_late_inlines.length() > 0) {
2216     assert(has_stringbuilder(), "inconsistent");
2217 
2218     inline_string_calls(false);
2219 
2220     if (failing())  return;
2221 
2222     inline_incrementally_cleanup(igvn);
2223   }
2224 
2225   set_inlining_incrementally(false);
2226 }
2227 
2228 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2229   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2230   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2231   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2232   // as if "inlining_incrementally() == true" were set.
2233   assert(inlining_incrementally() == false, "not allowed");
2234   assert(_modified_nodes == nullptr, "not allowed");
2235   assert(_late_inlines.length() > 0, "sanity");
2236 
2237   while (_late_inlines.length() > 0) {
2238     igvn_worklist()->ensure_empty(); // should be done with igvn
2239 
2240     while (inline_incrementally_one()) {
2241       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2242     }
2243     if (failing())  return;
2244 
2245     inline_incrementally_cleanup(igvn);
2246   }
2247 }
2248 
2249 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2250   if (_loop_opts_cnt > 0) {
2251     while (major_progress() && (_loop_opts_cnt > 0)) {
2252       TracePhase tp(_t_idealLoop);
2253       PhaseIdealLoop::optimize(igvn, mode);
2254       _loop_opts_cnt--;
2255       if (failing())  return false;
2256       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2257     }
2258   }
2259   return true;
2260 }
2261 
2262 // Remove edges from "root" to each SafePoint at a backward branch.
2263 // They were inserted during parsing (see add_safepoint()) to make
2264 // infinite loops without calls or exceptions visible to root, i.e.,
2265 // useful.
2266 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2267   Node *r = root();
2268   if (r != nullptr) {
2269     for (uint i = r->req(); i < r->len(); ++i) {
2270       Node *n = r->in(i);
2271       if (n != nullptr && n->is_SafePoint()) {
2272         r->rm_prec(i);
2273         if (n->outcnt() == 0) {
2274           igvn.remove_dead_node(n);
2275         }
2276         --i;
2277       }
2278     }
2279     // Parsing may have added top inputs to the root node (Path
2280     // leading to the Halt node proven dead). Make sure we get a
2281     // chance to clean them up.
2282     igvn._worklist.push(r);
2283     igvn.optimize();
2284   }
2285 }
2286 
2287 //------------------------------Optimize---------------------------------------
2288 // Given a graph, optimize it.
2289 void Compile::Optimize() {
2290   TracePhase tp(_t_optimizer);
2291 
2292 #ifndef PRODUCT
2293   if (env()->break_at_compile()) {
2294     BREAKPOINT;
2295   }
2296 
2297 #endif
2298 
2299   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2300 #ifdef ASSERT
2301   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2302 #endif
2303 
2304   ResourceMark rm;
2305 
2306   NOT_PRODUCT( verify_graph_edges(); )
2307 
2308   print_method(PHASE_AFTER_PARSING, 1);
2309 
2310  {
2311   // Iterative Global Value Numbering, including ideal transforms
2312   // Initialize IterGVN with types and values from parse-time GVN
2313   PhaseIterGVN igvn(initial_gvn());
2314 #ifdef ASSERT
2315   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2316 #endif
2317   {
2318     TracePhase tp(_t_iterGVN);
2319     igvn.optimize();
2320   }
2321 
2322   if (failing())  return;
2323 
2324   print_method(PHASE_ITER_GVN1, 2);
2325 
2326   process_for_unstable_if_traps(igvn);
2327 
2328   if (failing())  return;
2329 
2330   inline_incrementally(igvn);
2331 
2332   print_method(PHASE_INCREMENTAL_INLINE, 2);
2333 
2334   if (failing())  return;
2335 
2336   if (eliminate_boxing()) {
2337     // Inline valueOf() methods now.
2338     inline_boxing_calls(igvn);
2339 
2340     if (failing())  return;
2341 
2342     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2343       inline_incrementally(igvn);
2344     }
2345 
2346     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2347 
2348     if (failing())  return;
2349   }
2350 
2351   // Remove the speculative part of types and clean up the graph from
2352   // the extra CastPP nodes whose only purpose is to carry them. Do
2353   // that early so that optimizations are not disrupted by the extra
2354   // CastPP nodes.
2355   remove_speculative_types(igvn);
2356 
2357   if (failing())  return;
2358 
2359   // No more new expensive nodes will be added to the list from here
2360   // so keep only the actual candidates for optimizations.
2361   cleanup_expensive_nodes(igvn);
2362 
2363   if (failing())  return;
2364 
2365   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2366   if (EnableVectorSupport && has_vbox_nodes()) {
2367     TracePhase tp(_t_vector);
2368     PhaseVector pv(igvn);
2369     pv.optimize_vector_boxes();
2370     if (failing())  return;
2371     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2372   }
2373   assert(!has_vbox_nodes(), "sanity");
2374 
2375   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2376     Compile::TracePhase tp(_t_renumberLive);
2377     igvn_worklist()->ensure_empty(); // should be done with igvn
2378     {
2379       ResourceMark rm;
2380       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2381     }
2382     igvn.reset_from_gvn(initial_gvn());
2383     igvn.optimize();
2384     if (failing()) return;
2385   }
2386 
2387   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2388   // safepoints
2389   remove_root_to_sfpts_edges(igvn);
2390 
2391   if (failing())  return;
2392 
2393   if (has_loops()) {
2394     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2395   }
2396 
2397   // Perform escape analysis
2398   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2399     if (has_loops()) {
2400       // Cleanup graph (remove dead nodes).
2401       TracePhase tp(_t_idealLoop);
2402       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2403       if (failing())  return;
2404     }
2405     bool progress;
2406     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2407     do {
2408       ConnectionGraph::do_analysis(this, &igvn);
2409 
2410       if (failing())  return;
2411 
2412       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2413 
2414       // Optimize out fields loads from scalar replaceable allocations.
2415       igvn.optimize();
2416       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2417 
2418       if (failing()) return;
2419 
2420       if (congraph() != nullptr && macro_count() > 0) {
2421         TracePhase tp(_t_macroEliminate);
2422         PhaseMacroExpand mexp(igvn);
2423         mexp.eliminate_macro_nodes();
2424         if (failing()) return;
2425         print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2426 
2427         igvn.set_delay_transform(false);
2428         igvn.optimize();
2429         if (failing()) return;
2430 
2431         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2432       }
2433 
2434       ConnectionGraph::verify_ram_nodes(this, root());
2435       if (failing())  return;
2436 
2437       progress = do_iterative_escape_analysis() &&
2438                  (macro_count() < mcount) &&
2439                  ConnectionGraph::has_candidates(this);
2440       // Try again if candidates exist and made progress
2441       // by removing some allocations and/or locks.
2442     } while (progress);
2443   }
2444 
2445   // Loop transforms on the ideal graph.  Range Check Elimination,
2446   // peeling, unrolling, etc.
2447 
2448   // Set loop opts counter
2449   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2450     {
2451       TracePhase tp(_t_idealLoop);
2452       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2453       _loop_opts_cnt--;
2454       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2455       if (failing())  return;
2456     }
2457     // Loop opts pass if partial peeling occurred in previous pass
2458     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2459       TracePhase tp(_t_idealLoop);
2460       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2461       _loop_opts_cnt--;
2462       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2463       if (failing())  return;
2464     }
2465     // Loop opts pass for loop-unrolling before CCP
2466     if(major_progress() && (_loop_opts_cnt > 0)) {
2467       TracePhase tp(_t_idealLoop);
2468       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2469       _loop_opts_cnt--;
2470       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2471     }
2472     if (!failing()) {
2473       // Verify that last round of loop opts produced a valid graph
2474       PhaseIdealLoop::verify(igvn);
2475     }
2476   }
2477   if (failing())  return;
2478 
2479   // Conditional Constant Propagation;
2480   print_method(PHASE_BEFORE_CCP1, 2);
2481   PhaseCCP ccp( &igvn );
2482   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2483   {
2484     TracePhase tp(_t_ccp);
2485     ccp.do_transform();
2486   }
2487   print_method(PHASE_CCP1, 2);
2488 
2489   assert( true, "Break here to ccp.dump_old2new_map()");
2490 
2491   // Iterative Global Value Numbering, including ideal transforms
2492   {
2493     TracePhase tp(_t_iterGVN2);
2494     igvn.reset_from_igvn(&ccp);
2495     igvn.optimize();
2496   }
2497   print_method(PHASE_ITER_GVN2, 2);
2498 
2499   if (failing())  return;
2500 
2501   // Loop transforms on the ideal graph.  Range Check Elimination,
2502   // peeling, unrolling, etc.
2503   if (!optimize_loops(igvn, LoopOptsDefault)) {
2504     return;
2505   }
2506 
2507   if (failing())  return;
2508 
2509   C->clear_major_progress(); // ensure that major progress is now clear
2510 
2511   process_for_post_loop_opts_igvn(igvn);
2512 
2513   process_for_merge_stores_igvn(igvn);
2514 
2515   if (failing())  return;
2516 
2517 #ifdef ASSERT
2518   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2519 #endif
2520 
2521   {
2522     TracePhase tp(_t_macroExpand);
2523     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2524     PhaseMacroExpand  mex(igvn);
2525     // Do not allow new macro nodes once we start to eliminate and expand
2526     C->reset_allow_macro_nodes();
2527     // Last attempt to eliminate macro nodes before expand
2528     mex.eliminate_macro_nodes();
2529     if (failing()) {
2530       return;
2531     }
2532     mex.eliminate_opaque_looplimit_macro_nodes();
2533     if (failing()) {
2534       return;
2535     }
2536     print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2537     if (mex.expand_macro_nodes()) {
2538       assert(failing(), "must bail out w/ explicit message");
2539       return;
2540     }
2541     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2542   }
2543 
2544   {
2545     TracePhase tp(_t_barrierExpand);
2546     if (bs->expand_barriers(this, igvn)) {
2547       assert(failing(), "must bail out w/ explicit message");
2548       return;
2549     }
2550     print_method(PHASE_BARRIER_EXPANSION, 2);
2551   }
2552 
2553   if (C->max_vector_size() > 0) {
2554     C->optimize_logic_cones(igvn);
2555     igvn.optimize();
2556     if (failing()) return;
2557   }
2558 
2559   DEBUG_ONLY( _modified_nodes = nullptr; )
2560 
2561   assert(igvn._worklist.size() == 0, "not empty");
2562 
2563   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2564 
2565   if (_late_inlines.length() > 0) {
2566     // More opportunities to optimize virtual and MH calls.
2567     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2568     process_late_inline_calls_no_inline(igvn);
2569     if (failing())  return;
2570   }
2571  } // (End scope of igvn; run destructor if necessary for asserts.)
2572 
2573  check_no_dead_use();
2574 
2575  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2576  // to remove hashes to unlock nodes for modifications.
2577  C->node_hash()->clear();
2578 
2579  // A method with only infinite loops has no edges entering loops from root
2580  {
2581    TracePhase tp(_t_graphReshaping);
2582    if (final_graph_reshaping()) {
2583      assert(failing(), "must bail out w/ explicit message");
2584      return;
2585    }
2586  }
2587 
2588  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2589  DEBUG_ONLY(set_phase_optimize_finished();)
2590 }
2591 
2592 #ifdef ASSERT
2593 void Compile::check_no_dead_use() const {
2594   ResourceMark rm;
2595   Unique_Node_List wq;
2596   wq.push(root());
2597   for (uint i = 0; i < wq.size(); ++i) {
2598     Node* n = wq.at(i);
2599     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2600       Node* u = n->fast_out(j);
2601       if (u->outcnt() == 0 && !u->is_Con()) {
2602         u->dump();
2603         fatal("no reachable node should have no use");
2604       }
2605       wq.push(u);
2606     }
2607   }
2608 }
2609 #endif
2610 
2611 void Compile::inline_vector_reboxing_calls() {
2612   if (C->_vector_reboxing_late_inlines.length() > 0) {
2613     _late_inlines_pos = C->_late_inlines.length();
2614     while (_vector_reboxing_late_inlines.length() > 0) {
2615       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2616       cg->do_late_inline();
2617       if (failing())  return;
2618       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2619     }
2620     _vector_reboxing_late_inlines.trunc_to(0);
2621   }
2622 }
2623 
2624 bool Compile::has_vbox_nodes() {
2625   if (C->_vector_reboxing_late_inlines.length() > 0) {
2626     return true;
2627   }
2628   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2629     Node * n = C->macro_node(macro_idx);
2630     assert(n->is_macro(), "only macro nodes expected here");
2631     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2632       return true;
2633     }
2634   }
2635   return false;
2636 }
2637 
2638 //---------------------------- Bitwise operation packing optimization ---------------------------
2639 
2640 static bool is_vector_unary_bitwise_op(Node* n) {
2641   return n->Opcode() == Op_XorV &&
2642          VectorNode::is_vector_bitwise_not_pattern(n);
2643 }
2644 
2645 static bool is_vector_binary_bitwise_op(Node* n) {
2646   switch (n->Opcode()) {
2647     case Op_AndV:
2648     case Op_OrV:
2649       return true;
2650 
2651     case Op_XorV:
2652       return !is_vector_unary_bitwise_op(n);
2653 
2654     default:
2655       return false;
2656   }
2657 }
2658 
2659 static bool is_vector_ternary_bitwise_op(Node* n) {
2660   return n->Opcode() == Op_MacroLogicV;
2661 }
2662 
2663 static bool is_vector_bitwise_op(Node* n) {
2664   return is_vector_unary_bitwise_op(n)  ||
2665          is_vector_binary_bitwise_op(n) ||
2666          is_vector_ternary_bitwise_op(n);
2667 }
2668 
2669 static bool is_vector_bitwise_cone_root(Node* n) {
2670   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2671     return false;
2672   }
2673   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2674     if (is_vector_bitwise_op(n->fast_out(i))) {
2675       return false;
2676     }
2677   }
2678   return true;
2679 }
2680 
2681 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2682   uint cnt = 0;
2683   if (is_vector_bitwise_op(n)) {
2684     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2685     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2686       for (uint i = 1; i < inp_cnt; i++) {
2687         Node* in = n->in(i);
2688         bool skip = VectorNode::is_all_ones_vector(in);
2689         if (!skip && !inputs.member(in)) {
2690           inputs.push(in);
2691           cnt++;
2692         }
2693       }
2694       assert(cnt <= 1, "not unary");
2695     } else {
2696       uint last_req = inp_cnt;
2697       if (is_vector_ternary_bitwise_op(n)) {
2698         last_req = inp_cnt - 1; // skip last input
2699       }
2700       for (uint i = 1; i < last_req; i++) {
2701         Node* def = n->in(i);
2702         if (!inputs.member(def)) {
2703           inputs.push(def);
2704           cnt++;
2705         }
2706       }
2707     }
2708   } else { // not a bitwise operations
2709     if (!inputs.member(n)) {
2710       inputs.push(n);
2711       cnt++;
2712     }
2713   }
2714   return cnt;
2715 }
2716 
2717 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2718   Unique_Node_List useful_nodes;
2719   C->identify_useful_nodes(useful_nodes);
2720 
2721   for (uint i = 0; i < useful_nodes.size(); i++) {
2722     Node* n = useful_nodes.at(i);
2723     if (is_vector_bitwise_cone_root(n)) {
2724       list.push(n);
2725     }
2726   }
2727 }
2728 
2729 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2730                                     const TypeVect* vt,
2731                                     Unique_Node_List& partition,
2732                                     Unique_Node_List& inputs) {
2733   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2734   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2735   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2736 
2737   Node* in1 = inputs.at(0);
2738   Node* in2 = inputs.at(1);
2739   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2740 
2741   uint func = compute_truth_table(partition, inputs);
2742 
2743   Node* pn = partition.at(partition.size() - 1);
2744   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2745   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2746 }
2747 
2748 static uint extract_bit(uint func, uint pos) {
2749   return (func & (1 << pos)) >> pos;
2750 }
2751 
2752 //
2753 //  A macro logic node represents a truth table. It has 4 inputs,
2754 //  First three inputs corresponds to 3 columns of a truth table
2755 //  and fourth input captures the logic function.
2756 //
2757 //  eg.  fn = (in1 AND in2) OR in3;
2758 //
2759 //      MacroNode(in1,in2,in3,fn)
2760 //
2761 //  -----------------
2762 //  in1 in2 in3  fn
2763 //  -----------------
2764 //  0    0   0    0
2765 //  0    0   1    1
2766 //  0    1   0    0
2767 //  0    1   1    1
2768 //  1    0   0    0
2769 //  1    0   1    1
2770 //  1    1   0    1
2771 //  1    1   1    1
2772 //
2773 
2774 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2775   int res = 0;
2776   for (int i = 0; i < 8; i++) {
2777     int bit1 = extract_bit(in1, i);
2778     int bit2 = extract_bit(in2, i);
2779     int bit3 = extract_bit(in3, i);
2780 
2781     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2782     int func_bit = extract_bit(func, func_bit_pos);
2783 
2784     res |= func_bit << i;
2785   }
2786   return res;
2787 }
2788 
2789 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2790   assert(n != nullptr, "");
2791   assert(eval_map.contains(n), "absent");
2792   return *(eval_map.get(n));
2793 }
2794 
2795 static void eval_operands(Node* n,
2796                           uint& func1, uint& func2, uint& func3,
2797                           ResourceHashtable<Node*,uint>& eval_map) {
2798   assert(is_vector_bitwise_op(n), "");
2799 
2800   if (is_vector_unary_bitwise_op(n)) {
2801     Node* opnd = n->in(1);
2802     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2803       opnd = n->in(2);
2804     }
2805     func1 = eval_operand(opnd, eval_map);
2806   } else if (is_vector_binary_bitwise_op(n)) {
2807     func1 = eval_operand(n->in(1), eval_map);
2808     func2 = eval_operand(n->in(2), eval_map);
2809   } else {
2810     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2811     func1 = eval_operand(n->in(1), eval_map);
2812     func2 = eval_operand(n->in(2), eval_map);
2813     func3 = eval_operand(n->in(3), eval_map);
2814   }
2815 }
2816 
2817 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2818   assert(inputs.size() <= 3, "sanity");
2819   ResourceMark rm;
2820   uint res = 0;
2821   ResourceHashtable<Node*,uint> eval_map;
2822 
2823   // Populate precomputed functions for inputs.
2824   // Each input corresponds to one column of 3 input truth-table.
2825   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2826                          0xCC,   // (_, b, _) -> b
2827                          0xF0 }; // (a, _, _) -> a
2828   for (uint i = 0; i < inputs.size(); i++) {
2829     eval_map.put(inputs.at(i), input_funcs[2-i]);
2830   }
2831 
2832   for (uint i = 0; i < partition.size(); i++) {
2833     Node* n = partition.at(i);
2834 
2835     uint func1 = 0, func2 = 0, func3 = 0;
2836     eval_operands(n, func1, func2, func3, eval_map);
2837 
2838     switch (n->Opcode()) {
2839       case Op_OrV:
2840         assert(func3 == 0, "not binary");
2841         res = func1 | func2;
2842         break;
2843       case Op_AndV:
2844         assert(func3 == 0, "not binary");
2845         res = func1 & func2;
2846         break;
2847       case Op_XorV:
2848         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2849           assert(func2 == 0 && func3 == 0, "not unary");
2850           res = (~func1) & 0xFF;
2851         } else {
2852           assert(func3 == 0, "not binary");
2853           res = func1 ^ func2;
2854         }
2855         break;
2856       case Op_MacroLogicV:
2857         // Ordering of inputs may change during evaluation of sub-tree
2858         // containing MacroLogic node as a child node, thus a re-evaluation
2859         // makes sure that function is evaluated in context of current
2860         // inputs.
2861         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2862         break;
2863 
2864       default: assert(false, "not supported: %s", n->Name());
2865     }
2866     assert(res <= 0xFF, "invalid");
2867     eval_map.put(n, res);
2868   }
2869   return res;
2870 }
2871 
2872 // Criteria under which nodes gets packed into a macro logic node:-
2873 //  1) Parent and both child nodes are all unmasked or masked with
2874 //     same predicates.
2875 //  2) Masked parent can be packed with left child if it is predicated
2876 //     and both have same predicates.
2877 //  3) Masked parent can be packed with right child if its un-predicated
2878 //     or has matching predication condition.
2879 //  4) An unmasked parent can be packed with an unmasked child.
2880 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2881   assert(partition.size() == 0, "not empty");
2882   assert(inputs.size() == 0, "not empty");
2883   if (is_vector_ternary_bitwise_op(n)) {
2884     return false;
2885   }
2886 
2887   bool is_unary_op = is_vector_unary_bitwise_op(n);
2888   if (is_unary_op) {
2889     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2890     return false; // too few inputs
2891   }
2892 
2893   bool pack_left_child = true;
2894   bool pack_right_child = true;
2895 
2896   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2897   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2898 
2899   int left_child_input_cnt = 0;
2900   int right_child_input_cnt = 0;
2901 
2902   bool parent_is_predicated = n->is_predicated_vector();
2903   bool left_child_predicated = n->in(1)->is_predicated_vector();
2904   bool right_child_predicated = n->in(2)->is_predicated_vector();
2905 
2906   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2907   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2908   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2909 
2910   do {
2911     if (pack_left_child && left_child_LOP &&
2912         ((!parent_is_predicated && !left_child_predicated) ||
2913         ((parent_is_predicated && left_child_predicated &&
2914           parent_pred == left_child_pred)))) {
2915        partition.push(n->in(1));
2916        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2917     } else {
2918        inputs.push(n->in(1));
2919        left_child_input_cnt = 1;
2920     }
2921 
2922     if (pack_right_child && right_child_LOP &&
2923         (!right_child_predicated ||
2924          (right_child_predicated && parent_is_predicated &&
2925           parent_pred == right_child_pred))) {
2926        partition.push(n->in(2));
2927        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2928     } else {
2929        inputs.push(n->in(2));
2930        right_child_input_cnt = 1;
2931     }
2932 
2933     if (inputs.size() > 3) {
2934       assert(partition.size() > 0, "");
2935       inputs.clear();
2936       partition.clear();
2937       if (left_child_input_cnt > right_child_input_cnt) {
2938         pack_left_child = false;
2939       } else {
2940         pack_right_child = false;
2941       }
2942     } else {
2943       break;
2944     }
2945   } while(true);
2946 
2947   if(partition.size()) {
2948     partition.push(n);
2949   }
2950 
2951   return (partition.size() == 2 || partition.size() == 3) &&
2952          (inputs.size()    == 2 || inputs.size()    == 3);
2953 }
2954 
2955 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2956   assert(is_vector_bitwise_op(n), "not a root");
2957 
2958   visited.set(n->_idx);
2959 
2960   // 1) Do a DFS walk over the logic cone.
2961   for (uint i = 1; i < n->req(); i++) {
2962     Node* in = n->in(i);
2963     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2964       process_logic_cone_root(igvn, in, visited);
2965     }
2966   }
2967 
2968   // 2) Bottom up traversal: Merge node[s] with
2969   // the parent to form macro logic node.
2970   Unique_Node_List partition;
2971   Unique_Node_List inputs;
2972   if (compute_logic_cone(n, partition, inputs)) {
2973     const TypeVect* vt = n->bottom_type()->is_vect();
2974     Node* pn = partition.at(partition.size() - 1);
2975     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2976     if (mask == nullptr ||
2977         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2978       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2979       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2980       igvn.replace_node(n, macro_logic);
2981     }
2982   }
2983 }
2984 
2985 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2986   ResourceMark rm;
2987   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2988     Unique_Node_List list;
2989     collect_logic_cone_roots(list);
2990 
2991     while (list.size() > 0) {
2992       Node* n = list.pop();
2993       const TypeVect* vt = n->bottom_type()->is_vect();
2994       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2995       if (supported) {
2996         VectorSet visited(comp_arena());
2997         process_logic_cone_root(igvn, n, visited);
2998       }
2999     }
3000   }
3001 }
3002 
3003 //------------------------------Code_Gen---------------------------------------
3004 // Given a graph, generate code for it
3005 void Compile::Code_Gen() {
3006   if (failing()) {
3007     return;
3008   }
3009 
3010   // Perform instruction selection.  You might think we could reclaim Matcher
3011   // memory PDQ, but actually the Matcher is used in generating spill code.
3012   // Internals of the Matcher (including some VectorSets) must remain live
3013   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
3014   // set a bit in reclaimed memory.
3015 
3016   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3017   // nodes.  Mapping is only valid at the root of each matched subtree.
3018   NOT_PRODUCT( verify_graph_edges(); )
3019 
3020   Matcher matcher;
3021   _matcher = &matcher;
3022   {
3023     TracePhase tp(_t_matcher);
3024     matcher.match();
3025     if (failing()) {
3026       return;
3027     }
3028   }
3029   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3030   // nodes.  Mapping is only valid at the root of each matched subtree.
3031   NOT_PRODUCT( verify_graph_edges(); )
3032 
3033   // If you have too many nodes, or if matching has failed, bail out
3034   check_node_count(0, "out of nodes matching instructions");
3035   if (failing()) {
3036     return;
3037   }
3038 
3039   print_method(PHASE_MATCHING, 2);
3040 
3041   // Build a proper-looking CFG
3042   PhaseCFG cfg(node_arena(), root(), matcher);
3043   if (failing()) {
3044     return;
3045   }
3046   _cfg = &cfg;
3047   {
3048     TracePhase tp(_t_scheduler);
3049     bool success = cfg.do_global_code_motion();
3050     if (!success) {
3051       return;
3052     }
3053 
3054     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
3055     NOT_PRODUCT( verify_graph_edges(); )
3056     cfg.verify();
3057     if (failing()) {
3058       return;
3059     }
3060   }
3061 
3062   PhaseChaitin regalloc(unique(), cfg, matcher, false);
3063   _regalloc = &regalloc;
3064   {
3065     TracePhase tp(_t_registerAllocation);
3066     // Perform register allocation.  After Chaitin, use-def chains are
3067     // no longer accurate (at spill code) and so must be ignored.
3068     // Node->LRG->reg mappings are still accurate.
3069     _regalloc->Register_Allocate();
3070 
3071     // Bail out if the allocator builds too many nodes
3072     if (failing()) {
3073       return;
3074     }
3075 
3076     print_method(PHASE_REGISTER_ALLOCATION, 2);
3077   }
3078 
3079   // Prior to register allocation we kept empty basic blocks in case the
3080   // the allocator needed a place to spill.  After register allocation we
3081   // are not adding any new instructions.  If any basic block is empty, we
3082   // can now safely remove it.
3083   {
3084     TracePhase tp(_t_blockOrdering);
3085     cfg.remove_empty_blocks();
3086     if (do_freq_based_layout()) {
3087       PhaseBlockLayout layout(cfg);
3088     } else {
3089       cfg.set_loop_alignment();
3090     }
3091     cfg.fixup_flow();
3092     cfg.remove_unreachable_blocks();
3093     cfg.verify_dominator_tree();
3094     print_method(PHASE_BLOCK_ORDERING, 3);
3095   }
3096 
3097   // Apply peephole optimizations
3098   if( OptoPeephole ) {
3099     TracePhase tp(_t_peephole);
3100     PhasePeephole peep( _regalloc, cfg);
3101     peep.do_transform();
3102     print_method(PHASE_PEEPHOLE, 3);
3103   }
3104 
3105   // Do late expand if CPU requires this.
3106   if (Matcher::require_postalloc_expand) {
3107     TracePhase tp(_t_postalloc_expand);
3108     cfg.postalloc_expand(_regalloc);
3109     print_method(PHASE_POSTALLOC_EXPAND, 3);
3110   }
3111 
3112 #ifdef ASSERT
3113   {
3114     CompilationMemoryStatistic::do_test_allocations();
3115     if (failing()) return;
3116   }
3117 #endif
3118 
3119   // Convert Nodes to instruction bits in a buffer
3120   {
3121     TracePhase tp(_t_output);
3122     PhaseOutput output;
3123     output.Output();
3124     if (failing())  return;
3125     output.install();
3126     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3127   }
3128 
3129   // He's dead, Jim.
3130   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3131   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3132 }
3133 
3134 //------------------------------Final_Reshape_Counts---------------------------
3135 // This class defines counters to help identify when a method
3136 // may/must be executed using hardware with only 24-bit precision.
3137 struct Final_Reshape_Counts : public StackObj {
3138   int  _call_count;             // count non-inlined 'common' calls
3139   int  _float_count;            // count float ops requiring 24-bit precision
3140   int  _double_count;           // count double ops requiring more precision
3141   int  _java_call_count;        // count non-inlined 'java' calls
3142   int  _inner_loop_count;       // count loops which need alignment
3143   VectorSet _visited;           // Visitation flags
3144   Node_List _tests;             // Set of IfNodes & PCTableNodes
3145 
3146   Final_Reshape_Counts() :
3147     _call_count(0), _float_count(0), _double_count(0),
3148     _java_call_count(0), _inner_loop_count(0) { }
3149 
3150   void inc_call_count  () { _call_count  ++; }
3151   void inc_float_count () { _float_count ++; }
3152   void inc_double_count() { _double_count++; }
3153   void inc_java_call_count() { _java_call_count++; }
3154   void inc_inner_loop_count() { _inner_loop_count++; }
3155 
3156   int  get_call_count  () const { return _call_count  ; }
3157   int  get_float_count () const { return _float_count ; }
3158   int  get_double_count() const { return _double_count; }
3159   int  get_java_call_count() const { return _java_call_count; }
3160   int  get_inner_loop_count() const { return _inner_loop_count; }
3161 };
3162 
3163 //------------------------------final_graph_reshaping_impl----------------------
3164 // Implement items 1-5 from final_graph_reshaping below.
3165 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3166 
3167   if ( n->outcnt() == 0 ) return; // dead node
3168   uint nop = n->Opcode();
3169 
3170   // Check for 2-input instruction with "last use" on right input.
3171   // Swap to left input.  Implements item (2).
3172   if( n->req() == 3 &&          // two-input instruction
3173       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3174       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3175       n->in(2)->outcnt() == 1 &&// right use IS a last use
3176       !n->in(2)->is_Con() ) {   // right use is not a constant
3177     // Check for commutative opcode
3178     switch( nop ) {
3179     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3180     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3181     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3182     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3183     case Op_AndL:  case Op_XorL:  case Op_OrL:
3184     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3185       // Move "last use" input to left by swapping inputs
3186       n->swap_edges(1, 2);
3187       break;
3188     }
3189     default:
3190       break;
3191     }
3192   }
3193 
3194 #ifdef ASSERT
3195   if( n->is_Mem() ) {
3196     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3197     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3198             // oop will be recorded in oop map if load crosses safepoint
3199             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3200                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3201             "raw memory operations should have control edge");
3202   }
3203   if (n->is_MemBar()) {
3204     MemBarNode* mb = n->as_MemBar();
3205     if (mb->trailing_store() || mb->trailing_load_store()) {
3206       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3207       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3208       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3209              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3210     } else if (mb->leading()) {
3211       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3212     }
3213   }
3214 #endif
3215   // Count FPU ops and common calls, implements item (3)
3216   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3217   if (!gc_handled) {
3218     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3219   }
3220 
3221   // Collect CFG split points
3222   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3223     frc._tests.push(n);
3224   }
3225 }
3226 
3227 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3228   if (!UseDivMod) {
3229     return;
3230   }
3231 
3232   // Check if "a % b" and "a / b" both exist
3233   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3234   if (d == nullptr) {
3235     return;
3236   }
3237 
3238   // Replace them with a fused divmod if supported
3239   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3240     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3241     // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3242     // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3243     // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3244     // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3245     // DivMod node so the dependency is not lost.
3246     divmod->add_prec_from(n);
3247     divmod->add_prec_from(d);
3248     d->subsume_by(divmod->div_proj(), this);
3249     n->subsume_by(divmod->mod_proj(), this);
3250   } else {
3251     // Replace "a % b" with "a - ((a / b) * b)"
3252     Node* mult = MulNode::make(d, d->in(2), bt);
3253     Node* sub = SubNode::make(d->in(1), mult, bt);
3254     n->subsume_by(sub, this);
3255   }
3256 }
3257 
3258 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3259   switch( nop ) {
3260   // Count all float operations that may use FPU
3261   case Op_AddF:
3262   case Op_SubF:
3263   case Op_MulF:
3264   case Op_DivF:
3265   case Op_NegF:
3266   case Op_ModF:
3267   case Op_ConvI2F:
3268   case Op_ConF:
3269   case Op_CmpF:
3270   case Op_CmpF3:
3271   case Op_StoreF:
3272   case Op_LoadF:
3273   // case Op_ConvL2F: // longs are split into 32-bit halves
3274     frc.inc_float_count();
3275     break;
3276 
3277   case Op_ConvF2D:
3278   case Op_ConvD2F:
3279     frc.inc_float_count();
3280     frc.inc_double_count();
3281     break;
3282 
3283   // Count all double operations that may use FPU
3284   case Op_AddD:
3285   case Op_SubD:
3286   case Op_MulD:
3287   case Op_DivD:
3288   case Op_NegD:
3289   case Op_ModD:
3290   case Op_ConvI2D:
3291   case Op_ConvD2I:
3292   // case Op_ConvL2D: // handled by leaf call
3293   // case Op_ConvD2L: // handled by leaf call
3294   case Op_ConD:
3295   case Op_CmpD:
3296   case Op_CmpD3:
3297   case Op_StoreD:
3298   case Op_LoadD:
3299   case Op_LoadD_unaligned:
3300     frc.inc_double_count();
3301     break;
3302   case Op_Opaque1:              // Remove Opaque Nodes before matching
3303     n->subsume_by(n->in(1), this);
3304     break;
3305   case Op_CallStaticJava:
3306   case Op_CallJava:
3307   case Op_CallDynamicJava:
3308     frc.inc_java_call_count(); // Count java call site;
3309   case Op_CallRuntime:
3310   case Op_CallLeaf:
3311   case Op_CallLeafVector:
3312   case Op_CallLeafNoFP: {
3313     assert (n->is_Call(), "");
3314     CallNode *call = n->as_Call();
3315     // Count call sites where the FP mode bit would have to be flipped.
3316     // Do not count uncommon runtime calls:
3317     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3318     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3319     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3320       frc.inc_call_count();   // Count the call site
3321     } else {                  // See if uncommon argument is shared
3322       Node *n = call->in(TypeFunc::Parms);
3323       int nop = n->Opcode();
3324       // Clone shared simple arguments to uncommon calls, item (1).
3325       if (n->outcnt() > 1 &&
3326           !n->is_Proj() &&
3327           nop != Op_CreateEx &&
3328           nop != Op_CheckCastPP &&
3329           nop != Op_DecodeN &&
3330           nop != Op_DecodeNKlass &&
3331           !n->is_Mem() &&
3332           !n->is_Phi()) {
3333         Node *x = n->clone();
3334         call->set_req(TypeFunc::Parms, x);
3335       }
3336     }
3337     break;
3338   }
3339   case Op_StoreB:
3340   case Op_StoreC:
3341   case Op_StoreI:
3342   case Op_StoreL:
3343   case Op_CompareAndSwapB:
3344   case Op_CompareAndSwapS:
3345   case Op_CompareAndSwapI:
3346   case Op_CompareAndSwapL:
3347   case Op_CompareAndSwapP:
3348   case Op_CompareAndSwapN:
3349   case Op_WeakCompareAndSwapB:
3350   case Op_WeakCompareAndSwapS:
3351   case Op_WeakCompareAndSwapI:
3352   case Op_WeakCompareAndSwapL:
3353   case Op_WeakCompareAndSwapP:
3354   case Op_WeakCompareAndSwapN:
3355   case Op_CompareAndExchangeB:
3356   case Op_CompareAndExchangeS:
3357   case Op_CompareAndExchangeI:
3358   case Op_CompareAndExchangeL:
3359   case Op_CompareAndExchangeP:
3360   case Op_CompareAndExchangeN:
3361   case Op_GetAndAddS:
3362   case Op_GetAndAddB:
3363   case Op_GetAndAddI:
3364   case Op_GetAndAddL:
3365   case Op_GetAndSetS:
3366   case Op_GetAndSetB:
3367   case Op_GetAndSetI:
3368   case Op_GetAndSetL:
3369   case Op_GetAndSetP:
3370   case Op_GetAndSetN:
3371   case Op_StoreP:
3372   case Op_StoreN:
3373   case Op_StoreNKlass:
3374   case Op_LoadB:
3375   case Op_LoadUB:
3376   case Op_LoadUS:
3377   case Op_LoadI:
3378   case Op_LoadKlass:
3379   case Op_LoadNKlass:
3380   case Op_LoadL:
3381   case Op_LoadL_unaligned:
3382   case Op_LoadP:
3383   case Op_LoadN:
3384   case Op_LoadRange:
3385   case Op_LoadS:
3386     break;
3387 
3388   case Op_AddP: {               // Assert sane base pointers
3389     Node *addp = n->in(AddPNode::Address);
3390     assert( !addp->is_AddP() ||
3391             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3392             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3393             "Base pointers must match (addp %u)", addp->_idx );
3394 #ifdef _LP64
3395     if ((UseCompressedOops || UseCompressedClassPointers) &&
3396         addp->Opcode() == Op_ConP &&
3397         addp == n->in(AddPNode::Base) &&
3398         n->in(AddPNode::Offset)->is_Con()) {
3399       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3400       // on the platform and on the compressed oops mode.
3401       // Use addressing with narrow klass to load with offset on x86.
3402       // Some platforms can use the constant pool to load ConP.
3403       // Do this transformation here since IGVN will convert ConN back to ConP.
3404       const Type* t = addp->bottom_type();
3405       bool is_oop   = t->isa_oopptr() != nullptr;
3406       bool is_klass = t->isa_klassptr() != nullptr;
3407 
3408       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3409           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3410            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3411         Node* nn = nullptr;
3412 
3413         int op = is_oop ? Op_ConN : Op_ConNKlass;
3414 
3415         // Look for existing ConN node of the same exact type.
3416         Node* r  = root();
3417         uint cnt = r->outcnt();
3418         for (uint i = 0; i < cnt; i++) {
3419           Node* m = r->raw_out(i);
3420           if (m!= nullptr && m->Opcode() == op &&
3421               m->bottom_type()->make_ptr() == t) {
3422             nn = m;
3423             break;
3424           }
3425         }
3426         if (nn != nullptr) {
3427           // Decode a narrow oop to match address
3428           // [R12 + narrow_oop_reg<<3 + offset]
3429           if (is_oop) {
3430             nn = new DecodeNNode(nn, t);
3431           } else {
3432             nn = new DecodeNKlassNode(nn, t);
3433           }
3434           // Check for succeeding AddP which uses the same Base.
3435           // Otherwise we will run into the assertion above when visiting that guy.
3436           for (uint i = 0; i < n->outcnt(); ++i) {
3437             Node *out_i = n->raw_out(i);
3438             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3439               out_i->set_req(AddPNode::Base, nn);
3440 #ifdef ASSERT
3441               for (uint j = 0; j < out_i->outcnt(); ++j) {
3442                 Node *out_j = out_i->raw_out(j);
3443                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3444                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3445               }
3446 #endif
3447             }
3448           }
3449           n->set_req(AddPNode::Base, nn);
3450           n->set_req(AddPNode::Address, nn);
3451           if (addp->outcnt() == 0) {
3452             addp->disconnect_inputs(this);
3453           }
3454         }
3455       }
3456     }
3457 #endif
3458     break;
3459   }
3460 
3461   case Op_CastPP: {
3462     // Remove CastPP nodes to gain more freedom during scheduling but
3463     // keep the dependency they encode as control or precedence edges
3464     // (if control is set already) on memory operations. Some CastPP
3465     // nodes don't have a control (don't carry a dependency): skip
3466     // those.
3467     if (n->in(0) != nullptr) {
3468       ResourceMark rm;
3469       Unique_Node_List wq;
3470       wq.push(n);
3471       for (uint next = 0; next < wq.size(); ++next) {
3472         Node *m = wq.at(next);
3473         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3474           Node* use = m->fast_out(i);
3475           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3476             use->ensure_control_or_add_prec(n->in(0));
3477           } else {
3478             switch(use->Opcode()) {
3479             case Op_AddP:
3480             case Op_DecodeN:
3481             case Op_DecodeNKlass:
3482             case Op_CheckCastPP:
3483             case Op_CastPP:
3484               wq.push(use);
3485               break;
3486             }
3487           }
3488         }
3489       }
3490     }
3491     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3492     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3493       Node* in1 = n->in(1);
3494       const Type* t = n->bottom_type();
3495       Node* new_in1 = in1->clone();
3496       new_in1->as_DecodeN()->set_type(t);
3497 
3498       if (!Matcher::narrow_oop_use_complex_address()) {
3499         //
3500         // x86, ARM and friends can handle 2 adds in addressing mode
3501         // and Matcher can fold a DecodeN node into address by using
3502         // a narrow oop directly and do implicit null check in address:
3503         //
3504         // [R12 + narrow_oop_reg<<3 + offset]
3505         // NullCheck narrow_oop_reg
3506         //
3507         // On other platforms (Sparc) we have to keep new DecodeN node and
3508         // use it to do implicit null check in address:
3509         //
3510         // decode_not_null narrow_oop_reg, base_reg
3511         // [base_reg + offset]
3512         // NullCheck base_reg
3513         //
3514         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3515         // to keep the information to which null check the new DecodeN node
3516         // corresponds to use it as value in implicit_null_check().
3517         //
3518         new_in1->set_req(0, n->in(0));
3519       }
3520 
3521       n->subsume_by(new_in1, this);
3522       if (in1->outcnt() == 0) {
3523         in1->disconnect_inputs(this);
3524       }
3525     } else {
3526       n->subsume_by(n->in(1), this);
3527       if (n->outcnt() == 0) {
3528         n->disconnect_inputs(this);
3529       }
3530     }
3531     break;
3532   }
3533   case Op_CastII: {
3534     n->as_CastII()->remove_range_check_cast(this);
3535     break;
3536   }
3537 #ifdef _LP64
3538   case Op_CmpP:
3539     // Do this transformation here to preserve CmpPNode::sub() and
3540     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3541     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3542       Node* in1 = n->in(1);
3543       Node* in2 = n->in(2);
3544       if (!in1->is_DecodeNarrowPtr()) {
3545         in2 = in1;
3546         in1 = n->in(2);
3547       }
3548       assert(in1->is_DecodeNarrowPtr(), "sanity");
3549 
3550       Node* new_in2 = nullptr;
3551       if (in2->is_DecodeNarrowPtr()) {
3552         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3553         new_in2 = in2->in(1);
3554       } else if (in2->Opcode() == Op_ConP) {
3555         const Type* t = in2->bottom_type();
3556         if (t == TypePtr::NULL_PTR) {
3557           assert(in1->is_DecodeN(), "compare klass to null?");
3558           // Don't convert CmpP null check into CmpN if compressed
3559           // oops implicit null check is not generated.
3560           // This will allow to generate normal oop implicit null check.
3561           if (Matcher::gen_narrow_oop_implicit_null_checks())
3562             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3563           //
3564           // This transformation together with CastPP transformation above
3565           // will generated code for implicit null checks for compressed oops.
3566           //
3567           // The original code after Optimize()
3568           //
3569           //    LoadN memory, narrow_oop_reg
3570           //    decode narrow_oop_reg, base_reg
3571           //    CmpP base_reg, nullptr
3572           //    CastPP base_reg // NotNull
3573           //    Load [base_reg + offset], val_reg
3574           //
3575           // after these transformations will be
3576           //
3577           //    LoadN memory, narrow_oop_reg
3578           //    CmpN narrow_oop_reg, nullptr
3579           //    decode_not_null narrow_oop_reg, base_reg
3580           //    Load [base_reg + offset], val_reg
3581           //
3582           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3583           // since narrow oops can be used in debug info now (see the code in
3584           // final_graph_reshaping_walk()).
3585           //
3586           // At the end the code will be matched to
3587           // on x86:
3588           //
3589           //    Load_narrow_oop memory, narrow_oop_reg
3590           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3591           //    NullCheck narrow_oop_reg
3592           //
3593           // and on sparc:
3594           //
3595           //    Load_narrow_oop memory, narrow_oop_reg
3596           //    decode_not_null narrow_oop_reg, base_reg
3597           //    Load [base_reg + offset], val_reg
3598           //    NullCheck base_reg
3599           //
3600         } else if (t->isa_oopptr()) {
3601           new_in2 = ConNode::make(t->make_narrowoop());
3602         } else if (t->isa_klassptr()) {
3603           new_in2 = ConNode::make(t->make_narrowklass());
3604         }
3605       }
3606       if (new_in2 != nullptr) {
3607         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3608         n->subsume_by(cmpN, this);
3609         if (in1->outcnt() == 0) {
3610           in1->disconnect_inputs(this);
3611         }
3612         if (in2->outcnt() == 0) {
3613           in2->disconnect_inputs(this);
3614         }
3615       }
3616     }
3617     break;
3618 
3619   case Op_DecodeN:
3620   case Op_DecodeNKlass:
3621     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3622     // DecodeN could be pinned when it can't be fold into
3623     // an address expression, see the code for Op_CastPP above.
3624     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3625     break;
3626 
3627   case Op_EncodeP:
3628   case Op_EncodePKlass: {
3629     Node* in1 = n->in(1);
3630     if (in1->is_DecodeNarrowPtr()) {
3631       n->subsume_by(in1->in(1), this);
3632     } else if (in1->Opcode() == Op_ConP) {
3633       const Type* t = in1->bottom_type();
3634       if (t == TypePtr::NULL_PTR) {
3635         assert(t->isa_oopptr(), "null klass?");
3636         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3637       } else if (t->isa_oopptr()) {
3638         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3639       } else if (t->isa_klassptr()) {
3640         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3641       }
3642     }
3643     if (in1->outcnt() == 0) {
3644       in1->disconnect_inputs(this);
3645     }
3646     break;
3647   }
3648 
3649   case Op_Proj: {
3650     if (OptimizeStringConcat || IncrementalInline) {
3651       ProjNode* proj = n->as_Proj();
3652       if (proj->_is_io_use) {
3653         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3654         // Separate projections were used for the exception path which
3655         // are normally removed by a late inline.  If it wasn't inlined
3656         // then they will hang around and should just be replaced with
3657         // the original one. Merge them.
3658         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3659         if (non_io_proj  != nullptr) {
3660           proj->subsume_by(non_io_proj , this);
3661         }
3662       }
3663     }
3664     break;
3665   }
3666 
3667   case Op_Phi:
3668     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3669       // The EncodeP optimization may create Phi with the same edges
3670       // for all paths. It is not handled well by Register Allocator.
3671       Node* unique_in = n->in(1);
3672       assert(unique_in != nullptr, "");
3673       uint cnt = n->req();
3674       for (uint i = 2; i < cnt; i++) {
3675         Node* m = n->in(i);
3676         assert(m != nullptr, "");
3677         if (unique_in != m)
3678           unique_in = nullptr;
3679       }
3680       if (unique_in != nullptr) {
3681         n->subsume_by(unique_in, this);
3682       }
3683     }
3684     break;
3685 
3686 #endif
3687 
3688   case Op_ModI:
3689     handle_div_mod_op(n, T_INT, false);
3690     break;
3691 
3692   case Op_ModL:
3693     handle_div_mod_op(n, T_LONG, false);
3694     break;
3695 
3696   case Op_UModI:
3697     handle_div_mod_op(n, T_INT, true);
3698     break;
3699 
3700   case Op_UModL:
3701     handle_div_mod_op(n, T_LONG, true);
3702     break;
3703 
3704   case Op_LoadVector:
3705   case Op_StoreVector:
3706 #ifdef ASSERT
3707     // Add VerifyVectorAlignment node between adr and load / store.
3708     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3709       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3710                                                         n->as_StoreVector()->must_verify_alignment();
3711       if (must_verify_alignment) {
3712         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3713                                                   n->as_StoreVector()->memory_size();
3714         // The memory access should be aligned to the vector width in bytes.
3715         // However, the underlying array is possibly less well aligned, but at least
3716         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3717         // a loop we can expect at least the following alignment:
3718         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3719         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3720         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3721         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3722         jlong mask = guaranteed_alignment - 1;
3723         Node* mask_con = ConLNode::make(mask);
3724         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3725         n->set_req(MemNode::Address, va);
3726       }
3727     }
3728 #endif
3729     break;
3730 
3731   case Op_LoadVectorGather:
3732   case Op_StoreVectorScatter:
3733   case Op_LoadVectorGatherMasked:
3734   case Op_StoreVectorScatterMasked:
3735   case Op_VectorCmpMasked:
3736   case Op_VectorMaskGen:
3737   case Op_LoadVectorMasked:
3738   case Op_StoreVectorMasked:
3739     break;
3740 
3741   case Op_AddReductionVI:
3742   case Op_AddReductionVL:
3743   case Op_AddReductionVF:
3744   case Op_AddReductionVD:
3745   case Op_MulReductionVI:
3746   case Op_MulReductionVL:
3747   case Op_MulReductionVF:
3748   case Op_MulReductionVD:
3749   case Op_MinReductionV:
3750   case Op_MaxReductionV:
3751   case Op_AndReductionV:
3752   case Op_OrReductionV:
3753   case Op_XorReductionV:
3754     break;
3755 
3756   case Op_PackB:
3757   case Op_PackS:
3758   case Op_PackI:
3759   case Op_PackF:
3760   case Op_PackL:
3761   case Op_PackD:
3762     if (n->req()-1 > 2) {
3763       // Replace many operand PackNodes with a binary tree for matching
3764       PackNode* p = (PackNode*) n;
3765       Node* btp = p->binary_tree_pack(1, n->req());
3766       n->subsume_by(btp, this);
3767     }
3768     break;
3769   case Op_Loop:
3770     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3771   case Op_CountedLoop:
3772   case Op_LongCountedLoop:
3773   case Op_OuterStripMinedLoop:
3774     if (n->as_Loop()->is_inner_loop()) {
3775       frc.inc_inner_loop_count();
3776     }
3777     n->as_Loop()->verify_strip_mined(0);
3778     break;
3779   case Op_LShiftI:
3780   case Op_RShiftI:
3781   case Op_URShiftI:
3782   case Op_LShiftL:
3783   case Op_RShiftL:
3784   case Op_URShiftL:
3785     if (Matcher::need_masked_shift_count) {
3786       // The cpu's shift instructions don't restrict the count to the
3787       // lower 5/6 bits. We need to do the masking ourselves.
3788       Node* in2 = n->in(2);
3789       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3790       const TypeInt* t = in2->find_int_type();
3791       if (t != nullptr && t->is_con()) {
3792         juint shift = t->get_con();
3793         if (shift > mask) { // Unsigned cmp
3794           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3795         }
3796       } else {
3797         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3798           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3799           n->set_req(2, shift);
3800         }
3801       }
3802       if (in2->outcnt() == 0) { // Remove dead node
3803         in2->disconnect_inputs(this);
3804       }
3805     }
3806     break;
3807   case Op_MemBarStoreStore:
3808   case Op_MemBarRelease:
3809     // Break the link with AllocateNode: it is no longer useful and
3810     // confuses register allocation.
3811     if (n->req() > MemBarNode::Precedent) {
3812       n->set_req(MemBarNode::Precedent, top());
3813     }
3814     break;
3815   case Op_MemBarAcquire: {
3816     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3817       // At parse time, the trailing MemBarAcquire for a volatile load
3818       // is created with an edge to the load. After optimizations,
3819       // that input may be a chain of Phis. If those phis have no
3820       // other use, then the MemBarAcquire keeps them alive and
3821       // register allocation can be confused.
3822       dead_nodes.push(n->in(MemBarNode::Precedent));
3823       n->set_req(MemBarNode::Precedent, top());
3824     }
3825     break;
3826   }
3827   case Op_Blackhole:
3828     break;
3829   case Op_RangeCheck: {
3830     RangeCheckNode* rc = n->as_RangeCheck();
3831     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3832     n->subsume_by(iff, this);
3833     frc._tests.push(iff);
3834     break;
3835   }
3836   case Op_ConvI2L: {
3837     if (!Matcher::convi2l_type_required) {
3838       // Code generation on some platforms doesn't need accurate
3839       // ConvI2L types. Widening the type can help remove redundant
3840       // address computations.
3841       n->as_Type()->set_type(TypeLong::INT);
3842       ResourceMark rm;
3843       Unique_Node_List wq;
3844       wq.push(n);
3845       for (uint next = 0; next < wq.size(); next++) {
3846         Node *m = wq.at(next);
3847 
3848         for(;;) {
3849           // Loop over all nodes with identical inputs edges as m
3850           Node* k = m->find_similar(m->Opcode());
3851           if (k == nullptr) {
3852             break;
3853           }
3854           // Push their uses so we get a chance to remove node made
3855           // redundant
3856           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3857             Node* u = k->fast_out(i);
3858             if (u->Opcode() == Op_LShiftL ||
3859                 u->Opcode() == Op_AddL ||
3860                 u->Opcode() == Op_SubL ||
3861                 u->Opcode() == Op_AddP) {
3862               wq.push(u);
3863             }
3864           }
3865           // Replace all nodes with identical edges as m with m
3866           k->subsume_by(m, this);
3867         }
3868       }
3869     }
3870     break;
3871   }
3872   case Op_CmpUL: {
3873     if (!Matcher::has_match_rule(Op_CmpUL)) {
3874       // No support for unsigned long comparisons
3875       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3876       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3877       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3878       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3879       Node* andl = new AndLNode(orl, remove_sign_mask);
3880       Node* cmp = new CmpLNode(andl, n->in(2));
3881       n->subsume_by(cmp, this);
3882     }
3883     break;
3884   }
3885 #ifdef ASSERT
3886   case Op_ConNKlass: {
3887     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3888     ciKlass* klass = tp->is_klassptr()->exact_klass();
3889     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3890     break;
3891   }
3892 #endif
3893   default:
3894     assert(!n->is_Call(), "");
3895     assert(!n->is_Mem(), "");
3896     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3897     break;
3898   }
3899 }
3900 
3901 //------------------------------final_graph_reshaping_walk---------------------
3902 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3903 // requires that the walk visits a node's inputs before visiting the node.
3904 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3905   Unique_Node_List sfpt;
3906 
3907   frc._visited.set(root->_idx); // first, mark node as visited
3908   uint cnt = root->req();
3909   Node *n = root;
3910   uint  i = 0;
3911   while (true) {
3912     if (i < cnt) {
3913       // Place all non-visited non-null inputs onto stack
3914       Node* m = n->in(i);
3915       ++i;
3916       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3917         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3918           // compute worst case interpreter size in case of a deoptimization
3919           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3920 
3921           sfpt.push(m);
3922         }
3923         cnt = m->req();
3924         nstack.push(n, i); // put on stack parent and next input's index
3925         n = m;
3926         i = 0;
3927       }
3928     } else {
3929       // Now do post-visit work
3930       final_graph_reshaping_impl(n, frc, dead_nodes);
3931       if (nstack.is_empty())
3932         break;             // finished
3933       n = nstack.node();   // Get node from stack
3934       cnt = n->req();
3935       i = nstack.index();
3936       nstack.pop();        // Shift to the next node on stack
3937     }
3938   }
3939 
3940   // Skip next transformation if compressed oops are not used.
3941   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3942       (!UseCompressedOops && !UseCompressedClassPointers))
3943     return;
3944 
3945   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3946   // It could be done for an uncommon traps or any safepoints/calls
3947   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3948   while (sfpt.size() > 0) {
3949     n = sfpt.pop();
3950     JVMState *jvms = n->as_SafePoint()->jvms();
3951     assert(jvms != nullptr, "sanity");
3952     int start = jvms->debug_start();
3953     int end   = n->req();
3954     bool is_uncommon = (n->is_CallStaticJava() &&
3955                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3956     for (int j = start; j < end; j++) {
3957       Node* in = n->in(j);
3958       if (in->is_DecodeNarrowPtr()) {
3959         bool safe_to_skip = true;
3960         if (!is_uncommon ) {
3961           // Is it safe to skip?
3962           for (uint i = 0; i < in->outcnt(); i++) {
3963             Node* u = in->raw_out(i);
3964             if (!u->is_SafePoint() ||
3965                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3966               safe_to_skip = false;
3967             }
3968           }
3969         }
3970         if (safe_to_skip) {
3971           n->set_req(j, in->in(1));
3972         }
3973         if (in->outcnt() == 0) {
3974           in->disconnect_inputs(this);
3975         }
3976       }
3977     }
3978   }
3979 }
3980 
3981 //------------------------------final_graph_reshaping--------------------------
3982 // Final Graph Reshaping.
3983 //
3984 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3985 //     and not commoned up and forced early.  Must come after regular
3986 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3987 //     inputs to Loop Phis; these will be split by the allocator anyways.
3988 //     Remove Opaque nodes.
3989 // (2) Move last-uses by commutative operations to the left input to encourage
3990 //     Intel update-in-place two-address operations and better register usage
3991 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3992 //     calls canonicalizing them back.
3993 // (3) Count the number of double-precision FP ops, single-precision FP ops
3994 //     and call sites.  On Intel, we can get correct rounding either by
3995 //     forcing singles to memory (requires extra stores and loads after each
3996 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3997 //     clearing the mode bit around call sites).  The mode bit is only used
3998 //     if the relative frequency of single FP ops to calls is low enough.
3999 //     This is a key transform for SPEC mpeg_audio.
4000 // (4) Detect infinite loops; blobs of code reachable from above but not
4001 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
4002 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
4003 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
4004 //     Detection is by looking for IfNodes where only 1 projection is
4005 //     reachable from below or CatchNodes missing some targets.
4006 // (5) Assert for insane oop offsets in debug mode.
4007 
4008 bool Compile::final_graph_reshaping() {
4009   // an infinite loop may have been eliminated by the optimizer,
4010   // in which case the graph will be empty.
4011   if (root()->req() == 1) {
4012     // Do not compile method that is only a trivial infinite loop,
4013     // since the content of the loop may have been eliminated.
4014     record_method_not_compilable("trivial infinite loop");
4015     return true;
4016   }
4017 
4018   // Expensive nodes have their control input set to prevent the GVN
4019   // from freely commoning them. There's no GVN beyond this point so
4020   // no need to keep the control input. We want the expensive nodes to
4021   // be freely moved to the least frequent code path by gcm.
4022   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4023   for (int i = 0; i < expensive_count(); i++) {
4024     _expensive_nodes.at(i)->set_req(0, nullptr);
4025   }
4026 
4027   Final_Reshape_Counts frc;
4028 
4029   // Visit everybody reachable!
4030   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4031   Node_Stack nstack(live_nodes() >> 1);
4032   Unique_Node_List dead_nodes;
4033   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4034 
4035   // Check for unreachable (from below) code (i.e., infinite loops).
4036   for( uint i = 0; i < frc._tests.size(); i++ ) {
4037     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4038     // Get number of CFG targets.
4039     // Note that PCTables include exception targets after calls.
4040     uint required_outcnt = n->required_outcnt();
4041     if (n->outcnt() != required_outcnt) {
4042       // Check for a few special cases.  Rethrow Nodes never take the
4043       // 'fall-thru' path, so expected kids is 1 less.
4044       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4045         if (n->in(0)->in(0)->is_Call()) {
4046           CallNode* call = n->in(0)->in(0)->as_Call();
4047           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4048             required_outcnt--;      // Rethrow always has 1 less kid
4049           } else if (call->req() > TypeFunc::Parms &&
4050                      call->is_CallDynamicJava()) {
4051             // Check for null receiver. In such case, the optimizer has
4052             // detected that the virtual call will always result in a null
4053             // pointer exception. The fall-through projection of this CatchNode
4054             // will not be populated.
4055             Node* arg0 = call->in(TypeFunc::Parms);
4056             if (arg0->is_Type() &&
4057                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4058               required_outcnt--;
4059             }
4060           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4061                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4062             // Check for illegal array length. In such case, the optimizer has
4063             // detected that the allocation attempt will always result in an
4064             // exception. There is no fall-through projection of this CatchNode .
4065             assert(call->is_CallStaticJava(), "static call expected");
4066             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4067             uint valid_length_test_input = call->req() - 1;
4068             Node* valid_length_test = call->in(valid_length_test_input);
4069             call->del_req(valid_length_test_input);
4070             if (valid_length_test->find_int_con(1) == 0) {
4071               required_outcnt--;
4072             }
4073             dead_nodes.push(valid_length_test);
4074             assert(n->outcnt() == required_outcnt, "malformed control flow");
4075             continue;
4076           }
4077         }
4078       }
4079 
4080       // Recheck with a better notion of 'required_outcnt'
4081       if (n->outcnt() != required_outcnt) {
4082         record_method_not_compilable("malformed control flow");
4083         return true;            // Not all targets reachable!
4084       }
4085     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4086       CallNode* call = n->in(0)->in(0)->as_Call();
4087       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4088           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4089         assert(call->is_CallStaticJava(), "static call expected");
4090         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4091         uint valid_length_test_input = call->req() - 1;
4092         dead_nodes.push(call->in(valid_length_test_input));
4093         call->del_req(valid_length_test_input); // valid length test useless now
4094       }
4095     }
4096     // Check that I actually visited all kids.  Unreached kids
4097     // must be infinite loops.
4098     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4099       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4100         record_method_not_compilable("infinite loop");
4101         return true;            // Found unvisited kid; must be unreach
4102       }
4103 
4104     // Here so verification code in final_graph_reshaping_walk()
4105     // always see an OuterStripMinedLoopEnd
4106     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4107       IfNode* init_iff = n->as_If();
4108       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4109       n->subsume_by(iff, this);
4110     }
4111   }
4112 
4113   while (dead_nodes.size() > 0) {
4114     Node* m = dead_nodes.pop();
4115     if (m->outcnt() == 0 && m != top()) {
4116       for (uint j = 0; j < m->req(); j++) {
4117         Node* in = m->in(j);
4118         if (in != nullptr) {
4119           dead_nodes.push(in);
4120         }
4121       }
4122       m->disconnect_inputs(this);
4123     }
4124   }
4125 
4126   set_java_calls(frc.get_java_call_count());
4127   set_inner_loops(frc.get_inner_loop_count());
4128 
4129   // No infinite loops, no reason to bail out.
4130   return false;
4131 }
4132 
4133 //-----------------------------too_many_traps----------------------------------
4134 // Report if there are too many traps at the current method and bci.
4135 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4136 bool Compile::too_many_traps(ciMethod* method,
4137                              int bci,
4138                              Deoptimization::DeoptReason reason) {
4139   ciMethodData* md = method->method_data();
4140   if (md->is_empty()) {
4141     // Assume the trap has not occurred, or that it occurred only
4142     // because of a transient condition during start-up in the interpreter.
4143     return false;
4144   }
4145   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4146   if (md->has_trap_at(bci, m, reason) != 0) {
4147     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4148     // Also, if there are multiple reasons, or if there is no per-BCI record,
4149     // assume the worst.
4150     if (log())
4151       log()->elem("observe trap='%s' count='%d'",
4152                   Deoptimization::trap_reason_name(reason),
4153                   md->trap_count(reason));
4154     return true;
4155   } else {
4156     // Ignore method/bci and see if there have been too many globally.
4157     return too_many_traps(reason, md);
4158   }
4159 }
4160 
4161 // Less-accurate variant which does not require a method and bci.
4162 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4163                              ciMethodData* logmd) {
4164   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4165     // Too many traps globally.
4166     // Note that we use cumulative trap_count, not just md->trap_count.
4167     if (log()) {
4168       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4169       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4170                   Deoptimization::trap_reason_name(reason),
4171                   mcount, trap_count(reason));
4172     }
4173     return true;
4174   } else {
4175     // The coast is clear.
4176     return false;
4177   }
4178 }
4179 
4180 //--------------------------too_many_recompiles--------------------------------
4181 // Report if there are too many recompiles at the current method and bci.
4182 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4183 // Is not eager to return true, since this will cause the compiler to use
4184 // Action_none for a trap point, to avoid too many recompilations.
4185 bool Compile::too_many_recompiles(ciMethod* method,
4186                                   int bci,
4187                                   Deoptimization::DeoptReason reason) {
4188   ciMethodData* md = method->method_data();
4189   if (md->is_empty()) {
4190     // Assume the trap has not occurred, or that it occurred only
4191     // because of a transient condition during start-up in the interpreter.
4192     return false;
4193   }
4194   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4195   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4196   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4197   Deoptimization::DeoptReason per_bc_reason
4198     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4199   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4200   if ((per_bc_reason == Deoptimization::Reason_none
4201        || md->has_trap_at(bci, m, reason) != 0)
4202       // The trap frequency measure we care about is the recompile count:
4203       && md->trap_recompiled_at(bci, m)
4204       && md->overflow_recompile_count() >= bc_cutoff) {
4205     // Do not emit a trap here if it has already caused recompilations.
4206     // Also, if there are multiple reasons, or if there is no per-BCI record,
4207     // assume the worst.
4208     if (log())
4209       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4210                   Deoptimization::trap_reason_name(reason),
4211                   md->trap_count(reason),
4212                   md->overflow_recompile_count());
4213     return true;
4214   } else if (trap_count(reason) != 0
4215              && decompile_count() >= m_cutoff) {
4216     // Too many recompiles globally, and we have seen this sort of trap.
4217     // Use cumulative decompile_count, not just md->decompile_count.
4218     if (log())
4219       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4220                   Deoptimization::trap_reason_name(reason),
4221                   md->trap_count(reason), trap_count(reason),
4222                   md->decompile_count(), decompile_count());
4223     return true;
4224   } else {
4225     // The coast is clear.
4226     return false;
4227   }
4228 }
4229 
4230 // Compute when not to trap. Used by matching trap based nodes and
4231 // NullCheck optimization.
4232 void Compile::set_allowed_deopt_reasons() {
4233   _allowed_reasons = 0;
4234   if (is_method_compilation()) {
4235     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4236       assert(rs < BitsPerInt, "recode bit map");
4237       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4238         _allowed_reasons |= nth_bit(rs);
4239       }
4240     }
4241   }
4242 }
4243 
4244 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4245   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4246 }
4247 
4248 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4249   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4250 }
4251 
4252 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4253   if (holder->is_initialized()) {
4254     return false;
4255   }
4256   if (holder->is_being_initialized()) {
4257     if (accessing_method->holder() == holder) {
4258       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4259       // <init>, or a static method. In all those cases, there was an initialization
4260       // barrier on the holder klass passed.
4261       if (accessing_method->is_static_initializer() ||
4262           accessing_method->is_object_initializer() ||
4263           accessing_method->is_static()) {
4264         return false;
4265       }
4266     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4267       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4268       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4269       // child class can become fully initialized while its parent class is still being initialized.
4270       if (accessing_method->is_static_initializer()) {
4271         return false;
4272       }
4273     }
4274     ciMethod* root = method(); // the root method of compilation
4275     if (root != accessing_method) {
4276       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4277     }
4278   }
4279   return true;
4280 }
4281 
4282 #ifndef PRODUCT
4283 //------------------------------verify_bidirectional_edges---------------------
4284 // For each input edge to a node (ie - for each Use-Def edge), verify that
4285 // there is a corresponding Def-Use edge.
4286 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4287   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4288   uint stack_size = live_nodes() >> 4;
4289   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4290   if (root_and_safepoints != nullptr) {
4291     assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints");
4292     for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) {
4293       Node* root_or_safepoint = root_and_safepoints->at(i);
4294       // If the node is a safepoint, let's check if it still has a control input
4295       // Lack of control input signifies that this node was killed by CCP or
4296       // recursively by remove_globally_dead_node and it shouldn't be a starting
4297       // point.
4298       if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) {
4299         nstack.push(root_or_safepoint);
4300       }
4301     }
4302   } else {
4303     nstack.push(_root);
4304   }
4305 
4306   while (nstack.size() > 0) {
4307     Node* n = nstack.pop();
4308     if (visited.member(n)) {
4309       continue;
4310     }
4311     visited.push(n);
4312 
4313     // Walk over all input edges, checking for correspondence
4314     uint length = n->len();
4315     for (uint i = 0; i < length; i++) {
4316       Node* in = n->in(i);
4317       if (in != nullptr && !visited.member(in)) {
4318         nstack.push(in); // Put it on stack
4319       }
4320       if (in != nullptr && !in->is_top()) {
4321         // Count instances of `next`
4322         int cnt = 0;
4323         for (uint idx = 0; idx < in->_outcnt; idx++) {
4324           if (in->_out[idx] == n) {
4325             cnt++;
4326           }
4327         }
4328         assert(cnt > 0, "Failed to find Def-Use edge.");
4329         // Check for duplicate edges
4330         // walk the input array downcounting the input edges to n
4331         for (uint j = 0; j < length; j++) {
4332           if (n->in(j) == in) {
4333             cnt--;
4334           }
4335         }
4336         assert(cnt == 0, "Mismatched edge count.");
4337       } else if (in == nullptr) {
4338         assert(i == 0 || i >= n->req() ||
4339                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4340                (n->is_Unlock() && i == (n->req() - 1)) ||
4341                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4342               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4343       } else {
4344         assert(in->is_top(), "sanity");
4345         // Nothing to check.
4346       }
4347     }
4348   }
4349 }
4350 
4351 //------------------------------verify_graph_edges---------------------------
4352 // Walk the Graph and verify that there is a one-to-one correspondence
4353 // between Use-Def edges and Def-Use edges in the graph.
4354 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4355   if (VerifyGraphEdges) {
4356     Unique_Node_List visited;
4357 
4358     // Call graph walk to check edges
4359     verify_bidirectional_edges(visited, root_and_safepoints);
4360     if (no_dead_code) {
4361       // Now make sure that no visited node is used by an unvisited node.
4362       bool dead_nodes = false;
4363       Unique_Node_List checked;
4364       while (visited.size() > 0) {
4365         Node* n = visited.pop();
4366         checked.push(n);
4367         for (uint i = 0; i < n->outcnt(); i++) {
4368           Node* use = n->raw_out(i);
4369           if (checked.member(use))  continue;  // already checked
4370           if (visited.member(use))  continue;  // already in the graph
4371           if (use->is_Con())        continue;  // a dead ConNode is OK
4372           // At this point, we have found a dead node which is DU-reachable.
4373           if (!dead_nodes) {
4374             tty->print_cr("*** Dead nodes reachable via DU edges:");
4375             dead_nodes = true;
4376           }
4377           use->dump(2);
4378           tty->print_cr("---");
4379           checked.push(use);  // No repeats; pretend it is now checked.
4380         }
4381       }
4382       assert(!dead_nodes, "using nodes must be reachable from root");
4383     }
4384   }
4385 }
4386 #endif
4387 
4388 // The Compile object keeps track of failure reasons separately from the ciEnv.
4389 // This is required because there is not quite a 1-1 relation between the
4390 // ciEnv and its compilation task and the Compile object.  Note that one
4391 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4392 // to backtrack and retry without subsuming loads.  Other than this backtracking
4393 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4394 // by the logic in C2Compiler.
4395 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4396   if (log() != nullptr) {
4397     log()->elem("failure reason='%s' phase='compile'", reason);
4398   }
4399   if (_failure_reason.get() == nullptr) {
4400     // Record the first failure reason.
4401     _failure_reason.set(reason);
4402     if (CaptureBailoutInformation) {
4403       _first_failure_details = new CompilationFailureInfo(reason);
4404     }
4405   } else {
4406     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4407   }
4408 
4409   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4410     C->print_method(PHASE_FAILURE, 1);
4411   }
4412   _root = nullptr;  // flush the graph, too
4413 }
4414 
4415 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4416   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4417     _compile(Compile::current()),
4418     _log(nullptr),
4419     _dolog(CITimeVerbose)
4420 {
4421   assert(_compile != nullptr, "sanity check");
4422   assert(id != PhaseTraceId::_t_none, "Don't use none");
4423   if (_dolog) {
4424     _log = _compile->log();
4425   }
4426   if (_log != nullptr) {
4427     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4428     _log->stamp();
4429     _log->end_head();
4430   }
4431 
4432   // Inform memory statistic, if enabled
4433   if (CompilationMemoryStatistic::enabled()) {
4434     CompilationMemoryStatistic::on_phase_start((int)id, name);
4435   }
4436 }
4437 
4438 Compile::TracePhase::TracePhase(PhaseTraceId id)
4439   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4440 
4441 Compile::TracePhase::~TracePhase() {
4442 
4443   // Inform memory statistic, if enabled
4444   if (CompilationMemoryStatistic::enabled()) {
4445     CompilationMemoryStatistic::on_phase_end();
4446   }
4447 
4448   if (_compile->failing_internal()) {
4449     if (_log != nullptr) {
4450       _log->done("phase");
4451     }
4452     return; // timing code, not stressing bailouts.
4453   }
4454 #ifdef ASSERT
4455   if (PrintIdealNodeCount) {
4456     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4457                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4458   }
4459 
4460   if (VerifyIdealNodeCount) {
4461     _compile->print_missing_nodes();
4462   }
4463 #endif
4464 
4465   if (_log != nullptr) {
4466     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4467   }
4468 }
4469 
4470 //----------------------------static_subtype_check-----------------------------
4471 // Shortcut important common cases when superklass is exact:
4472 // (0) superklass is java.lang.Object (can occur in reflective code)
4473 // (1) subklass is already limited to a subtype of superklass => always ok
4474 // (2) subklass does not overlap with superklass => always fail
4475 // (3) superklass has NO subtypes and we can check with a simple compare.
4476 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4477   if (skip) {
4478     return SSC_full_test;       // Let caller generate the general case.
4479   }
4480 
4481   if (subk->is_java_subtype_of(superk)) {
4482     return SSC_always_true; // (0) and (1)  this test cannot fail
4483   }
4484 
4485   if (!subk->maybe_java_subtype_of(superk)) {
4486     return SSC_always_false; // (2) true path dead; no dynamic test needed
4487   }
4488 
4489   const Type* superelem = superk;
4490   if (superk->isa_aryklassptr()) {
4491     int ignored;
4492     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4493   }
4494 
4495   if (superelem->isa_instklassptr()) {
4496     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4497     if (!ik->has_subklass()) {
4498       if (!ik->is_final()) {
4499         // Add a dependency if there is a chance of a later subclass.
4500         dependencies()->assert_leaf_type(ik);
4501       }
4502       if (!superk->maybe_java_subtype_of(subk)) {
4503         return SSC_always_false;
4504       }
4505       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4506     }
4507   } else {
4508     // A primitive array type has no subtypes.
4509     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4510   }
4511 
4512   return SSC_full_test;
4513 }
4514 
4515 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4516 #ifdef _LP64
4517   // The scaled index operand to AddP must be a clean 64-bit value.
4518   // Java allows a 32-bit int to be incremented to a negative
4519   // value, which appears in a 64-bit register as a large
4520   // positive number.  Using that large positive number as an
4521   // operand in pointer arithmetic has bad consequences.
4522   // On the other hand, 32-bit overflow is rare, and the possibility
4523   // can often be excluded, if we annotate the ConvI2L node with
4524   // a type assertion that its value is known to be a small positive
4525   // number.  (The prior range check has ensured this.)
4526   // This assertion is used by ConvI2LNode::Ideal.
4527   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4528   if (sizetype != nullptr && sizetype->_hi > 0) {
4529     index_max = sizetype->_hi - 1;
4530   }
4531   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4532   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4533 #endif
4534   return idx;
4535 }
4536 
4537 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4538 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4539   if (ctrl != nullptr) {
4540     // Express control dependency by a CastII node with a narrow type.
4541     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4542     // node from floating above the range check during loop optimizations. Otherwise, the
4543     // ConvI2L node may be eliminated independently of the range check, causing the data path
4544     // to become TOP while the control path is still there (although it's unreachable).
4545     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4546     value = phase->transform(value);
4547   }
4548   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4549   return phase->transform(new ConvI2LNode(value, ltype));
4550 }
4551 
4552 void Compile::dump_print_inlining() {
4553   inline_printer()->print_on(tty);
4554 }
4555 
4556 void Compile::log_late_inline(CallGenerator* cg) {
4557   if (log() != nullptr) {
4558     log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4559                 cg->unique_id());
4560     JVMState* p = cg->call_node()->jvms();
4561     while (p != nullptr) {
4562       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4563       p = p->caller();
4564     }
4565     log()->tail("late_inline");
4566   }
4567 }
4568 
4569 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4570   log_late_inline(cg);
4571   if (log() != nullptr) {
4572     log()->inline_fail(msg);
4573   }
4574 }
4575 
4576 void Compile::log_inline_id(CallGenerator* cg) {
4577   if (log() != nullptr) {
4578     // The LogCompilation tool needs a unique way to identify late
4579     // inline call sites. This id must be unique for this call site in
4580     // this compilation. Try to have it unique across compilations as
4581     // well because it can be convenient when grepping through the log
4582     // file.
4583     // Distinguish OSR compilations from others in case CICountOSR is
4584     // on.
4585     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4586     cg->set_unique_id(id);
4587     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4588   }
4589 }
4590 
4591 void Compile::log_inline_failure(const char* msg) {
4592   if (C->log() != nullptr) {
4593     C->log()->inline_fail(msg);
4594   }
4595 }
4596 
4597 
4598 // Dump inlining replay data to the stream.
4599 // Don't change thread state and acquire any locks.
4600 void Compile::dump_inline_data(outputStream* out) {
4601   InlineTree* inl_tree = ilt();
4602   if (inl_tree != nullptr) {
4603     out->print(" inline %d", inl_tree->count());
4604     inl_tree->dump_replay_data(out);
4605   }
4606 }
4607 
4608 void Compile::dump_inline_data_reduced(outputStream* out) {
4609   assert(ReplayReduce, "");
4610 
4611   InlineTree* inl_tree = ilt();
4612   if (inl_tree == nullptr) {
4613     return;
4614   }
4615   // Enable iterative replay file reduction
4616   // Output "compile" lines for depth 1 subtrees,
4617   // simulating that those trees were compiled
4618   // instead of inlined.
4619   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4620     InlineTree* sub = inl_tree->subtrees().at(i);
4621     if (sub->inline_level() != 1) {
4622       continue;
4623     }
4624 
4625     ciMethod* method = sub->method();
4626     int entry_bci = -1;
4627     int comp_level = env()->task()->comp_level();
4628     out->print("compile ");
4629     method->dump_name_as_ascii(out);
4630     out->print(" %d %d", entry_bci, comp_level);
4631     out->print(" inline %d", sub->count());
4632     sub->dump_replay_data(out, -1);
4633     out->cr();
4634   }
4635 }
4636 
4637 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4638   if (n1->Opcode() < n2->Opcode())      return -1;
4639   else if (n1->Opcode() > n2->Opcode()) return 1;
4640 
4641   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4642   for (uint i = 1; i < n1->req(); i++) {
4643     if (n1->in(i) < n2->in(i))      return -1;
4644     else if (n1->in(i) > n2->in(i)) return 1;
4645   }
4646 
4647   return 0;
4648 }
4649 
4650 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4651   Node* n1 = *n1p;
4652   Node* n2 = *n2p;
4653 
4654   return cmp_expensive_nodes(n1, n2);
4655 }
4656 
4657 void Compile::sort_expensive_nodes() {
4658   if (!expensive_nodes_sorted()) {
4659     _expensive_nodes.sort(cmp_expensive_nodes);
4660   }
4661 }
4662 
4663 bool Compile::expensive_nodes_sorted() const {
4664   for (int i = 1; i < _expensive_nodes.length(); i++) {
4665     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4666       return false;
4667     }
4668   }
4669   return true;
4670 }
4671 
4672 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4673   if (_expensive_nodes.length() == 0) {
4674     return false;
4675   }
4676 
4677   assert(OptimizeExpensiveOps, "optimization off?");
4678 
4679   // Take this opportunity to remove dead nodes from the list
4680   int j = 0;
4681   for (int i = 0; i < _expensive_nodes.length(); i++) {
4682     Node* n = _expensive_nodes.at(i);
4683     if (!n->is_unreachable(igvn)) {
4684       assert(n->is_expensive(), "should be expensive");
4685       _expensive_nodes.at_put(j, n);
4686       j++;
4687     }
4688   }
4689   _expensive_nodes.trunc_to(j);
4690 
4691   // Then sort the list so that similar nodes are next to each other
4692   // and check for at least two nodes of identical kind with same data
4693   // inputs.
4694   sort_expensive_nodes();
4695 
4696   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4697     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4698       return true;
4699     }
4700   }
4701 
4702   return false;
4703 }
4704 
4705 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4706   if (_expensive_nodes.length() == 0) {
4707     return;
4708   }
4709 
4710   assert(OptimizeExpensiveOps, "optimization off?");
4711 
4712   // Sort to bring similar nodes next to each other and clear the
4713   // control input of nodes for which there's only a single copy.
4714   sort_expensive_nodes();
4715 
4716   int j = 0;
4717   int identical = 0;
4718   int i = 0;
4719   bool modified = false;
4720   for (; i < _expensive_nodes.length()-1; i++) {
4721     assert(j <= i, "can't write beyond current index");
4722     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4723       identical++;
4724       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4725       continue;
4726     }
4727     if (identical > 0) {
4728       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4729       identical = 0;
4730     } else {
4731       Node* n = _expensive_nodes.at(i);
4732       igvn.replace_input_of(n, 0, nullptr);
4733       igvn.hash_insert(n);
4734       modified = true;
4735     }
4736   }
4737   if (identical > 0) {
4738     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4739   } else if (_expensive_nodes.length() >= 1) {
4740     Node* n = _expensive_nodes.at(i);
4741     igvn.replace_input_of(n, 0, nullptr);
4742     igvn.hash_insert(n);
4743     modified = true;
4744   }
4745   _expensive_nodes.trunc_to(j);
4746   if (modified) {
4747     igvn.optimize();
4748   }
4749 }
4750 
4751 void Compile::add_expensive_node(Node * n) {
4752   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4753   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4754   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4755   if (OptimizeExpensiveOps) {
4756     _expensive_nodes.append(n);
4757   } else {
4758     // Clear control input and let IGVN optimize expensive nodes if
4759     // OptimizeExpensiveOps is off.
4760     n->set_req(0, nullptr);
4761   }
4762 }
4763 
4764 /**
4765  * Track coarsened Lock and Unlock nodes.
4766  */
4767 
4768 class Lock_List : public Node_List {
4769   uint _origin_cnt;
4770 public:
4771   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4772   uint origin_cnt() const { return _origin_cnt; }
4773 };
4774 
4775 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4776   int length = locks.length();
4777   if (length > 0) {
4778     // Have to keep this list until locks elimination during Macro nodes elimination.
4779     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4780     AbstractLockNode* alock = locks.at(0);
4781     BoxLockNode* box = alock->box_node()->as_BoxLock();
4782     for (int i = 0; i < length; i++) {
4783       AbstractLockNode* lock = locks.at(i);
4784       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4785       locks_list->push(lock);
4786       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4787       if (this_box != box) {
4788         // Locking regions (BoxLock) could be Unbalanced here:
4789         //  - its coarsened locks were eliminated in earlier
4790         //    macro nodes elimination followed by loop unroll
4791         //  - it is OSR locking region (no Lock node)
4792         // Preserve Unbalanced status in such cases.
4793         if (!this_box->is_unbalanced()) {
4794           this_box->set_coarsened();
4795         }
4796         if (!box->is_unbalanced()) {
4797           box->set_coarsened();
4798         }
4799       }
4800     }
4801     _coarsened_locks.append(locks_list);
4802   }
4803 }
4804 
4805 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4806   int count = coarsened_count();
4807   for (int i = 0; i < count; i++) {
4808     Node_List* locks_list = _coarsened_locks.at(i);
4809     for (uint j = 0; j < locks_list->size(); j++) {
4810       Node* lock = locks_list->at(j);
4811       assert(lock->is_AbstractLock(), "sanity");
4812       if (!useful.member(lock)) {
4813         locks_list->yank(lock);
4814       }
4815     }
4816   }
4817 }
4818 
4819 void Compile::remove_coarsened_lock(Node* n) {
4820   if (n->is_AbstractLock()) {
4821     int count = coarsened_count();
4822     for (int i = 0; i < count; i++) {
4823       Node_List* locks_list = _coarsened_locks.at(i);
4824       locks_list->yank(n);
4825     }
4826   }
4827 }
4828 
4829 bool Compile::coarsened_locks_consistent() {
4830   int count = coarsened_count();
4831   for (int i = 0; i < count; i++) {
4832     bool unbalanced = false;
4833     bool modified = false; // track locks kind modifications
4834     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4835     uint size = locks_list->size();
4836     if (size == 0) {
4837       unbalanced = false; // All locks were eliminated - good
4838     } else if (size != locks_list->origin_cnt()) {
4839       unbalanced = true; // Some locks were removed from list
4840     } else {
4841       for (uint j = 0; j < size; j++) {
4842         Node* lock = locks_list->at(j);
4843         // All nodes in group should have the same state (modified or not)
4844         if (!lock->as_AbstractLock()->is_coarsened()) {
4845           if (j == 0) {
4846             // first on list was modified, the rest should be too for consistency
4847             modified = true;
4848           } else if (!modified) {
4849             // this lock was modified but previous locks on the list were not
4850             unbalanced = true;
4851             break;
4852           }
4853         } else if (modified) {
4854           // previous locks on list were modified but not this lock
4855           unbalanced = true;
4856           break;
4857         }
4858       }
4859     }
4860     if (unbalanced) {
4861       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4862 #ifdef ASSERT
4863       if (PrintEliminateLocks) {
4864         tty->print_cr("=== unbalanced coarsened locks ===");
4865         for (uint l = 0; l < size; l++) {
4866           locks_list->at(l)->dump();
4867         }
4868       }
4869 #endif
4870       record_failure(C2Compiler::retry_no_locks_coarsening());
4871       return false;
4872     }
4873   }
4874   return true;
4875 }
4876 
4877 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4878 // locks coarsening optimization removed Lock/Unlock nodes from them.
4879 // Such regions become unbalanced because coarsening only removes part
4880 // of Lock/Unlock nodes in region. As result we can't execute other
4881 // locks elimination optimizations which assume all code paths have
4882 // corresponding pair of Lock/Unlock nodes - they are balanced.
4883 void Compile::mark_unbalanced_boxes() const {
4884   int count = coarsened_count();
4885   for (int i = 0; i < count; i++) {
4886     Node_List* locks_list = _coarsened_locks.at(i);
4887     uint size = locks_list->size();
4888     if (size > 0) {
4889       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4890       BoxLockNode* box = alock->box_node()->as_BoxLock();
4891       if (alock->is_coarsened()) {
4892         // coarsened_locks_consistent(), which is called before this method, verifies
4893         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4894         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4895         for (uint j = 1; j < size; j++) {
4896           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4897           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4898           if (box != this_box) {
4899             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4900             box->set_unbalanced();
4901             this_box->set_unbalanced();
4902           }
4903         }
4904       }
4905     }
4906   }
4907 }
4908 
4909 /**
4910  * Remove the speculative part of types and clean up the graph
4911  */
4912 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4913   if (UseTypeSpeculation) {
4914     Unique_Node_List worklist;
4915     worklist.push(root());
4916     int modified = 0;
4917     // Go over all type nodes that carry a speculative type, drop the
4918     // speculative part of the type and enqueue the node for an igvn
4919     // which may optimize it out.
4920     for (uint next = 0; next < worklist.size(); ++next) {
4921       Node *n  = worklist.at(next);
4922       if (n->is_Type()) {
4923         TypeNode* tn = n->as_Type();
4924         const Type* t = tn->type();
4925         const Type* t_no_spec = t->remove_speculative();
4926         if (t_no_spec != t) {
4927           bool in_hash = igvn.hash_delete(n);
4928           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4929           tn->set_type(t_no_spec);
4930           igvn.hash_insert(n);
4931           igvn._worklist.push(n); // give it a chance to go away
4932           modified++;
4933         }
4934       }
4935       // Iterate over outs - endless loops is unreachable from below
4936       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4937         Node *m = n->fast_out(i);
4938         if (not_a_node(m)) {
4939           continue;
4940         }
4941         worklist.push(m);
4942       }
4943     }
4944     // Drop the speculative part of all types in the igvn's type table
4945     igvn.remove_speculative_types();
4946     if (modified > 0) {
4947       igvn.optimize();
4948       if (failing())  return;
4949     }
4950 #ifdef ASSERT
4951     // Verify that after the IGVN is over no speculative type has resurfaced
4952     worklist.clear();
4953     worklist.push(root());
4954     for (uint next = 0; next < worklist.size(); ++next) {
4955       Node *n  = worklist.at(next);
4956       const Type* t = igvn.type_or_null(n);
4957       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4958       if (n->is_Type()) {
4959         t = n->as_Type()->type();
4960         assert(t == t->remove_speculative(), "no more speculative types");
4961       }
4962       // Iterate over outs - endless loops is unreachable from below
4963       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4964         Node *m = n->fast_out(i);
4965         if (not_a_node(m)) {
4966           continue;
4967         }
4968         worklist.push(m);
4969       }
4970     }
4971     igvn.check_no_speculative_types();
4972 #endif
4973   }
4974 }
4975 
4976 // Auxiliary methods to support randomized stressing/fuzzing.
4977 
4978 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4979   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4980     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4981     FLAG_SET_ERGO(StressSeed, _stress_seed);
4982   } else {
4983     _stress_seed = StressSeed;
4984   }
4985   if (_log != nullptr) {
4986     _log->elem("stress_test seed='%u'", _stress_seed);
4987   }
4988 }
4989 
4990 int Compile::random() {
4991   _stress_seed = os::next_random(_stress_seed);
4992   return static_cast<int>(_stress_seed);
4993 }
4994 
4995 // This method can be called the arbitrary number of times, with current count
4996 // as the argument. The logic allows selecting a single candidate from the
4997 // running list of candidates as follows:
4998 //    int count = 0;
4999 //    Cand* selected = null;
5000 //    while(cand = cand->next()) {
5001 //      if (randomized_select(++count)) {
5002 //        selected = cand;
5003 //      }
5004 //    }
5005 //
5006 // Including count equalizes the chances any candidate is "selected".
5007 // This is useful when we don't have the complete list of candidates to choose
5008 // from uniformly. In this case, we need to adjust the randomicity of the
5009 // selection, or else we will end up biasing the selection towards the latter
5010 // candidates.
5011 //
5012 // Quick back-envelope calculation shows that for the list of n candidates
5013 // the equal probability for the candidate to persist as "best" can be
5014 // achieved by replacing it with "next" k-th candidate with the probability
5015 // of 1/k. It can be easily shown that by the end of the run, the
5016 // probability for any candidate is converged to 1/n, thus giving the
5017 // uniform distribution among all the candidates.
5018 //
5019 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5020 #define RANDOMIZED_DOMAIN_POW 29
5021 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5022 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5023 bool Compile::randomized_select(int count) {
5024   assert(count > 0, "only positive");
5025   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5026 }
5027 
5028 #ifdef ASSERT
5029 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5030 bool Compile::fail_randomly() {
5031   if ((random() % StressBailoutMean) != 0) {
5032     return false;
5033   }
5034   record_failure("StressBailout");
5035   return true;
5036 }
5037 
5038 bool Compile::failure_is_artificial() {
5039   return C->failure_reason_is("StressBailout");
5040 }
5041 #endif
5042 
5043 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5044 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5045 
5046 void NodeCloneInfo::dump_on(outputStream* st) const {
5047   st->print(" {%d:%d} ", idx(), gen());
5048 }
5049 
5050 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5051   uint64_t val = value(old->_idx);
5052   NodeCloneInfo cio(val);
5053   assert(val != 0, "old node should be in the map");
5054   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5055   insert(nnn->_idx, cin.get());
5056 #ifndef PRODUCT
5057   if (is_debug()) {
5058     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5059   }
5060 #endif
5061 }
5062 
5063 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5064   NodeCloneInfo cio(value(old->_idx));
5065   if (cio.get() == 0) {
5066     cio.set(old->_idx, 0);
5067     insert(old->_idx, cio.get());
5068 #ifndef PRODUCT
5069     if (is_debug()) {
5070       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5071     }
5072 #endif
5073   }
5074   clone(old, nnn, gen);
5075 }
5076 
5077 int CloneMap::max_gen() const {
5078   int g = 0;
5079   DictI di(_dict);
5080   for(; di.test(); ++di) {
5081     int t = gen(di._key);
5082     if (g < t) {
5083       g = t;
5084 #ifndef PRODUCT
5085       if (is_debug()) {
5086         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5087       }
5088 #endif
5089     }
5090   }
5091   return g;
5092 }
5093 
5094 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5095   uint64_t val = value(key);
5096   if (val != 0) {
5097     NodeCloneInfo ni(val);
5098     ni.dump_on(st);
5099   }
5100 }
5101 
5102 void Compile::shuffle_macro_nodes() {
5103   if (_macro_nodes.length() < 2) {
5104     return;
5105   }
5106   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5107     uint j = C->random() % (i + 1);
5108     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5109   }
5110 }
5111 
5112 // Move Allocate nodes to the start of the list
5113 void Compile::sort_macro_nodes() {
5114   int count = macro_count();
5115   int allocates = 0;
5116   for (int i = 0; i < count; i++) {
5117     Node* n = macro_node(i);
5118     if (n->is_Allocate()) {
5119       if (i != allocates) {
5120         Node* tmp = macro_node(allocates);
5121         _macro_nodes.at_put(allocates, n);
5122         _macro_nodes.at_put(i, tmp);
5123       }
5124       allocates++;
5125     }
5126   }
5127 }
5128 
5129 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5130   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5131   EventCompilerPhase event(UNTIMED);
5132   if (event.should_commit()) {
5133     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5134   }
5135 #ifndef PRODUCT
5136   ResourceMark rm;
5137   stringStream ss;
5138   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5139   int iter = ++_igv_phase_iter[cpt];
5140   if (iter > 1) {
5141     ss.print(" %d", iter);
5142   }
5143   if (n != nullptr) {
5144     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5145     if (n->is_Call()) {
5146       CallNode* call = n->as_Call();
5147       if (call->_name != nullptr) {
5148         // E.g. uncommon traps etc.
5149         ss.print(" - %s", call->_name);
5150       } else if (call->is_CallJava()) {
5151         CallJavaNode* call_java = call->as_CallJava();
5152         if (call_java->method() != nullptr) {
5153           ss.print(" -");
5154           call_java->method()->print_short_name(&ss);
5155         }
5156       }
5157     }
5158   }
5159 
5160   const char* name = ss.as_string();
5161   if (should_print_igv(level)) {
5162     _igv_printer->print_graph(name);
5163   }
5164   if (should_print_phase(level)) {
5165     print_phase(name);
5166   }
5167   if (should_print_ideal_phase(cpt)) {
5168     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5169   }
5170 #endif
5171   C->_latest_stage_start_counter.stamp();
5172 }
5173 
5174 // Only used from CompileWrapper
5175 void Compile::begin_method() {
5176 #ifndef PRODUCT
5177   if (_method != nullptr && should_print_igv(1)) {
5178     _igv_printer->begin_method();
5179   }
5180 #endif
5181   C->_latest_stage_start_counter.stamp();
5182 }
5183 
5184 // Only used from CompileWrapper
5185 void Compile::end_method() {
5186   EventCompilerPhase event(UNTIMED);
5187   if (event.should_commit()) {
5188     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5189   }
5190 
5191 #ifndef PRODUCT
5192   if (_method != nullptr && should_print_igv(1)) {
5193     _igv_printer->end_method();
5194   }
5195 #endif
5196 }
5197 
5198 #ifndef PRODUCT
5199 bool Compile::should_print_phase(const int level) const {
5200   return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level &&
5201          _method != nullptr; // Do not print phases for stubs.
5202 }
5203 
5204 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const {
5205   return _directive->should_print_ideal_phase(cpt);
5206 }
5207 
5208 void Compile::init_igv() {
5209   if (_igv_printer == nullptr) {
5210     _igv_printer = IdealGraphPrinter::printer();
5211     _igv_printer->set_compile(this);
5212   }
5213 }
5214 
5215 bool Compile::should_print_igv(const int level) {
5216   PRODUCT_RETURN_(return false;);
5217 
5218   if (PrintIdealGraphLevel < 0) { // disabled by the user
5219     return false;
5220   }
5221 
5222   bool need = directive()->IGVPrintLevelOption >= level;
5223   if (need) {
5224     Compile::init_igv();
5225   }
5226   return need;
5227 }
5228 
5229 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5230 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5231 
5232 // Called from debugger. Prints method to the default file with the default phase name.
5233 // This works regardless of any Ideal Graph Visualizer flags set or not.
5234 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc).
5235 void igv_print(void* sp, void* fp, void* pc) {
5236   frame fr(sp, fp, pc);
5237   Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5238 }
5239 
5240 // Same as igv_print() above but with a specified phase name.
5241 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) {
5242   frame fr(sp, fp, pc);
5243   Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5244 }
5245 
5246 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5247 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5248 // This works regardless of any Ideal Graph Visualizer flags set or not.
5249 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc).
5250 void igv_print(bool network, void* sp, void* fp, void* pc) {
5251   frame fr(sp, fp, pc);
5252   if (network) {
5253     Compile::current()->igv_print_method_to_network(nullptr, &fr);
5254   } else {
5255     Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5256   }
5257 }
5258 
5259 // Same as igv_print(bool network, ...) above but with a specified phase name.
5260 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc).
5261 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) {
5262   frame fr(sp, fp, pc);
5263   if (network) {
5264     Compile::current()->igv_print_method_to_network(phase_name, &fr);
5265   } else {
5266     Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5267   }
5268 }
5269 
5270 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5271 void igv_print_default() {
5272   Compile::current()->print_method(PHASE_DEBUG, 0);
5273 }
5274 
5275 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5276 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5277 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5278 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc).
5279 void igv_append(void* sp, void* fp, void* pc) {
5280   frame fr(sp, fp, pc);
5281   Compile::current()->igv_print_method_to_file(nullptr, true, &fr);
5282 }
5283 
5284 // Same as igv_append(...) above but with a specified phase name.
5285 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc).
5286 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) {
5287   frame fr(sp, fp, pc);
5288   Compile::current()->igv_print_method_to_file(phase_name, true, &fr);
5289 }
5290 
5291 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) {
5292   const char* file_name = "custom_debug.xml";
5293   if (_debug_file_printer == nullptr) {
5294     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5295   } else {
5296     _debug_file_printer->update_compiled_method(C->method());
5297   }
5298   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5299   _debug_file_printer->print_graph(phase_name, fr);
5300 }
5301 
5302 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) {
5303   ResourceMark rm;
5304   GrowableArray<const Node*> empty_list;
5305   igv_print_graph_to_network(phase_name, empty_list, fr);
5306 }
5307 
5308 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) {
5309   if (_debug_network_printer == nullptr) {
5310     _debug_network_printer = new IdealGraphPrinter(C);
5311   } else {
5312     _debug_network_printer->update_compiled_method(C->method());
5313   }
5314   tty->print_cr("Method printed over network stream to IGV");
5315   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5316 }
5317 #endif // !PRODUCT
5318 
5319 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5320   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5321     return value;
5322   }
5323   Node* result = nullptr;
5324   if (bt == T_BYTE) {
5325     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5326     result = new RShiftINode(result, phase->intcon(24));
5327   } else if (bt == T_BOOLEAN) {
5328     result = new AndINode(value, phase->intcon(0xFF));
5329   } else if (bt == T_CHAR) {
5330     result = new AndINode(value,phase->intcon(0xFFFF));
5331   } else {
5332     assert(bt == T_SHORT, "unexpected narrow type");
5333     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5334     result = new RShiftINode(result, phase->intcon(16));
5335   }
5336   if (transform_res) {
5337     result = phase->transform(result);
5338   }
5339   return result;
5340 }
5341 
5342 void Compile::record_method_not_compilable_oom() {
5343   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5344 }