1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/compiler_globals.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c2/barrierSetC2.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm_io.h" 44 #include "memory/allocation.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/inlinetypenode.hpp" 61 #include "opto/locknode.hpp" 62 #include "opto/loopnode.hpp" 63 #include "opto/machnode.hpp" 64 #include "opto/macro.hpp" 65 #include "opto/matcher.hpp" 66 #include "opto/mathexactnode.hpp" 67 #include "opto/memnode.hpp" 68 #include "opto/mulnode.hpp" 69 #include "opto/narrowptrnode.hpp" 70 #include "opto/node.hpp" 71 #include "opto/opcodes.hpp" 72 #include "opto/output.hpp" 73 #include "opto/parse.hpp" 74 #include "opto/phaseX.hpp" 75 #include "opto/rootnode.hpp" 76 #include "opto/runtime.hpp" 77 #include "opto/stringopts.hpp" 78 #include "opto/type.hpp" 79 #include "opto/vector.hpp" 80 #include "opto/vectornode.hpp" 81 #include "runtime/globals_extension.hpp" 82 #include "runtime/sharedRuntime.hpp" 83 #include "runtime/signature.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/timer.hpp" 86 #include "utilities/align.hpp" 87 #include "utilities/copy.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/resourceHash.hpp" 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == nullptr) { 95 _mach_constant_base_node = new MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 class IntrinsicDescPair { 107 private: 108 ciMethod* _m; 109 bool _is_virtual; 110 public: 111 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 112 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 113 ciMethod* m= elt->method(); 114 ciMethod* key_m = key->_m; 115 if (key_m < m) return -1; 116 else if (key_m > m) return 1; 117 else { 118 bool is_virtual = elt->is_virtual(); 119 bool key_virtual = key->_is_virtual; 120 if (key_virtual < is_virtual) return -1; 121 else if (key_virtual > is_virtual) return 1; 122 else return 0; 123 } 124 } 125 }; 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 127 #ifdef ASSERT 128 for (int i = 1; i < _intrinsics.length(); i++) { 129 CallGenerator* cg1 = _intrinsics.at(i-1); 130 CallGenerator* cg2 = _intrinsics.at(i); 131 assert(cg1->method() != cg2->method() 132 ? cg1->method() < cg2->method() 133 : cg1->is_virtual() < cg2->is_virtual(), 134 "compiler intrinsics list must stay sorted"); 135 } 136 #endif 137 IntrinsicDescPair pair(m, is_virtual); 138 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 bool found = false; 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 144 assert(!found, "registering twice"); 145 _intrinsics.insert_before(index, cg); 146 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 147 } 148 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 150 assert(m->is_loaded(), "don't try this on unloaded methods"); 151 if (_intrinsics.length() > 0) { 152 bool found = false; 153 int index = intrinsic_insertion_index(m, is_virtual, found); 154 if (found) { 155 return _intrinsics.at(index); 156 } 157 } 158 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 159 if (m->intrinsic_id() != vmIntrinsics::_none && 160 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 161 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 162 if (cg != nullptr) { 163 // Save it for next time: 164 register_intrinsic(cg); 165 return cg; 166 } else { 167 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 168 } 169 } 170 return nullptr; 171 } 172 173 // Compile::make_vm_intrinsic is defined in library_call.cpp. 174 175 #ifndef PRODUCT 176 // statistics gathering... 177 178 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 180 181 inline int as_int(vmIntrinsics::ID id) { 182 return vmIntrinsics::as_int(id); 183 } 184 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 186 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 187 int oflags = _intrinsic_hist_flags[as_int(id)]; 188 assert(flags != 0, "what happened?"); 189 if (is_virtual) { 190 flags |= _intrinsic_virtual; 191 } 192 bool changed = (flags != oflags); 193 if ((flags & _intrinsic_worked) != 0) { 194 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 195 if (count == 1) { 196 changed = true; // first time 197 } 198 // increment the overall count also: 199 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 200 } 201 if (changed) { 202 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 203 // Something changed about the intrinsic's virtuality. 204 if ((flags & _intrinsic_virtual) != 0) { 205 // This is the first use of this intrinsic as a virtual call. 206 if (oflags != 0) { 207 // We already saw it as a non-virtual, so note both cases. 208 flags |= _intrinsic_both; 209 } 210 } else if ((oflags & _intrinsic_both) == 0) { 211 // This is the first use of this intrinsic as a non-virtual 212 flags |= _intrinsic_both; 213 } 214 } 215 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 216 } 217 // update the overall flags also: 218 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 219 return changed; 220 } 221 222 static char* format_flags(int flags, char* buf) { 223 buf[0] = 0; 224 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 225 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 226 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 227 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 228 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 229 if (buf[0] == 0) strcat(buf, ","); 230 assert(buf[0] == ',', "must be"); 231 return &buf[1]; 232 } 233 234 void Compile::print_intrinsic_statistics() { 235 char flagsbuf[100]; 236 ttyLocker ttyl; 237 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 238 tty->print_cr("Compiler intrinsic usage:"); 239 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 240 if (total == 0) total = 1; // avoid div0 in case of no successes 241 #define PRINT_STAT_LINE(name, c, f) \ 242 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 243 for (auto id : EnumRange<vmIntrinsicID>{}) { 244 int flags = _intrinsic_hist_flags[as_int(id)]; 245 juint count = _intrinsic_hist_count[as_int(id)]; 246 if ((flags | count) != 0) { 247 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 248 } 249 } 250 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 251 if (xtty != nullptr) xtty->tail("statistics"); 252 } 253 254 void Compile::print_statistics() { 255 { ttyLocker ttyl; 256 if (xtty != nullptr) xtty->head("statistics type='opto'"); 257 Parse::print_statistics(); 258 PhaseStringOpts::print_statistics(); 259 PhaseCCP::print_statistics(); 260 PhaseRegAlloc::print_statistics(); 261 PhaseOutput::print_statistics(); 262 PhasePeephole::print_statistics(); 263 PhaseIdealLoop::print_statistics(); 264 ConnectionGraph::print_statistics(); 265 PhaseMacroExpand::print_statistics(); 266 if (xtty != nullptr) xtty->tail("statistics"); 267 } 268 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 269 // put this under its own <statistics> element. 270 print_intrinsic_statistics(); 271 } 272 } 273 #endif //PRODUCT 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 295 i -= uses_found; // we deleted 1 or more copies of this edge 296 } 297 } 298 299 300 // Identify all nodes that are reachable from below, useful. 301 // Use breadth-first pass that records state in a Unique_Node_List, 302 // recursive traversal is slower. 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 304 int estimated_worklist_size = live_nodes(); 305 useful.map( estimated_worklist_size, nullptr ); // preallocate space 306 307 // Initialize worklist 308 if (root() != nullptr) { useful.push(root()); } 309 // If 'top' is cached, declare it useful to preserve cached node 310 if (cached_top_node()) { useful.push(cached_top_node()); } 311 312 // Push all useful nodes onto the list, breadthfirst 313 for( uint next = 0; next < useful.size(); ++next ) { 314 assert( next < unique(), "Unique useful nodes < total nodes"); 315 Node *n = useful.at(next); 316 uint max = n->len(); 317 for( uint i = 0; i < max; ++i ) { 318 Node *m = n->in(i); 319 if (not_a_node(m)) continue; 320 useful.push(m); 321 } 322 } 323 } 324 325 // Update dead_node_list with any missing dead nodes using useful 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 327 void Compile::update_dead_node_list(Unique_Node_List &useful) { 328 uint max_idx = unique(); 329 VectorSet& useful_node_set = useful.member_set(); 330 331 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 332 // If node with index node_idx is not in useful set, 333 // mark it as dead in dead node list. 334 if (!useful_node_set.test(node_idx)) { 335 record_dead_node(node_idx); 336 } 337 } 338 } 339 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 341 int shift = 0; 342 for (int i = 0; i < inlines->length(); i++) { 343 CallGenerator* cg = inlines->at(i); 344 if (useful.member(cg->call_node())) { 345 if (shift > 0) { 346 inlines->at_put(i - shift, cg); 347 } 348 } else { 349 shift++; // skip over the dead element 350 } 351 } 352 if (shift > 0) { 353 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 354 } 355 } 356 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 358 assert(dead != nullptr && dead->is_Call(), "sanity"); 359 int found = 0; 360 for (int i = 0; i < inlines->length(); i++) { 361 if (inlines->at(i)->call_node() == dead) { 362 inlines->remove_at(i); 363 found++; 364 NOT_DEBUG( break; ) // elements are unique, so exit early 365 } 366 } 367 assert(found <= 1, "not unique"); 368 } 369 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 372 for (int i = node_list.length() - 1; i >= 0; i--) { 373 N* node = node_list.at(i); 374 if (!useful.member(node)) { 375 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 376 } 377 } 378 } 379 380 void Compile::remove_useless_node(Node* dead) { 381 remove_modified_node(dead); 382 383 // Constant node that has no out-edges and has only one in-edge from 384 // root is usually dead. However, sometimes reshaping walk makes 385 // it reachable by adding use edges. So, we will NOT count Con nodes 386 // as dead to be conservative about the dead node count at any 387 // given time. 388 if (!dead->is_Con()) { 389 record_dead_node(dead->_idx); 390 } 391 if (dead->is_macro()) { 392 remove_macro_node(dead); 393 } 394 if (dead->is_expensive()) { 395 remove_expensive_node(dead); 396 } 397 if (dead->Opcode() == Op_Opaque4) { 398 remove_template_assertion_predicate_opaq(dead); 399 } 400 if (dead->is_ParsePredicate()) { 401 remove_parse_predicate(dead->as_ParsePredicate()); 402 } 403 if (dead->for_post_loop_opts_igvn()) { 404 remove_from_post_loop_opts_igvn(dead); 405 } 406 if (dead->is_InlineType()) { 407 remove_inline_type(dead); 408 } 409 if (dead->is_Call()) { 410 remove_useless_late_inlines( &_late_inlines, dead); 411 remove_useless_late_inlines( &_string_late_inlines, dead); 412 remove_useless_late_inlines( &_boxing_late_inlines, dead); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 414 415 if (dead->is_CallStaticJava()) { 416 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 417 } 418 } 419 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 420 bs->unregister_potential_barrier_node(dead); 421 } 422 423 // Disconnect all useless nodes by disconnecting those at the boundary. 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 425 uint next = 0; 426 while (next < useful.size()) { 427 Node *n = useful.at(next++); 428 if (n->is_SafePoint()) { 429 // We're done with a parsing phase. Replaced nodes are not valid 430 // beyond that point. 431 n->as_SafePoint()->delete_replaced_nodes(); 432 } 433 // Use raw traversal of out edges since this code removes out edges 434 int max = n->outcnt(); 435 for (int j = 0; j < max; ++j) { 436 Node* child = n->raw_out(j); 437 if (!useful.member(child)) { 438 assert(!child->is_top() || child != top(), 439 "If top is cached in Compile object it is in useful list"); 440 // Only need to remove this out-edge to the useless node 441 n->raw_del_out(j); 442 --j; 443 --max; 444 } 445 } 446 if (n->outcnt() == 1 && n->has_special_unique_user()) { 447 assert(useful.member(n->unique_out()), "do not push a useless node"); 448 worklist.push(n->unique_out()); 449 } 450 if (n->outcnt() == 0) { 451 worklist.push(n); 452 } 453 } 454 455 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 456 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 457 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 458 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 459 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 460 remove_useless_nodes(_inline_type_nodes, useful); // remove useless inline type nodes 461 #ifdef ASSERT 462 if (_modified_nodes != nullptr) { 463 _modified_nodes->remove_useless_nodes(useful.member_set()); 464 } 465 #endif 466 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 467 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 468 #ifdef ASSERT 469 if (_modified_nodes != nullptr) { 470 _modified_nodes->remove_useless_nodes(useful.member_set()); 471 } 472 #endif 473 474 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 475 bs->eliminate_useless_gc_barriers(useful, this); 476 // clean up the late inline lists 477 remove_useless_late_inlines( &_late_inlines, useful); 478 remove_useless_late_inlines( &_string_late_inlines, useful); 479 remove_useless_late_inlines( &_boxing_late_inlines, useful); 480 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 481 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 482 } 483 484 // ============================================================================ 485 //------------------------------CompileWrapper--------------------------------- 486 class CompileWrapper : public StackObj { 487 Compile *const _compile; 488 public: 489 CompileWrapper(Compile* compile); 490 491 ~CompileWrapper(); 492 }; 493 494 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 495 // the Compile* pointer is stored in the current ciEnv: 496 ciEnv* env = compile->env(); 497 assert(env == ciEnv::current(), "must already be a ciEnv active"); 498 assert(env->compiler_data() == nullptr, "compile already active?"); 499 env->set_compiler_data(compile); 500 assert(compile == Compile::current(), "sanity"); 501 502 compile->set_type_dict(nullptr); 503 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 504 compile->clone_map().set_clone_idx(0); 505 compile->set_type_last_size(0); 506 compile->set_last_tf(nullptr, nullptr); 507 compile->set_indexSet_arena(nullptr); 508 compile->set_indexSet_free_block_list(nullptr); 509 compile->init_type_arena(); 510 Type::Initialize(compile); 511 _compile->begin_method(); 512 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 513 } 514 CompileWrapper::~CompileWrapper() { 515 // simulate crash during compilation 516 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 517 518 _compile->end_method(); 519 _compile->env()->set_compiler_data(nullptr); 520 } 521 522 523 //----------------------------print_compile_messages--------------------------- 524 void Compile::print_compile_messages() { 525 #ifndef PRODUCT 526 // Check if recompiling 527 if (!subsume_loads() && PrintOpto) { 528 // Recompiling without allowing machine instructions to subsume loads 529 tty->print_cr("*********************************************************"); 530 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 531 tty->print_cr("*********************************************************"); 532 } 533 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 534 // Recompiling without escape analysis 535 tty->print_cr("*********************************************************"); 536 tty->print_cr("** Bailout: Recompile without escape analysis **"); 537 tty->print_cr("*********************************************************"); 538 } 539 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 540 // Recompiling without iterative escape analysis 541 tty->print_cr("*********************************************************"); 542 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 543 tty->print_cr("*********************************************************"); 544 } 545 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 546 // Recompiling without reducing allocation merges 547 tty->print_cr("*********************************************************"); 548 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 549 tty->print_cr("*********************************************************"); 550 } 551 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 552 // Recompiling without boxing elimination 553 tty->print_cr("*********************************************************"); 554 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 555 tty->print_cr("*********************************************************"); 556 } 557 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 558 // Recompiling without locks coarsening 559 tty->print_cr("*********************************************************"); 560 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 561 tty->print_cr("*********************************************************"); 562 } 563 if (env()->break_at_compile()) { 564 // Open the debugger when compiling this method. 565 tty->print("### Breaking when compiling: "); 566 method()->print_short_name(); 567 tty->cr(); 568 BREAKPOINT; 569 } 570 571 if( PrintOpto ) { 572 if (is_osr_compilation()) { 573 tty->print("[OSR]%3d", _compile_id); 574 } else { 575 tty->print("%3d", _compile_id); 576 } 577 } 578 #endif 579 } 580 581 #ifndef PRODUCT 582 void Compile::print_ideal_ir(const char* phase_name) { 583 // keep the following output all in one block 584 // This output goes directly to the tty, not the compiler log. 585 // To enable tools to match it up with the compilation activity, 586 // be sure to tag this tty output with the compile ID. 587 588 // Node dumping can cause a safepoint, which can break the tty lock. 589 // Buffer all node dumps, so that all safepoints happen before we lock. 590 ResourceMark rm; 591 stringStream ss; 592 593 if (_output == nullptr) { 594 ss.print_cr("AFTER: %s", phase_name); 595 // Print out all nodes in ascending order of index. 596 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 597 } else { 598 // Dump the node blockwise if we have a scheduling 599 _output->print_scheduling(&ss); 600 } 601 602 // Check that the lock is not broken by a safepoint. 603 NoSafepointVerifier nsv; 604 ttyLocker ttyl; 605 if (xtty != nullptr) { 606 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 607 compile_id(), 608 is_osr_compilation() ? " compile_kind='osr'" : "", 609 phase_name); 610 } 611 612 tty->print("%s", ss.as_string()); 613 614 if (xtty != nullptr) { 615 xtty->tail("ideal"); 616 } 617 } 618 #endif 619 620 // ============================================================================ 621 //------------------------------Compile standard------------------------------- 622 623 // Compile a method. entry_bci is -1 for normal compilations and indicates 624 // the continuation bci for on stack replacement. 625 626 627 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 628 Options options, DirectiveSet* directive) 629 : Phase(Compiler), 630 _compile_id(ci_env->compile_id()), 631 _options(options), 632 _method(target), 633 _entry_bci(osr_bci), 634 _ilt(nullptr), 635 _stub_function(nullptr), 636 _stub_name(nullptr), 637 _stub_entry_point(nullptr), 638 _max_node_limit(MaxNodeLimit), 639 _post_loop_opts_phase(false), 640 _allow_macro_nodes(true), 641 _inlining_progress(false), 642 _inlining_incrementally(false), 643 _do_cleanup(false), 644 _has_reserved_stack_access(target->has_reserved_stack_access()), 645 _has_circular_inline_type(false), 646 #ifndef PRODUCT 647 _igv_idx(0), 648 _trace_opto_output(directive->TraceOptoOutputOption), 649 #endif 650 _has_method_handle_invokes(false), 651 _clinit_barrier_on_entry(false), 652 _stress_seed(0), 653 _comp_arena(mtCompiler), 654 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 655 _env(ci_env), 656 _directive(directive), 657 _log(ci_env->log()), 658 _first_failure_details(nullptr), 659 _intrinsics (comp_arena(), 0, 0, nullptr), 660 _macro_nodes (comp_arena(), 8, 0, nullptr), 661 _parse_predicates (comp_arena(), 8, 0, nullptr), 662 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 663 _expensive_nodes (comp_arena(), 8, 0, nullptr), 664 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 665 _inline_type_nodes (comp_arena(), 8, 0, nullptr), 666 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 667 _coarsened_locks (comp_arena(), 8, 0, nullptr), 668 _congraph(nullptr), 669 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 670 _unique(0), 671 _dead_node_count(0), 672 _dead_node_list(comp_arena()), 673 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 674 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 675 _node_arena(&_node_arena_one), 676 _mach_constant_base_node(nullptr), 677 _Compile_types(mtCompiler), 678 _initial_gvn(nullptr), 679 _igvn_worklist(nullptr), 680 _types(nullptr), 681 _node_hash(nullptr), 682 _late_inlines(comp_arena(), 2, 0, nullptr), 683 _string_late_inlines(comp_arena(), 2, 0, nullptr), 684 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 685 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 686 _late_inlines_pos(0), 687 _number_of_mh_late_inlines(0), 688 _oom(false), 689 _print_inlining_stream(new (mtCompiler) stringStream()), 690 _print_inlining_list(nullptr), 691 _print_inlining_idx(0), 692 _print_inlining_output(nullptr), 693 _replay_inline_data(nullptr), 694 _java_calls(0), 695 _inner_loops(0), 696 _interpreter_frame_size(0), 697 _output(nullptr) 698 #ifndef PRODUCT 699 , _in_dump_cnt(0) 700 #endif 701 { 702 C = this; 703 CompileWrapper cw(this); 704 705 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 706 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 707 708 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 709 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 710 // We can always print a disassembly, either abstract (hex dump) or 711 // with the help of a suitable hsdis library. Thus, we should not 712 // couple print_assembly and print_opto_assembly controls. 713 // But: always print opto and regular assembly on compile command 'print'. 714 bool print_assembly = directive->PrintAssemblyOption; 715 set_print_assembly(print_opto_assembly || print_assembly); 716 #else 717 set_print_assembly(false); // must initialize. 718 #endif 719 720 #ifndef PRODUCT 721 set_parsed_irreducible_loop(false); 722 #endif 723 724 if (directive->ReplayInlineOption) { 725 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 726 } 727 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 728 set_print_intrinsics(directive->PrintIntrinsicsOption); 729 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 730 731 if (ProfileTraps) { 732 // Make sure the method being compiled gets its own MDO, 733 // so we can at least track the decompile_count(). 734 method()->ensure_method_data(); 735 } 736 737 if (StressLCM || StressGCM || StressIGVN || StressCCP || 738 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 739 initialize_stress_seed(directive); 740 } 741 742 Init(/*do_aliasing=*/ true); 743 744 print_compile_messages(); 745 746 _ilt = InlineTree::build_inline_tree_root(); 747 748 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 749 assert(num_alias_types() >= AliasIdxRaw, ""); 750 751 #define MINIMUM_NODE_HASH 1023 752 753 // GVN that will be run immediately on new nodes 754 uint estimated_size = method()->code_size()*4+64; 755 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 756 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 757 _types = new (comp_arena()) Type_Array(comp_arena()); 758 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 759 PhaseGVN gvn; 760 set_initial_gvn(&gvn); 761 762 print_inlining_init(); 763 { // Scope for timing the parser 764 TracePhase tp("parse", &timers[_t_parser]); 765 766 // Put top into the hash table ASAP. 767 initial_gvn()->transform(top()); 768 769 // Set up tf(), start(), and find a CallGenerator. 770 CallGenerator* cg = nullptr; 771 if (is_osr_compilation()) { 772 init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true)); 773 StartNode* s = new StartOSRNode(root(), tf()->domain_sig()); 774 initial_gvn()->set_type_bottom(s); 775 verify_start(s); 776 cg = CallGenerator::for_osr(method(), entry_bci()); 777 } else { 778 // Normal case. 779 init_tf(TypeFunc::make(method())); 780 StartNode* s = new StartNode(root(), tf()->domain_cc()); 781 initial_gvn()->set_type_bottom(s); 782 verify_start(s); 783 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 784 // With java.lang.ref.reference.get() we must go through the 785 // intrinsic - even when get() is the root 786 // method of the compile - so that, if necessary, the value in 787 // the referent field of the reference object gets recorded by 788 // the pre-barrier code. 789 cg = find_intrinsic(method(), false); 790 } 791 if (cg == nullptr) { 792 float past_uses = method()->interpreter_invocation_count(); 793 float expected_uses = past_uses; 794 cg = CallGenerator::for_inline(method(), expected_uses); 795 } 796 } 797 if (failing()) return; 798 if (cg == nullptr) { 799 const char* reason = InlineTree::check_can_parse(method()); 800 assert(reason != nullptr, "expect reason for parse failure"); 801 stringStream ss; 802 ss.print("cannot parse method: %s", reason); 803 record_method_not_compilable(ss.as_string()); 804 return; 805 } 806 807 gvn.set_type(root(), root()->bottom_type()); 808 809 JVMState* jvms = build_start_state(start(), tf()); 810 if ((jvms = cg->generate(jvms)) == nullptr) { 811 assert(failure_reason() != nullptr, "expect reason for parse failure"); 812 stringStream ss; 813 ss.print("method parse failed: %s", failure_reason()); 814 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 815 return; 816 } 817 GraphKit kit(jvms); 818 819 if (!kit.stopped()) { 820 // Accept return values, and transfer control we know not where. 821 // This is done by a special, unique ReturnNode bound to root. 822 return_values(kit.jvms()); 823 } 824 825 if (kit.has_exceptions()) { 826 // Any exceptions that escape from this call must be rethrown 827 // to whatever caller is dynamically above us on the stack. 828 // This is done by a special, unique RethrowNode bound to root. 829 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 830 } 831 832 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 833 834 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 835 inline_string_calls(true); 836 } 837 838 if (failing()) return; 839 840 // Remove clutter produced by parsing. 841 if (!failing()) { 842 ResourceMark rm; 843 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 844 } 845 } 846 847 // Note: Large methods are capped off in do_one_bytecode(). 848 if (failing()) return; 849 850 // After parsing, node notes are no longer automagic. 851 // They must be propagated by register_new_node_with_optimizer(), 852 // clone(), or the like. 853 set_default_node_notes(nullptr); 854 855 #ifndef PRODUCT 856 if (should_print_igv(1)) { 857 _igv_printer->print_inlining(); 858 } 859 #endif 860 861 if (failing()) return; 862 NOT_PRODUCT( verify_graph_edges(); ) 863 864 // Now optimize 865 Optimize(); 866 if (failing()) return; 867 NOT_PRODUCT( verify_graph_edges(); ) 868 869 #ifndef PRODUCT 870 if (should_print_ideal()) { 871 print_ideal_ir("print_ideal"); 872 } 873 #endif 874 875 #ifdef ASSERT 876 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 877 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 878 #endif 879 880 // Dump compilation data to replay it. 881 if (directive->DumpReplayOption) { 882 env()->dump_replay_data(_compile_id); 883 } 884 if (directive->DumpInlineOption && (ilt() != nullptr)) { 885 env()->dump_inline_data(_compile_id); 886 } 887 888 // Now that we know the size of all the monitors we can add a fixed slot 889 // for the original deopt pc. 890 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 891 if (needs_stack_repair()) { 892 // One extra slot for the special stack increment value 893 next_slot += 2; 894 } 895 // TODO 8284443 Only reserve extra slot if needed 896 if (InlineTypeReturnedAsFields) { 897 // One extra slot to hold the IsInit information for a nullable 898 // inline type return if we run out of registers. 899 next_slot += 2; 900 } 901 set_fixed_slots(next_slot); 902 903 // Compute when to use implicit null checks. Used by matching trap based 904 // nodes and NullCheck optimization. 905 set_allowed_deopt_reasons(); 906 907 // Now generate code 908 Code_Gen(); 909 } 910 911 //------------------------------Compile---------------------------------------- 912 // Compile a runtime stub 913 Compile::Compile( ciEnv* ci_env, 914 TypeFunc_generator generator, 915 address stub_function, 916 const char *stub_name, 917 int is_fancy_jump, 918 bool pass_tls, 919 bool return_pc, 920 DirectiveSet* directive) 921 : Phase(Compiler), 922 _compile_id(0), 923 _options(Options::for_runtime_stub()), 924 _method(nullptr), 925 _entry_bci(InvocationEntryBci), 926 _stub_function(stub_function), 927 _stub_name(stub_name), 928 _stub_entry_point(nullptr), 929 _max_node_limit(MaxNodeLimit), 930 _post_loop_opts_phase(false), 931 _allow_macro_nodes(true), 932 _inlining_progress(false), 933 _inlining_incrementally(false), 934 _has_reserved_stack_access(false), 935 _has_circular_inline_type(false), 936 #ifndef PRODUCT 937 _igv_idx(0), 938 _trace_opto_output(directive->TraceOptoOutputOption), 939 #endif 940 _has_method_handle_invokes(false), 941 _clinit_barrier_on_entry(false), 942 _stress_seed(0), 943 _comp_arena(mtCompiler), 944 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 945 _env(ci_env), 946 _directive(directive), 947 _log(ci_env->log()), 948 _first_failure_details(nullptr), 949 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 950 _congraph(nullptr), 951 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 952 _unique(0), 953 _dead_node_count(0), 954 _dead_node_list(comp_arena()), 955 _node_arena_one(mtCompiler), 956 _node_arena_two(mtCompiler), 957 _node_arena(&_node_arena_one), 958 _mach_constant_base_node(nullptr), 959 _Compile_types(mtCompiler), 960 _initial_gvn(nullptr), 961 _igvn_worklist(nullptr), 962 _types(nullptr), 963 _node_hash(nullptr), 964 _number_of_mh_late_inlines(0), 965 _oom(false), 966 _print_inlining_stream(new (mtCompiler) stringStream()), 967 _print_inlining_list(nullptr), 968 _print_inlining_idx(0), 969 _print_inlining_output(nullptr), 970 _replay_inline_data(nullptr), 971 _java_calls(0), 972 _inner_loops(0), 973 _interpreter_frame_size(0), 974 _output(nullptr), 975 #ifndef PRODUCT 976 _in_dump_cnt(0), 977 #endif 978 _allowed_reasons(0) { 979 C = this; 980 981 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 982 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 983 984 #ifndef PRODUCT 985 set_print_assembly(PrintFrameConverterAssembly); 986 set_parsed_irreducible_loop(false); 987 #else 988 set_print_assembly(false); // Must initialize. 989 #endif 990 set_has_irreducible_loop(false); // no loops 991 992 CompileWrapper cw(this); 993 Init(/*do_aliasing=*/ false); 994 init_tf((*generator)()); 995 996 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 997 _types = new (comp_arena()) Type_Array(comp_arena()); 998 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 999 1000 if (StressLCM || StressGCM || StressBailout) { 1001 initialize_stress_seed(directive); 1002 } 1003 1004 { 1005 PhaseGVN gvn; 1006 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1007 gvn.transform(top()); 1008 1009 GraphKit kit; 1010 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1011 } 1012 1013 NOT_PRODUCT( verify_graph_edges(); ) 1014 1015 Code_Gen(); 1016 } 1017 1018 Compile::~Compile() { 1019 delete _print_inlining_stream; 1020 delete _first_failure_details; 1021 }; 1022 1023 //------------------------------Init------------------------------------------- 1024 // Prepare for a single compilation 1025 void Compile::Init(bool aliasing) { 1026 _do_aliasing = aliasing; 1027 _unique = 0; 1028 _regalloc = nullptr; 1029 1030 _tf = nullptr; // filled in later 1031 _top = nullptr; // cached later 1032 _matcher = nullptr; // filled in later 1033 _cfg = nullptr; // filled in later 1034 1035 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1036 1037 _node_note_array = nullptr; 1038 _default_node_notes = nullptr; 1039 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1040 1041 _immutable_memory = nullptr; // filled in at first inquiry 1042 1043 #ifdef ASSERT 1044 _phase_optimize_finished = false; 1045 _phase_verify_ideal_loop = false; 1046 _exception_backedge = false; 1047 _type_verify = nullptr; 1048 #endif 1049 1050 // Globally visible Nodes 1051 // First set TOP to null to give safe behavior during creation of RootNode 1052 set_cached_top_node(nullptr); 1053 set_root(new RootNode()); 1054 // Now that you have a Root to point to, create the real TOP 1055 set_cached_top_node( new ConNode(Type::TOP) ); 1056 set_recent_alloc(nullptr, nullptr); 1057 1058 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1059 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1060 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1061 env()->set_dependencies(new Dependencies(env())); 1062 1063 _fixed_slots = 0; 1064 set_has_split_ifs(false); 1065 set_has_loops(false); // first approximation 1066 set_has_stringbuilder(false); 1067 set_has_boxed_value(false); 1068 _trap_can_recompile = false; // no traps emitted yet 1069 _major_progress = true; // start out assuming good things will happen 1070 set_has_unsafe_access(false); 1071 set_max_vector_size(0); 1072 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1073 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1074 set_decompile_count(0); 1075 1076 #ifndef PRODUCT 1077 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1078 #endif 1079 1080 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1081 _loop_opts_cnt = LoopOptsCount; 1082 _has_flat_accesses = false; 1083 _flat_accesses_share_alias = true; 1084 _scalarize_in_safepoints = false; 1085 1086 set_do_inlining(Inline); 1087 set_max_inline_size(MaxInlineSize); 1088 set_freq_inline_size(FreqInlineSize); 1089 set_do_scheduling(OptoScheduling); 1090 1091 set_do_vector_loop(false); 1092 set_has_monitors(false); 1093 set_has_scoped_access(false); 1094 1095 if (AllowVectorizeOnDemand) { 1096 if (has_method() && _directive->VectorizeOption) { 1097 set_do_vector_loop(true); 1098 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1099 } else if (has_method() && method()->name() != nullptr && 1100 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1101 set_do_vector_loop(true); 1102 } 1103 } 1104 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1105 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1106 1107 _max_node_limit = _directive->MaxNodeLimitOption; 1108 1109 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1110 set_clinit_barrier_on_entry(true); 1111 } 1112 if (debug_info()->recording_non_safepoints()) { 1113 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1114 (comp_arena(), 8, 0, nullptr)); 1115 set_default_node_notes(Node_Notes::make(this)); 1116 } 1117 1118 const int grow_ats = 16; 1119 _max_alias_types = grow_ats; 1120 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1121 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1122 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1123 { 1124 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1125 } 1126 // Initialize the first few types. 1127 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1128 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1129 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1130 _num_alias_types = AliasIdxRaw+1; 1131 // Zero out the alias type cache. 1132 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1133 // A null adr_type hits in the cache right away. Preload the right answer. 1134 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1135 } 1136 1137 #ifdef ASSERT 1138 // Verify that the current StartNode is valid. 1139 void Compile::verify_start(StartNode* s) const { 1140 assert(failing_internal() || s == start(), "should be StartNode"); 1141 } 1142 #endif 1143 1144 /** 1145 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1146 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1147 * the ideal graph. 1148 */ 1149 StartNode* Compile::start() const { 1150 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1151 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1152 Node* start = root()->fast_out(i); 1153 if (start->is_Start()) { 1154 return start->as_Start(); 1155 } 1156 } 1157 fatal("Did not find Start node!"); 1158 return nullptr; 1159 } 1160 1161 //-------------------------------immutable_memory------------------------------------- 1162 // Access immutable memory 1163 Node* Compile::immutable_memory() { 1164 if (_immutable_memory != nullptr) { 1165 return _immutable_memory; 1166 } 1167 StartNode* s = start(); 1168 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1169 Node *p = s->fast_out(i); 1170 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1171 _immutable_memory = p; 1172 return _immutable_memory; 1173 } 1174 } 1175 ShouldNotReachHere(); 1176 return nullptr; 1177 } 1178 1179 //----------------------set_cached_top_node------------------------------------ 1180 // Install the cached top node, and make sure Node::is_top works correctly. 1181 void Compile::set_cached_top_node(Node* tn) { 1182 if (tn != nullptr) verify_top(tn); 1183 Node* old_top = _top; 1184 _top = tn; 1185 // Calling Node::setup_is_top allows the nodes the chance to adjust 1186 // their _out arrays. 1187 if (_top != nullptr) _top->setup_is_top(); 1188 if (old_top != nullptr) old_top->setup_is_top(); 1189 assert(_top == nullptr || top()->is_top(), ""); 1190 } 1191 1192 #ifdef ASSERT 1193 uint Compile::count_live_nodes_by_graph_walk() { 1194 Unique_Node_List useful(comp_arena()); 1195 // Get useful node list by walking the graph. 1196 identify_useful_nodes(useful); 1197 return useful.size(); 1198 } 1199 1200 void Compile::print_missing_nodes() { 1201 1202 // Return if CompileLog is null and PrintIdealNodeCount is false. 1203 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1204 return; 1205 } 1206 1207 // This is an expensive function. It is executed only when the user 1208 // specifies VerifyIdealNodeCount option or otherwise knows the 1209 // additional work that needs to be done to identify reachable nodes 1210 // by walking the flow graph and find the missing ones using 1211 // _dead_node_list. 1212 1213 Unique_Node_List useful(comp_arena()); 1214 // Get useful node list by walking the graph. 1215 identify_useful_nodes(useful); 1216 1217 uint l_nodes = C->live_nodes(); 1218 uint l_nodes_by_walk = useful.size(); 1219 1220 if (l_nodes != l_nodes_by_walk) { 1221 if (_log != nullptr) { 1222 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1223 _log->stamp(); 1224 _log->end_head(); 1225 } 1226 VectorSet& useful_member_set = useful.member_set(); 1227 int last_idx = l_nodes_by_walk; 1228 for (int i = 0; i < last_idx; i++) { 1229 if (useful_member_set.test(i)) { 1230 if (_dead_node_list.test(i)) { 1231 if (_log != nullptr) { 1232 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1233 } 1234 if (PrintIdealNodeCount) { 1235 // Print the log message to tty 1236 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1237 useful.at(i)->dump(); 1238 } 1239 } 1240 } 1241 else if (! _dead_node_list.test(i)) { 1242 if (_log != nullptr) { 1243 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1244 } 1245 if (PrintIdealNodeCount) { 1246 // Print the log message to tty 1247 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1248 } 1249 } 1250 } 1251 if (_log != nullptr) { 1252 _log->tail("mismatched_nodes"); 1253 } 1254 } 1255 } 1256 void Compile::record_modified_node(Node* n) { 1257 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1258 _modified_nodes->push(n); 1259 } 1260 } 1261 1262 void Compile::remove_modified_node(Node* n) { 1263 if (_modified_nodes != nullptr) { 1264 _modified_nodes->remove(n); 1265 } 1266 } 1267 #endif 1268 1269 #ifndef PRODUCT 1270 void Compile::verify_top(Node* tn) const { 1271 if (tn != nullptr) { 1272 assert(tn->is_Con(), "top node must be a constant"); 1273 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1274 assert(tn->in(0) != nullptr, "must have live top node"); 1275 } 1276 } 1277 #endif 1278 1279 1280 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1281 1282 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1283 guarantee(arr != nullptr, ""); 1284 int num_blocks = arr->length(); 1285 if (grow_by < num_blocks) grow_by = num_blocks; 1286 int num_notes = grow_by * _node_notes_block_size; 1287 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1288 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1289 while (num_notes > 0) { 1290 arr->append(notes); 1291 notes += _node_notes_block_size; 1292 num_notes -= _node_notes_block_size; 1293 } 1294 assert(num_notes == 0, "exact multiple, please"); 1295 } 1296 1297 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1298 if (source == nullptr || dest == nullptr) return false; 1299 1300 if (dest->is_Con()) 1301 return false; // Do not push debug info onto constants. 1302 1303 #ifdef ASSERT 1304 // Leave a bread crumb trail pointing to the original node: 1305 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1306 dest->set_debug_orig(source); 1307 } 1308 #endif 1309 1310 if (node_note_array() == nullptr) 1311 return false; // Not collecting any notes now. 1312 1313 // This is a copy onto a pre-existing node, which may already have notes. 1314 // If both nodes have notes, do not overwrite any pre-existing notes. 1315 Node_Notes* source_notes = node_notes_at(source->_idx); 1316 if (source_notes == nullptr || source_notes->is_clear()) return false; 1317 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1318 if (dest_notes == nullptr || dest_notes->is_clear()) { 1319 return set_node_notes_at(dest->_idx, source_notes); 1320 } 1321 1322 Node_Notes merged_notes = (*source_notes); 1323 // The order of operations here ensures that dest notes will win... 1324 merged_notes.update_from(dest_notes); 1325 return set_node_notes_at(dest->_idx, &merged_notes); 1326 } 1327 1328 1329 //--------------------------allow_range_check_smearing------------------------- 1330 // Gating condition for coalescing similar range checks. 1331 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1332 // single covering check that is at least as strong as any of them. 1333 // If the optimization succeeds, the simplified (strengthened) range check 1334 // will always succeed. If it fails, we will deopt, and then give up 1335 // on the optimization. 1336 bool Compile::allow_range_check_smearing() const { 1337 // If this method has already thrown a range-check, 1338 // assume it was because we already tried range smearing 1339 // and it failed. 1340 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1341 return !already_trapped; 1342 } 1343 1344 1345 //------------------------------flatten_alias_type----------------------------- 1346 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1347 assert(do_aliasing(), "Aliasing should be enabled"); 1348 int offset = tj->offset(); 1349 TypePtr::PTR ptr = tj->ptr(); 1350 1351 // Known instance (scalarizable allocation) alias only with itself. 1352 bool is_known_inst = tj->isa_oopptr() != nullptr && 1353 tj->is_oopptr()->is_known_instance(); 1354 1355 // Process weird unsafe references. 1356 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1357 bool default_value_load = EnableValhalla && tj->is_instptr()->instance_klass() == ciEnv::current()->Class_klass(); 1358 assert(InlineUnsafeOps || StressReflectiveCode || default_value_load, "indeterminate pointers come only from unsafe ops"); 1359 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1360 tj = TypeOopPtr::BOTTOM; 1361 ptr = tj->ptr(); 1362 offset = tj->offset(); 1363 } 1364 1365 // Array pointers need some flattening 1366 const TypeAryPtr* ta = tj->isa_aryptr(); 1367 if (ta && ta->is_stable()) { 1368 // Erase stability property for alias analysis. 1369 tj = ta = ta->cast_to_stable(false); 1370 } 1371 if (ta && ta->is_not_flat()) { 1372 // Erase not flat property for alias analysis. 1373 tj = ta = ta->cast_to_not_flat(false); 1374 } 1375 if (ta && ta->is_not_null_free()) { 1376 // Erase not null free property for alias analysis. 1377 tj = ta = ta->cast_to_not_null_free(false); 1378 } 1379 1380 if( ta && is_known_inst ) { 1381 if ( offset != Type::OffsetBot && 1382 offset > arrayOopDesc::length_offset_in_bytes() ) { 1383 offset = Type::OffsetBot; // Flatten constant access into array body only 1384 tj = ta = ta-> 1385 remove_speculative()-> 1386 cast_to_ptr_type(ptr)-> 1387 with_offset(offset); 1388 } 1389 } else if (ta) { 1390 // For arrays indexed by constant indices, we flatten the alias 1391 // space to include all of the array body. Only the header, klass 1392 // and array length can be accessed un-aliased. 1393 // For flat inline type array, each field has its own slice so 1394 // we must include the field offset. 1395 if( offset != Type::OffsetBot ) { 1396 if( ta->const_oop() ) { // MethodData* or Method* 1397 offset = Type::OffsetBot; // Flatten constant access into array body 1398 tj = ta = ta-> 1399 remove_speculative()-> 1400 cast_to_ptr_type(ptr)-> 1401 cast_to_exactness(false)-> 1402 with_offset(offset); 1403 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1404 // range is OK as-is. 1405 tj = ta = TypeAryPtr::RANGE; 1406 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1407 tj = TypeInstPtr::KLASS; // all klass loads look alike 1408 ta = TypeAryPtr::RANGE; // generic ignored junk 1409 ptr = TypePtr::BotPTR; 1410 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1411 tj = TypeInstPtr::MARK; 1412 ta = TypeAryPtr::RANGE; // generic ignored junk 1413 ptr = TypePtr::BotPTR; 1414 } else { // Random constant offset into array body 1415 offset = Type::OffsetBot; // Flatten constant access into array body 1416 tj = ta = ta-> 1417 remove_speculative()-> 1418 cast_to_ptr_type(ptr)-> 1419 cast_to_exactness(false)-> 1420 with_offset(offset); 1421 } 1422 } 1423 // Arrays of fixed size alias with arrays of unknown size. 1424 if (ta->size() != TypeInt::POS) { 1425 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1426 tj = ta = ta-> 1427 remove_speculative()-> 1428 cast_to_ptr_type(ptr)-> 1429 with_ary(tary)-> 1430 cast_to_exactness(false); 1431 } 1432 // Arrays of known objects become arrays of unknown objects. 1433 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1434 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1435 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1436 } 1437 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1438 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1439 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1440 } 1441 // Initially all flattened array accesses share a single slice 1442 if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flat_accesses_share_alias) { 1443 const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true); 1444 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), Type::Offset(Type::OffsetBot)); 1445 } 1446 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1447 // cannot be distinguished by bytecode alone. 1448 if (ta->elem() == TypeInt::BOOL) { 1449 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1450 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1451 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset()); 1452 } 1453 // During the 2nd round of IterGVN, NotNull castings are removed. 1454 // Make sure the Bottom and NotNull variants alias the same. 1455 // Also, make sure exact and non-exact variants alias the same. 1456 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1457 tj = ta = ta-> 1458 remove_speculative()-> 1459 cast_to_ptr_type(TypePtr::BotPTR)-> 1460 cast_to_exactness(false)-> 1461 with_offset(offset); 1462 } 1463 } 1464 1465 // Oop pointers need some flattening 1466 const TypeInstPtr *to = tj->isa_instptr(); 1467 if (to && to != TypeOopPtr::BOTTOM) { 1468 ciInstanceKlass* ik = to->instance_klass(); 1469 if( ptr == TypePtr::Constant ) { 1470 if (ik != ciEnv::current()->Class_klass() || 1471 offset < ik->layout_helper_size_in_bytes()) { 1472 // No constant oop pointers (such as Strings); they alias with 1473 // unknown strings. 1474 assert(!is_known_inst, "not scalarizable allocation"); 1475 tj = to = to-> 1476 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1477 remove_speculative()-> 1478 cast_to_ptr_type(TypePtr::BotPTR)-> 1479 cast_to_exactness(false); 1480 } 1481 } else if( is_known_inst ) { 1482 tj = to; // Keep NotNull and klass_is_exact for instance type 1483 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1484 // During the 2nd round of IterGVN, NotNull castings are removed. 1485 // Make sure the Bottom and NotNull variants alias the same. 1486 // Also, make sure exact and non-exact variants alias the same. 1487 tj = to = to-> 1488 remove_speculative()-> 1489 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1490 cast_to_ptr_type(TypePtr::BotPTR)-> 1491 cast_to_exactness(false); 1492 } 1493 if (to->speculative() != nullptr) { 1494 tj = to = to->remove_speculative(); 1495 } 1496 // Canonicalize the holder of this field 1497 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1498 // First handle header references such as a LoadKlassNode, even if the 1499 // object's klass is unloaded at compile time (4965979). 1500 if (!is_known_inst) { // Do it only for non-instance types 1501 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset)); 1502 } 1503 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1504 // Static fields are in the space above the normal instance 1505 // fields in the java.lang.Class instance. 1506 if (ik != ciEnv::current()->Class_klass()) { 1507 to = nullptr; 1508 tj = TypeOopPtr::BOTTOM; 1509 offset = tj->offset(); 1510 } 1511 } else { 1512 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1513 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1514 assert(tj->offset() == offset, "no change to offset expected"); 1515 bool xk = to->klass_is_exact(); 1516 int instance_id = to->instance_id(); 1517 1518 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1519 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1520 // its interfaces are included. 1521 if (xk && ik->equals(canonical_holder)) { 1522 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id), "exact type should be canonical type"); 1523 } else { 1524 assert(xk || !is_known_inst, "Known instance should be exact type"); 1525 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id); 1526 } 1527 } 1528 } 1529 1530 // Klass pointers to object array klasses need some flattening 1531 const TypeKlassPtr *tk = tj->isa_klassptr(); 1532 if( tk ) { 1533 // If we are referencing a field within a Klass, we need 1534 // to assume the worst case of an Object. Both exact and 1535 // inexact types must flatten to the same alias class so 1536 // use NotNull as the PTR. 1537 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1538 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1539 env()->Object_klass(), 1540 Type::Offset(offset)); 1541 } 1542 1543 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1544 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1545 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1546 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset)); 1547 } else { 1548 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_null_free()); 1549 } 1550 } 1551 // Check for precise loads from the primary supertype array and force them 1552 // to the supertype cache alias index. Check for generic array loads from 1553 // the primary supertype array and also force them to the supertype cache 1554 // alias index. Since the same load can reach both, we need to merge 1555 // these 2 disparate memories into the same alias class. Since the 1556 // primary supertype array is read-only, there's no chance of confusion 1557 // where we bypass an array load and an array store. 1558 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1559 if (offset == Type::OffsetBot || 1560 (offset >= primary_supers_offset && 1561 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1562 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1563 offset = in_bytes(Klass::secondary_super_cache_offset()); 1564 tj = tk = tk->with_offset(offset); 1565 } 1566 } 1567 1568 // Flatten all Raw pointers together. 1569 if (tj->base() == Type::RawPtr) 1570 tj = TypeRawPtr::BOTTOM; 1571 1572 if (tj->base() == Type::AnyPtr) 1573 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1574 1575 offset = tj->offset(); 1576 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1577 1578 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1579 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1580 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1581 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1582 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1583 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1584 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1585 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1586 assert( tj->ptr() != TypePtr::TopPTR && 1587 tj->ptr() != TypePtr::AnyNull && 1588 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1589 // assert( tj->ptr() != TypePtr::Constant || 1590 // tj->base() == Type::RawPtr || 1591 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1592 1593 return tj; 1594 } 1595 1596 void Compile::AliasType::Init(int i, const TypePtr* at) { 1597 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1598 _index = i; 1599 _adr_type = at; 1600 _field = nullptr; 1601 _element = nullptr; 1602 _is_rewritable = true; // default 1603 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1604 if (atoop != nullptr && atoop->is_known_instance()) { 1605 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1606 _general_index = Compile::current()->get_alias_index(gt); 1607 } else { 1608 _general_index = 0; 1609 } 1610 } 1611 1612 BasicType Compile::AliasType::basic_type() const { 1613 if (element() != nullptr) { 1614 const Type* element = adr_type()->is_aryptr()->elem(); 1615 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1616 } if (field() != nullptr) { 1617 return field()->layout_type(); 1618 } else { 1619 return T_ILLEGAL; // unknown 1620 } 1621 } 1622 1623 //---------------------------------print_on------------------------------------ 1624 #ifndef PRODUCT 1625 void Compile::AliasType::print_on(outputStream* st) { 1626 if (index() < 10) 1627 st->print("@ <%d> ", index()); 1628 else st->print("@ <%d>", index()); 1629 st->print(is_rewritable() ? " " : " RO"); 1630 int offset = adr_type()->offset(); 1631 if (offset == Type::OffsetBot) 1632 st->print(" +any"); 1633 else st->print(" +%-3d", offset); 1634 st->print(" in "); 1635 adr_type()->dump_on(st); 1636 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1637 if (field() != nullptr && tjp) { 1638 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1639 tjp->offset() != field()->offset_in_bytes()) { 1640 st->print(" != "); 1641 field()->print(); 1642 st->print(" ***"); 1643 } 1644 } 1645 } 1646 1647 void print_alias_types() { 1648 Compile* C = Compile::current(); 1649 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1650 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1651 C->alias_type(idx)->print_on(tty); 1652 tty->cr(); 1653 } 1654 } 1655 #endif 1656 1657 1658 //----------------------------probe_alias_cache-------------------------------- 1659 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1660 intptr_t key = (intptr_t) adr_type; 1661 key ^= key >> logAliasCacheSize; 1662 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1663 } 1664 1665 1666 //-----------------------------grow_alias_types-------------------------------- 1667 void Compile::grow_alias_types() { 1668 const int old_ats = _max_alias_types; // how many before? 1669 const int new_ats = old_ats; // how many more? 1670 const int grow_ats = old_ats+new_ats; // how many now? 1671 _max_alias_types = grow_ats; 1672 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1673 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1674 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1675 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1676 } 1677 1678 1679 //--------------------------------find_alias_type------------------------------ 1680 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) { 1681 if (!do_aliasing()) { 1682 return alias_type(AliasIdxBot); 1683 } 1684 1685 AliasCacheEntry* ace = nullptr; 1686 if (!uncached) { 1687 ace = probe_alias_cache(adr_type); 1688 if (ace->_adr_type == adr_type) { 1689 return alias_type(ace->_index); 1690 } 1691 } 1692 1693 // Handle special cases. 1694 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1695 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1696 1697 // Do it the slow way. 1698 const TypePtr* flat = flatten_alias_type(adr_type); 1699 1700 #ifdef ASSERT 1701 { 1702 ResourceMark rm; 1703 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1704 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1705 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1706 Type::str(adr_type)); 1707 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1708 const TypeOopPtr* foop = flat->is_oopptr(); 1709 // Scalarizable allocations have exact klass always. 1710 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1711 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1712 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1713 Type::str(foop), Type::str(xoop)); 1714 } 1715 } 1716 #endif 1717 1718 int idx = AliasIdxTop; 1719 for (int i = 0; i < num_alias_types(); i++) { 1720 if (alias_type(i)->adr_type() == flat) { 1721 idx = i; 1722 break; 1723 } 1724 } 1725 1726 if (idx == AliasIdxTop) { 1727 if (no_create) return nullptr; 1728 // Grow the array if necessary. 1729 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1730 // Add a new alias type. 1731 idx = _num_alias_types++; 1732 _alias_types[idx]->Init(idx, flat); 1733 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1734 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1735 if (flat->isa_instptr()) { 1736 if (flat->offset() == java_lang_Class::klass_offset() 1737 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1738 alias_type(idx)->set_rewritable(false); 1739 } 1740 ciField* field = nullptr; 1741 if (flat->isa_aryptr()) { 1742 #ifdef ASSERT 1743 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1744 // (T_BYTE has the weakest alignment and size restrictions...) 1745 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1746 #endif 1747 const Type* elemtype = flat->is_aryptr()->elem(); 1748 if (flat->offset() == TypePtr::OffsetBot) { 1749 alias_type(idx)->set_element(elemtype); 1750 } 1751 int field_offset = flat->is_aryptr()->field_offset().get(); 1752 if (flat->is_flat() && 1753 field_offset != Type::OffsetBot) { 1754 ciInlineKlass* vk = elemtype->inline_klass(); 1755 field_offset += vk->first_field_offset(); 1756 field = vk->get_field_by_offset(field_offset, false); 1757 } 1758 } 1759 if (flat->isa_klassptr()) { 1760 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1761 alias_type(idx)->set_rewritable(false); 1762 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1763 alias_type(idx)->set_rewritable(false); 1764 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1765 alias_type(idx)->set_rewritable(false); 1766 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1767 alias_type(idx)->set_rewritable(false); 1768 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1769 alias_type(idx)->set_rewritable(false); 1770 if (flat->offset() == in_bytes(Klass::layout_helper_offset())) 1771 alias_type(idx)->set_rewritable(false); 1772 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1773 alias_type(idx)->set_rewritable(false); 1774 } 1775 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1776 // but the base pointer type is not distinctive enough to identify 1777 // references into JavaThread.) 1778 1779 // Check for final fields. 1780 const TypeInstPtr* tinst = flat->isa_instptr(); 1781 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1782 if (tinst->const_oop() != nullptr && 1783 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1784 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1785 // static field 1786 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1787 field = k->get_field_by_offset(tinst->offset(), true); 1788 } else if (tinst->is_inlinetypeptr()) { 1789 // Inline type field 1790 ciInlineKlass* vk = tinst->inline_klass(); 1791 field = vk->get_field_by_offset(tinst->offset(), false); 1792 } else { 1793 ciInstanceKlass *k = tinst->instance_klass(); 1794 field = k->get_field_by_offset(tinst->offset(), false); 1795 } 1796 } 1797 assert(field == nullptr || 1798 original_field == nullptr || 1799 (field->holder() == original_field->holder() && 1800 field->offset_in_bytes() == original_field->offset_in_bytes() && 1801 field->is_static() == original_field->is_static()), "wrong field?"); 1802 // Set field() and is_rewritable() attributes. 1803 if (field != nullptr) { 1804 alias_type(idx)->set_field(field); 1805 if (flat->isa_aryptr()) { 1806 // Fields of flat arrays are rewritable although they are declared final 1807 assert(flat->is_flat(), "must be a flat array"); 1808 alias_type(idx)->set_rewritable(true); 1809 } 1810 } 1811 } 1812 1813 // Fill the cache for next time. 1814 if (!uncached) { 1815 ace->_adr_type = adr_type; 1816 ace->_index = idx; 1817 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1818 1819 // Might as well try to fill the cache for the flattened version, too. 1820 AliasCacheEntry* face = probe_alias_cache(flat); 1821 if (face->_adr_type == nullptr) { 1822 face->_adr_type = flat; 1823 face->_index = idx; 1824 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1825 } 1826 } 1827 1828 return alias_type(idx); 1829 } 1830 1831 1832 Compile::AliasType* Compile::alias_type(ciField* field) { 1833 const TypeOopPtr* t; 1834 if (field->is_static()) 1835 t = TypeInstPtr::make(field->holder()->java_mirror()); 1836 else 1837 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1838 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1839 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1840 return atp; 1841 } 1842 1843 1844 //------------------------------have_alias_type-------------------------------- 1845 bool Compile::have_alias_type(const TypePtr* adr_type) { 1846 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1847 if (ace->_adr_type == adr_type) { 1848 return true; 1849 } 1850 1851 // Handle special cases. 1852 if (adr_type == nullptr) return true; 1853 if (adr_type == TypePtr::BOTTOM) return true; 1854 1855 return find_alias_type(adr_type, true, nullptr) != nullptr; 1856 } 1857 1858 //-----------------------------must_alias-------------------------------------- 1859 // True if all values of the given address type are in the given alias category. 1860 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1861 if (alias_idx == AliasIdxBot) return true; // the universal category 1862 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1863 if (alias_idx == AliasIdxTop) return false; // the empty category 1864 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1865 1866 // the only remaining possible overlap is identity 1867 int adr_idx = get_alias_index(adr_type); 1868 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1869 assert(adr_idx == alias_idx || 1870 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1871 && adr_type != TypeOopPtr::BOTTOM), 1872 "should not be testing for overlap with an unsafe pointer"); 1873 return adr_idx == alias_idx; 1874 } 1875 1876 //------------------------------can_alias-------------------------------------- 1877 // True if any values of the given address type are in the given alias category. 1878 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1879 if (alias_idx == AliasIdxTop) return false; // the empty category 1880 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1881 // Known instance doesn't alias with bottom memory 1882 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1883 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1884 1885 // the only remaining possible overlap is identity 1886 int adr_idx = get_alias_index(adr_type); 1887 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1888 return adr_idx == alias_idx; 1889 } 1890 1891 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1892 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1893 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1894 if (parse_predicate_count() == 0) { 1895 return; 1896 } 1897 for (int i = 0; i < parse_predicate_count(); i++) { 1898 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1899 parse_predicate->mark_useless(); 1900 igvn._worklist.push(parse_predicate); 1901 } 1902 _parse_predicates.clear(); 1903 } 1904 1905 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1906 if (!n->for_post_loop_opts_igvn()) { 1907 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1908 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1909 _for_post_loop_igvn.append(n); 1910 } 1911 } 1912 1913 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1914 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1915 _for_post_loop_igvn.remove(n); 1916 } 1917 1918 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1919 // Verify that all previous optimizations produced a valid graph 1920 // at least to this point, even if no loop optimizations were done. 1921 PhaseIdealLoop::verify(igvn); 1922 1923 C->set_post_loop_opts_phase(); // no more loop opts allowed 1924 1925 assert(!C->major_progress(), "not cleared"); 1926 1927 if (_for_post_loop_igvn.length() > 0) { 1928 while (_for_post_loop_igvn.length() > 0) { 1929 Node* n = _for_post_loop_igvn.pop(); 1930 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1931 igvn._worklist.push(n); 1932 } 1933 igvn.optimize(); 1934 if (failing()) return; 1935 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1936 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1937 1938 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1939 if (C->major_progress()) { 1940 C->clear_major_progress(); // ensure that major progress is now clear 1941 } 1942 } 1943 } 1944 1945 void Compile::add_inline_type(Node* n) { 1946 assert(n->is_InlineType(), "unexpected node"); 1947 _inline_type_nodes.push(n); 1948 } 1949 1950 void Compile::remove_inline_type(Node* n) { 1951 assert(n->is_InlineType(), "unexpected node"); 1952 if (_inline_type_nodes.contains(n)) { 1953 _inline_type_nodes.remove(n); 1954 } 1955 } 1956 1957 // Does the return value keep otherwise useless inline type allocations alive? 1958 static bool return_val_keeps_allocations_alive(Node* ret_val) { 1959 ResourceMark rm; 1960 Unique_Node_List wq; 1961 wq.push(ret_val); 1962 bool some_allocations = false; 1963 for (uint i = 0; i < wq.size(); i++) { 1964 Node* n = wq.at(i); 1965 if (n->outcnt() > 1) { 1966 // Some other use for the allocation 1967 return false; 1968 } else if (n->is_InlineType()) { 1969 wq.push(n->in(1)); 1970 } else if (n->is_Phi()) { 1971 for (uint j = 1; j < n->req(); j++) { 1972 wq.push(n->in(j)); 1973 } 1974 } else if (n->is_CheckCastPP() && 1975 n->in(1)->is_Proj() && 1976 n->in(1)->in(0)->is_Allocate()) { 1977 some_allocations = true; 1978 } else if (n->is_CheckCastPP()) { 1979 wq.push(n->in(1)); 1980 } 1981 } 1982 return some_allocations; 1983 } 1984 1985 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) { 1986 // Make sure that the return value does not keep an otherwise unused allocation alive 1987 if (tf()->returns_inline_type_as_fields()) { 1988 Node* ret = nullptr; 1989 for (uint i = 1; i < root()->req(); i++) { 1990 Node* in = root()->in(i); 1991 if (in->Opcode() == Op_Return) { 1992 assert(ret == nullptr, "only one return"); 1993 ret = in; 1994 } 1995 } 1996 if (ret != nullptr) { 1997 Node* ret_val = ret->in(TypeFunc::Parms); 1998 if (igvn.type(ret_val)->isa_oopptr() && 1999 return_val_keeps_allocations_alive(ret_val)) { 2000 igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn)); 2001 assert(ret_val->outcnt() == 0, "should be dead now"); 2002 igvn.remove_dead_node(ret_val); 2003 } 2004 } 2005 } 2006 if (_inline_type_nodes.length() == 0) { 2007 return; 2008 } 2009 // Scalarize inline types in safepoint debug info. 2010 // Delay this until all inlining is over to avoid getting inconsistent debug info. 2011 set_scalarize_in_safepoints(true); 2012 for (int i = _inline_type_nodes.length()-1; i >= 0; i--) { 2013 InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType(); 2014 vt->make_scalar_in_safepoints(&igvn); 2015 igvn.record_for_igvn(vt); 2016 } 2017 if (remove) { 2018 // Remove inline type nodes by replacing them with their oop input 2019 while (_inline_type_nodes.length() > 0) { 2020 InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType(); 2021 if (vt->outcnt() == 0) { 2022 igvn.remove_dead_node(vt); 2023 continue; 2024 } 2025 for (DUIterator i = vt->outs(); vt->has_out(i); i++) { 2026 DEBUG_ONLY(bool must_be_buffered = false); 2027 Node* u = vt->out(i); 2028 // Check if any users are blackholes. If so, rewrite them to use either the 2029 // allocated buffer, or individual components, instead of the inline type node 2030 // that goes away. 2031 if (u->is_Blackhole()) { 2032 BlackholeNode* bh = u->as_Blackhole(); 2033 2034 // Unlink the old input 2035 int idx = bh->find_edge(vt); 2036 assert(idx != -1, "The edge should be there"); 2037 bh->del_req(idx); 2038 --i; 2039 2040 if (vt->is_allocated(&igvn)) { 2041 // Already has the allocated instance, blackhole that 2042 bh->add_req(vt->get_oop()); 2043 } else { 2044 // Not allocated yet, blackhole the components 2045 for (uint c = 0; c < vt->field_count(); c++) { 2046 bh->add_req(vt->field_value(c)); 2047 } 2048 } 2049 2050 // Node modified, record for IGVN 2051 igvn.record_for_igvn(bh); 2052 } 2053 #ifdef ASSERT 2054 // Verify that inline type is buffered when replacing by oop 2055 else if (u->is_InlineType()) { 2056 // InlineType uses don't need buffering because they are about to be replaced as well 2057 } else if (u->is_Phi()) { 2058 // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through 2059 } else { 2060 must_be_buffered = true; 2061 } 2062 if (must_be_buffered && !vt->is_allocated(&igvn)) { 2063 vt->dump(0); 2064 u->dump(0); 2065 assert(false, "Should have been buffered"); 2066 } 2067 #endif 2068 } 2069 igvn.replace_node(vt, vt->get_oop()); 2070 } 2071 } 2072 igvn.optimize(); 2073 } 2074 2075 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) { 2076 if (!_has_flat_accesses) { 2077 return; 2078 } 2079 // Initially, all flat array accesses share the same slice to 2080 // keep dependencies with Object[] array accesses (that could be 2081 // to a flat array) correct. We're done with parsing so we 2082 // now know all flat array accesses in this compile 2083 // unit. Let's move flat array accesses to their own slice, 2084 // one per element field. This should help memory access 2085 // optimizations. 2086 ResourceMark rm; 2087 Unique_Node_List wq; 2088 wq.push(root()); 2089 2090 Node_List mergememnodes; 2091 Node_List memnodes; 2092 2093 // Alias index currently shared by all flat memory accesses 2094 int index = get_alias_index(TypeAryPtr::INLINES); 2095 2096 // Find MergeMem nodes and flat array accesses 2097 for (uint i = 0; i < wq.size(); i++) { 2098 Node* n = wq.at(i); 2099 if (n->is_Mem()) { 2100 const TypePtr* adr_type = nullptr; 2101 adr_type = get_adr_type(get_alias_index(n->adr_type())); 2102 if (adr_type == TypeAryPtr::INLINES) { 2103 memnodes.push(n); 2104 } 2105 } else if (n->is_MergeMem()) { 2106 MergeMemNode* mm = n->as_MergeMem(); 2107 if (mm->memory_at(index) != mm->base_memory()) { 2108 mergememnodes.push(n); 2109 } 2110 } 2111 for (uint j = 0; j < n->req(); j++) { 2112 Node* m = n->in(j); 2113 if (m != nullptr) { 2114 wq.push(m); 2115 } 2116 } 2117 } 2118 2119 if (memnodes.size() > 0) { 2120 _flat_accesses_share_alias = false; 2121 2122 // We are going to change the slice for the flat array 2123 // accesses so we need to clear the cache entries that refer to 2124 // them. 2125 for (uint i = 0; i < AliasCacheSize; i++) { 2126 AliasCacheEntry* ace = &_alias_cache[i]; 2127 if (ace->_adr_type != nullptr && 2128 ace->_adr_type->is_flat()) { 2129 ace->_adr_type = nullptr; 2130 ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop 2131 } 2132 } 2133 2134 // Find what aliases we are going to add 2135 int start_alias = num_alias_types()-1; 2136 int stop_alias = 0; 2137 2138 for (uint i = 0; i < memnodes.size(); i++) { 2139 Node* m = memnodes.at(i); 2140 const TypePtr* adr_type = nullptr; 2141 adr_type = m->adr_type(); 2142 #ifdef ASSERT 2143 m->as_Mem()->set_adr_type(adr_type); 2144 #endif 2145 int idx = get_alias_index(adr_type); 2146 start_alias = MIN2(start_alias, idx); 2147 stop_alias = MAX2(stop_alias, idx); 2148 } 2149 2150 assert(stop_alias >= start_alias, "should have expanded aliases"); 2151 2152 Node_Stack stack(0); 2153 #ifdef ASSERT 2154 VectorSet seen(Thread::current()->resource_area()); 2155 #endif 2156 // Now let's fix the memory graph so each flat array access 2157 // is moved to the right slice. Start from the MergeMem nodes. 2158 uint last = unique(); 2159 for (uint i = 0; i < mergememnodes.size(); i++) { 2160 MergeMemNode* current = mergememnodes.at(i)->as_MergeMem(); 2161 Node* n = current->memory_at(index); 2162 MergeMemNode* mm = nullptr; 2163 do { 2164 // Follow memory edges through memory accesses, phis and 2165 // narrow membars and push nodes on the stack. Once we hit 2166 // bottom memory, we pop element off the stack one at a 2167 // time, in reverse order, and move them to the right slice 2168 // by changing their memory edges. 2169 if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) { 2170 assert(!seen.test_set(n->_idx), ""); 2171 // Uses (a load for instance) will need to be moved to the 2172 // right slice as well and will get a new memory state 2173 // that we don't know yet. The use could also be the 2174 // backedge of a loop. We put a place holder node between 2175 // the memory node and its uses. We replace that place 2176 // holder with the correct memory state once we know it, 2177 // i.e. when nodes are popped off the stack. Using the 2178 // place holder make the logic work in the presence of 2179 // loops. 2180 if (n->outcnt() > 1) { 2181 Node* place_holder = nullptr; 2182 assert(!n->has_out_with(Op_Node), ""); 2183 for (DUIterator k = n->outs(); n->has_out(k); k++) { 2184 Node* u = n->out(k); 2185 if (u != current && u->_idx < last) { 2186 bool success = false; 2187 for (uint l = 0; l < u->req(); l++) { 2188 if (!stack.is_empty() && u == stack.node() && l == stack.index()) { 2189 continue; 2190 } 2191 Node* in = u->in(l); 2192 if (in == n) { 2193 if (place_holder == nullptr) { 2194 place_holder = new Node(1); 2195 place_holder->init_req(0, n); 2196 } 2197 igvn.replace_input_of(u, l, place_holder); 2198 success = true; 2199 } 2200 } 2201 if (success) { 2202 --k; 2203 } 2204 } 2205 } 2206 } 2207 if (n->is_Phi()) { 2208 stack.push(n, 1); 2209 n = n->in(1); 2210 } else if (n->is_Mem()) { 2211 stack.push(n, n->req()); 2212 n = n->in(MemNode::Memory); 2213 } else { 2214 assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, ""); 2215 stack.push(n, n->req()); 2216 n = n->in(0)->in(TypeFunc::Memory); 2217 } 2218 } else { 2219 assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), ""); 2220 // Build a new MergeMem node to carry the new memory state 2221 // as we build it. IGVN should fold extraneous MergeMem 2222 // nodes. 2223 mm = MergeMemNode::make(n); 2224 igvn.register_new_node_with_optimizer(mm); 2225 while (stack.size() > 0) { 2226 Node* m = stack.node(); 2227 uint idx = stack.index(); 2228 if (m->is_Mem()) { 2229 // Move memory node to its new slice 2230 const TypePtr* adr_type = m->adr_type(); 2231 int alias = get_alias_index(adr_type); 2232 Node* prev = mm->memory_at(alias); 2233 igvn.replace_input_of(m, MemNode::Memory, prev); 2234 mm->set_memory_at(alias, m); 2235 } else if (m->is_Phi()) { 2236 // We need as many new phis as there are new aliases 2237 igvn.replace_input_of(m, idx, mm); 2238 if (idx == m->req()-1) { 2239 Node* r = m->in(0); 2240 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2241 const TypePtr* adr_type = get_adr_type(j); 2242 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2243 continue; 2244 } 2245 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j)); 2246 igvn.register_new_node_with_optimizer(phi); 2247 for (uint k = 1; k < m->req(); k++) { 2248 phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j)); 2249 } 2250 mm->set_memory_at(j, phi); 2251 } 2252 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2253 igvn.register_new_node_with_optimizer(base_phi); 2254 for (uint k = 1; k < m->req(); k++) { 2255 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory()); 2256 } 2257 mm->set_base_memory(base_phi); 2258 } 2259 } else { 2260 // This is a MemBarCPUOrder node from 2261 // Parse::array_load()/Parse::array_store(), in the 2262 // branch that handles flat arrays hidden under 2263 // an Object[] array. We also need one new membar per 2264 // new alias to keep the unknown access that the 2265 // membars protect properly ordered with accesses to 2266 // known flat array. 2267 assert(m->is_Proj(), "projection expected"); 2268 Node* ctrl = m->in(0)->in(TypeFunc::Control); 2269 igvn.replace_input_of(m->in(0), TypeFunc::Control, top()); 2270 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2271 const TypePtr* adr_type = get_adr_type(j); 2272 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2273 continue; 2274 } 2275 MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr); 2276 igvn.register_new_node_with_optimizer(mb); 2277 Node* mem = mm->memory_at(j); 2278 mb->init_req(TypeFunc::Control, ctrl); 2279 mb->init_req(TypeFunc::Memory, mem); 2280 ctrl = new ProjNode(mb, TypeFunc::Control); 2281 igvn.register_new_node_with_optimizer(ctrl); 2282 mem = new ProjNode(mb, TypeFunc::Memory); 2283 igvn.register_new_node_with_optimizer(mem); 2284 mm->set_memory_at(j, mem); 2285 } 2286 igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl); 2287 } 2288 if (idx < m->req()-1) { 2289 idx += 1; 2290 stack.set_index(idx); 2291 n = m->in(idx); 2292 break; 2293 } 2294 // Take care of place holder nodes 2295 if (m->has_out_with(Op_Node)) { 2296 Node* place_holder = m->find_out_with(Op_Node); 2297 if (place_holder != nullptr) { 2298 Node* mm_clone = mm->clone(); 2299 igvn.register_new_node_with_optimizer(mm_clone); 2300 Node* hook = new Node(1); 2301 hook->init_req(0, mm); 2302 igvn.replace_node(place_holder, mm_clone); 2303 hook->destruct(&igvn); 2304 } 2305 assert(!m->has_out_with(Op_Node), "place holder should be gone now"); 2306 } 2307 stack.pop(); 2308 } 2309 } 2310 } while(stack.size() > 0); 2311 // Fix the memory state at the MergeMem we started from 2312 igvn.rehash_node_delayed(current); 2313 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2314 const TypePtr* adr_type = get_adr_type(j); 2315 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) { 2316 continue; 2317 } 2318 current->set_memory_at(j, mm); 2319 } 2320 current->set_memory_at(index, current->base_memory()); 2321 } 2322 igvn.optimize(); 2323 } 2324 print_method(PHASE_SPLIT_INLINES_ARRAY, 2); 2325 #ifdef ASSERT 2326 if (!_flat_accesses_share_alias) { 2327 wq.clear(); 2328 wq.push(root()); 2329 for (uint i = 0; i < wq.size(); i++) { 2330 Node* n = wq.at(i); 2331 assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph"); 2332 for (uint j = 0; j < n->req(); j++) { 2333 Node* m = n->in(j); 2334 if (m != nullptr) { 2335 wq.push(m); 2336 } 2337 } 2338 } 2339 } 2340 #endif 2341 } 2342 2343 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 2344 if (OptimizeUnstableIf) { 2345 _unstable_if_traps.append(trap); 2346 } 2347 } 2348 2349 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 2350 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 2351 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2352 Node* n = trap->uncommon_trap(); 2353 if (!useful.member(n)) { 2354 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 2355 } 2356 } 2357 } 2358 2359 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 2360 // or fold-compares case. Return true if succeed or not found. 2361 // 2362 // In rare cases, the found trap has been processed. It is too late to delete it. Return 2363 // false and ask fold-compares to yield. 2364 // 2365 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 2366 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 2367 // when deoptimization does happen. 2368 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 2369 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 2370 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2371 if (trap->uncommon_trap() == unc) { 2372 if (yield && trap->modified()) { 2373 return false; 2374 } 2375 _unstable_if_traps.delete_at(i); 2376 break; 2377 } 2378 } 2379 return true; 2380 } 2381 2382 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 2383 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 2384 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 2385 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 2386 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2387 CallStaticJavaNode* unc = trap->uncommon_trap(); 2388 int next_bci = trap->next_bci(); 2389 bool modified = trap->modified(); 2390 2391 if (next_bci != -1 && !modified) { 2392 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2393 JVMState* jvms = unc->jvms(); 2394 ciMethod* method = jvms->method(); 2395 ciBytecodeStream iter(method); 2396 2397 iter.force_bci(jvms->bci()); 2398 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2399 Bytecodes::Code c = iter.cur_bc(); 2400 Node* lhs = nullptr; 2401 Node* rhs = nullptr; 2402 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2403 lhs = unc->peek_operand(0); 2404 rhs = unc->peek_operand(1); 2405 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2406 lhs = unc->peek_operand(0); 2407 } 2408 2409 ResourceMark rm; 2410 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2411 assert(live_locals.is_valid(), "broken liveness info"); 2412 int len = (int)live_locals.size(); 2413 2414 for (int i = 0; i < len; i++) { 2415 Node* local = unc->local(jvms, i); 2416 // kill local using the liveness of next_bci. 2417 // give up when the local looks like an operand to secure reexecution. 2418 if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) { 2419 uint idx = jvms->locoff() + i; 2420 #ifdef ASSERT 2421 if (PrintOpto && Verbose) { 2422 tty->print("[unstable_if] kill local#%d: ", idx); 2423 local->dump(); 2424 tty->cr(); 2425 } 2426 #endif 2427 igvn.replace_input_of(unc, idx, top()); 2428 modified = true; 2429 } 2430 } 2431 } 2432 2433 // keep the modified trap for late query 2434 if (modified) { 2435 trap->set_modified(); 2436 } else { 2437 _unstable_if_traps.delete_at(i); 2438 } 2439 } 2440 igvn.optimize(); 2441 } 2442 2443 // StringOpts and late inlining of string methods 2444 void Compile::inline_string_calls(bool parse_time) { 2445 { 2446 // remove useless nodes to make the usage analysis simpler 2447 ResourceMark rm; 2448 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2449 } 2450 2451 { 2452 ResourceMark rm; 2453 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2454 PhaseStringOpts pso(initial_gvn()); 2455 print_method(PHASE_AFTER_STRINGOPTS, 3); 2456 } 2457 2458 // now inline anything that we skipped the first time around 2459 if (!parse_time) { 2460 _late_inlines_pos = _late_inlines.length(); 2461 } 2462 2463 while (_string_late_inlines.length() > 0) { 2464 CallGenerator* cg = _string_late_inlines.pop(); 2465 cg->do_late_inline(); 2466 if (failing()) return; 2467 } 2468 _string_late_inlines.trunc_to(0); 2469 } 2470 2471 // Late inlining of boxing methods 2472 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2473 if (_boxing_late_inlines.length() > 0) { 2474 assert(has_boxed_value(), "inconsistent"); 2475 2476 set_inlining_incrementally(true); 2477 2478 igvn_worklist()->ensure_empty(); // should be done with igvn 2479 2480 _late_inlines_pos = _late_inlines.length(); 2481 2482 while (_boxing_late_inlines.length() > 0) { 2483 CallGenerator* cg = _boxing_late_inlines.pop(); 2484 cg->do_late_inline(); 2485 if (failing()) return; 2486 } 2487 _boxing_late_inlines.trunc_to(0); 2488 2489 inline_incrementally_cleanup(igvn); 2490 2491 set_inlining_incrementally(false); 2492 } 2493 } 2494 2495 bool Compile::inline_incrementally_one() { 2496 assert(IncrementalInline, "incremental inlining should be on"); 2497 2498 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2499 2500 set_inlining_progress(false); 2501 set_do_cleanup(false); 2502 2503 for (int i = 0; i < _late_inlines.length(); i++) { 2504 _late_inlines_pos = i+1; 2505 CallGenerator* cg = _late_inlines.at(i); 2506 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2507 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2508 cg->do_late_inline(); 2509 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2510 if (failing()) { 2511 return false; 2512 } else if (inlining_progress()) { 2513 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2514 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2515 break; // process one call site at a time 2516 } 2517 } else { 2518 // Ignore late inline direct calls when inlining is not allowed. 2519 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2520 } 2521 } 2522 // Remove processed elements. 2523 _late_inlines.remove_till(_late_inlines_pos); 2524 _late_inlines_pos = 0; 2525 2526 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2527 2528 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2529 2530 set_inlining_progress(false); 2531 set_do_cleanup(false); 2532 2533 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2534 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2535 } 2536 2537 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2538 { 2539 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2540 ResourceMark rm; 2541 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2542 } 2543 { 2544 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2545 igvn.reset_from_gvn(initial_gvn()); 2546 igvn.optimize(); 2547 if (failing()) return; 2548 } 2549 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2550 } 2551 2552 // Perform incremental inlining until bound on number of live nodes is reached 2553 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2554 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2555 2556 set_inlining_incrementally(true); 2557 uint low_live_nodes = 0; 2558 2559 while (_late_inlines.length() > 0) { 2560 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2561 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2562 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2563 // PhaseIdealLoop is expensive so we only try it once we are 2564 // out of live nodes and we only try it again if the previous 2565 // helped got the number of nodes down significantly 2566 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2567 if (failing()) return; 2568 low_live_nodes = live_nodes(); 2569 _major_progress = true; 2570 } 2571 2572 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2573 bool do_print_inlining = print_inlining() || print_intrinsics(); 2574 if (do_print_inlining || log() != nullptr) { 2575 // Print inlining message for candidates that we couldn't inline for lack of space. 2576 for (int i = 0; i < _late_inlines.length(); i++) { 2577 CallGenerator* cg = _late_inlines.at(i); 2578 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2579 if (do_print_inlining) { 2580 cg->print_inlining_late(InliningResult::FAILURE, msg); 2581 } 2582 log_late_inline_failure(cg, msg); 2583 } 2584 } 2585 break; // finish 2586 } 2587 } 2588 2589 igvn_worklist()->ensure_empty(); // should be done with igvn 2590 2591 while (inline_incrementally_one()) { 2592 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2593 } 2594 if (failing()) return; 2595 2596 inline_incrementally_cleanup(igvn); 2597 2598 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2599 2600 if (failing()) return; 2601 2602 if (_late_inlines.length() == 0) { 2603 break; // no more progress 2604 } 2605 } 2606 2607 igvn_worklist()->ensure_empty(); // should be done with igvn 2608 2609 if (_string_late_inlines.length() > 0) { 2610 assert(has_stringbuilder(), "inconsistent"); 2611 2612 inline_string_calls(false); 2613 2614 if (failing()) return; 2615 2616 inline_incrementally_cleanup(igvn); 2617 } 2618 2619 set_inlining_incrementally(false); 2620 } 2621 2622 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2623 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2624 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2625 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2626 // as if "inlining_incrementally() == true" were set. 2627 assert(inlining_incrementally() == false, "not allowed"); 2628 #ifdef ASSERT 2629 Unique_Node_List* modified_nodes = _modified_nodes; 2630 _modified_nodes = nullptr; 2631 #endif 2632 assert(_late_inlines.length() > 0, "sanity"); 2633 2634 while (_late_inlines.length() > 0) { 2635 igvn_worklist()->ensure_empty(); // should be done with igvn 2636 2637 while (inline_incrementally_one()) { 2638 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2639 } 2640 if (failing()) return; 2641 2642 inline_incrementally_cleanup(igvn); 2643 } 2644 DEBUG_ONLY( _modified_nodes = modified_nodes; ) 2645 } 2646 2647 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2648 if (_loop_opts_cnt > 0) { 2649 while (major_progress() && (_loop_opts_cnt > 0)) { 2650 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2651 PhaseIdealLoop::optimize(igvn, mode); 2652 _loop_opts_cnt--; 2653 if (failing()) return false; 2654 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2655 } 2656 } 2657 return true; 2658 } 2659 2660 // Remove edges from "root" to each SafePoint at a backward branch. 2661 // They were inserted during parsing (see add_safepoint()) to make 2662 // infinite loops without calls or exceptions visible to root, i.e., 2663 // useful. 2664 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2665 Node *r = root(); 2666 if (r != nullptr) { 2667 for (uint i = r->req(); i < r->len(); ++i) { 2668 Node *n = r->in(i); 2669 if (n != nullptr && n->is_SafePoint()) { 2670 r->rm_prec(i); 2671 if (n->outcnt() == 0) { 2672 igvn.remove_dead_node(n); 2673 } 2674 --i; 2675 } 2676 } 2677 // Parsing may have added top inputs to the root node (Path 2678 // leading to the Halt node proven dead). Make sure we get a 2679 // chance to clean them up. 2680 igvn._worklist.push(r); 2681 igvn.optimize(); 2682 } 2683 } 2684 2685 //------------------------------Optimize--------------------------------------- 2686 // Given a graph, optimize it. 2687 void Compile::Optimize() { 2688 TracePhase tp("optimizer", &timers[_t_optimizer]); 2689 2690 #ifndef PRODUCT 2691 if (env()->break_at_compile()) { 2692 BREAKPOINT; 2693 } 2694 2695 #endif 2696 2697 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2698 #ifdef ASSERT 2699 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2700 #endif 2701 2702 ResourceMark rm; 2703 2704 print_inlining_reinit(); 2705 2706 NOT_PRODUCT( verify_graph_edges(); ) 2707 2708 print_method(PHASE_AFTER_PARSING, 1); 2709 2710 { 2711 // Iterative Global Value Numbering, including ideal transforms 2712 // Initialize IterGVN with types and values from parse-time GVN 2713 PhaseIterGVN igvn(initial_gvn()); 2714 #ifdef ASSERT 2715 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2716 #endif 2717 { 2718 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2719 igvn.optimize(); 2720 } 2721 2722 if (failing()) return; 2723 2724 print_method(PHASE_ITER_GVN1, 2); 2725 2726 process_for_unstable_if_traps(igvn); 2727 2728 if (failing()) return; 2729 2730 inline_incrementally(igvn); 2731 2732 print_method(PHASE_INCREMENTAL_INLINE, 2); 2733 2734 if (failing()) return; 2735 2736 if (eliminate_boxing()) { 2737 // Inline valueOf() methods now. 2738 inline_boxing_calls(igvn); 2739 2740 if (failing()) return; 2741 2742 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2743 inline_incrementally(igvn); 2744 } 2745 2746 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2747 2748 if (failing()) return; 2749 } 2750 2751 // Remove the speculative part of types and clean up the graph from 2752 // the extra CastPP nodes whose only purpose is to carry them. Do 2753 // that early so that optimizations are not disrupted by the extra 2754 // CastPP nodes. 2755 remove_speculative_types(igvn); 2756 2757 if (failing()) return; 2758 2759 // No more new expensive nodes will be added to the list from here 2760 // so keep only the actual candidates for optimizations. 2761 cleanup_expensive_nodes(igvn); 2762 2763 if (failing()) return; 2764 2765 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2766 if (EnableVectorSupport && has_vbox_nodes()) { 2767 TracePhase tp("", &timers[_t_vector]); 2768 PhaseVector pv(igvn); 2769 pv.optimize_vector_boxes(); 2770 if (failing()) return; 2771 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2772 } 2773 assert(!has_vbox_nodes(), "sanity"); 2774 2775 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2776 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2777 igvn_worklist()->ensure_empty(); // should be done with igvn 2778 { 2779 ResourceMark rm; 2780 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2781 } 2782 igvn.reset_from_gvn(initial_gvn()); 2783 igvn.optimize(); 2784 if (failing()) return; 2785 } 2786 2787 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2788 // safepoints 2789 remove_root_to_sfpts_edges(igvn); 2790 2791 // Process inline type nodes now that all inlining is over 2792 process_inline_types(igvn); 2793 2794 adjust_flat_array_access_aliases(igvn); 2795 2796 if (failing()) return; 2797 2798 // Perform escape analysis 2799 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2800 if (has_loops()) { 2801 // Cleanup graph (remove dead nodes). 2802 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2803 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2804 if (failing()) return; 2805 } 2806 bool progress; 2807 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2808 do { 2809 ConnectionGraph::do_analysis(this, &igvn); 2810 2811 if (failing()) return; 2812 2813 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2814 2815 // Optimize out fields loads from scalar replaceable allocations. 2816 igvn.optimize(); 2817 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2818 2819 if (failing()) return; 2820 2821 if (congraph() != nullptr && macro_count() > 0) { 2822 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2823 PhaseMacroExpand mexp(igvn); 2824 mexp.eliminate_macro_nodes(); 2825 if (failing()) return; 2826 2827 igvn.set_delay_transform(false); 2828 igvn.optimize(); 2829 if (failing()) return; 2830 2831 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2832 } 2833 2834 ConnectionGraph::verify_ram_nodes(this, root()); 2835 if (failing()) return; 2836 2837 progress = do_iterative_escape_analysis() && 2838 (macro_count() < mcount) && 2839 ConnectionGraph::has_candidates(this); 2840 // Try again if candidates exist and made progress 2841 // by removing some allocations and/or locks. 2842 } while (progress); 2843 } 2844 2845 // Loop transforms on the ideal graph. Range Check Elimination, 2846 // peeling, unrolling, etc. 2847 2848 // Set loop opts counter 2849 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2850 { 2851 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2852 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2853 _loop_opts_cnt--; 2854 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2855 if (failing()) return; 2856 } 2857 // Loop opts pass if partial peeling occurred in previous pass 2858 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2859 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2860 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2861 _loop_opts_cnt--; 2862 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2863 if (failing()) return; 2864 } 2865 // Loop opts pass for loop-unrolling before CCP 2866 if(major_progress() && (_loop_opts_cnt > 0)) { 2867 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2868 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2869 _loop_opts_cnt--; 2870 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2871 } 2872 if (!failing()) { 2873 // Verify that last round of loop opts produced a valid graph 2874 PhaseIdealLoop::verify(igvn); 2875 } 2876 } 2877 if (failing()) return; 2878 2879 // Conditional Constant Propagation; 2880 print_method(PHASE_BEFORE_CCP1, 2); 2881 PhaseCCP ccp( &igvn ); 2882 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2883 { 2884 TracePhase tp("ccp", &timers[_t_ccp]); 2885 ccp.do_transform(); 2886 } 2887 print_method(PHASE_CCP1, 2); 2888 2889 assert( true, "Break here to ccp.dump_old2new_map()"); 2890 2891 // Iterative Global Value Numbering, including ideal transforms 2892 { 2893 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2894 igvn.reset_from_igvn(&ccp); 2895 igvn.optimize(); 2896 } 2897 print_method(PHASE_ITER_GVN2, 2); 2898 2899 if (failing()) return; 2900 2901 // Loop transforms on the ideal graph. Range Check Elimination, 2902 // peeling, unrolling, etc. 2903 if (!optimize_loops(igvn, LoopOptsDefault)) { 2904 return; 2905 } 2906 2907 if (failing()) return; 2908 2909 C->clear_major_progress(); // ensure that major progress is now clear 2910 2911 process_for_post_loop_opts_igvn(igvn); 2912 2913 if (failing()) return; 2914 2915 #ifdef ASSERT 2916 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2917 #endif 2918 2919 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2920 2921 if (_late_inlines.length() > 0) { 2922 // More opportunities to optimize virtual and MH calls. 2923 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2924 process_late_inline_calls_no_inline(igvn); 2925 } 2926 2927 { 2928 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2929 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2930 PhaseMacroExpand mex(igvn); 2931 if (mex.expand_macro_nodes()) { 2932 assert(failing(), "must bail out w/ explicit message"); 2933 return; 2934 } 2935 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2936 } 2937 2938 // Process inline type nodes again and remove them. From here 2939 // on we don't need to keep track of field values anymore. 2940 process_inline_types(igvn, /* remove= */ true); 2941 2942 { 2943 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2944 if (bs->expand_barriers(this, igvn)) { 2945 assert(failing(), "must bail out w/ explicit message"); 2946 return; 2947 } 2948 print_method(PHASE_BARRIER_EXPANSION, 2); 2949 } 2950 2951 if (C->max_vector_size() > 0) { 2952 C->optimize_logic_cones(igvn); 2953 igvn.optimize(); 2954 if (failing()) return; 2955 } 2956 2957 DEBUG_ONLY( _modified_nodes = nullptr; ) 2958 DEBUG_ONLY( _late_inlines.clear(); ) 2959 2960 assert(igvn._worklist.size() == 0, "not empty"); 2961 } // (End scope of igvn; run destructor if necessary for asserts.) 2962 2963 check_no_dead_use(); 2964 2965 process_print_inlining(); 2966 2967 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2968 // to remove hashes to unlock nodes for modifications. 2969 C->node_hash()->clear(); 2970 2971 // A method with only infinite loops has no edges entering loops from root 2972 { 2973 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2974 if (final_graph_reshaping()) { 2975 assert(failing(), "must bail out w/ explicit message"); 2976 return; 2977 } 2978 } 2979 2980 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2981 DEBUG_ONLY(set_phase_optimize_finished();) 2982 } 2983 2984 #ifdef ASSERT 2985 void Compile::check_no_dead_use() const { 2986 ResourceMark rm; 2987 Unique_Node_List wq; 2988 wq.push(root()); 2989 for (uint i = 0; i < wq.size(); ++i) { 2990 Node* n = wq.at(i); 2991 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2992 Node* u = n->fast_out(j); 2993 if (u->outcnt() == 0 && !u->is_Con()) { 2994 u->dump(); 2995 fatal("no reachable node should have no use"); 2996 } 2997 wq.push(u); 2998 } 2999 } 3000 } 3001 #endif 3002 3003 void Compile::inline_vector_reboxing_calls() { 3004 if (C->_vector_reboxing_late_inlines.length() > 0) { 3005 _late_inlines_pos = C->_late_inlines.length(); 3006 while (_vector_reboxing_late_inlines.length() > 0) { 3007 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 3008 cg->do_late_inline(); 3009 if (failing()) return; 3010 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 3011 } 3012 _vector_reboxing_late_inlines.trunc_to(0); 3013 } 3014 } 3015 3016 bool Compile::has_vbox_nodes() { 3017 if (C->_vector_reboxing_late_inlines.length() > 0) { 3018 return true; 3019 } 3020 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 3021 Node * n = C->macro_node(macro_idx); 3022 assert(n->is_macro(), "only macro nodes expected here"); 3023 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 3024 return true; 3025 } 3026 } 3027 return false; 3028 } 3029 3030 //---------------------------- Bitwise operation packing optimization --------------------------- 3031 3032 static bool is_vector_unary_bitwise_op(Node* n) { 3033 return n->Opcode() == Op_XorV && 3034 VectorNode::is_vector_bitwise_not_pattern(n); 3035 } 3036 3037 static bool is_vector_binary_bitwise_op(Node* n) { 3038 switch (n->Opcode()) { 3039 case Op_AndV: 3040 case Op_OrV: 3041 return true; 3042 3043 case Op_XorV: 3044 return !is_vector_unary_bitwise_op(n); 3045 3046 default: 3047 return false; 3048 } 3049 } 3050 3051 static bool is_vector_ternary_bitwise_op(Node* n) { 3052 return n->Opcode() == Op_MacroLogicV; 3053 } 3054 3055 static bool is_vector_bitwise_op(Node* n) { 3056 return is_vector_unary_bitwise_op(n) || 3057 is_vector_binary_bitwise_op(n) || 3058 is_vector_ternary_bitwise_op(n); 3059 } 3060 3061 static bool is_vector_bitwise_cone_root(Node* n) { 3062 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 3063 return false; 3064 } 3065 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3066 if (is_vector_bitwise_op(n->fast_out(i))) { 3067 return false; 3068 } 3069 } 3070 return true; 3071 } 3072 3073 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 3074 uint cnt = 0; 3075 if (is_vector_bitwise_op(n)) { 3076 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 3077 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3078 for (uint i = 1; i < inp_cnt; i++) { 3079 Node* in = n->in(i); 3080 bool skip = VectorNode::is_all_ones_vector(in); 3081 if (!skip && !inputs.member(in)) { 3082 inputs.push(in); 3083 cnt++; 3084 } 3085 } 3086 assert(cnt <= 1, "not unary"); 3087 } else { 3088 uint last_req = inp_cnt; 3089 if (is_vector_ternary_bitwise_op(n)) { 3090 last_req = inp_cnt - 1; // skip last input 3091 } 3092 for (uint i = 1; i < last_req; i++) { 3093 Node* def = n->in(i); 3094 if (!inputs.member(def)) { 3095 inputs.push(def); 3096 cnt++; 3097 } 3098 } 3099 } 3100 } else { // not a bitwise operations 3101 if (!inputs.member(n)) { 3102 inputs.push(n); 3103 cnt++; 3104 } 3105 } 3106 return cnt; 3107 } 3108 3109 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 3110 Unique_Node_List useful_nodes; 3111 C->identify_useful_nodes(useful_nodes); 3112 3113 for (uint i = 0; i < useful_nodes.size(); i++) { 3114 Node* n = useful_nodes.at(i); 3115 if (is_vector_bitwise_cone_root(n)) { 3116 list.push(n); 3117 } 3118 } 3119 } 3120 3121 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 3122 const TypeVect* vt, 3123 Unique_Node_List& partition, 3124 Unique_Node_List& inputs) { 3125 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 3126 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 3127 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 3128 3129 Node* in1 = inputs.at(0); 3130 Node* in2 = inputs.at(1); 3131 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 3132 3133 uint func = compute_truth_table(partition, inputs); 3134 3135 Node* pn = partition.at(partition.size() - 1); 3136 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3137 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 3138 } 3139 3140 static uint extract_bit(uint func, uint pos) { 3141 return (func & (1 << pos)) >> pos; 3142 } 3143 3144 // 3145 // A macro logic node represents a truth table. It has 4 inputs, 3146 // First three inputs corresponds to 3 columns of a truth table 3147 // and fourth input captures the logic function. 3148 // 3149 // eg. fn = (in1 AND in2) OR in3; 3150 // 3151 // MacroNode(in1,in2,in3,fn) 3152 // 3153 // ----------------- 3154 // in1 in2 in3 fn 3155 // ----------------- 3156 // 0 0 0 0 3157 // 0 0 1 1 3158 // 0 1 0 0 3159 // 0 1 1 1 3160 // 1 0 0 0 3161 // 1 0 1 1 3162 // 1 1 0 1 3163 // 1 1 1 1 3164 // 3165 3166 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 3167 int res = 0; 3168 for (int i = 0; i < 8; i++) { 3169 int bit1 = extract_bit(in1, i); 3170 int bit2 = extract_bit(in2, i); 3171 int bit3 = extract_bit(in3, i); 3172 3173 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 3174 int func_bit = extract_bit(func, func_bit_pos); 3175 3176 res |= func_bit << i; 3177 } 3178 return res; 3179 } 3180 3181 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 3182 assert(n != nullptr, ""); 3183 assert(eval_map.contains(n), "absent"); 3184 return *(eval_map.get(n)); 3185 } 3186 3187 static void eval_operands(Node* n, 3188 uint& func1, uint& func2, uint& func3, 3189 ResourceHashtable<Node*,uint>& eval_map) { 3190 assert(is_vector_bitwise_op(n), ""); 3191 3192 if (is_vector_unary_bitwise_op(n)) { 3193 Node* opnd = n->in(1); 3194 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 3195 opnd = n->in(2); 3196 } 3197 func1 = eval_operand(opnd, eval_map); 3198 } else if (is_vector_binary_bitwise_op(n)) { 3199 func1 = eval_operand(n->in(1), eval_map); 3200 func2 = eval_operand(n->in(2), eval_map); 3201 } else { 3202 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 3203 func1 = eval_operand(n->in(1), eval_map); 3204 func2 = eval_operand(n->in(2), eval_map); 3205 func3 = eval_operand(n->in(3), eval_map); 3206 } 3207 } 3208 3209 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 3210 assert(inputs.size() <= 3, "sanity"); 3211 ResourceMark rm; 3212 uint res = 0; 3213 ResourceHashtable<Node*,uint> eval_map; 3214 3215 // Populate precomputed functions for inputs. 3216 // Each input corresponds to one column of 3 input truth-table. 3217 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 3218 0xCC, // (_, b, _) -> b 3219 0xF0 }; // (a, _, _) -> a 3220 for (uint i = 0; i < inputs.size(); i++) { 3221 eval_map.put(inputs.at(i), input_funcs[2-i]); 3222 } 3223 3224 for (uint i = 0; i < partition.size(); i++) { 3225 Node* n = partition.at(i); 3226 3227 uint func1 = 0, func2 = 0, func3 = 0; 3228 eval_operands(n, func1, func2, func3, eval_map); 3229 3230 switch (n->Opcode()) { 3231 case Op_OrV: 3232 assert(func3 == 0, "not binary"); 3233 res = func1 | func2; 3234 break; 3235 case Op_AndV: 3236 assert(func3 == 0, "not binary"); 3237 res = func1 & func2; 3238 break; 3239 case Op_XorV: 3240 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3241 assert(func2 == 0 && func3 == 0, "not unary"); 3242 res = (~func1) & 0xFF; 3243 } else { 3244 assert(func3 == 0, "not binary"); 3245 res = func1 ^ func2; 3246 } 3247 break; 3248 case Op_MacroLogicV: 3249 // Ordering of inputs may change during evaluation of sub-tree 3250 // containing MacroLogic node as a child node, thus a re-evaluation 3251 // makes sure that function is evaluated in context of current 3252 // inputs. 3253 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 3254 break; 3255 3256 default: assert(false, "not supported: %s", n->Name()); 3257 } 3258 assert(res <= 0xFF, "invalid"); 3259 eval_map.put(n, res); 3260 } 3261 return res; 3262 } 3263 3264 // Criteria under which nodes gets packed into a macro logic node:- 3265 // 1) Parent and both child nodes are all unmasked or masked with 3266 // same predicates. 3267 // 2) Masked parent can be packed with left child if it is predicated 3268 // and both have same predicates. 3269 // 3) Masked parent can be packed with right child if its un-predicated 3270 // or has matching predication condition. 3271 // 4) An unmasked parent can be packed with an unmasked child. 3272 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 3273 assert(partition.size() == 0, "not empty"); 3274 assert(inputs.size() == 0, "not empty"); 3275 if (is_vector_ternary_bitwise_op(n)) { 3276 return false; 3277 } 3278 3279 bool is_unary_op = is_vector_unary_bitwise_op(n); 3280 if (is_unary_op) { 3281 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 3282 return false; // too few inputs 3283 } 3284 3285 bool pack_left_child = true; 3286 bool pack_right_child = true; 3287 3288 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 3289 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 3290 3291 int left_child_input_cnt = 0; 3292 int right_child_input_cnt = 0; 3293 3294 bool parent_is_predicated = n->is_predicated_vector(); 3295 bool left_child_predicated = n->in(1)->is_predicated_vector(); 3296 bool right_child_predicated = n->in(2)->is_predicated_vector(); 3297 3298 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 3299 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3300 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3301 3302 do { 3303 if (pack_left_child && left_child_LOP && 3304 ((!parent_is_predicated && !left_child_predicated) || 3305 ((parent_is_predicated && left_child_predicated && 3306 parent_pred == left_child_pred)))) { 3307 partition.push(n->in(1)); 3308 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 3309 } else { 3310 inputs.push(n->in(1)); 3311 left_child_input_cnt = 1; 3312 } 3313 3314 if (pack_right_child && right_child_LOP && 3315 (!right_child_predicated || 3316 (right_child_predicated && parent_is_predicated && 3317 parent_pred == right_child_pred))) { 3318 partition.push(n->in(2)); 3319 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 3320 } else { 3321 inputs.push(n->in(2)); 3322 right_child_input_cnt = 1; 3323 } 3324 3325 if (inputs.size() > 3) { 3326 assert(partition.size() > 0, ""); 3327 inputs.clear(); 3328 partition.clear(); 3329 if (left_child_input_cnt > right_child_input_cnt) { 3330 pack_left_child = false; 3331 } else { 3332 pack_right_child = false; 3333 } 3334 } else { 3335 break; 3336 } 3337 } while(true); 3338 3339 if(partition.size()) { 3340 partition.push(n); 3341 } 3342 3343 return (partition.size() == 2 || partition.size() == 3) && 3344 (inputs.size() == 2 || inputs.size() == 3); 3345 } 3346 3347 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 3348 assert(is_vector_bitwise_op(n), "not a root"); 3349 3350 visited.set(n->_idx); 3351 3352 // 1) Do a DFS walk over the logic cone. 3353 for (uint i = 1; i < n->req(); i++) { 3354 Node* in = n->in(i); 3355 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 3356 process_logic_cone_root(igvn, in, visited); 3357 } 3358 } 3359 3360 // 2) Bottom up traversal: Merge node[s] with 3361 // the parent to form macro logic node. 3362 Unique_Node_List partition; 3363 Unique_Node_List inputs; 3364 if (compute_logic_cone(n, partition, inputs)) { 3365 const TypeVect* vt = n->bottom_type()->is_vect(); 3366 Node* pn = partition.at(partition.size() - 1); 3367 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3368 if (mask == nullptr || 3369 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 3370 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 3371 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 3372 igvn.replace_node(n, macro_logic); 3373 } 3374 } 3375 } 3376 3377 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 3378 ResourceMark rm; 3379 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3380 Unique_Node_List list; 3381 collect_logic_cone_roots(list); 3382 3383 while (list.size() > 0) { 3384 Node* n = list.pop(); 3385 const TypeVect* vt = n->bottom_type()->is_vect(); 3386 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3387 if (supported) { 3388 VectorSet visited(comp_arena()); 3389 process_logic_cone_root(igvn, n, visited); 3390 } 3391 } 3392 } 3393 } 3394 3395 //------------------------------Code_Gen--------------------------------------- 3396 // Given a graph, generate code for it 3397 void Compile::Code_Gen() { 3398 if (failing()) { 3399 return; 3400 } 3401 3402 // Perform instruction selection. You might think we could reclaim Matcher 3403 // memory PDQ, but actually the Matcher is used in generating spill code. 3404 // Internals of the Matcher (including some VectorSets) must remain live 3405 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3406 // set a bit in reclaimed memory. 3407 3408 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3409 // nodes. Mapping is only valid at the root of each matched subtree. 3410 NOT_PRODUCT( verify_graph_edges(); ) 3411 3412 Matcher matcher; 3413 _matcher = &matcher; 3414 { 3415 TracePhase tp("matcher", &timers[_t_matcher]); 3416 matcher.match(); 3417 if (failing()) { 3418 return; 3419 } 3420 } 3421 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3422 // nodes. Mapping is only valid at the root of each matched subtree. 3423 NOT_PRODUCT( verify_graph_edges(); ) 3424 3425 // If you have too many nodes, or if matching has failed, bail out 3426 check_node_count(0, "out of nodes matching instructions"); 3427 if (failing()) { 3428 return; 3429 } 3430 3431 print_method(PHASE_MATCHING, 2); 3432 3433 // Build a proper-looking CFG 3434 PhaseCFG cfg(node_arena(), root(), matcher); 3435 if (failing()) { 3436 return; 3437 } 3438 _cfg = &cfg; 3439 { 3440 TracePhase tp("scheduler", &timers[_t_scheduler]); 3441 bool success = cfg.do_global_code_motion(); 3442 if (!success) { 3443 return; 3444 } 3445 3446 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3447 NOT_PRODUCT( verify_graph_edges(); ) 3448 cfg.verify(); 3449 } 3450 3451 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3452 _regalloc = ®alloc; 3453 { 3454 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 3455 // Perform register allocation. After Chaitin, use-def chains are 3456 // no longer accurate (at spill code) and so must be ignored. 3457 // Node->LRG->reg mappings are still accurate. 3458 _regalloc->Register_Allocate(); 3459 3460 // Bail out if the allocator builds too many nodes 3461 if (failing()) { 3462 return; 3463 } 3464 3465 print_method(PHASE_REGISTER_ALLOCATION, 2); 3466 } 3467 3468 // Prior to register allocation we kept empty basic blocks in case the 3469 // the allocator needed a place to spill. After register allocation we 3470 // are not adding any new instructions. If any basic block is empty, we 3471 // can now safely remove it. 3472 { 3473 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 3474 cfg.remove_empty_blocks(); 3475 if (do_freq_based_layout()) { 3476 PhaseBlockLayout layout(cfg); 3477 } else { 3478 cfg.set_loop_alignment(); 3479 } 3480 cfg.fixup_flow(); 3481 cfg.remove_unreachable_blocks(); 3482 cfg.verify_dominator_tree(); 3483 print_method(PHASE_BLOCK_ORDERING, 3); 3484 } 3485 3486 // Apply peephole optimizations 3487 if( OptoPeephole ) { 3488 TracePhase tp("peephole", &timers[_t_peephole]); 3489 PhasePeephole peep( _regalloc, cfg); 3490 peep.do_transform(); 3491 print_method(PHASE_PEEPHOLE, 3); 3492 } 3493 3494 // Do late expand if CPU requires this. 3495 if (Matcher::require_postalloc_expand) { 3496 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3497 cfg.postalloc_expand(_regalloc); 3498 print_method(PHASE_POSTALLOC_EXPAND, 3); 3499 } 3500 3501 // Convert Nodes to instruction bits in a buffer 3502 { 3503 TracePhase tp("output", &timers[_t_output]); 3504 PhaseOutput output; 3505 output.Output(); 3506 if (failing()) return; 3507 output.install(); 3508 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3509 } 3510 3511 // He's dead, Jim. 3512 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3513 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3514 } 3515 3516 //------------------------------Final_Reshape_Counts--------------------------- 3517 // This class defines counters to help identify when a method 3518 // may/must be executed using hardware with only 24-bit precision. 3519 struct Final_Reshape_Counts : public StackObj { 3520 int _call_count; // count non-inlined 'common' calls 3521 int _float_count; // count float ops requiring 24-bit precision 3522 int _double_count; // count double ops requiring more precision 3523 int _java_call_count; // count non-inlined 'java' calls 3524 int _inner_loop_count; // count loops which need alignment 3525 VectorSet _visited; // Visitation flags 3526 Node_List _tests; // Set of IfNodes & PCTableNodes 3527 3528 Final_Reshape_Counts() : 3529 _call_count(0), _float_count(0), _double_count(0), 3530 _java_call_count(0), _inner_loop_count(0) { } 3531 3532 void inc_call_count () { _call_count ++; } 3533 void inc_float_count () { _float_count ++; } 3534 void inc_double_count() { _double_count++; } 3535 void inc_java_call_count() { _java_call_count++; } 3536 void inc_inner_loop_count() { _inner_loop_count++; } 3537 3538 int get_call_count () const { return _call_count ; } 3539 int get_float_count () const { return _float_count ; } 3540 int get_double_count() const { return _double_count; } 3541 int get_java_call_count() const { return _java_call_count; } 3542 int get_inner_loop_count() const { return _inner_loop_count; } 3543 }; 3544 3545 //------------------------------final_graph_reshaping_impl---------------------- 3546 // Implement items 1-5 from final_graph_reshaping below. 3547 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3548 3549 if ( n->outcnt() == 0 ) return; // dead node 3550 uint nop = n->Opcode(); 3551 3552 // Check for 2-input instruction with "last use" on right input. 3553 // Swap to left input. Implements item (2). 3554 if( n->req() == 3 && // two-input instruction 3555 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3556 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3557 n->in(2)->outcnt() == 1 &&// right use IS a last use 3558 !n->in(2)->is_Con() ) { // right use is not a constant 3559 // Check for commutative opcode 3560 switch( nop ) { 3561 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3562 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3563 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3564 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3565 case Op_AndL: case Op_XorL: case Op_OrL: 3566 case Op_AndI: case Op_XorI: case Op_OrI: { 3567 // Move "last use" input to left by swapping inputs 3568 n->swap_edges(1, 2); 3569 break; 3570 } 3571 default: 3572 break; 3573 } 3574 } 3575 3576 #ifdef ASSERT 3577 if( n->is_Mem() ) { 3578 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3579 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3580 // oop will be recorded in oop map if load crosses safepoint 3581 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3582 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3583 "raw memory operations should have control edge"); 3584 } 3585 if (n->is_MemBar()) { 3586 MemBarNode* mb = n->as_MemBar(); 3587 if (mb->trailing_store() || mb->trailing_load_store()) { 3588 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3589 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3590 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3591 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3592 } else if (mb->leading()) { 3593 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3594 } 3595 } 3596 #endif 3597 // Count FPU ops and common calls, implements item (3) 3598 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3599 if (!gc_handled) { 3600 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3601 } 3602 3603 // Collect CFG split points 3604 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3605 frc._tests.push(n); 3606 } 3607 } 3608 3609 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3610 if (!UseDivMod) { 3611 return; 3612 } 3613 3614 // Check if "a % b" and "a / b" both exist 3615 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3616 if (d == nullptr) { 3617 return; 3618 } 3619 3620 // Replace them with a fused divmod if supported 3621 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3622 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3623 d->subsume_by(divmod->div_proj(), this); 3624 n->subsume_by(divmod->mod_proj(), this); 3625 } else { 3626 // Replace "a % b" with "a - ((a / b) * b)" 3627 Node* mult = MulNode::make(d, d->in(2), bt); 3628 Node* sub = SubNode::make(d->in(1), mult, bt); 3629 n->subsume_by(sub, this); 3630 } 3631 } 3632 3633 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3634 switch( nop ) { 3635 // Count all float operations that may use FPU 3636 case Op_AddF: 3637 case Op_SubF: 3638 case Op_MulF: 3639 case Op_DivF: 3640 case Op_NegF: 3641 case Op_ModF: 3642 case Op_ConvI2F: 3643 case Op_ConF: 3644 case Op_CmpF: 3645 case Op_CmpF3: 3646 case Op_StoreF: 3647 case Op_LoadF: 3648 // case Op_ConvL2F: // longs are split into 32-bit halves 3649 frc.inc_float_count(); 3650 break; 3651 3652 case Op_ConvF2D: 3653 case Op_ConvD2F: 3654 frc.inc_float_count(); 3655 frc.inc_double_count(); 3656 break; 3657 3658 // Count all double operations that may use FPU 3659 case Op_AddD: 3660 case Op_SubD: 3661 case Op_MulD: 3662 case Op_DivD: 3663 case Op_NegD: 3664 case Op_ModD: 3665 case Op_ConvI2D: 3666 case Op_ConvD2I: 3667 // case Op_ConvL2D: // handled by leaf call 3668 // case Op_ConvD2L: // handled by leaf call 3669 case Op_ConD: 3670 case Op_CmpD: 3671 case Op_CmpD3: 3672 case Op_StoreD: 3673 case Op_LoadD: 3674 case Op_LoadD_unaligned: 3675 frc.inc_double_count(); 3676 break; 3677 case Op_Opaque1: // Remove Opaque Nodes before matching 3678 n->subsume_by(n->in(1), this); 3679 break; 3680 case Op_CallStaticJava: 3681 case Op_CallJava: 3682 case Op_CallDynamicJava: 3683 frc.inc_java_call_count(); // Count java call site; 3684 case Op_CallRuntime: 3685 case Op_CallLeaf: 3686 case Op_CallLeafVector: 3687 case Op_CallLeafNoFP: { 3688 assert (n->is_Call(), ""); 3689 CallNode *call = n->as_Call(); 3690 // Count call sites where the FP mode bit would have to be flipped. 3691 // Do not count uncommon runtime calls: 3692 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3693 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3694 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3695 frc.inc_call_count(); // Count the call site 3696 } else { // See if uncommon argument is shared 3697 Node *n = call->in(TypeFunc::Parms); 3698 int nop = n->Opcode(); 3699 // Clone shared simple arguments to uncommon calls, item (1). 3700 if (n->outcnt() > 1 && 3701 !n->is_Proj() && 3702 nop != Op_CreateEx && 3703 nop != Op_CheckCastPP && 3704 nop != Op_DecodeN && 3705 nop != Op_DecodeNKlass && 3706 !n->is_Mem() && 3707 !n->is_Phi()) { 3708 Node *x = n->clone(); 3709 call->set_req(TypeFunc::Parms, x); 3710 } 3711 } 3712 break; 3713 } 3714 case Op_StoreB: 3715 case Op_StoreC: 3716 case Op_StoreI: 3717 case Op_StoreL: 3718 case Op_CompareAndSwapB: 3719 case Op_CompareAndSwapS: 3720 case Op_CompareAndSwapI: 3721 case Op_CompareAndSwapL: 3722 case Op_CompareAndSwapP: 3723 case Op_CompareAndSwapN: 3724 case Op_WeakCompareAndSwapB: 3725 case Op_WeakCompareAndSwapS: 3726 case Op_WeakCompareAndSwapI: 3727 case Op_WeakCompareAndSwapL: 3728 case Op_WeakCompareAndSwapP: 3729 case Op_WeakCompareAndSwapN: 3730 case Op_CompareAndExchangeB: 3731 case Op_CompareAndExchangeS: 3732 case Op_CompareAndExchangeI: 3733 case Op_CompareAndExchangeL: 3734 case Op_CompareAndExchangeP: 3735 case Op_CompareAndExchangeN: 3736 case Op_GetAndAddS: 3737 case Op_GetAndAddB: 3738 case Op_GetAndAddI: 3739 case Op_GetAndAddL: 3740 case Op_GetAndSetS: 3741 case Op_GetAndSetB: 3742 case Op_GetAndSetI: 3743 case Op_GetAndSetL: 3744 case Op_GetAndSetP: 3745 case Op_GetAndSetN: 3746 case Op_StoreP: 3747 case Op_StoreN: 3748 case Op_StoreNKlass: 3749 case Op_LoadB: 3750 case Op_LoadUB: 3751 case Op_LoadUS: 3752 case Op_LoadI: 3753 case Op_LoadKlass: 3754 case Op_LoadNKlass: 3755 case Op_LoadL: 3756 case Op_LoadL_unaligned: 3757 case Op_LoadP: 3758 case Op_LoadN: 3759 case Op_LoadRange: 3760 case Op_LoadS: 3761 break; 3762 3763 case Op_AddP: { // Assert sane base pointers 3764 Node *addp = n->in(AddPNode::Address); 3765 assert( !addp->is_AddP() || 3766 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3767 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3768 "Base pointers must match (addp %u)", addp->_idx ); 3769 #ifdef _LP64 3770 if ((UseCompressedOops || UseCompressedClassPointers) && 3771 addp->Opcode() == Op_ConP && 3772 addp == n->in(AddPNode::Base) && 3773 n->in(AddPNode::Offset)->is_Con()) { 3774 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3775 // on the platform and on the compressed oops mode. 3776 // Use addressing with narrow klass to load with offset on x86. 3777 // Some platforms can use the constant pool to load ConP. 3778 // Do this transformation here since IGVN will convert ConN back to ConP. 3779 const Type* t = addp->bottom_type(); 3780 bool is_oop = t->isa_oopptr() != nullptr; 3781 bool is_klass = t->isa_klassptr() != nullptr; 3782 3783 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3784 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3785 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3786 Node* nn = nullptr; 3787 3788 int op = is_oop ? Op_ConN : Op_ConNKlass; 3789 3790 // Look for existing ConN node of the same exact type. 3791 Node* r = root(); 3792 uint cnt = r->outcnt(); 3793 for (uint i = 0; i < cnt; i++) { 3794 Node* m = r->raw_out(i); 3795 if (m!= nullptr && m->Opcode() == op && 3796 m->bottom_type()->make_ptr() == t) { 3797 nn = m; 3798 break; 3799 } 3800 } 3801 if (nn != nullptr) { 3802 // Decode a narrow oop to match address 3803 // [R12 + narrow_oop_reg<<3 + offset] 3804 if (is_oop) { 3805 nn = new DecodeNNode(nn, t); 3806 } else { 3807 nn = new DecodeNKlassNode(nn, t); 3808 } 3809 // Check for succeeding AddP which uses the same Base. 3810 // Otherwise we will run into the assertion above when visiting that guy. 3811 for (uint i = 0; i < n->outcnt(); ++i) { 3812 Node *out_i = n->raw_out(i); 3813 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3814 out_i->set_req(AddPNode::Base, nn); 3815 #ifdef ASSERT 3816 for (uint j = 0; j < out_i->outcnt(); ++j) { 3817 Node *out_j = out_i->raw_out(j); 3818 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3819 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3820 } 3821 #endif 3822 } 3823 } 3824 n->set_req(AddPNode::Base, nn); 3825 n->set_req(AddPNode::Address, nn); 3826 if (addp->outcnt() == 0) { 3827 addp->disconnect_inputs(this); 3828 } 3829 } 3830 } 3831 } 3832 #endif 3833 break; 3834 } 3835 3836 case Op_CastPP: { 3837 // Remove CastPP nodes to gain more freedom during scheduling but 3838 // keep the dependency they encode as control or precedence edges 3839 // (if control is set already) on memory operations. Some CastPP 3840 // nodes don't have a control (don't carry a dependency): skip 3841 // those. 3842 if (n->in(0) != nullptr) { 3843 ResourceMark rm; 3844 Unique_Node_List wq; 3845 wq.push(n); 3846 for (uint next = 0; next < wq.size(); ++next) { 3847 Node *m = wq.at(next); 3848 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3849 Node* use = m->fast_out(i); 3850 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3851 use->ensure_control_or_add_prec(n->in(0)); 3852 } else { 3853 switch(use->Opcode()) { 3854 case Op_AddP: 3855 case Op_DecodeN: 3856 case Op_DecodeNKlass: 3857 case Op_CheckCastPP: 3858 case Op_CastPP: 3859 wq.push(use); 3860 break; 3861 } 3862 } 3863 } 3864 } 3865 } 3866 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3867 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3868 Node* in1 = n->in(1); 3869 const Type* t = n->bottom_type(); 3870 Node* new_in1 = in1->clone(); 3871 new_in1->as_DecodeN()->set_type(t); 3872 3873 if (!Matcher::narrow_oop_use_complex_address()) { 3874 // 3875 // x86, ARM and friends can handle 2 adds in addressing mode 3876 // and Matcher can fold a DecodeN node into address by using 3877 // a narrow oop directly and do implicit null check in address: 3878 // 3879 // [R12 + narrow_oop_reg<<3 + offset] 3880 // NullCheck narrow_oop_reg 3881 // 3882 // On other platforms (Sparc) we have to keep new DecodeN node and 3883 // use it to do implicit null check in address: 3884 // 3885 // decode_not_null narrow_oop_reg, base_reg 3886 // [base_reg + offset] 3887 // NullCheck base_reg 3888 // 3889 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3890 // to keep the information to which null check the new DecodeN node 3891 // corresponds to use it as value in implicit_null_check(). 3892 // 3893 new_in1->set_req(0, n->in(0)); 3894 } 3895 3896 n->subsume_by(new_in1, this); 3897 if (in1->outcnt() == 0) { 3898 in1->disconnect_inputs(this); 3899 } 3900 } else { 3901 n->subsume_by(n->in(1), this); 3902 if (n->outcnt() == 0) { 3903 n->disconnect_inputs(this); 3904 } 3905 } 3906 break; 3907 } 3908 #ifdef _LP64 3909 case Op_CmpP: 3910 // Do this transformation here to preserve CmpPNode::sub() and 3911 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3912 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3913 Node* in1 = n->in(1); 3914 Node* in2 = n->in(2); 3915 if (!in1->is_DecodeNarrowPtr()) { 3916 in2 = in1; 3917 in1 = n->in(2); 3918 } 3919 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3920 3921 Node* new_in2 = nullptr; 3922 if (in2->is_DecodeNarrowPtr()) { 3923 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3924 new_in2 = in2->in(1); 3925 } else if (in2->Opcode() == Op_ConP) { 3926 const Type* t = in2->bottom_type(); 3927 if (t == TypePtr::NULL_PTR) { 3928 assert(in1->is_DecodeN(), "compare klass to null?"); 3929 // Don't convert CmpP null check into CmpN if compressed 3930 // oops implicit null check is not generated. 3931 // This will allow to generate normal oop implicit null check. 3932 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3933 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3934 // 3935 // This transformation together with CastPP transformation above 3936 // will generated code for implicit null checks for compressed oops. 3937 // 3938 // The original code after Optimize() 3939 // 3940 // LoadN memory, narrow_oop_reg 3941 // decode narrow_oop_reg, base_reg 3942 // CmpP base_reg, nullptr 3943 // CastPP base_reg // NotNull 3944 // Load [base_reg + offset], val_reg 3945 // 3946 // after these transformations will be 3947 // 3948 // LoadN memory, narrow_oop_reg 3949 // CmpN narrow_oop_reg, nullptr 3950 // decode_not_null narrow_oop_reg, base_reg 3951 // Load [base_reg + offset], val_reg 3952 // 3953 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3954 // since narrow oops can be used in debug info now (see the code in 3955 // final_graph_reshaping_walk()). 3956 // 3957 // At the end the code will be matched to 3958 // on x86: 3959 // 3960 // Load_narrow_oop memory, narrow_oop_reg 3961 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3962 // NullCheck narrow_oop_reg 3963 // 3964 // and on sparc: 3965 // 3966 // Load_narrow_oop memory, narrow_oop_reg 3967 // decode_not_null narrow_oop_reg, base_reg 3968 // Load [base_reg + offset], val_reg 3969 // NullCheck base_reg 3970 // 3971 } else if (t->isa_oopptr()) { 3972 new_in2 = ConNode::make(t->make_narrowoop()); 3973 } else if (t->isa_klassptr()) { 3974 new_in2 = ConNode::make(t->make_narrowklass()); 3975 } 3976 } 3977 if (new_in2 != nullptr) { 3978 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3979 n->subsume_by(cmpN, this); 3980 if (in1->outcnt() == 0) { 3981 in1->disconnect_inputs(this); 3982 } 3983 if (in2->outcnt() == 0) { 3984 in2->disconnect_inputs(this); 3985 } 3986 } 3987 } 3988 break; 3989 3990 case Op_DecodeN: 3991 case Op_DecodeNKlass: 3992 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3993 // DecodeN could be pinned when it can't be fold into 3994 // an address expression, see the code for Op_CastPP above. 3995 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3996 break; 3997 3998 case Op_EncodeP: 3999 case Op_EncodePKlass: { 4000 Node* in1 = n->in(1); 4001 if (in1->is_DecodeNarrowPtr()) { 4002 n->subsume_by(in1->in(1), this); 4003 } else if (in1->Opcode() == Op_ConP) { 4004 const Type* t = in1->bottom_type(); 4005 if (t == TypePtr::NULL_PTR) { 4006 assert(t->isa_oopptr(), "null klass?"); 4007 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 4008 } else if (t->isa_oopptr()) { 4009 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 4010 } else if (t->isa_klassptr()) { 4011 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 4012 } 4013 } 4014 if (in1->outcnt() == 0) { 4015 in1->disconnect_inputs(this); 4016 } 4017 break; 4018 } 4019 4020 case Op_Proj: { 4021 if (OptimizeStringConcat || IncrementalInline) { 4022 ProjNode* proj = n->as_Proj(); 4023 if (proj->_is_io_use) { 4024 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 4025 // Separate projections were used for the exception path which 4026 // are normally removed by a late inline. If it wasn't inlined 4027 // then they will hang around and should just be replaced with 4028 // the original one. Merge them. 4029 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 4030 if (non_io_proj != nullptr) { 4031 proj->subsume_by(non_io_proj , this); 4032 } 4033 } 4034 } 4035 break; 4036 } 4037 4038 case Op_Phi: 4039 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 4040 // The EncodeP optimization may create Phi with the same edges 4041 // for all paths. It is not handled well by Register Allocator. 4042 Node* unique_in = n->in(1); 4043 assert(unique_in != nullptr, ""); 4044 uint cnt = n->req(); 4045 for (uint i = 2; i < cnt; i++) { 4046 Node* m = n->in(i); 4047 assert(m != nullptr, ""); 4048 if (unique_in != m) 4049 unique_in = nullptr; 4050 } 4051 if (unique_in != nullptr) { 4052 n->subsume_by(unique_in, this); 4053 } 4054 } 4055 break; 4056 4057 #endif 4058 4059 #ifdef ASSERT 4060 case Op_CastII: 4061 // Verify that all range check dependent CastII nodes were removed. 4062 if (n->isa_CastII()->has_range_check()) { 4063 n->dump(3); 4064 assert(false, "Range check dependent CastII node was not removed"); 4065 } 4066 break; 4067 #endif 4068 4069 case Op_ModI: 4070 handle_div_mod_op(n, T_INT, false); 4071 break; 4072 4073 case Op_ModL: 4074 handle_div_mod_op(n, T_LONG, false); 4075 break; 4076 4077 case Op_UModI: 4078 handle_div_mod_op(n, T_INT, true); 4079 break; 4080 4081 case Op_UModL: 4082 handle_div_mod_op(n, T_LONG, true); 4083 break; 4084 4085 case Op_LoadVector: 4086 case Op_StoreVector: 4087 #ifdef ASSERT 4088 // Add VerifyVectorAlignment node between adr and load / store. 4089 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 4090 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 4091 n->as_StoreVector()->must_verify_alignment(); 4092 if (must_verify_alignment) { 4093 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 4094 n->as_StoreVector()->memory_size(); 4095 // The memory access should be aligned to the vector width in bytes. 4096 // However, the underlying array is possibly less well aligned, but at least 4097 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 4098 // a loop we can expect at least the following alignment: 4099 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 4100 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 4101 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 4102 // Create mask from alignment. e.g. 0b1000 -> 0b0111 4103 jlong mask = guaranteed_alignment - 1; 4104 Node* mask_con = ConLNode::make(mask); 4105 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 4106 n->set_req(MemNode::Address, va); 4107 } 4108 } 4109 #endif 4110 break; 4111 4112 case Op_LoadVectorGather: 4113 case Op_StoreVectorScatter: 4114 case Op_LoadVectorGatherMasked: 4115 case Op_StoreVectorScatterMasked: 4116 case Op_VectorCmpMasked: 4117 case Op_VectorMaskGen: 4118 case Op_LoadVectorMasked: 4119 case Op_StoreVectorMasked: 4120 break; 4121 4122 case Op_AddReductionVI: 4123 case Op_AddReductionVL: 4124 case Op_AddReductionVF: 4125 case Op_AddReductionVD: 4126 case Op_MulReductionVI: 4127 case Op_MulReductionVL: 4128 case Op_MulReductionVF: 4129 case Op_MulReductionVD: 4130 case Op_MinReductionV: 4131 case Op_MaxReductionV: 4132 case Op_AndReductionV: 4133 case Op_OrReductionV: 4134 case Op_XorReductionV: 4135 break; 4136 4137 case Op_PackB: 4138 case Op_PackS: 4139 case Op_PackI: 4140 case Op_PackF: 4141 case Op_PackL: 4142 case Op_PackD: 4143 if (n->req()-1 > 2) { 4144 // Replace many operand PackNodes with a binary tree for matching 4145 PackNode* p = (PackNode*) n; 4146 Node* btp = p->binary_tree_pack(1, n->req()); 4147 n->subsume_by(btp, this); 4148 } 4149 break; 4150 case Op_Loop: 4151 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 4152 case Op_CountedLoop: 4153 case Op_LongCountedLoop: 4154 case Op_OuterStripMinedLoop: 4155 if (n->as_Loop()->is_inner_loop()) { 4156 frc.inc_inner_loop_count(); 4157 } 4158 n->as_Loop()->verify_strip_mined(0); 4159 break; 4160 case Op_LShiftI: 4161 case Op_RShiftI: 4162 case Op_URShiftI: 4163 case Op_LShiftL: 4164 case Op_RShiftL: 4165 case Op_URShiftL: 4166 if (Matcher::need_masked_shift_count) { 4167 // The cpu's shift instructions don't restrict the count to the 4168 // lower 5/6 bits. We need to do the masking ourselves. 4169 Node* in2 = n->in(2); 4170 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 4171 const TypeInt* t = in2->find_int_type(); 4172 if (t != nullptr && t->is_con()) { 4173 juint shift = t->get_con(); 4174 if (shift > mask) { // Unsigned cmp 4175 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 4176 } 4177 } else { 4178 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 4179 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 4180 n->set_req(2, shift); 4181 } 4182 } 4183 if (in2->outcnt() == 0) { // Remove dead node 4184 in2->disconnect_inputs(this); 4185 } 4186 } 4187 break; 4188 case Op_MemBarStoreStore: 4189 case Op_MemBarRelease: 4190 // Break the link with AllocateNode: it is no longer useful and 4191 // confuses register allocation. 4192 if (n->req() > MemBarNode::Precedent) { 4193 n->set_req(MemBarNode::Precedent, top()); 4194 } 4195 break; 4196 case Op_MemBarAcquire: { 4197 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 4198 // At parse time, the trailing MemBarAcquire for a volatile load 4199 // is created with an edge to the load. After optimizations, 4200 // that input may be a chain of Phis. If those phis have no 4201 // other use, then the MemBarAcquire keeps them alive and 4202 // register allocation can be confused. 4203 dead_nodes.push(n->in(MemBarNode::Precedent)); 4204 n->set_req(MemBarNode::Precedent, top()); 4205 } 4206 break; 4207 } 4208 case Op_Blackhole: 4209 break; 4210 case Op_RangeCheck: { 4211 RangeCheckNode* rc = n->as_RangeCheck(); 4212 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 4213 n->subsume_by(iff, this); 4214 frc._tests.push(iff); 4215 break; 4216 } 4217 case Op_ConvI2L: { 4218 if (!Matcher::convi2l_type_required) { 4219 // Code generation on some platforms doesn't need accurate 4220 // ConvI2L types. Widening the type can help remove redundant 4221 // address computations. 4222 n->as_Type()->set_type(TypeLong::INT); 4223 ResourceMark rm; 4224 Unique_Node_List wq; 4225 wq.push(n); 4226 for (uint next = 0; next < wq.size(); next++) { 4227 Node *m = wq.at(next); 4228 4229 for(;;) { 4230 // Loop over all nodes with identical inputs edges as m 4231 Node* k = m->find_similar(m->Opcode()); 4232 if (k == nullptr) { 4233 break; 4234 } 4235 // Push their uses so we get a chance to remove node made 4236 // redundant 4237 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 4238 Node* u = k->fast_out(i); 4239 if (u->Opcode() == Op_LShiftL || 4240 u->Opcode() == Op_AddL || 4241 u->Opcode() == Op_SubL || 4242 u->Opcode() == Op_AddP) { 4243 wq.push(u); 4244 } 4245 } 4246 // Replace all nodes with identical edges as m with m 4247 k->subsume_by(m, this); 4248 } 4249 } 4250 } 4251 break; 4252 } 4253 case Op_CmpUL: { 4254 if (!Matcher::has_match_rule(Op_CmpUL)) { 4255 // No support for unsigned long comparisons 4256 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 4257 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 4258 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 4259 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 4260 Node* andl = new AndLNode(orl, remove_sign_mask); 4261 Node* cmp = new CmpLNode(andl, n->in(2)); 4262 n->subsume_by(cmp, this); 4263 } 4264 break; 4265 } 4266 #ifdef ASSERT 4267 case Op_InlineType: { 4268 n->dump(-1); 4269 assert(false, "inline type node was not removed"); 4270 break; 4271 } 4272 #endif 4273 default: 4274 assert(!n->is_Call(), ""); 4275 assert(!n->is_Mem(), ""); 4276 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4277 break; 4278 } 4279 } 4280 4281 //------------------------------final_graph_reshaping_walk--------------------- 4282 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4283 // requires that the walk visits a node's inputs before visiting the node. 4284 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 4285 Unique_Node_List sfpt; 4286 4287 frc._visited.set(root->_idx); // first, mark node as visited 4288 uint cnt = root->req(); 4289 Node *n = root; 4290 uint i = 0; 4291 while (true) { 4292 if (i < cnt) { 4293 // Place all non-visited non-null inputs onto stack 4294 Node* m = n->in(i); 4295 ++i; 4296 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 4297 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 4298 // compute worst case interpreter size in case of a deoptimization 4299 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4300 4301 sfpt.push(m); 4302 } 4303 cnt = m->req(); 4304 nstack.push(n, i); // put on stack parent and next input's index 4305 n = m; 4306 i = 0; 4307 } 4308 } else { 4309 // Now do post-visit work 4310 final_graph_reshaping_impl(n, frc, dead_nodes); 4311 if (nstack.is_empty()) 4312 break; // finished 4313 n = nstack.node(); // Get node from stack 4314 cnt = n->req(); 4315 i = nstack.index(); 4316 nstack.pop(); // Shift to the next node on stack 4317 } 4318 } 4319 4320 // Skip next transformation if compressed oops are not used. 4321 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4322 (!UseCompressedOops && !UseCompressedClassPointers)) 4323 return; 4324 4325 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4326 // It could be done for an uncommon traps or any safepoints/calls 4327 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4328 while (sfpt.size() > 0) { 4329 n = sfpt.pop(); 4330 JVMState *jvms = n->as_SafePoint()->jvms(); 4331 assert(jvms != nullptr, "sanity"); 4332 int start = jvms->debug_start(); 4333 int end = n->req(); 4334 bool is_uncommon = (n->is_CallStaticJava() && 4335 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4336 for (int j = start; j < end; j++) { 4337 Node* in = n->in(j); 4338 if (in->is_DecodeNarrowPtr()) { 4339 bool safe_to_skip = true; 4340 if (!is_uncommon ) { 4341 // Is it safe to skip? 4342 for (uint i = 0; i < in->outcnt(); i++) { 4343 Node* u = in->raw_out(i); 4344 if (!u->is_SafePoint() || 4345 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4346 safe_to_skip = false; 4347 } 4348 } 4349 } 4350 if (safe_to_skip) { 4351 n->set_req(j, in->in(1)); 4352 } 4353 if (in->outcnt() == 0) { 4354 in->disconnect_inputs(this); 4355 } 4356 } 4357 } 4358 } 4359 } 4360 4361 //------------------------------final_graph_reshaping-------------------------- 4362 // Final Graph Reshaping. 4363 // 4364 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4365 // and not commoned up and forced early. Must come after regular 4366 // optimizations to avoid GVN undoing the cloning. Clone constant 4367 // inputs to Loop Phis; these will be split by the allocator anyways. 4368 // Remove Opaque nodes. 4369 // (2) Move last-uses by commutative operations to the left input to encourage 4370 // Intel update-in-place two-address operations and better register usage 4371 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4372 // calls canonicalizing them back. 4373 // (3) Count the number of double-precision FP ops, single-precision FP ops 4374 // and call sites. On Intel, we can get correct rounding either by 4375 // forcing singles to memory (requires extra stores and loads after each 4376 // FP bytecode) or we can set a rounding mode bit (requires setting and 4377 // clearing the mode bit around call sites). The mode bit is only used 4378 // if the relative frequency of single FP ops to calls is low enough. 4379 // This is a key transform for SPEC mpeg_audio. 4380 // (4) Detect infinite loops; blobs of code reachable from above but not 4381 // below. Several of the Code_Gen algorithms fail on such code shapes, 4382 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4383 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4384 // Detection is by looking for IfNodes where only 1 projection is 4385 // reachable from below or CatchNodes missing some targets. 4386 // (5) Assert for insane oop offsets in debug mode. 4387 4388 bool Compile::final_graph_reshaping() { 4389 // an infinite loop may have been eliminated by the optimizer, 4390 // in which case the graph will be empty. 4391 if (root()->req() == 1) { 4392 // Do not compile method that is only a trivial infinite loop, 4393 // since the content of the loop may have been eliminated. 4394 record_method_not_compilable("trivial infinite loop"); 4395 return true; 4396 } 4397 4398 // Expensive nodes have their control input set to prevent the GVN 4399 // from freely commoning them. There's no GVN beyond this point so 4400 // no need to keep the control input. We want the expensive nodes to 4401 // be freely moved to the least frequent code path by gcm. 4402 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4403 for (int i = 0; i < expensive_count(); i++) { 4404 _expensive_nodes.at(i)->set_req(0, nullptr); 4405 } 4406 4407 Final_Reshape_Counts frc; 4408 4409 // Visit everybody reachable! 4410 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4411 Node_Stack nstack(live_nodes() >> 1); 4412 Unique_Node_List dead_nodes; 4413 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4414 4415 // Check for unreachable (from below) code (i.e., infinite loops). 4416 for( uint i = 0; i < frc._tests.size(); i++ ) { 4417 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4418 // Get number of CFG targets. 4419 // Note that PCTables include exception targets after calls. 4420 uint required_outcnt = n->required_outcnt(); 4421 if (n->outcnt() != required_outcnt) { 4422 // Check for a few special cases. Rethrow Nodes never take the 4423 // 'fall-thru' path, so expected kids is 1 less. 4424 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4425 if (n->in(0)->in(0)->is_Call()) { 4426 CallNode* call = n->in(0)->in(0)->as_Call(); 4427 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4428 required_outcnt--; // Rethrow always has 1 less kid 4429 } else if (call->req() > TypeFunc::Parms && 4430 call->is_CallDynamicJava()) { 4431 // Check for null receiver. In such case, the optimizer has 4432 // detected that the virtual call will always result in a null 4433 // pointer exception. The fall-through projection of this CatchNode 4434 // will not be populated. 4435 Node* arg0 = call->in(TypeFunc::Parms); 4436 if (arg0->is_Type() && 4437 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4438 required_outcnt--; 4439 } 4440 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4441 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4442 // Check for illegal array length. In such case, the optimizer has 4443 // detected that the allocation attempt will always result in an 4444 // exception. There is no fall-through projection of this CatchNode . 4445 assert(call->is_CallStaticJava(), "static call expected"); 4446 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4447 uint valid_length_test_input = call->req() - 1; 4448 Node* valid_length_test = call->in(valid_length_test_input); 4449 call->del_req(valid_length_test_input); 4450 if (valid_length_test->find_int_con(1) == 0) { 4451 required_outcnt--; 4452 } 4453 dead_nodes.push(valid_length_test); 4454 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4455 continue; 4456 } 4457 } 4458 } 4459 4460 // Recheck with a better notion of 'required_outcnt' 4461 if (n->outcnt() != required_outcnt) { 4462 record_method_not_compilable("malformed control flow"); 4463 return true; // Not all targets reachable! 4464 } 4465 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4466 CallNode* call = n->in(0)->in(0)->as_Call(); 4467 if (call->entry_point() == OptoRuntime::new_array_Java() || 4468 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4469 assert(call->is_CallStaticJava(), "static call expected"); 4470 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4471 uint valid_length_test_input = call->req() - 1; 4472 dead_nodes.push(call->in(valid_length_test_input)); 4473 call->del_req(valid_length_test_input); // valid length test useless now 4474 } 4475 } 4476 // Check that I actually visited all kids. Unreached kids 4477 // must be infinite loops. 4478 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4479 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4480 record_method_not_compilable("infinite loop"); 4481 return true; // Found unvisited kid; must be unreach 4482 } 4483 4484 // Here so verification code in final_graph_reshaping_walk() 4485 // always see an OuterStripMinedLoopEnd 4486 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4487 IfNode* init_iff = n->as_If(); 4488 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4489 n->subsume_by(iff, this); 4490 } 4491 } 4492 4493 while (dead_nodes.size() > 0) { 4494 Node* m = dead_nodes.pop(); 4495 if (m->outcnt() == 0 && m != top()) { 4496 for (uint j = 0; j < m->req(); j++) { 4497 Node* in = m->in(j); 4498 if (in != nullptr) { 4499 dead_nodes.push(in); 4500 } 4501 } 4502 m->disconnect_inputs(this); 4503 } 4504 } 4505 4506 #ifdef IA32 4507 // If original bytecodes contained a mixture of floats and doubles 4508 // check if the optimizer has made it homogeneous, item (3). 4509 if (UseSSE == 0 && 4510 frc.get_float_count() > 32 && 4511 frc.get_double_count() == 0 && 4512 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4513 set_24_bit_selection_and_mode(false, true); 4514 } 4515 #endif // IA32 4516 4517 set_java_calls(frc.get_java_call_count()); 4518 set_inner_loops(frc.get_inner_loop_count()); 4519 4520 // No infinite loops, no reason to bail out. 4521 return false; 4522 } 4523 4524 //-----------------------------too_many_traps---------------------------------- 4525 // Report if there are too many traps at the current method and bci. 4526 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4527 bool Compile::too_many_traps(ciMethod* method, 4528 int bci, 4529 Deoptimization::DeoptReason reason) { 4530 ciMethodData* md = method->method_data(); 4531 if (md->is_empty()) { 4532 // Assume the trap has not occurred, or that it occurred only 4533 // because of a transient condition during start-up in the interpreter. 4534 return false; 4535 } 4536 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4537 if (md->has_trap_at(bci, m, reason) != 0) { 4538 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4539 // Also, if there are multiple reasons, or if there is no per-BCI record, 4540 // assume the worst. 4541 if (log()) 4542 log()->elem("observe trap='%s' count='%d'", 4543 Deoptimization::trap_reason_name(reason), 4544 md->trap_count(reason)); 4545 return true; 4546 } else { 4547 // Ignore method/bci and see if there have been too many globally. 4548 return too_many_traps(reason, md); 4549 } 4550 } 4551 4552 // Less-accurate variant which does not require a method and bci. 4553 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4554 ciMethodData* logmd) { 4555 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4556 // Too many traps globally. 4557 // Note that we use cumulative trap_count, not just md->trap_count. 4558 if (log()) { 4559 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4560 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4561 Deoptimization::trap_reason_name(reason), 4562 mcount, trap_count(reason)); 4563 } 4564 return true; 4565 } else { 4566 // The coast is clear. 4567 return false; 4568 } 4569 } 4570 4571 //--------------------------too_many_recompiles-------------------------------- 4572 // Report if there are too many recompiles at the current method and bci. 4573 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4574 // Is not eager to return true, since this will cause the compiler to use 4575 // Action_none for a trap point, to avoid too many recompilations. 4576 bool Compile::too_many_recompiles(ciMethod* method, 4577 int bci, 4578 Deoptimization::DeoptReason reason) { 4579 ciMethodData* md = method->method_data(); 4580 if (md->is_empty()) { 4581 // Assume the trap has not occurred, or that it occurred only 4582 // because of a transient condition during start-up in the interpreter. 4583 return false; 4584 } 4585 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4586 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4587 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4588 Deoptimization::DeoptReason per_bc_reason 4589 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4590 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4591 if ((per_bc_reason == Deoptimization::Reason_none 4592 || md->has_trap_at(bci, m, reason) != 0) 4593 // The trap frequency measure we care about is the recompile count: 4594 && md->trap_recompiled_at(bci, m) 4595 && md->overflow_recompile_count() >= bc_cutoff) { 4596 // Do not emit a trap here if it has already caused recompilations. 4597 // Also, if there are multiple reasons, or if there is no per-BCI record, 4598 // assume the worst. 4599 if (log()) 4600 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4601 Deoptimization::trap_reason_name(reason), 4602 md->trap_count(reason), 4603 md->overflow_recompile_count()); 4604 return true; 4605 } else if (trap_count(reason) != 0 4606 && decompile_count() >= m_cutoff) { 4607 // Too many recompiles globally, and we have seen this sort of trap. 4608 // Use cumulative decompile_count, not just md->decompile_count. 4609 if (log()) 4610 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4611 Deoptimization::trap_reason_name(reason), 4612 md->trap_count(reason), trap_count(reason), 4613 md->decompile_count(), decompile_count()); 4614 return true; 4615 } else { 4616 // The coast is clear. 4617 return false; 4618 } 4619 } 4620 4621 // Compute when not to trap. Used by matching trap based nodes and 4622 // NullCheck optimization. 4623 void Compile::set_allowed_deopt_reasons() { 4624 _allowed_reasons = 0; 4625 if (is_method_compilation()) { 4626 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4627 assert(rs < BitsPerInt, "recode bit map"); 4628 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4629 _allowed_reasons |= nth_bit(rs); 4630 } 4631 } 4632 } 4633 } 4634 4635 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4636 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4637 } 4638 4639 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4640 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4641 } 4642 4643 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4644 if (holder->is_initialized()) { 4645 return false; 4646 } 4647 if (holder->is_being_initialized()) { 4648 if (accessing_method->holder() == holder) { 4649 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4650 // <init>, or a static method. In all those cases, there was an initialization 4651 // barrier on the holder klass passed. 4652 if (accessing_method->is_class_initializer() || 4653 accessing_method->is_object_constructor() || 4654 accessing_method->is_static()) { 4655 return false; 4656 } 4657 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4658 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4659 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4660 // child class can become fully initialized while its parent class is still being initialized. 4661 if (accessing_method->is_class_initializer()) { 4662 return false; 4663 } 4664 } 4665 ciMethod* root = method(); // the root method of compilation 4666 if (root != accessing_method) { 4667 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4668 } 4669 } 4670 return true; 4671 } 4672 4673 #ifndef PRODUCT 4674 //------------------------------verify_bidirectional_edges--------------------- 4675 // For each input edge to a node (ie - for each Use-Def edge), verify that 4676 // there is a corresponding Def-Use edge. 4677 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4678 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4679 uint stack_size = live_nodes() >> 4; 4680 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4681 nstack.push(_root); 4682 4683 while (nstack.size() > 0) { 4684 Node* n = nstack.pop(); 4685 if (visited.member(n)) { 4686 continue; 4687 } 4688 visited.push(n); 4689 4690 // Walk over all input edges, checking for correspondence 4691 uint length = n->len(); 4692 for (uint i = 0; i < length; i++) { 4693 Node* in = n->in(i); 4694 if (in != nullptr && !visited.member(in)) { 4695 nstack.push(in); // Put it on stack 4696 } 4697 if (in != nullptr && !in->is_top()) { 4698 // Count instances of `next` 4699 int cnt = 0; 4700 for (uint idx = 0; idx < in->_outcnt; idx++) { 4701 if (in->_out[idx] == n) { 4702 cnt++; 4703 } 4704 } 4705 assert(cnt > 0, "Failed to find Def-Use edge."); 4706 // Check for duplicate edges 4707 // walk the input array downcounting the input edges to n 4708 for (uint j = 0; j < length; j++) { 4709 if (n->in(j) == in) { 4710 cnt--; 4711 } 4712 } 4713 assert(cnt == 0, "Mismatched edge count."); 4714 } else if (in == nullptr) { 4715 assert(i == 0 || i >= n->req() || 4716 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4717 (n->is_Allocate() && i >= AllocateNode::InlineType) || 4718 (n->is_Unlock() && i == (n->req() - 1)) || 4719 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4720 "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges"); 4721 } else { 4722 assert(in->is_top(), "sanity"); 4723 // Nothing to check. 4724 } 4725 } 4726 } 4727 } 4728 4729 //------------------------------verify_graph_edges--------------------------- 4730 // Walk the Graph and verify that there is a one-to-one correspondence 4731 // between Use-Def edges and Def-Use edges in the graph. 4732 void Compile::verify_graph_edges(bool no_dead_code) { 4733 if (VerifyGraphEdges) { 4734 Unique_Node_List visited; 4735 4736 // Call graph walk to check edges 4737 verify_bidirectional_edges(visited); 4738 if (no_dead_code) { 4739 // Now make sure that no visited node is used by an unvisited node. 4740 bool dead_nodes = false; 4741 Unique_Node_List checked; 4742 while (visited.size() > 0) { 4743 Node* n = visited.pop(); 4744 checked.push(n); 4745 for (uint i = 0; i < n->outcnt(); i++) { 4746 Node* use = n->raw_out(i); 4747 if (checked.member(use)) continue; // already checked 4748 if (visited.member(use)) continue; // already in the graph 4749 if (use->is_Con()) continue; // a dead ConNode is OK 4750 // At this point, we have found a dead node which is DU-reachable. 4751 if (!dead_nodes) { 4752 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4753 dead_nodes = true; 4754 } 4755 use->dump(2); 4756 tty->print_cr("---"); 4757 checked.push(use); // No repeats; pretend it is now checked. 4758 } 4759 } 4760 assert(!dead_nodes, "using nodes must be reachable from root"); 4761 } 4762 } 4763 } 4764 #endif 4765 4766 // The Compile object keeps track of failure reasons separately from the ciEnv. 4767 // This is required because there is not quite a 1-1 relation between the 4768 // ciEnv and its compilation task and the Compile object. Note that one 4769 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4770 // to backtrack and retry without subsuming loads. Other than this backtracking 4771 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4772 // by the logic in C2Compiler. 4773 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4774 if (log() != nullptr) { 4775 log()->elem("failure reason='%s' phase='compile'", reason); 4776 } 4777 if (_failure_reason.get() == nullptr) { 4778 // Record the first failure reason. 4779 _failure_reason.set(reason); 4780 if (CaptureBailoutInformation) { 4781 _first_failure_details = new CompilationFailureInfo(reason); 4782 } 4783 } else { 4784 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4785 } 4786 4787 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4788 C->print_method(PHASE_FAILURE, 1); 4789 } 4790 _root = nullptr; // flush the graph, too 4791 } 4792 4793 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4794 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4795 _compile(Compile::current()), 4796 _log(nullptr), 4797 _phase_name(name), 4798 _dolog(CITimeVerbose) 4799 { 4800 assert(_compile != nullptr, "sanity check"); 4801 if (_dolog) { 4802 _log = _compile->log(); 4803 } 4804 if (_log != nullptr) { 4805 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4806 _log->stamp(); 4807 _log->end_head(); 4808 } 4809 } 4810 4811 Compile::TracePhase::~TracePhase() { 4812 if (_compile->failing_internal()) { 4813 return; // timing code, not stressing bailouts. 4814 } 4815 #ifdef ASSERT 4816 if (PrintIdealNodeCount) { 4817 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4818 _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4819 } 4820 4821 if (VerifyIdealNodeCount) { 4822 _compile->print_missing_nodes(); 4823 } 4824 #endif 4825 4826 if (_log != nullptr) { 4827 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4828 } 4829 } 4830 4831 //----------------------------static_subtype_check----------------------------- 4832 // Shortcut important common cases when superklass is exact: 4833 // (0) superklass is java.lang.Object (can occur in reflective code) 4834 // (1) subklass is already limited to a subtype of superklass => always ok 4835 // (2) subklass does not overlap with superklass => always fail 4836 // (3) superklass has NO subtypes and we can check with a simple compare. 4837 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4838 if (skip) { 4839 return SSC_full_test; // Let caller generate the general case. 4840 } 4841 4842 if (subk->is_java_subtype_of(superk)) { 4843 return SSC_always_true; // (0) and (1) this test cannot fail 4844 } 4845 4846 if (!subk->maybe_java_subtype_of(superk)) { 4847 return SSC_always_false; // (2) true path dead; no dynamic test needed 4848 } 4849 4850 const Type* superelem = superk; 4851 if (superk->isa_aryklassptr()) { 4852 int ignored; 4853 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4854 4855 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 4856 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 4857 if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() && 4858 superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) { 4859 return SSC_full_test; 4860 } 4861 } 4862 4863 if (superelem->isa_instklassptr()) { 4864 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4865 if (!ik->has_subklass()) { 4866 if (!ik->is_final()) { 4867 // Add a dependency if there is a chance of a later subclass. 4868 dependencies()->assert_leaf_type(ik); 4869 } 4870 if (!superk->maybe_java_subtype_of(subk)) { 4871 return SSC_always_false; 4872 } 4873 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4874 } 4875 } else { 4876 // A primitive array type has no subtypes. 4877 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4878 } 4879 4880 return SSC_full_test; 4881 } 4882 4883 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4884 #ifdef _LP64 4885 // The scaled index operand to AddP must be a clean 64-bit value. 4886 // Java allows a 32-bit int to be incremented to a negative 4887 // value, which appears in a 64-bit register as a large 4888 // positive number. Using that large positive number as an 4889 // operand in pointer arithmetic has bad consequences. 4890 // On the other hand, 32-bit overflow is rare, and the possibility 4891 // can often be excluded, if we annotate the ConvI2L node with 4892 // a type assertion that its value is known to be a small positive 4893 // number. (The prior range check has ensured this.) 4894 // This assertion is used by ConvI2LNode::Ideal. 4895 int index_max = max_jint - 1; // array size is max_jint, index is one less 4896 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4897 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4898 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4899 #endif 4900 return idx; 4901 } 4902 4903 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4904 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4905 if (ctrl != nullptr) { 4906 // Express control dependency by a CastII node with a narrow type. 4907 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4908 // node from floating above the range check during loop optimizations. Otherwise, the 4909 // ConvI2L node may be eliminated independently of the range check, causing the data path 4910 // to become TOP while the control path is still there (although it's unreachable). 4911 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4912 value = phase->transform(value); 4913 } 4914 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4915 return phase->transform(new ConvI2LNode(value, ltype)); 4916 } 4917 4918 // The message about the current inlining is accumulated in 4919 // _print_inlining_stream and transferred into the _print_inlining_list 4920 // once we know whether inlining succeeds or not. For regular 4921 // inlining, messages are appended to the buffer pointed by 4922 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4923 // a new buffer is added after _print_inlining_idx in the list. This 4924 // way we can update the inlining message for late inlining call site 4925 // when the inlining is attempted again. 4926 void Compile::print_inlining_init() { 4927 if (print_inlining() || print_intrinsics()) { 4928 // print_inlining_init is actually called several times. 4929 print_inlining_reset(); 4930 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4931 } 4932 } 4933 4934 void Compile::print_inlining_reinit() { 4935 if (print_inlining() || print_intrinsics()) { 4936 print_inlining_reset(); 4937 } 4938 } 4939 4940 void Compile::print_inlining_reset() { 4941 _print_inlining_stream->reset(); 4942 } 4943 4944 void Compile::print_inlining_commit() { 4945 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4946 // Transfer the message from _print_inlining_stream to the current 4947 // _print_inlining_list buffer and clear _print_inlining_stream. 4948 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4949 print_inlining_reset(); 4950 } 4951 4952 void Compile::print_inlining_push() { 4953 // Add new buffer to the _print_inlining_list at current position 4954 _print_inlining_idx++; 4955 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4956 } 4957 4958 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4959 return _print_inlining_list->at(_print_inlining_idx); 4960 } 4961 4962 void Compile::print_inlining_update(CallGenerator* cg) { 4963 if (print_inlining() || print_intrinsics()) { 4964 if (cg->is_late_inline()) { 4965 if (print_inlining_current()->cg() != cg && 4966 (print_inlining_current()->cg() != nullptr || 4967 print_inlining_current()->ss()->size() != 0)) { 4968 print_inlining_push(); 4969 } 4970 print_inlining_commit(); 4971 print_inlining_current()->set_cg(cg); 4972 } else { 4973 if (print_inlining_current()->cg() != nullptr) { 4974 print_inlining_push(); 4975 } 4976 print_inlining_commit(); 4977 } 4978 } 4979 } 4980 4981 void Compile::print_inlining_move_to(CallGenerator* cg) { 4982 // We resume inlining at a late inlining call site. Locate the 4983 // corresponding inlining buffer so that we can update it. 4984 if (print_inlining() || print_intrinsics()) { 4985 for (int i = 0; i < _print_inlining_list->length(); i++) { 4986 if (_print_inlining_list->at(i)->cg() == cg) { 4987 _print_inlining_idx = i; 4988 return; 4989 } 4990 } 4991 ShouldNotReachHere(); 4992 } 4993 } 4994 4995 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4996 if (print_inlining() || print_intrinsics()) { 4997 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4998 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4999 // replace message with new message 5000 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 5001 print_inlining_commit(); 5002 print_inlining_current()->set_cg(cg); 5003 } 5004 } 5005 5006 void Compile::print_inlining_assert_ready() { 5007 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 5008 } 5009 5010 void Compile::process_print_inlining() { 5011 assert(_late_inlines.length() == 0, "not drained yet"); 5012 if (print_inlining() || print_intrinsics()) { 5013 ResourceMark rm; 5014 stringStream ss; 5015 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 5016 for (int i = 0; i < _print_inlining_list->length(); i++) { 5017 PrintInliningBuffer* pib = _print_inlining_list->at(i); 5018 ss.print("%s", pib->ss()->freeze()); 5019 delete pib; 5020 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 5021 } 5022 // Reset _print_inlining_list, it only contains destructed objects. 5023 // It is on the arena, so it will be freed when the arena is reset. 5024 _print_inlining_list = nullptr; 5025 // _print_inlining_stream won't be used anymore, either. 5026 print_inlining_reset(); 5027 size_t end = ss.size(); 5028 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 5029 strncpy(_print_inlining_output, ss.freeze(), end+1); 5030 _print_inlining_output[end] = 0; 5031 } 5032 } 5033 5034 void Compile::dump_print_inlining() { 5035 if (_print_inlining_output != nullptr) { 5036 tty->print_raw(_print_inlining_output); 5037 } 5038 } 5039 5040 void Compile::log_late_inline(CallGenerator* cg) { 5041 if (log() != nullptr) { 5042 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 5043 cg->unique_id()); 5044 JVMState* p = cg->call_node()->jvms(); 5045 while (p != nullptr) { 5046 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 5047 p = p->caller(); 5048 } 5049 log()->tail("late_inline"); 5050 } 5051 } 5052 5053 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 5054 log_late_inline(cg); 5055 if (log() != nullptr) { 5056 log()->inline_fail(msg); 5057 } 5058 } 5059 5060 void Compile::log_inline_id(CallGenerator* cg) { 5061 if (log() != nullptr) { 5062 // The LogCompilation tool needs a unique way to identify late 5063 // inline call sites. This id must be unique for this call site in 5064 // this compilation. Try to have it unique across compilations as 5065 // well because it can be convenient when grepping through the log 5066 // file. 5067 // Distinguish OSR compilations from others in case CICountOSR is 5068 // on. 5069 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 5070 cg->set_unique_id(id); 5071 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 5072 } 5073 } 5074 5075 void Compile::log_inline_failure(const char* msg) { 5076 if (C->log() != nullptr) { 5077 C->log()->inline_fail(msg); 5078 } 5079 } 5080 5081 5082 // Dump inlining replay data to the stream. 5083 // Don't change thread state and acquire any locks. 5084 void Compile::dump_inline_data(outputStream* out) { 5085 InlineTree* inl_tree = ilt(); 5086 if (inl_tree != nullptr) { 5087 out->print(" inline %d", inl_tree->count()); 5088 inl_tree->dump_replay_data(out); 5089 } 5090 } 5091 5092 void Compile::dump_inline_data_reduced(outputStream* out) { 5093 assert(ReplayReduce, ""); 5094 5095 InlineTree* inl_tree = ilt(); 5096 if (inl_tree == nullptr) { 5097 return; 5098 } 5099 // Enable iterative replay file reduction 5100 // Output "compile" lines for depth 1 subtrees, 5101 // simulating that those trees were compiled 5102 // instead of inlined. 5103 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 5104 InlineTree* sub = inl_tree->subtrees().at(i); 5105 if (sub->inline_level() != 1) { 5106 continue; 5107 } 5108 5109 ciMethod* method = sub->method(); 5110 int entry_bci = -1; 5111 int comp_level = env()->task()->comp_level(); 5112 out->print("compile "); 5113 method->dump_name_as_ascii(out); 5114 out->print(" %d %d", entry_bci, comp_level); 5115 out->print(" inline %d", sub->count()); 5116 sub->dump_replay_data(out, -1); 5117 out->cr(); 5118 } 5119 } 5120 5121 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 5122 if (n1->Opcode() < n2->Opcode()) return -1; 5123 else if (n1->Opcode() > n2->Opcode()) return 1; 5124 5125 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 5126 for (uint i = 1; i < n1->req(); i++) { 5127 if (n1->in(i) < n2->in(i)) return -1; 5128 else if (n1->in(i) > n2->in(i)) return 1; 5129 } 5130 5131 return 0; 5132 } 5133 5134 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 5135 Node* n1 = *n1p; 5136 Node* n2 = *n2p; 5137 5138 return cmp_expensive_nodes(n1, n2); 5139 } 5140 5141 void Compile::sort_expensive_nodes() { 5142 if (!expensive_nodes_sorted()) { 5143 _expensive_nodes.sort(cmp_expensive_nodes); 5144 } 5145 } 5146 5147 bool Compile::expensive_nodes_sorted() const { 5148 for (int i = 1; i < _expensive_nodes.length(); i++) { 5149 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 5150 return false; 5151 } 5152 } 5153 return true; 5154 } 5155 5156 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 5157 if (_expensive_nodes.length() == 0) { 5158 return false; 5159 } 5160 5161 assert(OptimizeExpensiveOps, "optimization off?"); 5162 5163 // Take this opportunity to remove dead nodes from the list 5164 int j = 0; 5165 for (int i = 0; i < _expensive_nodes.length(); i++) { 5166 Node* n = _expensive_nodes.at(i); 5167 if (!n->is_unreachable(igvn)) { 5168 assert(n->is_expensive(), "should be expensive"); 5169 _expensive_nodes.at_put(j, n); 5170 j++; 5171 } 5172 } 5173 _expensive_nodes.trunc_to(j); 5174 5175 // Then sort the list so that similar nodes are next to each other 5176 // and check for at least two nodes of identical kind with same data 5177 // inputs. 5178 sort_expensive_nodes(); 5179 5180 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 5181 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 5182 return true; 5183 } 5184 } 5185 5186 return false; 5187 } 5188 5189 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 5190 if (_expensive_nodes.length() == 0) { 5191 return; 5192 } 5193 5194 assert(OptimizeExpensiveOps, "optimization off?"); 5195 5196 // Sort to bring similar nodes next to each other and clear the 5197 // control input of nodes for which there's only a single copy. 5198 sort_expensive_nodes(); 5199 5200 int j = 0; 5201 int identical = 0; 5202 int i = 0; 5203 bool modified = false; 5204 for (; i < _expensive_nodes.length()-1; i++) { 5205 assert(j <= i, "can't write beyond current index"); 5206 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 5207 identical++; 5208 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5209 continue; 5210 } 5211 if (identical > 0) { 5212 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5213 identical = 0; 5214 } else { 5215 Node* n = _expensive_nodes.at(i); 5216 igvn.replace_input_of(n, 0, nullptr); 5217 igvn.hash_insert(n); 5218 modified = true; 5219 } 5220 } 5221 if (identical > 0) { 5222 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5223 } else if (_expensive_nodes.length() >= 1) { 5224 Node* n = _expensive_nodes.at(i); 5225 igvn.replace_input_of(n, 0, nullptr); 5226 igvn.hash_insert(n); 5227 modified = true; 5228 } 5229 _expensive_nodes.trunc_to(j); 5230 if (modified) { 5231 igvn.optimize(); 5232 } 5233 } 5234 5235 void Compile::add_expensive_node(Node * n) { 5236 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 5237 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5238 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5239 if (OptimizeExpensiveOps) { 5240 _expensive_nodes.append(n); 5241 } else { 5242 // Clear control input and let IGVN optimize expensive nodes if 5243 // OptimizeExpensiveOps is off. 5244 n->set_req(0, nullptr); 5245 } 5246 } 5247 5248 /** 5249 * Track coarsened Lock and Unlock nodes. 5250 */ 5251 5252 class Lock_List : public Node_List { 5253 uint _origin_cnt; 5254 public: 5255 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 5256 uint origin_cnt() const { return _origin_cnt; } 5257 }; 5258 5259 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 5260 int length = locks.length(); 5261 if (length > 0) { 5262 // Have to keep this list until locks elimination during Macro nodes elimination. 5263 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 5264 AbstractLockNode* alock = locks.at(0); 5265 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5266 for (int i = 0; i < length; i++) { 5267 AbstractLockNode* lock = locks.at(i); 5268 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 5269 locks_list->push(lock); 5270 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 5271 if (this_box != box) { 5272 // Locking regions (BoxLock) could be Unbalanced here: 5273 // - its coarsened locks were eliminated in earlier 5274 // macro nodes elimination followed by loop unroll 5275 // - it is OSR locking region (no Lock node) 5276 // Preserve Unbalanced status in such cases. 5277 if (!this_box->is_unbalanced()) { 5278 this_box->set_coarsened(); 5279 } 5280 if (!box->is_unbalanced()) { 5281 box->set_coarsened(); 5282 } 5283 } 5284 } 5285 _coarsened_locks.append(locks_list); 5286 } 5287 } 5288 5289 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 5290 int count = coarsened_count(); 5291 for (int i = 0; i < count; i++) { 5292 Node_List* locks_list = _coarsened_locks.at(i); 5293 for (uint j = 0; j < locks_list->size(); j++) { 5294 Node* lock = locks_list->at(j); 5295 assert(lock->is_AbstractLock(), "sanity"); 5296 if (!useful.member(lock)) { 5297 locks_list->yank(lock); 5298 } 5299 } 5300 } 5301 } 5302 5303 void Compile::remove_coarsened_lock(Node* n) { 5304 if (n->is_AbstractLock()) { 5305 int count = coarsened_count(); 5306 for (int i = 0; i < count; i++) { 5307 Node_List* locks_list = _coarsened_locks.at(i); 5308 locks_list->yank(n); 5309 } 5310 } 5311 } 5312 5313 bool Compile::coarsened_locks_consistent() { 5314 int count = coarsened_count(); 5315 for (int i = 0; i < count; i++) { 5316 bool unbalanced = false; 5317 bool modified = false; // track locks kind modifications 5318 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 5319 uint size = locks_list->size(); 5320 if (size == 0) { 5321 unbalanced = false; // All locks were eliminated - good 5322 } else if (size != locks_list->origin_cnt()) { 5323 unbalanced = true; // Some locks were removed from list 5324 } else { 5325 for (uint j = 0; j < size; j++) { 5326 Node* lock = locks_list->at(j); 5327 // All nodes in group should have the same state (modified or not) 5328 if (!lock->as_AbstractLock()->is_coarsened()) { 5329 if (j == 0) { 5330 // first on list was modified, the rest should be too for consistency 5331 modified = true; 5332 } else if (!modified) { 5333 // this lock was modified but previous locks on the list were not 5334 unbalanced = true; 5335 break; 5336 } 5337 } else if (modified) { 5338 // previous locks on list were modified but not this lock 5339 unbalanced = true; 5340 break; 5341 } 5342 } 5343 } 5344 if (unbalanced) { 5345 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 5346 #ifdef ASSERT 5347 if (PrintEliminateLocks) { 5348 tty->print_cr("=== unbalanced coarsened locks ==="); 5349 for (uint l = 0; l < size; l++) { 5350 locks_list->at(l)->dump(); 5351 } 5352 } 5353 #endif 5354 record_failure(C2Compiler::retry_no_locks_coarsening()); 5355 return false; 5356 } 5357 } 5358 return true; 5359 } 5360 5361 // Mark locking regions (identified by BoxLockNode) as unbalanced if 5362 // locks coarsening optimization removed Lock/Unlock nodes from them. 5363 // Such regions become unbalanced because coarsening only removes part 5364 // of Lock/Unlock nodes in region. As result we can't execute other 5365 // locks elimination optimizations which assume all code paths have 5366 // corresponding pair of Lock/Unlock nodes - they are balanced. 5367 void Compile::mark_unbalanced_boxes() const { 5368 int count = coarsened_count(); 5369 for (int i = 0; i < count; i++) { 5370 Node_List* locks_list = _coarsened_locks.at(i); 5371 uint size = locks_list->size(); 5372 if (size > 0) { 5373 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 5374 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5375 if (alock->is_coarsened()) { 5376 // coarsened_locks_consistent(), which is called before this method, verifies 5377 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 5378 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5379 for (uint j = 1; j < size; j++) { 5380 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 5381 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 5382 if (box != this_box) { 5383 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5384 box->set_unbalanced(); 5385 this_box->set_unbalanced(); 5386 } 5387 } 5388 } 5389 } 5390 } 5391 } 5392 5393 /** 5394 * Remove the speculative part of types and clean up the graph 5395 */ 5396 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5397 if (UseTypeSpeculation) { 5398 Unique_Node_List worklist; 5399 worklist.push(root()); 5400 int modified = 0; 5401 // Go over all type nodes that carry a speculative type, drop the 5402 // speculative part of the type and enqueue the node for an igvn 5403 // which may optimize it out. 5404 for (uint next = 0; next < worklist.size(); ++next) { 5405 Node *n = worklist.at(next); 5406 if (n->is_Type()) { 5407 TypeNode* tn = n->as_Type(); 5408 const Type* t = tn->type(); 5409 const Type* t_no_spec = t->remove_speculative(); 5410 if (t_no_spec != t) { 5411 bool in_hash = igvn.hash_delete(n); 5412 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 5413 tn->set_type(t_no_spec); 5414 igvn.hash_insert(n); 5415 igvn._worklist.push(n); // give it a chance to go away 5416 modified++; 5417 } 5418 } 5419 // Iterate over outs - endless loops is unreachable from below 5420 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5421 Node *m = n->fast_out(i); 5422 if (not_a_node(m)) { 5423 continue; 5424 } 5425 worklist.push(m); 5426 } 5427 } 5428 // Drop the speculative part of all types in the igvn's type table 5429 igvn.remove_speculative_types(); 5430 if (modified > 0) { 5431 igvn.optimize(); 5432 if (failing()) return; 5433 } 5434 #ifdef ASSERT 5435 // Verify that after the IGVN is over no speculative type has resurfaced 5436 worklist.clear(); 5437 worklist.push(root()); 5438 for (uint next = 0; next < worklist.size(); ++next) { 5439 Node *n = worklist.at(next); 5440 const Type* t = igvn.type_or_null(n); 5441 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5442 if (n->is_Type()) { 5443 t = n->as_Type()->type(); 5444 assert(t == t->remove_speculative(), "no more speculative types"); 5445 } 5446 // Iterate over outs - endless loops is unreachable from below 5447 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5448 Node *m = n->fast_out(i); 5449 if (not_a_node(m)) { 5450 continue; 5451 } 5452 worklist.push(m); 5453 } 5454 } 5455 igvn.check_no_speculative_types(); 5456 #endif 5457 } 5458 } 5459 5460 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) { 5461 const TypeInstPtr* ta = phase->type(a)->isa_instptr(); 5462 const TypeInstPtr* tb = phase->type(b)->isa_instptr(); 5463 if (!EnableValhalla || ta == nullptr || tb == nullptr || 5464 ta->is_zero_type() || tb->is_zero_type() || 5465 !ta->can_be_inline_type() || !tb->can_be_inline_type()) { 5466 // Use old acmp if one operand is null or not an inline type 5467 return new CmpPNode(a, b); 5468 } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) { 5469 // We know that one operand is an inline type. Therefore, 5470 // new acmp will only return true if both operands are nullptr. 5471 // Check if both operands are null by or'ing the oops. 5472 a = phase->transform(new CastP2XNode(nullptr, a)); 5473 b = phase->transform(new CastP2XNode(nullptr, b)); 5474 a = phase->transform(new OrXNode(a, b)); 5475 return new CmpXNode(a, phase->MakeConX(0)); 5476 } 5477 // Use new acmp 5478 return nullptr; 5479 } 5480 5481 // Auxiliary methods to support randomized stressing/fuzzing. 5482 5483 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5484 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5485 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5486 FLAG_SET_ERGO(StressSeed, _stress_seed); 5487 } else { 5488 _stress_seed = StressSeed; 5489 } 5490 if (_log != nullptr) { 5491 _log->elem("stress_test seed='%u'", _stress_seed); 5492 } 5493 } 5494 5495 int Compile::random() { 5496 _stress_seed = os::next_random(_stress_seed); 5497 return static_cast<int>(_stress_seed); 5498 } 5499 5500 // This method can be called the arbitrary number of times, with current count 5501 // as the argument. The logic allows selecting a single candidate from the 5502 // running list of candidates as follows: 5503 // int count = 0; 5504 // Cand* selected = null; 5505 // while(cand = cand->next()) { 5506 // if (randomized_select(++count)) { 5507 // selected = cand; 5508 // } 5509 // } 5510 // 5511 // Including count equalizes the chances any candidate is "selected". 5512 // This is useful when we don't have the complete list of candidates to choose 5513 // from uniformly. In this case, we need to adjust the randomicity of the 5514 // selection, or else we will end up biasing the selection towards the latter 5515 // candidates. 5516 // 5517 // Quick back-envelope calculation shows that for the list of n candidates 5518 // the equal probability for the candidate to persist as "best" can be 5519 // achieved by replacing it with "next" k-th candidate with the probability 5520 // of 1/k. It can be easily shown that by the end of the run, the 5521 // probability for any candidate is converged to 1/n, thus giving the 5522 // uniform distribution among all the candidates. 5523 // 5524 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5525 #define RANDOMIZED_DOMAIN_POW 29 5526 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5527 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5528 bool Compile::randomized_select(int count) { 5529 assert(count > 0, "only positive"); 5530 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5531 } 5532 5533 #ifdef ASSERT 5534 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5535 bool Compile::fail_randomly() { 5536 if ((random() % StressBailoutMean) != 0) { 5537 return false; 5538 } 5539 record_failure("StressBailout"); 5540 return true; 5541 } 5542 5543 bool Compile::failure_is_artificial() { 5544 assert(failing_internal(), "should be failing"); 5545 return C->failure_reason_is("StressBailout"); 5546 } 5547 #endif 5548 5549 CloneMap& Compile::clone_map() { return _clone_map; } 5550 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5551 5552 void NodeCloneInfo::dump_on(outputStream* st) const { 5553 st->print(" {%d:%d} ", idx(), gen()); 5554 } 5555 5556 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5557 uint64_t val = value(old->_idx); 5558 NodeCloneInfo cio(val); 5559 assert(val != 0, "old node should be in the map"); 5560 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5561 insert(nnn->_idx, cin.get()); 5562 #ifndef PRODUCT 5563 if (is_debug()) { 5564 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5565 } 5566 #endif 5567 } 5568 5569 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5570 NodeCloneInfo cio(value(old->_idx)); 5571 if (cio.get() == 0) { 5572 cio.set(old->_idx, 0); 5573 insert(old->_idx, cio.get()); 5574 #ifndef PRODUCT 5575 if (is_debug()) { 5576 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5577 } 5578 #endif 5579 } 5580 clone(old, nnn, gen); 5581 } 5582 5583 int CloneMap::max_gen() const { 5584 int g = 0; 5585 DictI di(_dict); 5586 for(; di.test(); ++di) { 5587 int t = gen(di._key); 5588 if (g < t) { 5589 g = t; 5590 #ifndef PRODUCT 5591 if (is_debug()) { 5592 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5593 } 5594 #endif 5595 } 5596 } 5597 return g; 5598 } 5599 5600 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5601 uint64_t val = value(key); 5602 if (val != 0) { 5603 NodeCloneInfo ni(val); 5604 ni.dump_on(st); 5605 } 5606 } 5607 5608 void Compile::shuffle_macro_nodes() { 5609 if (_macro_nodes.length() < 2) { 5610 return; 5611 } 5612 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5613 uint j = C->random() % (i + 1); 5614 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5615 } 5616 } 5617 5618 // Move Allocate nodes to the start of the list 5619 void Compile::sort_macro_nodes() { 5620 int count = macro_count(); 5621 int allocates = 0; 5622 for (int i = 0; i < count; i++) { 5623 Node* n = macro_node(i); 5624 if (n->is_Allocate()) { 5625 if (i != allocates) { 5626 Node* tmp = macro_node(allocates); 5627 _macro_nodes.at_put(allocates, n); 5628 _macro_nodes.at_put(i, tmp); 5629 } 5630 allocates++; 5631 } 5632 } 5633 } 5634 5635 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5636 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5637 EventCompilerPhase event(UNTIMED); 5638 if (event.should_commit()) { 5639 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5640 } 5641 #ifndef PRODUCT 5642 ResourceMark rm; 5643 stringStream ss; 5644 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5645 int iter = ++_igv_phase_iter[cpt]; 5646 if (iter > 1) { 5647 ss.print(" %d", iter); 5648 } 5649 if (n != nullptr) { 5650 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5651 if (n->is_Call()) { 5652 CallNode* call = n->as_Call(); 5653 if (call->_name != nullptr) { 5654 // E.g. uncommon traps etc. 5655 ss.print(" - %s", call->_name); 5656 } else if (call->is_CallJava()) { 5657 CallJavaNode* call_java = call->as_CallJava(); 5658 if (call_java->method() != nullptr) { 5659 ss.print(" -"); 5660 call_java->method()->print_short_name(&ss); 5661 } 5662 } 5663 } 5664 } 5665 5666 const char* name = ss.as_string(); 5667 if (should_print_igv(level)) { 5668 _igv_printer->print_method(name, level); 5669 } 5670 if (should_print_phase(cpt)) { 5671 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5672 } 5673 #endif 5674 C->_latest_stage_start_counter.stamp(); 5675 } 5676 5677 // Only used from CompileWrapper 5678 void Compile::begin_method() { 5679 #ifndef PRODUCT 5680 if (_method != nullptr && should_print_igv(1)) { 5681 _igv_printer->begin_method(); 5682 } 5683 #endif 5684 C->_latest_stage_start_counter.stamp(); 5685 } 5686 5687 // Only used from CompileWrapper 5688 void Compile::end_method() { 5689 EventCompilerPhase event(UNTIMED); 5690 if (event.should_commit()) { 5691 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5692 } 5693 5694 #ifndef PRODUCT 5695 if (_method != nullptr && should_print_igv(1)) { 5696 _igv_printer->end_method(); 5697 } 5698 #endif 5699 } 5700 5701 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5702 #ifndef PRODUCT 5703 if (_directive->should_print_phase(cpt)) { 5704 return true; 5705 } 5706 #endif 5707 return false; 5708 } 5709 5710 bool Compile::should_print_igv(const int level) { 5711 #ifndef PRODUCT 5712 if (PrintIdealGraphLevel < 0) { // disabled by the user 5713 return false; 5714 } 5715 5716 bool need = directive()->IGVPrintLevelOption >= level; 5717 if (need && !_igv_printer) { 5718 _igv_printer = IdealGraphPrinter::printer(); 5719 _igv_printer->set_compile(this); 5720 } 5721 return need; 5722 #else 5723 return false; 5724 #endif 5725 } 5726 5727 #ifndef PRODUCT 5728 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5729 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5730 5731 // Called from debugger. Prints method to the default file with the default phase name. 5732 // This works regardless of any Ideal Graph Visualizer flags set or not. 5733 void igv_print() { 5734 Compile::current()->igv_print_method_to_file(); 5735 } 5736 5737 // Same as igv_print() above but with a specified phase name. 5738 void igv_print(const char* phase_name) { 5739 Compile::current()->igv_print_method_to_file(phase_name); 5740 } 5741 5742 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5743 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5744 // This works regardless of any Ideal Graph Visualizer flags set or not. 5745 void igv_print(bool network) { 5746 if (network) { 5747 Compile::current()->igv_print_method_to_network(); 5748 } else { 5749 Compile::current()->igv_print_method_to_file(); 5750 } 5751 } 5752 5753 // Same as igv_print(bool network) above but with a specified phase name. 5754 void igv_print(bool network, const char* phase_name) { 5755 if (network) { 5756 Compile::current()->igv_print_method_to_network(phase_name); 5757 } else { 5758 Compile::current()->igv_print_method_to_file(phase_name); 5759 } 5760 } 5761 5762 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5763 void igv_print_default() { 5764 Compile::current()->print_method(PHASE_DEBUG, 0); 5765 } 5766 5767 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5768 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5769 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5770 void igv_append() { 5771 Compile::current()->igv_print_method_to_file("Debug", true); 5772 } 5773 5774 // Same as igv_append() above but with a specified phase name. 5775 void igv_append(const char* phase_name) { 5776 Compile::current()->igv_print_method_to_file(phase_name, true); 5777 } 5778 5779 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5780 const char* file_name = "custom_debug.xml"; 5781 if (_debug_file_printer == nullptr) { 5782 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5783 } else { 5784 _debug_file_printer->update_compiled_method(C->method()); 5785 } 5786 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5787 _debug_file_printer->print(phase_name, (Node*)C->root()); 5788 } 5789 5790 void Compile::igv_print_method_to_network(const char* phase_name) { 5791 if (_debug_network_printer == nullptr) { 5792 _debug_network_printer = new IdealGraphPrinter(C); 5793 } else { 5794 _debug_network_printer->update_compiled_method(C->method()); 5795 } 5796 tty->print_cr("Method printed over network stream to IGV"); 5797 _debug_network_printer->print(phase_name, (Node*)C->root()); 5798 } 5799 #endif 5800 5801 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5802 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5803 return value; 5804 } 5805 Node* result = nullptr; 5806 if (bt == T_BYTE) { 5807 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5808 result = new RShiftINode(result, phase->intcon(24)); 5809 } else if (bt == T_BOOLEAN) { 5810 result = new AndINode(value, phase->intcon(0xFF)); 5811 } else if (bt == T_CHAR) { 5812 result = new AndINode(value,phase->intcon(0xFFFF)); 5813 } else { 5814 assert(bt == T_SHORT, "unexpected narrow type"); 5815 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5816 result = new RShiftINode(result, phase->intcon(16)); 5817 } 5818 if (transform_res) { 5819 result = phase->transform(result); 5820 } 5821 return result; 5822 } 5823 5824 void Compile::record_method_not_compilable_oom() { 5825 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5826 }