1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/inlinetypenode.hpp" 61 #include "opto/locknode.hpp" 62 #include "opto/loopnode.hpp" 63 #include "opto/machnode.hpp" 64 #include "opto/macro.hpp" 65 #include "opto/matcher.hpp" 66 #include "opto/mathexactnode.hpp" 67 #include "opto/memnode.hpp" 68 #include "opto/movenode.hpp" 69 #include "opto/mulnode.hpp" 70 #include "opto/narrowptrnode.hpp" 71 #include "opto/node.hpp" 72 #include "opto/opcodes.hpp" 73 #include "opto/output.hpp" 74 #include "opto/parse.hpp" 75 #include "opto/phaseX.hpp" 76 #include "opto/rootnode.hpp" 77 #include "opto/runtime.hpp" 78 #include "opto/stringopts.hpp" 79 #include "opto/type.hpp" 80 #include "opto/vector.hpp" 81 #include "opto/vectornode.hpp" 82 #include "runtime/globals_extension.hpp" 83 #include "runtime/sharedRuntime.hpp" 84 #include "runtime/signature.hpp" 85 #include "runtime/stubRoutines.hpp" 86 #include "runtime/timer.hpp" 87 #include "utilities/align.hpp" 88 #include "utilities/copy.hpp" 89 #include "utilities/macros.hpp" 90 #include "utilities/resourceHash.hpp" 91 92 // -------------------- Compile::mach_constant_base_node ----------------------- 93 // Constant table base node singleton. 94 MachConstantBaseNode* Compile::mach_constant_base_node() { 95 if (_mach_constant_base_node == nullptr) { 96 _mach_constant_base_node = new MachConstantBaseNode(); 97 _mach_constant_base_node->add_req(C->root()); 98 } 99 return _mach_constant_base_node; 100 } 101 102 103 /// Support for intrinsics. 104 105 // Return the index at which m must be inserted (or already exists). 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 107 class IntrinsicDescPair { 108 private: 109 ciMethod* _m; 110 bool _is_virtual; 111 public: 112 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 113 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 114 ciMethod* m= elt->method(); 115 ciMethod* key_m = key->_m; 116 if (key_m < m) return -1; 117 else if (key_m > m) return 1; 118 else { 119 bool is_virtual = elt->is_virtual(); 120 bool key_virtual = key->_is_virtual; 121 if (key_virtual < is_virtual) return -1; 122 else if (key_virtual > is_virtual) return 1; 123 else return 0; 124 } 125 } 126 }; 127 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 128 #ifdef ASSERT 129 for (int i = 1; i < _intrinsics.length(); i++) { 130 CallGenerator* cg1 = _intrinsics.at(i-1); 131 CallGenerator* cg2 = _intrinsics.at(i); 132 assert(cg1->method() != cg2->method() 133 ? cg1->method() < cg2->method() 134 : cg1->is_virtual() < cg2->is_virtual(), 135 "compiler intrinsics list must stay sorted"); 136 } 137 #endif 138 IntrinsicDescPair pair(m, is_virtual); 139 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 140 } 141 142 void Compile::register_intrinsic(CallGenerator* cg) { 143 bool found = false; 144 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 145 assert(!found, "registering twice"); 146 _intrinsics.insert_before(index, cg); 147 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 148 } 149 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 151 assert(m->is_loaded(), "don't try this on unloaded methods"); 152 if (_intrinsics.length() > 0) { 153 bool found = false; 154 int index = intrinsic_insertion_index(m, is_virtual, found); 155 if (found) { 156 return _intrinsics.at(index); 157 } 158 } 159 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 160 if (m->intrinsic_id() != vmIntrinsics::_none && 161 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 162 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 163 if (cg != nullptr) { 164 // Save it for next time: 165 register_intrinsic(cg); 166 return cg; 167 } else { 168 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 169 } 170 } 171 return nullptr; 172 } 173 174 // Compile::make_vm_intrinsic is defined in library_call.cpp. 175 176 #ifndef PRODUCT 177 // statistics gathering... 178 179 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 180 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 181 182 inline int as_int(vmIntrinsics::ID id) { 183 return vmIntrinsics::as_int(id); 184 } 185 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 187 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 188 int oflags = _intrinsic_hist_flags[as_int(id)]; 189 assert(flags != 0, "what happened?"); 190 if (is_virtual) { 191 flags |= _intrinsic_virtual; 192 } 193 bool changed = (flags != oflags); 194 if ((flags & _intrinsic_worked) != 0) { 195 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 196 if (count == 1) { 197 changed = true; // first time 198 } 199 // increment the overall count also: 200 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 201 } 202 if (changed) { 203 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 204 // Something changed about the intrinsic's virtuality. 205 if ((flags & _intrinsic_virtual) != 0) { 206 // This is the first use of this intrinsic as a virtual call. 207 if (oflags != 0) { 208 // We already saw it as a non-virtual, so note both cases. 209 flags |= _intrinsic_both; 210 } 211 } else if ((oflags & _intrinsic_both) == 0) { 212 // This is the first use of this intrinsic as a non-virtual 213 flags |= _intrinsic_both; 214 } 215 } 216 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 217 } 218 // update the overall flags also: 219 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 220 return changed; 221 } 222 223 static char* format_flags(int flags, char* buf) { 224 buf[0] = 0; 225 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 226 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 227 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 228 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 229 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 230 if (buf[0] == 0) strcat(buf, ","); 231 assert(buf[0] == ',', "must be"); 232 return &buf[1]; 233 } 234 235 void Compile::print_intrinsic_statistics() { 236 char flagsbuf[100]; 237 ttyLocker ttyl; 238 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 239 tty->print_cr("Compiler intrinsic usage:"); 240 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 241 if (total == 0) total = 1; // avoid div0 in case of no successes 242 #define PRINT_STAT_LINE(name, c, f) \ 243 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 244 for (auto id : EnumRange<vmIntrinsicID>{}) { 245 int flags = _intrinsic_hist_flags[as_int(id)]; 246 juint count = _intrinsic_hist_count[as_int(id)]; 247 if ((flags | count) != 0) { 248 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 249 } 250 } 251 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 252 if (xtty != nullptr) xtty->tail("statistics"); 253 } 254 255 void Compile::print_statistics() { 256 { ttyLocker ttyl; 257 if (xtty != nullptr) xtty->head("statistics type='opto'"); 258 Parse::print_statistics(); 259 PhaseStringOpts::print_statistics(); 260 PhaseCCP::print_statistics(); 261 PhaseRegAlloc::print_statistics(); 262 PhaseOutput::print_statistics(); 263 PhasePeephole::print_statistics(); 264 PhaseIdealLoop::print_statistics(); 265 ConnectionGraph::print_statistics(); 266 PhaseMacroExpand::print_statistics(); 267 if (xtty != nullptr) xtty->tail("statistics"); 268 } 269 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 270 // put this under its own <statistics> element. 271 print_intrinsic_statistics(); 272 } 273 } 274 #endif //PRODUCT 275 276 void Compile::gvn_replace_by(Node* n, Node* nn) { 277 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 278 Node* use = n->last_out(i); 279 bool is_in_table = initial_gvn()->hash_delete(use); 280 uint uses_found = 0; 281 for (uint j = 0; j < use->len(); j++) { 282 if (use->in(j) == n) { 283 if (j < use->req()) 284 use->set_req(j, nn); 285 else 286 use->set_prec(j, nn); 287 uses_found++; 288 } 289 } 290 if (is_in_table) { 291 // reinsert into table 292 initial_gvn()->hash_find_insert(use); 293 } 294 record_for_igvn(use); 295 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 296 i -= uses_found; // we deleted 1 or more copies of this edge 297 } 298 } 299 300 301 // Identify all nodes that are reachable from below, useful. 302 // Use breadth-first pass that records state in a Unique_Node_List, 303 // recursive traversal is slower. 304 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 305 int estimated_worklist_size = live_nodes(); 306 useful.map( estimated_worklist_size, nullptr ); // preallocate space 307 308 // Initialize worklist 309 if (root() != nullptr) { useful.push(root()); } 310 // If 'top' is cached, declare it useful to preserve cached node 311 if (cached_top_node()) { useful.push(cached_top_node()); } 312 313 // Push all useful nodes onto the list, breadthfirst 314 for( uint next = 0; next < useful.size(); ++next ) { 315 assert( next < unique(), "Unique useful nodes < total nodes"); 316 Node *n = useful.at(next); 317 uint max = n->len(); 318 for( uint i = 0; i < max; ++i ) { 319 Node *m = n->in(i); 320 if (not_a_node(m)) continue; 321 useful.push(m); 322 } 323 } 324 } 325 326 // Update dead_node_list with any missing dead nodes using useful 327 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 328 void Compile::update_dead_node_list(Unique_Node_List &useful) { 329 uint max_idx = unique(); 330 VectorSet& useful_node_set = useful.member_set(); 331 332 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 333 // If node with index node_idx is not in useful set, 334 // mark it as dead in dead node list. 335 if (!useful_node_set.test(node_idx)) { 336 record_dead_node(node_idx); 337 } 338 } 339 } 340 341 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 342 int shift = 0; 343 for (int i = 0; i < inlines->length(); i++) { 344 CallGenerator* cg = inlines->at(i); 345 if (useful.member(cg->call_node())) { 346 if (shift > 0) { 347 inlines->at_put(i - shift, cg); 348 } 349 } else { 350 shift++; // skip over the dead element 351 } 352 } 353 if (shift > 0) { 354 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 355 } 356 } 357 358 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 359 assert(dead != nullptr && dead->is_Call(), "sanity"); 360 int found = 0; 361 for (int i = 0; i < inlines->length(); i++) { 362 if (inlines->at(i)->call_node() == dead) { 363 inlines->remove_at(i); 364 found++; 365 NOT_DEBUG( break; ) // elements are unique, so exit early 366 } 367 } 368 assert(found <= 1, "not unique"); 369 } 370 371 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 372 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 373 for (int i = node_list.length() - 1; i >= 0; i--) { 374 N* node = node_list.at(i); 375 if (!useful.member(node)) { 376 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 377 } 378 } 379 } 380 381 void Compile::remove_useless_node(Node* dead) { 382 remove_modified_node(dead); 383 384 // Constant node that has no out-edges and has only one in-edge from 385 // root is usually dead. However, sometimes reshaping walk makes 386 // it reachable by adding use edges. So, we will NOT count Con nodes 387 // as dead to be conservative about the dead node count at any 388 // given time. 389 if (!dead->is_Con()) { 390 record_dead_node(dead->_idx); 391 } 392 if (dead->is_macro()) { 393 remove_macro_node(dead); 394 } 395 if (dead->is_expensive()) { 396 remove_expensive_node(dead); 397 } 398 if (dead->is_OpaqueTemplateAssertionPredicate()) { 399 remove_template_assertion_predicate_opaq(dead); 400 } 401 if (dead->is_ParsePredicate()) { 402 remove_parse_predicate(dead->as_ParsePredicate()); 403 } 404 if (dead->for_post_loop_opts_igvn()) { 405 remove_from_post_loop_opts_igvn(dead); 406 } 407 if (dead->is_InlineType()) { 408 remove_inline_type(dead); 409 } 410 if (dead->is_Call()) { 411 remove_useless_late_inlines( &_late_inlines, dead); 412 remove_useless_late_inlines( &_string_late_inlines, dead); 413 remove_useless_late_inlines( &_boxing_late_inlines, dead); 414 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 415 416 if (dead->is_CallStaticJava()) { 417 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 418 } 419 } 420 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 421 bs->unregister_potential_barrier_node(dead); 422 } 423 424 // Disconnect all useless nodes by disconnecting those at the boundary. 425 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 426 uint next = 0; 427 while (next < useful.size()) { 428 Node *n = useful.at(next++); 429 if (n->is_SafePoint()) { 430 // We're done with a parsing phase. Replaced nodes are not valid 431 // beyond that point. 432 n->as_SafePoint()->delete_replaced_nodes(); 433 } 434 // Use raw traversal of out edges since this code removes out edges 435 int max = n->outcnt(); 436 for (int j = 0; j < max; ++j) { 437 Node* child = n->raw_out(j); 438 if (!useful.member(child)) { 439 assert(!child->is_top() || child != top(), 440 "If top is cached in Compile object it is in useful list"); 441 // Only need to remove this out-edge to the useless node 442 n->raw_del_out(j); 443 --j; 444 --max; 445 if (child->is_data_proj_of_pure_function(n)) { 446 worklist.push(n); 447 } 448 } 449 } 450 if (n->outcnt() == 1 && n->has_special_unique_user()) { 451 assert(useful.member(n->unique_out()), "do not push a useless node"); 452 worklist.push(n->unique_out()); 453 } 454 if (n->outcnt() == 0) { 455 worklist.push(n); 456 } 457 } 458 459 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 460 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 461 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 462 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 463 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 464 remove_useless_nodes(_inline_type_nodes, useful); // remove useless inline type nodes 465 #ifdef ASSERT 466 if (_modified_nodes != nullptr) { 467 _modified_nodes->remove_useless_nodes(useful.member_set()); 468 } 469 #endif 470 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 471 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 472 #ifdef ASSERT 473 if (_modified_nodes != nullptr) { 474 _modified_nodes->remove_useless_nodes(useful.member_set()); 475 } 476 #endif 477 478 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 479 bs->eliminate_useless_gc_barriers(useful, this); 480 // clean up the late inline lists 481 remove_useless_late_inlines( &_late_inlines, useful); 482 remove_useless_late_inlines( &_string_late_inlines, useful); 483 remove_useless_late_inlines( &_boxing_late_inlines, useful); 484 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 485 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 486 } 487 488 // ============================================================================ 489 //------------------------------CompileWrapper--------------------------------- 490 class CompileWrapper : public StackObj { 491 Compile *const _compile; 492 public: 493 CompileWrapper(Compile* compile); 494 495 ~CompileWrapper(); 496 }; 497 498 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 499 // the Compile* pointer is stored in the current ciEnv: 500 ciEnv* env = compile->env(); 501 assert(env == ciEnv::current(), "must already be a ciEnv active"); 502 assert(env->compiler_data() == nullptr, "compile already active?"); 503 env->set_compiler_data(compile); 504 assert(compile == Compile::current(), "sanity"); 505 506 compile->set_type_dict(nullptr); 507 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 508 compile->clone_map().set_clone_idx(0); 509 compile->set_type_last_size(0); 510 compile->set_last_tf(nullptr, nullptr); 511 compile->set_indexSet_arena(nullptr); 512 compile->set_indexSet_free_block_list(nullptr); 513 compile->init_type_arena(); 514 Type::Initialize(compile); 515 _compile->begin_method(); 516 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 517 } 518 CompileWrapper::~CompileWrapper() { 519 // simulate crash during compilation 520 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 521 522 _compile->end_method(); 523 _compile->env()->set_compiler_data(nullptr); 524 } 525 526 527 //----------------------------print_compile_messages--------------------------- 528 void Compile::print_compile_messages() { 529 #ifndef PRODUCT 530 // Check if recompiling 531 if (!subsume_loads() && PrintOpto) { 532 // Recompiling without allowing machine instructions to subsume loads 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 538 // Recompiling without escape analysis 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without escape analysis **"); 541 tty->print_cr("*********************************************************"); 542 } 543 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 544 // Recompiling without iterative escape analysis 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 547 tty->print_cr("*********************************************************"); 548 } 549 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 550 // Recompiling without reducing allocation merges 551 tty->print_cr("*********************************************************"); 552 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 553 tty->print_cr("*********************************************************"); 554 } 555 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 556 // Recompiling without boxing elimination 557 tty->print_cr("*********************************************************"); 558 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 559 tty->print_cr("*********************************************************"); 560 } 561 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 562 // Recompiling without locks coarsening 563 tty->print_cr("*********************************************************"); 564 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 565 tty->print_cr("*********************************************************"); 566 } 567 if (env()->break_at_compile()) { 568 // Open the debugger when compiling this method. 569 tty->print("### Breaking when compiling: "); 570 method()->print_short_name(); 571 tty->cr(); 572 BREAKPOINT; 573 } 574 575 if( PrintOpto ) { 576 if (is_osr_compilation()) { 577 tty->print("[OSR]%3d", _compile_id); 578 } else { 579 tty->print("%3d", _compile_id); 580 } 581 } 582 #endif 583 } 584 585 #ifndef PRODUCT 586 void Compile::print_ideal_ir(const char* phase_name) { 587 // keep the following output all in one block 588 // This output goes directly to the tty, not the compiler log. 589 // To enable tools to match it up with the compilation activity, 590 // be sure to tag this tty output with the compile ID. 591 592 // Node dumping can cause a safepoint, which can break the tty lock. 593 // Buffer all node dumps, so that all safepoints happen before we lock. 594 ResourceMark rm; 595 stringStream ss; 596 597 if (_output == nullptr) { 598 ss.print_cr("AFTER: %s", phase_name); 599 // Print out all nodes in ascending order of index. 600 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 601 } else { 602 // Dump the node blockwise if we have a scheduling 603 _output->print_scheduling(&ss); 604 } 605 606 // Check that the lock is not broken by a safepoint. 607 NoSafepointVerifier nsv; 608 ttyLocker ttyl; 609 if (xtty != nullptr) { 610 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 611 compile_id(), 612 is_osr_compilation() ? " compile_kind='osr'" : "", 613 phase_name); 614 } 615 616 tty->print("%s", ss.as_string()); 617 618 if (xtty != nullptr) { 619 xtty->tail("ideal"); 620 } 621 } 622 #endif 623 624 // ============================================================================ 625 //------------------------------Compile standard------------------------------- 626 627 // Compile a method. entry_bci is -1 for normal compilations and indicates 628 // the continuation bci for on stack replacement. 629 630 631 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 632 Options options, DirectiveSet* directive) 633 : Phase(Compiler), 634 _compile_id(ci_env->compile_id()), 635 _options(options), 636 _method(target), 637 _entry_bci(osr_bci), 638 _ilt(nullptr), 639 _stub_function(nullptr), 640 _stub_name(nullptr), 641 _stub_entry_point(nullptr), 642 _max_node_limit(MaxNodeLimit), 643 _post_loop_opts_phase(false), 644 _allow_macro_nodes(true), 645 _inlining_progress(false), 646 _inlining_incrementally(false), 647 _do_cleanup(false), 648 _has_reserved_stack_access(target->has_reserved_stack_access()), 649 _has_circular_inline_type(false), 650 #ifndef PRODUCT 651 _igv_idx(0), 652 _trace_opto_output(directive->TraceOptoOutputOption), 653 #endif 654 _has_method_handle_invokes(false), 655 _clinit_barrier_on_entry(false), 656 _stress_seed(0), 657 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 658 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 659 _env(ci_env), 660 _directive(directive), 661 _log(ci_env->log()), 662 _first_failure_details(nullptr), 663 _intrinsics(comp_arena(), 0, 0, nullptr), 664 _macro_nodes(comp_arena(), 8, 0, nullptr), 665 _parse_predicates(comp_arena(), 8, 0, nullptr), 666 _template_assertion_predicate_opaqs(comp_arena(), 8, 0, nullptr), 667 _expensive_nodes(comp_arena(), 8, 0, nullptr), 668 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 669 _inline_type_nodes (comp_arena(), 8, 0, nullptr), 670 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 671 _coarsened_locks(comp_arena(), 8, 0, nullptr), 672 _congraph(nullptr), 673 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 674 _unique(0), 675 _dead_node_count(0), 676 _dead_node_list(comp_arena()), 677 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 678 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 679 _node_arena(&_node_arena_one), 680 _mach_constant_base_node(nullptr), 681 _Compile_types(mtCompiler, Arena::Tag::tag_type), 682 _initial_gvn(nullptr), 683 _igvn_worklist(nullptr), 684 _types(nullptr), 685 _node_hash(nullptr), 686 _late_inlines(comp_arena(), 2, 0, nullptr), 687 _string_late_inlines(comp_arena(), 2, 0, nullptr), 688 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 689 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 690 _late_inlines_pos(0), 691 _number_of_mh_late_inlines(0), 692 _oom(false), 693 _replay_inline_data(nullptr), 694 _inline_printer(this), 695 _java_calls(0), 696 _inner_loops(0), 697 _interpreter_frame_size(0), 698 _output(nullptr) 699 #ifndef PRODUCT 700 , 701 _in_dump_cnt(0) 702 #endif 703 { 704 C = this; 705 CompileWrapper cw(this); 706 707 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 708 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 709 710 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 711 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 712 // We can always print a disassembly, either abstract (hex dump) or 713 // with the help of a suitable hsdis library. Thus, we should not 714 // couple print_assembly and print_opto_assembly controls. 715 // But: always print opto and regular assembly on compile command 'print'. 716 bool print_assembly = directive->PrintAssemblyOption; 717 set_print_assembly(print_opto_assembly || print_assembly); 718 #else 719 set_print_assembly(false); // must initialize. 720 #endif 721 722 #ifndef PRODUCT 723 set_parsed_irreducible_loop(false); 724 #endif 725 726 if (directive->ReplayInlineOption) { 727 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 728 } 729 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 730 set_print_intrinsics(directive->PrintIntrinsicsOption); 731 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 732 733 if (ProfileTraps) { 734 // Make sure the method being compiled gets its own MDO, 735 // so we can at least track the decompile_count(). 736 method()->ensure_method_data(); 737 } 738 739 if (StressLCM || StressGCM || StressIGVN || StressCCP || 740 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 741 initialize_stress_seed(directive); 742 } 743 744 Init(/*do_aliasing=*/ true); 745 746 print_compile_messages(); 747 748 _ilt = InlineTree::build_inline_tree_root(); 749 750 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 751 assert(num_alias_types() >= AliasIdxRaw, ""); 752 753 #define MINIMUM_NODE_HASH 1023 754 755 // GVN that will be run immediately on new nodes 756 uint estimated_size = method()->code_size()*4+64; 757 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 758 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 759 _types = new (comp_arena()) Type_Array(comp_arena()); 760 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 761 PhaseGVN gvn; 762 set_initial_gvn(&gvn); 763 764 { // Scope for timing the parser 765 TracePhase tp(_t_parser); 766 767 // Put top into the hash table ASAP. 768 initial_gvn()->transform(top()); 769 770 // Set up tf(), start(), and find a CallGenerator. 771 CallGenerator* cg = nullptr; 772 if (is_osr_compilation()) { 773 init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true)); 774 StartNode* s = new StartOSRNode(root(), tf()->domain_sig()); 775 initial_gvn()->set_type_bottom(s); 776 verify_start(s); 777 cg = CallGenerator::for_osr(method(), entry_bci()); 778 } else { 779 // Normal case. 780 init_tf(TypeFunc::make(method())); 781 StartNode* s = new StartNode(root(), tf()->domain_cc()); 782 initial_gvn()->set_type_bottom(s); 783 verify_start(s); 784 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 785 // With java.lang.ref.reference.get() we must go through the 786 // intrinsic - even when get() is the root 787 // method of the compile - so that, if necessary, the value in 788 // the referent field of the reference object gets recorded by 789 // the pre-barrier code. 790 cg = find_intrinsic(method(), false); 791 } 792 if (cg == nullptr) { 793 float past_uses = method()->interpreter_invocation_count(); 794 float expected_uses = past_uses; 795 cg = CallGenerator::for_inline(method(), expected_uses); 796 } 797 } 798 if (failing()) return; 799 if (cg == nullptr) { 800 const char* reason = InlineTree::check_can_parse(method()); 801 assert(reason != nullptr, "expect reason for parse failure"); 802 stringStream ss; 803 ss.print("cannot parse method: %s", reason); 804 record_method_not_compilable(ss.as_string()); 805 return; 806 } 807 808 gvn.set_type(root(), root()->bottom_type()); 809 810 JVMState* jvms = build_start_state(start(), tf()); 811 if ((jvms = cg->generate(jvms)) == nullptr) { 812 assert(failure_reason() != nullptr, "expect reason for parse failure"); 813 stringStream ss; 814 ss.print("method parse failed: %s", failure_reason()); 815 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 816 return; 817 } 818 GraphKit kit(jvms); 819 820 if (!kit.stopped()) { 821 // Accept return values, and transfer control we know not where. 822 // This is done by a special, unique ReturnNode bound to root. 823 return_values(kit.jvms()); 824 } 825 826 if (kit.has_exceptions()) { 827 // Any exceptions that escape from this call must be rethrown 828 // to whatever caller is dynamically above us on the stack. 829 // This is done by a special, unique RethrowNode bound to root. 830 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 831 } 832 833 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 834 835 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 836 inline_string_calls(true); 837 } 838 839 if (failing()) return; 840 841 // Remove clutter produced by parsing. 842 if (!failing()) { 843 ResourceMark rm; 844 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 845 } 846 } 847 848 // Note: Large methods are capped off in do_one_bytecode(). 849 if (failing()) return; 850 851 // After parsing, node notes are no longer automagic. 852 // They must be propagated by register_new_node_with_optimizer(), 853 // clone(), or the like. 854 set_default_node_notes(nullptr); 855 856 #ifndef PRODUCT 857 if (should_print_igv(1)) { 858 _igv_printer->print_inlining(); 859 } 860 #endif 861 862 if (failing()) return; 863 NOT_PRODUCT( verify_graph_edges(); ) 864 865 // Now optimize 866 Optimize(); 867 if (failing()) return; 868 NOT_PRODUCT( verify_graph_edges(); ) 869 870 #ifndef PRODUCT 871 if (should_print_ideal()) { 872 print_ideal_ir("print_ideal"); 873 } 874 #endif 875 876 #ifdef ASSERT 877 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 878 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 879 #endif 880 881 // Dump compilation data to replay it. 882 if (directive->DumpReplayOption) { 883 env()->dump_replay_data(_compile_id); 884 } 885 if (directive->DumpInlineOption && (ilt() != nullptr)) { 886 env()->dump_inline_data(_compile_id); 887 } 888 889 // Now that we know the size of all the monitors we can add a fixed slot 890 // for the original deopt pc. 891 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 892 if (needs_stack_repair()) { 893 // One extra slot for the special stack increment value 894 next_slot += 2; 895 } 896 // TODO 8284443 Only reserve extra slot if needed 897 if (InlineTypeReturnedAsFields) { 898 // One extra slot to hold the IsInit information for a nullable 899 // inline type return if we run out of registers. 900 next_slot += 2; 901 } 902 set_fixed_slots(next_slot); 903 904 // Compute when to use implicit null checks. Used by matching trap based 905 // nodes and NullCheck optimization. 906 set_allowed_deopt_reasons(); 907 908 // Now generate code 909 Code_Gen(); 910 } 911 912 //------------------------------Compile---------------------------------------- 913 // Compile a runtime stub 914 Compile::Compile(ciEnv* ci_env, 915 TypeFunc_generator generator, 916 address stub_function, 917 const char *stub_name, 918 int is_fancy_jump, 919 bool pass_tls, 920 bool return_pc, 921 DirectiveSet* directive) 922 : Phase(Compiler), 923 _compile_id(0), 924 _options(Options::for_runtime_stub()), 925 _method(nullptr), 926 _entry_bci(InvocationEntryBci), 927 _stub_function(stub_function), 928 _stub_name(stub_name), 929 _stub_entry_point(nullptr), 930 _max_node_limit(MaxNodeLimit), 931 _post_loop_opts_phase(false), 932 _allow_macro_nodes(true), 933 _inlining_progress(false), 934 _inlining_incrementally(false), 935 _has_reserved_stack_access(false), 936 _has_circular_inline_type(false), 937 #ifndef PRODUCT 938 _igv_idx(0), 939 _trace_opto_output(directive->TraceOptoOutputOption), 940 #endif 941 _has_method_handle_invokes(false), 942 _clinit_barrier_on_entry(false), 943 _stress_seed(0), 944 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 945 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 946 _env(ci_env), 947 _directive(directive), 948 _log(ci_env->log()), 949 _first_failure_details(nullptr), 950 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 951 _congraph(nullptr), 952 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 953 _unique(0), 954 _dead_node_count(0), 955 _dead_node_list(comp_arena()), 956 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 957 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 958 _node_arena(&_node_arena_one), 959 _mach_constant_base_node(nullptr), 960 _Compile_types(mtCompiler, Arena::Tag::tag_type), 961 _initial_gvn(nullptr), 962 _igvn_worklist(nullptr), 963 _types(nullptr), 964 _node_hash(nullptr), 965 _number_of_mh_late_inlines(0), 966 _oom(false), 967 _replay_inline_data(nullptr), 968 _inline_printer(this), 969 _java_calls(0), 970 _inner_loops(0), 971 _interpreter_frame_size(0), 972 _output(nullptr), 973 #ifndef PRODUCT 974 _in_dump_cnt(0), 975 #endif 976 _allowed_reasons(0) { 977 C = this; 978 979 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 980 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 981 982 #ifndef PRODUCT 983 set_print_assembly(PrintFrameConverterAssembly); 984 set_parsed_irreducible_loop(false); 985 #else 986 set_print_assembly(false); // Must initialize. 987 #endif 988 set_has_irreducible_loop(false); // no loops 989 990 CompileWrapper cw(this); 991 Init(/*do_aliasing=*/ false); 992 init_tf((*generator)()); 993 994 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 995 _types = new (comp_arena()) Type_Array(comp_arena()); 996 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 997 998 if (StressLCM || StressGCM || StressBailout) { 999 initialize_stress_seed(directive); 1000 } 1001 1002 { 1003 PhaseGVN gvn; 1004 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1005 gvn.transform(top()); 1006 1007 GraphKit kit; 1008 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1009 } 1010 1011 NOT_PRODUCT( verify_graph_edges(); ) 1012 1013 Code_Gen(); 1014 } 1015 1016 Compile::~Compile() { 1017 delete _first_failure_details; 1018 }; 1019 1020 //------------------------------Init------------------------------------------- 1021 // Prepare for a single compilation 1022 void Compile::Init(bool aliasing) { 1023 _do_aliasing = aliasing; 1024 _unique = 0; 1025 _regalloc = nullptr; 1026 1027 _tf = nullptr; // filled in later 1028 _top = nullptr; // cached later 1029 _matcher = nullptr; // filled in later 1030 _cfg = nullptr; // filled in later 1031 1032 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1033 1034 _node_note_array = nullptr; 1035 _default_node_notes = nullptr; 1036 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1037 1038 _immutable_memory = nullptr; // filled in at first inquiry 1039 1040 #ifdef ASSERT 1041 _phase_optimize_finished = false; 1042 _phase_verify_ideal_loop = false; 1043 _exception_backedge = false; 1044 _type_verify = nullptr; 1045 #endif 1046 1047 // Globally visible Nodes 1048 // First set TOP to null to give safe behavior during creation of RootNode 1049 set_cached_top_node(nullptr); 1050 set_root(new RootNode()); 1051 // Now that you have a Root to point to, create the real TOP 1052 set_cached_top_node( new ConNode(Type::TOP) ); 1053 set_recent_alloc(nullptr, nullptr); 1054 1055 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1056 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1057 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1058 env()->set_dependencies(new Dependencies(env())); 1059 1060 _fixed_slots = 0; 1061 set_has_split_ifs(false); 1062 set_has_loops(false); // first approximation 1063 set_has_stringbuilder(false); 1064 set_has_boxed_value(false); 1065 _trap_can_recompile = false; // no traps emitted yet 1066 _major_progress = true; // start out assuming good things will happen 1067 set_has_unsafe_access(false); 1068 set_max_vector_size(0); 1069 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1070 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1071 set_decompile_count(0); 1072 1073 #ifndef PRODUCT 1074 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1075 #endif 1076 1077 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1078 _loop_opts_cnt = LoopOptsCount; 1079 _has_flat_accesses = false; 1080 _flat_accesses_share_alias = true; 1081 _scalarize_in_safepoints = false; 1082 1083 set_do_inlining(Inline); 1084 set_max_inline_size(MaxInlineSize); 1085 set_freq_inline_size(FreqInlineSize); 1086 set_do_scheduling(OptoScheduling); 1087 1088 set_do_vector_loop(false); 1089 set_has_monitors(false); 1090 set_has_scoped_access(false); 1091 1092 if (AllowVectorizeOnDemand) { 1093 if (has_method() && _directive->VectorizeOption) { 1094 set_do_vector_loop(true); 1095 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1096 } else if (has_method() && method()->name() != nullptr && 1097 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1098 set_do_vector_loop(true); 1099 } 1100 } 1101 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1102 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1103 1104 _max_node_limit = _directive->MaxNodeLimitOption; 1105 1106 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1107 set_clinit_barrier_on_entry(true); 1108 } 1109 if (debug_info()->recording_non_safepoints()) { 1110 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1111 (comp_arena(), 8, 0, nullptr)); 1112 set_default_node_notes(Node_Notes::make(this)); 1113 } 1114 1115 const int grow_ats = 16; 1116 _max_alias_types = grow_ats; 1117 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1118 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1119 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1120 { 1121 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1122 } 1123 // Initialize the first few types. 1124 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1125 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1126 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1127 _num_alias_types = AliasIdxRaw+1; 1128 // Zero out the alias type cache. 1129 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1130 // A null adr_type hits in the cache right away. Preload the right answer. 1131 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1132 } 1133 1134 #ifdef ASSERT 1135 // Verify that the current StartNode is valid. 1136 void Compile::verify_start(StartNode* s) const { 1137 assert(failing_internal() || s == start(), "should be StartNode"); 1138 } 1139 #endif 1140 1141 /** 1142 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1143 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1144 * the ideal graph. 1145 */ 1146 StartNode* Compile::start() const { 1147 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1148 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1149 Node* start = root()->fast_out(i); 1150 if (start->is_Start()) { 1151 return start->as_Start(); 1152 } 1153 } 1154 fatal("Did not find Start node!"); 1155 return nullptr; 1156 } 1157 1158 //-------------------------------immutable_memory------------------------------------- 1159 // Access immutable memory 1160 Node* Compile::immutable_memory() { 1161 if (_immutable_memory != nullptr) { 1162 return _immutable_memory; 1163 } 1164 StartNode* s = start(); 1165 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1166 Node *p = s->fast_out(i); 1167 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1168 _immutable_memory = p; 1169 return _immutable_memory; 1170 } 1171 } 1172 ShouldNotReachHere(); 1173 return nullptr; 1174 } 1175 1176 //----------------------set_cached_top_node------------------------------------ 1177 // Install the cached top node, and make sure Node::is_top works correctly. 1178 void Compile::set_cached_top_node(Node* tn) { 1179 if (tn != nullptr) verify_top(tn); 1180 Node* old_top = _top; 1181 _top = tn; 1182 // Calling Node::setup_is_top allows the nodes the chance to adjust 1183 // their _out arrays. 1184 if (_top != nullptr) _top->setup_is_top(); 1185 if (old_top != nullptr) old_top->setup_is_top(); 1186 assert(_top == nullptr || top()->is_top(), ""); 1187 } 1188 1189 #ifdef ASSERT 1190 uint Compile::count_live_nodes_by_graph_walk() { 1191 Unique_Node_List useful(comp_arena()); 1192 // Get useful node list by walking the graph. 1193 identify_useful_nodes(useful); 1194 return useful.size(); 1195 } 1196 1197 void Compile::print_missing_nodes() { 1198 1199 // Return if CompileLog is null and PrintIdealNodeCount is false. 1200 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1201 return; 1202 } 1203 1204 // This is an expensive function. It is executed only when the user 1205 // specifies VerifyIdealNodeCount option or otherwise knows the 1206 // additional work that needs to be done to identify reachable nodes 1207 // by walking the flow graph and find the missing ones using 1208 // _dead_node_list. 1209 1210 Unique_Node_List useful(comp_arena()); 1211 // Get useful node list by walking the graph. 1212 identify_useful_nodes(useful); 1213 1214 uint l_nodes = C->live_nodes(); 1215 uint l_nodes_by_walk = useful.size(); 1216 1217 if (l_nodes != l_nodes_by_walk) { 1218 if (_log != nullptr) { 1219 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1220 _log->stamp(); 1221 _log->end_head(); 1222 } 1223 VectorSet& useful_member_set = useful.member_set(); 1224 int last_idx = l_nodes_by_walk; 1225 for (int i = 0; i < last_idx; i++) { 1226 if (useful_member_set.test(i)) { 1227 if (_dead_node_list.test(i)) { 1228 if (_log != nullptr) { 1229 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1230 } 1231 if (PrintIdealNodeCount) { 1232 // Print the log message to tty 1233 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1234 useful.at(i)->dump(); 1235 } 1236 } 1237 } 1238 else if (! _dead_node_list.test(i)) { 1239 if (_log != nullptr) { 1240 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1241 } 1242 if (PrintIdealNodeCount) { 1243 // Print the log message to tty 1244 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1245 } 1246 } 1247 } 1248 if (_log != nullptr) { 1249 _log->tail("mismatched_nodes"); 1250 } 1251 } 1252 } 1253 void Compile::record_modified_node(Node* n) { 1254 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1255 _modified_nodes->push(n); 1256 } 1257 } 1258 1259 void Compile::remove_modified_node(Node* n) { 1260 if (_modified_nodes != nullptr) { 1261 _modified_nodes->remove(n); 1262 } 1263 } 1264 #endif 1265 1266 #ifndef PRODUCT 1267 void Compile::verify_top(Node* tn) const { 1268 if (tn != nullptr) { 1269 assert(tn->is_Con(), "top node must be a constant"); 1270 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1271 assert(tn->in(0) != nullptr, "must have live top node"); 1272 } 1273 } 1274 #endif 1275 1276 1277 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1278 1279 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1280 guarantee(arr != nullptr, ""); 1281 int num_blocks = arr->length(); 1282 if (grow_by < num_blocks) grow_by = num_blocks; 1283 int num_notes = grow_by * _node_notes_block_size; 1284 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1285 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1286 while (num_notes > 0) { 1287 arr->append(notes); 1288 notes += _node_notes_block_size; 1289 num_notes -= _node_notes_block_size; 1290 } 1291 assert(num_notes == 0, "exact multiple, please"); 1292 } 1293 1294 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1295 if (source == nullptr || dest == nullptr) return false; 1296 1297 if (dest->is_Con()) 1298 return false; // Do not push debug info onto constants. 1299 1300 #ifdef ASSERT 1301 // Leave a bread crumb trail pointing to the original node: 1302 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1303 dest->set_debug_orig(source); 1304 } 1305 #endif 1306 1307 if (node_note_array() == nullptr) 1308 return false; // Not collecting any notes now. 1309 1310 // This is a copy onto a pre-existing node, which may already have notes. 1311 // If both nodes have notes, do not overwrite any pre-existing notes. 1312 Node_Notes* source_notes = node_notes_at(source->_idx); 1313 if (source_notes == nullptr || source_notes->is_clear()) return false; 1314 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1315 if (dest_notes == nullptr || dest_notes->is_clear()) { 1316 return set_node_notes_at(dest->_idx, source_notes); 1317 } 1318 1319 Node_Notes merged_notes = (*source_notes); 1320 // The order of operations here ensures that dest notes will win... 1321 merged_notes.update_from(dest_notes); 1322 return set_node_notes_at(dest->_idx, &merged_notes); 1323 } 1324 1325 1326 //--------------------------allow_range_check_smearing------------------------- 1327 // Gating condition for coalescing similar range checks. 1328 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1329 // single covering check that is at least as strong as any of them. 1330 // If the optimization succeeds, the simplified (strengthened) range check 1331 // will always succeed. If it fails, we will deopt, and then give up 1332 // on the optimization. 1333 bool Compile::allow_range_check_smearing() const { 1334 // If this method has already thrown a range-check, 1335 // assume it was because we already tried range smearing 1336 // and it failed. 1337 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1338 return !already_trapped; 1339 } 1340 1341 1342 //------------------------------flatten_alias_type----------------------------- 1343 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1344 assert(do_aliasing(), "Aliasing should be enabled"); 1345 int offset = tj->offset(); 1346 TypePtr::PTR ptr = tj->ptr(); 1347 1348 // Known instance (scalarizable allocation) alias only with itself. 1349 bool is_known_inst = tj->isa_oopptr() != nullptr && 1350 tj->is_oopptr()->is_known_instance(); 1351 1352 // Process weird unsafe references. 1353 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1354 bool default_value_load = EnableValhalla && tj->is_instptr()->instance_klass() == ciEnv::current()->Class_klass(); 1355 assert(InlineUnsafeOps || StressReflectiveCode || default_value_load, "indeterminate pointers come only from unsafe ops"); 1356 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1357 tj = TypeOopPtr::BOTTOM; 1358 ptr = tj->ptr(); 1359 offset = tj->offset(); 1360 } 1361 1362 // Array pointers need some flattening 1363 const TypeAryPtr* ta = tj->isa_aryptr(); 1364 if (ta && ta->is_stable()) { 1365 // Erase stability property for alias analysis. 1366 tj = ta = ta->cast_to_stable(false); 1367 } 1368 if (ta && ta->is_not_flat()) { 1369 // Erase not flat property for alias analysis. 1370 tj = ta = ta->cast_to_not_flat(false); 1371 } 1372 if (ta && ta->is_not_null_free()) { 1373 // Erase not null free property for alias analysis. 1374 tj = ta = ta->cast_to_not_null_free(false); 1375 } 1376 1377 if( ta && is_known_inst ) { 1378 if ( offset != Type::OffsetBot && 1379 offset > arrayOopDesc::length_offset_in_bytes() ) { 1380 offset = Type::OffsetBot; // Flatten constant access into array body only 1381 tj = ta = ta-> 1382 remove_speculative()-> 1383 cast_to_ptr_type(ptr)-> 1384 with_offset(offset); 1385 } 1386 } else if (ta) { 1387 // For arrays indexed by constant indices, we flatten the alias 1388 // space to include all of the array body. Only the header, klass 1389 // and array length can be accessed un-aliased. 1390 // For flat inline type array, each field has its own slice so 1391 // we must include the field offset. 1392 if( offset != Type::OffsetBot ) { 1393 if( ta->const_oop() ) { // MethodData* or Method* 1394 offset = Type::OffsetBot; // Flatten constant access into array body 1395 tj = ta = ta-> 1396 remove_speculative()-> 1397 cast_to_ptr_type(ptr)-> 1398 cast_to_exactness(false)-> 1399 with_offset(offset); 1400 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1401 // range is OK as-is. 1402 tj = ta = TypeAryPtr::RANGE; 1403 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1404 tj = TypeInstPtr::KLASS; // all klass loads look alike 1405 ta = TypeAryPtr::RANGE; // generic ignored junk 1406 ptr = TypePtr::BotPTR; 1407 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1408 tj = TypeInstPtr::MARK; 1409 ta = TypeAryPtr::RANGE; // generic ignored junk 1410 ptr = TypePtr::BotPTR; 1411 } else { // Random constant offset into array body 1412 offset = Type::OffsetBot; // Flatten constant access into array body 1413 tj = ta = ta-> 1414 remove_speculative()-> 1415 cast_to_ptr_type(ptr)-> 1416 cast_to_exactness(false)-> 1417 with_offset(offset); 1418 } 1419 } 1420 // Arrays of fixed size alias with arrays of unknown size. 1421 if (ta->size() != TypeInt::POS) { 1422 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1423 tj = ta = ta-> 1424 remove_speculative()-> 1425 cast_to_ptr_type(ptr)-> 1426 with_ary(tary)-> 1427 cast_to_exactness(false); 1428 } 1429 // Arrays of known objects become arrays of unknown objects. 1430 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1431 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1432 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1433 } 1434 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1435 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1436 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1437 } 1438 // Initially all flattened array accesses share a single slice 1439 if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flat_accesses_share_alias) { 1440 const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true); 1441 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), Type::Offset(Type::OffsetBot)); 1442 } 1443 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1444 // cannot be distinguished by bytecode alone. 1445 if (ta->elem() == TypeInt::BOOL) { 1446 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1447 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1448 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset()); 1449 } 1450 // During the 2nd round of IterGVN, NotNull castings are removed. 1451 // Make sure the Bottom and NotNull variants alias the same. 1452 // Also, make sure exact and non-exact variants alias the same. 1453 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1454 tj = ta = ta-> 1455 remove_speculative()-> 1456 cast_to_ptr_type(TypePtr::BotPTR)-> 1457 cast_to_exactness(false)-> 1458 with_offset(offset); 1459 } 1460 } 1461 1462 // Oop pointers need some flattening 1463 const TypeInstPtr *to = tj->isa_instptr(); 1464 if (to && to != TypeOopPtr::BOTTOM) { 1465 ciInstanceKlass* ik = to->instance_klass(); 1466 if( ptr == TypePtr::Constant ) { 1467 if (ik != ciEnv::current()->Class_klass() || 1468 offset < ik->layout_helper_size_in_bytes()) { 1469 // No constant oop pointers (such as Strings); they alias with 1470 // unknown strings. 1471 assert(!is_known_inst, "not scalarizable allocation"); 1472 tj = to = to-> 1473 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1474 remove_speculative()-> 1475 cast_to_ptr_type(TypePtr::BotPTR)-> 1476 cast_to_exactness(false); 1477 } 1478 } else if( is_known_inst ) { 1479 tj = to; // Keep NotNull and klass_is_exact for instance type 1480 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1481 // During the 2nd round of IterGVN, NotNull castings are removed. 1482 // Make sure the Bottom and NotNull variants alias the same. 1483 // Also, make sure exact and non-exact variants alias the same. 1484 tj = to = to-> 1485 remove_speculative()-> 1486 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1487 cast_to_ptr_type(TypePtr::BotPTR)-> 1488 cast_to_exactness(false); 1489 } 1490 if (to->speculative() != nullptr) { 1491 tj = to = to->remove_speculative(); 1492 } 1493 // Canonicalize the holder of this field 1494 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1495 // First handle header references such as a LoadKlassNode, even if the 1496 // object's klass is unloaded at compile time (4965979). 1497 if (!is_known_inst) { // Do it only for non-instance types 1498 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset)); 1499 } 1500 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1501 // Static fields are in the space above the normal instance 1502 // fields in the java.lang.Class instance. 1503 if (ik != ciEnv::current()->Class_klass()) { 1504 to = nullptr; 1505 tj = TypeOopPtr::BOTTOM; 1506 offset = tj->offset(); 1507 } 1508 } else { 1509 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1510 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1511 assert(tj->offset() == offset, "no change to offset expected"); 1512 bool xk = to->klass_is_exact(); 1513 int instance_id = to->instance_id(); 1514 1515 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1516 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1517 // its interfaces are included. 1518 if (xk && ik->equals(canonical_holder)) { 1519 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id), "exact type should be canonical type"); 1520 } else { 1521 assert(xk || !is_known_inst, "Known instance should be exact type"); 1522 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id); 1523 } 1524 } 1525 } 1526 1527 // Klass pointers to object array klasses need some flattening 1528 const TypeKlassPtr *tk = tj->isa_klassptr(); 1529 if( tk ) { 1530 // If we are referencing a field within a Klass, we need 1531 // to assume the worst case of an Object. Both exact and 1532 // inexact types must flatten to the same alias class so 1533 // use NotNull as the PTR. 1534 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1535 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1536 env()->Object_klass(), 1537 Type::Offset(offset)); 1538 } 1539 1540 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1541 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1542 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1543 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset)); 1544 } else { 1545 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_flat(), tk->is_null_free()); 1546 } 1547 } 1548 // Check for precise loads from the primary supertype array and force them 1549 // to the supertype cache alias index. Check for generic array loads from 1550 // the primary supertype array and also force them to the supertype cache 1551 // alias index. Since the same load can reach both, we need to merge 1552 // these 2 disparate memories into the same alias class. Since the 1553 // primary supertype array is read-only, there's no chance of confusion 1554 // where we bypass an array load and an array store. 1555 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1556 if (offset == Type::OffsetBot || 1557 (offset >= primary_supers_offset && 1558 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1559 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1560 offset = in_bytes(Klass::secondary_super_cache_offset()); 1561 tj = tk = tk->with_offset(offset); 1562 } 1563 } 1564 1565 // Flatten all Raw pointers together. 1566 if (tj->base() == Type::RawPtr) 1567 tj = TypeRawPtr::BOTTOM; 1568 1569 if (tj->base() == Type::AnyPtr) 1570 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1571 1572 offset = tj->offset(); 1573 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1574 1575 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1576 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1577 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1578 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1579 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1580 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1581 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1582 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1583 assert( tj->ptr() != TypePtr::TopPTR && 1584 tj->ptr() != TypePtr::AnyNull && 1585 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1586 // assert( tj->ptr() != TypePtr::Constant || 1587 // tj->base() == Type::RawPtr || 1588 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1589 1590 return tj; 1591 } 1592 1593 void Compile::AliasType::Init(int i, const TypePtr* at) { 1594 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1595 _index = i; 1596 _adr_type = at; 1597 _field = nullptr; 1598 _element = nullptr; 1599 _is_rewritable = true; // default 1600 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1601 if (atoop != nullptr && atoop->is_known_instance()) { 1602 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1603 _general_index = Compile::current()->get_alias_index(gt); 1604 } else { 1605 _general_index = 0; 1606 } 1607 } 1608 1609 BasicType Compile::AliasType::basic_type() const { 1610 if (element() != nullptr) { 1611 const Type* element = adr_type()->is_aryptr()->elem(); 1612 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1613 } if (field() != nullptr) { 1614 return field()->layout_type(); 1615 } else { 1616 return T_ILLEGAL; // unknown 1617 } 1618 } 1619 1620 //---------------------------------print_on------------------------------------ 1621 #ifndef PRODUCT 1622 void Compile::AliasType::print_on(outputStream* st) { 1623 if (index() < 10) 1624 st->print("@ <%d> ", index()); 1625 else st->print("@ <%d>", index()); 1626 st->print(is_rewritable() ? " " : " RO"); 1627 int offset = adr_type()->offset(); 1628 if (offset == Type::OffsetBot) 1629 st->print(" +any"); 1630 else st->print(" +%-3d", offset); 1631 st->print(" in "); 1632 adr_type()->dump_on(st); 1633 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1634 if (field() != nullptr && tjp) { 1635 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1636 tjp->offset() != field()->offset_in_bytes()) { 1637 st->print(" != "); 1638 field()->print(); 1639 st->print(" ***"); 1640 } 1641 } 1642 } 1643 1644 void print_alias_types() { 1645 Compile* C = Compile::current(); 1646 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1647 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1648 C->alias_type(idx)->print_on(tty); 1649 tty->cr(); 1650 } 1651 } 1652 #endif 1653 1654 1655 //----------------------------probe_alias_cache-------------------------------- 1656 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1657 intptr_t key = (intptr_t) adr_type; 1658 key ^= key >> logAliasCacheSize; 1659 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1660 } 1661 1662 1663 //-----------------------------grow_alias_types-------------------------------- 1664 void Compile::grow_alias_types() { 1665 const int old_ats = _max_alias_types; // how many before? 1666 const int new_ats = old_ats; // how many more? 1667 const int grow_ats = old_ats+new_ats; // how many now? 1668 _max_alias_types = grow_ats; 1669 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1670 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1671 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1672 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1673 } 1674 1675 1676 //--------------------------------find_alias_type------------------------------ 1677 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) { 1678 if (!do_aliasing()) { 1679 return alias_type(AliasIdxBot); 1680 } 1681 1682 AliasCacheEntry* ace = nullptr; 1683 if (!uncached) { 1684 ace = probe_alias_cache(adr_type); 1685 if (ace->_adr_type == adr_type) { 1686 return alias_type(ace->_index); 1687 } 1688 } 1689 1690 // Handle special cases. 1691 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1692 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1693 1694 // Do it the slow way. 1695 const TypePtr* flat = flatten_alias_type(adr_type); 1696 1697 #ifdef ASSERT 1698 { 1699 ResourceMark rm; 1700 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1701 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1702 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1703 Type::str(adr_type)); 1704 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1705 const TypeOopPtr* foop = flat->is_oopptr(); 1706 // Scalarizable allocations have exact klass always. 1707 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1708 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1709 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1710 Type::str(foop), Type::str(xoop)); 1711 } 1712 } 1713 #endif 1714 1715 int idx = AliasIdxTop; 1716 for (int i = 0; i < num_alias_types(); i++) { 1717 if (alias_type(i)->adr_type() == flat) { 1718 idx = i; 1719 break; 1720 } 1721 } 1722 1723 if (idx == AliasIdxTop) { 1724 if (no_create) return nullptr; 1725 // Grow the array if necessary. 1726 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1727 // Add a new alias type. 1728 idx = _num_alias_types++; 1729 _alias_types[idx]->Init(idx, flat); 1730 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1731 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1732 if (flat->isa_instptr()) { 1733 if (flat->offset() == java_lang_Class::klass_offset() 1734 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1735 alias_type(idx)->set_rewritable(false); 1736 } 1737 ciField* field = nullptr; 1738 if (flat->isa_aryptr()) { 1739 #ifdef ASSERT 1740 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1741 // (T_BYTE has the weakest alignment and size restrictions...) 1742 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1743 #endif 1744 const Type* elemtype = flat->is_aryptr()->elem(); 1745 if (flat->offset() == TypePtr::OffsetBot) { 1746 alias_type(idx)->set_element(elemtype); 1747 } 1748 int field_offset = flat->is_aryptr()->field_offset().get(); 1749 if (flat->is_flat() && 1750 field_offset != Type::OffsetBot) { 1751 ciInlineKlass* vk = elemtype->inline_klass(); 1752 field_offset += vk->payload_offset(); 1753 field = vk->get_field_by_offset(field_offset, false); 1754 } 1755 } 1756 if (flat->isa_klassptr()) { 1757 if (UseCompactObjectHeaders) { 1758 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1759 alias_type(idx)->set_rewritable(false); 1760 } 1761 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1762 alias_type(idx)->set_rewritable(false); 1763 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1764 alias_type(idx)->set_rewritable(false); 1765 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1766 alias_type(idx)->set_rewritable(false); 1767 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1768 alias_type(idx)->set_rewritable(false); 1769 if (flat->offset() == in_bytes(Klass::layout_helper_offset())) 1770 alias_type(idx)->set_rewritable(false); 1771 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1772 alias_type(idx)->set_rewritable(false); 1773 } 1774 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1775 // but the base pointer type is not distinctive enough to identify 1776 // references into JavaThread.) 1777 1778 // Check for final fields. 1779 const TypeInstPtr* tinst = flat->isa_instptr(); 1780 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1781 if (tinst->const_oop() != nullptr && 1782 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1783 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1784 // static field 1785 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1786 field = k->get_field_by_offset(tinst->offset(), true); 1787 } else if (tinst->is_inlinetypeptr()) { 1788 // Inline type field 1789 ciInlineKlass* vk = tinst->inline_klass(); 1790 field = vk->get_field_by_offset(tinst->offset(), false); 1791 } else { 1792 ciInstanceKlass *k = tinst->instance_klass(); 1793 field = k->get_field_by_offset(tinst->offset(), false); 1794 } 1795 } 1796 assert(field == nullptr || 1797 original_field == nullptr || 1798 (field->holder() == original_field->holder() && 1799 field->offset_in_bytes() == original_field->offset_in_bytes() && 1800 field->is_static() == original_field->is_static()), "wrong field?"); 1801 // Set field() and is_rewritable() attributes. 1802 if (field != nullptr) { 1803 alias_type(idx)->set_field(field); 1804 if (flat->isa_aryptr()) { 1805 // Fields of flat arrays are rewritable although they are declared final 1806 assert(flat->is_flat(), "must be a flat array"); 1807 alias_type(idx)->set_rewritable(true); 1808 } 1809 } 1810 } 1811 1812 // Fill the cache for next time. 1813 if (!uncached) { 1814 ace->_adr_type = adr_type; 1815 ace->_index = idx; 1816 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1817 1818 // Might as well try to fill the cache for the flattened version, too. 1819 AliasCacheEntry* face = probe_alias_cache(flat); 1820 if (face->_adr_type == nullptr) { 1821 face->_adr_type = flat; 1822 face->_index = idx; 1823 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1824 } 1825 } 1826 1827 return alias_type(idx); 1828 } 1829 1830 1831 Compile::AliasType* Compile::alias_type(ciField* field) { 1832 const TypeOopPtr* t; 1833 if (field->is_static()) 1834 t = TypeInstPtr::make(field->holder()->java_mirror()); 1835 else 1836 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1837 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1838 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1839 return atp; 1840 } 1841 1842 1843 //------------------------------have_alias_type-------------------------------- 1844 bool Compile::have_alias_type(const TypePtr* adr_type) { 1845 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1846 if (ace->_adr_type == adr_type) { 1847 return true; 1848 } 1849 1850 // Handle special cases. 1851 if (adr_type == nullptr) return true; 1852 if (adr_type == TypePtr::BOTTOM) return true; 1853 1854 return find_alias_type(adr_type, true, nullptr) != nullptr; 1855 } 1856 1857 //-----------------------------must_alias-------------------------------------- 1858 // True if all values of the given address type are in the given alias category. 1859 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1860 if (alias_idx == AliasIdxBot) return true; // the universal category 1861 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1862 if (alias_idx == AliasIdxTop) return false; // the empty category 1863 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1864 1865 // the only remaining possible overlap is identity 1866 int adr_idx = get_alias_index(adr_type); 1867 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1868 assert(adr_idx == alias_idx || 1869 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1870 && adr_type != TypeOopPtr::BOTTOM), 1871 "should not be testing for overlap with an unsafe pointer"); 1872 return adr_idx == alias_idx; 1873 } 1874 1875 //------------------------------can_alias-------------------------------------- 1876 // True if any values of the given address type are in the given alias category. 1877 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1878 if (alias_idx == AliasIdxTop) return false; // the empty category 1879 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1880 // Known instance doesn't alias with bottom memory 1881 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1882 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1883 1884 // the only remaining possible overlap is identity 1885 int adr_idx = get_alias_index(adr_type); 1886 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1887 return adr_idx == alias_idx; 1888 } 1889 1890 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1891 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1892 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1893 if (parse_predicate_count() == 0) { 1894 return; 1895 } 1896 for (int i = 0; i < parse_predicate_count(); i++) { 1897 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1898 parse_predicate->mark_useless(); 1899 igvn._worklist.push(parse_predicate); 1900 } 1901 _parse_predicates.clear(); 1902 } 1903 1904 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1905 if (!n->for_post_loop_opts_igvn()) { 1906 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1907 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1908 _for_post_loop_igvn.append(n); 1909 } 1910 } 1911 1912 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1913 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1914 _for_post_loop_igvn.remove(n); 1915 } 1916 1917 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1918 // Verify that all previous optimizations produced a valid graph 1919 // at least to this point, even if no loop optimizations were done. 1920 PhaseIdealLoop::verify(igvn); 1921 1922 C->set_post_loop_opts_phase(); // no more loop opts allowed 1923 1924 assert(!C->major_progress(), "not cleared"); 1925 1926 if (_for_post_loop_igvn.length() > 0) { 1927 while (_for_post_loop_igvn.length() > 0) { 1928 Node* n = _for_post_loop_igvn.pop(); 1929 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1930 igvn._worklist.push(n); 1931 } 1932 igvn.optimize(); 1933 if (failing()) return; 1934 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1935 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1936 1937 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1938 if (C->major_progress()) { 1939 C->clear_major_progress(); // ensure that major progress is now clear 1940 } 1941 } 1942 } 1943 1944 void Compile::add_inline_type(Node* n) { 1945 assert(n->is_InlineType(), "unexpected node"); 1946 _inline_type_nodes.push(n); 1947 } 1948 1949 void Compile::remove_inline_type(Node* n) { 1950 assert(n->is_InlineType(), "unexpected node"); 1951 if (_inline_type_nodes.contains(n)) { 1952 _inline_type_nodes.remove(n); 1953 } 1954 } 1955 1956 // Does the return value keep otherwise useless inline type allocations alive? 1957 static bool return_val_keeps_allocations_alive(Node* ret_val) { 1958 ResourceMark rm; 1959 Unique_Node_List wq; 1960 wq.push(ret_val); 1961 bool some_allocations = false; 1962 for (uint i = 0; i < wq.size(); i++) { 1963 Node* n = wq.at(i); 1964 if (n->outcnt() > 1) { 1965 // Some other use for the allocation 1966 return false; 1967 } else if (n->is_InlineType()) { 1968 wq.push(n->in(1)); 1969 } else if (n->is_Phi()) { 1970 for (uint j = 1; j < n->req(); j++) { 1971 wq.push(n->in(j)); 1972 } 1973 } else if (n->is_CheckCastPP() && 1974 n->in(1)->is_Proj() && 1975 n->in(1)->in(0)->is_Allocate()) { 1976 some_allocations = true; 1977 } else if (n->is_CheckCastPP()) { 1978 wq.push(n->in(1)); 1979 } 1980 } 1981 return some_allocations; 1982 } 1983 1984 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) { 1985 // Make sure that the return value does not keep an otherwise unused allocation alive 1986 if (tf()->returns_inline_type_as_fields()) { 1987 Node* ret = nullptr; 1988 for (uint i = 1; i < root()->req(); i++) { 1989 Node* in = root()->in(i); 1990 if (in->Opcode() == Op_Return) { 1991 assert(ret == nullptr, "only one return"); 1992 ret = in; 1993 } 1994 } 1995 if (ret != nullptr) { 1996 Node* ret_val = ret->in(TypeFunc::Parms); 1997 if (igvn.type(ret_val)->isa_oopptr() && 1998 return_val_keeps_allocations_alive(ret_val)) { 1999 igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn)); 2000 assert(ret_val->outcnt() == 0, "should be dead now"); 2001 igvn.remove_dead_node(ret_val); 2002 } 2003 } 2004 } 2005 if (_inline_type_nodes.length() == 0) { 2006 return; 2007 } 2008 // Scalarize inline types in safepoint debug info. 2009 // Delay this until all inlining is over to avoid getting inconsistent debug info. 2010 set_scalarize_in_safepoints(true); 2011 for (int i = _inline_type_nodes.length()-1; i >= 0; i--) { 2012 InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType(); 2013 vt->make_scalar_in_safepoints(&igvn); 2014 igvn.record_for_igvn(vt); 2015 } 2016 if (remove) { 2017 // Remove inline type nodes by replacing them with their oop input 2018 while (_inline_type_nodes.length() > 0) { 2019 InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType(); 2020 if (vt->outcnt() == 0) { 2021 igvn.remove_dead_node(vt); 2022 continue; 2023 } 2024 for (DUIterator i = vt->outs(); vt->has_out(i); i++) { 2025 DEBUG_ONLY(bool must_be_buffered = false); 2026 Node* u = vt->out(i); 2027 // Check if any users are blackholes. If so, rewrite them to use either the 2028 // allocated buffer, or individual components, instead of the inline type node 2029 // that goes away. 2030 if (u->is_Blackhole()) { 2031 BlackholeNode* bh = u->as_Blackhole(); 2032 2033 // Unlink the old input 2034 int idx = bh->find_edge(vt); 2035 assert(idx != -1, "The edge should be there"); 2036 bh->del_req(idx); 2037 --i; 2038 2039 if (vt->is_allocated(&igvn)) { 2040 // Already has the allocated instance, blackhole that 2041 bh->add_req(vt->get_oop()); 2042 } else { 2043 // Not allocated yet, blackhole the components 2044 for (uint c = 0; c < vt->field_count(); c++) { 2045 bh->add_req(vt->field_value(c)); 2046 } 2047 } 2048 2049 // Node modified, record for IGVN 2050 igvn.record_for_igvn(bh); 2051 } 2052 #ifdef ASSERT 2053 // Verify that inline type is buffered when replacing by oop 2054 else if (u->is_InlineType()) { 2055 // InlineType uses don't need buffering because they are about to be replaced as well 2056 } else if (u->is_Phi()) { 2057 // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through 2058 } else { 2059 must_be_buffered = true; 2060 } 2061 if (must_be_buffered && !vt->is_allocated(&igvn)) { 2062 vt->dump(0); 2063 u->dump(0); 2064 assert(false, "Should have been buffered"); 2065 } 2066 #endif 2067 } 2068 igvn.replace_node(vt, vt->get_oop()); 2069 } 2070 } 2071 igvn.optimize(); 2072 } 2073 2074 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) { 2075 if (!_has_flat_accesses) { 2076 return; 2077 } 2078 // Initially, all flat array accesses share the same slice to 2079 // keep dependencies with Object[] array accesses (that could be 2080 // to a flat array) correct. We're done with parsing so we 2081 // now know all flat array accesses in this compile 2082 // unit. Let's move flat array accesses to their own slice, 2083 // one per element field. This should help memory access 2084 // optimizations. 2085 ResourceMark rm; 2086 Unique_Node_List wq; 2087 wq.push(root()); 2088 2089 Node_List mergememnodes; 2090 Node_List memnodes; 2091 2092 // Alias index currently shared by all flat memory accesses 2093 int index = get_alias_index(TypeAryPtr::INLINES); 2094 2095 // Find MergeMem nodes and flat array accesses 2096 for (uint i = 0; i < wq.size(); i++) { 2097 Node* n = wq.at(i); 2098 if (n->is_Mem()) { 2099 const TypePtr* adr_type = nullptr; 2100 adr_type = get_adr_type(get_alias_index(n->adr_type())); 2101 if (adr_type == TypeAryPtr::INLINES) { 2102 memnodes.push(n); 2103 } 2104 } else if (n->is_MergeMem()) { 2105 MergeMemNode* mm = n->as_MergeMem(); 2106 if (mm->memory_at(index) != mm->base_memory()) { 2107 mergememnodes.push(n); 2108 } 2109 } 2110 for (uint j = 0; j < n->req(); j++) { 2111 Node* m = n->in(j); 2112 if (m != nullptr) { 2113 wq.push(m); 2114 } 2115 } 2116 } 2117 2118 if (memnodes.size() > 0) { 2119 _flat_accesses_share_alias = false; 2120 2121 // We are going to change the slice for the flat array 2122 // accesses so we need to clear the cache entries that refer to 2123 // them. 2124 for (uint i = 0; i < AliasCacheSize; i++) { 2125 AliasCacheEntry* ace = &_alias_cache[i]; 2126 if (ace->_adr_type != nullptr && 2127 ace->_adr_type->is_flat()) { 2128 ace->_adr_type = nullptr; 2129 ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop 2130 } 2131 } 2132 2133 // Find what aliases we are going to add 2134 int start_alias = num_alias_types()-1; 2135 int stop_alias = 0; 2136 2137 for (uint i = 0; i < memnodes.size(); i++) { 2138 Node* m = memnodes.at(i); 2139 const TypePtr* adr_type = nullptr; 2140 adr_type = m->adr_type(); 2141 #ifdef ASSERT 2142 m->as_Mem()->set_adr_type(adr_type); 2143 #endif 2144 int idx = get_alias_index(adr_type); 2145 start_alias = MIN2(start_alias, idx); 2146 stop_alias = MAX2(stop_alias, idx); 2147 } 2148 2149 assert(stop_alias >= start_alias, "should have expanded aliases"); 2150 2151 Node_Stack stack(0); 2152 #ifdef ASSERT 2153 VectorSet seen(Thread::current()->resource_area()); 2154 #endif 2155 // Now let's fix the memory graph so each flat array access 2156 // is moved to the right slice. Start from the MergeMem nodes. 2157 uint last = unique(); 2158 for (uint i = 0; i < mergememnodes.size(); i++) { 2159 MergeMemNode* current = mergememnodes.at(i)->as_MergeMem(); 2160 Node* n = current->memory_at(index); 2161 MergeMemNode* mm = nullptr; 2162 do { 2163 // Follow memory edges through memory accesses, phis and 2164 // narrow membars and push nodes on the stack. Once we hit 2165 // bottom memory, we pop element off the stack one at a 2166 // time, in reverse order, and move them to the right slice 2167 // by changing their memory edges. 2168 if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) { 2169 assert(!seen.test_set(n->_idx), ""); 2170 // Uses (a load for instance) will need to be moved to the 2171 // right slice as well and will get a new memory state 2172 // that we don't know yet. The use could also be the 2173 // backedge of a loop. We put a place holder node between 2174 // the memory node and its uses. We replace that place 2175 // holder with the correct memory state once we know it, 2176 // i.e. when nodes are popped off the stack. Using the 2177 // place holder make the logic work in the presence of 2178 // loops. 2179 if (n->outcnt() > 1) { 2180 Node* place_holder = nullptr; 2181 assert(!n->has_out_with(Op_Node), ""); 2182 for (DUIterator k = n->outs(); n->has_out(k); k++) { 2183 Node* u = n->out(k); 2184 if (u != current && u->_idx < last) { 2185 bool success = false; 2186 for (uint l = 0; l < u->req(); l++) { 2187 if (!stack.is_empty() && u == stack.node() && l == stack.index()) { 2188 continue; 2189 } 2190 Node* in = u->in(l); 2191 if (in == n) { 2192 if (place_holder == nullptr) { 2193 place_holder = new Node(1); 2194 place_holder->init_req(0, n); 2195 } 2196 igvn.replace_input_of(u, l, place_holder); 2197 success = true; 2198 } 2199 } 2200 if (success) { 2201 --k; 2202 } 2203 } 2204 } 2205 } 2206 if (n->is_Phi()) { 2207 stack.push(n, 1); 2208 n = n->in(1); 2209 } else if (n->is_Mem()) { 2210 stack.push(n, n->req()); 2211 n = n->in(MemNode::Memory); 2212 } else { 2213 assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, ""); 2214 stack.push(n, n->req()); 2215 n = n->in(0)->in(TypeFunc::Memory); 2216 } 2217 } else { 2218 assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), ""); 2219 // Build a new MergeMem node to carry the new memory state 2220 // as we build it. IGVN should fold extraneous MergeMem 2221 // nodes. 2222 mm = MergeMemNode::make(n); 2223 igvn.register_new_node_with_optimizer(mm); 2224 while (stack.size() > 0) { 2225 Node* m = stack.node(); 2226 uint idx = stack.index(); 2227 if (m->is_Mem()) { 2228 // Move memory node to its new slice 2229 const TypePtr* adr_type = m->adr_type(); 2230 int alias = get_alias_index(adr_type); 2231 Node* prev = mm->memory_at(alias); 2232 igvn.replace_input_of(m, MemNode::Memory, prev); 2233 mm->set_memory_at(alias, m); 2234 } else if (m->is_Phi()) { 2235 // We need as many new phis as there are new aliases 2236 igvn.replace_input_of(m, idx, mm); 2237 if (idx == m->req()-1) { 2238 Node* r = m->in(0); 2239 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2240 const TypePtr* adr_type = get_adr_type(j); 2241 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2242 continue; 2243 } 2244 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j)); 2245 igvn.register_new_node_with_optimizer(phi); 2246 for (uint k = 1; k < m->req(); k++) { 2247 phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j)); 2248 } 2249 mm->set_memory_at(j, phi); 2250 } 2251 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2252 igvn.register_new_node_with_optimizer(base_phi); 2253 for (uint k = 1; k < m->req(); k++) { 2254 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory()); 2255 } 2256 mm->set_base_memory(base_phi); 2257 } 2258 } else { 2259 // This is a MemBarCPUOrder node from 2260 // Parse::array_load()/Parse::array_store(), in the 2261 // branch that handles flat arrays hidden under 2262 // an Object[] array. We also need one new membar per 2263 // new alias to keep the unknown access that the 2264 // membars protect properly ordered with accesses to 2265 // known flat array. 2266 assert(m->is_Proj(), "projection expected"); 2267 Node* ctrl = m->in(0)->in(TypeFunc::Control); 2268 igvn.replace_input_of(m->in(0), TypeFunc::Control, top()); 2269 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2270 const TypePtr* adr_type = get_adr_type(j); 2271 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2272 continue; 2273 } 2274 MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr); 2275 igvn.register_new_node_with_optimizer(mb); 2276 Node* mem = mm->memory_at(j); 2277 mb->init_req(TypeFunc::Control, ctrl); 2278 mb->init_req(TypeFunc::Memory, mem); 2279 ctrl = new ProjNode(mb, TypeFunc::Control); 2280 igvn.register_new_node_with_optimizer(ctrl); 2281 mem = new ProjNode(mb, TypeFunc::Memory); 2282 igvn.register_new_node_with_optimizer(mem); 2283 mm->set_memory_at(j, mem); 2284 } 2285 igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl); 2286 } 2287 if (idx < m->req()-1) { 2288 idx += 1; 2289 stack.set_index(idx); 2290 n = m->in(idx); 2291 break; 2292 } 2293 // Take care of place holder nodes 2294 if (m->has_out_with(Op_Node)) { 2295 Node* place_holder = m->find_out_with(Op_Node); 2296 if (place_holder != nullptr) { 2297 Node* mm_clone = mm->clone(); 2298 igvn.register_new_node_with_optimizer(mm_clone); 2299 Node* hook = new Node(1); 2300 hook->init_req(0, mm); 2301 igvn.replace_node(place_holder, mm_clone); 2302 hook->destruct(&igvn); 2303 } 2304 assert(!m->has_out_with(Op_Node), "place holder should be gone now"); 2305 } 2306 stack.pop(); 2307 } 2308 } 2309 } while(stack.size() > 0); 2310 // Fix the memory state at the MergeMem we started from 2311 igvn.rehash_node_delayed(current); 2312 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2313 const TypePtr* adr_type = get_adr_type(j); 2314 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) { 2315 continue; 2316 } 2317 current->set_memory_at(j, mm); 2318 } 2319 current->set_memory_at(index, current->base_memory()); 2320 } 2321 igvn.optimize(); 2322 } 2323 print_method(PHASE_SPLIT_INLINES_ARRAY, 2); 2324 #ifdef ASSERT 2325 if (!_flat_accesses_share_alias) { 2326 wq.clear(); 2327 wq.push(root()); 2328 for (uint i = 0; i < wq.size(); i++) { 2329 Node* n = wq.at(i); 2330 assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph"); 2331 for (uint j = 0; j < n->req(); j++) { 2332 Node* m = n->in(j); 2333 if (m != nullptr) { 2334 wq.push(m); 2335 } 2336 } 2337 } 2338 } 2339 #endif 2340 } 2341 2342 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 2343 if (OptimizeUnstableIf) { 2344 _unstable_if_traps.append(trap); 2345 } 2346 } 2347 2348 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 2349 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 2350 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2351 Node* n = trap->uncommon_trap(); 2352 if (!useful.member(n)) { 2353 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 2354 } 2355 } 2356 } 2357 2358 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 2359 // or fold-compares case. Return true if succeed or not found. 2360 // 2361 // In rare cases, the found trap has been processed. It is too late to delete it. Return 2362 // false and ask fold-compares to yield. 2363 // 2364 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 2365 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 2366 // when deoptimization does happen. 2367 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 2368 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 2369 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2370 if (trap->uncommon_trap() == unc) { 2371 if (yield && trap->modified()) { 2372 return false; 2373 } 2374 _unstable_if_traps.delete_at(i); 2375 break; 2376 } 2377 } 2378 return true; 2379 } 2380 2381 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 2382 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 2383 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 2384 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 2385 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2386 CallStaticJavaNode* unc = trap->uncommon_trap(); 2387 int next_bci = trap->next_bci(); 2388 bool modified = trap->modified(); 2389 2390 if (next_bci != -1 && !modified) { 2391 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2392 JVMState* jvms = unc->jvms(); 2393 ciMethod* method = jvms->method(); 2394 ciBytecodeStream iter(method); 2395 2396 iter.force_bci(jvms->bci()); 2397 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2398 Bytecodes::Code c = iter.cur_bc(); 2399 Node* lhs = nullptr; 2400 Node* rhs = nullptr; 2401 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2402 lhs = unc->peek_operand(0); 2403 rhs = unc->peek_operand(1); 2404 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2405 lhs = unc->peek_operand(0); 2406 } 2407 2408 ResourceMark rm; 2409 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2410 assert(live_locals.is_valid(), "broken liveness info"); 2411 int len = (int)live_locals.size(); 2412 2413 for (int i = 0; i < len; i++) { 2414 Node* local = unc->local(jvms, i); 2415 // kill local using the liveness of next_bci. 2416 // give up when the local looks like an operand to secure reexecution. 2417 if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) { 2418 uint idx = jvms->locoff() + i; 2419 #ifdef ASSERT 2420 if (PrintOpto && Verbose) { 2421 tty->print("[unstable_if] kill local#%d: ", idx); 2422 local->dump(); 2423 tty->cr(); 2424 } 2425 #endif 2426 igvn.replace_input_of(unc, idx, top()); 2427 modified = true; 2428 } 2429 } 2430 } 2431 2432 // keep the modified trap for late query 2433 if (modified) { 2434 trap->set_modified(); 2435 } else { 2436 _unstable_if_traps.delete_at(i); 2437 } 2438 } 2439 igvn.optimize(); 2440 } 2441 2442 // StringOpts and late inlining of string methods 2443 void Compile::inline_string_calls(bool parse_time) { 2444 { 2445 // remove useless nodes to make the usage analysis simpler 2446 ResourceMark rm; 2447 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2448 } 2449 2450 { 2451 ResourceMark rm; 2452 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2453 PhaseStringOpts pso(initial_gvn()); 2454 print_method(PHASE_AFTER_STRINGOPTS, 3); 2455 } 2456 2457 // now inline anything that we skipped the first time around 2458 if (!parse_time) { 2459 _late_inlines_pos = _late_inlines.length(); 2460 } 2461 2462 while (_string_late_inlines.length() > 0) { 2463 CallGenerator* cg = _string_late_inlines.pop(); 2464 cg->do_late_inline(); 2465 if (failing()) return; 2466 } 2467 _string_late_inlines.trunc_to(0); 2468 } 2469 2470 // Late inlining of boxing methods 2471 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2472 if (_boxing_late_inlines.length() > 0) { 2473 assert(has_boxed_value(), "inconsistent"); 2474 2475 set_inlining_incrementally(true); 2476 2477 igvn_worklist()->ensure_empty(); // should be done with igvn 2478 2479 _late_inlines_pos = _late_inlines.length(); 2480 2481 while (_boxing_late_inlines.length() > 0) { 2482 CallGenerator* cg = _boxing_late_inlines.pop(); 2483 cg->do_late_inline(); 2484 if (failing()) return; 2485 } 2486 _boxing_late_inlines.trunc_to(0); 2487 2488 inline_incrementally_cleanup(igvn); 2489 2490 set_inlining_incrementally(false); 2491 } 2492 } 2493 2494 bool Compile::inline_incrementally_one() { 2495 assert(IncrementalInline, "incremental inlining should be on"); 2496 2497 TracePhase tp(_t_incrInline_inline); 2498 2499 set_inlining_progress(false); 2500 set_do_cleanup(false); 2501 2502 for (int i = 0; i < _late_inlines.length(); i++) { 2503 _late_inlines_pos = i+1; 2504 CallGenerator* cg = _late_inlines.at(i); 2505 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2506 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2507 cg->do_late_inline(); 2508 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2509 if (failing()) { 2510 return false; 2511 } else if (inlining_progress()) { 2512 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2513 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2514 break; // process one call site at a time 2515 } 2516 } else { 2517 // Ignore late inline direct calls when inlining is not allowed. 2518 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2519 } 2520 } 2521 // Remove processed elements. 2522 _late_inlines.remove_till(_late_inlines_pos); 2523 _late_inlines_pos = 0; 2524 2525 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2526 2527 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2528 2529 set_inlining_progress(false); 2530 set_do_cleanup(false); 2531 2532 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2533 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2534 } 2535 2536 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2537 { 2538 TracePhase tp(_t_incrInline_pru); 2539 ResourceMark rm; 2540 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2541 } 2542 { 2543 TracePhase tp(_t_incrInline_igvn); 2544 igvn.reset_from_gvn(initial_gvn()); 2545 igvn.optimize(); 2546 if (failing()) return; 2547 } 2548 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2549 } 2550 2551 // Perform incremental inlining until bound on number of live nodes is reached 2552 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2553 TracePhase tp(_t_incrInline); 2554 2555 set_inlining_incrementally(true); 2556 uint low_live_nodes = 0; 2557 2558 while (_late_inlines.length() > 0) { 2559 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2560 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2561 TracePhase tp(_t_incrInline_ideal); 2562 // PhaseIdealLoop is expensive so we only try it once we are 2563 // out of live nodes and we only try it again if the previous 2564 // helped got the number of nodes down significantly 2565 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2566 if (failing()) return; 2567 low_live_nodes = live_nodes(); 2568 _major_progress = true; 2569 } 2570 2571 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2572 bool do_print_inlining = print_inlining() || print_intrinsics(); 2573 if (do_print_inlining || log() != nullptr) { 2574 // Print inlining message for candidates that we couldn't inline for lack of space. 2575 for (int i = 0; i < _late_inlines.length(); i++) { 2576 CallGenerator* cg = _late_inlines.at(i); 2577 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2578 if (do_print_inlining) { 2579 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2580 } 2581 log_late_inline_failure(cg, msg); 2582 } 2583 } 2584 break; // finish 2585 } 2586 } 2587 2588 igvn_worklist()->ensure_empty(); // should be done with igvn 2589 2590 while (inline_incrementally_one()) { 2591 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2592 } 2593 if (failing()) return; 2594 2595 inline_incrementally_cleanup(igvn); 2596 2597 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2598 2599 if (failing()) return; 2600 2601 if (_late_inlines.length() == 0) { 2602 break; // no more progress 2603 } 2604 } 2605 2606 igvn_worklist()->ensure_empty(); // should be done with igvn 2607 2608 if (_string_late_inlines.length() > 0) { 2609 assert(has_stringbuilder(), "inconsistent"); 2610 2611 inline_string_calls(false); 2612 2613 if (failing()) return; 2614 2615 inline_incrementally_cleanup(igvn); 2616 } 2617 2618 set_inlining_incrementally(false); 2619 } 2620 2621 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2622 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2623 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2624 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2625 // as if "inlining_incrementally() == true" were set. 2626 assert(inlining_incrementally() == false, "not allowed"); 2627 #ifdef ASSERT 2628 Unique_Node_List* modified_nodes = _modified_nodes; 2629 _modified_nodes = nullptr; 2630 #endif 2631 assert(_late_inlines.length() > 0, "sanity"); 2632 2633 while (_late_inlines.length() > 0) { 2634 igvn_worklist()->ensure_empty(); // should be done with igvn 2635 2636 while (inline_incrementally_one()) { 2637 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2638 } 2639 if (failing()) return; 2640 2641 inline_incrementally_cleanup(igvn); 2642 } 2643 DEBUG_ONLY( _modified_nodes = modified_nodes; ) 2644 } 2645 2646 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2647 if (_loop_opts_cnt > 0) { 2648 while (major_progress() && (_loop_opts_cnt > 0)) { 2649 TracePhase tp(_t_idealLoop); 2650 PhaseIdealLoop::optimize(igvn, mode); 2651 _loop_opts_cnt--; 2652 if (failing()) return false; 2653 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2654 } 2655 } 2656 return true; 2657 } 2658 2659 // Remove edges from "root" to each SafePoint at a backward branch. 2660 // They were inserted during parsing (see add_safepoint()) to make 2661 // infinite loops without calls or exceptions visible to root, i.e., 2662 // useful. 2663 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2664 Node *r = root(); 2665 if (r != nullptr) { 2666 for (uint i = r->req(); i < r->len(); ++i) { 2667 Node *n = r->in(i); 2668 if (n != nullptr && n->is_SafePoint()) { 2669 r->rm_prec(i); 2670 if (n->outcnt() == 0) { 2671 igvn.remove_dead_node(n); 2672 } 2673 --i; 2674 } 2675 } 2676 // Parsing may have added top inputs to the root node (Path 2677 // leading to the Halt node proven dead). Make sure we get a 2678 // chance to clean them up. 2679 igvn._worklist.push(r); 2680 igvn.optimize(); 2681 } 2682 } 2683 2684 //------------------------------Optimize--------------------------------------- 2685 // Given a graph, optimize it. 2686 void Compile::Optimize() { 2687 TracePhase tp(_t_optimizer); 2688 2689 #ifndef PRODUCT 2690 if (env()->break_at_compile()) { 2691 BREAKPOINT; 2692 } 2693 2694 #endif 2695 2696 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2697 #ifdef ASSERT 2698 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2699 #endif 2700 2701 ResourceMark rm; 2702 2703 NOT_PRODUCT( verify_graph_edges(); ) 2704 2705 print_method(PHASE_AFTER_PARSING, 1); 2706 2707 { 2708 // Iterative Global Value Numbering, including ideal transforms 2709 // Initialize IterGVN with types and values from parse-time GVN 2710 PhaseIterGVN igvn(initial_gvn()); 2711 #ifdef ASSERT 2712 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2713 #endif 2714 { 2715 TracePhase tp(_t_iterGVN); 2716 igvn.optimize(); 2717 } 2718 2719 if (failing()) return; 2720 2721 print_method(PHASE_ITER_GVN1, 2); 2722 2723 process_for_unstable_if_traps(igvn); 2724 2725 if (failing()) return; 2726 2727 inline_incrementally(igvn); 2728 2729 print_method(PHASE_INCREMENTAL_INLINE, 2); 2730 2731 if (failing()) return; 2732 2733 if (eliminate_boxing()) { 2734 // Inline valueOf() methods now. 2735 inline_boxing_calls(igvn); 2736 2737 if (failing()) return; 2738 2739 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2740 inline_incrementally(igvn); 2741 } 2742 2743 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2744 2745 if (failing()) return; 2746 } 2747 2748 // Remove the speculative part of types and clean up the graph from 2749 // the extra CastPP nodes whose only purpose is to carry them. Do 2750 // that early so that optimizations are not disrupted by the extra 2751 // CastPP nodes. 2752 remove_speculative_types(igvn); 2753 2754 if (failing()) return; 2755 2756 // No more new expensive nodes will be added to the list from here 2757 // so keep only the actual candidates for optimizations. 2758 cleanup_expensive_nodes(igvn); 2759 2760 if (failing()) return; 2761 2762 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2763 if (EnableVectorSupport && has_vbox_nodes()) { 2764 TracePhase tp(_t_vector); 2765 PhaseVector pv(igvn); 2766 pv.optimize_vector_boxes(); 2767 if (failing()) return; 2768 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2769 } 2770 assert(!has_vbox_nodes(), "sanity"); 2771 2772 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2773 Compile::TracePhase tp(_t_renumberLive); 2774 igvn_worklist()->ensure_empty(); // should be done with igvn 2775 { 2776 ResourceMark rm; 2777 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2778 } 2779 igvn.reset_from_gvn(initial_gvn()); 2780 igvn.optimize(); 2781 if (failing()) return; 2782 } 2783 2784 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2785 // safepoints 2786 remove_root_to_sfpts_edges(igvn); 2787 2788 // Process inline type nodes now that all inlining is over 2789 process_inline_types(igvn); 2790 2791 adjust_flat_array_access_aliases(igvn); 2792 2793 if (failing()) return; 2794 2795 // Perform escape analysis 2796 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2797 if (has_loops()) { 2798 // Cleanup graph (remove dead nodes). 2799 TracePhase tp(_t_idealLoop); 2800 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2801 if (failing()) return; 2802 } 2803 bool progress; 2804 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2805 do { 2806 ConnectionGraph::do_analysis(this, &igvn); 2807 2808 if (failing()) return; 2809 2810 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2811 2812 // Optimize out fields loads from scalar replaceable allocations. 2813 igvn.optimize(); 2814 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2815 2816 if (failing()) return; 2817 2818 if (congraph() != nullptr && macro_count() > 0) { 2819 TracePhase tp(_t_macroEliminate); 2820 PhaseMacroExpand mexp(igvn); 2821 mexp.eliminate_macro_nodes(); 2822 if (failing()) return; 2823 2824 igvn.set_delay_transform(false); 2825 igvn.optimize(); 2826 if (failing()) return; 2827 2828 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2829 } 2830 2831 ConnectionGraph::verify_ram_nodes(this, root()); 2832 if (failing()) return; 2833 2834 progress = do_iterative_escape_analysis() && 2835 (macro_count() < mcount) && 2836 ConnectionGraph::has_candidates(this); 2837 // Try again if candidates exist and made progress 2838 // by removing some allocations and/or locks. 2839 } while (progress); 2840 } 2841 2842 // Loop transforms on the ideal graph. Range Check Elimination, 2843 // peeling, unrolling, etc. 2844 2845 // Set loop opts counter 2846 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2847 { 2848 TracePhase tp(_t_idealLoop); 2849 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2850 _loop_opts_cnt--; 2851 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2852 if (failing()) return; 2853 } 2854 // Loop opts pass if partial peeling occurred in previous pass 2855 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2856 TracePhase tp(_t_idealLoop); 2857 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2858 _loop_opts_cnt--; 2859 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2860 if (failing()) return; 2861 } 2862 // Loop opts pass for loop-unrolling before CCP 2863 if(major_progress() && (_loop_opts_cnt > 0)) { 2864 TracePhase tp(_t_idealLoop); 2865 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2866 _loop_opts_cnt--; 2867 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2868 } 2869 if (!failing()) { 2870 // Verify that last round of loop opts produced a valid graph 2871 PhaseIdealLoop::verify(igvn); 2872 } 2873 } 2874 if (failing()) return; 2875 2876 // Conditional Constant Propagation; 2877 print_method(PHASE_BEFORE_CCP1, 2); 2878 PhaseCCP ccp( &igvn ); 2879 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2880 { 2881 TracePhase tp(_t_ccp); 2882 ccp.do_transform(); 2883 } 2884 print_method(PHASE_CCP1, 2); 2885 2886 assert( true, "Break here to ccp.dump_old2new_map()"); 2887 2888 // Iterative Global Value Numbering, including ideal transforms 2889 { 2890 TracePhase tp(_t_iterGVN2); 2891 igvn.reset_from_igvn(&ccp); 2892 igvn.optimize(); 2893 } 2894 print_method(PHASE_ITER_GVN2, 2); 2895 2896 if (failing()) return; 2897 2898 // Loop transforms on the ideal graph. Range Check Elimination, 2899 // peeling, unrolling, etc. 2900 if (!optimize_loops(igvn, LoopOptsDefault)) { 2901 return; 2902 } 2903 2904 if (failing()) return; 2905 2906 C->clear_major_progress(); // ensure that major progress is now clear 2907 2908 process_for_post_loop_opts_igvn(igvn); 2909 2910 if (failing()) return; 2911 2912 #ifdef ASSERT 2913 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2914 #endif 2915 2916 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2917 2918 if (_late_inlines.length() > 0) { 2919 // More opportunities to optimize virtual and MH calls. 2920 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2921 process_late_inline_calls_no_inline(igvn); 2922 } 2923 2924 { 2925 TracePhase tp(_t_macroExpand); 2926 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2927 PhaseMacroExpand mex(igvn); 2928 if (mex.expand_macro_nodes()) { 2929 assert(failing(), "must bail out w/ explicit message"); 2930 return; 2931 } 2932 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2933 } 2934 2935 // Process inline type nodes again and remove them. From here 2936 // on we don't need to keep track of field values anymore. 2937 process_inline_types(igvn, /* remove= */ true); 2938 2939 { 2940 TracePhase tp(_t_barrierExpand); 2941 if (bs->expand_barriers(this, igvn)) { 2942 assert(failing(), "must bail out w/ explicit message"); 2943 return; 2944 } 2945 print_method(PHASE_BARRIER_EXPANSION, 2); 2946 } 2947 2948 if (C->max_vector_size() > 0) { 2949 C->optimize_logic_cones(igvn); 2950 igvn.optimize(); 2951 if (failing()) return; 2952 } 2953 2954 DEBUG_ONLY( _modified_nodes = nullptr; ) 2955 DEBUG_ONLY( _late_inlines.clear(); ) 2956 2957 assert(igvn._worklist.size() == 0, "not empty"); 2958 } // (End scope of igvn; run destructor if necessary for asserts.) 2959 2960 check_no_dead_use(); 2961 2962 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2963 // to remove hashes to unlock nodes for modifications. 2964 C->node_hash()->clear(); 2965 2966 // A method with only infinite loops has no edges entering loops from root 2967 { 2968 TracePhase tp(_t_graphReshaping); 2969 if (final_graph_reshaping()) { 2970 assert(failing(), "must bail out w/ explicit message"); 2971 return; 2972 } 2973 } 2974 2975 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2976 DEBUG_ONLY(set_phase_optimize_finished();) 2977 } 2978 2979 #ifdef ASSERT 2980 void Compile::check_no_dead_use() const { 2981 ResourceMark rm; 2982 Unique_Node_List wq; 2983 wq.push(root()); 2984 for (uint i = 0; i < wq.size(); ++i) { 2985 Node* n = wq.at(i); 2986 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2987 Node* u = n->fast_out(j); 2988 if (u->outcnt() == 0 && !u->is_Con()) { 2989 u->dump(); 2990 fatal("no reachable node should have no use"); 2991 } 2992 wq.push(u); 2993 } 2994 } 2995 } 2996 #endif 2997 2998 void Compile::inline_vector_reboxing_calls() { 2999 if (C->_vector_reboxing_late_inlines.length() > 0) { 3000 _late_inlines_pos = C->_late_inlines.length(); 3001 while (_vector_reboxing_late_inlines.length() > 0) { 3002 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 3003 cg->do_late_inline(); 3004 if (failing()) return; 3005 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 3006 } 3007 _vector_reboxing_late_inlines.trunc_to(0); 3008 } 3009 } 3010 3011 bool Compile::has_vbox_nodes() { 3012 if (C->_vector_reboxing_late_inlines.length() > 0) { 3013 return true; 3014 } 3015 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 3016 Node * n = C->macro_node(macro_idx); 3017 assert(n->is_macro(), "only macro nodes expected here"); 3018 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 3019 return true; 3020 } 3021 } 3022 return false; 3023 } 3024 3025 //---------------------------- Bitwise operation packing optimization --------------------------- 3026 3027 static bool is_vector_unary_bitwise_op(Node* n) { 3028 return n->Opcode() == Op_XorV && 3029 VectorNode::is_vector_bitwise_not_pattern(n); 3030 } 3031 3032 static bool is_vector_binary_bitwise_op(Node* n) { 3033 switch (n->Opcode()) { 3034 case Op_AndV: 3035 case Op_OrV: 3036 return true; 3037 3038 case Op_XorV: 3039 return !is_vector_unary_bitwise_op(n); 3040 3041 default: 3042 return false; 3043 } 3044 } 3045 3046 static bool is_vector_ternary_bitwise_op(Node* n) { 3047 return n->Opcode() == Op_MacroLogicV; 3048 } 3049 3050 static bool is_vector_bitwise_op(Node* n) { 3051 return is_vector_unary_bitwise_op(n) || 3052 is_vector_binary_bitwise_op(n) || 3053 is_vector_ternary_bitwise_op(n); 3054 } 3055 3056 static bool is_vector_bitwise_cone_root(Node* n) { 3057 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 3058 return false; 3059 } 3060 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3061 if (is_vector_bitwise_op(n->fast_out(i))) { 3062 return false; 3063 } 3064 } 3065 return true; 3066 } 3067 3068 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 3069 uint cnt = 0; 3070 if (is_vector_bitwise_op(n)) { 3071 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 3072 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3073 for (uint i = 1; i < inp_cnt; i++) { 3074 Node* in = n->in(i); 3075 bool skip = VectorNode::is_all_ones_vector(in); 3076 if (!skip && !inputs.member(in)) { 3077 inputs.push(in); 3078 cnt++; 3079 } 3080 } 3081 assert(cnt <= 1, "not unary"); 3082 } else { 3083 uint last_req = inp_cnt; 3084 if (is_vector_ternary_bitwise_op(n)) { 3085 last_req = inp_cnt - 1; // skip last input 3086 } 3087 for (uint i = 1; i < last_req; i++) { 3088 Node* def = n->in(i); 3089 if (!inputs.member(def)) { 3090 inputs.push(def); 3091 cnt++; 3092 } 3093 } 3094 } 3095 } else { // not a bitwise operations 3096 if (!inputs.member(n)) { 3097 inputs.push(n); 3098 cnt++; 3099 } 3100 } 3101 return cnt; 3102 } 3103 3104 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 3105 Unique_Node_List useful_nodes; 3106 C->identify_useful_nodes(useful_nodes); 3107 3108 for (uint i = 0; i < useful_nodes.size(); i++) { 3109 Node* n = useful_nodes.at(i); 3110 if (is_vector_bitwise_cone_root(n)) { 3111 list.push(n); 3112 } 3113 } 3114 } 3115 3116 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 3117 const TypeVect* vt, 3118 Unique_Node_List& partition, 3119 Unique_Node_List& inputs) { 3120 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 3121 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 3122 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 3123 3124 Node* in1 = inputs.at(0); 3125 Node* in2 = inputs.at(1); 3126 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 3127 3128 uint func = compute_truth_table(partition, inputs); 3129 3130 Node* pn = partition.at(partition.size() - 1); 3131 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3132 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 3133 } 3134 3135 static uint extract_bit(uint func, uint pos) { 3136 return (func & (1 << pos)) >> pos; 3137 } 3138 3139 // 3140 // A macro logic node represents a truth table. It has 4 inputs, 3141 // First three inputs corresponds to 3 columns of a truth table 3142 // and fourth input captures the logic function. 3143 // 3144 // eg. fn = (in1 AND in2) OR in3; 3145 // 3146 // MacroNode(in1,in2,in3,fn) 3147 // 3148 // ----------------- 3149 // in1 in2 in3 fn 3150 // ----------------- 3151 // 0 0 0 0 3152 // 0 0 1 1 3153 // 0 1 0 0 3154 // 0 1 1 1 3155 // 1 0 0 0 3156 // 1 0 1 1 3157 // 1 1 0 1 3158 // 1 1 1 1 3159 // 3160 3161 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 3162 int res = 0; 3163 for (int i = 0; i < 8; i++) { 3164 int bit1 = extract_bit(in1, i); 3165 int bit2 = extract_bit(in2, i); 3166 int bit3 = extract_bit(in3, i); 3167 3168 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 3169 int func_bit = extract_bit(func, func_bit_pos); 3170 3171 res |= func_bit << i; 3172 } 3173 return res; 3174 } 3175 3176 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 3177 assert(n != nullptr, ""); 3178 assert(eval_map.contains(n), "absent"); 3179 return *(eval_map.get(n)); 3180 } 3181 3182 static void eval_operands(Node* n, 3183 uint& func1, uint& func2, uint& func3, 3184 ResourceHashtable<Node*,uint>& eval_map) { 3185 assert(is_vector_bitwise_op(n), ""); 3186 3187 if (is_vector_unary_bitwise_op(n)) { 3188 Node* opnd = n->in(1); 3189 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 3190 opnd = n->in(2); 3191 } 3192 func1 = eval_operand(opnd, eval_map); 3193 } else if (is_vector_binary_bitwise_op(n)) { 3194 func1 = eval_operand(n->in(1), eval_map); 3195 func2 = eval_operand(n->in(2), eval_map); 3196 } else { 3197 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 3198 func1 = eval_operand(n->in(1), eval_map); 3199 func2 = eval_operand(n->in(2), eval_map); 3200 func3 = eval_operand(n->in(3), eval_map); 3201 } 3202 } 3203 3204 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 3205 assert(inputs.size() <= 3, "sanity"); 3206 ResourceMark rm; 3207 uint res = 0; 3208 ResourceHashtable<Node*,uint> eval_map; 3209 3210 // Populate precomputed functions for inputs. 3211 // Each input corresponds to one column of 3 input truth-table. 3212 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 3213 0xCC, // (_, b, _) -> b 3214 0xF0 }; // (a, _, _) -> a 3215 for (uint i = 0; i < inputs.size(); i++) { 3216 eval_map.put(inputs.at(i), input_funcs[2-i]); 3217 } 3218 3219 for (uint i = 0; i < partition.size(); i++) { 3220 Node* n = partition.at(i); 3221 3222 uint func1 = 0, func2 = 0, func3 = 0; 3223 eval_operands(n, func1, func2, func3, eval_map); 3224 3225 switch (n->Opcode()) { 3226 case Op_OrV: 3227 assert(func3 == 0, "not binary"); 3228 res = func1 | func2; 3229 break; 3230 case Op_AndV: 3231 assert(func3 == 0, "not binary"); 3232 res = func1 & func2; 3233 break; 3234 case Op_XorV: 3235 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3236 assert(func2 == 0 && func3 == 0, "not unary"); 3237 res = (~func1) & 0xFF; 3238 } else { 3239 assert(func3 == 0, "not binary"); 3240 res = func1 ^ func2; 3241 } 3242 break; 3243 case Op_MacroLogicV: 3244 // Ordering of inputs may change during evaluation of sub-tree 3245 // containing MacroLogic node as a child node, thus a re-evaluation 3246 // makes sure that function is evaluated in context of current 3247 // inputs. 3248 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 3249 break; 3250 3251 default: assert(false, "not supported: %s", n->Name()); 3252 } 3253 assert(res <= 0xFF, "invalid"); 3254 eval_map.put(n, res); 3255 } 3256 return res; 3257 } 3258 3259 // Criteria under which nodes gets packed into a macro logic node:- 3260 // 1) Parent and both child nodes are all unmasked or masked with 3261 // same predicates. 3262 // 2) Masked parent can be packed with left child if it is predicated 3263 // and both have same predicates. 3264 // 3) Masked parent can be packed with right child if its un-predicated 3265 // or has matching predication condition. 3266 // 4) An unmasked parent can be packed with an unmasked child. 3267 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 3268 assert(partition.size() == 0, "not empty"); 3269 assert(inputs.size() == 0, "not empty"); 3270 if (is_vector_ternary_bitwise_op(n)) { 3271 return false; 3272 } 3273 3274 bool is_unary_op = is_vector_unary_bitwise_op(n); 3275 if (is_unary_op) { 3276 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 3277 return false; // too few inputs 3278 } 3279 3280 bool pack_left_child = true; 3281 bool pack_right_child = true; 3282 3283 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 3284 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 3285 3286 int left_child_input_cnt = 0; 3287 int right_child_input_cnt = 0; 3288 3289 bool parent_is_predicated = n->is_predicated_vector(); 3290 bool left_child_predicated = n->in(1)->is_predicated_vector(); 3291 bool right_child_predicated = n->in(2)->is_predicated_vector(); 3292 3293 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 3294 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3295 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3296 3297 do { 3298 if (pack_left_child && left_child_LOP && 3299 ((!parent_is_predicated && !left_child_predicated) || 3300 ((parent_is_predicated && left_child_predicated && 3301 parent_pred == left_child_pred)))) { 3302 partition.push(n->in(1)); 3303 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 3304 } else { 3305 inputs.push(n->in(1)); 3306 left_child_input_cnt = 1; 3307 } 3308 3309 if (pack_right_child && right_child_LOP && 3310 (!right_child_predicated || 3311 (right_child_predicated && parent_is_predicated && 3312 parent_pred == right_child_pred))) { 3313 partition.push(n->in(2)); 3314 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 3315 } else { 3316 inputs.push(n->in(2)); 3317 right_child_input_cnt = 1; 3318 } 3319 3320 if (inputs.size() > 3) { 3321 assert(partition.size() > 0, ""); 3322 inputs.clear(); 3323 partition.clear(); 3324 if (left_child_input_cnt > right_child_input_cnt) { 3325 pack_left_child = false; 3326 } else { 3327 pack_right_child = false; 3328 } 3329 } else { 3330 break; 3331 } 3332 } while(true); 3333 3334 if(partition.size()) { 3335 partition.push(n); 3336 } 3337 3338 return (partition.size() == 2 || partition.size() == 3) && 3339 (inputs.size() == 2 || inputs.size() == 3); 3340 } 3341 3342 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 3343 assert(is_vector_bitwise_op(n), "not a root"); 3344 3345 visited.set(n->_idx); 3346 3347 // 1) Do a DFS walk over the logic cone. 3348 for (uint i = 1; i < n->req(); i++) { 3349 Node* in = n->in(i); 3350 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 3351 process_logic_cone_root(igvn, in, visited); 3352 } 3353 } 3354 3355 // 2) Bottom up traversal: Merge node[s] with 3356 // the parent to form macro logic node. 3357 Unique_Node_List partition; 3358 Unique_Node_List inputs; 3359 if (compute_logic_cone(n, partition, inputs)) { 3360 const TypeVect* vt = n->bottom_type()->is_vect(); 3361 Node* pn = partition.at(partition.size() - 1); 3362 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3363 if (mask == nullptr || 3364 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 3365 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 3366 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 3367 igvn.replace_node(n, macro_logic); 3368 } 3369 } 3370 } 3371 3372 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 3373 ResourceMark rm; 3374 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3375 Unique_Node_List list; 3376 collect_logic_cone_roots(list); 3377 3378 while (list.size() > 0) { 3379 Node* n = list.pop(); 3380 const TypeVect* vt = n->bottom_type()->is_vect(); 3381 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3382 if (supported) { 3383 VectorSet visited(comp_arena()); 3384 process_logic_cone_root(igvn, n, visited); 3385 } 3386 } 3387 } 3388 } 3389 3390 //------------------------------Code_Gen--------------------------------------- 3391 // Given a graph, generate code for it 3392 void Compile::Code_Gen() { 3393 if (failing()) { 3394 return; 3395 } 3396 3397 // Perform instruction selection. You might think we could reclaim Matcher 3398 // memory PDQ, but actually the Matcher is used in generating spill code. 3399 // Internals of the Matcher (including some VectorSets) must remain live 3400 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3401 // set a bit in reclaimed memory. 3402 3403 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3404 // nodes. Mapping is only valid at the root of each matched subtree. 3405 NOT_PRODUCT( verify_graph_edges(); ) 3406 3407 Matcher matcher; 3408 _matcher = &matcher; 3409 { 3410 TracePhase tp(_t_matcher); 3411 matcher.match(); 3412 if (failing()) { 3413 return; 3414 } 3415 } 3416 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3417 // nodes. Mapping is only valid at the root of each matched subtree. 3418 NOT_PRODUCT( verify_graph_edges(); ) 3419 3420 // If you have too many nodes, or if matching has failed, bail out 3421 check_node_count(0, "out of nodes matching instructions"); 3422 if (failing()) { 3423 return; 3424 } 3425 3426 print_method(PHASE_MATCHING, 2); 3427 3428 // Build a proper-looking CFG 3429 PhaseCFG cfg(node_arena(), root(), matcher); 3430 if (failing()) { 3431 return; 3432 } 3433 _cfg = &cfg; 3434 { 3435 TracePhase tp(_t_scheduler); 3436 bool success = cfg.do_global_code_motion(); 3437 if (!success) { 3438 return; 3439 } 3440 3441 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3442 NOT_PRODUCT( verify_graph_edges(); ) 3443 cfg.verify(); 3444 if (failing()) { 3445 return; 3446 } 3447 } 3448 3449 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3450 _regalloc = ®alloc; 3451 { 3452 TracePhase tp(_t_registerAllocation); 3453 // Perform register allocation. After Chaitin, use-def chains are 3454 // no longer accurate (at spill code) and so must be ignored. 3455 // Node->LRG->reg mappings are still accurate. 3456 _regalloc->Register_Allocate(); 3457 3458 // Bail out if the allocator builds too many nodes 3459 if (failing()) { 3460 return; 3461 } 3462 3463 print_method(PHASE_REGISTER_ALLOCATION, 2); 3464 } 3465 3466 // Prior to register allocation we kept empty basic blocks in case the 3467 // the allocator needed a place to spill. After register allocation we 3468 // are not adding any new instructions. If any basic block is empty, we 3469 // can now safely remove it. 3470 { 3471 TracePhase tp(_t_blockOrdering); 3472 cfg.remove_empty_blocks(); 3473 if (do_freq_based_layout()) { 3474 PhaseBlockLayout layout(cfg); 3475 } else { 3476 cfg.set_loop_alignment(); 3477 } 3478 cfg.fixup_flow(); 3479 cfg.remove_unreachable_blocks(); 3480 cfg.verify_dominator_tree(); 3481 print_method(PHASE_BLOCK_ORDERING, 3); 3482 } 3483 3484 // Apply peephole optimizations 3485 if( OptoPeephole ) { 3486 TracePhase tp(_t_peephole); 3487 PhasePeephole peep( _regalloc, cfg); 3488 peep.do_transform(); 3489 print_method(PHASE_PEEPHOLE, 3); 3490 } 3491 3492 // Do late expand if CPU requires this. 3493 if (Matcher::require_postalloc_expand) { 3494 TracePhase tp(_t_postalloc_expand); 3495 cfg.postalloc_expand(_regalloc); 3496 print_method(PHASE_POSTALLOC_EXPAND, 3); 3497 } 3498 3499 #ifdef ASSERT 3500 { 3501 CompilationMemoryStatistic::do_test_allocations(); 3502 if (failing()) return; 3503 } 3504 #endif 3505 3506 // Convert Nodes to instruction bits in a buffer 3507 { 3508 TracePhase tp(_t_output); 3509 PhaseOutput output; 3510 output.Output(); 3511 if (failing()) return; 3512 output.install(); 3513 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3514 } 3515 3516 // He's dead, Jim. 3517 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3518 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3519 } 3520 3521 //------------------------------Final_Reshape_Counts--------------------------- 3522 // This class defines counters to help identify when a method 3523 // may/must be executed using hardware with only 24-bit precision. 3524 struct Final_Reshape_Counts : public StackObj { 3525 int _call_count; // count non-inlined 'common' calls 3526 int _float_count; // count float ops requiring 24-bit precision 3527 int _double_count; // count double ops requiring more precision 3528 int _java_call_count; // count non-inlined 'java' calls 3529 int _inner_loop_count; // count loops which need alignment 3530 VectorSet _visited; // Visitation flags 3531 Node_List _tests; // Set of IfNodes & PCTableNodes 3532 3533 Final_Reshape_Counts() : 3534 _call_count(0), _float_count(0), _double_count(0), 3535 _java_call_count(0), _inner_loop_count(0) { } 3536 3537 void inc_call_count () { _call_count ++; } 3538 void inc_float_count () { _float_count ++; } 3539 void inc_double_count() { _double_count++; } 3540 void inc_java_call_count() { _java_call_count++; } 3541 void inc_inner_loop_count() { _inner_loop_count++; } 3542 3543 int get_call_count () const { return _call_count ; } 3544 int get_float_count () const { return _float_count ; } 3545 int get_double_count() const { return _double_count; } 3546 int get_java_call_count() const { return _java_call_count; } 3547 int get_inner_loop_count() const { return _inner_loop_count; } 3548 }; 3549 3550 //------------------------------final_graph_reshaping_impl---------------------- 3551 // Implement items 1-5 from final_graph_reshaping below. 3552 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3553 3554 if ( n->outcnt() == 0 ) return; // dead node 3555 uint nop = n->Opcode(); 3556 3557 // Check for 2-input instruction with "last use" on right input. 3558 // Swap to left input. Implements item (2). 3559 if( n->req() == 3 && // two-input instruction 3560 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3561 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3562 n->in(2)->outcnt() == 1 &&// right use IS a last use 3563 !n->in(2)->is_Con() ) { // right use is not a constant 3564 // Check for commutative opcode 3565 switch( nop ) { 3566 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3567 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3568 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3569 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3570 case Op_AndL: case Op_XorL: case Op_OrL: 3571 case Op_AndI: case Op_XorI: case Op_OrI: { 3572 // Move "last use" input to left by swapping inputs 3573 n->swap_edges(1, 2); 3574 break; 3575 } 3576 default: 3577 break; 3578 } 3579 } 3580 3581 #ifdef ASSERT 3582 if( n->is_Mem() ) { 3583 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3584 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3585 // oop will be recorded in oop map if load crosses safepoint 3586 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3587 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3588 "raw memory operations should have control edge"); 3589 } 3590 if (n->is_MemBar()) { 3591 MemBarNode* mb = n->as_MemBar(); 3592 if (mb->trailing_store() || mb->trailing_load_store()) { 3593 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3594 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3595 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3596 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3597 } else if (mb->leading()) { 3598 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3599 } 3600 } 3601 #endif 3602 // Count FPU ops and common calls, implements item (3) 3603 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3604 if (!gc_handled) { 3605 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3606 } 3607 3608 // Collect CFG split points 3609 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3610 frc._tests.push(n); 3611 } 3612 } 3613 3614 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3615 if (!UseDivMod) { 3616 return; 3617 } 3618 3619 // Check if "a % b" and "a / b" both exist 3620 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3621 if (d == nullptr) { 3622 return; 3623 } 3624 3625 // Replace them with a fused divmod if supported 3626 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3627 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3628 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3629 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3630 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3631 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3632 // DivMod node so the dependency is not lost. 3633 divmod->add_prec_from(n); 3634 divmod->add_prec_from(d); 3635 d->subsume_by(divmod->div_proj(), this); 3636 n->subsume_by(divmod->mod_proj(), this); 3637 } else { 3638 // Replace "a % b" with "a - ((a / b) * b)" 3639 Node* mult = MulNode::make(d, d->in(2), bt); 3640 Node* sub = SubNode::make(d->in(1), mult, bt); 3641 n->subsume_by(sub, this); 3642 } 3643 } 3644 3645 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3646 switch( nop ) { 3647 // Count all float operations that may use FPU 3648 case Op_AddF: 3649 case Op_SubF: 3650 case Op_MulF: 3651 case Op_DivF: 3652 case Op_NegF: 3653 case Op_ModF: 3654 case Op_ConvI2F: 3655 case Op_ConF: 3656 case Op_CmpF: 3657 case Op_CmpF3: 3658 case Op_StoreF: 3659 case Op_LoadF: 3660 // case Op_ConvL2F: // longs are split into 32-bit halves 3661 frc.inc_float_count(); 3662 break; 3663 3664 case Op_ConvF2D: 3665 case Op_ConvD2F: 3666 frc.inc_float_count(); 3667 frc.inc_double_count(); 3668 break; 3669 3670 // Count all double operations that may use FPU 3671 case Op_AddD: 3672 case Op_SubD: 3673 case Op_MulD: 3674 case Op_DivD: 3675 case Op_NegD: 3676 case Op_ModD: 3677 case Op_ConvI2D: 3678 case Op_ConvD2I: 3679 // case Op_ConvL2D: // handled by leaf call 3680 // case Op_ConvD2L: // handled by leaf call 3681 case Op_ConD: 3682 case Op_CmpD: 3683 case Op_CmpD3: 3684 case Op_StoreD: 3685 case Op_LoadD: 3686 case Op_LoadD_unaligned: 3687 frc.inc_double_count(); 3688 break; 3689 case Op_Opaque1: // Remove Opaque Nodes before matching 3690 n->subsume_by(n->in(1), this); 3691 break; 3692 case Op_CallStaticJava: 3693 case Op_CallJava: 3694 case Op_CallDynamicJava: 3695 frc.inc_java_call_count(); // Count java call site; 3696 case Op_CallRuntime: 3697 case Op_CallLeaf: 3698 case Op_CallLeafVector: 3699 case Op_CallLeafNoFP: { 3700 assert (n->is_Call(), ""); 3701 CallNode *call = n->as_Call(); 3702 // Count call sites where the FP mode bit would have to be flipped. 3703 // Do not count uncommon runtime calls: 3704 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3705 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3706 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3707 frc.inc_call_count(); // Count the call site 3708 } else { // See if uncommon argument is shared 3709 Node *n = call->in(TypeFunc::Parms); 3710 int nop = n->Opcode(); 3711 // Clone shared simple arguments to uncommon calls, item (1). 3712 if (n->outcnt() > 1 && 3713 !n->is_Proj() && 3714 nop != Op_CreateEx && 3715 nop != Op_CheckCastPP && 3716 nop != Op_DecodeN && 3717 nop != Op_DecodeNKlass && 3718 !n->is_Mem() && 3719 !n->is_Phi()) { 3720 Node *x = n->clone(); 3721 call->set_req(TypeFunc::Parms, x); 3722 } 3723 } 3724 break; 3725 } 3726 case Op_StoreB: 3727 case Op_StoreC: 3728 case Op_StoreI: 3729 case Op_StoreL: 3730 case Op_StoreLSpecial: 3731 case Op_CompareAndSwapB: 3732 case Op_CompareAndSwapS: 3733 case Op_CompareAndSwapI: 3734 case Op_CompareAndSwapL: 3735 case Op_CompareAndSwapP: 3736 case Op_CompareAndSwapN: 3737 case Op_WeakCompareAndSwapB: 3738 case Op_WeakCompareAndSwapS: 3739 case Op_WeakCompareAndSwapI: 3740 case Op_WeakCompareAndSwapL: 3741 case Op_WeakCompareAndSwapP: 3742 case Op_WeakCompareAndSwapN: 3743 case Op_CompareAndExchangeB: 3744 case Op_CompareAndExchangeS: 3745 case Op_CompareAndExchangeI: 3746 case Op_CompareAndExchangeL: 3747 case Op_CompareAndExchangeP: 3748 case Op_CompareAndExchangeN: 3749 case Op_GetAndAddS: 3750 case Op_GetAndAddB: 3751 case Op_GetAndAddI: 3752 case Op_GetAndAddL: 3753 case Op_GetAndSetS: 3754 case Op_GetAndSetB: 3755 case Op_GetAndSetI: 3756 case Op_GetAndSetL: 3757 case Op_GetAndSetP: 3758 case Op_GetAndSetN: 3759 case Op_StoreP: 3760 case Op_StoreN: 3761 case Op_StoreNKlass: 3762 case Op_LoadB: 3763 case Op_LoadUB: 3764 case Op_LoadUS: 3765 case Op_LoadI: 3766 case Op_LoadKlass: 3767 case Op_LoadNKlass: 3768 case Op_LoadL: 3769 case Op_LoadL_unaligned: 3770 case Op_LoadP: 3771 case Op_LoadN: 3772 case Op_LoadRange: 3773 case Op_LoadS: 3774 break; 3775 3776 case Op_AddP: { // Assert sane base pointers 3777 Node *addp = n->in(AddPNode::Address); 3778 assert( !addp->is_AddP() || 3779 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3780 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3781 "Base pointers must match (addp %u)", addp->_idx ); 3782 #ifdef _LP64 3783 if ((UseCompressedOops || UseCompressedClassPointers) && 3784 addp->Opcode() == Op_ConP && 3785 addp == n->in(AddPNode::Base) && 3786 n->in(AddPNode::Offset)->is_Con()) { 3787 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3788 // on the platform and on the compressed oops mode. 3789 // Use addressing with narrow klass to load with offset on x86. 3790 // Some platforms can use the constant pool to load ConP. 3791 // Do this transformation here since IGVN will convert ConN back to ConP. 3792 const Type* t = addp->bottom_type(); 3793 bool is_oop = t->isa_oopptr() != nullptr; 3794 bool is_klass = t->isa_klassptr() != nullptr; 3795 3796 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3797 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3798 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3799 Node* nn = nullptr; 3800 3801 int op = is_oop ? Op_ConN : Op_ConNKlass; 3802 3803 // Look for existing ConN node of the same exact type. 3804 Node* r = root(); 3805 uint cnt = r->outcnt(); 3806 for (uint i = 0; i < cnt; i++) { 3807 Node* m = r->raw_out(i); 3808 if (m!= nullptr && m->Opcode() == op && 3809 m->bottom_type()->make_ptr() == t) { 3810 nn = m; 3811 break; 3812 } 3813 } 3814 if (nn != nullptr) { 3815 // Decode a narrow oop to match address 3816 // [R12 + narrow_oop_reg<<3 + offset] 3817 if (is_oop) { 3818 nn = new DecodeNNode(nn, t); 3819 } else { 3820 nn = new DecodeNKlassNode(nn, t); 3821 } 3822 // Check for succeeding AddP which uses the same Base. 3823 // Otherwise we will run into the assertion above when visiting that guy. 3824 for (uint i = 0; i < n->outcnt(); ++i) { 3825 Node *out_i = n->raw_out(i); 3826 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3827 out_i->set_req(AddPNode::Base, nn); 3828 #ifdef ASSERT 3829 for (uint j = 0; j < out_i->outcnt(); ++j) { 3830 Node *out_j = out_i->raw_out(j); 3831 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3832 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3833 } 3834 #endif 3835 } 3836 } 3837 n->set_req(AddPNode::Base, nn); 3838 n->set_req(AddPNode::Address, nn); 3839 if (addp->outcnt() == 0) { 3840 addp->disconnect_inputs(this); 3841 } 3842 } 3843 } 3844 } 3845 #endif 3846 break; 3847 } 3848 3849 case Op_CastPP: { 3850 // Remove CastPP nodes to gain more freedom during scheduling but 3851 // keep the dependency they encode as control or precedence edges 3852 // (if control is set already) on memory operations. Some CastPP 3853 // nodes don't have a control (don't carry a dependency): skip 3854 // those. 3855 if (n->in(0) != nullptr) { 3856 ResourceMark rm; 3857 Unique_Node_List wq; 3858 wq.push(n); 3859 for (uint next = 0; next < wq.size(); ++next) { 3860 Node *m = wq.at(next); 3861 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3862 Node* use = m->fast_out(i); 3863 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3864 use->ensure_control_or_add_prec(n->in(0)); 3865 } else { 3866 switch(use->Opcode()) { 3867 case Op_AddP: 3868 case Op_DecodeN: 3869 case Op_DecodeNKlass: 3870 case Op_CheckCastPP: 3871 case Op_CastPP: 3872 wq.push(use); 3873 break; 3874 } 3875 } 3876 } 3877 } 3878 } 3879 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3880 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3881 Node* in1 = n->in(1); 3882 const Type* t = n->bottom_type(); 3883 Node* new_in1 = in1->clone(); 3884 new_in1->as_DecodeN()->set_type(t); 3885 3886 if (!Matcher::narrow_oop_use_complex_address()) { 3887 // 3888 // x86, ARM and friends can handle 2 adds in addressing mode 3889 // and Matcher can fold a DecodeN node into address by using 3890 // a narrow oop directly and do implicit null check in address: 3891 // 3892 // [R12 + narrow_oop_reg<<3 + offset] 3893 // NullCheck narrow_oop_reg 3894 // 3895 // On other platforms (Sparc) we have to keep new DecodeN node and 3896 // use it to do implicit null check in address: 3897 // 3898 // decode_not_null narrow_oop_reg, base_reg 3899 // [base_reg + offset] 3900 // NullCheck base_reg 3901 // 3902 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3903 // to keep the information to which null check the new DecodeN node 3904 // corresponds to use it as value in implicit_null_check(). 3905 // 3906 new_in1->set_req(0, n->in(0)); 3907 } 3908 3909 n->subsume_by(new_in1, this); 3910 if (in1->outcnt() == 0) { 3911 in1->disconnect_inputs(this); 3912 } 3913 } else { 3914 n->subsume_by(n->in(1), this); 3915 if (n->outcnt() == 0) { 3916 n->disconnect_inputs(this); 3917 } 3918 } 3919 break; 3920 } 3921 case Op_CastII: { 3922 n->as_CastII()->remove_range_check_cast(this); 3923 break; 3924 } 3925 #ifdef _LP64 3926 case Op_CmpP: 3927 // Do this transformation here to preserve CmpPNode::sub() and 3928 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3929 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3930 Node* in1 = n->in(1); 3931 Node* in2 = n->in(2); 3932 if (!in1->is_DecodeNarrowPtr()) { 3933 in2 = in1; 3934 in1 = n->in(2); 3935 } 3936 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3937 3938 Node* new_in2 = nullptr; 3939 if (in2->is_DecodeNarrowPtr()) { 3940 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3941 new_in2 = in2->in(1); 3942 } else if (in2->Opcode() == Op_ConP) { 3943 const Type* t = in2->bottom_type(); 3944 if (t == TypePtr::NULL_PTR) { 3945 assert(in1->is_DecodeN(), "compare klass to null?"); 3946 // Don't convert CmpP null check into CmpN if compressed 3947 // oops implicit null check is not generated. 3948 // This will allow to generate normal oop implicit null check. 3949 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3950 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3951 // 3952 // This transformation together with CastPP transformation above 3953 // will generated code for implicit null checks for compressed oops. 3954 // 3955 // The original code after Optimize() 3956 // 3957 // LoadN memory, narrow_oop_reg 3958 // decode narrow_oop_reg, base_reg 3959 // CmpP base_reg, nullptr 3960 // CastPP base_reg // NotNull 3961 // Load [base_reg + offset], val_reg 3962 // 3963 // after these transformations will be 3964 // 3965 // LoadN memory, narrow_oop_reg 3966 // CmpN narrow_oop_reg, nullptr 3967 // decode_not_null narrow_oop_reg, base_reg 3968 // Load [base_reg + offset], val_reg 3969 // 3970 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3971 // since narrow oops can be used in debug info now (see the code in 3972 // final_graph_reshaping_walk()). 3973 // 3974 // At the end the code will be matched to 3975 // on x86: 3976 // 3977 // Load_narrow_oop memory, narrow_oop_reg 3978 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3979 // NullCheck narrow_oop_reg 3980 // 3981 // and on sparc: 3982 // 3983 // Load_narrow_oop memory, narrow_oop_reg 3984 // decode_not_null narrow_oop_reg, base_reg 3985 // Load [base_reg + offset], val_reg 3986 // NullCheck base_reg 3987 // 3988 } else if (t->isa_oopptr()) { 3989 new_in2 = ConNode::make(t->make_narrowoop()); 3990 } else if (t->isa_klassptr()) { 3991 new_in2 = ConNode::make(t->make_narrowklass()); 3992 } 3993 } 3994 if (new_in2 != nullptr) { 3995 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3996 n->subsume_by(cmpN, this); 3997 if (in1->outcnt() == 0) { 3998 in1->disconnect_inputs(this); 3999 } 4000 if (in2->outcnt() == 0) { 4001 in2->disconnect_inputs(this); 4002 } 4003 } 4004 } 4005 break; 4006 4007 case Op_DecodeN: 4008 case Op_DecodeNKlass: 4009 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 4010 // DecodeN could be pinned when it can't be fold into 4011 // an address expression, see the code for Op_CastPP above. 4012 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 4013 break; 4014 4015 case Op_EncodeP: 4016 case Op_EncodePKlass: { 4017 Node* in1 = n->in(1); 4018 if (in1->is_DecodeNarrowPtr()) { 4019 n->subsume_by(in1->in(1), this); 4020 } else if (in1->Opcode() == Op_ConP) { 4021 const Type* t = in1->bottom_type(); 4022 if (t == TypePtr::NULL_PTR) { 4023 assert(t->isa_oopptr(), "null klass?"); 4024 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 4025 } else if (t->isa_oopptr()) { 4026 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 4027 } else if (t->isa_klassptr()) { 4028 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 4029 } 4030 } 4031 if (in1->outcnt() == 0) { 4032 in1->disconnect_inputs(this); 4033 } 4034 break; 4035 } 4036 4037 case Op_Proj: { 4038 if (OptimizeStringConcat || IncrementalInline) { 4039 ProjNode* proj = n->as_Proj(); 4040 if (proj->_is_io_use) { 4041 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 4042 // Separate projections were used for the exception path which 4043 // are normally removed by a late inline. If it wasn't inlined 4044 // then they will hang around and should just be replaced with 4045 // the original one. Merge them. 4046 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 4047 if (non_io_proj != nullptr) { 4048 proj->subsume_by(non_io_proj , this); 4049 } 4050 } 4051 } 4052 break; 4053 } 4054 4055 case Op_Phi: 4056 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 4057 // The EncodeP optimization may create Phi with the same edges 4058 // for all paths. It is not handled well by Register Allocator. 4059 Node* unique_in = n->in(1); 4060 assert(unique_in != nullptr, ""); 4061 uint cnt = n->req(); 4062 for (uint i = 2; i < cnt; i++) { 4063 Node* m = n->in(i); 4064 assert(m != nullptr, ""); 4065 if (unique_in != m) 4066 unique_in = nullptr; 4067 } 4068 if (unique_in != nullptr) { 4069 n->subsume_by(unique_in, this); 4070 } 4071 } 4072 break; 4073 4074 #endif 4075 4076 case Op_ModI: 4077 handle_div_mod_op(n, T_INT, false); 4078 break; 4079 4080 case Op_ModL: 4081 handle_div_mod_op(n, T_LONG, false); 4082 break; 4083 4084 case Op_UModI: 4085 handle_div_mod_op(n, T_INT, true); 4086 break; 4087 4088 case Op_UModL: 4089 handle_div_mod_op(n, T_LONG, true); 4090 break; 4091 4092 case Op_LoadVector: 4093 case Op_StoreVector: 4094 #ifdef ASSERT 4095 // Add VerifyVectorAlignment node between adr and load / store. 4096 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 4097 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 4098 n->as_StoreVector()->must_verify_alignment(); 4099 if (must_verify_alignment) { 4100 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 4101 n->as_StoreVector()->memory_size(); 4102 // The memory access should be aligned to the vector width in bytes. 4103 // However, the underlying array is possibly less well aligned, but at least 4104 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 4105 // a loop we can expect at least the following alignment: 4106 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 4107 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 4108 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 4109 // Create mask from alignment. e.g. 0b1000 -> 0b0111 4110 jlong mask = guaranteed_alignment - 1; 4111 Node* mask_con = ConLNode::make(mask); 4112 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 4113 n->set_req(MemNode::Address, va); 4114 } 4115 } 4116 #endif 4117 break; 4118 4119 case Op_LoadVectorGather: 4120 case Op_StoreVectorScatter: 4121 case Op_LoadVectorGatherMasked: 4122 case Op_StoreVectorScatterMasked: 4123 case Op_VectorCmpMasked: 4124 case Op_VectorMaskGen: 4125 case Op_LoadVectorMasked: 4126 case Op_StoreVectorMasked: 4127 break; 4128 4129 case Op_AddReductionVI: 4130 case Op_AddReductionVL: 4131 case Op_AddReductionVF: 4132 case Op_AddReductionVD: 4133 case Op_MulReductionVI: 4134 case Op_MulReductionVL: 4135 case Op_MulReductionVF: 4136 case Op_MulReductionVD: 4137 case Op_MinReductionV: 4138 case Op_MaxReductionV: 4139 case Op_AndReductionV: 4140 case Op_OrReductionV: 4141 case Op_XorReductionV: 4142 break; 4143 4144 case Op_PackB: 4145 case Op_PackS: 4146 case Op_PackI: 4147 case Op_PackF: 4148 case Op_PackL: 4149 case Op_PackD: 4150 if (n->req()-1 > 2) { 4151 // Replace many operand PackNodes with a binary tree for matching 4152 PackNode* p = (PackNode*) n; 4153 Node* btp = p->binary_tree_pack(1, n->req()); 4154 n->subsume_by(btp, this); 4155 } 4156 break; 4157 case Op_Loop: 4158 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 4159 case Op_CountedLoop: 4160 case Op_LongCountedLoop: 4161 case Op_OuterStripMinedLoop: 4162 if (n->as_Loop()->is_inner_loop()) { 4163 frc.inc_inner_loop_count(); 4164 } 4165 n->as_Loop()->verify_strip_mined(0); 4166 break; 4167 case Op_LShiftI: 4168 case Op_RShiftI: 4169 case Op_URShiftI: 4170 case Op_LShiftL: 4171 case Op_RShiftL: 4172 case Op_URShiftL: 4173 if (Matcher::need_masked_shift_count) { 4174 // The cpu's shift instructions don't restrict the count to the 4175 // lower 5/6 bits. We need to do the masking ourselves. 4176 Node* in2 = n->in(2); 4177 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 4178 const TypeInt* t = in2->find_int_type(); 4179 if (t != nullptr && t->is_con()) { 4180 juint shift = t->get_con(); 4181 if (shift > mask) { // Unsigned cmp 4182 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 4183 } 4184 } else { 4185 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 4186 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 4187 n->set_req(2, shift); 4188 } 4189 } 4190 if (in2->outcnt() == 0) { // Remove dead node 4191 in2->disconnect_inputs(this); 4192 } 4193 } 4194 break; 4195 case Op_MemBarStoreStore: 4196 case Op_MemBarRelease: 4197 // Break the link with AllocateNode: it is no longer useful and 4198 // confuses register allocation. 4199 if (n->req() > MemBarNode::Precedent) { 4200 n->set_req(MemBarNode::Precedent, top()); 4201 } 4202 break; 4203 case Op_MemBarAcquire: { 4204 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 4205 // At parse time, the trailing MemBarAcquire for a volatile load 4206 // is created with an edge to the load. After optimizations, 4207 // that input may be a chain of Phis. If those phis have no 4208 // other use, then the MemBarAcquire keeps them alive and 4209 // register allocation can be confused. 4210 dead_nodes.push(n->in(MemBarNode::Precedent)); 4211 n->set_req(MemBarNode::Precedent, top()); 4212 } 4213 break; 4214 } 4215 case Op_Blackhole: 4216 break; 4217 case Op_RangeCheck: { 4218 RangeCheckNode* rc = n->as_RangeCheck(); 4219 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 4220 n->subsume_by(iff, this); 4221 frc._tests.push(iff); 4222 break; 4223 } 4224 case Op_ConvI2L: { 4225 if (!Matcher::convi2l_type_required) { 4226 // Code generation on some platforms doesn't need accurate 4227 // ConvI2L types. Widening the type can help remove redundant 4228 // address computations. 4229 n->as_Type()->set_type(TypeLong::INT); 4230 ResourceMark rm; 4231 Unique_Node_List wq; 4232 wq.push(n); 4233 for (uint next = 0; next < wq.size(); next++) { 4234 Node *m = wq.at(next); 4235 4236 for(;;) { 4237 // Loop over all nodes with identical inputs edges as m 4238 Node* k = m->find_similar(m->Opcode()); 4239 if (k == nullptr) { 4240 break; 4241 } 4242 // Push their uses so we get a chance to remove node made 4243 // redundant 4244 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 4245 Node* u = k->fast_out(i); 4246 if (u->Opcode() == Op_LShiftL || 4247 u->Opcode() == Op_AddL || 4248 u->Opcode() == Op_SubL || 4249 u->Opcode() == Op_AddP) { 4250 wq.push(u); 4251 } 4252 } 4253 // Replace all nodes with identical edges as m with m 4254 k->subsume_by(m, this); 4255 } 4256 } 4257 } 4258 break; 4259 } 4260 case Op_CmpUL: { 4261 if (!Matcher::has_match_rule(Op_CmpUL)) { 4262 // No support for unsigned long comparisons 4263 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 4264 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 4265 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 4266 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 4267 Node* andl = new AndLNode(orl, remove_sign_mask); 4268 Node* cmp = new CmpLNode(andl, n->in(2)); 4269 n->subsume_by(cmp, this); 4270 } 4271 break; 4272 } 4273 #ifdef ASSERT 4274 case Op_InlineType: { 4275 n->dump(-1); 4276 assert(false, "inline type node was not removed"); 4277 break; 4278 } 4279 case Op_ConNKlass: { 4280 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 4281 ciKlass* klass = tp->is_klassptr()->exact_klass(); 4282 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 4283 break; 4284 } 4285 #endif 4286 default: 4287 assert(!n->is_Call(), ""); 4288 assert(!n->is_Mem(), ""); 4289 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4290 break; 4291 } 4292 } 4293 4294 //------------------------------final_graph_reshaping_walk--------------------- 4295 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4296 // requires that the walk visits a node's inputs before visiting the node. 4297 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 4298 Unique_Node_List sfpt; 4299 4300 frc._visited.set(root->_idx); // first, mark node as visited 4301 uint cnt = root->req(); 4302 Node *n = root; 4303 uint i = 0; 4304 while (true) { 4305 if (i < cnt) { 4306 // Place all non-visited non-null inputs onto stack 4307 Node* m = n->in(i); 4308 ++i; 4309 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 4310 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 4311 // compute worst case interpreter size in case of a deoptimization 4312 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4313 4314 sfpt.push(m); 4315 } 4316 cnt = m->req(); 4317 nstack.push(n, i); // put on stack parent and next input's index 4318 n = m; 4319 i = 0; 4320 } 4321 } else { 4322 // Now do post-visit work 4323 final_graph_reshaping_impl(n, frc, dead_nodes); 4324 if (nstack.is_empty()) 4325 break; // finished 4326 n = nstack.node(); // Get node from stack 4327 cnt = n->req(); 4328 i = nstack.index(); 4329 nstack.pop(); // Shift to the next node on stack 4330 } 4331 } 4332 4333 // Skip next transformation if compressed oops are not used. 4334 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4335 (!UseCompressedOops && !UseCompressedClassPointers)) 4336 return; 4337 4338 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4339 // It could be done for an uncommon traps or any safepoints/calls 4340 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4341 while (sfpt.size() > 0) { 4342 n = sfpt.pop(); 4343 JVMState *jvms = n->as_SafePoint()->jvms(); 4344 assert(jvms != nullptr, "sanity"); 4345 int start = jvms->debug_start(); 4346 int end = n->req(); 4347 bool is_uncommon = (n->is_CallStaticJava() && 4348 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4349 for (int j = start; j < end; j++) { 4350 Node* in = n->in(j); 4351 if (in->is_DecodeNarrowPtr()) { 4352 bool safe_to_skip = true; 4353 if (!is_uncommon ) { 4354 // Is it safe to skip? 4355 for (uint i = 0; i < in->outcnt(); i++) { 4356 Node* u = in->raw_out(i); 4357 if (!u->is_SafePoint() || 4358 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4359 safe_to_skip = false; 4360 } 4361 } 4362 } 4363 if (safe_to_skip) { 4364 n->set_req(j, in->in(1)); 4365 } 4366 if (in->outcnt() == 0) { 4367 in->disconnect_inputs(this); 4368 } 4369 } 4370 } 4371 } 4372 } 4373 4374 //------------------------------final_graph_reshaping-------------------------- 4375 // Final Graph Reshaping. 4376 // 4377 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4378 // and not commoned up and forced early. Must come after regular 4379 // optimizations to avoid GVN undoing the cloning. Clone constant 4380 // inputs to Loop Phis; these will be split by the allocator anyways. 4381 // Remove Opaque nodes. 4382 // (2) Move last-uses by commutative operations to the left input to encourage 4383 // Intel update-in-place two-address operations and better register usage 4384 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4385 // calls canonicalizing them back. 4386 // (3) Count the number of double-precision FP ops, single-precision FP ops 4387 // and call sites. On Intel, we can get correct rounding either by 4388 // forcing singles to memory (requires extra stores and loads after each 4389 // FP bytecode) or we can set a rounding mode bit (requires setting and 4390 // clearing the mode bit around call sites). The mode bit is only used 4391 // if the relative frequency of single FP ops to calls is low enough. 4392 // This is a key transform for SPEC mpeg_audio. 4393 // (4) Detect infinite loops; blobs of code reachable from above but not 4394 // below. Several of the Code_Gen algorithms fail on such code shapes, 4395 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4396 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4397 // Detection is by looking for IfNodes where only 1 projection is 4398 // reachable from below or CatchNodes missing some targets. 4399 // (5) Assert for insane oop offsets in debug mode. 4400 4401 bool Compile::final_graph_reshaping() { 4402 // an infinite loop may have been eliminated by the optimizer, 4403 // in which case the graph will be empty. 4404 if (root()->req() == 1) { 4405 // Do not compile method that is only a trivial infinite loop, 4406 // since the content of the loop may have been eliminated. 4407 record_method_not_compilable("trivial infinite loop"); 4408 return true; 4409 } 4410 4411 // Expensive nodes have their control input set to prevent the GVN 4412 // from freely commoning them. There's no GVN beyond this point so 4413 // no need to keep the control input. We want the expensive nodes to 4414 // be freely moved to the least frequent code path by gcm. 4415 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4416 for (int i = 0; i < expensive_count(); i++) { 4417 _expensive_nodes.at(i)->set_req(0, nullptr); 4418 } 4419 4420 Final_Reshape_Counts frc; 4421 4422 // Visit everybody reachable! 4423 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4424 Node_Stack nstack(live_nodes() >> 1); 4425 Unique_Node_List dead_nodes; 4426 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4427 4428 // Check for unreachable (from below) code (i.e., infinite loops). 4429 for( uint i = 0; i < frc._tests.size(); i++ ) { 4430 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4431 // Get number of CFG targets. 4432 // Note that PCTables include exception targets after calls. 4433 uint required_outcnt = n->required_outcnt(); 4434 if (n->outcnt() != required_outcnt) { 4435 // Check for a few special cases. Rethrow Nodes never take the 4436 // 'fall-thru' path, so expected kids is 1 less. 4437 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4438 if (n->in(0)->in(0)->is_Call()) { 4439 CallNode* call = n->in(0)->in(0)->as_Call(); 4440 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4441 required_outcnt--; // Rethrow always has 1 less kid 4442 } else if (call->req() > TypeFunc::Parms && 4443 call->is_CallDynamicJava()) { 4444 // Check for null receiver. In such case, the optimizer has 4445 // detected that the virtual call will always result in a null 4446 // pointer exception. The fall-through projection of this CatchNode 4447 // will not be populated. 4448 Node* arg0 = call->in(TypeFunc::Parms); 4449 if (arg0->is_Type() && 4450 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4451 required_outcnt--; 4452 } 4453 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4454 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4455 // Check for illegal array length. In such case, the optimizer has 4456 // detected that the allocation attempt will always result in an 4457 // exception. There is no fall-through projection of this CatchNode . 4458 assert(call->is_CallStaticJava(), "static call expected"); 4459 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4460 uint valid_length_test_input = call->req() - 1; 4461 Node* valid_length_test = call->in(valid_length_test_input); 4462 call->del_req(valid_length_test_input); 4463 if (valid_length_test->find_int_con(1) == 0) { 4464 required_outcnt--; 4465 } 4466 dead_nodes.push(valid_length_test); 4467 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4468 continue; 4469 } 4470 } 4471 } 4472 4473 // Recheck with a better notion of 'required_outcnt' 4474 if (n->outcnt() != required_outcnt) { 4475 record_method_not_compilable("malformed control flow"); 4476 return true; // Not all targets reachable! 4477 } 4478 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4479 CallNode* call = n->in(0)->in(0)->as_Call(); 4480 if (call->entry_point() == OptoRuntime::new_array_Java() || 4481 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4482 assert(call->is_CallStaticJava(), "static call expected"); 4483 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4484 uint valid_length_test_input = call->req() - 1; 4485 dead_nodes.push(call->in(valid_length_test_input)); 4486 call->del_req(valid_length_test_input); // valid length test useless now 4487 } 4488 } 4489 // Check that I actually visited all kids. Unreached kids 4490 // must be infinite loops. 4491 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4492 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4493 record_method_not_compilable("infinite loop"); 4494 return true; // Found unvisited kid; must be unreach 4495 } 4496 4497 // Here so verification code in final_graph_reshaping_walk() 4498 // always see an OuterStripMinedLoopEnd 4499 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4500 IfNode* init_iff = n->as_If(); 4501 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4502 n->subsume_by(iff, this); 4503 } 4504 } 4505 4506 while (dead_nodes.size() > 0) { 4507 Node* m = dead_nodes.pop(); 4508 if (m->outcnt() == 0 && m != top()) { 4509 for (uint j = 0; j < m->req(); j++) { 4510 Node* in = m->in(j); 4511 if (in != nullptr) { 4512 dead_nodes.push(in); 4513 } 4514 } 4515 m->disconnect_inputs(this); 4516 } 4517 } 4518 4519 #ifdef IA32 4520 // If original bytecodes contained a mixture of floats and doubles 4521 // check if the optimizer has made it homogeneous, item (3). 4522 if (UseSSE == 0 && 4523 frc.get_float_count() > 32 && 4524 frc.get_double_count() == 0 && 4525 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4526 set_24_bit_selection_and_mode(false, true); 4527 } 4528 #endif // IA32 4529 4530 set_java_calls(frc.get_java_call_count()); 4531 set_inner_loops(frc.get_inner_loop_count()); 4532 4533 // No infinite loops, no reason to bail out. 4534 return false; 4535 } 4536 4537 //-----------------------------too_many_traps---------------------------------- 4538 // Report if there are too many traps at the current method and bci. 4539 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4540 bool Compile::too_many_traps(ciMethod* method, 4541 int bci, 4542 Deoptimization::DeoptReason reason) { 4543 ciMethodData* md = method->method_data(); 4544 if (md->is_empty()) { 4545 // Assume the trap has not occurred, or that it occurred only 4546 // because of a transient condition during start-up in the interpreter. 4547 return false; 4548 } 4549 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4550 if (md->has_trap_at(bci, m, reason) != 0) { 4551 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4552 // Also, if there are multiple reasons, or if there is no per-BCI record, 4553 // assume the worst. 4554 if (log()) 4555 log()->elem("observe trap='%s' count='%d'", 4556 Deoptimization::trap_reason_name(reason), 4557 md->trap_count(reason)); 4558 return true; 4559 } else { 4560 // Ignore method/bci and see if there have been too many globally. 4561 return too_many_traps(reason, md); 4562 } 4563 } 4564 4565 // Less-accurate variant which does not require a method and bci. 4566 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4567 ciMethodData* logmd) { 4568 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4569 // Too many traps globally. 4570 // Note that we use cumulative trap_count, not just md->trap_count. 4571 if (log()) { 4572 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4573 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4574 Deoptimization::trap_reason_name(reason), 4575 mcount, trap_count(reason)); 4576 } 4577 return true; 4578 } else { 4579 // The coast is clear. 4580 return false; 4581 } 4582 } 4583 4584 //--------------------------too_many_recompiles-------------------------------- 4585 // Report if there are too many recompiles at the current method and bci. 4586 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4587 // Is not eager to return true, since this will cause the compiler to use 4588 // Action_none for a trap point, to avoid too many recompilations. 4589 bool Compile::too_many_recompiles(ciMethod* method, 4590 int bci, 4591 Deoptimization::DeoptReason reason) { 4592 ciMethodData* md = method->method_data(); 4593 if (md->is_empty()) { 4594 // Assume the trap has not occurred, or that it occurred only 4595 // because of a transient condition during start-up in the interpreter. 4596 return false; 4597 } 4598 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4599 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4600 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4601 Deoptimization::DeoptReason per_bc_reason 4602 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4603 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4604 if ((per_bc_reason == Deoptimization::Reason_none 4605 || md->has_trap_at(bci, m, reason) != 0) 4606 // The trap frequency measure we care about is the recompile count: 4607 && md->trap_recompiled_at(bci, m) 4608 && md->overflow_recompile_count() >= bc_cutoff) { 4609 // Do not emit a trap here if it has already caused recompilations. 4610 // Also, if there are multiple reasons, or if there is no per-BCI record, 4611 // assume the worst. 4612 if (log()) 4613 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4614 Deoptimization::trap_reason_name(reason), 4615 md->trap_count(reason), 4616 md->overflow_recompile_count()); 4617 return true; 4618 } else if (trap_count(reason) != 0 4619 && decompile_count() >= m_cutoff) { 4620 // Too many recompiles globally, and we have seen this sort of trap. 4621 // Use cumulative decompile_count, not just md->decompile_count. 4622 if (log()) 4623 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4624 Deoptimization::trap_reason_name(reason), 4625 md->trap_count(reason), trap_count(reason), 4626 md->decompile_count(), decompile_count()); 4627 return true; 4628 } else { 4629 // The coast is clear. 4630 return false; 4631 } 4632 } 4633 4634 // Compute when not to trap. Used by matching trap based nodes and 4635 // NullCheck optimization. 4636 void Compile::set_allowed_deopt_reasons() { 4637 _allowed_reasons = 0; 4638 if (is_method_compilation()) { 4639 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4640 assert(rs < BitsPerInt, "recode bit map"); 4641 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4642 _allowed_reasons |= nth_bit(rs); 4643 } 4644 } 4645 } 4646 } 4647 4648 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4649 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4650 } 4651 4652 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4653 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4654 } 4655 4656 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4657 if (holder->is_initialized()) { 4658 return false; 4659 } 4660 if (holder->is_being_initialized()) { 4661 if (accessing_method->holder() == holder) { 4662 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4663 // <init>, or a static method. In all those cases, there was an initialization 4664 // barrier on the holder klass passed. 4665 if (accessing_method->is_class_initializer() || 4666 accessing_method->is_object_constructor() || 4667 accessing_method->is_static()) { 4668 return false; 4669 } 4670 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4671 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4672 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4673 // child class can become fully initialized while its parent class is still being initialized. 4674 if (accessing_method->is_class_initializer()) { 4675 return false; 4676 } 4677 } 4678 ciMethod* root = method(); // the root method of compilation 4679 if (root != accessing_method) { 4680 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4681 } 4682 } 4683 return true; 4684 } 4685 4686 #ifndef PRODUCT 4687 //------------------------------verify_bidirectional_edges--------------------- 4688 // For each input edge to a node (ie - for each Use-Def edge), verify that 4689 // there is a corresponding Def-Use edge. 4690 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4691 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4692 uint stack_size = live_nodes() >> 4; 4693 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4694 nstack.push(_root); 4695 4696 while (nstack.size() > 0) { 4697 Node* n = nstack.pop(); 4698 if (visited.member(n)) { 4699 continue; 4700 } 4701 visited.push(n); 4702 4703 // Walk over all input edges, checking for correspondence 4704 uint length = n->len(); 4705 for (uint i = 0; i < length; i++) { 4706 Node* in = n->in(i); 4707 if (in != nullptr && !visited.member(in)) { 4708 nstack.push(in); // Put it on stack 4709 } 4710 if (in != nullptr && !in->is_top()) { 4711 // Count instances of `next` 4712 int cnt = 0; 4713 for (uint idx = 0; idx < in->_outcnt; idx++) { 4714 if (in->_out[idx] == n) { 4715 cnt++; 4716 } 4717 } 4718 assert(cnt > 0, "Failed to find Def-Use edge."); 4719 // Check for duplicate edges 4720 // walk the input array downcounting the input edges to n 4721 for (uint j = 0; j < length; j++) { 4722 if (n->in(j) == in) { 4723 cnt--; 4724 } 4725 } 4726 assert(cnt == 0, "Mismatched edge count."); 4727 } else if (in == nullptr) { 4728 assert(i == 0 || i >= n->req() || 4729 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4730 (n->is_Allocate() && i >= AllocateNode::InlineType) || 4731 (n->is_Unlock() && i == (n->req() - 1)) || 4732 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4733 "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges"); 4734 } else { 4735 assert(in->is_top(), "sanity"); 4736 // Nothing to check. 4737 } 4738 } 4739 } 4740 } 4741 4742 //------------------------------verify_graph_edges--------------------------- 4743 // Walk the Graph and verify that there is a one-to-one correspondence 4744 // between Use-Def edges and Def-Use edges in the graph. 4745 void Compile::verify_graph_edges(bool no_dead_code) { 4746 if (VerifyGraphEdges) { 4747 Unique_Node_List visited; 4748 4749 // Call graph walk to check edges 4750 verify_bidirectional_edges(visited); 4751 if (no_dead_code) { 4752 // Now make sure that no visited node is used by an unvisited node. 4753 bool dead_nodes = false; 4754 Unique_Node_List checked; 4755 while (visited.size() > 0) { 4756 Node* n = visited.pop(); 4757 checked.push(n); 4758 for (uint i = 0; i < n->outcnt(); i++) { 4759 Node* use = n->raw_out(i); 4760 if (checked.member(use)) continue; // already checked 4761 if (visited.member(use)) continue; // already in the graph 4762 if (use->is_Con()) continue; // a dead ConNode is OK 4763 // At this point, we have found a dead node which is DU-reachable. 4764 if (!dead_nodes) { 4765 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4766 dead_nodes = true; 4767 } 4768 use->dump(2); 4769 tty->print_cr("---"); 4770 checked.push(use); // No repeats; pretend it is now checked. 4771 } 4772 } 4773 assert(!dead_nodes, "using nodes must be reachable from root"); 4774 } 4775 } 4776 } 4777 #endif 4778 4779 // The Compile object keeps track of failure reasons separately from the ciEnv. 4780 // This is required because there is not quite a 1-1 relation between the 4781 // ciEnv and its compilation task and the Compile object. Note that one 4782 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4783 // to backtrack and retry without subsuming loads. Other than this backtracking 4784 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4785 // by the logic in C2Compiler. 4786 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4787 if (log() != nullptr) { 4788 log()->elem("failure reason='%s' phase='compile'", reason); 4789 } 4790 if (_failure_reason.get() == nullptr) { 4791 // Record the first failure reason. 4792 _failure_reason.set(reason); 4793 if (CaptureBailoutInformation) { 4794 _first_failure_details = new CompilationFailureInfo(reason); 4795 } 4796 } else { 4797 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4798 } 4799 4800 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4801 C->print_method(PHASE_FAILURE, 1); 4802 } 4803 _root = nullptr; // flush the graph, too 4804 } 4805 4806 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4807 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4808 _compile(Compile::current()), 4809 _log(nullptr), 4810 _dolog(CITimeVerbose) 4811 { 4812 assert(_compile != nullptr, "sanity check"); 4813 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4814 if (_dolog) { 4815 _log = _compile->log(); 4816 } 4817 if (_log != nullptr) { 4818 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4819 _log->stamp(); 4820 _log->end_head(); 4821 } 4822 4823 // Inform memory statistic, if enabled 4824 if (CompilationMemoryStatistic::enabled()) { 4825 CompilationMemoryStatistic::on_phase_start((int)id, name); 4826 } 4827 } 4828 4829 Compile::TracePhase::TracePhase(PhaseTraceId id) 4830 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4831 4832 Compile::TracePhase::~TracePhase() { 4833 4834 // Inform memory statistic, if enabled 4835 if (CompilationMemoryStatistic::enabled()) { 4836 CompilationMemoryStatistic::on_phase_end(); 4837 } 4838 4839 if (_compile->failing_internal()) { 4840 if (_log != nullptr) { 4841 _log->done("phase"); 4842 } 4843 return; // timing code, not stressing bailouts. 4844 } 4845 #ifdef ASSERT 4846 if (PrintIdealNodeCount) { 4847 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4848 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4849 } 4850 4851 if (VerifyIdealNodeCount) { 4852 _compile->print_missing_nodes(); 4853 } 4854 #endif 4855 4856 if (_log != nullptr) { 4857 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4858 } 4859 } 4860 4861 //----------------------------static_subtype_check----------------------------- 4862 // Shortcut important common cases when superklass is exact: 4863 // (0) superklass is java.lang.Object (can occur in reflective code) 4864 // (1) subklass is already limited to a subtype of superklass => always ok 4865 // (2) subklass does not overlap with superklass => always fail 4866 // (3) superklass has NO subtypes and we can check with a simple compare. 4867 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4868 if (skip) { 4869 return SSC_full_test; // Let caller generate the general case. 4870 } 4871 4872 if (subk->is_java_subtype_of(superk)) { 4873 return SSC_always_true; // (0) and (1) this test cannot fail 4874 } 4875 4876 if (!subk->maybe_java_subtype_of(superk)) { 4877 return SSC_always_false; // (2) true path dead; no dynamic test needed 4878 } 4879 4880 const Type* superelem = superk; 4881 if (superk->isa_aryklassptr()) { 4882 int ignored; 4883 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4884 4885 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 4886 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 4887 if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() && 4888 superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) { 4889 return SSC_full_test; 4890 } 4891 } 4892 4893 if (superelem->isa_instklassptr()) { 4894 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4895 if (!ik->has_subklass()) { 4896 if (!ik->is_final()) { 4897 // Add a dependency if there is a chance of a later subclass. 4898 dependencies()->assert_leaf_type(ik); 4899 } 4900 if (!superk->maybe_java_subtype_of(subk)) { 4901 return SSC_always_false; 4902 } 4903 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4904 } 4905 } else { 4906 // A primitive array type has no subtypes. 4907 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4908 } 4909 4910 return SSC_full_test; 4911 } 4912 4913 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4914 #ifdef _LP64 4915 // The scaled index operand to AddP must be a clean 64-bit value. 4916 // Java allows a 32-bit int to be incremented to a negative 4917 // value, which appears in a 64-bit register as a large 4918 // positive number. Using that large positive number as an 4919 // operand in pointer arithmetic has bad consequences. 4920 // On the other hand, 32-bit overflow is rare, and the possibility 4921 // can often be excluded, if we annotate the ConvI2L node with 4922 // a type assertion that its value is known to be a small positive 4923 // number. (The prior range check has ensured this.) 4924 // This assertion is used by ConvI2LNode::Ideal. 4925 int index_max = max_jint - 1; // array size is max_jint, index is one less 4926 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4927 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4928 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4929 #endif 4930 return idx; 4931 } 4932 4933 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4934 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4935 if (ctrl != nullptr) { 4936 // Express control dependency by a CastII node with a narrow type. 4937 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4938 // node from floating above the range check during loop optimizations. Otherwise, the 4939 // ConvI2L node may be eliminated independently of the range check, causing the data path 4940 // to become TOP while the control path is still there (although it's unreachable). 4941 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4942 value = phase->transform(value); 4943 } 4944 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4945 return phase->transform(new ConvI2LNode(value, ltype)); 4946 } 4947 4948 void Compile::dump_print_inlining() { 4949 inline_printer()->print_on(tty); 4950 } 4951 4952 void Compile::log_late_inline(CallGenerator* cg) { 4953 if (log() != nullptr) { 4954 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4955 cg->unique_id()); 4956 JVMState* p = cg->call_node()->jvms(); 4957 while (p != nullptr) { 4958 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4959 p = p->caller(); 4960 } 4961 log()->tail("late_inline"); 4962 } 4963 } 4964 4965 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4966 log_late_inline(cg); 4967 if (log() != nullptr) { 4968 log()->inline_fail(msg); 4969 } 4970 } 4971 4972 void Compile::log_inline_id(CallGenerator* cg) { 4973 if (log() != nullptr) { 4974 // The LogCompilation tool needs a unique way to identify late 4975 // inline call sites. This id must be unique for this call site in 4976 // this compilation. Try to have it unique across compilations as 4977 // well because it can be convenient when grepping through the log 4978 // file. 4979 // Distinguish OSR compilations from others in case CICountOSR is 4980 // on. 4981 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4982 cg->set_unique_id(id); 4983 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4984 } 4985 } 4986 4987 void Compile::log_inline_failure(const char* msg) { 4988 if (C->log() != nullptr) { 4989 C->log()->inline_fail(msg); 4990 } 4991 } 4992 4993 4994 // Dump inlining replay data to the stream. 4995 // Don't change thread state and acquire any locks. 4996 void Compile::dump_inline_data(outputStream* out) { 4997 InlineTree* inl_tree = ilt(); 4998 if (inl_tree != nullptr) { 4999 out->print(" inline %d", inl_tree->count()); 5000 inl_tree->dump_replay_data(out); 5001 } 5002 } 5003 5004 void Compile::dump_inline_data_reduced(outputStream* out) { 5005 assert(ReplayReduce, ""); 5006 5007 InlineTree* inl_tree = ilt(); 5008 if (inl_tree == nullptr) { 5009 return; 5010 } 5011 // Enable iterative replay file reduction 5012 // Output "compile" lines for depth 1 subtrees, 5013 // simulating that those trees were compiled 5014 // instead of inlined. 5015 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 5016 InlineTree* sub = inl_tree->subtrees().at(i); 5017 if (sub->inline_level() != 1) { 5018 continue; 5019 } 5020 5021 ciMethod* method = sub->method(); 5022 int entry_bci = -1; 5023 int comp_level = env()->task()->comp_level(); 5024 out->print("compile "); 5025 method->dump_name_as_ascii(out); 5026 out->print(" %d %d", entry_bci, comp_level); 5027 out->print(" inline %d", sub->count()); 5028 sub->dump_replay_data(out, -1); 5029 out->cr(); 5030 } 5031 } 5032 5033 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 5034 if (n1->Opcode() < n2->Opcode()) return -1; 5035 else if (n1->Opcode() > n2->Opcode()) return 1; 5036 5037 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 5038 for (uint i = 1; i < n1->req(); i++) { 5039 if (n1->in(i) < n2->in(i)) return -1; 5040 else if (n1->in(i) > n2->in(i)) return 1; 5041 } 5042 5043 return 0; 5044 } 5045 5046 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 5047 Node* n1 = *n1p; 5048 Node* n2 = *n2p; 5049 5050 return cmp_expensive_nodes(n1, n2); 5051 } 5052 5053 void Compile::sort_expensive_nodes() { 5054 if (!expensive_nodes_sorted()) { 5055 _expensive_nodes.sort(cmp_expensive_nodes); 5056 } 5057 } 5058 5059 bool Compile::expensive_nodes_sorted() const { 5060 for (int i = 1; i < _expensive_nodes.length(); i++) { 5061 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 5062 return false; 5063 } 5064 } 5065 return true; 5066 } 5067 5068 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 5069 if (_expensive_nodes.length() == 0) { 5070 return false; 5071 } 5072 5073 assert(OptimizeExpensiveOps, "optimization off?"); 5074 5075 // Take this opportunity to remove dead nodes from the list 5076 int j = 0; 5077 for (int i = 0; i < _expensive_nodes.length(); i++) { 5078 Node* n = _expensive_nodes.at(i); 5079 if (!n->is_unreachable(igvn)) { 5080 assert(n->is_expensive(), "should be expensive"); 5081 _expensive_nodes.at_put(j, n); 5082 j++; 5083 } 5084 } 5085 _expensive_nodes.trunc_to(j); 5086 5087 // Then sort the list so that similar nodes are next to each other 5088 // and check for at least two nodes of identical kind with same data 5089 // inputs. 5090 sort_expensive_nodes(); 5091 5092 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 5093 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 5094 return true; 5095 } 5096 } 5097 5098 return false; 5099 } 5100 5101 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 5102 if (_expensive_nodes.length() == 0) { 5103 return; 5104 } 5105 5106 assert(OptimizeExpensiveOps, "optimization off?"); 5107 5108 // Sort to bring similar nodes next to each other and clear the 5109 // control input of nodes for which there's only a single copy. 5110 sort_expensive_nodes(); 5111 5112 int j = 0; 5113 int identical = 0; 5114 int i = 0; 5115 bool modified = false; 5116 for (; i < _expensive_nodes.length()-1; i++) { 5117 assert(j <= i, "can't write beyond current index"); 5118 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 5119 identical++; 5120 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5121 continue; 5122 } 5123 if (identical > 0) { 5124 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5125 identical = 0; 5126 } else { 5127 Node* n = _expensive_nodes.at(i); 5128 igvn.replace_input_of(n, 0, nullptr); 5129 igvn.hash_insert(n); 5130 modified = true; 5131 } 5132 } 5133 if (identical > 0) { 5134 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5135 } else if (_expensive_nodes.length() >= 1) { 5136 Node* n = _expensive_nodes.at(i); 5137 igvn.replace_input_of(n, 0, nullptr); 5138 igvn.hash_insert(n); 5139 modified = true; 5140 } 5141 _expensive_nodes.trunc_to(j); 5142 if (modified) { 5143 igvn.optimize(); 5144 } 5145 } 5146 5147 void Compile::add_expensive_node(Node * n) { 5148 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 5149 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5150 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5151 if (OptimizeExpensiveOps) { 5152 _expensive_nodes.append(n); 5153 } else { 5154 // Clear control input and let IGVN optimize expensive nodes if 5155 // OptimizeExpensiveOps is off. 5156 n->set_req(0, nullptr); 5157 } 5158 } 5159 5160 /** 5161 * Track coarsened Lock and Unlock nodes. 5162 */ 5163 5164 class Lock_List : public Node_List { 5165 uint _origin_cnt; 5166 public: 5167 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 5168 uint origin_cnt() const { return _origin_cnt; } 5169 }; 5170 5171 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 5172 int length = locks.length(); 5173 if (length > 0) { 5174 // Have to keep this list until locks elimination during Macro nodes elimination. 5175 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 5176 AbstractLockNode* alock = locks.at(0); 5177 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5178 for (int i = 0; i < length; i++) { 5179 AbstractLockNode* lock = locks.at(i); 5180 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 5181 locks_list->push(lock); 5182 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 5183 if (this_box != box) { 5184 // Locking regions (BoxLock) could be Unbalanced here: 5185 // - its coarsened locks were eliminated in earlier 5186 // macro nodes elimination followed by loop unroll 5187 // - it is OSR locking region (no Lock node) 5188 // Preserve Unbalanced status in such cases. 5189 if (!this_box->is_unbalanced()) { 5190 this_box->set_coarsened(); 5191 } 5192 if (!box->is_unbalanced()) { 5193 box->set_coarsened(); 5194 } 5195 } 5196 } 5197 _coarsened_locks.append(locks_list); 5198 } 5199 } 5200 5201 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 5202 int count = coarsened_count(); 5203 for (int i = 0; i < count; i++) { 5204 Node_List* locks_list = _coarsened_locks.at(i); 5205 for (uint j = 0; j < locks_list->size(); j++) { 5206 Node* lock = locks_list->at(j); 5207 assert(lock->is_AbstractLock(), "sanity"); 5208 if (!useful.member(lock)) { 5209 locks_list->yank(lock); 5210 } 5211 } 5212 } 5213 } 5214 5215 void Compile::remove_coarsened_lock(Node* n) { 5216 if (n->is_AbstractLock()) { 5217 int count = coarsened_count(); 5218 for (int i = 0; i < count; i++) { 5219 Node_List* locks_list = _coarsened_locks.at(i); 5220 locks_list->yank(n); 5221 } 5222 } 5223 } 5224 5225 bool Compile::coarsened_locks_consistent() { 5226 int count = coarsened_count(); 5227 for (int i = 0; i < count; i++) { 5228 bool unbalanced = false; 5229 bool modified = false; // track locks kind modifications 5230 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 5231 uint size = locks_list->size(); 5232 if (size == 0) { 5233 unbalanced = false; // All locks were eliminated - good 5234 } else if (size != locks_list->origin_cnt()) { 5235 unbalanced = true; // Some locks were removed from list 5236 } else { 5237 for (uint j = 0; j < size; j++) { 5238 Node* lock = locks_list->at(j); 5239 // All nodes in group should have the same state (modified or not) 5240 if (!lock->as_AbstractLock()->is_coarsened()) { 5241 if (j == 0) { 5242 // first on list was modified, the rest should be too for consistency 5243 modified = true; 5244 } else if (!modified) { 5245 // this lock was modified but previous locks on the list were not 5246 unbalanced = true; 5247 break; 5248 } 5249 } else if (modified) { 5250 // previous locks on list were modified but not this lock 5251 unbalanced = true; 5252 break; 5253 } 5254 } 5255 } 5256 if (unbalanced) { 5257 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 5258 #ifdef ASSERT 5259 if (PrintEliminateLocks) { 5260 tty->print_cr("=== unbalanced coarsened locks ==="); 5261 for (uint l = 0; l < size; l++) { 5262 locks_list->at(l)->dump(); 5263 } 5264 } 5265 #endif 5266 record_failure(C2Compiler::retry_no_locks_coarsening()); 5267 return false; 5268 } 5269 } 5270 return true; 5271 } 5272 5273 // Mark locking regions (identified by BoxLockNode) as unbalanced if 5274 // locks coarsening optimization removed Lock/Unlock nodes from them. 5275 // Such regions become unbalanced because coarsening only removes part 5276 // of Lock/Unlock nodes in region. As result we can't execute other 5277 // locks elimination optimizations which assume all code paths have 5278 // corresponding pair of Lock/Unlock nodes - they are balanced. 5279 void Compile::mark_unbalanced_boxes() const { 5280 int count = coarsened_count(); 5281 for (int i = 0; i < count; i++) { 5282 Node_List* locks_list = _coarsened_locks.at(i); 5283 uint size = locks_list->size(); 5284 if (size > 0) { 5285 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 5286 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5287 if (alock->is_coarsened()) { 5288 // coarsened_locks_consistent(), which is called before this method, verifies 5289 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 5290 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5291 for (uint j = 1; j < size; j++) { 5292 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 5293 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 5294 if (box != this_box) { 5295 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5296 box->set_unbalanced(); 5297 this_box->set_unbalanced(); 5298 } 5299 } 5300 } 5301 } 5302 } 5303 } 5304 5305 /** 5306 * Remove the speculative part of types and clean up the graph 5307 */ 5308 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5309 if (UseTypeSpeculation) { 5310 Unique_Node_List worklist; 5311 worklist.push(root()); 5312 int modified = 0; 5313 // Go over all type nodes that carry a speculative type, drop the 5314 // speculative part of the type and enqueue the node for an igvn 5315 // which may optimize it out. 5316 for (uint next = 0; next < worklist.size(); ++next) { 5317 Node *n = worklist.at(next); 5318 if (n->is_Type()) { 5319 TypeNode* tn = n->as_Type(); 5320 const Type* t = tn->type(); 5321 const Type* t_no_spec = t->remove_speculative(); 5322 if (t_no_spec != t) { 5323 bool in_hash = igvn.hash_delete(n); 5324 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 5325 tn->set_type(t_no_spec); 5326 igvn.hash_insert(n); 5327 igvn._worklist.push(n); // give it a chance to go away 5328 modified++; 5329 } 5330 } 5331 // Iterate over outs - endless loops is unreachable from below 5332 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5333 Node *m = n->fast_out(i); 5334 if (not_a_node(m)) { 5335 continue; 5336 } 5337 worklist.push(m); 5338 } 5339 } 5340 // Drop the speculative part of all types in the igvn's type table 5341 igvn.remove_speculative_types(); 5342 if (modified > 0) { 5343 igvn.optimize(); 5344 if (failing()) return; 5345 } 5346 #ifdef ASSERT 5347 // Verify that after the IGVN is over no speculative type has resurfaced 5348 worklist.clear(); 5349 worklist.push(root()); 5350 for (uint next = 0; next < worklist.size(); ++next) { 5351 Node *n = worklist.at(next); 5352 const Type* t = igvn.type_or_null(n); 5353 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5354 if (n->is_Type()) { 5355 t = n->as_Type()->type(); 5356 assert(t == t->remove_speculative(), "no more speculative types"); 5357 } 5358 // Iterate over outs - endless loops is unreachable from below 5359 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5360 Node *m = n->fast_out(i); 5361 if (not_a_node(m)) { 5362 continue; 5363 } 5364 worklist.push(m); 5365 } 5366 } 5367 igvn.check_no_speculative_types(); 5368 #endif 5369 } 5370 } 5371 5372 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) { 5373 const TypeInstPtr* ta = phase->type(a)->isa_instptr(); 5374 const TypeInstPtr* tb = phase->type(b)->isa_instptr(); 5375 if (!EnableValhalla || ta == nullptr || tb == nullptr || 5376 ta->is_zero_type() || tb->is_zero_type() || 5377 !ta->can_be_inline_type() || !tb->can_be_inline_type()) { 5378 // Use old acmp if one operand is null or not an inline type 5379 return new CmpPNode(a, b); 5380 } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) { 5381 // We know that one operand is an inline type. Therefore, 5382 // new acmp will only return true if both operands are nullptr. 5383 // Check if both operands are null by or'ing the oops. 5384 a = phase->transform(new CastP2XNode(nullptr, a)); 5385 b = phase->transform(new CastP2XNode(nullptr, b)); 5386 a = phase->transform(new OrXNode(a, b)); 5387 return new CmpXNode(a, phase->MakeConX(0)); 5388 } 5389 // Use new acmp 5390 return nullptr; 5391 } 5392 5393 // Auxiliary methods to support randomized stressing/fuzzing. 5394 5395 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5396 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5397 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5398 FLAG_SET_ERGO(StressSeed, _stress_seed); 5399 } else { 5400 _stress_seed = StressSeed; 5401 } 5402 if (_log != nullptr) { 5403 _log->elem("stress_test seed='%u'", _stress_seed); 5404 } 5405 } 5406 5407 int Compile::random() { 5408 _stress_seed = os::next_random(_stress_seed); 5409 return static_cast<int>(_stress_seed); 5410 } 5411 5412 // This method can be called the arbitrary number of times, with current count 5413 // as the argument. The logic allows selecting a single candidate from the 5414 // running list of candidates as follows: 5415 // int count = 0; 5416 // Cand* selected = null; 5417 // while(cand = cand->next()) { 5418 // if (randomized_select(++count)) { 5419 // selected = cand; 5420 // } 5421 // } 5422 // 5423 // Including count equalizes the chances any candidate is "selected". 5424 // This is useful when we don't have the complete list of candidates to choose 5425 // from uniformly. In this case, we need to adjust the randomicity of the 5426 // selection, or else we will end up biasing the selection towards the latter 5427 // candidates. 5428 // 5429 // Quick back-envelope calculation shows that for the list of n candidates 5430 // the equal probability for the candidate to persist as "best" can be 5431 // achieved by replacing it with "next" k-th candidate with the probability 5432 // of 1/k. It can be easily shown that by the end of the run, the 5433 // probability for any candidate is converged to 1/n, thus giving the 5434 // uniform distribution among all the candidates. 5435 // 5436 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5437 #define RANDOMIZED_DOMAIN_POW 29 5438 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5439 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5440 bool Compile::randomized_select(int count) { 5441 assert(count > 0, "only positive"); 5442 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5443 } 5444 5445 #ifdef ASSERT 5446 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5447 bool Compile::fail_randomly() { 5448 if ((random() % StressBailoutMean) != 0) { 5449 return false; 5450 } 5451 record_failure("StressBailout"); 5452 return true; 5453 } 5454 5455 bool Compile::failure_is_artificial() { 5456 return C->failure_reason_is("StressBailout"); 5457 } 5458 #endif 5459 5460 CloneMap& Compile::clone_map() { return _clone_map; } 5461 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5462 5463 void NodeCloneInfo::dump_on(outputStream* st) const { 5464 st->print(" {%d:%d} ", idx(), gen()); 5465 } 5466 5467 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5468 uint64_t val = value(old->_idx); 5469 NodeCloneInfo cio(val); 5470 assert(val != 0, "old node should be in the map"); 5471 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5472 insert(nnn->_idx, cin.get()); 5473 #ifndef PRODUCT 5474 if (is_debug()) { 5475 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5476 } 5477 #endif 5478 } 5479 5480 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5481 NodeCloneInfo cio(value(old->_idx)); 5482 if (cio.get() == 0) { 5483 cio.set(old->_idx, 0); 5484 insert(old->_idx, cio.get()); 5485 #ifndef PRODUCT 5486 if (is_debug()) { 5487 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5488 } 5489 #endif 5490 } 5491 clone(old, nnn, gen); 5492 } 5493 5494 int CloneMap::max_gen() const { 5495 int g = 0; 5496 DictI di(_dict); 5497 for(; di.test(); ++di) { 5498 int t = gen(di._key); 5499 if (g < t) { 5500 g = t; 5501 #ifndef PRODUCT 5502 if (is_debug()) { 5503 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5504 } 5505 #endif 5506 } 5507 } 5508 return g; 5509 } 5510 5511 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5512 uint64_t val = value(key); 5513 if (val != 0) { 5514 NodeCloneInfo ni(val); 5515 ni.dump_on(st); 5516 } 5517 } 5518 5519 void Compile::shuffle_macro_nodes() { 5520 if (_macro_nodes.length() < 2) { 5521 return; 5522 } 5523 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5524 uint j = C->random() % (i + 1); 5525 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5526 } 5527 } 5528 5529 // Move Allocate nodes to the start of the list 5530 void Compile::sort_macro_nodes() { 5531 int count = macro_count(); 5532 int allocates = 0; 5533 for (int i = 0; i < count; i++) { 5534 Node* n = macro_node(i); 5535 if (n->is_Allocate()) { 5536 if (i != allocates) { 5537 Node* tmp = macro_node(allocates); 5538 _macro_nodes.at_put(allocates, n); 5539 _macro_nodes.at_put(i, tmp); 5540 } 5541 allocates++; 5542 } 5543 } 5544 } 5545 5546 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5547 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5548 EventCompilerPhase event(UNTIMED); 5549 if (event.should_commit()) { 5550 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5551 } 5552 #ifndef PRODUCT 5553 ResourceMark rm; 5554 stringStream ss; 5555 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5556 int iter = ++_igv_phase_iter[cpt]; 5557 if (iter > 1) { 5558 ss.print(" %d", iter); 5559 } 5560 if (n != nullptr) { 5561 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5562 if (n->is_Call()) { 5563 CallNode* call = n->as_Call(); 5564 if (call->_name != nullptr) { 5565 // E.g. uncommon traps etc. 5566 ss.print(" - %s", call->_name); 5567 } else if (call->is_CallJava()) { 5568 CallJavaNode* call_java = call->as_CallJava(); 5569 if (call_java->method() != nullptr) { 5570 ss.print(" -"); 5571 call_java->method()->print_short_name(&ss); 5572 } 5573 } 5574 } 5575 } 5576 5577 const char* name = ss.as_string(); 5578 if (should_print_igv(level)) { 5579 _igv_printer->print_graph(name); 5580 } 5581 if (should_print_phase(cpt)) { 5582 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5583 } 5584 #endif 5585 C->_latest_stage_start_counter.stamp(); 5586 } 5587 5588 // Only used from CompileWrapper 5589 void Compile::begin_method() { 5590 #ifndef PRODUCT 5591 if (_method != nullptr && should_print_igv(1)) { 5592 _igv_printer->begin_method(); 5593 } 5594 #endif 5595 C->_latest_stage_start_counter.stamp(); 5596 } 5597 5598 // Only used from CompileWrapper 5599 void Compile::end_method() { 5600 EventCompilerPhase event(UNTIMED); 5601 if (event.should_commit()) { 5602 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5603 } 5604 5605 #ifndef PRODUCT 5606 if (_method != nullptr && should_print_igv(1)) { 5607 _igv_printer->end_method(); 5608 } 5609 #endif 5610 } 5611 5612 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5613 #ifndef PRODUCT 5614 if (_directive->should_print_phase(cpt)) { 5615 return true; 5616 } 5617 #endif 5618 return false; 5619 } 5620 5621 #ifndef PRODUCT 5622 void Compile::init_igv() { 5623 if (_igv_printer == nullptr) { 5624 _igv_printer = IdealGraphPrinter::printer(); 5625 _igv_printer->set_compile(this); 5626 } 5627 } 5628 #endif 5629 5630 bool Compile::should_print_igv(const int level) { 5631 #ifndef PRODUCT 5632 if (PrintIdealGraphLevel < 0) { // disabled by the user 5633 return false; 5634 } 5635 5636 bool need = directive()->IGVPrintLevelOption >= level; 5637 if (need) { 5638 Compile::init_igv(); 5639 } 5640 return need; 5641 #else 5642 return false; 5643 #endif 5644 } 5645 5646 #ifndef PRODUCT 5647 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5648 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5649 5650 // Called from debugger. Prints method to the default file with the default phase name. 5651 // This works regardless of any Ideal Graph Visualizer flags set or not. 5652 void igv_print() { 5653 Compile::current()->igv_print_method_to_file(); 5654 } 5655 5656 // Same as igv_print() above but with a specified phase name. 5657 void igv_print(const char* phase_name) { 5658 Compile::current()->igv_print_method_to_file(phase_name); 5659 } 5660 5661 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5662 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5663 // This works regardless of any Ideal Graph Visualizer flags set or not. 5664 void igv_print(bool network) { 5665 if (network) { 5666 Compile::current()->igv_print_method_to_network(); 5667 } else { 5668 Compile::current()->igv_print_method_to_file(); 5669 } 5670 } 5671 5672 // Same as igv_print(bool network) above but with a specified phase name. 5673 void igv_print(bool network, const char* phase_name) { 5674 if (network) { 5675 Compile::current()->igv_print_method_to_network(phase_name); 5676 } else { 5677 Compile::current()->igv_print_method_to_file(phase_name); 5678 } 5679 } 5680 5681 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5682 void igv_print_default() { 5683 Compile::current()->print_method(PHASE_DEBUG, 0); 5684 } 5685 5686 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5687 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5688 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5689 void igv_append() { 5690 Compile::current()->igv_print_method_to_file("Debug", true); 5691 } 5692 5693 // Same as igv_append() above but with a specified phase name. 5694 void igv_append(const char* phase_name) { 5695 Compile::current()->igv_print_method_to_file(phase_name, true); 5696 } 5697 5698 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5699 const char* file_name = "custom_debug.xml"; 5700 if (_debug_file_printer == nullptr) { 5701 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5702 } else { 5703 _debug_file_printer->update_compiled_method(C->method()); 5704 } 5705 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5706 _debug_file_printer->print_graph(phase_name); 5707 } 5708 5709 void Compile::igv_print_method_to_network(const char* phase_name) { 5710 ResourceMark rm; 5711 GrowableArray<const Node*> empty_list; 5712 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5713 } 5714 5715 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5716 if (_debug_network_printer == nullptr) { 5717 _debug_network_printer = new IdealGraphPrinter(C); 5718 } else { 5719 _debug_network_printer->update_compiled_method(C->method()); 5720 } 5721 tty->print_cr("Method printed over network stream to IGV"); 5722 _debug_network_printer->print(name, C->root(), visible_nodes); 5723 } 5724 #endif 5725 5726 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5727 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5728 return value; 5729 } 5730 Node* result = nullptr; 5731 if (bt == T_BYTE) { 5732 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5733 result = new RShiftINode(result, phase->intcon(24)); 5734 } else if (bt == T_BOOLEAN) { 5735 result = new AndINode(value, phase->intcon(0xFF)); 5736 } else if (bt == T_CHAR) { 5737 result = new AndINode(value,phase->intcon(0xFFFF)); 5738 } else if (bt == T_FLOAT) { 5739 result = new MoveI2FNode(value); 5740 } else { 5741 assert(bt == T_SHORT, "unexpected narrow type"); 5742 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5743 result = new RShiftINode(result, phase->intcon(16)); 5744 } 5745 if (transform_res) { 5746 result = phase->transform(result); 5747 } 5748 return result; 5749 } 5750 5751 void Compile::record_method_not_compilable_oom() { 5752 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5753 }