1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/aotCodeCache.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerDefinitions.hpp" 37 #include "compiler/compilerOracle.hpp" 38 #include "compiler/compiler_globals.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c2/barrierSetC2.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm_io.h" 45 #include "memory/allocation.hpp" 46 #include "memory/arena.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/block.hpp" 50 #include "opto/c2compiler.hpp" 51 #include "opto/callGenerator.hpp" 52 #include "opto/callnode.hpp" 53 #include "opto/castnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/chaitin.hpp" 56 #include "opto/compile.hpp" 57 #include "opto/connode.hpp" 58 #include "opto/convertnode.hpp" 59 #include "opto/divnode.hpp" 60 #include "opto/escape.hpp" 61 #include "opto/idealGraphPrinter.hpp" 62 #include "opto/inlinetypenode.hpp" 63 #include "opto/locknode.hpp" 64 #include "opto/loopnode.hpp" 65 #include "opto/machnode.hpp" 66 #include "opto/macro.hpp" 67 #include "opto/matcher.hpp" 68 #include "opto/mathexactnode.hpp" 69 #include "opto/memnode.hpp" 70 #include "opto/movenode.hpp" 71 #include "opto/mulnode.hpp" 72 #include "opto/narrowptrnode.hpp" 73 #include "opto/node.hpp" 74 #include "opto/opaquenode.hpp" 75 #include "opto/opcodes.hpp" 76 #include "opto/output.hpp" 77 #include "opto/parse.hpp" 78 #include "opto/phaseX.hpp" 79 #include "opto/rootnode.hpp" 80 #include "opto/runtime.hpp" 81 #include "opto/stringopts.hpp" 82 #include "opto/type.hpp" 83 #include "opto/vector.hpp" 84 #include "opto/vectornode.hpp" 85 #include "runtime/globals_extension.hpp" 86 #include "runtime/sharedRuntime.hpp" 87 #include "runtime/signature.hpp" 88 #include "runtime/stubRoutines.hpp" 89 #include "runtime/timer.hpp" 90 #include "utilities/align.hpp" 91 #include "utilities/copy.hpp" 92 #include "utilities/macros.hpp" 93 #include "utilities/resourceHash.hpp" 94 95 // -------------------- Compile::mach_constant_base_node ----------------------- 96 // Constant table base node singleton. 97 MachConstantBaseNode* Compile::mach_constant_base_node() { 98 if (_mach_constant_base_node == nullptr) { 99 _mach_constant_base_node = new MachConstantBaseNode(); 100 _mach_constant_base_node->add_req(C->root()); 101 } 102 return _mach_constant_base_node; 103 } 104 105 106 /// Support for intrinsics. 107 108 // Return the index at which m must be inserted (or already exists). 109 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 110 class IntrinsicDescPair { 111 private: 112 ciMethod* _m; 113 bool _is_virtual; 114 public: 115 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 116 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 117 ciMethod* m= elt->method(); 118 ciMethod* key_m = key->_m; 119 if (key_m < m) return -1; 120 else if (key_m > m) return 1; 121 else { 122 bool is_virtual = elt->is_virtual(); 123 bool key_virtual = key->_is_virtual; 124 if (key_virtual < is_virtual) return -1; 125 else if (key_virtual > is_virtual) return 1; 126 else return 0; 127 } 128 } 129 }; 130 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 131 #ifdef ASSERT 132 for (int i = 1; i < _intrinsics.length(); i++) { 133 CallGenerator* cg1 = _intrinsics.at(i-1); 134 CallGenerator* cg2 = _intrinsics.at(i); 135 assert(cg1->method() != cg2->method() 136 ? cg1->method() < cg2->method() 137 : cg1->is_virtual() < cg2->is_virtual(), 138 "compiler intrinsics list must stay sorted"); 139 } 140 #endif 141 IntrinsicDescPair pair(m, is_virtual); 142 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 143 } 144 145 void Compile::register_intrinsic(CallGenerator* cg) { 146 bool found = false; 147 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 148 assert(!found, "registering twice"); 149 _intrinsics.insert_before(index, cg); 150 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 151 } 152 153 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 154 assert(m->is_loaded(), "don't try this on unloaded methods"); 155 if (_intrinsics.length() > 0) { 156 bool found = false; 157 int index = intrinsic_insertion_index(m, is_virtual, found); 158 if (found) { 159 return _intrinsics.at(index); 160 } 161 } 162 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 163 if (m->intrinsic_id() != vmIntrinsics::_none && 164 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 165 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 166 if (cg != nullptr) { 167 // Save it for next time: 168 register_intrinsic(cg); 169 return cg; 170 } else { 171 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 172 } 173 } 174 return nullptr; 175 } 176 177 // Compile::make_vm_intrinsic is defined in library_call.cpp. 178 179 #ifndef PRODUCT 180 // statistics gathering... 181 182 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 184 185 inline int as_int(vmIntrinsics::ID id) { 186 return vmIntrinsics::as_int(id); 187 } 188 189 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 190 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 191 int oflags = _intrinsic_hist_flags[as_int(id)]; 192 assert(flags != 0, "what happened?"); 193 if (is_virtual) { 194 flags |= _intrinsic_virtual; 195 } 196 bool changed = (flags != oflags); 197 if ((flags & _intrinsic_worked) != 0) { 198 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 199 if (count == 1) { 200 changed = true; // first time 201 } 202 // increment the overall count also: 203 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 204 } 205 if (changed) { 206 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 207 // Something changed about the intrinsic's virtuality. 208 if ((flags & _intrinsic_virtual) != 0) { 209 // This is the first use of this intrinsic as a virtual call. 210 if (oflags != 0) { 211 // We already saw it as a non-virtual, so note both cases. 212 flags |= _intrinsic_both; 213 } 214 } else if ((oflags & _intrinsic_both) == 0) { 215 // This is the first use of this intrinsic as a non-virtual 216 flags |= _intrinsic_both; 217 } 218 } 219 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 220 } 221 // update the overall flags also: 222 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 223 return changed; 224 } 225 226 static char* format_flags(int flags, char* buf) { 227 buf[0] = 0; 228 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 229 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 230 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 231 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 232 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 233 if (buf[0] == 0) strcat(buf, ","); 234 assert(buf[0] == ',', "must be"); 235 return &buf[1]; 236 } 237 238 void Compile::print_intrinsic_statistics() { 239 char flagsbuf[100]; 240 ttyLocker ttyl; 241 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 242 tty->print_cr("Compiler intrinsic usage:"); 243 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 244 if (total == 0) total = 1; // avoid div0 in case of no successes 245 #define PRINT_STAT_LINE(name, c, f) \ 246 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 247 for (auto id : EnumRange<vmIntrinsicID>{}) { 248 int flags = _intrinsic_hist_flags[as_int(id)]; 249 juint count = _intrinsic_hist_count[as_int(id)]; 250 if ((flags | count) != 0) { 251 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 252 } 253 } 254 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 255 if (xtty != nullptr) xtty->tail("statistics"); 256 } 257 258 void Compile::print_statistics() { 259 { ttyLocker ttyl; 260 if (xtty != nullptr) xtty->head("statistics type='opto'"); 261 Parse::print_statistics(); 262 PhaseStringOpts::print_statistics(); 263 PhaseCCP::print_statistics(); 264 PhaseRegAlloc::print_statistics(); 265 PhaseOutput::print_statistics(); 266 PhasePeephole::print_statistics(); 267 PhaseIdealLoop::print_statistics(); 268 ConnectionGraph::print_statistics(); 269 PhaseMacroExpand::print_statistics(); 270 if (xtty != nullptr) xtty->tail("statistics"); 271 } 272 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 273 // put this under its own <statistics> element. 274 print_intrinsic_statistics(); 275 } 276 } 277 #endif //PRODUCT 278 279 void Compile::gvn_replace_by(Node* n, Node* nn) { 280 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 281 Node* use = n->last_out(i); 282 bool is_in_table = initial_gvn()->hash_delete(use); 283 uint uses_found = 0; 284 for (uint j = 0; j < use->len(); j++) { 285 if (use->in(j) == n) { 286 if (j < use->req()) 287 use->set_req(j, nn); 288 else 289 use->set_prec(j, nn); 290 uses_found++; 291 } 292 } 293 if (is_in_table) { 294 // reinsert into table 295 initial_gvn()->hash_find_insert(use); 296 } 297 record_for_igvn(use); 298 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 299 i -= uses_found; // we deleted 1 or more copies of this edge 300 } 301 } 302 303 304 // Identify all nodes that are reachable from below, useful. 305 // Use breadth-first pass that records state in a Unique_Node_List, 306 // recursive traversal is slower. 307 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 308 int estimated_worklist_size = live_nodes(); 309 useful.map( estimated_worklist_size, nullptr ); // preallocate space 310 311 // Initialize worklist 312 if (root() != nullptr) { useful.push(root()); } 313 // If 'top' is cached, declare it useful to preserve cached node 314 if (cached_top_node()) { useful.push(cached_top_node()); } 315 316 // Push all useful nodes onto the list, breadthfirst 317 for( uint next = 0; next < useful.size(); ++next ) { 318 assert( next < unique(), "Unique useful nodes < total nodes"); 319 Node *n = useful.at(next); 320 uint max = n->len(); 321 for( uint i = 0; i < max; ++i ) { 322 Node *m = n->in(i); 323 if (not_a_node(m)) continue; 324 useful.push(m); 325 } 326 } 327 } 328 329 // Update dead_node_list with any missing dead nodes using useful 330 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 331 void Compile::update_dead_node_list(Unique_Node_List &useful) { 332 uint max_idx = unique(); 333 VectorSet& useful_node_set = useful.member_set(); 334 335 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 336 // If node with index node_idx is not in useful set, 337 // mark it as dead in dead node list. 338 if (!useful_node_set.test(node_idx)) { 339 record_dead_node(node_idx); 340 } 341 } 342 } 343 344 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 345 int shift = 0; 346 for (int i = 0; i < inlines->length(); i++) { 347 CallGenerator* cg = inlines->at(i); 348 if (useful.member(cg->call_node())) { 349 if (shift > 0) { 350 inlines->at_put(i - shift, cg); 351 } 352 } else { 353 shift++; // skip over the dead element 354 } 355 } 356 if (shift > 0) { 357 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 358 } 359 } 360 361 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 362 assert(dead != nullptr && dead->is_Call(), "sanity"); 363 int found = 0; 364 for (int i = 0; i < inlines->length(); i++) { 365 if (inlines->at(i)->call_node() == dead) { 366 inlines->remove_at(i); 367 found++; 368 NOT_DEBUG( break; ) // elements are unique, so exit early 369 } 370 } 371 assert(found <= 1, "not unique"); 372 } 373 374 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 375 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 376 for (int i = node_list.length() - 1; i >= 0; i--) { 377 N* node = node_list.at(i); 378 if (!useful.member(node)) { 379 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 380 } 381 } 382 } 383 384 void Compile::remove_useless_node(Node* dead) { 385 remove_modified_node(dead); 386 387 // Constant node that has no out-edges and has only one in-edge from 388 // root is usually dead. However, sometimes reshaping walk makes 389 // it reachable by adding use edges. So, we will NOT count Con nodes 390 // as dead to be conservative about the dead node count at any 391 // given time. 392 if (!dead->is_Con()) { 393 record_dead_node(dead->_idx); 394 } 395 if (dead->is_macro()) { 396 remove_macro_node(dead); 397 } 398 if (dead->is_expensive()) { 399 remove_expensive_node(dead); 400 } 401 if (dead->is_OpaqueTemplateAssertionPredicate()) { 402 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 403 } 404 if (dead->is_ParsePredicate()) { 405 remove_parse_predicate(dead->as_ParsePredicate()); 406 } 407 if (dead->for_post_loop_opts_igvn()) { 408 remove_from_post_loop_opts_igvn(dead); 409 } 410 if (dead->is_InlineType()) { 411 remove_inline_type(dead); 412 } 413 if (dead->for_merge_stores_igvn()) { 414 remove_from_merge_stores_igvn(dead); 415 } 416 if (dead->is_Call()) { 417 remove_useless_late_inlines( &_late_inlines, dead); 418 remove_useless_late_inlines( &_string_late_inlines, dead); 419 remove_useless_late_inlines( &_boxing_late_inlines, dead); 420 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 421 422 if (dead->is_CallStaticJava()) { 423 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 424 } 425 } 426 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 427 bs->unregister_potential_barrier_node(dead); 428 } 429 430 // Disconnect all useless nodes by disconnecting those at the boundary. 431 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 432 uint next = 0; 433 while (next < useful.size()) { 434 Node *n = useful.at(next++); 435 if (n->is_SafePoint()) { 436 // We're done with a parsing phase. Replaced nodes are not valid 437 // beyond that point. 438 n->as_SafePoint()->delete_replaced_nodes(); 439 } 440 // Use raw traversal of out edges since this code removes out edges 441 int max = n->outcnt(); 442 for (int j = 0; j < max; ++j) { 443 Node* child = n->raw_out(j); 444 if (!useful.member(child)) { 445 assert(!child->is_top() || child != top(), 446 "If top is cached in Compile object it is in useful list"); 447 // Only need to remove this out-edge to the useless node 448 n->raw_del_out(j); 449 --j; 450 --max; 451 if (child->is_data_proj_of_pure_function(n)) { 452 worklist.push(n); 453 } 454 } 455 } 456 if (n->outcnt() == 1 && n->has_special_unique_user()) { 457 assert(useful.member(n->unique_out()), "do not push a useless node"); 458 worklist.push(n->unique_out()); 459 } 460 if (n->outcnt() == 0) { 461 worklist.push(n); 462 } 463 } 464 465 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 466 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 467 // Remove useless Template Assertion Predicate opaque nodes 468 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 469 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 470 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 471 remove_useless_nodes(_inline_type_nodes, useful); // remove useless inline type nodes 472 #ifdef ASSERT 473 if (_modified_nodes != nullptr) { 474 _modified_nodes->remove_useless_nodes(useful.member_set()); 475 } 476 #endif 477 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 478 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 479 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 480 #ifdef ASSERT 481 if (_modified_nodes != nullptr) { 482 _modified_nodes->remove_useless_nodes(useful.member_set()); 483 } 484 #endif 485 486 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 487 bs->eliminate_useless_gc_barriers(useful, this); 488 // clean up the late inline lists 489 remove_useless_late_inlines( &_late_inlines, useful); 490 remove_useless_late_inlines( &_string_late_inlines, useful); 491 remove_useless_late_inlines( &_boxing_late_inlines, useful); 492 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 493 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 494 } 495 496 // ============================================================================ 497 //------------------------------CompileWrapper--------------------------------- 498 class CompileWrapper : public StackObj { 499 Compile *const _compile; 500 public: 501 CompileWrapper(Compile* compile); 502 503 ~CompileWrapper(); 504 }; 505 506 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 507 // the Compile* pointer is stored in the current ciEnv: 508 ciEnv* env = compile->env(); 509 assert(env == ciEnv::current(), "must already be a ciEnv active"); 510 assert(env->compiler_data() == nullptr, "compile already active?"); 511 env->set_compiler_data(compile); 512 assert(compile == Compile::current(), "sanity"); 513 514 compile->set_type_dict(nullptr); 515 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 516 compile->clone_map().set_clone_idx(0); 517 compile->set_type_last_size(0); 518 compile->set_last_tf(nullptr, nullptr); 519 compile->set_indexSet_arena(nullptr); 520 compile->set_indexSet_free_block_list(nullptr); 521 compile->init_type_arena(); 522 Type::Initialize(compile); 523 _compile->begin_method(); 524 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 525 } 526 CompileWrapper::~CompileWrapper() { 527 // simulate crash during compilation 528 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 529 530 _compile->end_method(); 531 _compile->env()->set_compiler_data(nullptr); 532 } 533 534 535 //----------------------------print_compile_messages--------------------------- 536 void Compile::print_compile_messages() { 537 #ifndef PRODUCT 538 // Check if recompiling 539 if (!subsume_loads() && PrintOpto) { 540 // Recompiling without allowing machine instructions to subsume loads 541 tty->print_cr("*********************************************************"); 542 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 543 tty->print_cr("*********************************************************"); 544 } 545 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 546 // Recompiling without escape analysis 547 tty->print_cr("*********************************************************"); 548 tty->print_cr("** Bailout: Recompile without escape analysis **"); 549 tty->print_cr("*********************************************************"); 550 } 551 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 552 // Recompiling without iterative escape analysis 553 tty->print_cr("*********************************************************"); 554 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 555 tty->print_cr("*********************************************************"); 556 } 557 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 558 // Recompiling without reducing allocation merges 559 tty->print_cr("*********************************************************"); 560 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 561 tty->print_cr("*********************************************************"); 562 } 563 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 564 // Recompiling without boxing elimination 565 tty->print_cr("*********************************************************"); 566 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 567 tty->print_cr("*********************************************************"); 568 } 569 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 570 // Recompiling without locks coarsening 571 tty->print_cr("*********************************************************"); 572 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 573 tty->print_cr("*********************************************************"); 574 } 575 if (env()->break_at_compile()) { 576 // Open the debugger when compiling this method. 577 tty->print("### Breaking when compiling: "); 578 method()->print_short_name(); 579 tty->cr(); 580 BREAKPOINT; 581 } 582 583 if( PrintOpto ) { 584 if (is_osr_compilation()) { 585 tty->print("[OSR]%3d", _compile_id); 586 } else { 587 tty->print("%3d", _compile_id); 588 } 589 } 590 #endif 591 } 592 593 #ifndef PRODUCT 594 void Compile::print_phase(const char* phase_name) { 595 tty->print_cr("%u.\t%s", ++_phase_counter, phase_name); 596 } 597 598 void Compile::print_ideal_ir(const char* phase_name) { 599 // keep the following output all in one block 600 // This output goes directly to the tty, not the compiler log. 601 // To enable tools to match it up with the compilation activity, 602 // be sure to tag this tty output with the compile ID. 603 604 // Node dumping can cause a safepoint, which can break the tty lock. 605 // Buffer all node dumps, so that all safepoints happen before we lock. 606 ResourceMark rm; 607 stringStream ss; 608 609 if (_output == nullptr) { 610 ss.print_cr("AFTER: %s", phase_name); 611 // Print out all nodes in ascending order of index. 612 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 613 } else { 614 // Dump the node blockwise if we have a scheduling 615 _output->print_scheduling(&ss); 616 } 617 618 // Check that the lock is not broken by a safepoint. 619 NoSafepointVerifier nsv; 620 ttyLocker ttyl; 621 if (xtty != nullptr) { 622 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 623 compile_id(), 624 is_osr_compilation() ? " compile_kind='osr'" : "", 625 phase_name); 626 } 627 628 tty->print("%s", ss.as_string()); 629 630 if (xtty != nullptr) { 631 xtty->tail("ideal"); 632 } 633 } 634 #endif 635 636 // ============================================================================ 637 //------------------------------Compile standard------------------------------- 638 639 // Compile a method. entry_bci is -1 for normal compilations and indicates 640 // the continuation bci for on stack replacement. 641 642 643 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 644 Options options, DirectiveSet* directive) 645 : Phase(Compiler), 646 _compile_id(ci_env->compile_id()), 647 _options(options), 648 _method(target), 649 _entry_bci(osr_bci), 650 _ilt(nullptr), 651 _stub_function(nullptr), 652 _stub_name(nullptr), 653 _stub_id(-1), 654 _stub_entry_point(nullptr), 655 _max_node_limit(MaxNodeLimit), 656 _post_loop_opts_phase(false), 657 _merge_stores_phase(false), 658 _allow_macro_nodes(true), 659 _inlining_progress(false), 660 _inlining_incrementally(false), 661 _do_cleanup(false), 662 _has_reserved_stack_access(target->has_reserved_stack_access()), 663 _has_circular_inline_type(false), 664 #ifndef PRODUCT 665 _igv_idx(0), 666 _trace_opto_output(directive->TraceOptoOutputOption), 667 #endif 668 _has_method_handle_invokes(false), 669 _clinit_barrier_on_entry(false), 670 _stress_seed(0), 671 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 672 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 673 _env(ci_env), 674 _directive(directive), 675 _log(ci_env->log()), 676 _first_failure_details(nullptr), 677 _intrinsics(comp_arena(), 0, 0, nullptr), 678 _macro_nodes(comp_arena(), 8, 0, nullptr), 679 _parse_predicates(comp_arena(), 8, 0, nullptr), 680 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 681 _expensive_nodes(comp_arena(), 8, 0, nullptr), 682 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 683 _inline_type_nodes (comp_arena(), 8, 0, nullptr), 684 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 685 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 686 _coarsened_locks(comp_arena(), 8, 0, nullptr), 687 _congraph(nullptr), 688 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 689 _unique(0), 690 _dead_node_count(0), 691 _dead_node_list(comp_arena()), 692 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 693 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 694 _node_arena(&_node_arena_one), 695 _mach_constant_base_node(nullptr), 696 _Compile_types(mtCompiler, Arena::Tag::tag_type), 697 _initial_gvn(nullptr), 698 _igvn_worklist(nullptr), 699 _types(nullptr), 700 _node_hash(nullptr), 701 _late_inlines(comp_arena(), 2, 0, nullptr), 702 _string_late_inlines(comp_arena(), 2, 0, nullptr), 703 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 704 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 705 _late_inlines_pos(0), 706 _number_of_mh_late_inlines(0), 707 _oom(false), 708 _replay_inline_data(nullptr), 709 _inline_printer(this), 710 _java_calls(0), 711 _inner_loops(0), 712 _interpreter_frame_size(0), 713 _output(nullptr) 714 #ifndef PRODUCT 715 , 716 _in_dump_cnt(0) 717 #endif 718 { 719 C = this; 720 CompileWrapper cw(this); 721 722 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 723 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 724 725 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 726 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 727 // We can always print a disassembly, either abstract (hex dump) or 728 // with the help of a suitable hsdis library. Thus, we should not 729 // couple print_assembly and print_opto_assembly controls. 730 // But: always print opto and regular assembly on compile command 'print'. 731 bool print_assembly = directive->PrintAssemblyOption; 732 set_print_assembly(print_opto_assembly || print_assembly); 733 #else 734 set_print_assembly(false); // must initialize. 735 #endif 736 737 #ifndef PRODUCT 738 set_parsed_irreducible_loop(false); 739 #endif 740 741 if (directive->ReplayInlineOption) { 742 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 743 } 744 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 745 set_print_intrinsics(directive->PrintIntrinsicsOption); 746 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 747 748 if (ProfileTraps) { 749 // Make sure the method being compiled gets its own MDO, 750 // so we can at least track the decompile_count(). 751 method()->ensure_method_data(); 752 } 753 754 if (StressLCM || StressGCM || StressIGVN || StressCCP || 755 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout || 756 StressLoopPeeling) { 757 initialize_stress_seed(directive); 758 } 759 760 Init(/*do_aliasing=*/ true); 761 762 print_compile_messages(); 763 764 _ilt = InlineTree::build_inline_tree_root(); 765 766 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 767 assert(num_alias_types() >= AliasIdxRaw, ""); 768 769 #define MINIMUM_NODE_HASH 1023 770 771 // GVN that will be run immediately on new nodes 772 uint estimated_size = method()->code_size()*4+64; 773 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 774 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 775 _types = new (comp_arena()) Type_Array(comp_arena()); 776 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 777 PhaseGVN gvn; 778 set_initial_gvn(&gvn); 779 780 { // Scope for timing the parser 781 TracePhase tp(_t_parser); 782 783 // Put top into the hash table ASAP. 784 initial_gvn()->transform(top()); 785 786 // Set up tf(), start(), and find a CallGenerator. 787 CallGenerator* cg = nullptr; 788 if (is_osr_compilation()) { 789 init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true)); 790 StartNode* s = new StartOSRNode(root(), tf()->domain_sig()); 791 initial_gvn()->set_type_bottom(s); 792 verify_start(s); 793 cg = CallGenerator::for_osr(method(), entry_bci()); 794 } else { 795 // Normal case. 796 init_tf(TypeFunc::make(method())); 797 StartNode* s = new StartNode(root(), tf()->domain_cc()); 798 initial_gvn()->set_type_bottom(s); 799 verify_start(s); 800 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 801 // With java.lang.ref.reference.get() we must go through the 802 // intrinsic - even when get() is the root 803 // method of the compile - so that, if necessary, the value in 804 // the referent field of the reference object gets recorded by 805 // the pre-barrier code. 806 cg = find_intrinsic(method(), false); 807 } 808 if (cg == nullptr) { 809 float past_uses = method()->interpreter_invocation_count(); 810 float expected_uses = past_uses; 811 cg = CallGenerator::for_inline(method(), expected_uses); 812 } 813 } 814 if (failing()) return; 815 if (cg == nullptr) { 816 const char* reason = InlineTree::check_can_parse(method()); 817 assert(reason != nullptr, "expect reason for parse failure"); 818 stringStream ss; 819 ss.print("cannot parse method: %s", reason); 820 record_method_not_compilable(ss.as_string()); 821 return; 822 } 823 824 gvn.set_type(root(), root()->bottom_type()); 825 826 JVMState* jvms = build_start_state(start(), tf()); 827 if ((jvms = cg->generate(jvms)) == nullptr) { 828 assert(failure_reason() != nullptr, "expect reason for parse failure"); 829 stringStream ss; 830 ss.print("method parse failed: %s", failure_reason()); 831 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 832 return; 833 } 834 GraphKit kit(jvms); 835 836 if (!kit.stopped()) { 837 // Accept return values, and transfer control we know not where. 838 // This is done by a special, unique ReturnNode bound to root. 839 return_values(kit.jvms()); 840 } 841 842 if (kit.has_exceptions()) { 843 // Any exceptions that escape from this call must be rethrown 844 // to whatever caller is dynamically above us on the stack. 845 // This is done by a special, unique RethrowNode bound to root. 846 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 847 } 848 849 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 850 851 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 852 inline_string_calls(true); 853 } 854 855 if (failing()) return; 856 857 // Remove clutter produced by parsing. 858 if (!failing()) { 859 ResourceMark rm; 860 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 861 } 862 } 863 864 // Note: Large methods are capped off in do_one_bytecode(). 865 if (failing()) return; 866 867 // After parsing, node notes are no longer automagic. 868 // They must be propagated by register_new_node_with_optimizer(), 869 // clone(), or the like. 870 set_default_node_notes(nullptr); 871 872 #ifndef PRODUCT 873 if (should_print_igv(1)) { 874 _igv_printer->print_inlining(); 875 } 876 #endif 877 878 if (failing()) return; 879 NOT_PRODUCT( verify_graph_edges(); ) 880 881 // Now optimize 882 Optimize(); 883 if (failing()) return; 884 NOT_PRODUCT( verify_graph_edges(); ) 885 886 #ifndef PRODUCT 887 if (should_print_ideal()) { 888 print_ideal_ir("print_ideal"); 889 } 890 #endif 891 892 #ifdef ASSERT 893 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 894 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 895 #endif 896 897 // Dump compilation data to replay it. 898 if (directive->DumpReplayOption) { 899 env()->dump_replay_data(_compile_id); 900 } 901 if (directive->DumpInlineOption && (ilt() != nullptr)) { 902 env()->dump_inline_data(_compile_id); 903 } 904 905 // Now that we know the size of all the monitors we can add a fixed slot 906 // for the original deopt pc. 907 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 908 if (needs_stack_repair()) { 909 // One extra slot for the special stack increment value 910 next_slot += 2; 911 } 912 // TODO 8284443 Only reserve extra slot if needed 913 if (InlineTypeReturnedAsFields) { 914 // One extra slot to hold the null marker for a nullable 915 // inline type return if we run out of registers. 916 next_slot += 2; 917 } 918 set_fixed_slots(next_slot); 919 920 // Compute when to use implicit null checks. Used by matching trap based 921 // nodes and NullCheck optimization. 922 set_allowed_deopt_reasons(); 923 924 // Now generate code 925 Code_Gen(); 926 } 927 928 //------------------------------Compile---------------------------------------- 929 // Compile a runtime stub 930 Compile::Compile(ciEnv* ci_env, 931 TypeFunc_generator generator, 932 address stub_function, 933 const char* stub_name, 934 int stub_id, 935 int is_fancy_jump, 936 bool pass_tls, 937 bool return_pc, 938 DirectiveSet* directive) 939 : Phase(Compiler), 940 _compile_id(0), 941 _options(Options::for_runtime_stub()), 942 _method(nullptr), 943 _entry_bci(InvocationEntryBci), 944 _stub_function(stub_function), 945 _stub_name(stub_name), 946 _stub_id(stub_id), 947 _stub_entry_point(nullptr), 948 _max_node_limit(MaxNodeLimit), 949 _post_loop_opts_phase(false), 950 _merge_stores_phase(false), 951 _allow_macro_nodes(true), 952 _inlining_progress(false), 953 _inlining_incrementally(false), 954 _has_reserved_stack_access(false), 955 _has_circular_inline_type(false), 956 #ifndef PRODUCT 957 _igv_idx(0), 958 _trace_opto_output(directive->TraceOptoOutputOption), 959 #endif 960 _has_method_handle_invokes(false), 961 _clinit_barrier_on_entry(false), 962 _stress_seed(0), 963 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 964 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 965 _env(ci_env), 966 _directive(directive), 967 _log(ci_env->log()), 968 _first_failure_details(nullptr), 969 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 970 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 971 _congraph(nullptr), 972 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 973 _unique(0), 974 _dead_node_count(0), 975 _dead_node_list(comp_arena()), 976 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 977 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 978 _node_arena(&_node_arena_one), 979 _mach_constant_base_node(nullptr), 980 _Compile_types(mtCompiler, Arena::Tag::tag_type), 981 _initial_gvn(nullptr), 982 _igvn_worklist(nullptr), 983 _types(nullptr), 984 _node_hash(nullptr), 985 _number_of_mh_late_inlines(0), 986 _oom(false), 987 _replay_inline_data(nullptr), 988 _inline_printer(this), 989 _java_calls(0), 990 _inner_loops(0), 991 _interpreter_frame_size(0), 992 _output(nullptr), 993 #ifndef PRODUCT 994 _in_dump_cnt(0), 995 #endif 996 _allowed_reasons(0) { 997 C = this; 998 999 // try to reuse an existing stub 1000 { 1001 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name); 1002 if (blob != nullptr) { 1003 RuntimeStub* rs = blob->as_runtime_stub(); 1004 _stub_entry_point = rs->entry_point(); 1005 return; 1006 } 1007 } 1008 1009 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 1010 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 1011 1012 #ifndef PRODUCT 1013 set_print_assembly(PrintFrameConverterAssembly); 1014 set_parsed_irreducible_loop(false); 1015 #else 1016 set_print_assembly(false); // Must initialize. 1017 #endif 1018 set_has_irreducible_loop(false); // no loops 1019 1020 CompileWrapper cw(this); 1021 Init(/*do_aliasing=*/ false); 1022 init_tf((*generator)()); 1023 1024 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 1025 _types = new (comp_arena()) Type_Array(comp_arena()); 1026 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 1027 1028 if (StressLCM || StressGCM || StressBailout) { 1029 initialize_stress_seed(directive); 1030 } 1031 1032 { 1033 PhaseGVN gvn; 1034 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1035 gvn.transform(top()); 1036 1037 GraphKit kit; 1038 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1039 } 1040 1041 NOT_PRODUCT( verify_graph_edges(); ) 1042 1043 Code_Gen(); 1044 } 1045 1046 Compile::~Compile() { 1047 delete _first_failure_details; 1048 }; 1049 1050 //------------------------------Init------------------------------------------- 1051 // Prepare for a single compilation 1052 void Compile::Init(bool aliasing) { 1053 _do_aliasing = aliasing; 1054 _unique = 0; 1055 _regalloc = nullptr; 1056 1057 _tf = nullptr; // filled in later 1058 _top = nullptr; // cached later 1059 _matcher = nullptr; // filled in later 1060 _cfg = nullptr; // filled in later 1061 1062 _node_note_array = nullptr; 1063 _default_node_notes = nullptr; 1064 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1065 1066 _immutable_memory = nullptr; // filled in at first inquiry 1067 1068 #ifdef ASSERT 1069 _phase_optimize_finished = false; 1070 _phase_verify_ideal_loop = false; 1071 _exception_backedge = false; 1072 _type_verify = nullptr; 1073 #endif 1074 1075 // Globally visible Nodes 1076 // First set TOP to null to give safe behavior during creation of RootNode 1077 set_cached_top_node(nullptr); 1078 set_root(new RootNode()); 1079 // Now that you have a Root to point to, create the real TOP 1080 set_cached_top_node( new ConNode(Type::TOP) ); 1081 set_recent_alloc(nullptr, nullptr); 1082 1083 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1084 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1085 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1086 env()->set_dependencies(new Dependencies(env())); 1087 1088 _fixed_slots = 0; 1089 set_has_split_ifs(false); 1090 set_has_loops(false); // first approximation 1091 set_has_stringbuilder(false); 1092 set_has_boxed_value(false); 1093 _trap_can_recompile = false; // no traps emitted yet 1094 _major_progress = true; // start out assuming good things will happen 1095 set_has_unsafe_access(false); 1096 set_max_vector_size(0); 1097 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1098 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1099 set_decompile_count(0); 1100 1101 #ifndef PRODUCT 1102 _phase_counter = 0; 1103 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1104 #endif 1105 1106 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1107 _loop_opts_cnt = LoopOptsCount; 1108 _has_flat_accesses = false; 1109 _flat_accesses_share_alias = true; 1110 _scalarize_in_safepoints = false; 1111 1112 set_do_inlining(Inline); 1113 set_max_inline_size(MaxInlineSize); 1114 set_freq_inline_size(FreqInlineSize); 1115 set_do_scheduling(OptoScheduling); 1116 1117 set_do_vector_loop(false); 1118 set_has_monitors(false); 1119 set_has_scoped_access(false); 1120 1121 if (AllowVectorizeOnDemand) { 1122 if (has_method() && _directive->VectorizeOption) { 1123 set_do_vector_loop(true); 1124 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1125 } else if (has_method() && method()->name() != nullptr && 1126 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1127 set_do_vector_loop(true); 1128 } 1129 } 1130 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1131 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1132 1133 _max_node_limit = _directive->MaxNodeLimitOption; 1134 1135 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1136 set_clinit_barrier_on_entry(true); 1137 } 1138 if (debug_info()->recording_non_safepoints()) { 1139 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1140 (comp_arena(), 8, 0, nullptr)); 1141 set_default_node_notes(Node_Notes::make(this)); 1142 } 1143 1144 const int grow_ats = 16; 1145 _max_alias_types = grow_ats; 1146 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1147 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1148 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1149 { 1150 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1151 } 1152 // Initialize the first few types. 1153 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1154 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1155 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1156 _num_alias_types = AliasIdxRaw+1; 1157 // Zero out the alias type cache. 1158 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1159 // A null adr_type hits in the cache right away. Preload the right answer. 1160 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1161 } 1162 1163 #ifdef ASSERT 1164 // Verify that the current StartNode is valid. 1165 void Compile::verify_start(StartNode* s) const { 1166 assert(failing_internal() || s == start(), "should be StartNode"); 1167 } 1168 #endif 1169 1170 /** 1171 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1172 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1173 * the ideal graph. 1174 */ 1175 StartNode* Compile::start() const { 1176 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1177 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1178 Node* start = root()->fast_out(i); 1179 if (start->is_Start()) { 1180 return start->as_Start(); 1181 } 1182 } 1183 fatal("Did not find Start node!"); 1184 return nullptr; 1185 } 1186 1187 //-------------------------------immutable_memory------------------------------------- 1188 // Access immutable memory 1189 Node* Compile::immutable_memory() { 1190 if (_immutable_memory != nullptr) { 1191 return _immutable_memory; 1192 } 1193 StartNode* s = start(); 1194 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1195 Node *p = s->fast_out(i); 1196 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1197 _immutable_memory = p; 1198 return _immutable_memory; 1199 } 1200 } 1201 ShouldNotReachHere(); 1202 return nullptr; 1203 } 1204 1205 //----------------------set_cached_top_node------------------------------------ 1206 // Install the cached top node, and make sure Node::is_top works correctly. 1207 void Compile::set_cached_top_node(Node* tn) { 1208 if (tn != nullptr) verify_top(tn); 1209 Node* old_top = _top; 1210 _top = tn; 1211 // Calling Node::setup_is_top allows the nodes the chance to adjust 1212 // their _out arrays. 1213 if (_top != nullptr) _top->setup_is_top(); 1214 if (old_top != nullptr) old_top->setup_is_top(); 1215 assert(_top == nullptr || top()->is_top(), ""); 1216 } 1217 1218 #ifdef ASSERT 1219 uint Compile::count_live_nodes_by_graph_walk() { 1220 Unique_Node_List useful(comp_arena()); 1221 // Get useful node list by walking the graph. 1222 identify_useful_nodes(useful); 1223 return useful.size(); 1224 } 1225 1226 void Compile::print_missing_nodes() { 1227 1228 // Return if CompileLog is null and PrintIdealNodeCount is false. 1229 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1230 return; 1231 } 1232 1233 // This is an expensive function. It is executed only when the user 1234 // specifies VerifyIdealNodeCount option or otherwise knows the 1235 // additional work that needs to be done to identify reachable nodes 1236 // by walking the flow graph and find the missing ones using 1237 // _dead_node_list. 1238 1239 Unique_Node_List useful(comp_arena()); 1240 // Get useful node list by walking the graph. 1241 identify_useful_nodes(useful); 1242 1243 uint l_nodes = C->live_nodes(); 1244 uint l_nodes_by_walk = useful.size(); 1245 1246 if (l_nodes != l_nodes_by_walk) { 1247 if (_log != nullptr) { 1248 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1249 _log->stamp(); 1250 _log->end_head(); 1251 } 1252 VectorSet& useful_member_set = useful.member_set(); 1253 int last_idx = l_nodes_by_walk; 1254 for (int i = 0; i < last_idx; i++) { 1255 if (useful_member_set.test(i)) { 1256 if (_dead_node_list.test(i)) { 1257 if (_log != nullptr) { 1258 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1259 } 1260 if (PrintIdealNodeCount) { 1261 // Print the log message to tty 1262 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1263 useful.at(i)->dump(); 1264 } 1265 } 1266 } 1267 else if (! _dead_node_list.test(i)) { 1268 if (_log != nullptr) { 1269 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1270 } 1271 if (PrintIdealNodeCount) { 1272 // Print the log message to tty 1273 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1274 } 1275 } 1276 } 1277 if (_log != nullptr) { 1278 _log->tail("mismatched_nodes"); 1279 } 1280 } 1281 } 1282 void Compile::record_modified_node(Node* n) { 1283 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1284 _modified_nodes->push(n); 1285 } 1286 } 1287 1288 void Compile::remove_modified_node(Node* n) { 1289 if (_modified_nodes != nullptr) { 1290 _modified_nodes->remove(n); 1291 } 1292 } 1293 #endif 1294 1295 #ifndef PRODUCT 1296 void Compile::verify_top(Node* tn) const { 1297 if (tn != nullptr) { 1298 assert(tn->is_Con(), "top node must be a constant"); 1299 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1300 assert(tn->in(0) != nullptr, "must have live top node"); 1301 } 1302 } 1303 #endif 1304 1305 1306 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1307 1308 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1309 guarantee(arr != nullptr, ""); 1310 int num_blocks = arr->length(); 1311 if (grow_by < num_blocks) grow_by = num_blocks; 1312 int num_notes = grow_by * _node_notes_block_size; 1313 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1314 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1315 while (num_notes > 0) { 1316 arr->append(notes); 1317 notes += _node_notes_block_size; 1318 num_notes -= _node_notes_block_size; 1319 } 1320 assert(num_notes == 0, "exact multiple, please"); 1321 } 1322 1323 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1324 if (source == nullptr || dest == nullptr) return false; 1325 1326 if (dest->is_Con()) 1327 return false; // Do not push debug info onto constants. 1328 1329 #ifdef ASSERT 1330 // Leave a bread crumb trail pointing to the original node: 1331 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1332 dest->set_debug_orig(source); 1333 } 1334 #endif 1335 1336 if (node_note_array() == nullptr) 1337 return false; // Not collecting any notes now. 1338 1339 // This is a copy onto a pre-existing node, which may already have notes. 1340 // If both nodes have notes, do not overwrite any pre-existing notes. 1341 Node_Notes* source_notes = node_notes_at(source->_idx); 1342 if (source_notes == nullptr || source_notes->is_clear()) return false; 1343 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1344 if (dest_notes == nullptr || dest_notes->is_clear()) { 1345 return set_node_notes_at(dest->_idx, source_notes); 1346 } 1347 1348 Node_Notes merged_notes = (*source_notes); 1349 // The order of operations here ensures that dest notes will win... 1350 merged_notes.update_from(dest_notes); 1351 return set_node_notes_at(dest->_idx, &merged_notes); 1352 } 1353 1354 1355 //--------------------------allow_range_check_smearing------------------------- 1356 // Gating condition for coalescing similar range checks. 1357 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1358 // single covering check that is at least as strong as any of them. 1359 // If the optimization succeeds, the simplified (strengthened) range check 1360 // will always succeed. If it fails, we will deopt, and then give up 1361 // on the optimization. 1362 bool Compile::allow_range_check_smearing() const { 1363 // If this method has already thrown a range-check, 1364 // assume it was because we already tried range smearing 1365 // and it failed. 1366 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1367 return !already_trapped; 1368 } 1369 1370 1371 //------------------------------flatten_alias_type----------------------------- 1372 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1373 assert(do_aliasing(), "Aliasing should be enabled"); 1374 int offset = tj->offset(); 1375 TypePtr::PTR ptr = tj->ptr(); 1376 1377 // Known instance (scalarizable allocation) alias only with itself. 1378 bool is_known_inst = tj->isa_oopptr() != nullptr && 1379 tj->is_oopptr()->is_known_instance(); 1380 1381 // Process weird unsafe references. 1382 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1383 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1384 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1385 tj = TypeOopPtr::BOTTOM; 1386 ptr = tj->ptr(); 1387 offset = tj->offset(); 1388 } 1389 1390 // Array pointers need some flattening 1391 const TypeAryPtr* ta = tj->isa_aryptr(); 1392 if (ta && ta->is_stable()) { 1393 // Erase stability property for alias analysis. 1394 tj = ta = ta->cast_to_stable(false); 1395 } 1396 if (ta && ta->is_not_flat()) { 1397 // Erase not flat property for alias analysis. 1398 tj = ta = ta->cast_to_not_flat(false); 1399 } 1400 if (ta && ta->is_not_null_free()) { 1401 // Erase not null free property for alias analysis. 1402 tj = ta = ta->cast_to_not_null_free(false); 1403 } 1404 1405 if( ta && is_known_inst ) { 1406 if ( offset != Type::OffsetBot && 1407 offset > arrayOopDesc::length_offset_in_bytes() ) { 1408 offset = Type::OffsetBot; // Flatten constant access into array body only 1409 tj = ta = ta-> 1410 remove_speculative()-> 1411 cast_to_ptr_type(ptr)-> 1412 with_offset(offset); 1413 } 1414 } else if (ta) { 1415 // For arrays indexed by constant indices, we flatten the alias 1416 // space to include all of the array body. Only the header, klass 1417 // and array length can be accessed un-aliased. 1418 // For flat inline type array, each field has its own slice so 1419 // we must include the field offset. 1420 if( offset != Type::OffsetBot ) { 1421 if( ta->const_oop() ) { // MethodData* or Method* 1422 offset = Type::OffsetBot; // Flatten constant access into array body 1423 tj = ta = ta-> 1424 remove_speculative()-> 1425 cast_to_ptr_type(ptr)-> 1426 cast_to_exactness(false)-> 1427 with_offset(offset); 1428 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1429 // range is OK as-is. 1430 tj = ta = TypeAryPtr::RANGE; 1431 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1432 tj = TypeInstPtr::KLASS; // all klass loads look alike 1433 ta = TypeAryPtr::RANGE; // generic ignored junk 1434 ptr = TypePtr::BotPTR; 1435 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1436 tj = TypeInstPtr::MARK; 1437 ta = TypeAryPtr::RANGE; // generic ignored junk 1438 ptr = TypePtr::BotPTR; 1439 } else { // Random constant offset into array body 1440 offset = Type::OffsetBot; // Flatten constant access into array body 1441 tj = ta = ta-> 1442 remove_speculative()-> 1443 cast_to_ptr_type(ptr)-> 1444 cast_to_exactness(false)-> 1445 with_offset(offset); 1446 } 1447 } 1448 // Arrays of fixed size alias with arrays of unknown size. 1449 if (ta->size() != TypeInt::POS) { 1450 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1451 tj = ta = ta-> 1452 remove_speculative()-> 1453 cast_to_ptr_type(ptr)-> 1454 with_ary(tary)-> 1455 cast_to_exactness(false); 1456 } 1457 // Arrays of known objects become arrays of unknown objects. 1458 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1459 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1460 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1461 } 1462 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1463 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1464 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1465 } 1466 // Initially all flattened array accesses share a single slice 1467 if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flat_accesses_share_alias) { 1468 const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true); 1469 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), Type::Offset(Type::OffsetBot)); 1470 } 1471 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1472 // cannot be distinguished by bytecode alone. 1473 if (ta->elem() == TypeInt::BOOL) { 1474 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1475 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1476 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset()); 1477 } 1478 // During the 2nd round of IterGVN, NotNull castings are removed. 1479 // Make sure the Bottom and NotNull variants alias the same. 1480 // Also, make sure exact and non-exact variants alias the same. 1481 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1482 tj = ta = ta-> 1483 remove_speculative()-> 1484 cast_to_ptr_type(TypePtr::BotPTR)-> 1485 cast_to_exactness(false)-> 1486 with_offset(offset); 1487 } 1488 } 1489 1490 // Oop pointers need some flattening 1491 const TypeInstPtr *to = tj->isa_instptr(); 1492 if (to && to != TypeOopPtr::BOTTOM) { 1493 ciInstanceKlass* ik = to->instance_klass(); 1494 if( ptr == TypePtr::Constant ) { 1495 if (ik != ciEnv::current()->Class_klass() || 1496 offset < ik->layout_helper_size_in_bytes()) { 1497 // No constant oop pointers (such as Strings); they alias with 1498 // unknown strings. 1499 assert(!is_known_inst, "not scalarizable allocation"); 1500 tj = to = to-> 1501 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1502 remove_speculative()-> 1503 cast_to_ptr_type(TypePtr::BotPTR)-> 1504 cast_to_exactness(false); 1505 } 1506 } else if( is_known_inst ) { 1507 tj = to; // Keep NotNull and klass_is_exact for instance type 1508 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1509 // During the 2nd round of IterGVN, NotNull castings are removed. 1510 // Make sure the Bottom and NotNull variants alias the same. 1511 // Also, make sure exact and non-exact variants alias the same. 1512 tj = to = to-> 1513 remove_speculative()-> 1514 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1515 cast_to_ptr_type(TypePtr::BotPTR)-> 1516 cast_to_exactness(false); 1517 } 1518 if (to->speculative() != nullptr) { 1519 tj = to = to->remove_speculative(); 1520 } 1521 // Canonicalize the holder of this field 1522 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1523 // First handle header references such as a LoadKlassNode, even if the 1524 // object's klass is unloaded at compile time (4965979). 1525 if (!is_known_inst) { // Do it only for non-instance types 1526 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset)); 1527 } 1528 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1529 // Static fields are in the space above the normal instance 1530 // fields in the java.lang.Class instance. 1531 if (ik != ciEnv::current()->Class_klass()) { 1532 to = nullptr; 1533 tj = TypeOopPtr::BOTTOM; 1534 offset = tj->offset(); 1535 } 1536 } else { 1537 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1538 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1539 assert(tj->offset() == offset, "no change to offset expected"); 1540 bool xk = to->klass_is_exact(); 1541 int instance_id = to->instance_id(); 1542 1543 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1544 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1545 // its interfaces are included. 1546 if (xk && ik->equals(canonical_holder)) { 1547 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id), "exact type should be canonical type"); 1548 } else { 1549 assert(xk || !is_known_inst, "Known instance should be exact type"); 1550 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id); 1551 } 1552 } 1553 } 1554 1555 // Klass pointers to object array klasses need some flattening 1556 const TypeKlassPtr *tk = tj->isa_klassptr(); 1557 if( tk ) { 1558 // If we are referencing a field within a Klass, we need 1559 // to assume the worst case of an Object. Both exact and 1560 // inexact types must flatten to the same alias class so 1561 // use NotNull as the PTR. 1562 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1563 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1564 env()->Object_klass(), 1565 Type::Offset(offset)); 1566 } 1567 1568 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1569 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1570 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1571 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset)); 1572 } else { 1573 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_flat(), tk->is_null_free()); 1574 } 1575 } 1576 // Check for precise loads from the primary supertype array and force them 1577 // to the supertype cache alias index. Check for generic array loads from 1578 // the primary supertype array and also force them to the supertype cache 1579 // alias index. Since the same load can reach both, we need to merge 1580 // these 2 disparate memories into the same alias class. Since the 1581 // primary supertype array is read-only, there's no chance of confusion 1582 // where we bypass an array load and an array store. 1583 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1584 if (offset == Type::OffsetBot || 1585 (offset >= primary_supers_offset && 1586 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1587 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1588 offset = in_bytes(Klass::secondary_super_cache_offset()); 1589 tj = tk = tk->with_offset(offset); 1590 } 1591 } 1592 1593 // Flatten all Raw pointers together. 1594 if (tj->base() == Type::RawPtr) 1595 tj = TypeRawPtr::BOTTOM; 1596 1597 if (tj->base() == Type::AnyPtr) 1598 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1599 1600 offset = tj->offset(); 1601 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1602 1603 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1604 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1605 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1606 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1607 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1608 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1609 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1610 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1611 assert( tj->ptr() != TypePtr::TopPTR && 1612 tj->ptr() != TypePtr::AnyNull && 1613 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1614 // assert( tj->ptr() != TypePtr::Constant || 1615 // tj->base() == Type::RawPtr || 1616 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1617 1618 return tj; 1619 } 1620 1621 void Compile::AliasType::Init(int i, const TypePtr* at) { 1622 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1623 _index = i; 1624 _adr_type = at; 1625 _field = nullptr; 1626 _element = nullptr; 1627 _is_rewritable = true; // default 1628 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1629 if (atoop != nullptr && atoop->is_known_instance()) { 1630 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1631 _general_index = Compile::current()->get_alias_index(gt); 1632 } else { 1633 _general_index = 0; 1634 } 1635 } 1636 1637 BasicType Compile::AliasType::basic_type() const { 1638 if (element() != nullptr) { 1639 const Type* element = adr_type()->is_aryptr()->elem(); 1640 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1641 } if (field() != nullptr) { 1642 return field()->layout_type(); 1643 } else { 1644 return T_ILLEGAL; // unknown 1645 } 1646 } 1647 1648 //---------------------------------print_on------------------------------------ 1649 #ifndef PRODUCT 1650 void Compile::AliasType::print_on(outputStream* st) { 1651 if (index() < 10) 1652 st->print("@ <%d> ", index()); 1653 else st->print("@ <%d>", index()); 1654 st->print(is_rewritable() ? " " : " RO"); 1655 int offset = adr_type()->offset(); 1656 if (offset == Type::OffsetBot) 1657 st->print(" +any"); 1658 else st->print(" +%-3d", offset); 1659 st->print(" in "); 1660 adr_type()->dump_on(st); 1661 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1662 if (field() != nullptr && tjp) { 1663 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1664 tjp->offset() != field()->offset_in_bytes()) { 1665 st->print(" != "); 1666 field()->print(); 1667 st->print(" ***"); 1668 } 1669 } 1670 } 1671 1672 void print_alias_types() { 1673 Compile* C = Compile::current(); 1674 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1675 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1676 C->alias_type(idx)->print_on(tty); 1677 tty->cr(); 1678 } 1679 } 1680 #endif 1681 1682 1683 //----------------------------probe_alias_cache-------------------------------- 1684 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1685 intptr_t key = (intptr_t) adr_type; 1686 key ^= key >> logAliasCacheSize; 1687 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1688 } 1689 1690 1691 //-----------------------------grow_alias_types-------------------------------- 1692 void Compile::grow_alias_types() { 1693 const int old_ats = _max_alias_types; // how many before? 1694 const int new_ats = old_ats; // how many more? 1695 const int grow_ats = old_ats+new_ats; // how many now? 1696 _max_alias_types = grow_ats; 1697 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1698 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1699 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1700 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1701 } 1702 1703 1704 //--------------------------------find_alias_type------------------------------ 1705 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) { 1706 if (!do_aliasing()) { 1707 return alias_type(AliasIdxBot); 1708 } 1709 1710 AliasCacheEntry* ace = nullptr; 1711 if (!uncached) { 1712 ace = probe_alias_cache(adr_type); 1713 if (ace->_adr_type == adr_type) { 1714 return alias_type(ace->_index); 1715 } 1716 } 1717 1718 // Handle special cases. 1719 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1720 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1721 1722 // Do it the slow way. 1723 const TypePtr* flat = flatten_alias_type(adr_type); 1724 1725 #ifdef ASSERT 1726 { 1727 ResourceMark rm; 1728 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1729 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1730 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1731 Type::str(adr_type)); 1732 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1733 const TypeOopPtr* foop = flat->is_oopptr(); 1734 // Scalarizable allocations have exact klass always. 1735 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1736 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1737 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1738 Type::str(foop), Type::str(xoop)); 1739 } 1740 } 1741 #endif 1742 1743 int idx = AliasIdxTop; 1744 for (int i = 0; i < num_alias_types(); i++) { 1745 if (alias_type(i)->adr_type() == flat) { 1746 idx = i; 1747 break; 1748 } 1749 } 1750 1751 if (idx == AliasIdxTop) { 1752 if (no_create) return nullptr; 1753 // Grow the array if necessary. 1754 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1755 // Add a new alias type. 1756 idx = _num_alias_types++; 1757 _alias_types[idx]->Init(idx, flat); 1758 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1759 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1760 if (flat->isa_instptr()) { 1761 if (flat->offset() == java_lang_Class::klass_offset() 1762 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1763 alias_type(idx)->set_rewritable(false); 1764 } 1765 ciField* field = nullptr; 1766 if (flat->isa_aryptr()) { 1767 #ifdef ASSERT 1768 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1769 // (T_BYTE has the weakest alignment and size restrictions...) 1770 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1771 #endif 1772 const Type* elemtype = flat->is_aryptr()->elem(); 1773 if (flat->offset() == TypePtr::OffsetBot) { 1774 alias_type(idx)->set_element(elemtype); 1775 } 1776 int field_offset = flat->is_aryptr()->field_offset().get(); 1777 if (flat->is_flat() && 1778 field_offset != Type::OffsetBot) { 1779 ciInlineKlass* vk = elemtype->inline_klass(); 1780 field_offset += vk->payload_offset(); 1781 field = vk->get_field_by_offset(field_offset, false); 1782 } 1783 } 1784 if (flat->isa_klassptr()) { 1785 if (UseCompactObjectHeaders) { 1786 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1787 alias_type(idx)->set_rewritable(false); 1788 } 1789 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1790 alias_type(idx)->set_rewritable(false); 1791 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1792 alias_type(idx)->set_rewritable(false); 1793 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1794 alias_type(idx)->set_rewritable(false); 1795 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1796 alias_type(idx)->set_rewritable(false); 1797 if (flat->offset() == in_bytes(Klass::layout_helper_offset())) 1798 alias_type(idx)->set_rewritable(false); 1799 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1800 alias_type(idx)->set_rewritable(false); 1801 } 1802 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1803 // but the base pointer type is not distinctive enough to identify 1804 // references into JavaThread.) 1805 1806 // Check for final fields. 1807 const TypeInstPtr* tinst = flat->isa_instptr(); 1808 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1809 if (tinst->const_oop() != nullptr && 1810 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1811 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1812 // static field 1813 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1814 field = k->get_field_by_offset(tinst->offset(), true); 1815 } else if (tinst->is_inlinetypeptr()) { 1816 // Inline type field 1817 ciInlineKlass* vk = tinst->inline_klass(); 1818 field = vk->get_field_by_offset(tinst->offset(), false); 1819 } else { 1820 ciInstanceKlass *k = tinst->instance_klass(); 1821 field = k->get_field_by_offset(tinst->offset(), false); 1822 } 1823 } 1824 assert(field == nullptr || 1825 original_field == nullptr || 1826 (field->holder() == original_field->holder() && 1827 field->offset_in_bytes() == original_field->offset_in_bytes() && 1828 field->is_static() == original_field->is_static()), "wrong field?"); 1829 // Set field() and is_rewritable() attributes. 1830 if (field != nullptr) { 1831 alias_type(idx)->set_field(field); 1832 if (flat->isa_aryptr()) { 1833 // Fields of flat arrays are rewritable although they are declared final 1834 assert(flat->is_flat(), "must be a flat array"); 1835 alias_type(idx)->set_rewritable(true); 1836 } 1837 } 1838 } 1839 1840 // Fill the cache for next time. 1841 if (!uncached) { 1842 ace->_adr_type = adr_type; 1843 ace->_index = idx; 1844 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1845 1846 // Might as well try to fill the cache for the flattened version, too. 1847 AliasCacheEntry* face = probe_alias_cache(flat); 1848 if (face->_adr_type == nullptr) { 1849 face->_adr_type = flat; 1850 face->_index = idx; 1851 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1852 } 1853 } 1854 1855 return alias_type(idx); 1856 } 1857 1858 1859 Compile::AliasType* Compile::alias_type(ciField* field) { 1860 const TypeOopPtr* t; 1861 if (field->is_static()) 1862 t = TypeInstPtr::make(field->holder()->java_mirror()); 1863 else 1864 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1865 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1866 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1867 return atp; 1868 } 1869 1870 1871 //------------------------------have_alias_type-------------------------------- 1872 bool Compile::have_alias_type(const TypePtr* adr_type) { 1873 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1874 if (ace->_adr_type == adr_type) { 1875 return true; 1876 } 1877 1878 // Handle special cases. 1879 if (adr_type == nullptr) return true; 1880 if (adr_type == TypePtr::BOTTOM) return true; 1881 1882 return find_alias_type(adr_type, true, nullptr) != nullptr; 1883 } 1884 1885 //-----------------------------must_alias-------------------------------------- 1886 // True if all values of the given address type are in the given alias category. 1887 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1888 if (alias_idx == AliasIdxBot) return true; // the universal category 1889 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1890 if (alias_idx == AliasIdxTop) return false; // the empty category 1891 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1892 1893 // the only remaining possible overlap is identity 1894 int adr_idx = get_alias_index(adr_type); 1895 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1896 assert(adr_idx == alias_idx || 1897 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1898 && adr_type != TypeOopPtr::BOTTOM), 1899 "should not be testing for overlap with an unsafe pointer"); 1900 return adr_idx == alias_idx; 1901 } 1902 1903 //------------------------------can_alias-------------------------------------- 1904 // True if any values of the given address type are in the given alias category. 1905 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1906 if (alias_idx == AliasIdxTop) return false; // the empty category 1907 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1908 // Known instance doesn't alias with bottom memory 1909 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1910 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1911 1912 // the only remaining possible overlap is identity 1913 int adr_idx = get_alias_index(adr_type); 1914 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1915 return adr_idx == alias_idx; 1916 } 1917 1918 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1919 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1920 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1921 if (parse_predicate_count() == 0) { 1922 return; 1923 } 1924 for (int i = 0; i < parse_predicate_count(); i++) { 1925 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1926 parse_predicate->mark_useless(igvn); 1927 } 1928 _parse_predicates.clear(); 1929 } 1930 1931 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1932 if (!n->for_post_loop_opts_igvn()) { 1933 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1934 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1935 _for_post_loop_igvn.append(n); 1936 } 1937 } 1938 1939 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1940 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1941 _for_post_loop_igvn.remove(n); 1942 } 1943 1944 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1945 // Verify that all previous optimizations produced a valid graph 1946 // at least to this point, even if no loop optimizations were done. 1947 PhaseIdealLoop::verify(igvn); 1948 1949 if (has_loops() || _loop_opts_cnt > 0) { 1950 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1951 } 1952 C->set_post_loop_opts_phase(); // no more loop opts allowed 1953 1954 assert(!C->major_progress(), "not cleared"); 1955 1956 if (_for_post_loop_igvn.length() > 0) { 1957 while (_for_post_loop_igvn.length() > 0) { 1958 Node* n = _for_post_loop_igvn.pop(); 1959 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1960 igvn._worklist.push(n); 1961 } 1962 igvn.optimize(); 1963 if (failing()) return; 1964 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1965 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1966 1967 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1968 if (C->major_progress()) { 1969 C->clear_major_progress(); // ensure that major progress is now clear 1970 } 1971 } 1972 } 1973 1974 void Compile::add_inline_type(Node* n) { 1975 assert(n->is_InlineType(), "unexpected node"); 1976 _inline_type_nodes.push(n); 1977 } 1978 1979 void Compile::remove_inline_type(Node* n) { 1980 assert(n->is_InlineType(), "unexpected node"); 1981 if (_inline_type_nodes.contains(n)) { 1982 _inline_type_nodes.remove(n); 1983 } 1984 } 1985 1986 // Does the return value keep otherwise useless inline type allocations alive? 1987 static bool return_val_keeps_allocations_alive(Node* ret_val) { 1988 ResourceMark rm; 1989 Unique_Node_List wq; 1990 wq.push(ret_val); 1991 bool some_allocations = false; 1992 for (uint i = 0; i < wq.size(); i++) { 1993 Node* n = wq.at(i); 1994 if (n->outcnt() > 1) { 1995 // Some other use for the allocation 1996 return false; 1997 } else if (n->is_InlineType()) { 1998 wq.push(n->in(1)); 1999 } else if (n->is_Phi()) { 2000 for (uint j = 1; j < n->req(); j++) { 2001 wq.push(n->in(j)); 2002 } 2003 } else if (n->is_CheckCastPP() && 2004 n->in(1)->is_Proj() && 2005 n->in(1)->in(0)->is_Allocate()) { 2006 some_allocations = true; 2007 } else if (n->is_CheckCastPP()) { 2008 wq.push(n->in(1)); 2009 } 2010 } 2011 return some_allocations; 2012 } 2013 2014 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) { 2015 // Make sure that the return value does not keep an otherwise unused allocation alive 2016 if (tf()->returns_inline_type_as_fields()) { 2017 Node* ret = nullptr; 2018 for (uint i = 1; i < root()->req(); i++) { 2019 Node* in = root()->in(i); 2020 if (in->Opcode() == Op_Return) { 2021 assert(ret == nullptr, "only one return"); 2022 ret = in; 2023 } 2024 } 2025 if (ret != nullptr) { 2026 Node* ret_val = ret->in(TypeFunc::Parms); 2027 if (igvn.type(ret_val)->isa_oopptr() && 2028 return_val_keeps_allocations_alive(ret_val)) { 2029 igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn)); 2030 assert(ret_val->outcnt() == 0, "should be dead now"); 2031 igvn.remove_dead_node(ret_val); 2032 } 2033 } 2034 } 2035 if (_inline_type_nodes.length() == 0) { 2036 return; 2037 } 2038 // Scalarize inline types in safepoint debug info. 2039 // Delay this until all inlining is over to avoid getting inconsistent debug info. 2040 set_scalarize_in_safepoints(true); 2041 for (int i = _inline_type_nodes.length()-1; i >= 0; i--) { 2042 InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType(); 2043 vt->make_scalar_in_safepoints(&igvn); 2044 igvn.record_for_igvn(vt); 2045 } 2046 if (remove) { 2047 // Remove inline type nodes by replacing them with their oop input 2048 while (_inline_type_nodes.length() > 0) { 2049 InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType(); 2050 if (vt->outcnt() == 0) { 2051 igvn.remove_dead_node(vt); 2052 continue; 2053 } 2054 for (DUIterator i = vt->outs(); vt->has_out(i); i++) { 2055 DEBUG_ONLY(bool must_be_buffered = false); 2056 Node* u = vt->out(i); 2057 // Check if any users are blackholes. If so, rewrite them to use either the 2058 // allocated buffer, or individual components, instead of the inline type node 2059 // that goes away. 2060 if (u->is_Blackhole()) { 2061 BlackholeNode* bh = u->as_Blackhole(); 2062 2063 // Unlink the old input 2064 int idx = bh->find_edge(vt); 2065 assert(idx != -1, "The edge should be there"); 2066 bh->del_req(idx); 2067 --i; 2068 2069 if (vt->is_allocated(&igvn)) { 2070 // Already has the allocated instance, blackhole that 2071 bh->add_req(vt->get_oop()); 2072 } else { 2073 // Not allocated yet, blackhole the components 2074 for (uint c = 0; c < vt->field_count(); c++) { 2075 bh->add_req(vt->field_value(c)); 2076 } 2077 } 2078 2079 // Node modified, record for IGVN 2080 igvn.record_for_igvn(bh); 2081 } 2082 #ifdef ASSERT 2083 // Verify that inline type is buffered when replacing by oop 2084 else if (u->is_InlineType()) { 2085 // InlineType uses don't need buffering because they are about to be replaced as well 2086 } else if (u->is_Phi()) { 2087 // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through 2088 } else { 2089 must_be_buffered = true; 2090 } 2091 if (must_be_buffered && !vt->is_allocated(&igvn)) { 2092 vt->dump(0); 2093 u->dump(0); 2094 assert(false, "Should have been buffered"); 2095 } 2096 #endif 2097 } 2098 igvn.replace_node(vt, vt->get_oop()); 2099 } 2100 } 2101 igvn.optimize(); 2102 } 2103 2104 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) { 2105 if (!_has_flat_accesses) { 2106 return; 2107 } 2108 // Initially, all flat array accesses share the same slice to 2109 // keep dependencies with Object[] array accesses (that could be 2110 // to a flat array) correct. We're done with parsing so we 2111 // now know all flat array accesses in this compile 2112 // unit. Let's move flat array accesses to their own slice, 2113 // one per element field. This should help memory access 2114 // optimizations. 2115 ResourceMark rm; 2116 Unique_Node_List wq; 2117 wq.push(root()); 2118 2119 Node_List mergememnodes; 2120 Node_List memnodes; 2121 2122 // Alias index currently shared by all flat memory accesses 2123 int index = get_alias_index(TypeAryPtr::INLINES); 2124 2125 // Find MergeMem nodes and flat array accesses 2126 for (uint i = 0; i < wq.size(); i++) { 2127 Node* n = wq.at(i); 2128 if (n->is_Mem()) { 2129 const TypePtr* adr_type = nullptr; 2130 adr_type = get_adr_type(get_alias_index(n->adr_type())); 2131 if (adr_type == TypeAryPtr::INLINES) { 2132 memnodes.push(n); 2133 } 2134 } else if (n->is_MergeMem()) { 2135 MergeMemNode* mm = n->as_MergeMem(); 2136 if (mm->memory_at(index) != mm->base_memory()) { 2137 mergememnodes.push(n); 2138 } 2139 } 2140 for (uint j = 0; j < n->req(); j++) { 2141 Node* m = n->in(j); 2142 if (m != nullptr) { 2143 wq.push(m); 2144 } 2145 } 2146 } 2147 2148 if (memnodes.size() > 0) { 2149 _flat_accesses_share_alias = false; 2150 2151 // We are going to change the slice for the flat array 2152 // accesses so we need to clear the cache entries that refer to 2153 // them. 2154 for (uint i = 0; i < AliasCacheSize; i++) { 2155 AliasCacheEntry* ace = &_alias_cache[i]; 2156 if (ace->_adr_type != nullptr && 2157 ace->_adr_type->is_flat()) { 2158 ace->_adr_type = nullptr; 2159 ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop 2160 } 2161 } 2162 2163 // Find what aliases we are going to add 2164 int start_alias = num_alias_types()-1; 2165 int stop_alias = 0; 2166 2167 for (uint i = 0; i < memnodes.size(); i++) { 2168 Node* m = memnodes.at(i); 2169 const TypePtr* adr_type = nullptr; 2170 adr_type = m->adr_type(); 2171 #ifdef ASSERT 2172 m->as_Mem()->set_adr_type(adr_type); 2173 #endif 2174 int idx = get_alias_index(adr_type); 2175 start_alias = MIN2(start_alias, idx); 2176 stop_alias = MAX2(stop_alias, idx); 2177 } 2178 2179 assert(stop_alias >= start_alias, "should have expanded aliases"); 2180 2181 Node_Stack stack(0); 2182 #ifdef ASSERT 2183 VectorSet seen(Thread::current()->resource_area()); 2184 #endif 2185 // Now let's fix the memory graph so each flat array access 2186 // is moved to the right slice. Start from the MergeMem nodes. 2187 uint last = unique(); 2188 for (uint i = 0; i < mergememnodes.size(); i++) { 2189 MergeMemNode* current = mergememnodes.at(i)->as_MergeMem(); 2190 Node* n = current->memory_at(index); 2191 MergeMemNode* mm = nullptr; 2192 do { 2193 // Follow memory edges through memory accesses, phis and 2194 // narrow membars and push nodes on the stack. Once we hit 2195 // bottom memory, we pop element off the stack one at a 2196 // time, in reverse order, and move them to the right slice 2197 // by changing their memory edges. 2198 if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) { 2199 assert(!seen.test_set(n->_idx), ""); 2200 // Uses (a load for instance) will need to be moved to the 2201 // right slice as well and will get a new memory state 2202 // that we don't know yet. The use could also be the 2203 // backedge of a loop. We put a place holder node between 2204 // the memory node and its uses. We replace that place 2205 // holder with the correct memory state once we know it, 2206 // i.e. when nodes are popped off the stack. Using the 2207 // place holder make the logic work in the presence of 2208 // loops. 2209 if (n->outcnt() > 1) { 2210 Node* place_holder = nullptr; 2211 assert(!n->has_out_with(Op_Node), ""); 2212 for (DUIterator k = n->outs(); n->has_out(k); k++) { 2213 Node* u = n->out(k); 2214 if (u != current && u->_idx < last) { 2215 bool success = false; 2216 for (uint l = 0; l < u->req(); l++) { 2217 if (!stack.is_empty() && u == stack.node() && l == stack.index()) { 2218 continue; 2219 } 2220 Node* in = u->in(l); 2221 if (in == n) { 2222 if (place_holder == nullptr) { 2223 place_holder = new Node(1); 2224 place_holder->init_req(0, n); 2225 } 2226 igvn.replace_input_of(u, l, place_holder); 2227 success = true; 2228 } 2229 } 2230 if (success) { 2231 --k; 2232 } 2233 } 2234 } 2235 } 2236 if (n->is_Phi()) { 2237 stack.push(n, 1); 2238 n = n->in(1); 2239 } else if (n->is_Mem()) { 2240 stack.push(n, n->req()); 2241 n = n->in(MemNode::Memory); 2242 } else { 2243 assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, ""); 2244 stack.push(n, n->req()); 2245 n = n->in(0)->in(TypeFunc::Memory); 2246 } 2247 } else { 2248 assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), ""); 2249 // Build a new MergeMem node to carry the new memory state 2250 // as we build it. IGVN should fold extraneous MergeMem 2251 // nodes. 2252 mm = MergeMemNode::make(n); 2253 igvn.register_new_node_with_optimizer(mm); 2254 while (stack.size() > 0) { 2255 Node* m = stack.node(); 2256 uint idx = stack.index(); 2257 if (m->is_Mem()) { 2258 // Move memory node to its new slice 2259 const TypePtr* adr_type = m->adr_type(); 2260 int alias = get_alias_index(adr_type); 2261 Node* prev = mm->memory_at(alias); 2262 igvn.replace_input_of(m, MemNode::Memory, prev); 2263 mm->set_memory_at(alias, m); 2264 } else if (m->is_Phi()) { 2265 // We need as many new phis as there are new aliases 2266 igvn.replace_input_of(m, idx, mm); 2267 if (idx == m->req()-1) { 2268 Node* r = m->in(0); 2269 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2270 const TypePtr* adr_type = get_adr_type(j); 2271 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2272 continue; 2273 } 2274 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j)); 2275 igvn.register_new_node_with_optimizer(phi); 2276 for (uint k = 1; k < m->req(); k++) { 2277 phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j)); 2278 } 2279 mm->set_memory_at(j, phi); 2280 } 2281 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2282 igvn.register_new_node_with_optimizer(base_phi); 2283 for (uint k = 1; k < m->req(); k++) { 2284 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory()); 2285 } 2286 mm->set_base_memory(base_phi); 2287 } 2288 } else { 2289 // This is a MemBarCPUOrder node from 2290 // Parse::array_load()/Parse::array_store(), in the 2291 // branch that handles flat arrays hidden under 2292 // an Object[] array. We also need one new membar per 2293 // new alias to keep the unknown access that the 2294 // membars protect properly ordered with accesses to 2295 // known flat array. 2296 assert(m->is_Proj(), "projection expected"); 2297 Node* ctrl = m->in(0)->in(TypeFunc::Control); 2298 igvn.replace_input_of(m->in(0), TypeFunc::Control, top()); 2299 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2300 const TypePtr* adr_type = get_adr_type(j); 2301 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2302 continue; 2303 } 2304 MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr); 2305 igvn.register_new_node_with_optimizer(mb); 2306 Node* mem = mm->memory_at(j); 2307 mb->init_req(TypeFunc::Control, ctrl); 2308 mb->init_req(TypeFunc::Memory, mem); 2309 ctrl = new ProjNode(mb, TypeFunc::Control); 2310 igvn.register_new_node_with_optimizer(ctrl); 2311 mem = new ProjNode(mb, TypeFunc::Memory); 2312 igvn.register_new_node_with_optimizer(mem); 2313 mm->set_memory_at(j, mem); 2314 } 2315 igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl); 2316 } 2317 if (idx < m->req()-1) { 2318 idx += 1; 2319 stack.set_index(idx); 2320 n = m->in(idx); 2321 break; 2322 } 2323 // Take care of place holder nodes 2324 if (m->has_out_with(Op_Node)) { 2325 Node* place_holder = m->find_out_with(Op_Node); 2326 if (place_holder != nullptr) { 2327 Node* mm_clone = mm->clone(); 2328 igvn.register_new_node_with_optimizer(mm_clone); 2329 Node* hook = new Node(1); 2330 hook->init_req(0, mm); 2331 igvn.replace_node(place_holder, mm_clone); 2332 hook->destruct(&igvn); 2333 } 2334 assert(!m->has_out_with(Op_Node), "place holder should be gone now"); 2335 } 2336 stack.pop(); 2337 } 2338 } 2339 } while(stack.size() > 0); 2340 // Fix the memory state at the MergeMem we started from 2341 igvn.rehash_node_delayed(current); 2342 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2343 const TypePtr* adr_type = get_adr_type(j); 2344 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) { 2345 continue; 2346 } 2347 current->set_memory_at(j, mm); 2348 } 2349 current->set_memory_at(index, current->base_memory()); 2350 } 2351 igvn.optimize(); 2352 } 2353 print_method(PHASE_SPLIT_INLINES_ARRAY, 2); 2354 #ifdef ASSERT 2355 if (!_flat_accesses_share_alias) { 2356 wq.clear(); 2357 wq.push(root()); 2358 for (uint i = 0; i < wq.size(); i++) { 2359 Node* n = wq.at(i); 2360 assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph"); 2361 for (uint j = 0; j < n->req(); j++) { 2362 Node* m = n->in(j); 2363 if (m != nullptr) { 2364 wq.push(m); 2365 } 2366 } 2367 } 2368 } 2369 #endif 2370 } 2371 2372 void Compile::record_for_merge_stores_igvn(Node* n) { 2373 if (!n->for_merge_stores_igvn()) { 2374 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 2375 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2376 _for_merge_stores_igvn.append(n); 2377 } 2378 } 2379 2380 void Compile::remove_from_merge_stores_igvn(Node* n) { 2381 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2382 _for_merge_stores_igvn.remove(n); 2383 } 2384 2385 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 2386 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 2387 // the stores, and we merge the wrong sequence of stores. 2388 // Example: 2389 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 2390 // Apply MergeStores: 2391 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 2392 // Remove more RangeChecks: 2393 // StoreI [ StoreL ] StoreI 2394 // But now it would have been better to do this instead: 2395 // [ StoreL ] [ StoreL ] 2396 // 2397 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 2398 // since we never unset _merge_stores_phase. 2399 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 2400 C->set_merge_stores_phase(); 2401 2402 if (_for_merge_stores_igvn.length() > 0) { 2403 while (_for_merge_stores_igvn.length() > 0) { 2404 Node* n = _for_merge_stores_igvn.pop(); 2405 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2406 igvn._worklist.push(n); 2407 } 2408 igvn.optimize(); 2409 if (failing()) return; 2410 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 2411 print_method(PHASE_AFTER_MERGE_STORES, 3); 2412 } 2413 } 2414 2415 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 2416 if (OptimizeUnstableIf) { 2417 _unstable_if_traps.append(trap); 2418 } 2419 } 2420 2421 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 2422 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 2423 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2424 Node* n = trap->uncommon_trap(); 2425 if (!useful.member(n)) { 2426 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 2427 } 2428 } 2429 } 2430 2431 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 2432 // or fold-compares case. Return true if succeed or not found. 2433 // 2434 // In rare cases, the found trap has been processed. It is too late to delete it. Return 2435 // false and ask fold-compares to yield. 2436 // 2437 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 2438 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 2439 // when deoptimization does happen. 2440 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 2441 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 2442 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2443 if (trap->uncommon_trap() == unc) { 2444 if (yield && trap->modified()) { 2445 return false; 2446 } 2447 _unstable_if_traps.delete_at(i); 2448 break; 2449 } 2450 } 2451 return true; 2452 } 2453 2454 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 2455 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 2456 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 2457 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 2458 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2459 CallStaticJavaNode* unc = trap->uncommon_trap(); 2460 int next_bci = trap->next_bci(); 2461 bool modified = trap->modified(); 2462 2463 if (next_bci != -1 && !modified) { 2464 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2465 JVMState* jvms = unc->jvms(); 2466 ciMethod* method = jvms->method(); 2467 ciBytecodeStream iter(method); 2468 2469 iter.force_bci(jvms->bci()); 2470 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2471 Bytecodes::Code c = iter.cur_bc(); 2472 Node* lhs = nullptr; 2473 Node* rhs = nullptr; 2474 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2475 lhs = unc->peek_operand(0); 2476 rhs = unc->peek_operand(1); 2477 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2478 lhs = unc->peek_operand(0); 2479 } 2480 2481 ResourceMark rm; 2482 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2483 assert(live_locals.is_valid(), "broken liveness info"); 2484 int len = (int)live_locals.size(); 2485 2486 for (int i = 0; i < len; i++) { 2487 Node* local = unc->local(jvms, i); 2488 // kill local using the liveness of next_bci. 2489 // give up when the local looks like an operand to secure reexecution. 2490 if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) { 2491 uint idx = jvms->locoff() + i; 2492 #ifdef ASSERT 2493 if (PrintOpto && Verbose) { 2494 tty->print("[unstable_if] kill local#%d: ", idx); 2495 local->dump(); 2496 tty->cr(); 2497 } 2498 #endif 2499 igvn.replace_input_of(unc, idx, top()); 2500 modified = true; 2501 } 2502 } 2503 } 2504 2505 // keep the modified trap for late query 2506 if (modified) { 2507 trap->set_modified(); 2508 } else { 2509 _unstable_if_traps.delete_at(i); 2510 } 2511 } 2512 igvn.optimize(); 2513 } 2514 2515 // StringOpts and late inlining of string methods 2516 void Compile::inline_string_calls(bool parse_time) { 2517 { 2518 // remove useless nodes to make the usage analysis simpler 2519 ResourceMark rm; 2520 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2521 } 2522 2523 { 2524 ResourceMark rm; 2525 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2526 PhaseStringOpts pso(initial_gvn()); 2527 print_method(PHASE_AFTER_STRINGOPTS, 3); 2528 } 2529 2530 // now inline anything that we skipped the first time around 2531 if (!parse_time) { 2532 _late_inlines_pos = _late_inlines.length(); 2533 } 2534 2535 while (_string_late_inlines.length() > 0) { 2536 CallGenerator* cg = _string_late_inlines.pop(); 2537 cg->do_late_inline(); 2538 if (failing()) return; 2539 } 2540 _string_late_inlines.trunc_to(0); 2541 } 2542 2543 // Late inlining of boxing methods 2544 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2545 if (_boxing_late_inlines.length() > 0) { 2546 assert(has_boxed_value(), "inconsistent"); 2547 2548 set_inlining_incrementally(true); 2549 2550 igvn_worklist()->ensure_empty(); // should be done with igvn 2551 2552 _late_inlines_pos = _late_inlines.length(); 2553 2554 while (_boxing_late_inlines.length() > 0) { 2555 CallGenerator* cg = _boxing_late_inlines.pop(); 2556 cg->do_late_inline(); 2557 if (failing()) return; 2558 } 2559 _boxing_late_inlines.trunc_to(0); 2560 2561 inline_incrementally_cleanup(igvn); 2562 2563 set_inlining_incrementally(false); 2564 } 2565 } 2566 2567 bool Compile::inline_incrementally_one() { 2568 assert(IncrementalInline, "incremental inlining should be on"); 2569 2570 TracePhase tp(_t_incrInline_inline); 2571 2572 set_inlining_progress(false); 2573 set_do_cleanup(false); 2574 2575 for (int i = 0; i < _late_inlines.length(); i++) { 2576 _late_inlines_pos = i+1; 2577 CallGenerator* cg = _late_inlines.at(i); 2578 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2579 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2580 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2581 cg->do_late_inline(); 2582 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2583 if (failing()) { 2584 return false; 2585 } else if (inlining_progress()) { 2586 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2587 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2588 break; // process one call site at a time 2589 } else { 2590 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2591 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2592 // Avoid potential infinite loop if node already in the IGVN list 2593 assert(false, "scheduled for IGVN during inlining attempt"); 2594 } else { 2595 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2596 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2597 cg->call_node()->set_generator(cg); 2598 } 2599 } 2600 } else { 2601 // Ignore late inline direct calls when inlining is not allowed. 2602 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2603 } 2604 } 2605 // Remove processed elements. 2606 _late_inlines.remove_till(_late_inlines_pos); 2607 _late_inlines_pos = 0; 2608 2609 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2610 2611 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2612 2613 set_inlining_progress(false); 2614 set_do_cleanup(false); 2615 2616 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2617 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2618 } 2619 2620 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2621 { 2622 TracePhase tp(_t_incrInline_pru); 2623 ResourceMark rm; 2624 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2625 } 2626 { 2627 TracePhase tp(_t_incrInline_igvn); 2628 igvn.reset_from_gvn(initial_gvn()); 2629 igvn.optimize(); 2630 if (failing()) return; 2631 } 2632 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2633 } 2634 2635 // Perform incremental inlining until bound on number of live nodes is reached 2636 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2637 TracePhase tp(_t_incrInline); 2638 2639 set_inlining_incrementally(true); 2640 uint low_live_nodes = 0; 2641 2642 while (_late_inlines.length() > 0) { 2643 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2644 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2645 TracePhase tp(_t_incrInline_ideal); 2646 // PhaseIdealLoop is expensive so we only try it once we are 2647 // out of live nodes and we only try it again if the previous 2648 // helped got the number of nodes down significantly 2649 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2650 if (failing()) return; 2651 low_live_nodes = live_nodes(); 2652 _major_progress = true; 2653 } 2654 2655 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2656 bool do_print_inlining = print_inlining() || print_intrinsics(); 2657 if (do_print_inlining || log() != nullptr) { 2658 // Print inlining message for candidates that we couldn't inline for lack of space. 2659 for (int i = 0; i < _late_inlines.length(); i++) { 2660 CallGenerator* cg = _late_inlines.at(i); 2661 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2662 if (do_print_inlining) { 2663 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2664 } 2665 log_late_inline_failure(cg, msg); 2666 } 2667 } 2668 break; // finish 2669 } 2670 } 2671 2672 igvn_worklist()->ensure_empty(); // should be done with igvn 2673 2674 while (inline_incrementally_one()) { 2675 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2676 } 2677 if (failing()) return; 2678 2679 inline_incrementally_cleanup(igvn); 2680 2681 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2682 2683 if (failing()) return; 2684 2685 if (_late_inlines.length() == 0) { 2686 break; // no more progress 2687 } 2688 } 2689 2690 igvn_worklist()->ensure_empty(); // should be done with igvn 2691 2692 if (_string_late_inlines.length() > 0) { 2693 assert(has_stringbuilder(), "inconsistent"); 2694 2695 inline_string_calls(false); 2696 2697 if (failing()) return; 2698 2699 inline_incrementally_cleanup(igvn); 2700 } 2701 2702 set_inlining_incrementally(false); 2703 } 2704 2705 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2706 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2707 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2708 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2709 // as if "inlining_incrementally() == true" were set. 2710 assert(inlining_incrementally() == false, "not allowed"); 2711 #ifdef ASSERT 2712 Unique_Node_List* modified_nodes = _modified_nodes; 2713 _modified_nodes = nullptr; 2714 #endif 2715 assert(_late_inlines.length() > 0, "sanity"); 2716 2717 while (_late_inlines.length() > 0) { 2718 igvn_worklist()->ensure_empty(); // should be done with igvn 2719 2720 while (inline_incrementally_one()) { 2721 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2722 } 2723 if (failing()) return; 2724 2725 inline_incrementally_cleanup(igvn); 2726 } 2727 DEBUG_ONLY( _modified_nodes = modified_nodes; ) 2728 } 2729 2730 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2731 if (_loop_opts_cnt > 0) { 2732 while (major_progress() && (_loop_opts_cnt > 0)) { 2733 TracePhase tp(_t_idealLoop); 2734 PhaseIdealLoop::optimize(igvn, mode); 2735 _loop_opts_cnt--; 2736 if (failing()) return false; 2737 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2738 } 2739 } 2740 return true; 2741 } 2742 2743 // Remove edges from "root" to each SafePoint at a backward branch. 2744 // They were inserted during parsing (see add_safepoint()) to make 2745 // infinite loops without calls or exceptions visible to root, i.e., 2746 // useful. 2747 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2748 Node *r = root(); 2749 if (r != nullptr) { 2750 for (uint i = r->req(); i < r->len(); ++i) { 2751 Node *n = r->in(i); 2752 if (n != nullptr && n->is_SafePoint()) { 2753 r->rm_prec(i); 2754 if (n->outcnt() == 0) { 2755 igvn.remove_dead_node(n); 2756 } 2757 --i; 2758 } 2759 } 2760 // Parsing may have added top inputs to the root node (Path 2761 // leading to the Halt node proven dead). Make sure we get a 2762 // chance to clean them up. 2763 igvn._worklist.push(r); 2764 igvn.optimize(); 2765 } 2766 } 2767 2768 //------------------------------Optimize--------------------------------------- 2769 // Given a graph, optimize it. 2770 void Compile::Optimize() { 2771 TracePhase tp(_t_optimizer); 2772 2773 #ifndef PRODUCT 2774 if (env()->break_at_compile()) { 2775 BREAKPOINT; 2776 } 2777 2778 #endif 2779 2780 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2781 #ifdef ASSERT 2782 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2783 #endif 2784 2785 ResourceMark rm; 2786 2787 NOT_PRODUCT( verify_graph_edges(); ) 2788 2789 print_method(PHASE_AFTER_PARSING, 1); 2790 2791 { 2792 // Iterative Global Value Numbering, including ideal transforms 2793 // Initialize IterGVN with types and values from parse-time GVN 2794 PhaseIterGVN igvn(initial_gvn()); 2795 #ifdef ASSERT 2796 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2797 #endif 2798 { 2799 TracePhase tp(_t_iterGVN); 2800 igvn.optimize(); 2801 } 2802 2803 if (failing()) return; 2804 2805 print_method(PHASE_ITER_GVN1, 2); 2806 2807 process_for_unstable_if_traps(igvn); 2808 2809 if (failing()) return; 2810 2811 inline_incrementally(igvn); 2812 2813 print_method(PHASE_INCREMENTAL_INLINE, 2); 2814 2815 if (failing()) return; 2816 2817 if (eliminate_boxing()) { 2818 // Inline valueOf() methods now. 2819 inline_boxing_calls(igvn); 2820 2821 if (failing()) return; 2822 2823 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2824 inline_incrementally(igvn); 2825 } 2826 2827 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2828 2829 if (failing()) return; 2830 } 2831 2832 // Remove the speculative part of types and clean up the graph from 2833 // the extra CastPP nodes whose only purpose is to carry them. Do 2834 // that early so that optimizations are not disrupted by the extra 2835 // CastPP nodes. 2836 remove_speculative_types(igvn); 2837 2838 if (failing()) return; 2839 2840 // No more new expensive nodes will be added to the list from here 2841 // so keep only the actual candidates for optimizations. 2842 cleanup_expensive_nodes(igvn); 2843 2844 if (failing()) return; 2845 2846 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2847 if (EnableVectorSupport && has_vbox_nodes()) { 2848 TracePhase tp(_t_vector); 2849 PhaseVector pv(igvn); 2850 pv.optimize_vector_boxes(); 2851 if (failing()) return; 2852 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2853 } 2854 assert(!has_vbox_nodes(), "sanity"); 2855 2856 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2857 Compile::TracePhase tp(_t_renumberLive); 2858 igvn_worklist()->ensure_empty(); // should be done with igvn 2859 { 2860 ResourceMark rm; 2861 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2862 } 2863 igvn.reset_from_gvn(initial_gvn()); 2864 igvn.optimize(); 2865 if (failing()) return; 2866 } 2867 2868 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2869 // safepoints 2870 remove_root_to_sfpts_edges(igvn); 2871 2872 // Process inline type nodes now that all inlining is over 2873 process_inline_types(igvn); 2874 2875 adjust_flat_array_access_aliases(igvn); 2876 2877 if (failing()) return; 2878 2879 if (C->macro_count() > 0) { 2880 // Eliminate some macro nodes before EA to reduce analysis pressure 2881 PhaseMacroExpand mexp(igvn); 2882 mexp.eliminate_macro_nodes(); 2883 if (failing()) { 2884 return; 2885 } 2886 igvn.set_delay_transform(false); 2887 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2888 } 2889 2890 if (has_loops()) { 2891 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2892 } 2893 2894 // Perform escape analysis 2895 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2896 if (has_loops()) { 2897 // Cleanup graph (remove dead nodes). 2898 TracePhase tp(_t_idealLoop); 2899 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2900 if (failing()) { 2901 return; 2902 } 2903 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2904 if (C->macro_count() > 0) { 2905 // Eliminate some macro nodes before EA to reduce analysis pressure 2906 PhaseMacroExpand mexp(igvn); 2907 mexp.eliminate_macro_nodes(); 2908 if (failing()) { 2909 return; 2910 } 2911 igvn.set_delay_transform(false); 2912 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2913 } 2914 } 2915 2916 bool progress; 2917 do { 2918 ConnectionGraph::do_analysis(this, &igvn); 2919 2920 if (failing()) return; 2921 2922 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2923 2924 // Optimize out fields loads from scalar replaceable allocations. 2925 igvn.optimize(); 2926 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2927 2928 if (failing()) return; 2929 2930 if (congraph() != nullptr && macro_count() > 0) { 2931 TracePhase tp(_t_macroEliminate); 2932 PhaseMacroExpand mexp(igvn); 2933 mexp.eliminate_macro_nodes(); 2934 if (failing()) { 2935 return; 2936 } 2937 igvn.set_delay_transform(false); 2938 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2939 } 2940 2941 ConnectionGraph::verify_ram_nodes(this, root()); 2942 if (failing()) return; 2943 2944 progress = do_iterative_escape_analysis() && 2945 (macro_count() < mcount) && 2946 ConnectionGraph::has_candidates(this); 2947 // Try again if candidates exist and made progress 2948 // by removing some allocations and/or locks. 2949 } while (progress); 2950 } 2951 2952 // Loop transforms on the ideal graph. Range Check Elimination, 2953 // peeling, unrolling, etc. 2954 2955 // Set loop opts counter 2956 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2957 { 2958 TracePhase tp(_t_idealLoop); 2959 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2960 _loop_opts_cnt--; 2961 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2962 if (failing()) return; 2963 } 2964 // Loop opts pass if partial peeling occurred in previous pass 2965 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2966 TracePhase tp(_t_idealLoop); 2967 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2968 _loop_opts_cnt--; 2969 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2970 if (failing()) return; 2971 } 2972 // Loop opts pass for loop-unrolling before CCP 2973 if(major_progress() && (_loop_opts_cnt > 0)) { 2974 TracePhase tp(_t_idealLoop); 2975 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2976 _loop_opts_cnt--; 2977 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2978 } 2979 if (!failing()) { 2980 // Verify that last round of loop opts produced a valid graph 2981 PhaseIdealLoop::verify(igvn); 2982 } 2983 } 2984 if (failing()) return; 2985 2986 // Conditional Constant Propagation; 2987 print_method(PHASE_BEFORE_CCP1, 2); 2988 PhaseCCP ccp( &igvn ); 2989 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2990 { 2991 TracePhase tp(_t_ccp); 2992 ccp.do_transform(); 2993 } 2994 print_method(PHASE_CCP1, 2); 2995 2996 assert( true, "Break here to ccp.dump_old2new_map()"); 2997 2998 // Iterative Global Value Numbering, including ideal transforms 2999 { 3000 TracePhase tp(_t_iterGVN2); 3001 igvn.reset_from_igvn(&ccp); 3002 igvn.optimize(); 3003 } 3004 print_method(PHASE_ITER_GVN2, 2); 3005 3006 if (failing()) return; 3007 3008 // Loop transforms on the ideal graph. Range Check Elimination, 3009 // peeling, unrolling, etc. 3010 if (!optimize_loops(igvn, LoopOptsDefault)) { 3011 return; 3012 } 3013 3014 if (failing()) return; 3015 3016 C->clear_major_progress(); // ensure that major progress is now clear 3017 3018 process_for_post_loop_opts_igvn(igvn); 3019 3020 process_for_merge_stores_igvn(igvn); 3021 3022 if (failing()) return; 3023 3024 #ifdef ASSERT 3025 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 3026 #endif 3027 3028 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 3029 3030 if (_late_inlines.length() > 0) { 3031 // More opportunities to optimize virtual and MH calls. 3032 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 3033 process_late_inline_calls_no_inline(igvn); 3034 } 3035 3036 { 3037 TracePhase tp(_t_macroExpand); 3038 PhaseMacroExpand mex(igvn); 3039 // Last attempt to eliminate macro nodes. 3040 mex.eliminate_macro_nodes(); 3041 if (failing()) { 3042 return; 3043 } 3044 3045 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 3046 if (mex.expand_macro_nodes()) { 3047 assert(failing(), "must bail out w/ explicit message"); 3048 return; 3049 } 3050 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 3051 } 3052 3053 // Process inline type nodes again and remove them. From here 3054 // on we don't need to keep track of field values anymore. 3055 process_inline_types(igvn, /* remove= */ true); 3056 3057 { 3058 TracePhase tp(_t_barrierExpand); 3059 if (bs->expand_barriers(this, igvn)) { 3060 assert(failing(), "must bail out w/ explicit message"); 3061 return; 3062 } 3063 print_method(PHASE_BARRIER_EXPANSION, 2); 3064 } 3065 3066 if (C->max_vector_size() > 0) { 3067 C->optimize_logic_cones(igvn); 3068 igvn.optimize(); 3069 if (failing()) return; 3070 } 3071 3072 DEBUG_ONLY( _modified_nodes = nullptr; ) 3073 DEBUG_ONLY( _late_inlines.clear(); ) 3074 3075 assert(igvn._worklist.size() == 0, "not empty"); 3076 } // (End scope of igvn; run destructor if necessary for asserts.) 3077 3078 check_no_dead_use(); 3079 3080 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 3081 // to remove hashes to unlock nodes for modifications. 3082 C->node_hash()->clear(); 3083 3084 // A method with only infinite loops has no edges entering loops from root 3085 { 3086 TracePhase tp(_t_graphReshaping); 3087 if (final_graph_reshaping()) { 3088 assert(failing(), "must bail out w/ explicit message"); 3089 return; 3090 } 3091 } 3092 3093 print_method(PHASE_OPTIMIZE_FINISHED, 2); 3094 DEBUG_ONLY(set_phase_optimize_finished();) 3095 } 3096 3097 #ifdef ASSERT 3098 void Compile::check_no_dead_use() const { 3099 ResourceMark rm; 3100 Unique_Node_List wq; 3101 wq.push(root()); 3102 for (uint i = 0; i < wq.size(); ++i) { 3103 Node* n = wq.at(i); 3104 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3105 Node* u = n->fast_out(j); 3106 if (u->outcnt() == 0 && !u->is_Con()) { 3107 u->dump(); 3108 fatal("no reachable node should have no use"); 3109 } 3110 wq.push(u); 3111 } 3112 } 3113 } 3114 #endif 3115 3116 void Compile::inline_vector_reboxing_calls() { 3117 if (C->_vector_reboxing_late_inlines.length() > 0) { 3118 _late_inlines_pos = C->_late_inlines.length(); 3119 while (_vector_reboxing_late_inlines.length() > 0) { 3120 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 3121 cg->do_late_inline(); 3122 if (failing()) return; 3123 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 3124 } 3125 _vector_reboxing_late_inlines.trunc_to(0); 3126 } 3127 } 3128 3129 bool Compile::has_vbox_nodes() { 3130 if (C->_vector_reboxing_late_inlines.length() > 0) { 3131 return true; 3132 } 3133 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 3134 Node * n = C->macro_node(macro_idx); 3135 assert(n->is_macro(), "only macro nodes expected here"); 3136 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 3137 return true; 3138 } 3139 } 3140 return false; 3141 } 3142 3143 //---------------------------- Bitwise operation packing optimization --------------------------- 3144 3145 static bool is_vector_unary_bitwise_op(Node* n) { 3146 return n->Opcode() == Op_XorV && 3147 VectorNode::is_vector_bitwise_not_pattern(n); 3148 } 3149 3150 static bool is_vector_binary_bitwise_op(Node* n) { 3151 switch (n->Opcode()) { 3152 case Op_AndV: 3153 case Op_OrV: 3154 return true; 3155 3156 case Op_XorV: 3157 return !is_vector_unary_bitwise_op(n); 3158 3159 default: 3160 return false; 3161 } 3162 } 3163 3164 static bool is_vector_ternary_bitwise_op(Node* n) { 3165 return n->Opcode() == Op_MacroLogicV; 3166 } 3167 3168 static bool is_vector_bitwise_op(Node* n) { 3169 return is_vector_unary_bitwise_op(n) || 3170 is_vector_binary_bitwise_op(n) || 3171 is_vector_ternary_bitwise_op(n); 3172 } 3173 3174 static bool is_vector_bitwise_cone_root(Node* n) { 3175 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 3176 return false; 3177 } 3178 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3179 if (is_vector_bitwise_op(n->fast_out(i))) { 3180 return false; 3181 } 3182 } 3183 return true; 3184 } 3185 3186 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 3187 uint cnt = 0; 3188 if (is_vector_bitwise_op(n)) { 3189 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 3190 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3191 for (uint i = 1; i < inp_cnt; i++) { 3192 Node* in = n->in(i); 3193 bool skip = VectorNode::is_all_ones_vector(in); 3194 if (!skip && !inputs.member(in)) { 3195 inputs.push(in); 3196 cnt++; 3197 } 3198 } 3199 assert(cnt <= 1, "not unary"); 3200 } else { 3201 uint last_req = inp_cnt; 3202 if (is_vector_ternary_bitwise_op(n)) { 3203 last_req = inp_cnt - 1; // skip last input 3204 } 3205 for (uint i = 1; i < last_req; i++) { 3206 Node* def = n->in(i); 3207 if (!inputs.member(def)) { 3208 inputs.push(def); 3209 cnt++; 3210 } 3211 } 3212 } 3213 } else { // not a bitwise operations 3214 if (!inputs.member(n)) { 3215 inputs.push(n); 3216 cnt++; 3217 } 3218 } 3219 return cnt; 3220 } 3221 3222 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 3223 Unique_Node_List useful_nodes; 3224 C->identify_useful_nodes(useful_nodes); 3225 3226 for (uint i = 0; i < useful_nodes.size(); i++) { 3227 Node* n = useful_nodes.at(i); 3228 if (is_vector_bitwise_cone_root(n)) { 3229 list.push(n); 3230 } 3231 } 3232 } 3233 3234 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 3235 const TypeVect* vt, 3236 Unique_Node_List& partition, 3237 Unique_Node_List& inputs) { 3238 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 3239 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 3240 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 3241 3242 Node* in1 = inputs.at(0); 3243 Node* in2 = inputs.at(1); 3244 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 3245 3246 uint func = compute_truth_table(partition, inputs); 3247 3248 Node* pn = partition.at(partition.size() - 1); 3249 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3250 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 3251 } 3252 3253 static uint extract_bit(uint func, uint pos) { 3254 return (func & (1 << pos)) >> pos; 3255 } 3256 3257 // 3258 // A macro logic node represents a truth table. It has 4 inputs, 3259 // First three inputs corresponds to 3 columns of a truth table 3260 // and fourth input captures the logic function. 3261 // 3262 // eg. fn = (in1 AND in2) OR in3; 3263 // 3264 // MacroNode(in1,in2,in3,fn) 3265 // 3266 // ----------------- 3267 // in1 in2 in3 fn 3268 // ----------------- 3269 // 0 0 0 0 3270 // 0 0 1 1 3271 // 0 1 0 0 3272 // 0 1 1 1 3273 // 1 0 0 0 3274 // 1 0 1 1 3275 // 1 1 0 1 3276 // 1 1 1 1 3277 // 3278 3279 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 3280 int res = 0; 3281 for (int i = 0; i < 8; i++) { 3282 int bit1 = extract_bit(in1, i); 3283 int bit2 = extract_bit(in2, i); 3284 int bit3 = extract_bit(in3, i); 3285 3286 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 3287 int func_bit = extract_bit(func, func_bit_pos); 3288 3289 res |= func_bit << i; 3290 } 3291 return res; 3292 } 3293 3294 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 3295 assert(n != nullptr, ""); 3296 assert(eval_map.contains(n), "absent"); 3297 return *(eval_map.get(n)); 3298 } 3299 3300 static void eval_operands(Node* n, 3301 uint& func1, uint& func2, uint& func3, 3302 ResourceHashtable<Node*,uint>& eval_map) { 3303 assert(is_vector_bitwise_op(n), ""); 3304 3305 if (is_vector_unary_bitwise_op(n)) { 3306 Node* opnd = n->in(1); 3307 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 3308 opnd = n->in(2); 3309 } 3310 func1 = eval_operand(opnd, eval_map); 3311 } else if (is_vector_binary_bitwise_op(n)) { 3312 func1 = eval_operand(n->in(1), eval_map); 3313 func2 = eval_operand(n->in(2), eval_map); 3314 } else { 3315 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 3316 func1 = eval_operand(n->in(1), eval_map); 3317 func2 = eval_operand(n->in(2), eval_map); 3318 func3 = eval_operand(n->in(3), eval_map); 3319 } 3320 } 3321 3322 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 3323 assert(inputs.size() <= 3, "sanity"); 3324 ResourceMark rm; 3325 uint res = 0; 3326 ResourceHashtable<Node*,uint> eval_map; 3327 3328 // Populate precomputed functions for inputs. 3329 // Each input corresponds to one column of 3 input truth-table. 3330 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 3331 0xCC, // (_, b, _) -> b 3332 0xF0 }; // (a, _, _) -> a 3333 for (uint i = 0; i < inputs.size(); i++) { 3334 eval_map.put(inputs.at(i), input_funcs[2-i]); 3335 } 3336 3337 for (uint i = 0; i < partition.size(); i++) { 3338 Node* n = partition.at(i); 3339 3340 uint func1 = 0, func2 = 0, func3 = 0; 3341 eval_operands(n, func1, func2, func3, eval_map); 3342 3343 switch (n->Opcode()) { 3344 case Op_OrV: 3345 assert(func3 == 0, "not binary"); 3346 res = func1 | func2; 3347 break; 3348 case Op_AndV: 3349 assert(func3 == 0, "not binary"); 3350 res = func1 & func2; 3351 break; 3352 case Op_XorV: 3353 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3354 assert(func2 == 0 && func3 == 0, "not unary"); 3355 res = (~func1) & 0xFF; 3356 } else { 3357 assert(func3 == 0, "not binary"); 3358 res = func1 ^ func2; 3359 } 3360 break; 3361 case Op_MacroLogicV: 3362 // Ordering of inputs may change during evaluation of sub-tree 3363 // containing MacroLogic node as a child node, thus a re-evaluation 3364 // makes sure that function is evaluated in context of current 3365 // inputs. 3366 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 3367 break; 3368 3369 default: assert(false, "not supported: %s", n->Name()); 3370 } 3371 assert(res <= 0xFF, "invalid"); 3372 eval_map.put(n, res); 3373 } 3374 return res; 3375 } 3376 3377 // Criteria under which nodes gets packed into a macro logic node:- 3378 // 1) Parent and both child nodes are all unmasked or masked with 3379 // same predicates. 3380 // 2) Masked parent can be packed with left child if it is predicated 3381 // and both have same predicates. 3382 // 3) Masked parent can be packed with right child if its un-predicated 3383 // or has matching predication condition. 3384 // 4) An unmasked parent can be packed with an unmasked child. 3385 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 3386 assert(partition.size() == 0, "not empty"); 3387 assert(inputs.size() == 0, "not empty"); 3388 if (is_vector_ternary_bitwise_op(n)) { 3389 return false; 3390 } 3391 3392 bool is_unary_op = is_vector_unary_bitwise_op(n); 3393 if (is_unary_op) { 3394 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 3395 return false; // too few inputs 3396 } 3397 3398 bool pack_left_child = true; 3399 bool pack_right_child = true; 3400 3401 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 3402 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 3403 3404 int left_child_input_cnt = 0; 3405 int right_child_input_cnt = 0; 3406 3407 bool parent_is_predicated = n->is_predicated_vector(); 3408 bool left_child_predicated = n->in(1)->is_predicated_vector(); 3409 bool right_child_predicated = n->in(2)->is_predicated_vector(); 3410 3411 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 3412 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3413 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3414 3415 do { 3416 if (pack_left_child && left_child_LOP && 3417 ((!parent_is_predicated && !left_child_predicated) || 3418 ((parent_is_predicated && left_child_predicated && 3419 parent_pred == left_child_pred)))) { 3420 partition.push(n->in(1)); 3421 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 3422 } else { 3423 inputs.push(n->in(1)); 3424 left_child_input_cnt = 1; 3425 } 3426 3427 if (pack_right_child && right_child_LOP && 3428 (!right_child_predicated || 3429 (right_child_predicated && parent_is_predicated && 3430 parent_pred == right_child_pred))) { 3431 partition.push(n->in(2)); 3432 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 3433 } else { 3434 inputs.push(n->in(2)); 3435 right_child_input_cnt = 1; 3436 } 3437 3438 if (inputs.size() > 3) { 3439 assert(partition.size() > 0, ""); 3440 inputs.clear(); 3441 partition.clear(); 3442 if (left_child_input_cnt > right_child_input_cnt) { 3443 pack_left_child = false; 3444 } else { 3445 pack_right_child = false; 3446 } 3447 } else { 3448 break; 3449 } 3450 } while(true); 3451 3452 if(partition.size()) { 3453 partition.push(n); 3454 } 3455 3456 return (partition.size() == 2 || partition.size() == 3) && 3457 (inputs.size() == 2 || inputs.size() == 3); 3458 } 3459 3460 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 3461 assert(is_vector_bitwise_op(n), "not a root"); 3462 3463 visited.set(n->_idx); 3464 3465 // 1) Do a DFS walk over the logic cone. 3466 for (uint i = 1; i < n->req(); i++) { 3467 Node* in = n->in(i); 3468 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 3469 process_logic_cone_root(igvn, in, visited); 3470 } 3471 } 3472 3473 // 2) Bottom up traversal: Merge node[s] with 3474 // the parent to form macro logic node. 3475 Unique_Node_List partition; 3476 Unique_Node_List inputs; 3477 if (compute_logic_cone(n, partition, inputs)) { 3478 const TypeVect* vt = n->bottom_type()->is_vect(); 3479 Node* pn = partition.at(partition.size() - 1); 3480 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3481 if (mask == nullptr || 3482 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 3483 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 3484 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 3485 igvn.replace_node(n, macro_logic); 3486 } 3487 } 3488 } 3489 3490 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 3491 ResourceMark rm; 3492 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3493 Unique_Node_List list; 3494 collect_logic_cone_roots(list); 3495 3496 while (list.size() > 0) { 3497 Node* n = list.pop(); 3498 const TypeVect* vt = n->bottom_type()->is_vect(); 3499 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3500 if (supported) { 3501 VectorSet visited(comp_arena()); 3502 process_logic_cone_root(igvn, n, visited); 3503 } 3504 } 3505 } 3506 } 3507 3508 //------------------------------Code_Gen--------------------------------------- 3509 // Given a graph, generate code for it 3510 void Compile::Code_Gen() { 3511 if (failing()) { 3512 return; 3513 } 3514 3515 // Perform instruction selection. You might think we could reclaim Matcher 3516 // memory PDQ, but actually the Matcher is used in generating spill code. 3517 // Internals of the Matcher (including some VectorSets) must remain live 3518 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3519 // set a bit in reclaimed memory. 3520 3521 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3522 // nodes. Mapping is only valid at the root of each matched subtree. 3523 NOT_PRODUCT( verify_graph_edges(); ) 3524 3525 Matcher matcher; 3526 _matcher = &matcher; 3527 { 3528 TracePhase tp(_t_matcher); 3529 matcher.match(); 3530 if (failing()) { 3531 return; 3532 } 3533 } 3534 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3535 // nodes. Mapping is only valid at the root of each matched subtree. 3536 NOT_PRODUCT( verify_graph_edges(); ) 3537 3538 // If you have too many nodes, or if matching has failed, bail out 3539 check_node_count(0, "out of nodes matching instructions"); 3540 if (failing()) { 3541 return; 3542 } 3543 3544 print_method(PHASE_MATCHING, 2); 3545 3546 // Build a proper-looking CFG 3547 PhaseCFG cfg(node_arena(), root(), matcher); 3548 if (failing()) { 3549 return; 3550 } 3551 _cfg = &cfg; 3552 { 3553 TracePhase tp(_t_scheduler); 3554 bool success = cfg.do_global_code_motion(); 3555 if (!success) { 3556 return; 3557 } 3558 3559 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3560 NOT_PRODUCT( verify_graph_edges(); ) 3561 cfg.verify(); 3562 if (failing()) { 3563 return; 3564 } 3565 } 3566 3567 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3568 _regalloc = ®alloc; 3569 { 3570 TracePhase tp(_t_registerAllocation); 3571 // Perform register allocation. After Chaitin, use-def chains are 3572 // no longer accurate (at spill code) and so must be ignored. 3573 // Node->LRG->reg mappings are still accurate. 3574 _regalloc->Register_Allocate(); 3575 3576 // Bail out if the allocator builds too many nodes 3577 if (failing()) { 3578 return; 3579 } 3580 3581 print_method(PHASE_REGISTER_ALLOCATION, 2); 3582 } 3583 3584 // Prior to register allocation we kept empty basic blocks in case the 3585 // the allocator needed a place to spill. After register allocation we 3586 // are not adding any new instructions. If any basic block is empty, we 3587 // can now safely remove it. 3588 { 3589 TracePhase tp(_t_blockOrdering); 3590 cfg.remove_empty_blocks(); 3591 if (do_freq_based_layout()) { 3592 PhaseBlockLayout layout(cfg); 3593 } else { 3594 cfg.set_loop_alignment(); 3595 } 3596 cfg.fixup_flow(); 3597 cfg.remove_unreachable_blocks(); 3598 cfg.verify_dominator_tree(); 3599 print_method(PHASE_BLOCK_ORDERING, 3); 3600 } 3601 3602 // Apply peephole optimizations 3603 if( OptoPeephole ) { 3604 TracePhase tp(_t_peephole); 3605 PhasePeephole peep( _regalloc, cfg); 3606 peep.do_transform(); 3607 print_method(PHASE_PEEPHOLE, 3); 3608 } 3609 3610 // Do late expand if CPU requires this. 3611 if (Matcher::require_postalloc_expand) { 3612 TracePhase tp(_t_postalloc_expand); 3613 cfg.postalloc_expand(_regalloc); 3614 print_method(PHASE_POSTALLOC_EXPAND, 3); 3615 } 3616 3617 #ifdef ASSERT 3618 { 3619 CompilationMemoryStatistic::do_test_allocations(); 3620 if (failing()) return; 3621 } 3622 #endif 3623 3624 // Convert Nodes to instruction bits in a buffer 3625 { 3626 TracePhase tp(_t_output); 3627 PhaseOutput output; 3628 output.Output(); 3629 if (failing()) return; 3630 output.install(); 3631 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3632 } 3633 3634 // He's dead, Jim. 3635 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3636 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3637 } 3638 3639 //------------------------------Final_Reshape_Counts--------------------------- 3640 // This class defines counters to help identify when a method 3641 // may/must be executed using hardware with only 24-bit precision. 3642 struct Final_Reshape_Counts : public StackObj { 3643 int _call_count; // count non-inlined 'common' calls 3644 int _float_count; // count float ops requiring 24-bit precision 3645 int _double_count; // count double ops requiring more precision 3646 int _java_call_count; // count non-inlined 'java' calls 3647 int _inner_loop_count; // count loops which need alignment 3648 VectorSet _visited; // Visitation flags 3649 Node_List _tests; // Set of IfNodes & PCTableNodes 3650 3651 Final_Reshape_Counts() : 3652 _call_count(0), _float_count(0), _double_count(0), 3653 _java_call_count(0), _inner_loop_count(0) { } 3654 3655 void inc_call_count () { _call_count ++; } 3656 void inc_float_count () { _float_count ++; } 3657 void inc_double_count() { _double_count++; } 3658 void inc_java_call_count() { _java_call_count++; } 3659 void inc_inner_loop_count() { _inner_loop_count++; } 3660 3661 int get_call_count () const { return _call_count ; } 3662 int get_float_count () const { return _float_count ; } 3663 int get_double_count() const { return _double_count; } 3664 int get_java_call_count() const { return _java_call_count; } 3665 int get_inner_loop_count() const { return _inner_loop_count; } 3666 }; 3667 3668 //------------------------------final_graph_reshaping_impl---------------------- 3669 // Implement items 1-5 from final_graph_reshaping below. 3670 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3671 3672 if ( n->outcnt() == 0 ) return; // dead node 3673 uint nop = n->Opcode(); 3674 3675 // Check for 2-input instruction with "last use" on right input. 3676 // Swap to left input. Implements item (2). 3677 if( n->req() == 3 && // two-input instruction 3678 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3679 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3680 n->in(2)->outcnt() == 1 &&// right use IS a last use 3681 !n->in(2)->is_Con() ) { // right use is not a constant 3682 // Check for commutative opcode 3683 switch( nop ) { 3684 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3685 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3686 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3687 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3688 case Op_AndL: case Op_XorL: case Op_OrL: 3689 case Op_AndI: case Op_XorI: case Op_OrI: { 3690 // Move "last use" input to left by swapping inputs 3691 n->swap_edges(1, 2); 3692 break; 3693 } 3694 default: 3695 break; 3696 } 3697 } 3698 3699 #ifdef ASSERT 3700 if( n->is_Mem() ) { 3701 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3702 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3703 // oop will be recorded in oop map if load crosses safepoint 3704 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3705 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3706 "raw memory operations should have control edge"); 3707 } 3708 if (n->is_MemBar()) { 3709 MemBarNode* mb = n->as_MemBar(); 3710 if (mb->trailing_store() || mb->trailing_load_store()) { 3711 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3712 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3713 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3714 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3715 } else if (mb->leading()) { 3716 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3717 } 3718 } 3719 #endif 3720 // Count FPU ops and common calls, implements item (3) 3721 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3722 if (!gc_handled) { 3723 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3724 } 3725 3726 // Collect CFG split points 3727 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3728 frc._tests.push(n); 3729 } 3730 } 3731 3732 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3733 if (!UseDivMod) { 3734 return; 3735 } 3736 3737 // Check if "a % b" and "a / b" both exist 3738 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3739 if (d == nullptr) { 3740 return; 3741 } 3742 3743 // Replace them with a fused divmod if supported 3744 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3745 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3746 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3747 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3748 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3749 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3750 // DivMod node so the dependency is not lost. 3751 divmod->add_prec_from(n); 3752 divmod->add_prec_from(d); 3753 d->subsume_by(divmod->div_proj(), this); 3754 n->subsume_by(divmod->mod_proj(), this); 3755 } else { 3756 // Replace "a % b" with "a - ((a / b) * b)" 3757 Node* mult = MulNode::make(d, d->in(2), bt); 3758 Node* sub = SubNode::make(d->in(1), mult, bt); 3759 n->subsume_by(sub, this); 3760 } 3761 } 3762 3763 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3764 switch( nop ) { 3765 // Count all float operations that may use FPU 3766 case Op_AddF: 3767 case Op_SubF: 3768 case Op_MulF: 3769 case Op_DivF: 3770 case Op_NegF: 3771 case Op_ModF: 3772 case Op_ConvI2F: 3773 case Op_ConF: 3774 case Op_CmpF: 3775 case Op_CmpF3: 3776 case Op_StoreF: 3777 case Op_LoadF: 3778 // case Op_ConvL2F: // longs are split into 32-bit halves 3779 frc.inc_float_count(); 3780 break; 3781 3782 case Op_ConvF2D: 3783 case Op_ConvD2F: 3784 frc.inc_float_count(); 3785 frc.inc_double_count(); 3786 break; 3787 3788 // Count all double operations that may use FPU 3789 case Op_AddD: 3790 case Op_SubD: 3791 case Op_MulD: 3792 case Op_DivD: 3793 case Op_NegD: 3794 case Op_ModD: 3795 case Op_ConvI2D: 3796 case Op_ConvD2I: 3797 // case Op_ConvL2D: // handled by leaf call 3798 // case Op_ConvD2L: // handled by leaf call 3799 case Op_ConD: 3800 case Op_CmpD: 3801 case Op_CmpD3: 3802 case Op_StoreD: 3803 case Op_LoadD: 3804 case Op_LoadD_unaligned: 3805 frc.inc_double_count(); 3806 break; 3807 case Op_Opaque1: // Remove Opaque Nodes before matching 3808 n->subsume_by(n->in(1), this); 3809 break; 3810 case Op_CallStaticJava: 3811 case Op_CallJava: 3812 case Op_CallDynamicJava: 3813 frc.inc_java_call_count(); // Count java call site; 3814 case Op_CallRuntime: 3815 case Op_CallLeaf: 3816 case Op_CallLeafVector: 3817 case Op_CallLeafNoFP: { 3818 assert (n->is_Call(), ""); 3819 CallNode *call = n->as_Call(); 3820 // Count call sites where the FP mode bit would have to be flipped. 3821 // Do not count uncommon runtime calls: 3822 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3823 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3824 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3825 frc.inc_call_count(); // Count the call site 3826 } else { // See if uncommon argument is shared 3827 Node *n = call->in(TypeFunc::Parms); 3828 int nop = n->Opcode(); 3829 // Clone shared simple arguments to uncommon calls, item (1). 3830 if (n->outcnt() > 1 && 3831 !n->is_Proj() && 3832 nop != Op_CreateEx && 3833 nop != Op_CheckCastPP && 3834 nop != Op_DecodeN && 3835 nop != Op_DecodeNKlass && 3836 !n->is_Mem() && 3837 !n->is_Phi()) { 3838 Node *x = n->clone(); 3839 call->set_req(TypeFunc::Parms, x); 3840 } 3841 } 3842 break; 3843 } 3844 case Op_StoreB: 3845 case Op_StoreC: 3846 case Op_StoreI: 3847 case Op_StoreL: 3848 case Op_StoreLSpecial: 3849 case Op_CompareAndSwapB: 3850 case Op_CompareAndSwapS: 3851 case Op_CompareAndSwapI: 3852 case Op_CompareAndSwapL: 3853 case Op_CompareAndSwapP: 3854 case Op_CompareAndSwapN: 3855 case Op_WeakCompareAndSwapB: 3856 case Op_WeakCompareAndSwapS: 3857 case Op_WeakCompareAndSwapI: 3858 case Op_WeakCompareAndSwapL: 3859 case Op_WeakCompareAndSwapP: 3860 case Op_WeakCompareAndSwapN: 3861 case Op_CompareAndExchangeB: 3862 case Op_CompareAndExchangeS: 3863 case Op_CompareAndExchangeI: 3864 case Op_CompareAndExchangeL: 3865 case Op_CompareAndExchangeP: 3866 case Op_CompareAndExchangeN: 3867 case Op_GetAndAddS: 3868 case Op_GetAndAddB: 3869 case Op_GetAndAddI: 3870 case Op_GetAndAddL: 3871 case Op_GetAndSetS: 3872 case Op_GetAndSetB: 3873 case Op_GetAndSetI: 3874 case Op_GetAndSetL: 3875 case Op_GetAndSetP: 3876 case Op_GetAndSetN: 3877 case Op_StoreP: 3878 case Op_StoreN: 3879 case Op_StoreNKlass: 3880 case Op_LoadB: 3881 case Op_LoadUB: 3882 case Op_LoadUS: 3883 case Op_LoadI: 3884 case Op_LoadKlass: 3885 case Op_LoadNKlass: 3886 case Op_LoadL: 3887 case Op_LoadL_unaligned: 3888 case Op_LoadP: 3889 case Op_LoadN: 3890 case Op_LoadRange: 3891 case Op_LoadS: 3892 break; 3893 3894 case Op_AddP: { // Assert sane base pointers 3895 Node *addp = n->in(AddPNode::Address); 3896 assert( !addp->is_AddP() || 3897 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3898 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3899 "Base pointers must match (addp %u)", addp->_idx ); 3900 #ifdef _LP64 3901 if ((UseCompressedOops || UseCompressedClassPointers) && 3902 addp->Opcode() == Op_ConP && 3903 addp == n->in(AddPNode::Base) && 3904 n->in(AddPNode::Offset)->is_Con()) { 3905 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3906 // on the platform and on the compressed oops mode. 3907 // Use addressing with narrow klass to load with offset on x86. 3908 // Some platforms can use the constant pool to load ConP. 3909 // Do this transformation here since IGVN will convert ConN back to ConP. 3910 const Type* t = addp->bottom_type(); 3911 bool is_oop = t->isa_oopptr() != nullptr; 3912 bool is_klass = t->isa_klassptr() != nullptr; 3913 3914 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3915 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3916 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3917 Node* nn = nullptr; 3918 3919 int op = is_oop ? Op_ConN : Op_ConNKlass; 3920 3921 // Look for existing ConN node of the same exact type. 3922 Node* r = root(); 3923 uint cnt = r->outcnt(); 3924 for (uint i = 0; i < cnt; i++) { 3925 Node* m = r->raw_out(i); 3926 if (m!= nullptr && m->Opcode() == op && 3927 m->bottom_type()->make_ptr() == t) { 3928 nn = m; 3929 break; 3930 } 3931 } 3932 if (nn != nullptr) { 3933 // Decode a narrow oop to match address 3934 // [R12 + narrow_oop_reg<<3 + offset] 3935 if (is_oop) { 3936 nn = new DecodeNNode(nn, t); 3937 } else { 3938 nn = new DecodeNKlassNode(nn, t); 3939 } 3940 // Check for succeeding AddP which uses the same Base. 3941 // Otherwise we will run into the assertion above when visiting that guy. 3942 for (uint i = 0; i < n->outcnt(); ++i) { 3943 Node *out_i = n->raw_out(i); 3944 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3945 out_i->set_req(AddPNode::Base, nn); 3946 #ifdef ASSERT 3947 for (uint j = 0; j < out_i->outcnt(); ++j) { 3948 Node *out_j = out_i->raw_out(j); 3949 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3950 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3951 } 3952 #endif 3953 } 3954 } 3955 n->set_req(AddPNode::Base, nn); 3956 n->set_req(AddPNode::Address, nn); 3957 if (addp->outcnt() == 0) { 3958 addp->disconnect_inputs(this); 3959 } 3960 } 3961 } 3962 } 3963 #endif 3964 break; 3965 } 3966 3967 case Op_CastPP: { 3968 // Remove CastPP nodes to gain more freedom during scheduling but 3969 // keep the dependency they encode as control or precedence edges 3970 // (if control is set already) on memory operations. Some CastPP 3971 // nodes don't have a control (don't carry a dependency): skip 3972 // those. 3973 if (n->in(0) != nullptr) { 3974 ResourceMark rm; 3975 Unique_Node_List wq; 3976 wq.push(n); 3977 for (uint next = 0; next < wq.size(); ++next) { 3978 Node *m = wq.at(next); 3979 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3980 Node* use = m->fast_out(i); 3981 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3982 use->ensure_control_or_add_prec(n->in(0)); 3983 } else { 3984 switch(use->Opcode()) { 3985 case Op_AddP: 3986 case Op_DecodeN: 3987 case Op_DecodeNKlass: 3988 case Op_CheckCastPP: 3989 case Op_CastPP: 3990 wq.push(use); 3991 break; 3992 } 3993 } 3994 } 3995 } 3996 } 3997 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3998 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3999 Node* in1 = n->in(1); 4000 const Type* t = n->bottom_type(); 4001 Node* new_in1 = in1->clone(); 4002 new_in1->as_DecodeN()->set_type(t); 4003 4004 if (!Matcher::narrow_oop_use_complex_address()) { 4005 // 4006 // x86, ARM and friends can handle 2 adds in addressing mode 4007 // and Matcher can fold a DecodeN node into address by using 4008 // a narrow oop directly and do implicit null check in address: 4009 // 4010 // [R12 + narrow_oop_reg<<3 + offset] 4011 // NullCheck narrow_oop_reg 4012 // 4013 // On other platforms (Sparc) we have to keep new DecodeN node and 4014 // use it to do implicit null check in address: 4015 // 4016 // decode_not_null narrow_oop_reg, base_reg 4017 // [base_reg + offset] 4018 // NullCheck base_reg 4019 // 4020 // Pin the new DecodeN node to non-null path on these platform (Sparc) 4021 // to keep the information to which null check the new DecodeN node 4022 // corresponds to use it as value in implicit_null_check(). 4023 // 4024 new_in1->set_req(0, n->in(0)); 4025 } 4026 4027 n->subsume_by(new_in1, this); 4028 if (in1->outcnt() == 0) { 4029 in1->disconnect_inputs(this); 4030 } 4031 } else { 4032 n->subsume_by(n->in(1), this); 4033 if (n->outcnt() == 0) { 4034 n->disconnect_inputs(this); 4035 } 4036 } 4037 break; 4038 } 4039 case Op_CastII: { 4040 n->as_CastII()->remove_range_check_cast(this); 4041 break; 4042 } 4043 #ifdef _LP64 4044 case Op_CmpP: 4045 // Do this transformation here to preserve CmpPNode::sub() and 4046 // other TypePtr related Ideal optimizations (for example, ptr nullness). 4047 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 4048 Node* in1 = n->in(1); 4049 Node* in2 = n->in(2); 4050 if (!in1->is_DecodeNarrowPtr()) { 4051 in2 = in1; 4052 in1 = n->in(2); 4053 } 4054 assert(in1->is_DecodeNarrowPtr(), "sanity"); 4055 4056 Node* new_in2 = nullptr; 4057 if (in2->is_DecodeNarrowPtr()) { 4058 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 4059 new_in2 = in2->in(1); 4060 } else if (in2->Opcode() == Op_ConP) { 4061 const Type* t = in2->bottom_type(); 4062 if (t == TypePtr::NULL_PTR) { 4063 assert(in1->is_DecodeN(), "compare klass to null?"); 4064 // Don't convert CmpP null check into CmpN if compressed 4065 // oops implicit null check is not generated. 4066 // This will allow to generate normal oop implicit null check. 4067 if (Matcher::gen_narrow_oop_implicit_null_checks()) 4068 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 4069 // 4070 // This transformation together with CastPP transformation above 4071 // will generated code for implicit null checks for compressed oops. 4072 // 4073 // The original code after Optimize() 4074 // 4075 // LoadN memory, narrow_oop_reg 4076 // decode narrow_oop_reg, base_reg 4077 // CmpP base_reg, nullptr 4078 // CastPP base_reg // NotNull 4079 // Load [base_reg + offset], val_reg 4080 // 4081 // after these transformations will be 4082 // 4083 // LoadN memory, narrow_oop_reg 4084 // CmpN narrow_oop_reg, nullptr 4085 // decode_not_null narrow_oop_reg, base_reg 4086 // Load [base_reg + offset], val_reg 4087 // 4088 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 4089 // since narrow oops can be used in debug info now (see the code in 4090 // final_graph_reshaping_walk()). 4091 // 4092 // At the end the code will be matched to 4093 // on x86: 4094 // 4095 // Load_narrow_oop memory, narrow_oop_reg 4096 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 4097 // NullCheck narrow_oop_reg 4098 // 4099 // and on sparc: 4100 // 4101 // Load_narrow_oop memory, narrow_oop_reg 4102 // decode_not_null narrow_oop_reg, base_reg 4103 // Load [base_reg + offset], val_reg 4104 // NullCheck base_reg 4105 // 4106 } else if (t->isa_oopptr()) { 4107 new_in2 = ConNode::make(t->make_narrowoop()); 4108 } else if (t->isa_klassptr()) { 4109 new_in2 = ConNode::make(t->make_narrowklass()); 4110 } 4111 } 4112 if (new_in2 != nullptr) { 4113 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 4114 n->subsume_by(cmpN, this); 4115 if (in1->outcnt() == 0) { 4116 in1->disconnect_inputs(this); 4117 } 4118 if (in2->outcnt() == 0) { 4119 in2->disconnect_inputs(this); 4120 } 4121 } 4122 } 4123 break; 4124 4125 case Op_DecodeN: 4126 case Op_DecodeNKlass: 4127 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 4128 // DecodeN could be pinned when it can't be fold into 4129 // an address expression, see the code for Op_CastPP above. 4130 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 4131 break; 4132 4133 case Op_EncodeP: 4134 case Op_EncodePKlass: { 4135 Node* in1 = n->in(1); 4136 if (in1->is_DecodeNarrowPtr()) { 4137 n->subsume_by(in1->in(1), this); 4138 } else if (in1->Opcode() == Op_ConP) { 4139 const Type* t = in1->bottom_type(); 4140 if (t == TypePtr::NULL_PTR) { 4141 assert(t->isa_oopptr(), "null klass?"); 4142 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 4143 } else if (t->isa_oopptr()) { 4144 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 4145 } else if (t->isa_klassptr()) { 4146 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 4147 } 4148 } 4149 if (in1->outcnt() == 0) { 4150 in1->disconnect_inputs(this); 4151 } 4152 break; 4153 } 4154 4155 case Op_Proj: { 4156 if (OptimizeStringConcat || IncrementalInline) { 4157 ProjNode* proj = n->as_Proj(); 4158 if (proj->_is_io_use) { 4159 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 4160 // Separate projections were used for the exception path which 4161 // are normally removed by a late inline. If it wasn't inlined 4162 // then they will hang around and should just be replaced with 4163 // the original one. Merge them. 4164 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 4165 if (non_io_proj != nullptr) { 4166 proj->subsume_by(non_io_proj , this); 4167 } 4168 } 4169 } 4170 break; 4171 } 4172 4173 case Op_Phi: 4174 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 4175 // The EncodeP optimization may create Phi with the same edges 4176 // for all paths. It is not handled well by Register Allocator. 4177 Node* unique_in = n->in(1); 4178 assert(unique_in != nullptr, ""); 4179 uint cnt = n->req(); 4180 for (uint i = 2; i < cnt; i++) { 4181 Node* m = n->in(i); 4182 assert(m != nullptr, ""); 4183 if (unique_in != m) 4184 unique_in = nullptr; 4185 } 4186 if (unique_in != nullptr) { 4187 n->subsume_by(unique_in, this); 4188 } 4189 } 4190 break; 4191 4192 #endif 4193 4194 case Op_ModI: 4195 handle_div_mod_op(n, T_INT, false); 4196 break; 4197 4198 case Op_ModL: 4199 handle_div_mod_op(n, T_LONG, false); 4200 break; 4201 4202 case Op_UModI: 4203 handle_div_mod_op(n, T_INT, true); 4204 break; 4205 4206 case Op_UModL: 4207 handle_div_mod_op(n, T_LONG, true); 4208 break; 4209 4210 case Op_LoadVector: 4211 case Op_StoreVector: 4212 #ifdef ASSERT 4213 // Add VerifyVectorAlignment node between adr and load / store. 4214 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 4215 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 4216 n->as_StoreVector()->must_verify_alignment(); 4217 if (must_verify_alignment) { 4218 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 4219 n->as_StoreVector()->memory_size(); 4220 // The memory access should be aligned to the vector width in bytes. 4221 // However, the underlying array is possibly less well aligned, but at least 4222 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 4223 // a loop we can expect at least the following alignment: 4224 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 4225 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 4226 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 4227 // Create mask from alignment. e.g. 0b1000 -> 0b0111 4228 jlong mask = guaranteed_alignment - 1; 4229 Node* mask_con = ConLNode::make(mask); 4230 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 4231 n->set_req(MemNode::Address, va); 4232 } 4233 } 4234 #endif 4235 break; 4236 4237 case Op_LoadVectorGather: 4238 case Op_StoreVectorScatter: 4239 case Op_LoadVectorGatherMasked: 4240 case Op_StoreVectorScatterMasked: 4241 case Op_VectorCmpMasked: 4242 case Op_VectorMaskGen: 4243 case Op_LoadVectorMasked: 4244 case Op_StoreVectorMasked: 4245 break; 4246 4247 case Op_AddReductionVI: 4248 case Op_AddReductionVL: 4249 case Op_AddReductionVF: 4250 case Op_AddReductionVD: 4251 case Op_MulReductionVI: 4252 case Op_MulReductionVL: 4253 case Op_MulReductionVF: 4254 case Op_MulReductionVD: 4255 case Op_MinReductionV: 4256 case Op_MaxReductionV: 4257 case Op_AndReductionV: 4258 case Op_OrReductionV: 4259 case Op_XorReductionV: 4260 break; 4261 4262 case Op_PackB: 4263 case Op_PackS: 4264 case Op_PackI: 4265 case Op_PackF: 4266 case Op_PackL: 4267 case Op_PackD: 4268 if (n->req()-1 > 2) { 4269 // Replace many operand PackNodes with a binary tree for matching 4270 PackNode* p = (PackNode*) n; 4271 Node* btp = p->binary_tree_pack(1, n->req()); 4272 n->subsume_by(btp, this); 4273 } 4274 break; 4275 case Op_Loop: 4276 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 4277 case Op_CountedLoop: 4278 case Op_LongCountedLoop: 4279 case Op_OuterStripMinedLoop: 4280 if (n->as_Loop()->is_inner_loop()) { 4281 frc.inc_inner_loop_count(); 4282 } 4283 n->as_Loop()->verify_strip_mined(0); 4284 break; 4285 case Op_LShiftI: 4286 case Op_RShiftI: 4287 case Op_URShiftI: 4288 case Op_LShiftL: 4289 case Op_RShiftL: 4290 case Op_URShiftL: 4291 if (Matcher::need_masked_shift_count) { 4292 // The cpu's shift instructions don't restrict the count to the 4293 // lower 5/6 bits. We need to do the masking ourselves. 4294 Node* in2 = n->in(2); 4295 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 4296 const TypeInt* t = in2->find_int_type(); 4297 if (t != nullptr && t->is_con()) { 4298 juint shift = t->get_con(); 4299 if (shift > mask) { // Unsigned cmp 4300 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 4301 } 4302 } else { 4303 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 4304 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 4305 n->set_req(2, shift); 4306 } 4307 } 4308 if (in2->outcnt() == 0) { // Remove dead node 4309 in2->disconnect_inputs(this); 4310 } 4311 } 4312 break; 4313 case Op_MemBarStoreStore: 4314 case Op_MemBarRelease: 4315 // Break the link with AllocateNode: it is no longer useful and 4316 // confuses register allocation. 4317 if (n->req() > MemBarNode::Precedent) { 4318 n->set_req(MemBarNode::Precedent, top()); 4319 } 4320 break; 4321 case Op_MemBarAcquire: { 4322 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 4323 // At parse time, the trailing MemBarAcquire for a volatile load 4324 // is created with an edge to the load. After optimizations, 4325 // that input may be a chain of Phis. If those phis have no 4326 // other use, then the MemBarAcquire keeps them alive and 4327 // register allocation can be confused. 4328 dead_nodes.push(n->in(MemBarNode::Precedent)); 4329 n->set_req(MemBarNode::Precedent, top()); 4330 } 4331 break; 4332 } 4333 case Op_Blackhole: 4334 break; 4335 case Op_RangeCheck: { 4336 RangeCheckNode* rc = n->as_RangeCheck(); 4337 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 4338 n->subsume_by(iff, this); 4339 frc._tests.push(iff); 4340 break; 4341 } 4342 case Op_ConvI2L: { 4343 if (!Matcher::convi2l_type_required) { 4344 // Code generation on some platforms doesn't need accurate 4345 // ConvI2L types. Widening the type can help remove redundant 4346 // address computations. 4347 n->as_Type()->set_type(TypeLong::INT); 4348 ResourceMark rm; 4349 Unique_Node_List wq; 4350 wq.push(n); 4351 for (uint next = 0; next < wq.size(); next++) { 4352 Node *m = wq.at(next); 4353 4354 for(;;) { 4355 // Loop over all nodes with identical inputs edges as m 4356 Node* k = m->find_similar(m->Opcode()); 4357 if (k == nullptr) { 4358 break; 4359 } 4360 // Push their uses so we get a chance to remove node made 4361 // redundant 4362 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 4363 Node* u = k->fast_out(i); 4364 if (u->Opcode() == Op_LShiftL || 4365 u->Opcode() == Op_AddL || 4366 u->Opcode() == Op_SubL || 4367 u->Opcode() == Op_AddP) { 4368 wq.push(u); 4369 } 4370 } 4371 // Replace all nodes with identical edges as m with m 4372 k->subsume_by(m, this); 4373 } 4374 } 4375 } 4376 break; 4377 } 4378 case Op_CmpUL: { 4379 if (!Matcher::has_match_rule(Op_CmpUL)) { 4380 // No support for unsigned long comparisons 4381 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 4382 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 4383 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 4384 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 4385 Node* andl = new AndLNode(orl, remove_sign_mask); 4386 Node* cmp = new CmpLNode(andl, n->in(2)); 4387 n->subsume_by(cmp, this); 4388 } 4389 break; 4390 } 4391 #ifdef ASSERT 4392 case Op_InlineType: { 4393 n->dump(-1); 4394 assert(false, "inline type node was not removed"); 4395 break; 4396 } 4397 case Op_ConNKlass: { 4398 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 4399 ciKlass* klass = tp->is_klassptr()->exact_klass(); 4400 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 4401 break; 4402 } 4403 #endif 4404 default: 4405 assert(!n->is_Call(), ""); 4406 assert(!n->is_Mem(), ""); 4407 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4408 break; 4409 } 4410 } 4411 4412 //------------------------------final_graph_reshaping_walk--------------------- 4413 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4414 // requires that the walk visits a node's inputs before visiting the node. 4415 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 4416 Unique_Node_List sfpt; 4417 4418 frc._visited.set(root->_idx); // first, mark node as visited 4419 uint cnt = root->req(); 4420 Node *n = root; 4421 uint i = 0; 4422 while (true) { 4423 if (i < cnt) { 4424 // Place all non-visited non-null inputs onto stack 4425 Node* m = n->in(i); 4426 ++i; 4427 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 4428 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 4429 // compute worst case interpreter size in case of a deoptimization 4430 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4431 4432 sfpt.push(m); 4433 } 4434 cnt = m->req(); 4435 nstack.push(n, i); // put on stack parent and next input's index 4436 n = m; 4437 i = 0; 4438 } 4439 } else { 4440 // Now do post-visit work 4441 final_graph_reshaping_impl(n, frc, dead_nodes); 4442 if (nstack.is_empty()) 4443 break; // finished 4444 n = nstack.node(); // Get node from stack 4445 cnt = n->req(); 4446 i = nstack.index(); 4447 nstack.pop(); // Shift to the next node on stack 4448 } 4449 } 4450 4451 // Skip next transformation if compressed oops are not used. 4452 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4453 (!UseCompressedOops && !UseCompressedClassPointers)) 4454 return; 4455 4456 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4457 // It could be done for an uncommon traps or any safepoints/calls 4458 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4459 while (sfpt.size() > 0) { 4460 n = sfpt.pop(); 4461 JVMState *jvms = n->as_SafePoint()->jvms(); 4462 assert(jvms != nullptr, "sanity"); 4463 int start = jvms->debug_start(); 4464 int end = n->req(); 4465 bool is_uncommon = (n->is_CallStaticJava() && 4466 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4467 for (int j = start; j < end; j++) { 4468 Node* in = n->in(j); 4469 if (in->is_DecodeNarrowPtr()) { 4470 bool safe_to_skip = true; 4471 if (!is_uncommon ) { 4472 // Is it safe to skip? 4473 for (uint i = 0; i < in->outcnt(); i++) { 4474 Node* u = in->raw_out(i); 4475 if (!u->is_SafePoint() || 4476 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4477 safe_to_skip = false; 4478 } 4479 } 4480 } 4481 if (safe_to_skip) { 4482 n->set_req(j, in->in(1)); 4483 } 4484 if (in->outcnt() == 0) { 4485 in->disconnect_inputs(this); 4486 } 4487 } 4488 } 4489 } 4490 } 4491 4492 //------------------------------final_graph_reshaping-------------------------- 4493 // Final Graph Reshaping. 4494 // 4495 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4496 // and not commoned up and forced early. Must come after regular 4497 // optimizations to avoid GVN undoing the cloning. Clone constant 4498 // inputs to Loop Phis; these will be split by the allocator anyways. 4499 // Remove Opaque nodes. 4500 // (2) Move last-uses by commutative operations to the left input to encourage 4501 // Intel update-in-place two-address operations and better register usage 4502 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4503 // calls canonicalizing them back. 4504 // (3) Count the number of double-precision FP ops, single-precision FP ops 4505 // and call sites. On Intel, we can get correct rounding either by 4506 // forcing singles to memory (requires extra stores and loads after each 4507 // FP bytecode) or we can set a rounding mode bit (requires setting and 4508 // clearing the mode bit around call sites). The mode bit is only used 4509 // if the relative frequency of single FP ops to calls is low enough. 4510 // This is a key transform for SPEC mpeg_audio. 4511 // (4) Detect infinite loops; blobs of code reachable from above but not 4512 // below. Several of the Code_Gen algorithms fail on such code shapes, 4513 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4514 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4515 // Detection is by looking for IfNodes where only 1 projection is 4516 // reachable from below or CatchNodes missing some targets. 4517 // (5) Assert for insane oop offsets in debug mode. 4518 4519 bool Compile::final_graph_reshaping() { 4520 // an infinite loop may have been eliminated by the optimizer, 4521 // in which case the graph will be empty. 4522 if (root()->req() == 1) { 4523 // Do not compile method that is only a trivial infinite loop, 4524 // since the content of the loop may have been eliminated. 4525 record_method_not_compilable("trivial infinite loop"); 4526 return true; 4527 } 4528 4529 // Expensive nodes have their control input set to prevent the GVN 4530 // from freely commoning them. There's no GVN beyond this point so 4531 // no need to keep the control input. We want the expensive nodes to 4532 // be freely moved to the least frequent code path by gcm. 4533 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4534 for (int i = 0; i < expensive_count(); i++) { 4535 _expensive_nodes.at(i)->set_req(0, nullptr); 4536 } 4537 4538 Final_Reshape_Counts frc; 4539 4540 // Visit everybody reachable! 4541 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4542 Node_Stack nstack(live_nodes() >> 1); 4543 Unique_Node_List dead_nodes; 4544 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4545 4546 // Check for unreachable (from below) code (i.e., infinite loops). 4547 for( uint i = 0; i < frc._tests.size(); i++ ) { 4548 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4549 // Get number of CFG targets. 4550 // Note that PCTables include exception targets after calls. 4551 uint required_outcnt = n->required_outcnt(); 4552 if (n->outcnt() != required_outcnt) { 4553 // Check for a few special cases. Rethrow Nodes never take the 4554 // 'fall-thru' path, so expected kids is 1 less. 4555 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4556 if (n->in(0)->in(0)->is_Call()) { 4557 CallNode* call = n->in(0)->in(0)->as_Call(); 4558 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4559 required_outcnt--; // Rethrow always has 1 less kid 4560 } else if (call->req() > TypeFunc::Parms && 4561 call->is_CallDynamicJava()) { 4562 // Check for null receiver. In such case, the optimizer has 4563 // detected that the virtual call will always result in a null 4564 // pointer exception. The fall-through projection of this CatchNode 4565 // will not be populated. 4566 Node* arg0 = call->in(TypeFunc::Parms); 4567 if (arg0->is_Type() && 4568 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4569 required_outcnt--; 4570 } 4571 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4572 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4573 // Check for illegal array length. In such case, the optimizer has 4574 // detected that the allocation attempt will always result in an 4575 // exception. There is no fall-through projection of this CatchNode . 4576 assert(call->is_CallStaticJava(), "static call expected"); 4577 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4578 uint valid_length_test_input = call->req() - 1; 4579 Node* valid_length_test = call->in(valid_length_test_input); 4580 call->del_req(valid_length_test_input); 4581 if (valid_length_test->find_int_con(1) == 0) { 4582 required_outcnt--; 4583 } 4584 dead_nodes.push(valid_length_test); 4585 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4586 continue; 4587 } 4588 } 4589 } 4590 4591 // Recheck with a better notion of 'required_outcnt' 4592 if (n->outcnt() != required_outcnt) { 4593 record_method_not_compilable("malformed control flow"); 4594 return true; // Not all targets reachable! 4595 } 4596 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4597 CallNode* call = n->in(0)->in(0)->as_Call(); 4598 if (call->entry_point() == OptoRuntime::new_array_Java() || 4599 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4600 assert(call->is_CallStaticJava(), "static call expected"); 4601 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4602 uint valid_length_test_input = call->req() - 1; 4603 dead_nodes.push(call->in(valid_length_test_input)); 4604 call->del_req(valid_length_test_input); // valid length test useless now 4605 } 4606 } 4607 // Check that I actually visited all kids. Unreached kids 4608 // must be infinite loops. 4609 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4610 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4611 record_method_not_compilable("infinite loop"); 4612 return true; // Found unvisited kid; must be unreach 4613 } 4614 4615 // Here so verification code in final_graph_reshaping_walk() 4616 // always see an OuterStripMinedLoopEnd 4617 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4618 IfNode* init_iff = n->as_If(); 4619 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4620 n->subsume_by(iff, this); 4621 } 4622 } 4623 4624 while (dead_nodes.size() > 0) { 4625 Node* m = dead_nodes.pop(); 4626 if (m->outcnt() == 0 && m != top()) { 4627 for (uint j = 0; j < m->req(); j++) { 4628 Node* in = m->in(j); 4629 if (in != nullptr) { 4630 dead_nodes.push(in); 4631 } 4632 } 4633 m->disconnect_inputs(this); 4634 } 4635 } 4636 4637 set_java_calls(frc.get_java_call_count()); 4638 set_inner_loops(frc.get_inner_loop_count()); 4639 4640 // No infinite loops, no reason to bail out. 4641 return false; 4642 } 4643 4644 //-----------------------------too_many_traps---------------------------------- 4645 // Report if there are too many traps at the current method and bci. 4646 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4647 bool Compile::too_many_traps(ciMethod* method, 4648 int bci, 4649 Deoptimization::DeoptReason reason) { 4650 ciMethodData* md = method->method_data(); 4651 if (md->is_empty()) { 4652 // Assume the trap has not occurred, or that it occurred only 4653 // because of a transient condition during start-up in the interpreter. 4654 return false; 4655 } 4656 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4657 if (md->has_trap_at(bci, m, reason) != 0) { 4658 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4659 // Also, if there are multiple reasons, or if there is no per-BCI record, 4660 // assume the worst. 4661 if (log()) 4662 log()->elem("observe trap='%s' count='%d'", 4663 Deoptimization::trap_reason_name(reason), 4664 md->trap_count(reason)); 4665 return true; 4666 } else { 4667 // Ignore method/bci and see if there have been too many globally. 4668 return too_many_traps(reason, md); 4669 } 4670 } 4671 4672 // Less-accurate variant which does not require a method and bci. 4673 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4674 ciMethodData* logmd) { 4675 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4676 // Too many traps globally. 4677 // Note that we use cumulative trap_count, not just md->trap_count. 4678 if (log()) { 4679 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4680 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4681 Deoptimization::trap_reason_name(reason), 4682 mcount, trap_count(reason)); 4683 } 4684 return true; 4685 } else { 4686 // The coast is clear. 4687 return false; 4688 } 4689 } 4690 4691 //--------------------------too_many_recompiles-------------------------------- 4692 // Report if there are too many recompiles at the current method and bci. 4693 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4694 // Is not eager to return true, since this will cause the compiler to use 4695 // Action_none for a trap point, to avoid too many recompilations. 4696 bool Compile::too_many_recompiles(ciMethod* method, 4697 int bci, 4698 Deoptimization::DeoptReason reason) { 4699 ciMethodData* md = method->method_data(); 4700 if (md->is_empty()) { 4701 // Assume the trap has not occurred, or that it occurred only 4702 // because of a transient condition during start-up in the interpreter. 4703 return false; 4704 } 4705 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4706 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4707 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4708 Deoptimization::DeoptReason per_bc_reason 4709 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4710 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4711 if ((per_bc_reason == Deoptimization::Reason_none 4712 || md->has_trap_at(bci, m, reason) != 0) 4713 // The trap frequency measure we care about is the recompile count: 4714 && md->trap_recompiled_at(bci, m) 4715 && md->overflow_recompile_count() >= bc_cutoff) { 4716 // Do not emit a trap here if it has already caused recompilations. 4717 // Also, if there are multiple reasons, or if there is no per-BCI record, 4718 // assume the worst. 4719 if (log()) 4720 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4721 Deoptimization::trap_reason_name(reason), 4722 md->trap_count(reason), 4723 md->overflow_recompile_count()); 4724 return true; 4725 } else if (trap_count(reason) != 0 4726 && decompile_count() >= m_cutoff) { 4727 // Too many recompiles globally, and we have seen this sort of trap. 4728 // Use cumulative decompile_count, not just md->decompile_count. 4729 if (log()) 4730 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4731 Deoptimization::trap_reason_name(reason), 4732 md->trap_count(reason), trap_count(reason), 4733 md->decompile_count(), decompile_count()); 4734 return true; 4735 } else { 4736 // The coast is clear. 4737 return false; 4738 } 4739 } 4740 4741 // Compute when not to trap. Used by matching trap based nodes and 4742 // NullCheck optimization. 4743 void Compile::set_allowed_deopt_reasons() { 4744 _allowed_reasons = 0; 4745 if (is_method_compilation()) { 4746 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4747 assert(rs < BitsPerInt, "recode bit map"); 4748 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4749 _allowed_reasons |= nth_bit(rs); 4750 } 4751 } 4752 } 4753 } 4754 4755 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4756 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4757 } 4758 4759 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4760 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4761 } 4762 4763 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4764 if (holder->is_initialized()) { 4765 return false; 4766 } 4767 if (holder->is_being_initialized()) { 4768 if (accessing_method->holder() == holder) { 4769 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4770 // <init>, or a static method. In all those cases, there was an initialization 4771 // barrier on the holder klass passed. 4772 if (accessing_method->is_class_initializer() || 4773 accessing_method->is_object_constructor() || 4774 accessing_method->is_static()) { 4775 return false; 4776 } 4777 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4778 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4779 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4780 // child class can become fully initialized while its parent class is still being initialized. 4781 if (accessing_method->is_class_initializer()) { 4782 return false; 4783 } 4784 } 4785 ciMethod* root = method(); // the root method of compilation 4786 if (root != accessing_method) { 4787 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4788 } 4789 } 4790 return true; 4791 } 4792 4793 #ifndef PRODUCT 4794 //------------------------------verify_bidirectional_edges--------------------- 4795 // For each input edge to a node (ie - for each Use-Def edge), verify that 4796 // there is a corresponding Def-Use edge. 4797 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4798 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4799 uint stack_size = live_nodes() >> 4; 4800 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4801 if (root_and_safepoints != nullptr) { 4802 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4803 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4804 Node* root_or_safepoint = root_and_safepoints->at(i); 4805 // If the node is a safepoint, let's check if it still has a control input 4806 // Lack of control input signifies that this node was killed by CCP or 4807 // recursively by remove_globally_dead_node and it shouldn't be a starting 4808 // point. 4809 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4810 nstack.push(root_or_safepoint); 4811 } 4812 } 4813 } else { 4814 nstack.push(_root); 4815 } 4816 4817 while (nstack.size() > 0) { 4818 Node* n = nstack.pop(); 4819 if (visited.member(n)) { 4820 continue; 4821 } 4822 visited.push(n); 4823 4824 // Walk over all input edges, checking for correspondence 4825 uint length = n->len(); 4826 for (uint i = 0; i < length; i++) { 4827 Node* in = n->in(i); 4828 if (in != nullptr && !visited.member(in)) { 4829 nstack.push(in); // Put it on stack 4830 } 4831 if (in != nullptr && !in->is_top()) { 4832 // Count instances of `next` 4833 int cnt = 0; 4834 for (uint idx = 0; idx < in->_outcnt; idx++) { 4835 if (in->_out[idx] == n) { 4836 cnt++; 4837 } 4838 } 4839 assert(cnt > 0, "Failed to find Def-Use edge."); 4840 // Check for duplicate edges 4841 // walk the input array downcounting the input edges to n 4842 for (uint j = 0; j < length; j++) { 4843 if (n->in(j) == in) { 4844 cnt--; 4845 } 4846 } 4847 assert(cnt == 0, "Mismatched edge count."); 4848 } else if (in == nullptr) { 4849 assert(i == 0 || i >= n->req() || 4850 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4851 (n->is_Allocate() && i >= AllocateNode::InlineType) || 4852 (n->is_Unlock() && i == (n->req() - 1)) || 4853 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4854 "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges"); 4855 } else { 4856 assert(in->is_top(), "sanity"); 4857 // Nothing to check. 4858 } 4859 } 4860 } 4861 } 4862 4863 //------------------------------verify_graph_edges--------------------------- 4864 // Walk the Graph and verify that there is a one-to-one correspondence 4865 // between Use-Def edges and Def-Use edges in the graph. 4866 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4867 if (VerifyGraphEdges) { 4868 Unique_Node_List visited; 4869 4870 // Call graph walk to check edges 4871 verify_bidirectional_edges(visited, root_and_safepoints); 4872 if (no_dead_code) { 4873 // Now make sure that no visited node is used by an unvisited node. 4874 bool dead_nodes = false; 4875 Unique_Node_List checked; 4876 while (visited.size() > 0) { 4877 Node* n = visited.pop(); 4878 checked.push(n); 4879 for (uint i = 0; i < n->outcnt(); i++) { 4880 Node* use = n->raw_out(i); 4881 if (checked.member(use)) continue; // already checked 4882 if (visited.member(use)) continue; // already in the graph 4883 if (use->is_Con()) continue; // a dead ConNode is OK 4884 // At this point, we have found a dead node which is DU-reachable. 4885 if (!dead_nodes) { 4886 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4887 dead_nodes = true; 4888 } 4889 use->dump(2); 4890 tty->print_cr("---"); 4891 checked.push(use); // No repeats; pretend it is now checked. 4892 } 4893 } 4894 assert(!dead_nodes, "using nodes must be reachable from root"); 4895 } 4896 } 4897 } 4898 #endif 4899 4900 // The Compile object keeps track of failure reasons separately from the ciEnv. 4901 // This is required because there is not quite a 1-1 relation between the 4902 // ciEnv and its compilation task and the Compile object. Note that one 4903 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4904 // to backtrack and retry without subsuming loads. Other than this backtracking 4905 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4906 // by the logic in C2Compiler. 4907 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4908 if (log() != nullptr) { 4909 log()->elem("failure reason='%s' phase='compile'", reason); 4910 } 4911 if (_failure_reason.get() == nullptr) { 4912 // Record the first failure reason. 4913 _failure_reason.set(reason); 4914 if (CaptureBailoutInformation) { 4915 _first_failure_details = new CompilationFailureInfo(reason); 4916 } 4917 } else { 4918 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4919 } 4920 4921 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4922 C->print_method(PHASE_FAILURE, 1); 4923 } 4924 _root = nullptr; // flush the graph, too 4925 } 4926 4927 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4928 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4929 _compile(Compile::current()), 4930 _log(nullptr), 4931 _dolog(CITimeVerbose) 4932 { 4933 assert(_compile != nullptr, "sanity check"); 4934 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4935 if (_dolog) { 4936 _log = _compile->log(); 4937 } 4938 if (_log != nullptr) { 4939 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4940 _log->stamp(); 4941 _log->end_head(); 4942 } 4943 4944 // Inform memory statistic, if enabled 4945 if (CompilationMemoryStatistic::enabled()) { 4946 CompilationMemoryStatistic::on_phase_start((int)id, name); 4947 } 4948 } 4949 4950 Compile::TracePhase::TracePhase(PhaseTraceId id) 4951 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4952 4953 Compile::TracePhase::~TracePhase() { 4954 4955 // Inform memory statistic, if enabled 4956 if (CompilationMemoryStatistic::enabled()) { 4957 CompilationMemoryStatistic::on_phase_end(); 4958 } 4959 4960 if (_compile->failing_internal()) { 4961 if (_log != nullptr) { 4962 _log->done("phase"); 4963 } 4964 return; // timing code, not stressing bailouts. 4965 } 4966 #ifdef ASSERT 4967 if (PrintIdealNodeCount) { 4968 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4969 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4970 } 4971 4972 if (VerifyIdealNodeCount) { 4973 _compile->print_missing_nodes(); 4974 } 4975 #endif 4976 4977 if (_log != nullptr) { 4978 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4979 } 4980 } 4981 4982 //----------------------------static_subtype_check----------------------------- 4983 // Shortcut important common cases when superklass is exact: 4984 // (0) superklass is java.lang.Object (can occur in reflective code) 4985 // (1) subklass is already limited to a subtype of superklass => always ok 4986 // (2) subklass does not overlap with superklass => always fail 4987 // (3) superklass has NO subtypes and we can check with a simple compare. 4988 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4989 if (skip) { 4990 return SSC_full_test; // Let caller generate the general case. 4991 } 4992 4993 if (subk->is_java_subtype_of(superk)) { 4994 return SSC_always_true; // (0) and (1) this test cannot fail 4995 } 4996 4997 if (!subk->maybe_java_subtype_of(superk)) { 4998 return SSC_always_false; // (2) true path dead; no dynamic test needed 4999 } 5000 5001 const Type* superelem = superk; 5002 if (superk->isa_aryklassptr()) { 5003 int ignored; 5004 superelem = superk->is_aryklassptr()->base_element_type(ignored); 5005 5006 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 5007 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 5008 if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() && 5009 superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) { 5010 return SSC_full_test; 5011 } 5012 } 5013 5014 if (superelem->isa_instklassptr()) { 5015 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 5016 if (!ik->has_subklass()) { 5017 if (!ik->is_final()) { 5018 // Add a dependency if there is a chance of a later subclass. 5019 dependencies()->assert_leaf_type(ik); 5020 } 5021 if (!superk->maybe_java_subtype_of(subk)) { 5022 return SSC_always_false; 5023 } 5024 return SSC_easy_test; // (3) caller can do a simple ptr comparison 5025 } 5026 } else { 5027 // A primitive array type has no subtypes. 5028 return SSC_easy_test; // (3) caller can do a simple ptr comparison 5029 } 5030 5031 return SSC_full_test; 5032 } 5033 5034 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 5035 #ifdef _LP64 5036 // The scaled index operand to AddP must be a clean 64-bit value. 5037 // Java allows a 32-bit int to be incremented to a negative 5038 // value, which appears in a 64-bit register as a large 5039 // positive number. Using that large positive number as an 5040 // operand in pointer arithmetic has bad consequences. 5041 // On the other hand, 32-bit overflow is rare, and the possibility 5042 // can often be excluded, if we annotate the ConvI2L node with 5043 // a type assertion that its value is known to be a small positive 5044 // number. (The prior range check has ensured this.) 5045 // This assertion is used by ConvI2LNode::Ideal. 5046 int index_max = max_jint - 1; // array size is max_jint, index is one less 5047 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 5048 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 5049 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 5050 #endif 5051 return idx; 5052 } 5053 5054 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 5055 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 5056 if (ctrl != nullptr) { 5057 // Express control dependency by a CastII node with a narrow type. 5058 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 5059 // node from floating above the range check during loop optimizations. Otherwise, the 5060 // ConvI2L node may be eliminated independently of the range check, causing the data path 5061 // to become TOP while the control path is still there (although it's unreachable). 5062 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 5063 value = phase->transform(value); 5064 } 5065 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 5066 return phase->transform(new ConvI2LNode(value, ltype)); 5067 } 5068 5069 void Compile::dump_print_inlining() { 5070 inline_printer()->print_on(tty); 5071 } 5072 5073 void Compile::log_late_inline(CallGenerator* cg) { 5074 if (log() != nullptr) { 5075 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 5076 cg->unique_id()); 5077 JVMState* p = cg->call_node()->jvms(); 5078 while (p != nullptr) { 5079 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 5080 p = p->caller(); 5081 } 5082 log()->tail("late_inline"); 5083 } 5084 } 5085 5086 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 5087 log_late_inline(cg); 5088 if (log() != nullptr) { 5089 log()->inline_fail(msg); 5090 } 5091 } 5092 5093 void Compile::log_inline_id(CallGenerator* cg) { 5094 if (log() != nullptr) { 5095 // The LogCompilation tool needs a unique way to identify late 5096 // inline call sites. This id must be unique for this call site in 5097 // this compilation. Try to have it unique across compilations as 5098 // well because it can be convenient when grepping through the log 5099 // file. 5100 // Distinguish OSR compilations from others in case CICountOSR is 5101 // on. 5102 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 5103 cg->set_unique_id(id); 5104 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 5105 } 5106 } 5107 5108 void Compile::log_inline_failure(const char* msg) { 5109 if (C->log() != nullptr) { 5110 C->log()->inline_fail(msg); 5111 } 5112 } 5113 5114 5115 // Dump inlining replay data to the stream. 5116 // Don't change thread state and acquire any locks. 5117 void Compile::dump_inline_data(outputStream* out) { 5118 InlineTree* inl_tree = ilt(); 5119 if (inl_tree != nullptr) { 5120 out->print(" inline %d", inl_tree->count()); 5121 inl_tree->dump_replay_data(out); 5122 } 5123 } 5124 5125 void Compile::dump_inline_data_reduced(outputStream* out) { 5126 assert(ReplayReduce, ""); 5127 5128 InlineTree* inl_tree = ilt(); 5129 if (inl_tree == nullptr) { 5130 return; 5131 } 5132 // Enable iterative replay file reduction 5133 // Output "compile" lines for depth 1 subtrees, 5134 // simulating that those trees were compiled 5135 // instead of inlined. 5136 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 5137 InlineTree* sub = inl_tree->subtrees().at(i); 5138 if (sub->inline_level() != 1) { 5139 continue; 5140 } 5141 5142 ciMethod* method = sub->method(); 5143 int entry_bci = -1; 5144 int comp_level = env()->task()->comp_level(); 5145 out->print("compile "); 5146 method->dump_name_as_ascii(out); 5147 out->print(" %d %d", entry_bci, comp_level); 5148 out->print(" inline %d", sub->count()); 5149 sub->dump_replay_data(out, -1); 5150 out->cr(); 5151 } 5152 } 5153 5154 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 5155 if (n1->Opcode() < n2->Opcode()) return -1; 5156 else if (n1->Opcode() > n2->Opcode()) return 1; 5157 5158 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 5159 for (uint i = 1; i < n1->req(); i++) { 5160 if (n1->in(i) < n2->in(i)) return -1; 5161 else if (n1->in(i) > n2->in(i)) return 1; 5162 } 5163 5164 return 0; 5165 } 5166 5167 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 5168 Node* n1 = *n1p; 5169 Node* n2 = *n2p; 5170 5171 return cmp_expensive_nodes(n1, n2); 5172 } 5173 5174 void Compile::sort_expensive_nodes() { 5175 if (!expensive_nodes_sorted()) { 5176 _expensive_nodes.sort(cmp_expensive_nodes); 5177 } 5178 } 5179 5180 bool Compile::expensive_nodes_sorted() const { 5181 for (int i = 1; i < _expensive_nodes.length(); i++) { 5182 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 5183 return false; 5184 } 5185 } 5186 return true; 5187 } 5188 5189 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 5190 if (_expensive_nodes.length() == 0) { 5191 return false; 5192 } 5193 5194 assert(OptimizeExpensiveOps, "optimization off?"); 5195 5196 // Take this opportunity to remove dead nodes from the list 5197 int j = 0; 5198 for (int i = 0; i < _expensive_nodes.length(); i++) { 5199 Node* n = _expensive_nodes.at(i); 5200 if (!n->is_unreachable(igvn)) { 5201 assert(n->is_expensive(), "should be expensive"); 5202 _expensive_nodes.at_put(j, n); 5203 j++; 5204 } 5205 } 5206 _expensive_nodes.trunc_to(j); 5207 5208 // Then sort the list so that similar nodes are next to each other 5209 // and check for at least two nodes of identical kind with same data 5210 // inputs. 5211 sort_expensive_nodes(); 5212 5213 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 5214 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 5215 return true; 5216 } 5217 } 5218 5219 return false; 5220 } 5221 5222 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 5223 if (_expensive_nodes.length() == 0) { 5224 return; 5225 } 5226 5227 assert(OptimizeExpensiveOps, "optimization off?"); 5228 5229 // Sort to bring similar nodes next to each other and clear the 5230 // control input of nodes for which there's only a single copy. 5231 sort_expensive_nodes(); 5232 5233 int j = 0; 5234 int identical = 0; 5235 int i = 0; 5236 bool modified = false; 5237 for (; i < _expensive_nodes.length()-1; i++) { 5238 assert(j <= i, "can't write beyond current index"); 5239 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 5240 identical++; 5241 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5242 continue; 5243 } 5244 if (identical > 0) { 5245 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5246 identical = 0; 5247 } else { 5248 Node* n = _expensive_nodes.at(i); 5249 igvn.replace_input_of(n, 0, nullptr); 5250 igvn.hash_insert(n); 5251 modified = true; 5252 } 5253 } 5254 if (identical > 0) { 5255 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5256 } else if (_expensive_nodes.length() >= 1) { 5257 Node* n = _expensive_nodes.at(i); 5258 igvn.replace_input_of(n, 0, nullptr); 5259 igvn.hash_insert(n); 5260 modified = true; 5261 } 5262 _expensive_nodes.trunc_to(j); 5263 if (modified) { 5264 igvn.optimize(); 5265 } 5266 } 5267 5268 void Compile::add_expensive_node(Node * n) { 5269 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 5270 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5271 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5272 if (OptimizeExpensiveOps) { 5273 _expensive_nodes.append(n); 5274 } else { 5275 // Clear control input and let IGVN optimize expensive nodes if 5276 // OptimizeExpensiveOps is off. 5277 n->set_req(0, nullptr); 5278 } 5279 } 5280 5281 /** 5282 * Track coarsened Lock and Unlock nodes. 5283 */ 5284 5285 class Lock_List : public Node_List { 5286 uint _origin_cnt; 5287 public: 5288 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 5289 uint origin_cnt() const { return _origin_cnt; } 5290 }; 5291 5292 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 5293 int length = locks.length(); 5294 if (length > 0) { 5295 // Have to keep this list until locks elimination during Macro nodes elimination. 5296 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 5297 AbstractLockNode* alock = locks.at(0); 5298 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5299 for (int i = 0; i < length; i++) { 5300 AbstractLockNode* lock = locks.at(i); 5301 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 5302 locks_list->push(lock); 5303 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 5304 if (this_box != box) { 5305 // Locking regions (BoxLock) could be Unbalanced here: 5306 // - its coarsened locks were eliminated in earlier 5307 // macro nodes elimination followed by loop unroll 5308 // - it is OSR locking region (no Lock node) 5309 // Preserve Unbalanced status in such cases. 5310 if (!this_box->is_unbalanced()) { 5311 this_box->set_coarsened(); 5312 } 5313 if (!box->is_unbalanced()) { 5314 box->set_coarsened(); 5315 } 5316 } 5317 } 5318 _coarsened_locks.append(locks_list); 5319 } 5320 } 5321 5322 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 5323 int count = coarsened_count(); 5324 for (int i = 0; i < count; i++) { 5325 Node_List* locks_list = _coarsened_locks.at(i); 5326 for (uint j = 0; j < locks_list->size(); j++) { 5327 Node* lock = locks_list->at(j); 5328 assert(lock->is_AbstractLock(), "sanity"); 5329 if (!useful.member(lock)) { 5330 locks_list->yank(lock); 5331 } 5332 } 5333 } 5334 } 5335 5336 void Compile::remove_coarsened_lock(Node* n) { 5337 if (n->is_AbstractLock()) { 5338 int count = coarsened_count(); 5339 for (int i = 0; i < count; i++) { 5340 Node_List* locks_list = _coarsened_locks.at(i); 5341 locks_list->yank(n); 5342 } 5343 } 5344 } 5345 5346 bool Compile::coarsened_locks_consistent() { 5347 int count = coarsened_count(); 5348 for (int i = 0; i < count; i++) { 5349 bool unbalanced = false; 5350 bool modified = false; // track locks kind modifications 5351 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 5352 uint size = locks_list->size(); 5353 if (size == 0) { 5354 unbalanced = false; // All locks were eliminated - good 5355 } else if (size != locks_list->origin_cnt()) { 5356 unbalanced = true; // Some locks were removed from list 5357 } else { 5358 for (uint j = 0; j < size; j++) { 5359 Node* lock = locks_list->at(j); 5360 // All nodes in group should have the same state (modified or not) 5361 if (!lock->as_AbstractLock()->is_coarsened()) { 5362 if (j == 0) { 5363 // first on list was modified, the rest should be too for consistency 5364 modified = true; 5365 } else if (!modified) { 5366 // this lock was modified but previous locks on the list were not 5367 unbalanced = true; 5368 break; 5369 } 5370 } else if (modified) { 5371 // previous locks on list were modified but not this lock 5372 unbalanced = true; 5373 break; 5374 } 5375 } 5376 } 5377 if (unbalanced) { 5378 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 5379 #ifdef ASSERT 5380 if (PrintEliminateLocks) { 5381 tty->print_cr("=== unbalanced coarsened locks ==="); 5382 for (uint l = 0; l < size; l++) { 5383 locks_list->at(l)->dump(); 5384 } 5385 } 5386 #endif 5387 record_failure(C2Compiler::retry_no_locks_coarsening()); 5388 return false; 5389 } 5390 } 5391 return true; 5392 } 5393 5394 // Mark locking regions (identified by BoxLockNode) as unbalanced if 5395 // locks coarsening optimization removed Lock/Unlock nodes from them. 5396 // Such regions become unbalanced because coarsening only removes part 5397 // of Lock/Unlock nodes in region. As result we can't execute other 5398 // locks elimination optimizations which assume all code paths have 5399 // corresponding pair of Lock/Unlock nodes - they are balanced. 5400 void Compile::mark_unbalanced_boxes() const { 5401 int count = coarsened_count(); 5402 for (int i = 0; i < count; i++) { 5403 Node_List* locks_list = _coarsened_locks.at(i); 5404 uint size = locks_list->size(); 5405 if (size > 0) { 5406 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 5407 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5408 if (alock->is_coarsened()) { 5409 // coarsened_locks_consistent(), which is called before this method, verifies 5410 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 5411 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5412 for (uint j = 1; j < size; j++) { 5413 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 5414 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 5415 if (box != this_box) { 5416 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5417 box->set_unbalanced(); 5418 this_box->set_unbalanced(); 5419 } 5420 } 5421 } 5422 } 5423 } 5424 } 5425 5426 /** 5427 * Remove the speculative part of types and clean up the graph 5428 */ 5429 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5430 if (UseTypeSpeculation) { 5431 Unique_Node_List worklist; 5432 worklist.push(root()); 5433 int modified = 0; 5434 // Go over all type nodes that carry a speculative type, drop the 5435 // speculative part of the type and enqueue the node for an igvn 5436 // which may optimize it out. 5437 for (uint next = 0; next < worklist.size(); ++next) { 5438 Node *n = worklist.at(next); 5439 if (n->is_Type()) { 5440 TypeNode* tn = n->as_Type(); 5441 const Type* t = tn->type(); 5442 const Type* t_no_spec = t->remove_speculative(); 5443 if (t_no_spec != t) { 5444 bool in_hash = igvn.hash_delete(n); 5445 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 5446 tn->set_type(t_no_spec); 5447 igvn.hash_insert(n); 5448 igvn._worklist.push(n); // give it a chance to go away 5449 modified++; 5450 } 5451 } 5452 // Iterate over outs - endless loops is unreachable from below 5453 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5454 Node *m = n->fast_out(i); 5455 if (not_a_node(m)) { 5456 continue; 5457 } 5458 worklist.push(m); 5459 } 5460 } 5461 // Drop the speculative part of all types in the igvn's type table 5462 igvn.remove_speculative_types(); 5463 if (modified > 0) { 5464 igvn.optimize(); 5465 if (failing()) return; 5466 } 5467 #ifdef ASSERT 5468 // Verify that after the IGVN is over no speculative type has resurfaced 5469 worklist.clear(); 5470 worklist.push(root()); 5471 for (uint next = 0; next < worklist.size(); ++next) { 5472 Node *n = worklist.at(next); 5473 const Type* t = igvn.type_or_null(n); 5474 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5475 if (n->is_Type()) { 5476 t = n->as_Type()->type(); 5477 assert(t == t->remove_speculative(), "no more speculative types"); 5478 } 5479 // Iterate over outs - endless loops is unreachable from below 5480 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5481 Node *m = n->fast_out(i); 5482 if (not_a_node(m)) { 5483 continue; 5484 } 5485 worklist.push(m); 5486 } 5487 } 5488 igvn.check_no_speculative_types(); 5489 #endif 5490 } 5491 } 5492 5493 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) { 5494 const TypeInstPtr* ta = phase->type(a)->isa_instptr(); 5495 const TypeInstPtr* tb = phase->type(b)->isa_instptr(); 5496 if (!EnableValhalla || ta == nullptr || tb == nullptr || 5497 ta->is_zero_type() || tb->is_zero_type() || 5498 !ta->can_be_inline_type() || !tb->can_be_inline_type()) { 5499 // Use old acmp if one operand is null or not an inline type 5500 return new CmpPNode(a, b); 5501 } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) { 5502 // We know that one operand is an inline type. Therefore, 5503 // new acmp will only return true if both operands are nullptr. 5504 // Check if both operands are null by or'ing the oops. 5505 a = phase->transform(new CastP2XNode(nullptr, a)); 5506 b = phase->transform(new CastP2XNode(nullptr, b)); 5507 a = phase->transform(new OrXNode(a, b)); 5508 return new CmpXNode(a, phase->MakeConX(0)); 5509 } 5510 // Use new acmp 5511 return nullptr; 5512 } 5513 5514 // Auxiliary methods to support randomized stressing/fuzzing. 5515 5516 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5517 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5518 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5519 FLAG_SET_ERGO(StressSeed, _stress_seed); 5520 } else { 5521 _stress_seed = StressSeed; 5522 } 5523 if (_log != nullptr) { 5524 _log->elem("stress_test seed='%u'", _stress_seed); 5525 } 5526 } 5527 5528 int Compile::random() { 5529 _stress_seed = os::next_random(_stress_seed); 5530 return static_cast<int>(_stress_seed); 5531 } 5532 5533 // This method can be called the arbitrary number of times, with current count 5534 // as the argument. The logic allows selecting a single candidate from the 5535 // running list of candidates as follows: 5536 // int count = 0; 5537 // Cand* selected = null; 5538 // while(cand = cand->next()) { 5539 // if (randomized_select(++count)) { 5540 // selected = cand; 5541 // } 5542 // } 5543 // 5544 // Including count equalizes the chances any candidate is "selected". 5545 // This is useful when we don't have the complete list of candidates to choose 5546 // from uniformly. In this case, we need to adjust the randomicity of the 5547 // selection, or else we will end up biasing the selection towards the latter 5548 // candidates. 5549 // 5550 // Quick back-envelope calculation shows that for the list of n candidates 5551 // the equal probability for the candidate to persist as "best" can be 5552 // achieved by replacing it with "next" k-th candidate with the probability 5553 // of 1/k. It can be easily shown that by the end of the run, the 5554 // probability for any candidate is converged to 1/n, thus giving the 5555 // uniform distribution among all the candidates. 5556 // 5557 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5558 #define RANDOMIZED_DOMAIN_POW 29 5559 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5560 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5561 bool Compile::randomized_select(int count) { 5562 assert(count > 0, "only positive"); 5563 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5564 } 5565 5566 #ifdef ASSERT 5567 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5568 bool Compile::fail_randomly() { 5569 if ((random() % StressBailoutMean) != 0) { 5570 return false; 5571 } 5572 record_failure("StressBailout"); 5573 return true; 5574 } 5575 5576 bool Compile::failure_is_artificial() { 5577 return C->failure_reason_is("StressBailout"); 5578 } 5579 #endif 5580 5581 CloneMap& Compile::clone_map() { return _clone_map; } 5582 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5583 5584 void NodeCloneInfo::dump_on(outputStream* st) const { 5585 st->print(" {%d:%d} ", idx(), gen()); 5586 } 5587 5588 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5589 uint64_t val = value(old->_idx); 5590 NodeCloneInfo cio(val); 5591 assert(val != 0, "old node should be in the map"); 5592 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5593 insert(nnn->_idx, cin.get()); 5594 #ifndef PRODUCT 5595 if (is_debug()) { 5596 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5597 } 5598 #endif 5599 } 5600 5601 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5602 NodeCloneInfo cio(value(old->_idx)); 5603 if (cio.get() == 0) { 5604 cio.set(old->_idx, 0); 5605 insert(old->_idx, cio.get()); 5606 #ifndef PRODUCT 5607 if (is_debug()) { 5608 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5609 } 5610 #endif 5611 } 5612 clone(old, nnn, gen); 5613 } 5614 5615 int CloneMap::max_gen() const { 5616 int g = 0; 5617 DictI di(_dict); 5618 for(; di.test(); ++di) { 5619 int t = gen(di._key); 5620 if (g < t) { 5621 g = t; 5622 #ifndef PRODUCT 5623 if (is_debug()) { 5624 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5625 } 5626 #endif 5627 } 5628 } 5629 return g; 5630 } 5631 5632 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5633 uint64_t val = value(key); 5634 if (val != 0) { 5635 NodeCloneInfo ni(val); 5636 ni.dump_on(st); 5637 } 5638 } 5639 5640 void Compile::shuffle_macro_nodes() { 5641 if (_macro_nodes.length() < 2) { 5642 return; 5643 } 5644 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5645 uint j = C->random() % (i + 1); 5646 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5647 } 5648 } 5649 5650 // Move Allocate nodes to the start of the list 5651 void Compile::sort_macro_nodes() { 5652 int count = macro_count(); 5653 int allocates = 0; 5654 for (int i = 0; i < count; i++) { 5655 Node* n = macro_node(i); 5656 if (n->is_Allocate()) { 5657 if (i != allocates) { 5658 Node* tmp = macro_node(allocates); 5659 _macro_nodes.at_put(allocates, n); 5660 _macro_nodes.at_put(i, tmp); 5661 } 5662 allocates++; 5663 } 5664 } 5665 } 5666 5667 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5668 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5669 EventCompilerPhase event(UNTIMED); 5670 if (event.should_commit()) { 5671 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5672 } 5673 #ifndef PRODUCT 5674 ResourceMark rm; 5675 stringStream ss; 5676 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5677 int iter = ++_igv_phase_iter[cpt]; 5678 if (iter > 1) { 5679 ss.print(" %d", iter); 5680 } 5681 if (n != nullptr) { 5682 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5683 if (n->is_Call()) { 5684 CallNode* call = n->as_Call(); 5685 if (call->_name != nullptr) { 5686 // E.g. uncommon traps etc. 5687 ss.print(" - %s", call->_name); 5688 } else if (call->is_CallJava()) { 5689 CallJavaNode* call_java = call->as_CallJava(); 5690 if (call_java->method() != nullptr) { 5691 ss.print(" -"); 5692 call_java->method()->print_short_name(&ss); 5693 } 5694 } 5695 } 5696 } 5697 5698 const char* name = ss.as_string(); 5699 if (should_print_igv(level)) { 5700 _igv_printer->print_graph(name); 5701 } 5702 if (should_print_phase(level)) { 5703 print_phase(name); 5704 } 5705 if (should_print_ideal_phase(cpt)) { 5706 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5707 } 5708 #endif 5709 C->_latest_stage_start_counter.stamp(); 5710 } 5711 5712 // Only used from CompileWrapper 5713 void Compile::begin_method() { 5714 #ifndef PRODUCT 5715 if (_method != nullptr && should_print_igv(1)) { 5716 _igv_printer->begin_method(); 5717 } 5718 #endif 5719 C->_latest_stage_start_counter.stamp(); 5720 } 5721 5722 // Only used from CompileWrapper 5723 void Compile::end_method() { 5724 EventCompilerPhase event(UNTIMED); 5725 if (event.should_commit()) { 5726 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5727 } 5728 5729 #ifndef PRODUCT 5730 if (_method != nullptr && should_print_igv(1)) { 5731 _igv_printer->end_method(); 5732 } 5733 #endif 5734 } 5735 5736 #ifndef PRODUCT 5737 bool Compile::should_print_phase(const int level) const { 5738 return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level && 5739 _method != nullptr; // Do not print phases for stubs. 5740 } 5741 5742 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const { 5743 return _directive->should_print_ideal_phase(cpt); 5744 } 5745 5746 void Compile::init_igv() { 5747 if (_igv_printer == nullptr) { 5748 _igv_printer = IdealGraphPrinter::printer(); 5749 _igv_printer->set_compile(this); 5750 } 5751 } 5752 5753 bool Compile::should_print_igv(const int level) { 5754 PRODUCT_RETURN_(return false;); 5755 5756 if (PrintIdealGraphLevel < 0) { // disabled by the user 5757 return false; 5758 } 5759 5760 bool need = directive()->IGVPrintLevelOption >= level; 5761 if (need) { 5762 Compile::init_igv(); 5763 } 5764 return need; 5765 } 5766 5767 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5768 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5769 5770 // Called from debugger. Prints method to the default file with the default phase name. 5771 // This works regardless of any Ideal Graph Visualizer flags set or not. 5772 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc). 5773 void igv_print(void* sp, void* fp, void* pc) { 5774 frame fr(sp, fp, pc); 5775 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5776 } 5777 5778 // Same as igv_print() above but with a specified phase name. 5779 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) { 5780 frame fr(sp, fp, pc); 5781 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5782 } 5783 5784 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5785 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5786 // This works regardless of any Ideal Graph Visualizer flags set or not. 5787 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc). 5788 void igv_print(bool network, void* sp, void* fp, void* pc) { 5789 frame fr(sp, fp, pc); 5790 if (network) { 5791 Compile::current()->igv_print_method_to_network(nullptr, &fr); 5792 } else { 5793 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5794 } 5795 } 5796 5797 // Same as igv_print(bool network, ...) above but with a specified phase name. 5798 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc). 5799 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) { 5800 frame fr(sp, fp, pc); 5801 if (network) { 5802 Compile::current()->igv_print_method_to_network(phase_name, &fr); 5803 } else { 5804 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5805 } 5806 } 5807 5808 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5809 void igv_print_default() { 5810 Compile::current()->print_method(PHASE_DEBUG, 0); 5811 } 5812 5813 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5814 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5815 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5816 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc). 5817 void igv_append(void* sp, void* fp, void* pc) { 5818 frame fr(sp, fp, pc); 5819 Compile::current()->igv_print_method_to_file(nullptr, true, &fr); 5820 } 5821 5822 // Same as igv_append(...) above but with a specified phase name. 5823 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc). 5824 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) { 5825 frame fr(sp, fp, pc); 5826 Compile::current()->igv_print_method_to_file(phase_name, true, &fr); 5827 } 5828 5829 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) { 5830 const char* file_name = "custom_debug.xml"; 5831 if (_debug_file_printer == nullptr) { 5832 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5833 } else { 5834 _debug_file_printer->update_compiled_method(C->method()); 5835 } 5836 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5837 _debug_file_printer->print_graph(phase_name, fr); 5838 } 5839 5840 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) { 5841 ResourceMark rm; 5842 GrowableArray<const Node*> empty_list; 5843 igv_print_graph_to_network(phase_name, empty_list, fr); 5844 } 5845 5846 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) { 5847 if (_debug_network_printer == nullptr) { 5848 _debug_network_printer = new IdealGraphPrinter(C); 5849 } else { 5850 _debug_network_printer->update_compiled_method(C->method()); 5851 } 5852 tty->print_cr("Method printed over network stream to IGV"); 5853 _debug_network_printer->print(name, C->root(), visible_nodes, fr); 5854 } 5855 #endif // !PRODUCT 5856 5857 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5858 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5859 return value; 5860 } 5861 Node* result = nullptr; 5862 if (bt == T_BYTE) { 5863 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5864 result = new RShiftINode(result, phase->intcon(24)); 5865 } else if (bt == T_BOOLEAN) { 5866 result = new AndINode(value, phase->intcon(0xFF)); 5867 } else if (bt == T_CHAR) { 5868 result = new AndINode(value,phase->intcon(0xFFFF)); 5869 } else if (bt == T_FLOAT) { 5870 result = new MoveI2FNode(value); 5871 } else { 5872 assert(bt == T_SHORT, "unexpected narrow type"); 5873 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5874 result = new RShiftINode(result, phase->intcon(16)); 5875 } 5876 if (transform_res) { 5877 result = phase->transform(result); 5878 } 5879 return result; 5880 } 5881 5882 void Compile::record_method_not_compilable_oom() { 5883 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5884 }