1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "jvm_io.h" 40 #include "memory/allocation.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "opto/addnode.hpp" 43 #include "opto/block.hpp" 44 #include "opto/c2compiler.hpp" 45 #include "opto/callGenerator.hpp" 46 #include "opto/callnode.hpp" 47 #include "opto/castnode.hpp" 48 #include "opto/cfgnode.hpp" 49 #include "opto/chaitin.hpp" 50 #include "opto/compile.hpp" 51 #include "opto/connode.hpp" 52 #include "opto/convertnode.hpp" 53 #include "opto/divnode.hpp" 54 #include "opto/escape.hpp" 55 #include "opto/idealGraphPrinter.hpp" 56 #include "opto/inlinetypenode.hpp" 57 #include "opto/loopnode.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/macro.hpp" 60 #include "opto/matcher.hpp" 61 #include "opto/mathexactnode.hpp" 62 #include "opto/memnode.hpp" 63 #include "opto/mulnode.hpp" 64 #include "opto/narrowptrnode.hpp" 65 #include "opto/node.hpp" 66 #include "opto/opcodes.hpp" 67 #include "opto/output.hpp" 68 #include "opto/parse.hpp" 69 #include "opto/phaseX.hpp" 70 #include "opto/rootnode.hpp" 71 #include "opto/runtime.hpp" 72 #include "opto/stringopts.hpp" 73 #include "opto/type.hpp" 74 #include "opto/vector.hpp" 75 #include "opto/vectornode.hpp" 76 #include "runtime/globals_extension.hpp" 77 #include "runtime/sharedRuntime.hpp" 78 #include "runtime/signature.hpp" 79 #include "runtime/stubRoutines.hpp" 80 #include "runtime/timer.hpp" 81 #include "utilities/align.hpp" 82 #include "utilities/copy.hpp" 83 #include "utilities/macros.hpp" 84 #include "utilities/resourceHash.hpp" 85 86 // -------------------- Compile::mach_constant_base_node ----------------------- 87 // Constant table base node singleton. 88 MachConstantBaseNode* Compile::mach_constant_base_node() { 89 if (_mach_constant_base_node == NULL) { 90 _mach_constant_base_node = new MachConstantBaseNode(); 91 _mach_constant_base_node->add_req(C->root()); 92 } 93 return _mach_constant_base_node; 94 } 95 96 97 /// Support for intrinsics. 98 99 // Return the index at which m must be inserted (or already exists). 100 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 101 class IntrinsicDescPair { 102 private: 103 ciMethod* _m; 104 bool _is_virtual; 105 public: 106 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 107 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 108 ciMethod* m= elt->method(); 109 ciMethod* key_m = key->_m; 110 if (key_m < m) return -1; 111 else if (key_m > m) return 1; 112 else { 113 bool is_virtual = elt->is_virtual(); 114 bool key_virtual = key->_is_virtual; 115 if (key_virtual < is_virtual) return -1; 116 else if (key_virtual > is_virtual) return 1; 117 else return 0; 118 } 119 } 120 }; 121 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 122 #ifdef ASSERT 123 for (int i = 1; i < _intrinsics.length(); i++) { 124 CallGenerator* cg1 = _intrinsics.at(i-1); 125 CallGenerator* cg2 = _intrinsics.at(i); 126 assert(cg1->method() != cg2->method() 127 ? cg1->method() < cg2->method() 128 : cg1->is_virtual() < cg2->is_virtual(), 129 "compiler intrinsics list must stay sorted"); 130 } 131 #endif 132 IntrinsicDescPair pair(m, is_virtual); 133 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 134 } 135 136 void Compile::register_intrinsic(CallGenerator* cg) { 137 bool found = false; 138 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 139 assert(!found, "registering twice"); 140 _intrinsics.insert_before(index, cg); 141 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 142 } 143 144 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 145 assert(m->is_loaded(), "don't try this on unloaded methods"); 146 if (_intrinsics.length() > 0) { 147 bool found = false; 148 int index = intrinsic_insertion_index(m, is_virtual, found); 149 if (found) { 150 return _intrinsics.at(index); 151 } 152 } 153 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 154 if (m->intrinsic_id() != vmIntrinsics::_none && 155 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 156 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 157 if (cg != NULL) { 158 // Save it for next time: 159 register_intrinsic(cg); 160 return cg; 161 } else { 162 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 163 } 164 } 165 return NULL; 166 } 167 168 // Compile::make_vm_intrinsic is defined in library_call.cpp. 169 170 #ifndef PRODUCT 171 // statistics gathering... 172 173 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 174 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 175 176 inline int as_int(vmIntrinsics::ID id) { 177 return vmIntrinsics::as_int(id); 178 } 179 180 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 181 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 182 int oflags = _intrinsic_hist_flags[as_int(id)]; 183 assert(flags != 0, "what happened?"); 184 if (is_virtual) { 185 flags |= _intrinsic_virtual; 186 } 187 bool changed = (flags != oflags); 188 if ((flags & _intrinsic_worked) != 0) { 189 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 190 if (count == 1) { 191 changed = true; // first time 192 } 193 // increment the overall count also: 194 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 195 } 196 if (changed) { 197 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 198 // Something changed about the intrinsic's virtuality. 199 if ((flags & _intrinsic_virtual) != 0) { 200 // This is the first use of this intrinsic as a virtual call. 201 if (oflags != 0) { 202 // We already saw it as a non-virtual, so note both cases. 203 flags |= _intrinsic_both; 204 } 205 } else if ((oflags & _intrinsic_both) == 0) { 206 // This is the first use of this intrinsic as a non-virtual 207 flags |= _intrinsic_both; 208 } 209 } 210 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 211 } 212 // update the overall flags also: 213 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 214 return changed; 215 } 216 217 static char* format_flags(int flags, char* buf) { 218 buf[0] = 0; 219 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 220 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 221 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 222 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 223 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 224 if (buf[0] == 0) strcat(buf, ","); 225 assert(buf[0] == ',', "must be"); 226 return &buf[1]; 227 } 228 229 void Compile::print_intrinsic_statistics() { 230 char flagsbuf[100]; 231 ttyLocker ttyl; 232 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 233 tty->print_cr("Compiler intrinsic usage:"); 234 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 235 if (total == 0) total = 1; // avoid div0 in case of no successes 236 #define PRINT_STAT_LINE(name, c, f) \ 237 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 238 for (auto id : EnumRange<vmIntrinsicID>{}) { 239 int flags = _intrinsic_hist_flags[as_int(id)]; 240 juint count = _intrinsic_hist_count[as_int(id)]; 241 if ((flags | count) != 0) { 242 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 243 } 244 } 245 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 246 if (xtty != NULL) xtty->tail("statistics"); 247 } 248 249 void Compile::print_statistics() { 250 { ttyLocker ttyl; 251 if (xtty != NULL) xtty->head("statistics type='opto'"); 252 Parse::print_statistics(); 253 PhaseStringOpts::print_statistics(); 254 PhaseCCP::print_statistics(); 255 PhaseRegAlloc::print_statistics(); 256 PhaseOutput::print_statistics(); 257 PhasePeephole::print_statistics(); 258 PhaseIdealLoop::print_statistics(); 259 ConnectionGraph::print_statistics(); 260 PhaseMacroExpand::print_statistics(); 261 if (xtty != NULL) xtty->tail("statistics"); 262 } 263 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 264 // put this under its own <statistics> element. 265 print_intrinsic_statistics(); 266 } 267 } 268 #endif //PRODUCT 269 270 void Compile::gvn_replace_by(Node* n, Node* nn) { 271 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 272 Node* use = n->last_out(i); 273 bool is_in_table = initial_gvn()->hash_delete(use); 274 uint uses_found = 0; 275 for (uint j = 0; j < use->len(); j++) { 276 if (use->in(j) == n) { 277 if (j < use->req()) 278 use->set_req(j, nn); 279 else 280 use->set_prec(j, nn); 281 uses_found++; 282 } 283 } 284 if (is_in_table) { 285 // reinsert into table 286 initial_gvn()->hash_find_insert(use); 287 } 288 record_for_igvn(use); 289 i -= uses_found; // we deleted 1 or more copies of this edge 290 } 291 } 292 293 294 // Identify all nodes that are reachable from below, useful. 295 // Use breadth-first pass that records state in a Unique_Node_List, 296 // recursive traversal is slower. 297 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 298 int estimated_worklist_size = live_nodes(); 299 useful.map( estimated_worklist_size, NULL ); // preallocate space 300 301 // Initialize worklist 302 if (root() != NULL) { useful.push(root()); } 303 // If 'top' is cached, declare it useful to preserve cached node 304 if( cached_top_node() ) { useful.push(cached_top_node()); } 305 306 // Push all useful nodes onto the list, breadthfirst 307 for( uint next = 0; next < useful.size(); ++next ) { 308 assert( next < unique(), "Unique useful nodes < total nodes"); 309 Node *n = useful.at(next); 310 uint max = n->len(); 311 for( uint i = 0; i < max; ++i ) { 312 Node *m = n->in(i); 313 if (not_a_node(m)) continue; 314 useful.push(m); 315 } 316 } 317 } 318 319 // Update dead_node_list with any missing dead nodes using useful 320 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 321 void Compile::update_dead_node_list(Unique_Node_List &useful) { 322 uint max_idx = unique(); 323 VectorSet& useful_node_set = useful.member_set(); 324 325 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 326 // If node with index node_idx is not in useful set, 327 // mark it as dead in dead node list. 328 if (!useful_node_set.test(node_idx)) { 329 record_dead_node(node_idx); 330 } 331 } 332 } 333 334 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 335 int shift = 0; 336 for (int i = 0; i < inlines->length(); i++) { 337 CallGenerator* cg = inlines->at(i); 338 if (useful.member(cg->call_node())) { 339 if (shift > 0) { 340 inlines->at_put(i - shift, cg); 341 } 342 } else { 343 shift++; // skip over the dead element 344 } 345 } 346 if (shift > 0) { 347 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 348 } 349 } 350 351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 352 assert(dead != NULL && dead->is_Call(), "sanity"); 353 int found = 0; 354 for (int i = 0; i < inlines->length(); i++) { 355 if (inlines->at(i)->call_node() == dead) { 356 inlines->remove_at(i); 357 found++; 358 NOT_DEBUG( break; ) // elements are unique, so exit early 359 } 360 } 361 assert(found <= 1, "not unique"); 362 } 363 364 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) { 365 for (int i = node_list.length() - 1; i >= 0; i--) { 366 Node* n = node_list.at(i); 367 if (!useful.member(n)) { 368 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 369 } 370 } 371 } 372 373 void Compile::remove_useless_node(Node* dead) { 374 remove_modified_node(dead); 375 376 // Constant node that has no out-edges and has only one in-edge from 377 // root is usually dead. However, sometimes reshaping walk makes 378 // it reachable by adding use edges. So, we will NOT count Con nodes 379 // as dead to be conservative about the dead node count at any 380 // given time. 381 if (!dead->is_Con()) { 382 record_dead_node(dead->_idx); 383 } 384 if (dead->is_macro()) { 385 remove_macro_node(dead); 386 } 387 if (dead->is_expensive()) { 388 remove_expensive_node(dead); 389 } 390 if (dead->Opcode() == Op_Opaque4) { 391 remove_skeleton_predicate_opaq(dead); 392 } 393 if (dead->for_post_loop_opts_igvn()) { 394 remove_from_post_loop_opts_igvn(dead); 395 } 396 if (dead->is_InlineType()) { 397 remove_inline_type(dead); 398 } 399 if (dead->is_Call()) { 400 remove_useless_late_inlines( &_late_inlines, dead); 401 remove_useless_late_inlines( &_string_late_inlines, dead); 402 remove_useless_late_inlines( &_boxing_late_inlines, dead); 403 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 404 405 if (dead->is_CallStaticJava()) { 406 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 407 } 408 } 409 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 410 bs->unregister_potential_barrier_node(dead); 411 } 412 413 // Disconnect all useless nodes by disconnecting those at the boundary. 414 void Compile::disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist) { 415 uint next = 0; 416 while (next < useful.size()) { 417 Node *n = useful.at(next++); 418 if (n->is_SafePoint()) { 419 // We're done with a parsing phase. Replaced nodes are not valid 420 // beyond that point. 421 n->as_SafePoint()->delete_replaced_nodes(); 422 } 423 // Use raw traversal of out edges since this code removes out edges 424 int max = n->outcnt(); 425 for (int j = 0; j < max; ++j) { 426 Node* child = n->raw_out(j); 427 if (!useful.member(child)) { 428 assert(!child->is_top() || child != top(), 429 "If top is cached in Compile object it is in useful list"); 430 // Only need to remove this out-edge to the useless node 431 n->raw_del_out(j); 432 --j; 433 --max; 434 } 435 } 436 if (n->outcnt() == 1 && n->has_special_unique_user()) { 437 worklist->push(n->unique_out()); 438 } 439 if (n->outcnt() == 0) { 440 worklist->push(n); 441 } 442 } 443 444 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 445 remove_useless_nodes(_predicate_opaqs, useful); // remove useless predicate opaque nodes 446 remove_useless_nodes(_skeleton_predicate_opaqs, useful); 447 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 448 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 449 remove_useless_nodes(_inline_type_nodes, useful); // remove useless inline type nodes 450 #ifdef ASSERT 451 if (_modified_nodes != NULL) { 452 _modified_nodes->remove_useless_nodes(useful.member_set()); 453 } 454 #endif 455 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 456 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 457 #ifdef ASSERT 458 if (_modified_nodes != NULL) { 459 _modified_nodes->remove_useless_nodes(useful.member_set()); 460 } 461 #endif 462 463 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 464 bs->eliminate_useless_gc_barriers(useful, this); 465 // clean up the late inline lists 466 remove_useless_late_inlines( &_late_inlines, useful); 467 remove_useless_late_inlines( &_string_late_inlines, useful); 468 remove_useless_late_inlines( &_boxing_late_inlines, useful); 469 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 470 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 471 } 472 473 // ============================================================================ 474 //------------------------------CompileWrapper--------------------------------- 475 class CompileWrapper : public StackObj { 476 Compile *const _compile; 477 public: 478 CompileWrapper(Compile* compile); 479 480 ~CompileWrapper(); 481 }; 482 483 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 484 // the Compile* pointer is stored in the current ciEnv: 485 ciEnv* env = compile->env(); 486 assert(env == ciEnv::current(), "must already be a ciEnv active"); 487 assert(env->compiler_data() == NULL, "compile already active?"); 488 env->set_compiler_data(compile); 489 assert(compile == Compile::current(), "sanity"); 490 491 compile->set_type_dict(NULL); 492 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 493 compile->clone_map().set_clone_idx(0); 494 compile->set_type_last_size(0); 495 compile->set_last_tf(NULL, NULL); 496 compile->set_indexSet_arena(NULL); 497 compile->set_indexSet_free_block_list(NULL); 498 compile->init_type_arena(); 499 Type::Initialize(compile); 500 _compile->begin_method(); 501 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 502 } 503 CompileWrapper::~CompileWrapper() { 504 // simulate crash during compilation 505 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 506 507 _compile->end_method(); 508 _compile->env()->set_compiler_data(NULL); 509 } 510 511 512 //----------------------------print_compile_messages--------------------------- 513 void Compile::print_compile_messages() { 514 #ifndef PRODUCT 515 // Check if recompiling 516 if (!subsume_loads() && PrintOpto) { 517 // Recompiling without allowing machine instructions to subsume loads 518 tty->print_cr("*********************************************************"); 519 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 520 tty->print_cr("*********************************************************"); 521 } 522 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 523 // Recompiling without escape analysis 524 tty->print_cr("*********************************************************"); 525 tty->print_cr("** Bailout: Recompile without escape analysis **"); 526 tty->print_cr("*********************************************************"); 527 } 528 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 529 // Recompiling without iterative escape analysis 530 tty->print_cr("*********************************************************"); 531 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 532 tty->print_cr("*********************************************************"); 533 } 534 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 535 // Recompiling without boxing elimination 536 tty->print_cr("*********************************************************"); 537 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 538 tty->print_cr("*********************************************************"); 539 } 540 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 541 // Recompiling without locks coarsening 542 tty->print_cr("*********************************************************"); 543 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 544 tty->print_cr("*********************************************************"); 545 } 546 if (env()->break_at_compile()) { 547 // Open the debugger when compiling this method. 548 tty->print("### Breaking when compiling: "); 549 method()->print_short_name(); 550 tty->cr(); 551 BREAKPOINT; 552 } 553 554 if( PrintOpto ) { 555 if (is_osr_compilation()) { 556 tty->print("[OSR]%3d", _compile_id); 557 } else { 558 tty->print("%3d", _compile_id); 559 } 560 } 561 #endif 562 } 563 564 #ifndef PRODUCT 565 void Compile::print_ideal_ir(const char* phase_name) { 566 ttyLocker ttyl; 567 // keep the following output all in one block 568 // This output goes directly to the tty, not the compiler log. 569 // To enable tools to match it up with the compilation activity, 570 // be sure to tag this tty output with the compile ID. 571 if (xtty != NULL) { 572 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 573 compile_id(), 574 is_osr_compilation() ? " compile_kind='osr'" : "", 575 phase_name); 576 } 577 if (_output == nullptr) { 578 tty->print_cr("AFTER: %s", phase_name); 579 // Print out all nodes in ascending order of index. 580 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$"); 581 } else { 582 // Dump the node blockwise if we have a scheduling 583 _output->print_scheduling(); 584 } 585 586 if (xtty != NULL) { 587 xtty->tail("ideal"); 588 } 589 } 590 #endif 591 592 // ============================================================================ 593 //------------------------------Compile standard------------------------------- 594 debug_only( int Compile::_debug_idx = 100000; ) 595 596 // Compile a method. entry_bci is -1 for normal compilations and indicates 597 // the continuation bci for on stack replacement. 598 599 600 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 601 Options options, DirectiveSet* directive) 602 : Phase(Compiler), 603 _compile_id(ci_env->compile_id()), 604 _options(options), 605 _method(target), 606 _entry_bci(osr_bci), 607 _ilt(NULL), 608 _stub_function(NULL), 609 _stub_name(NULL), 610 _stub_entry_point(NULL), 611 _max_node_limit(MaxNodeLimit), 612 _post_loop_opts_phase(false), 613 _inlining_progress(false), 614 _inlining_incrementally(false), 615 _do_cleanup(false), 616 _has_reserved_stack_access(target->has_reserved_stack_access()), 617 _has_circular_inline_type(false), 618 #ifndef PRODUCT 619 _igv_idx(0), 620 _trace_opto_output(directive->TraceOptoOutputOption), 621 #endif 622 _has_method_handle_invokes(false), 623 _clinit_barrier_on_entry(false), 624 _stress_seed(0), 625 _comp_arena(mtCompiler), 626 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 627 _env(ci_env), 628 _directive(directive), 629 _log(ci_env->log()), 630 _failure_reason(NULL), 631 _intrinsics (comp_arena(), 0, 0, NULL), 632 _macro_nodes (comp_arena(), 8, 0, NULL), 633 _predicate_opaqs (comp_arena(), 8, 0, NULL), 634 _skeleton_predicate_opaqs (comp_arena(), 8, 0, NULL), 635 _expensive_nodes (comp_arena(), 8, 0, NULL), 636 _for_post_loop_igvn(comp_arena(), 8, 0, NULL), 637 _inline_type_nodes (comp_arena(), 8, 0, NULL), 638 _unstable_if_traps (comp_arena(), 8, 0, NULL), 639 _coarsened_locks (comp_arena(), 8, 0, NULL), 640 _congraph(NULL), 641 NOT_PRODUCT(_igv_printer(NULL) COMMA) 642 _dead_node_list(comp_arena()), 643 _dead_node_count(0), 644 _node_arena(mtCompiler), 645 _old_arena(mtCompiler), 646 _mach_constant_base_node(NULL), 647 _Compile_types(mtCompiler), 648 _initial_gvn(NULL), 649 _for_igvn(NULL), 650 _late_inlines(comp_arena(), 2, 0, NULL), 651 _string_late_inlines(comp_arena(), 2, 0, NULL), 652 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 653 _vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL), 654 _late_inlines_pos(0), 655 _number_of_mh_late_inlines(0), 656 _print_inlining_stream(new (mtCompiler) stringStream()), 657 _print_inlining_list(NULL), 658 _print_inlining_idx(0), 659 _print_inlining_output(NULL), 660 _replay_inline_data(NULL), 661 _java_calls(0), 662 _inner_loops(0), 663 _interpreter_frame_size(0), 664 _output(NULL) 665 #ifndef PRODUCT 666 , _in_dump_cnt(0) 667 #endif 668 { 669 C = this; 670 CompileWrapper cw(this); 671 672 if (CITimeVerbose) { 673 tty->print(" "); 674 target->holder()->name()->print(); 675 tty->print("."); 676 target->print_short_name(); 677 tty->print(" "); 678 } 679 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 680 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 681 682 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 683 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 684 // We can always print a disassembly, either abstract (hex dump) or 685 // with the help of a suitable hsdis library. Thus, we should not 686 // couple print_assembly and print_opto_assembly controls. 687 // But: always print opto and regular assembly on compile command 'print'. 688 bool print_assembly = directive->PrintAssemblyOption; 689 set_print_assembly(print_opto_assembly || print_assembly); 690 #else 691 set_print_assembly(false); // must initialize. 692 #endif 693 694 #ifndef PRODUCT 695 set_parsed_irreducible_loop(false); 696 697 if (directive->ReplayInlineOption) { 698 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 699 } 700 #endif 701 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 702 set_print_intrinsics(directive->PrintIntrinsicsOption); 703 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 704 705 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 706 // Make sure the method being compiled gets its own MDO, 707 // so we can at least track the decompile_count(). 708 // Need MDO to record RTM code generation state. 709 method()->ensure_method_data(); 710 } 711 712 Init(/*do_aliasing=*/ true); 713 714 print_compile_messages(); 715 716 _ilt = InlineTree::build_inline_tree_root(); 717 718 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 719 assert(num_alias_types() >= AliasIdxRaw, ""); 720 721 #define MINIMUM_NODE_HASH 1023 722 // Node list that Iterative GVN will start with 723 Unique_Node_List for_igvn(comp_arena()); 724 set_for_igvn(&for_igvn); 725 726 // GVN that will be run immediately on new nodes 727 uint estimated_size = method()->code_size()*4+64; 728 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 729 PhaseGVN gvn(node_arena(), estimated_size); 730 set_initial_gvn(&gvn); 731 732 print_inlining_init(); 733 { // Scope for timing the parser 734 TracePhase tp("parse", &timers[_t_parser]); 735 736 // Put top into the hash table ASAP. 737 initial_gvn()->transform_no_reclaim(top()); 738 739 // Set up tf(), start(), and find a CallGenerator. 740 CallGenerator* cg = NULL; 741 if (is_osr_compilation()) { 742 init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true)); 743 StartNode* s = new StartOSRNode(root(), tf()->domain_sig()); 744 initial_gvn()->set_type_bottom(s); 745 init_start(s); 746 cg = CallGenerator::for_osr(method(), entry_bci()); 747 } else { 748 // Normal case. 749 init_tf(TypeFunc::make(method())); 750 StartNode* s = new StartNode(root(), tf()->domain_cc()); 751 initial_gvn()->set_type_bottom(s); 752 init_start(s); 753 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 754 // With java.lang.ref.reference.get() we must go through the 755 // intrinsic - even when get() is the root 756 // method of the compile - so that, if necessary, the value in 757 // the referent field of the reference object gets recorded by 758 // the pre-barrier code. 759 cg = find_intrinsic(method(), false); 760 } 761 if (cg == NULL) { 762 float past_uses = method()->interpreter_invocation_count(); 763 float expected_uses = past_uses; 764 cg = CallGenerator::for_inline(method(), expected_uses); 765 } 766 } 767 if (failing()) return; 768 if (cg == NULL) { 769 record_method_not_compilable("cannot parse method"); 770 return; 771 } 772 JVMState* jvms = build_start_state(start(), tf()); 773 if ((jvms = cg->generate(jvms)) == NULL) { 774 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 775 record_method_not_compilable("method parse failed"); 776 } 777 return; 778 } 779 GraphKit kit(jvms); 780 781 if (!kit.stopped()) { 782 // Accept return values, and transfer control we know not where. 783 // This is done by a special, unique ReturnNode bound to root. 784 return_values(kit.jvms()); 785 } 786 787 if (kit.has_exceptions()) { 788 // Any exceptions that escape from this call must be rethrown 789 // to whatever caller is dynamically above us on the stack. 790 // This is done by a special, unique RethrowNode bound to root. 791 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 792 } 793 794 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 795 796 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 797 inline_string_calls(true); 798 } 799 800 if (failing()) return; 801 802 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 803 804 // Remove clutter produced by parsing. 805 if (!failing()) { 806 ResourceMark rm; 807 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 808 } 809 } 810 811 // Note: Large methods are capped off in do_one_bytecode(). 812 if (failing()) return; 813 814 // After parsing, node notes are no longer automagic. 815 // They must be propagated by register_new_node_with_optimizer(), 816 // clone(), or the like. 817 set_default_node_notes(NULL); 818 819 #ifndef PRODUCT 820 if (should_print_igv(1)) { 821 _igv_printer->print_inlining(); 822 } 823 #endif 824 825 if (failing()) return; 826 NOT_PRODUCT( verify_graph_edges(); ) 827 828 // If any phase is randomized for stress testing, seed random number 829 // generation and log the seed for repeatability. 830 if (StressLCM || StressGCM || StressIGVN || StressCCP) { 831 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && RepeatCompilation)) { 832 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 833 FLAG_SET_ERGO(StressSeed, _stress_seed); 834 } else { 835 _stress_seed = StressSeed; 836 } 837 if (_log != NULL) { 838 _log->elem("stress_test seed='%u'", _stress_seed); 839 } 840 } 841 842 // Now optimize 843 Optimize(); 844 if (failing()) return; 845 NOT_PRODUCT( verify_graph_edges(); ) 846 847 #ifndef PRODUCT 848 if (should_print_ideal()) { 849 print_ideal_ir("print_ideal"); 850 } 851 #endif 852 853 #ifdef ASSERT 854 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 855 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 856 #endif 857 858 // Dump compilation data to replay it. 859 if (directive->DumpReplayOption) { 860 env()->dump_replay_data(_compile_id); 861 } 862 if (directive->DumpInlineOption && (ilt() != NULL)) { 863 env()->dump_inline_data(_compile_id); 864 } 865 866 // Now that we know the size of all the monitors we can add a fixed slot 867 // for the original deopt pc. 868 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 869 if (needs_stack_repair()) { 870 // One extra slot for the special stack increment value 871 next_slot += 2; 872 } 873 // TODO 8284443 Only reserve extra slot if needed 874 if (InlineTypeReturnedAsFields) { 875 // One extra slot to hold the IsInit information for a nullable 876 // inline type return if we run out of registers. 877 next_slot += 2; 878 } 879 set_fixed_slots(next_slot); 880 881 // Compute when to use implicit null checks. Used by matching trap based 882 // nodes and NullCheck optimization. 883 set_allowed_deopt_reasons(); 884 885 // Now generate code 886 Code_Gen(); 887 } 888 889 //------------------------------Compile---------------------------------------- 890 // Compile a runtime stub 891 Compile::Compile( ciEnv* ci_env, 892 TypeFunc_generator generator, 893 address stub_function, 894 const char *stub_name, 895 int is_fancy_jump, 896 bool pass_tls, 897 bool return_pc, 898 DirectiveSet* directive) 899 : Phase(Compiler), 900 _compile_id(0), 901 _options(Options::for_runtime_stub()), 902 _method(NULL), 903 _entry_bci(InvocationEntryBci), 904 _stub_function(stub_function), 905 _stub_name(stub_name), 906 _stub_entry_point(NULL), 907 _max_node_limit(MaxNodeLimit), 908 _post_loop_opts_phase(false), 909 _inlining_progress(false), 910 _inlining_incrementally(false), 911 _has_reserved_stack_access(false), 912 _has_circular_inline_type(false), 913 #ifndef PRODUCT 914 _igv_idx(0), 915 _trace_opto_output(directive->TraceOptoOutputOption), 916 #endif 917 _has_method_handle_invokes(false), 918 _clinit_barrier_on_entry(false), 919 _stress_seed(0), 920 _comp_arena(mtCompiler), 921 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 922 _env(ci_env), 923 _directive(directive), 924 _log(ci_env->log()), 925 _failure_reason(NULL), 926 _congraph(NULL), 927 NOT_PRODUCT(_igv_printer(NULL) COMMA) 928 _dead_node_list(comp_arena()), 929 _dead_node_count(0), 930 _node_arena(mtCompiler), 931 _old_arena(mtCompiler), 932 _mach_constant_base_node(NULL), 933 _Compile_types(mtCompiler), 934 _initial_gvn(NULL), 935 _for_igvn(NULL), 936 _number_of_mh_late_inlines(0), 937 _print_inlining_stream(new (mtCompiler) stringStream()), 938 _print_inlining_list(NULL), 939 _print_inlining_idx(0), 940 _print_inlining_output(NULL), 941 _replay_inline_data(NULL), 942 _java_calls(0), 943 _inner_loops(0), 944 _interpreter_frame_size(0), 945 _output(NULL), 946 #ifndef PRODUCT 947 _in_dump_cnt(0), 948 #endif 949 _allowed_reasons(0) { 950 C = this; 951 952 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 953 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 954 955 #ifndef PRODUCT 956 set_print_assembly(PrintFrameConverterAssembly); 957 set_parsed_irreducible_loop(false); 958 #else 959 set_print_assembly(false); // Must initialize. 960 #endif 961 set_has_irreducible_loop(false); // no loops 962 963 CompileWrapper cw(this); 964 Init(/*do_aliasing=*/ false); 965 init_tf((*generator)()); 966 967 { 968 // The following is a dummy for the sake of GraphKit::gen_stub 969 Unique_Node_List for_igvn(comp_arena()); 970 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 971 PhaseGVN gvn(Thread::current()->resource_area(),255); 972 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 973 gvn.transform_no_reclaim(top()); 974 975 GraphKit kit; 976 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 977 } 978 979 NOT_PRODUCT( verify_graph_edges(); ) 980 981 Code_Gen(); 982 } 983 984 //------------------------------Init------------------------------------------- 985 // Prepare for a single compilation 986 void Compile::Init(bool aliasing) { 987 _do_aliasing = aliasing; 988 _unique = 0; 989 _regalloc = NULL; 990 991 _tf = NULL; // filled in later 992 _top = NULL; // cached later 993 _matcher = NULL; // filled in later 994 _cfg = NULL; // filled in later 995 996 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 997 998 _node_note_array = NULL; 999 _default_node_notes = NULL; 1000 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 1001 1002 _immutable_memory = NULL; // filled in at first inquiry 1003 1004 // Globally visible Nodes 1005 // First set TOP to NULL to give safe behavior during creation of RootNode 1006 set_cached_top_node(NULL); 1007 set_root(new RootNode()); 1008 // Now that you have a Root to point to, create the real TOP 1009 set_cached_top_node( new ConNode(Type::TOP) ); 1010 set_recent_alloc(NULL, NULL); 1011 1012 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1013 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1014 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1015 env()->set_dependencies(new Dependencies(env())); 1016 1017 _fixed_slots = 0; 1018 set_has_split_ifs(false); 1019 set_has_loops(false); // first approximation 1020 set_has_stringbuilder(false); 1021 set_has_boxed_value(false); 1022 _trap_can_recompile = false; // no traps emitted yet 1023 _major_progress = true; // start out assuming good things will happen 1024 set_has_unsafe_access(false); 1025 set_max_vector_size(0); 1026 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1027 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1028 set_decompile_count(0); 1029 1030 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1031 _loop_opts_cnt = LoopOptsCount; 1032 _has_flattened_accesses = false; 1033 _flattened_accesses_share_alias = true; 1034 _scalarize_in_safepoints = false; 1035 1036 set_do_inlining(Inline); 1037 set_max_inline_size(MaxInlineSize); 1038 set_freq_inline_size(FreqInlineSize); 1039 set_do_scheduling(OptoScheduling); 1040 1041 set_do_vector_loop(false); 1042 set_has_monitors(false); 1043 1044 if (AllowVectorizeOnDemand) { 1045 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1046 set_do_vector_loop(true); 1047 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1048 } else if (has_method() && method()->name() != 0 && 1049 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1050 set_do_vector_loop(true); 1051 } 1052 } 1053 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1054 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1055 1056 set_rtm_state(NoRTM); // No RTM lock eliding by default 1057 _max_node_limit = _directive->MaxNodeLimitOption; 1058 1059 #if INCLUDE_RTM_OPT 1060 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 1061 int rtm_state = method()->method_data()->rtm_state(); 1062 if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) { 1063 // Don't generate RTM lock eliding code. 1064 set_rtm_state(NoRTM); 1065 } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1066 // Generate RTM lock eliding code without abort ratio calculation code. 1067 set_rtm_state(UseRTM); 1068 } else if (UseRTMDeopt) { 1069 // Generate RTM lock eliding code and include abort ratio calculation 1070 // code if UseRTMDeopt is on. 1071 set_rtm_state(ProfileRTM); 1072 } 1073 } 1074 #endif 1075 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1076 set_clinit_barrier_on_entry(true); 1077 } 1078 if (debug_info()->recording_non_safepoints()) { 1079 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1080 (comp_arena(), 8, 0, NULL)); 1081 set_default_node_notes(Node_Notes::make(this)); 1082 } 1083 1084 const int grow_ats = 16; 1085 _max_alias_types = grow_ats; 1086 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1087 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1088 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1089 { 1090 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1091 } 1092 // Initialize the first few types. 1093 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1094 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1095 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1096 _num_alias_types = AliasIdxRaw+1; 1097 // Zero out the alias type cache. 1098 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1099 // A NULL adr_type hits in the cache right away. Preload the right answer. 1100 probe_alias_cache(NULL)->_index = AliasIdxTop; 1101 1102 #ifdef ASSERT 1103 _type_verify_symmetry = true; 1104 _phase_optimize_finished = false; 1105 _exception_backedge = false; 1106 #endif 1107 } 1108 1109 //---------------------------init_start---------------------------------------- 1110 // Install the StartNode on this compile object. 1111 void Compile::init_start(StartNode* s) { 1112 if (failing()) 1113 return; // already failing 1114 assert(s == start(), ""); 1115 } 1116 1117 /** 1118 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1119 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1120 * the ideal graph. 1121 */ 1122 StartNode* Compile::start() const { 1123 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1124 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1125 Node* start = root()->fast_out(i); 1126 if (start->is_Start()) { 1127 return start->as_Start(); 1128 } 1129 } 1130 fatal("Did not find Start node!"); 1131 return NULL; 1132 } 1133 1134 //-------------------------------immutable_memory------------------------------------- 1135 // Access immutable memory 1136 Node* Compile::immutable_memory() { 1137 if (_immutable_memory != NULL) { 1138 return _immutable_memory; 1139 } 1140 StartNode* s = start(); 1141 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1142 Node *p = s->fast_out(i); 1143 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1144 _immutable_memory = p; 1145 return _immutable_memory; 1146 } 1147 } 1148 ShouldNotReachHere(); 1149 return NULL; 1150 } 1151 1152 //----------------------set_cached_top_node------------------------------------ 1153 // Install the cached top node, and make sure Node::is_top works correctly. 1154 void Compile::set_cached_top_node(Node* tn) { 1155 if (tn != NULL) verify_top(tn); 1156 Node* old_top = _top; 1157 _top = tn; 1158 // Calling Node::setup_is_top allows the nodes the chance to adjust 1159 // their _out arrays. 1160 if (_top != NULL) _top->setup_is_top(); 1161 if (old_top != NULL) old_top->setup_is_top(); 1162 assert(_top == NULL || top()->is_top(), ""); 1163 } 1164 1165 #ifdef ASSERT 1166 uint Compile::count_live_nodes_by_graph_walk() { 1167 Unique_Node_List useful(comp_arena()); 1168 // Get useful node list by walking the graph. 1169 identify_useful_nodes(useful); 1170 return useful.size(); 1171 } 1172 1173 void Compile::print_missing_nodes() { 1174 1175 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1176 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1177 return; 1178 } 1179 1180 // This is an expensive function. It is executed only when the user 1181 // specifies VerifyIdealNodeCount option or otherwise knows the 1182 // additional work that needs to be done to identify reachable nodes 1183 // by walking the flow graph and find the missing ones using 1184 // _dead_node_list. 1185 1186 Unique_Node_List useful(comp_arena()); 1187 // Get useful node list by walking the graph. 1188 identify_useful_nodes(useful); 1189 1190 uint l_nodes = C->live_nodes(); 1191 uint l_nodes_by_walk = useful.size(); 1192 1193 if (l_nodes != l_nodes_by_walk) { 1194 if (_log != NULL) { 1195 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1196 _log->stamp(); 1197 _log->end_head(); 1198 } 1199 VectorSet& useful_member_set = useful.member_set(); 1200 int last_idx = l_nodes_by_walk; 1201 for (int i = 0; i < last_idx; i++) { 1202 if (useful_member_set.test(i)) { 1203 if (_dead_node_list.test(i)) { 1204 if (_log != NULL) { 1205 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1206 } 1207 if (PrintIdealNodeCount) { 1208 // Print the log message to tty 1209 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1210 useful.at(i)->dump(); 1211 } 1212 } 1213 } 1214 else if (! _dead_node_list.test(i)) { 1215 if (_log != NULL) { 1216 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1217 } 1218 if (PrintIdealNodeCount) { 1219 // Print the log message to tty 1220 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1221 } 1222 } 1223 } 1224 if (_log != NULL) { 1225 _log->tail("mismatched_nodes"); 1226 } 1227 } 1228 } 1229 void Compile::record_modified_node(Node* n) { 1230 if (_modified_nodes != NULL && !_inlining_incrementally && !n->is_Con()) { 1231 _modified_nodes->push(n); 1232 } 1233 } 1234 1235 void Compile::remove_modified_node(Node* n) { 1236 if (_modified_nodes != NULL) { 1237 _modified_nodes->remove(n); 1238 } 1239 } 1240 #endif 1241 1242 #ifndef PRODUCT 1243 void Compile::verify_top(Node* tn) const { 1244 if (tn != NULL) { 1245 assert(tn->is_Con(), "top node must be a constant"); 1246 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1247 assert(tn->in(0) != NULL, "must have live top node"); 1248 } 1249 } 1250 #endif 1251 1252 1253 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1254 1255 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1256 guarantee(arr != NULL, ""); 1257 int num_blocks = arr->length(); 1258 if (grow_by < num_blocks) grow_by = num_blocks; 1259 int num_notes = grow_by * _node_notes_block_size; 1260 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1261 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1262 while (num_notes > 0) { 1263 arr->append(notes); 1264 notes += _node_notes_block_size; 1265 num_notes -= _node_notes_block_size; 1266 } 1267 assert(num_notes == 0, "exact multiple, please"); 1268 } 1269 1270 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1271 if (source == NULL || dest == NULL) return false; 1272 1273 if (dest->is_Con()) 1274 return false; // Do not push debug info onto constants. 1275 1276 #ifdef ASSERT 1277 // Leave a bread crumb trail pointing to the original node: 1278 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1279 dest->set_debug_orig(source); 1280 } 1281 #endif 1282 1283 if (node_note_array() == NULL) 1284 return false; // Not collecting any notes now. 1285 1286 // This is a copy onto a pre-existing node, which may already have notes. 1287 // If both nodes have notes, do not overwrite any pre-existing notes. 1288 Node_Notes* source_notes = node_notes_at(source->_idx); 1289 if (source_notes == NULL || source_notes->is_clear()) return false; 1290 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1291 if (dest_notes == NULL || dest_notes->is_clear()) { 1292 return set_node_notes_at(dest->_idx, source_notes); 1293 } 1294 1295 Node_Notes merged_notes = (*source_notes); 1296 // The order of operations here ensures that dest notes will win... 1297 merged_notes.update_from(dest_notes); 1298 return set_node_notes_at(dest->_idx, &merged_notes); 1299 } 1300 1301 1302 //--------------------------allow_range_check_smearing------------------------- 1303 // Gating condition for coalescing similar range checks. 1304 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1305 // single covering check that is at least as strong as any of them. 1306 // If the optimization succeeds, the simplified (strengthened) range check 1307 // will always succeed. If it fails, we will deopt, and then give up 1308 // on the optimization. 1309 bool Compile::allow_range_check_smearing() const { 1310 // If this method has already thrown a range-check, 1311 // assume it was because we already tried range smearing 1312 // and it failed. 1313 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1314 return !already_trapped; 1315 } 1316 1317 1318 //------------------------------flatten_alias_type----------------------------- 1319 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1320 assert(do_aliasing(), "Aliasing should be enabled"); 1321 int offset = tj->offset(); 1322 TypePtr::PTR ptr = tj->ptr(); 1323 1324 // Known instance (scalarizable allocation) alias only with itself. 1325 bool is_known_inst = tj->isa_oopptr() != NULL && 1326 tj->is_oopptr()->is_known_instance(); 1327 1328 // Process weird unsafe references. 1329 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1330 bool default_value_load = EnableValhalla && tj->is_instptr()->instance_klass() == ciEnv::current()->Class_klass(); 1331 assert(InlineUnsafeOps || StressReflectiveCode || default_value_load, "indeterminate pointers come only from unsafe ops"); 1332 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1333 tj = TypeOopPtr::BOTTOM; 1334 ptr = tj->ptr(); 1335 offset = tj->offset(); 1336 } 1337 1338 // Array pointers need some flattening 1339 const TypeAryPtr* ta = tj->isa_aryptr(); 1340 if (ta && ta->is_stable()) { 1341 // Erase stability property for alias analysis. 1342 tj = ta = ta->cast_to_stable(false); 1343 } 1344 if (ta && ta->is_not_flat()) { 1345 // Erase not flat property for alias analysis. 1346 tj = ta = ta->cast_to_not_flat(false); 1347 } 1348 if (ta && ta->is_not_null_free()) { 1349 // Erase not null free property for alias analysis. 1350 tj = ta = ta->cast_to_not_null_free(false); 1351 } 1352 1353 if( ta && is_known_inst ) { 1354 if ( offset != Type::OffsetBot && 1355 offset > arrayOopDesc::length_offset_in_bytes() ) { 1356 offset = Type::OffsetBot; // Flatten constant access into array body only 1357 tj = ta = ta-> 1358 remove_speculative()-> 1359 cast_to_ptr_type(ptr)-> 1360 with_offset(offset); 1361 } 1362 } else if (ta) { 1363 // For arrays indexed by constant indices, we flatten the alias 1364 // space to include all of the array body. Only the header, klass 1365 // and array length can be accessed un-aliased. 1366 // For flattened inline type array, each field has its own slice so 1367 // we must include the field offset. 1368 if( offset != Type::OffsetBot ) { 1369 if( ta->const_oop() ) { // MethodData* or Method* 1370 offset = Type::OffsetBot; // Flatten constant access into array body 1371 tj = ta = ta-> 1372 remove_speculative()-> 1373 cast_to_ptr_type(ptr)-> 1374 cast_to_exactness(false)-> 1375 with_offset(offset); 1376 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1377 // range is OK as-is. 1378 tj = ta = TypeAryPtr::RANGE; 1379 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1380 tj = TypeInstPtr::KLASS; // all klass loads look alike 1381 ta = TypeAryPtr::RANGE; // generic ignored junk 1382 ptr = TypePtr::BotPTR; 1383 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1384 tj = TypeInstPtr::MARK; 1385 ta = TypeAryPtr::RANGE; // generic ignored junk 1386 ptr = TypePtr::BotPTR; 1387 } else { // Random constant offset into array body 1388 offset = Type::OffsetBot; // Flatten constant access into array body 1389 tj = ta = ta-> 1390 remove_speculative()-> 1391 cast_to_ptr_type(ptr)-> 1392 cast_to_exactness(false)-> 1393 with_offset(offset); 1394 } 1395 } 1396 // Arrays of fixed size alias with arrays of unknown size. 1397 if (ta->size() != TypeInt::POS) { 1398 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1399 tj = ta = ta-> 1400 remove_speculative()-> 1401 cast_to_ptr_type(ptr)-> 1402 with_ary(tary)-> 1403 cast_to_exactness(false); 1404 } 1405 // Arrays of known objects become arrays of unknown objects. 1406 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1407 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1408 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset()); 1409 } 1410 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1411 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1412 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset()); 1413 } 1414 // Initially all flattened array accesses share a single slice 1415 if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flattened_accesses_share_alias) { 1416 const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true); 1417 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), Type::Offset(Type::OffsetBot)); 1418 } 1419 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1420 // cannot be distinguished by bytecode alone. 1421 if (ta->elem() == TypeInt::BOOL) { 1422 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1423 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1424 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset()); 1425 } 1426 // During the 2nd round of IterGVN, NotNull castings are removed. 1427 // Make sure the Bottom and NotNull variants alias the same. 1428 // Also, make sure exact and non-exact variants alias the same. 1429 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1430 tj = ta = ta-> 1431 remove_speculative()-> 1432 cast_to_ptr_type(TypePtr::BotPTR)-> 1433 cast_to_exactness(false)-> 1434 with_offset(offset); 1435 } 1436 } 1437 1438 // Oop pointers need some flattening 1439 const TypeInstPtr *to = tj->isa_instptr(); 1440 if (to && to != TypeOopPtr::BOTTOM) { 1441 ciInstanceKlass* ik = to->instance_klass(); 1442 if( ptr == TypePtr::Constant ) { 1443 if (ik != ciEnv::current()->Class_klass() || 1444 offset < ik->layout_helper_size_in_bytes()) { 1445 // No constant oop pointers (such as Strings); they alias with 1446 // unknown strings. 1447 assert(!is_known_inst, "not scalarizable allocation"); 1448 tj = to = to-> 1449 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1450 remove_speculative()-> 1451 cast_to_ptr_type(TypePtr::BotPTR)-> 1452 cast_to_exactness(false); 1453 } 1454 } else if( is_known_inst ) { 1455 tj = to; // Keep NotNull and klass_is_exact for instance type 1456 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1457 // During the 2nd round of IterGVN, NotNull castings are removed. 1458 // Make sure the Bottom and NotNull variants alias the same. 1459 // Also, make sure exact and non-exact variants alias the same. 1460 tj = to = to-> 1461 remove_speculative()-> 1462 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1463 cast_to_ptr_type(TypePtr::BotPTR)-> 1464 cast_to_exactness(false); 1465 } 1466 if (to->speculative() != NULL) { 1467 tj = to = to->remove_speculative(); 1468 } 1469 // Canonicalize the holder of this field 1470 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1471 // First handle header references such as a LoadKlassNode, even if the 1472 // object's klass is unloaded at compile time (4965979). 1473 if (!is_known_inst) { // Do it only for non-instance types 1474 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset)); 1475 } 1476 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1477 // Static fields are in the space above the normal instance 1478 // fields in the java.lang.Class instance. 1479 if (ik != ciEnv::current()->Class_klass()) { 1480 to = NULL; 1481 tj = TypeOopPtr::BOTTOM; 1482 offset = tj->offset(); 1483 } 1484 } else { 1485 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1486 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1487 if (!ik->equals(canonical_holder) || tj->offset() != offset) { 1488 if( is_known_inst ) { 1489 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id()); 1490 } else { 1491 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset)); 1492 } 1493 } 1494 } 1495 } 1496 1497 // Klass pointers to object array klasses need some flattening 1498 const TypeKlassPtr *tk = tj->isa_klassptr(); 1499 if( tk ) { 1500 // If we are referencing a field within a Klass, we need 1501 // to assume the worst case of an Object. Both exact and 1502 // inexact types must flatten to the same alias class so 1503 // use NotNull as the PTR. 1504 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1505 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1506 env()->Object_klass(), 1507 Type::Offset(offset)); 1508 } 1509 1510 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1511 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1512 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1513 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset)); 1514 } else { 1515 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_null_free()); 1516 } 1517 } 1518 // Check for precise loads from the primary supertype array and force them 1519 // to the supertype cache alias index. Check for generic array loads from 1520 // the primary supertype array and also force them to the supertype cache 1521 // alias index. Since the same load can reach both, we need to merge 1522 // these 2 disparate memories into the same alias class. Since the 1523 // primary supertype array is read-only, there's no chance of confusion 1524 // where we bypass an array load and an array store. 1525 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1526 if (offset == Type::OffsetBot || 1527 (offset >= primary_supers_offset && 1528 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1529 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1530 offset = in_bytes(Klass::secondary_super_cache_offset()); 1531 tj = tk = tk->with_offset(offset); 1532 } 1533 } 1534 1535 // Flatten all Raw pointers together. 1536 if (tj->base() == Type::RawPtr) 1537 tj = TypeRawPtr::BOTTOM; 1538 1539 if (tj->base() == Type::AnyPtr) 1540 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1541 1542 offset = tj->offset(); 1543 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1544 1545 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1546 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1547 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1548 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1549 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1550 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1551 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1552 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1553 assert( tj->ptr() != TypePtr::TopPTR && 1554 tj->ptr() != TypePtr::AnyNull && 1555 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1556 // assert( tj->ptr() != TypePtr::Constant || 1557 // tj->base() == Type::RawPtr || 1558 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1559 1560 return tj; 1561 } 1562 1563 void Compile::AliasType::Init(int i, const TypePtr* at) { 1564 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1565 _index = i; 1566 _adr_type = at; 1567 _field = NULL; 1568 _element = NULL; 1569 _is_rewritable = true; // default 1570 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1571 if (atoop != NULL && atoop->is_known_instance()) { 1572 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1573 _general_index = Compile::current()->get_alias_index(gt); 1574 } else { 1575 _general_index = 0; 1576 } 1577 } 1578 1579 BasicType Compile::AliasType::basic_type() const { 1580 if (element() != NULL) { 1581 const Type* element = adr_type()->is_aryptr()->elem(); 1582 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1583 } if (field() != NULL) { 1584 return field()->layout_type(); 1585 } else { 1586 return T_ILLEGAL; // unknown 1587 } 1588 } 1589 1590 //---------------------------------print_on------------------------------------ 1591 #ifndef PRODUCT 1592 void Compile::AliasType::print_on(outputStream* st) { 1593 if (index() < 10) 1594 st->print("@ <%d> ", index()); 1595 else st->print("@ <%d>", index()); 1596 st->print(is_rewritable() ? " " : " RO"); 1597 int offset = adr_type()->offset(); 1598 if (offset == Type::OffsetBot) 1599 st->print(" +any"); 1600 else st->print(" +%-3d", offset); 1601 st->print(" in "); 1602 adr_type()->dump_on(st); 1603 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1604 if (field() != NULL && tjp) { 1605 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1606 tjp->offset() != field()->offset_in_bytes()) { 1607 st->print(" != "); 1608 field()->print(); 1609 st->print(" ***"); 1610 } 1611 } 1612 } 1613 1614 void print_alias_types() { 1615 Compile* C = Compile::current(); 1616 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1617 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1618 C->alias_type(idx)->print_on(tty); 1619 tty->cr(); 1620 } 1621 } 1622 #endif 1623 1624 1625 //----------------------------probe_alias_cache-------------------------------- 1626 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1627 intptr_t key = (intptr_t) adr_type; 1628 key ^= key >> logAliasCacheSize; 1629 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1630 } 1631 1632 1633 //-----------------------------grow_alias_types-------------------------------- 1634 void Compile::grow_alias_types() { 1635 const int old_ats = _max_alias_types; // how many before? 1636 const int new_ats = old_ats; // how many more? 1637 const int grow_ats = old_ats+new_ats; // how many now? 1638 _max_alias_types = grow_ats; 1639 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1640 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1641 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1642 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1643 } 1644 1645 1646 //--------------------------------find_alias_type------------------------------ 1647 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) { 1648 if (!do_aliasing()) { 1649 return alias_type(AliasIdxBot); 1650 } 1651 1652 AliasCacheEntry* ace = NULL; 1653 if (!uncached) { 1654 ace = probe_alias_cache(adr_type); 1655 if (ace->_adr_type == adr_type) { 1656 return alias_type(ace->_index); 1657 } 1658 } 1659 1660 // Handle special cases. 1661 if (adr_type == NULL) return alias_type(AliasIdxTop); 1662 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1663 1664 // Do it the slow way. 1665 const TypePtr* flat = flatten_alias_type(adr_type); 1666 1667 #ifdef ASSERT 1668 { 1669 ResourceMark rm; 1670 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1671 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1672 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1673 Type::str(adr_type)); 1674 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1675 const TypeOopPtr* foop = flat->is_oopptr(); 1676 // Scalarizable allocations have exact klass always. 1677 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1678 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1679 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1680 Type::str(foop), Type::str(xoop)); 1681 } 1682 } 1683 #endif 1684 1685 int idx = AliasIdxTop; 1686 for (int i = 0; i < num_alias_types(); i++) { 1687 if (alias_type(i)->adr_type() == flat) { 1688 idx = i; 1689 break; 1690 } 1691 } 1692 1693 if (idx == AliasIdxTop) { 1694 if (no_create) return NULL; 1695 // Grow the array if necessary. 1696 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1697 // Add a new alias type. 1698 idx = _num_alias_types++; 1699 _alias_types[idx]->Init(idx, flat); 1700 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1701 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1702 if (flat->isa_instptr()) { 1703 if (flat->offset() == java_lang_Class::klass_offset() 1704 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1705 alias_type(idx)->set_rewritable(false); 1706 } 1707 ciField* field = NULL; 1708 if (flat->isa_aryptr()) { 1709 #ifdef ASSERT 1710 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1711 // (T_BYTE has the weakest alignment and size restrictions...) 1712 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1713 #endif 1714 const Type* elemtype = flat->is_aryptr()->elem(); 1715 if (flat->offset() == TypePtr::OffsetBot) { 1716 alias_type(idx)->set_element(elemtype); 1717 } 1718 int field_offset = flat->is_aryptr()->field_offset().get(); 1719 if (flat->is_flat() && 1720 field_offset != Type::OffsetBot) { 1721 ciInlineKlass* vk = elemtype->inline_klass(); 1722 field_offset += vk->first_field_offset(); 1723 field = vk->get_field_by_offset(field_offset, false); 1724 } 1725 } 1726 if (flat->isa_klassptr()) { 1727 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1728 alias_type(idx)->set_rewritable(false); 1729 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1730 alias_type(idx)->set_rewritable(false); 1731 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1732 alias_type(idx)->set_rewritable(false); 1733 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1734 alias_type(idx)->set_rewritable(false); 1735 if (flat->offset() == in_bytes(Klass::layout_helper_offset())) 1736 alias_type(idx)->set_rewritable(false); 1737 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1738 alias_type(idx)->set_rewritable(false); 1739 } 1740 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1741 // but the base pointer type is not distinctive enough to identify 1742 // references into JavaThread.) 1743 1744 // Check for final fields. 1745 const TypeInstPtr* tinst = flat->isa_instptr(); 1746 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1747 if (tinst->const_oop() != NULL && 1748 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1749 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1750 // static field 1751 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1752 field = k->get_field_by_offset(tinst->offset(), true); 1753 } else if (tinst->is_inlinetypeptr()) { 1754 // Inline type field 1755 ciInlineKlass* vk = tinst->inline_klass(); 1756 field = vk->get_field_by_offset(tinst->offset(), false); 1757 } else { 1758 ciInstanceKlass *k = tinst->instance_klass(); 1759 field = k->get_field_by_offset(tinst->offset(), false); 1760 } 1761 } 1762 assert(field == NULL || 1763 original_field == NULL || 1764 (field->holder() == original_field->holder() && 1765 field->offset() == original_field->offset() && 1766 field->is_static() == original_field->is_static()), "wrong field?"); 1767 // Set field() and is_rewritable() attributes. 1768 if (field != NULL) { 1769 alias_type(idx)->set_field(field); 1770 if (flat->isa_aryptr()) { 1771 // Fields of flat arrays are rewritable although they are declared final 1772 assert(flat->is_flat(), "must be a flat array"); 1773 alias_type(idx)->set_rewritable(true); 1774 } 1775 } 1776 } 1777 1778 // Fill the cache for next time. 1779 if (!uncached) { 1780 ace->_adr_type = adr_type; 1781 ace->_index = idx; 1782 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1783 1784 // Might as well try to fill the cache for the flattened version, too. 1785 AliasCacheEntry* face = probe_alias_cache(flat); 1786 if (face->_adr_type == NULL) { 1787 face->_adr_type = flat; 1788 face->_index = idx; 1789 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1790 } 1791 } 1792 1793 return alias_type(idx); 1794 } 1795 1796 1797 Compile::AliasType* Compile::alias_type(ciField* field) { 1798 const TypeOopPtr* t; 1799 if (field->is_static()) 1800 t = TypeInstPtr::make(field->holder()->java_mirror()); 1801 else 1802 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1803 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1804 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1805 return atp; 1806 } 1807 1808 1809 //------------------------------have_alias_type-------------------------------- 1810 bool Compile::have_alias_type(const TypePtr* adr_type) { 1811 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1812 if (ace->_adr_type == adr_type) { 1813 return true; 1814 } 1815 1816 // Handle special cases. 1817 if (adr_type == NULL) return true; 1818 if (adr_type == TypePtr::BOTTOM) return true; 1819 1820 return find_alias_type(adr_type, true, NULL) != NULL; 1821 } 1822 1823 //-----------------------------must_alias-------------------------------------- 1824 // True if all values of the given address type are in the given alias category. 1825 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1826 if (alias_idx == AliasIdxBot) return true; // the universal category 1827 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1828 if (alias_idx == AliasIdxTop) return false; // the empty category 1829 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1830 1831 // the only remaining possible overlap is identity 1832 int adr_idx = get_alias_index(adr_type); 1833 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1834 assert(adr_idx == alias_idx || 1835 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1836 && adr_type != TypeOopPtr::BOTTOM), 1837 "should not be testing for overlap with an unsafe pointer"); 1838 return adr_idx == alias_idx; 1839 } 1840 1841 //------------------------------can_alias-------------------------------------- 1842 // True if any values of the given address type are in the given alias category. 1843 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1844 if (alias_idx == AliasIdxTop) return false; // the empty category 1845 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1846 // Known instance doesn't alias with bottom memory 1847 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1848 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1849 1850 // the only remaining possible overlap is identity 1851 int adr_idx = get_alias_index(adr_type); 1852 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1853 return adr_idx == alias_idx; 1854 } 1855 1856 //---------------------cleanup_loop_predicates----------------------- 1857 // Remove the opaque nodes that protect the predicates so that all unused 1858 // checks and uncommon_traps will be eliminated from the ideal graph 1859 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1860 if (predicate_count()==0) return; 1861 for (int i = predicate_count(); i > 0; i--) { 1862 Node * n = predicate_opaque1_node(i-1); 1863 assert(n->Opcode() == Op_Opaque1, "must be"); 1864 igvn.replace_node(n, n->in(1)); 1865 } 1866 assert(predicate_count()==0, "should be clean!"); 1867 } 1868 1869 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1870 if (!n->for_post_loop_opts_igvn()) { 1871 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1872 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1873 _for_post_loop_igvn.append(n); 1874 } 1875 } 1876 1877 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1878 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1879 _for_post_loop_igvn.remove(n); 1880 } 1881 1882 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1883 // Verify that all previous optimizations produced a valid graph 1884 // at least to this point, even if no loop optimizations were done. 1885 PhaseIdealLoop::verify(igvn); 1886 1887 C->set_post_loop_opts_phase(); // no more loop opts allowed 1888 1889 assert(!C->major_progress(), "not cleared"); 1890 1891 if (_for_post_loop_igvn.length() > 0) { 1892 while (_for_post_loop_igvn.length() > 0) { 1893 Node* n = _for_post_loop_igvn.pop(); 1894 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1895 igvn._worklist.push(n); 1896 } 1897 igvn.optimize(); 1898 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1899 1900 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1901 if (C->major_progress()) { 1902 C->clear_major_progress(); // ensure that major progress is now clear 1903 } 1904 } 1905 } 1906 1907 void Compile::add_inline_type(Node* n) { 1908 assert(n->is_InlineType(), "unexpected node"); 1909 _inline_type_nodes.push(n); 1910 } 1911 1912 void Compile::remove_inline_type(Node* n) { 1913 assert(n->is_InlineType(), "unexpected node"); 1914 if (_inline_type_nodes.contains(n)) { 1915 _inline_type_nodes.remove(n); 1916 } 1917 } 1918 1919 // Does the return value keep otherwise useless inline type allocations alive? 1920 static bool return_val_keeps_allocations_alive(Node* ret_val) { 1921 ResourceMark rm; 1922 Unique_Node_List wq; 1923 wq.push(ret_val); 1924 bool some_allocations = false; 1925 for (uint i = 0; i < wq.size(); i++) { 1926 Node* n = wq.at(i); 1927 assert(n == ret_val || !n->is_InlineType(), "chain of inline type nodes"); 1928 if (n->outcnt() > 1) { 1929 // Some other use for the allocation 1930 return false; 1931 } else if (n->is_InlineType()) { 1932 wq.push(n->in(1)); 1933 } else if (n->is_Phi()) { 1934 for (uint j = 1; j < n->req(); j++) { 1935 wq.push(n->in(j)); 1936 } 1937 } else if (n->is_CheckCastPP() && 1938 n->in(1)->is_Proj() && 1939 n->in(1)->in(0)->is_Allocate()) { 1940 some_allocations = true; 1941 } else if (n->is_CheckCastPP()) { 1942 wq.push(n->in(1)); 1943 } 1944 } 1945 return some_allocations; 1946 } 1947 1948 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) { 1949 // Make sure that the return value does not keep an otherwise unused allocation alive 1950 if (tf()->returns_inline_type_as_fields()) { 1951 Node* ret = NULL; 1952 for (uint i = 1; i < root()->req(); i++) { 1953 Node* in = root()->in(i); 1954 if (in->Opcode() == Op_Return) { 1955 assert(ret == NULL, "only one return"); 1956 ret = in; 1957 } 1958 } 1959 if (ret != NULL) { 1960 Node* ret_val = ret->in(TypeFunc::Parms); 1961 if (igvn.type(ret_val)->isa_oopptr() && 1962 return_val_keeps_allocations_alive(ret_val)) { 1963 igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn)); 1964 assert(ret_val->outcnt() == 0, "should be dead now"); 1965 igvn.remove_dead_node(ret_val); 1966 } 1967 } 1968 } 1969 if (_inline_type_nodes.length() == 0) { 1970 return; 1971 } 1972 // Scalarize inline types in safepoint debug info. 1973 // Delay this until all inlining is over to avoid getting inconsistent debug info. 1974 set_scalarize_in_safepoints(true); 1975 for (int i = _inline_type_nodes.length()-1; i >= 0; i--) { 1976 _inline_type_nodes.at(i)->as_InlineType()->make_scalar_in_safepoints(&igvn); 1977 } 1978 if (remove) { 1979 // Remove inline type nodes by replacing them with their oop input 1980 while (_inline_type_nodes.length() > 0) { 1981 InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType(); 1982 if (vt->outcnt() == 0) { 1983 igvn.remove_dead_node(vt); 1984 continue; 1985 } 1986 for (DUIterator i = vt->outs(); vt->has_out(i); i++) { 1987 DEBUG_ONLY(bool must_be_buffered = false); 1988 Node* u = vt->out(i); 1989 // Check if any users are blackholes. If so, rewrite them to use either the 1990 // allocated buffer, or individual components, instead of the inline type node 1991 // that goes away. 1992 if (u->is_Blackhole()) { 1993 BlackholeNode* bh = u->as_Blackhole(); 1994 1995 // Unlink the old input 1996 int idx = bh->find_edge(vt); 1997 assert(idx != -1, "The edge should be there"); 1998 bh->del_req(idx); 1999 --i; 2000 2001 if (vt->is_allocated(&igvn)) { 2002 // Already has the allocated instance, blackhole that 2003 bh->add_req(vt->get_oop()); 2004 } else { 2005 // Not allocated yet, blackhole the components 2006 for (uint c = 0; c < vt->field_count(); c++) { 2007 bh->add_req(vt->field_value(c)); 2008 } 2009 } 2010 2011 // Node modified, record for IGVN 2012 igvn.record_for_igvn(bh); 2013 } 2014 #ifdef ASSERT 2015 // Verify that inline type is buffered when replacing by oop 2016 else if (u->is_InlineType()) { 2017 InlineTypeNode* vt2 = u->as_InlineType(); 2018 for (uint i = 0; i < vt2->field_count(); ++i) { 2019 if (vt2->field_value(i) == vt && !vt2->field_is_flattened(i)) { 2020 // Use in non-flat field 2021 must_be_buffered = true; 2022 } 2023 } 2024 } else if (u->Opcode() != Op_Return || !tf()->returns_inline_type_as_fields()) { 2025 must_be_buffered = true; 2026 } 2027 if (must_be_buffered && !vt->is_allocated(&igvn)) { 2028 vt->dump(-3); 2029 assert(false, "Should have been buffered"); 2030 } 2031 #endif 2032 } 2033 igvn.replace_node(vt, vt->get_oop()); 2034 } 2035 } 2036 igvn.optimize(); 2037 } 2038 2039 void Compile::adjust_flattened_array_access_aliases(PhaseIterGVN& igvn) { 2040 if (!_has_flattened_accesses) { 2041 return; 2042 } 2043 // Initially, all flattened array accesses share the same slice to 2044 // keep dependencies with Object[] array accesses (that could be 2045 // to a flattened array) correct. We're done with parsing so we 2046 // now know all flattened array accesses in this compile 2047 // unit. Let's move flattened array accesses to their own slice, 2048 // one per element field. This should help memory access 2049 // optimizations. 2050 ResourceMark rm; 2051 Unique_Node_List wq; 2052 wq.push(root()); 2053 2054 Node_List mergememnodes; 2055 Node_List memnodes; 2056 2057 // Alias index currently shared by all flattened memory accesses 2058 int index = get_alias_index(TypeAryPtr::INLINES); 2059 2060 // Find MergeMem nodes and flattened array accesses 2061 for (uint i = 0; i < wq.size(); i++) { 2062 Node* n = wq.at(i); 2063 if (n->is_Mem()) { 2064 const TypePtr* adr_type = NULL; 2065 if (n->Opcode() == Op_StoreCM) { 2066 adr_type = get_adr_type(get_alias_index(n->in(MemNode::OopStore)->adr_type())); 2067 } else { 2068 adr_type = get_adr_type(get_alias_index(n->adr_type())); 2069 } 2070 if (adr_type == TypeAryPtr::INLINES) { 2071 memnodes.push(n); 2072 } 2073 } else if (n->is_MergeMem()) { 2074 MergeMemNode* mm = n->as_MergeMem(); 2075 if (mm->memory_at(index) != mm->base_memory()) { 2076 mergememnodes.push(n); 2077 } 2078 } 2079 for (uint j = 0; j < n->req(); j++) { 2080 Node* m = n->in(j); 2081 if (m != NULL) { 2082 wq.push(m); 2083 } 2084 } 2085 } 2086 2087 if (memnodes.size() > 0) { 2088 _flattened_accesses_share_alias = false; 2089 2090 // We are going to change the slice for the flattened array 2091 // accesses so we need to clear the cache entries that refer to 2092 // them. 2093 for (uint i = 0; i < AliasCacheSize; i++) { 2094 AliasCacheEntry* ace = &_alias_cache[i]; 2095 if (ace->_adr_type != NULL && 2096 ace->_adr_type->is_flat()) { 2097 ace->_adr_type = NULL; 2098 ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the NULL adr_type resolves to AliasIdxTop 2099 } 2100 } 2101 2102 // Find what aliases we are going to add 2103 int start_alias = num_alias_types()-1; 2104 int stop_alias = 0; 2105 2106 for (uint i = 0; i < memnodes.size(); i++) { 2107 Node* m = memnodes.at(i); 2108 const TypePtr* adr_type = NULL; 2109 if (m->Opcode() == Op_StoreCM) { 2110 adr_type = m->in(MemNode::OopStore)->adr_type(); 2111 if (adr_type != TypeAryPtr::INLINES) { 2112 // store was optimized out and we lost track of the adr_type 2113 Node* clone = new StoreCMNode(m->in(MemNode::Control), m->in(MemNode::Memory), m->in(MemNode::Address), 2114 m->adr_type(), m->in(MemNode::ValueIn), m->in(MemNode::OopStore), 2115 get_alias_index(adr_type)); 2116 igvn.register_new_node_with_optimizer(clone); 2117 igvn.replace_node(m, clone); 2118 } 2119 } else { 2120 adr_type = m->adr_type(); 2121 #ifdef ASSERT 2122 m->as_Mem()->set_adr_type(adr_type); 2123 #endif 2124 } 2125 int idx = get_alias_index(adr_type); 2126 start_alias = MIN2(start_alias, idx); 2127 stop_alias = MAX2(stop_alias, idx); 2128 } 2129 2130 assert(stop_alias >= start_alias, "should have expanded aliases"); 2131 2132 Node_Stack stack(0); 2133 #ifdef ASSERT 2134 VectorSet seen(Thread::current()->resource_area()); 2135 #endif 2136 // Now let's fix the memory graph so each flattened array access 2137 // is moved to the right slice. Start from the MergeMem nodes. 2138 uint last = unique(); 2139 for (uint i = 0; i < mergememnodes.size(); i++) { 2140 MergeMemNode* current = mergememnodes.at(i)->as_MergeMem(); 2141 Node* n = current->memory_at(index); 2142 MergeMemNode* mm = NULL; 2143 do { 2144 // Follow memory edges through memory accesses, phis and 2145 // narrow membars and push nodes on the stack. Once we hit 2146 // bottom memory, we pop element off the stack one at a 2147 // time, in reverse order, and move them to the right slice 2148 // by changing their memory edges. 2149 if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) { 2150 assert(!seen.test_set(n->_idx), ""); 2151 // Uses (a load for instance) will need to be moved to the 2152 // right slice as well and will get a new memory state 2153 // that we don't know yet. The use could also be the 2154 // backedge of a loop. We put a place holder node between 2155 // the memory node and its uses. We replace that place 2156 // holder with the correct memory state once we know it, 2157 // i.e. when nodes are popped off the stack. Using the 2158 // place holder make the logic work in the presence of 2159 // loops. 2160 if (n->outcnt() > 1) { 2161 Node* place_holder = NULL; 2162 assert(!n->has_out_with(Op_Node), ""); 2163 for (DUIterator k = n->outs(); n->has_out(k); k++) { 2164 Node* u = n->out(k); 2165 if (u != current && u->_idx < last) { 2166 bool success = false; 2167 for (uint l = 0; l < u->req(); l++) { 2168 if (!stack.is_empty() && u == stack.node() && l == stack.index()) { 2169 continue; 2170 } 2171 Node* in = u->in(l); 2172 if (in == n) { 2173 if (place_holder == NULL) { 2174 place_holder = new Node(1); 2175 place_holder->init_req(0, n); 2176 } 2177 igvn.replace_input_of(u, l, place_holder); 2178 success = true; 2179 } 2180 } 2181 if (success) { 2182 --k; 2183 } 2184 } 2185 } 2186 } 2187 if (n->is_Phi()) { 2188 stack.push(n, 1); 2189 n = n->in(1); 2190 } else if (n->is_Mem()) { 2191 stack.push(n, n->req()); 2192 n = n->in(MemNode::Memory); 2193 } else { 2194 assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, ""); 2195 stack.push(n, n->req()); 2196 n = n->in(0)->in(TypeFunc::Memory); 2197 } 2198 } else { 2199 assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), ""); 2200 // Build a new MergeMem node to carry the new memory state 2201 // as we build it. IGVN should fold extraneous MergeMem 2202 // nodes. 2203 mm = MergeMemNode::make(n); 2204 igvn.register_new_node_with_optimizer(mm); 2205 while (stack.size() > 0) { 2206 Node* m = stack.node(); 2207 uint idx = stack.index(); 2208 if (m->is_Mem()) { 2209 // Move memory node to its new slice 2210 const TypePtr* adr_type = m->adr_type(); 2211 int alias = get_alias_index(adr_type); 2212 Node* prev = mm->memory_at(alias); 2213 igvn.replace_input_of(m, MemNode::Memory, prev); 2214 mm->set_memory_at(alias, m); 2215 } else if (m->is_Phi()) { 2216 // We need as many new phis as there are new aliases 2217 igvn.replace_input_of(m, idx, mm); 2218 if (idx == m->req()-1) { 2219 Node* r = m->in(0); 2220 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2221 const TypePtr* adr_type = get_adr_type(j); 2222 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2223 continue; 2224 } 2225 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j)); 2226 igvn.register_new_node_with_optimizer(phi); 2227 for (uint k = 1; k < m->req(); k++) { 2228 phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j)); 2229 } 2230 mm->set_memory_at(j, phi); 2231 } 2232 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2233 igvn.register_new_node_with_optimizer(base_phi); 2234 for (uint k = 1; k < m->req(); k++) { 2235 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory()); 2236 } 2237 mm->set_base_memory(base_phi); 2238 } 2239 } else { 2240 // This is a MemBarCPUOrder node from 2241 // Parse::array_load()/Parse::array_store(), in the 2242 // branch that handles flattened arrays hidden under 2243 // an Object[] array. We also need one new membar per 2244 // new alias to keep the unknown access that the 2245 // membars protect properly ordered with accesses to 2246 // known flattened array. 2247 assert(m->is_Proj(), "projection expected"); 2248 Node* ctrl = m->in(0)->in(TypeFunc::Control); 2249 igvn.replace_input_of(m->in(0), TypeFunc::Control, top()); 2250 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2251 const TypePtr* adr_type = get_adr_type(j); 2252 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2253 continue; 2254 } 2255 MemBarNode* mb = new MemBarCPUOrderNode(this, j, NULL); 2256 igvn.register_new_node_with_optimizer(mb); 2257 Node* mem = mm->memory_at(j); 2258 mb->init_req(TypeFunc::Control, ctrl); 2259 mb->init_req(TypeFunc::Memory, mem); 2260 ctrl = new ProjNode(mb, TypeFunc::Control); 2261 igvn.register_new_node_with_optimizer(ctrl); 2262 mem = new ProjNode(mb, TypeFunc::Memory); 2263 igvn.register_new_node_with_optimizer(mem); 2264 mm->set_memory_at(j, mem); 2265 } 2266 igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl); 2267 } 2268 if (idx < m->req()-1) { 2269 idx += 1; 2270 stack.set_index(idx); 2271 n = m->in(idx); 2272 break; 2273 } 2274 // Take care of place holder nodes 2275 if (m->has_out_with(Op_Node)) { 2276 Node* place_holder = m->find_out_with(Op_Node); 2277 if (place_holder != NULL) { 2278 Node* mm_clone = mm->clone(); 2279 igvn.register_new_node_with_optimizer(mm_clone); 2280 Node* hook = new Node(1); 2281 hook->init_req(0, mm); 2282 igvn.replace_node(place_holder, mm_clone); 2283 hook->destruct(&igvn); 2284 } 2285 assert(!m->has_out_with(Op_Node), "place holder should be gone now"); 2286 } 2287 stack.pop(); 2288 } 2289 } 2290 } while(stack.size() > 0); 2291 // Fix the memory state at the MergeMem we started from 2292 igvn.rehash_node_delayed(current); 2293 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2294 const TypePtr* adr_type = get_adr_type(j); 2295 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) { 2296 continue; 2297 } 2298 current->set_memory_at(j, mm); 2299 } 2300 current->set_memory_at(index, current->base_memory()); 2301 } 2302 igvn.optimize(); 2303 } 2304 print_method(PHASE_SPLIT_INLINES_ARRAY, 2); 2305 #ifdef ASSERT 2306 if (!_flattened_accesses_share_alias) { 2307 wq.clear(); 2308 wq.push(root()); 2309 for (uint i = 0; i < wq.size(); i++) { 2310 Node* n = wq.at(i); 2311 assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph"); 2312 for (uint j = 0; j < n->req(); j++) { 2313 Node* m = n->in(j); 2314 if (m != NULL) { 2315 wq.push(m); 2316 } 2317 } 2318 } 2319 } 2320 #endif 2321 } 2322 2323 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 2324 if (OptimizeUnstableIf) { 2325 _unstable_if_traps.append(trap); 2326 } 2327 } 2328 2329 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 2330 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 2331 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2332 Node* n = trap->uncommon_trap(); 2333 if (!useful.member(n)) { 2334 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 2335 } 2336 } 2337 } 2338 2339 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 2340 // or fold-compares case. Return true if succeed or not found. 2341 // 2342 // In rare cases, the found trap has been processed. It is too late to delete it. Return 2343 // false and ask fold-compares to yield. 2344 // 2345 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 2346 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 2347 // when deoptimization does happen. 2348 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 2349 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 2350 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2351 if (trap->uncommon_trap() == unc) { 2352 if (yield && trap->modified()) { 2353 return false; 2354 } 2355 _unstable_if_traps.delete_at(i); 2356 break; 2357 } 2358 } 2359 return true; 2360 } 2361 2362 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 2363 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 2364 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 2365 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 2366 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2367 CallStaticJavaNode* unc = trap->uncommon_trap(); 2368 int next_bci = trap->next_bci(); 2369 bool modified = trap->modified(); 2370 2371 if (next_bci != -1 && !modified) { 2372 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2373 JVMState* jvms = unc->jvms(); 2374 ciMethod* method = jvms->method(); 2375 ciBytecodeStream iter(method); 2376 2377 iter.force_bci(jvms->bci()); 2378 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2379 Bytecodes::Code c = iter.cur_bc(); 2380 Node* lhs = nullptr; 2381 Node* rhs = nullptr; 2382 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2383 lhs = unc->peek_operand(0); 2384 rhs = unc->peek_operand(1); 2385 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2386 lhs = unc->peek_operand(0); 2387 } 2388 2389 ResourceMark rm; 2390 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2391 assert(live_locals.is_valid(), "broken liveness info"); 2392 int len = (int)live_locals.size(); 2393 2394 for (int i = 0; i < len; i++) { 2395 Node* local = unc->local(jvms, i); 2396 // kill local using the liveness of next_bci. 2397 // give up when the local looks like an operand to secure reexecution. 2398 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2399 uint idx = jvms->locoff() + i; 2400 #ifdef ASSERT 2401 if (Verbose) { 2402 tty->print("[unstable_if] kill local#%d: ", idx); 2403 local->dump(); 2404 tty->cr(); 2405 } 2406 #endif 2407 igvn.replace_input_of(unc, idx, top()); 2408 modified = true; 2409 } 2410 } 2411 } 2412 2413 // keep the mondified trap for late query 2414 if (modified) { 2415 trap->set_modified(); 2416 } else { 2417 _unstable_if_traps.delete_at(i); 2418 } 2419 } 2420 igvn.optimize(); 2421 } 2422 2423 // StringOpts and late inlining of string methods 2424 void Compile::inline_string_calls(bool parse_time) { 2425 { 2426 // remove useless nodes to make the usage analysis simpler 2427 ResourceMark rm; 2428 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2429 } 2430 2431 { 2432 ResourceMark rm; 2433 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2434 PhaseStringOpts pso(initial_gvn()); 2435 print_method(PHASE_AFTER_STRINGOPTS, 3); 2436 } 2437 2438 // now inline anything that we skipped the first time around 2439 if (!parse_time) { 2440 _late_inlines_pos = _late_inlines.length(); 2441 } 2442 2443 while (_string_late_inlines.length() > 0) { 2444 CallGenerator* cg = _string_late_inlines.pop(); 2445 cg->do_late_inline(); 2446 if (failing()) return; 2447 } 2448 _string_late_inlines.trunc_to(0); 2449 } 2450 2451 // Late inlining of boxing methods 2452 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2453 if (_boxing_late_inlines.length() > 0) { 2454 assert(has_boxed_value(), "inconsistent"); 2455 2456 PhaseGVN* gvn = initial_gvn(); 2457 set_inlining_incrementally(true); 2458 2459 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2460 for_igvn()->clear(); 2461 gvn->replace_with(&igvn); 2462 2463 _late_inlines_pos = _late_inlines.length(); 2464 2465 while (_boxing_late_inlines.length() > 0) { 2466 CallGenerator* cg = _boxing_late_inlines.pop(); 2467 cg->do_late_inline(); 2468 if (failing()) return; 2469 } 2470 _boxing_late_inlines.trunc_to(0); 2471 2472 inline_incrementally_cleanup(igvn); 2473 2474 set_inlining_incrementally(false); 2475 } 2476 } 2477 2478 bool Compile::inline_incrementally_one() { 2479 assert(IncrementalInline, "incremental inlining should be on"); 2480 2481 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2482 2483 set_inlining_progress(false); 2484 set_do_cleanup(false); 2485 2486 for (int i = 0; i < _late_inlines.length(); i++) { 2487 _late_inlines_pos = i+1; 2488 CallGenerator* cg = _late_inlines.at(i); 2489 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2490 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2491 cg->do_late_inline(); 2492 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2493 if (failing()) { 2494 return false; 2495 } else if (inlining_progress()) { 2496 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2497 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2498 break; // process one call site at a time 2499 } 2500 } else { 2501 // Ignore late inline direct calls when inlining is not allowed. 2502 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2503 } 2504 } 2505 // Remove processed elements. 2506 _late_inlines.remove_till(_late_inlines_pos); 2507 _late_inlines_pos = 0; 2508 2509 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2510 2511 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2512 2513 set_inlining_progress(false); 2514 set_do_cleanup(false); 2515 2516 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2517 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2518 } 2519 2520 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2521 { 2522 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2523 ResourceMark rm; 2524 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2525 } 2526 { 2527 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2528 igvn = PhaseIterGVN(initial_gvn()); 2529 igvn.optimize(); 2530 } 2531 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2532 } 2533 2534 // Perform incremental inlining until bound on number of live nodes is reached 2535 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2536 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2537 2538 set_inlining_incrementally(true); 2539 uint low_live_nodes = 0; 2540 2541 while (_late_inlines.length() > 0) { 2542 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2543 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2544 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2545 // PhaseIdealLoop is expensive so we only try it once we are 2546 // out of live nodes and we only try it again if the previous 2547 // helped got the number of nodes down significantly 2548 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2549 if (failing()) return; 2550 low_live_nodes = live_nodes(); 2551 _major_progress = true; 2552 } 2553 2554 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2555 bool do_print_inlining = print_inlining() || print_intrinsics(); 2556 if (do_print_inlining || log() != NULL) { 2557 // Print inlining message for candidates that we couldn't inline for lack of space. 2558 for (int i = 0; i < _late_inlines.length(); i++) { 2559 CallGenerator* cg = _late_inlines.at(i); 2560 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2561 if (do_print_inlining) { 2562 cg->print_inlining_late(msg); 2563 } 2564 log_late_inline_failure(cg, msg); 2565 } 2566 } 2567 break; // finish 2568 } 2569 } 2570 2571 for_igvn()->clear(); 2572 initial_gvn()->replace_with(&igvn); 2573 2574 while (inline_incrementally_one()) { 2575 assert(!failing(), "inconsistent"); 2576 } 2577 if (failing()) return; 2578 2579 inline_incrementally_cleanup(igvn); 2580 2581 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2582 2583 if (failing()) return; 2584 2585 if (_late_inlines.length() == 0) { 2586 break; // no more progress 2587 } 2588 } 2589 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2590 2591 if (_string_late_inlines.length() > 0) { 2592 assert(has_stringbuilder(), "inconsistent"); 2593 for_igvn()->clear(); 2594 initial_gvn()->replace_with(&igvn); 2595 2596 inline_string_calls(false); 2597 2598 if (failing()) return; 2599 2600 inline_incrementally_cleanup(igvn); 2601 } 2602 2603 set_inlining_incrementally(false); 2604 } 2605 2606 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2607 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2608 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2609 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == NULL" 2610 // as if "inlining_incrementally() == true" were set. 2611 assert(inlining_incrementally() == false, "not allowed"); 2612 #ifdef ASSERT 2613 Unique_Node_List* modified_nodes = _modified_nodes; 2614 _modified_nodes = NULL; 2615 #endif 2616 assert(_late_inlines.length() > 0, "sanity"); 2617 2618 while (_late_inlines.length() > 0) { 2619 for_igvn()->clear(); 2620 initial_gvn()->replace_with(&igvn); 2621 2622 while (inline_incrementally_one()) { 2623 assert(!failing(), "inconsistent"); 2624 } 2625 if (failing()) return; 2626 2627 inline_incrementally_cleanup(igvn); 2628 } 2629 DEBUG_ONLY( _modified_nodes = modified_nodes; ) 2630 } 2631 2632 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2633 if (_loop_opts_cnt > 0) { 2634 while (major_progress() && (_loop_opts_cnt > 0)) { 2635 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2636 PhaseIdealLoop::optimize(igvn, mode); 2637 _loop_opts_cnt--; 2638 if (failing()) return false; 2639 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2640 } 2641 } 2642 return true; 2643 } 2644 2645 // Remove edges from "root" to each SafePoint at a backward branch. 2646 // They were inserted during parsing (see add_safepoint()) to make 2647 // infinite loops without calls or exceptions visible to root, i.e., 2648 // useful. 2649 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2650 Node *r = root(); 2651 if (r != NULL) { 2652 for (uint i = r->req(); i < r->len(); ++i) { 2653 Node *n = r->in(i); 2654 if (n != NULL && n->is_SafePoint()) { 2655 r->rm_prec(i); 2656 if (n->outcnt() == 0) { 2657 igvn.remove_dead_node(n); 2658 } 2659 --i; 2660 } 2661 } 2662 // Parsing may have added top inputs to the root node (Path 2663 // leading to the Halt node proven dead). Make sure we get a 2664 // chance to clean them up. 2665 igvn._worklist.push(r); 2666 igvn.optimize(); 2667 } 2668 } 2669 2670 //------------------------------Optimize--------------------------------------- 2671 // Given a graph, optimize it. 2672 void Compile::Optimize() { 2673 TracePhase tp("optimizer", &timers[_t_optimizer]); 2674 2675 #ifndef PRODUCT 2676 if (env()->break_at_compile()) { 2677 BREAKPOINT; 2678 } 2679 2680 #endif 2681 2682 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2683 #ifdef ASSERT 2684 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2685 #endif 2686 2687 ResourceMark rm; 2688 2689 print_inlining_reinit(); 2690 2691 NOT_PRODUCT( verify_graph_edges(); ) 2692 2693 print_method(PHASE_AFTER_PARSING, 1); 2694 2695 { 2696 // Iterative Global Value Numbering, including ideal transforms 2697 // Initialize IterGVN with types and values from parse-time GVN 2698 PhaseIterGVN igvn(initial_gvn()); 2699 #ifdef ASSERT 2700 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2701 #endif 2702 { 2703 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2704 igvn.optimize(); 2705 } 2706 2707 if (failing()) return; 2708 2709 print_method(PHASE_ITER_GVN1, 2); 2710 2711 process_for_unstable_if_traps(igvn); 2712 2713 inline_incrementally(igvn); 2714 2715 print_method(PHASE_INCREMENTAL_INLINE, 2); 2716 2717 if (failing()) return; 2718 2719 if (eliminate_boxing()) { 2720 // Inline valueOf() methods now. 2721 inline_boxing_calls(igvn); 2722 2723 if (AlwaysIncrementalInline) { 2724 inline_incrementally(igvn); 2725 } 2726 2727 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2728 2729 if (failing()) return; 2730 } 2731 2732 // Remove the speculative part of types and clean up the graph from 2733 // the extra CastPP nodes whose only purpose is to carry them. Do 2734 // that early so that optimizations are not disrupted by the extra 2735 // CastPP nodes. 2736 remove_speculative_types(igvn); 2737 2738 // No more new expensive nodes will be added to the list from here 2739 // so keep only the actual candidates for optimizations. 2740 cleanup_expensive_nodes(igvn); 2741 2742 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2743 if (EnableVectorSupport && has_vbox_nodes()) { 2744 TracePhase tp("", &timers[_t_vector]); 2745 PhaseVector pv(igvn); 2746 pv.optimize_vector_boxes(); 2747 2748 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2749 } 2750 assert(!has_vbox_nodes(), "sanity"); 2751 2752 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2753 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2754 initial_gvn()->replace_with(&igvn); 2755 Unique_Node_List* old_worklist = for_igvn(); 2756 old_worklist->clear(); 2757 Unique_Node_List new_worklist(C->comp_arena()); 2758 { 2759 ResourceMark rm; 2760 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2761 } 2762 Unique_Node_List* save_for_igvn = for_igvn(); 2763 set_for_igvn(&new_worklist); 2764 igvn = PhaseIterGVN(initial_gvn()); 2765 igvn.optimize(); 2766 set_for_igvn(old_worklist); // new_worklist is dead beyond this point 2767 } 2768 2769 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2770 // safepoints 2771 remove_root_to_sfpts_edges(igvn); 2772 2773 // Process inline type nodes now that all inlining is over 2774 process_inline_types(igvn); 2775 2776 adjust_flattened_array_access_aliases(igvn); 2777 2778 // Perform escape analysis 2779 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2780 if (has_loops()) { 2781 // Cleanup graph (remove dead nodes). 2782 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2783 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2784 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2785 if (failing()) return; 2786 } 2787 bool progress; 2788 do { 2789 ConnectionGraph::do_analysis(this, &igvn); 2790 2791 if (failing()) return; 2792 2793 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2794 2795 // Optimize out fields loads from scalar replaceable allocations. 2796 igvn.optimize(); 2797 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2798 2799 if (failing()) return; 2800 2801 if (congraph() != NULL && macro_count() > 0) { 2802 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2803 PhaseMacroExpand mexp(igvn); 2804 mexp.eliminate_macro_nodes(); 2805 igvn.set_delay_transform(false); 2806 2807 igvn.optimize(); 2808 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2809 2810 if (failing()) return; 2811 } 2812 progress = do_iterative_escape_analysis() && 2813 (macro_count() < mcount) && 2814 ConnectionGraph::has_candidates(this); 2815 // Try again if candidates exist and made progress 2816 // by removing some allocations and/or locks. 2817 } while (progress); 2818 } 2819 2820 // Loop transforms on the ideal graph. Range Check Elimination, 2821 // peeling, unrolling, etc. 2822 2823 // Set loop opts counter 2824 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2825 { 2826 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2827 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2828 _loop_opts_cnt--; 2829 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2830 if (failing()) return; 2831 } 2832 // Loop opts pass if partial peeling occurred in previous pass 2833 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2834 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2835 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2836 _loop_opts_cnt--; 2837 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2838 if (failing()) return; 2839 } 2840 // Loop opts pass for loop-unrolling before CCP 2841 if(major_progress() && (_loop_opts_cnt > 0)) { 2842 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2843 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2844 _loop_opts_cnt--; 2845 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2846 } 2847 if (!failing()) { 2848 // Verify that last round of loop opts produced a valid graph 2849 PhaseIdealLoop::verify(igvn); 2850 } 2851 } 2852 if (failing()) return; 2853 2854 // Conditional Constant Propagation; 2855 PhaseCCP ccp( &igvn ); 2856 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2857 { 2858 TracePhase tp("ccp", &timers[_t_ccp]); 2859 ccp.do_transform(); 2860 } 2861 print_method(PHASE_CCP1, 2); 2862 2863 assert( true, "Break here to ccp.dump_old2new_map()"); 2864 2865 // Iterative Global Value Numbering, including ideal transforms 2866 { 2867 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2868 igvn = ccp; 2869 igvn.optimize(); 2870 } 2871 print_method(PHASE_ITER_GVN2, 2); 2872 2873 if (failing()) return; 2874 2875 // Loop transforms on the ideal graph. Range Check Elimination, 2876 // peeling, unrolling, etc. 2877 if (!optimize_loops(igvn, LoopOptsDefault)) { 2878 return; 2879 } 2880 2881 if (failing()) return; 2882 2883 C->clear_major_progress(); // ensure that major progress is now clear 2884 2885 process_for_post_loop_opts_igvn(igvn); 2886 2887 #ifdef ASSERT 2888 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2889 #endif 2890 2891 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2892 2893 if (_late_inlines.length() > 0) { 2894 // More opportunities to optimize virtual and MH calls. 2895 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2896 process_late_inline_calls_no_inline(igvn); 2897 } 2898 2899 { 2900 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2901 PhaseMacroExpand mex(igvn); 2902 if (mex.expand_macro_nodes()) { 2903 assert(failing(), "must bail out w/ explicit message"); 2904 return; 2905 } 2906 print_method(PHASE_MACRO_EXPANSION, 2); 2907 } 2908 2909 // Process inline type nodes again and remove them. From here 2910 // on we don't need to keep track of field values anymore. 2911 process_inline_types(igvn, /* remove= */ true); 2912 2913 { 2914 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2915 if (bs->expand_barriers(this, igvn)) { 2916 assert(failing(), "must bail out w/ explicit message"); 2917 return; 2918 } 2919 print_method(PHASE_BARRIER_EXPANSION, 2); 2920 } 2921 2922 if (C->max_vector_size() > 0) { 2923 C->optimize_logic_cones(igvn); 2924 igvn.optimize(); 2925 } 2926 2927 DEBUG_ONLY( _modified_nodes = NULL; ) 2928 DEBUG_ONLY( _late_inlines.clear(); ) 2929 2930 assert(igvn._worklist.size() == 0, "not empty"); 2931 } // (End scope of igvn; run destructor if necessary for asserts.) 2932 2933 check_no_dead_use(); 2934 2935 process_print_inlining(); 2936 2937 // A method with only infinite loops has no edges entering loops from root 2938 { 2939 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2940 if (final_graph_reshaping()) { 2941 assert(failing(), "must bail out w/ explicit message"); 2942 return; 2943 } 2944 } 2945 2946 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2947 DEBUG_ONLY(set_phase_optimize_finished();) 2948 } 2949 2950 #ifdef ASSERT 2951 void Compile::check_no_dead_use() const { 2952 ResourceMark rm; 2953 Unique_Node_List wq; 2954 wq.push(root()); 2955 for (uint i = 0; i < wq.size(); ++i) { 2956 Node* n = wq.at(i); 2957 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2958 Node* u = n->fast_out(j); 2959 if (u->outcnt() == 0 && !u->is_Con()) { 2960 u->dump(); 2961 fatal("no reachable node should have no use"); 2962 } 2963 wq.push(u); 2964 } 2965 } 2966 } 2967 #endif 2968 2969 void Compile::inline_vector_reboxing_calls() { 2970 if (C->_vector_reboxing_late_inlines.length() > 0) { 2971 _late_inlines_pos = C->_late_inlines.length(); 2972 while (_vector_reboxing_late_inlines.length() > 0) { 2973 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2974 cg->do_late_inline(); 2975 if (failing()) return; 2976 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2977 } 2978 _vector_reboxing_late_inlines.trunc_to(0); 2979 } 2980 } 2981 2982 bool Compile::has_vbox_nodes() { 2983 if (C->_vector_reboxing_late_inlines.length() > 0) { 2984 return true; 2985 } 2986 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2987 Node * n = C->macro_node(macro_idx); 2988 assert(n->is_macro(), "only macro nodes expected here"); 2989 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2990 return true; 2991 } 2992 } 2993 return false; 2994 } 2995 2996 //---------------------------- Bitwise operation packing optimization --------------------------- 2997 2998 static bool is_vector_unary_bitwise_op(Node* n) { 2999 return n->Opcode() == Op_XorV && 3000 VectorNode::is_vector_bitwise_not_pattern(n); 3001 } 3002 3003 static bool is_vector_binary_bitwise_op(Node* n) { 3004 switch (n->Opcode()) { 3005 case Op_AndV: 3006 case Op_OrV: 3007 return true; 3008 3009 case Op_XorV: 3010 return !is_vector_unary_bitwise_op(n); 3011 3012 default: 3013 return false; 3014 } 3015 } 3016 3017 static bool is_vector_ternary_bitwise_op(Node* n) { 3018 return n->Opcode() == Op_MacroLogicV; 3019 } 3020 3021 static bool is_vector_bitwise_op(Node* n) { 3022 return is_vector_unary_bitwise_op(n) || 3023 is_vector_binary_bitwise_op(n) || 3024 is_vector_ternary_bitwise_op(n); 3025 } 3026 3027 static bool is_vector_bitwise_cone_root(Node* n) { 3028 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 3029 return false; 3030 } 3031 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3032 if (is_vector_bitwise_op(n->fast_out(i))) { 3033 return false; 3034 } 3035 } 3036 return true; 3037 } 3038 3039 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 3040 uint cnt = 0; 3041 if (is_vector_bitwise_op(n)) { 3042 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 3043 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3044 for (uint i = 1; i < inp_cnt; i++) { 3045 Node* in = n->in(i); 3046 bool skip = VectorNode::is_all_ones_vector(in); 3047 if (!skip && !inputs.member(in)) { 3048 inputs.push(in); 3049 cnt++; 3050 } 3051 } 3052 assert(cnt <= 1, "not unary"); 3053 } else { 3054 uint last_req = inp_cnt; 3055 if (is_vector_ternary_bitwise_op(n)) { 3056 last_req = inp_cnt - 1; // skip last input 3057 } 3058 for (uint i = 1; i < last_req; i++) { 3059 Node* def = n->in(i); 3060 if (!inputs.member(def)) { 3061 inputs.push(def); 3062 cnt++; 3063 } 3064 } 3065 } 3066 } else { // not a bitwise operations 3067 if (!inputs.member(n)) { 3068 inputs.push(n); 3069 cnt++; 3070 } 3071 } 3072 return cnt; 3073 } 3074 3075 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 3076 Unique_Node_List useful_nodes; 3077 C->identify_useful_nodes(useful_nodes); 3078 3079 for (uint i = 0; i < useful_nodes.size(); i++) { 3080 Node* n = useful_nodes.at(i); 3081 if (is_vector_bitwise_cone_root(n)) { 3082 list.push(n); 3083 } 3084 } 3085 } 3086 3087 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 3088 const TypeVect* vt, 3089 Unique_Node_List& partition, 3090 Unique_Node_List& inputs) { 3091 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 3092 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 3093 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 3094 3095 Node* in1 = inputs.at(0); 3096 Node* in2 = inputs.at(1); 3097 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 3098 3099 uint func = compute_truth_table(partition, inputs); 3100 3101 Node* pn = partition.at(partition.size() - 1); 3102 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL; 3103 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 3104 } 3105 3106 static uint extract_bit(uint func, uint pos) { 3107 return (func & (1 << pos)) >> pos; 3108 } 3109 3110 // 3111 // A macro logic node represents a truth table. It has 4 inputs, 3112 // First three inputs corresponds to 3 columns of a truth table 3113 // and fourth input captures the logic function. 3114 // 3115 // eg. fn = (in1 AND in2) OR in3; 3116 // 3117 // MacroNode(in1,in2,in3,fn) 3118 // 3119 // ----------------- 3120 // in1 in2 in3 fn 3121 // ----------------- 3122 // 0 0 0 0 3123 // 0 0 1 1 3124 // 0 1 0 0 3125 // 0 1 1 1 3126 // 1 0 0 0 3127 // 1 0 1 1 3128 // 1 1 0 1 3129 // 1 1 1 1 3130 // 3131 3132 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 3133 int res = 0; 3134 for (int i = 0; i < 8; i++) { 3135 int bit1 = extract_bit(in1, i); 3136 int bit2 = extract_bit(in2, i); 3137 int bit3 = extract_bit(in3, i); 3138 3139 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 3140 int func_bit = extract_bit(func, func_bit_pos); 3141 3142 res |= func_bit << i; 3143 } 3144 return res; 3145 } 3146 3147 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 3148 assert(n != NULL, ""); 3149 assert(eval_map.contains(n), "absent"); 3150 return *(eval_map.get(n)); 3151 } 3152 3153 static void eval_operands(Node* n, 3154 uint& func1, uint& func2, uint& func3, 3155 ResourceHashtable<Node*,uint>& eval_map) { 3156 assert(is_vector_bitwise_op(n), ""); 3157 3158 if (is_vector_unary_bitwise_op(n)) { 3159 Node* opnd = n->in(1); 3160 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 3161 opnd = n->in(2); 3162 } 3163 func1 = eval_operand(opnd, eval_map); 3164 } else if (is_vector_binary_bitwise_op(n)) { 3165 func1 = eval_operand(n->in(1), eval_map); 3166 func2 = eval_operand(n->in(2), eval_map); 3167 } else { 3168 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 3169 func1 = eval_operand(n->in(1), eval_map); 3170 func2 = eval_operand(n->in(2), eval_map); 3171 func3 = eval_operand(n->in(3), eval_map); 3172 } 3173 } 3174 3175 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 3176 assert(inputs.size() <= 3, "sanity"); 3177 ResourceMark rm; 3178 uint res = 0; 3179 ResourceHashtable<Node*,uint> eval_map; 3180 3181 // Populate precomputed functions for inputs. 3182 // Each input corresponds to one column of 3 input truth-table. 3183 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 3184 0xCC, // (_, b, _) -> b 3185 0xF0 }; // (a, _, _) -> a 3186 for (uint i = 0; i < inputs.size(); i++) { 3187 eval_map.put(inputs.at(i), input_funcs[2-i]); 3188 } 3189 3190 for (uint i = 0; i < partition.size(); i++) { 3191 Node* n = partition.at(i); 3192 3193 uint func1 = 0, func2 = 0, func3 = 0; 3194 eval_operands(n, func1, func2, func3, eval_map); 3195 3196 switch (n->Opcode()) { 3197 case Op_OrV: 3198 assert(func3 == 0, "not binary"); 3199 res = func1 | func2; 3200 break; 3201 case Op_AndV: 3202 assert(func3 == 0, "not binary"); 3203 res = func1 & func2; 3204 break; 3205 case Op_XorV: 3206 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3207 assert(func2 == 0 && func3 == 0, "not unary"); 3208 res = (~func1) & 0xFF; 3209 } else { 3210 assert(func3 == 0, "not binary"); 3211 res = func1 ^ func2; 3212 } 3213 break; 3214 case Op_MacroLogicV: 3215 // Ordering of inputs may change during evaluation of sub-tree 3216 // containing MacroLogic node as a child node, thus a re-evaluation 3217 // makes sure that function is evaluated in context of current 3218 // inputs. 3219 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 3220 break; 3221 3222 default: assert(false, "not supported: %s", n->Name()); 3223 } 3224 assert(res <= 0xFF, "invalid"); 3225 eval_map.put(n, res); 3226 } 3227 return res; 3228 } 3229 3230 // Criteria under which nodes gets packed into a macro logic node:- 3231 // 1) Parent and both child nodes are all unmasked or masked with 3232 // same predicates. 3233 // 2) Masked parent can be packed with left child if it is predicated 3234 // and both have same predicates. 3235 // 3) Masked parent can be packed with right child if its un-predicated 3236 // or has matching predication condition. 3237 // 4) An unmasked parent can be packed with an unmasked child. 3238 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 3239 assert(partition.size() == 0, "not empty"); 3240 assert(inputs.size() == 0, "not empty"); 3241 if (is_vector_ternary_bitwise_op(n)) { 3242 return false; 3243 } 3244 3245 bool is_unary_op = is_vector_unary_bitwise_op(n); 3246 if (is_unary_op) { 3247 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 3248 return false; // too few inputs 3249 } 3250 3251 bool pack_left_child = true; 3252 bool pack_right_child = true; 3253 3254 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 3255 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 3256 3257 int left_child_input_cnt = 0; 3258 int right_child_input_cnt = 0; 3259 3260 bool parent_is_predicated = n->is_predicated_vector(); 3261 bool left_child_predicated = n->in(1)->is_predicated_vector(); 3262 bool right_child_predicated = n->in(2)->is_predicated_vector(); 3263 3264 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : NULL; 3265 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL; 3266 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL; 3267 3268 do { 3269 if (pack_left_child && left_child_LOP && 3270 ((!parent_is_predicated && !left_child_predicated) || 3271 ((parent_is_predicated && left_child_predicated && 3272 parent_pred == left_child_pred)))) { 3273 partition.push(n->in(1)); 3274 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 3275 } else { 3276 inputs.push(n->in(1)); 3277 left_child_input_cnt = 1; 3278 } 3279 3280 if (pack_right_child && right_child_LOP && 3281 (!right_child_predicated || 3282 (right_child_predicated && parent_is_predicated && 3283 parent_pred == right_child_pred))) { 3284 partition.push(n->in(2)); 3285 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 3286 } else { 3287 inputs.push(n->in(2)); 3288 right_child_input_cnt = 1; 3289 } 3290 3291 if (inputs.size() > 3) { 3292 assert(partition.size() > 0, ""); 3293 inputs.clear(); 3294 partition.clear(); 3295 if (left_child_input_cnt > right_child_input_cnt) { 3296 pack_left_child = false; 3297 } else { 3298 pack_right_child = false; 3299 } 3300 } else { 3301 break; 3302 } 3303 } while(true); 3304 3305 if(partition.size()) { 3306 partition.push(n); 3307 } 3308 3309 return (partition.size() == 2 || partition.size() == 3) && 3310 (inputs.size() == 2 || inputs.size() == 3); 3311 } 3312 3313 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 3314 assert(is_vector_bitwise_op(n), "not a root"); 3315 3316 visited.set(n->_idx); 3317 3318 // 1) Do a DFS walk over the logic cone. 3319 for (uint i = 1; i < n->req(); i++) { 3320 Node* in = n->in(i); 3321 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 3322 process_logic_cone_root(igvn, in, visited); 3323 } 3324 } 3325 3326 // 2) Bottom up traversal: Merge node[s] with 3327 // the parent to form macro logic node. 3328 Unique_Node_List partition; 3329 Unique_Node_List inputs; 3330 if (compute_logic_cone(n, partition, inputs)) { 3331 const TypeVect* vt = n->bottom_type()->is_vect(); 3332 Node* pn = partition.at(partition.size() - 1); 3333 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL; 3334 if (mask == NULL || 3335 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 3336 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 3337 #ifdef ASSERT 3338 if (TraceNewVectors) { 3339 tty->print("new Vector node: "); 3340 macro_logic->dump(); 3341 } 3342 #endif 3343 igvn.replace_node(n, macro_logic); 3344 } 3345 } 3346 } 3347 3348 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 3349 ResourceMark rm; 3350 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3351 Unique_Node_List list; 3352 collect_logic_cone_roots(list); 3353 3354 while (list.size() > 0) { 3355 Node* n = list.pop(); 3356 const TypeVect* vt = n->bottom_type()->is_vect(); 3357 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3358 if (supported) { 3359 VectorSet visited(comp_arena()); 3360 process_logic_cone_root(igvn, n, visited); 3361 } 3362 } 3363 } 3364 } 3365 3366 //------------------------------Code_Gen--------------------------------------- 3367 // Given a graph, generate code for it 3368 void Compile::Code_Gen() { 3369 if (failing()) { 3370 return; 3371 } 3372 3373 // Perform instruction selection. You might think we could reclaim Matcher 3374 // memory PDQ, but actually the Matcher is used in generating spill code. 3375 // Internals of the Matcher (including some VectorSets) must remain live 3376 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3377 // set a bit in reclaimed memory. 3378 3379 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3380 // nodes. Mapping is only valid at the root of each matched subtree. 3381 NOT_PRODUCT( verify_graph_edges(); ) 3382 3383 Matcher matcher; 3384 _matcher = &matcher; 3385 { 3386 TracePhase tp("matcher", &timers[_t_matcher]); 3387 matcher.match(); 3388 if (failing()) { 3389 return; 3390 } 3391 } 3392 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3393 // nodes. Mapping is only valid at the root of each matched subtree. 3394 NOT_PRODUCT( verify_graph_edges(); ) 3395 3396 // If you have too many nodes, or if matching has failed, bail out 3397 check_node_count(0, "out of nodes matching instructions"); 3398 if (failing()) { 3399 return; 3400 } 3401 3402 print_method(PHASE_MATCHING, 2); 3403 3404 // Build a proper-looking CFG 3405 PhaseCFG cfg(node_arena(), root(), matcher); 3406 _cfg = &cfg; 3407 { 3408 TracePhase tp("scheduler", &timers[_t_scheduler]); 3409 bool success = cfg.do_global_code_motion(); 3410 if (!success) { 3411 return; 3412 } 3413 3414 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3415 NOT_PRODUCT( verify_graph_edges(); ) 3416 cfg.verify(); 3417 } 3418 3419 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3420 _regalloc = ®alloc; 3421 { 3422 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 3423 // Perform register allocation. After Chaitin, use-def chains are 3424 // no longer accurate (at spill code) and so must be ignored. 3425 // Node->LRG->reg mappings are still accurate. 3426 _regalloc->Register_Allocate(); 3427 3428 // Bail out if the allocator builds too many nodes 3429 if (failing()) { 3430 return; 3431 } 3432 } 3433 3434 // Prior to register allocation we kept empty basic blocks in case the 3435 // the allocator needed a place to spill. After register allocation we 3436 // are not adding any new instructions. If any basic block is empty, we 3437 // can now safely remove it. 3438 { 3439 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 3440 cfg.remove_empty_blocks(); 3441 if (do_freq_based_layout()) { 3442 PhaseBlockLayout layout(cfg); 3443 } else { 3444 cfg.set_loop_alignment(); 3445 } 3446 cfg.fixup_flow(); 3447 cfg.remove_unreachable_blocks(); 3448 cfg.verify_dominator_tree(); 3449 } 3450 3451 // Apply peephole optimizations 3452 if( OptoPeephole ) { 3453 TracePhase tp("peephole", &timers[_t_peephole]); 3454 PhasePeephole peep( _regalloc, cfg); 3455 peep.do_transform(); 3456 } 3457 3458 // Do late expand if CPU requires this. 3459 if (Matcher::require_postalloc_expand) { 3460 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3461 cfg.postalloc_expand(_regalloc); 3462 } 3463 3464 // Convert Nodes to instruction bits in a buffer 3465 { 3466 TracePhase tp("output", &timers[_t_output]); 3467 PhaseOutput output; 3468 output.Output(); 3469 if (failing()) return; 3470 output.install(); 3471 } 3472 3473 print_method(PHASE_FINAL_CODE, 1); 3474 3475 // He's dead, Jim. 3476 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3477 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3478 } 3479 3480 //------------------------------Final_Reshape_Counts--------------------------- 3481 // This class defines counters to help identify when a method 3482 // may/must be executed using hardware with only 24-bit precision. 3483 struct Final_Reshape_Counts : public StackObj { 3484 int _call_count; // count non-inlined 'common' calls 3485 int _float_count; // count float ops requiring 24-bit precision 3486 int _double_count; // count double ops requiring more precision 3487 int _java_call_count; // count non-inlined 'java' calls 3488 int _inner_loop_count; // count loops which need alignment 3489 VectorSet _visited; // Visitation flags 3490 Node_List _tests; // Set of IfNodes & PCTableNodes 3491 3492 Final_Reshape_Counts() : 3493 _call_count(0), _float_count(0), _double_count(0), 3494 _java_call_count(0), _inner_loop_count(0) { } 3495 3496 void inc_call_count () { _call_count ++; } 3497 void inc_float_count () { _float_count ++; } 3498 void inc_double_count() { _double_count++; } 3499 void inc_java_call_count() { _java_call_count++; } 3500 void inc_inner_loop_count() { _inner_loop_count++; } 3501 3502 int get_call_count () const { return _call_count ; } 3503 int get_float_count () const { return _float_count ; } 3504 int get_double_count() const { return _double_count; } 3505 int get_java_call_count() const { return _java_call_count; } 3506 int get_inner_loop_count() const { return _inner_loop_count; } 3507 }; 3508 3509 // Eliminate trivially redundant StoreCMs and accumulate their 3510 // precedence edges. 3511 void Compile::eliminate_redundant_card_marks(Node* n) { 3512 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3513 if (n->in(MemNode::Address)->outcnt() > 1) { 3514 // There are multiple users of the same address so it might be 3515 // possible to eliminate some of the StoreCMs 3516 Node* mem = n->in(MemNode::Memory); 3517 Node* adr = n->in(MemNode::Address); 3518 Node* val = n->in(MemNode::ValueIn); 3519 Node* prev = n; 3520 bool done = false; 3521 // Walk the chain of StoreCMs eliminating ones that match. As 3522 // long as it's a chain of single users then the optimization is 3523 // safe. Eliminating partially redundant StoreCMs would require 3524 // cloning copies down the other paths. 3525 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3526 if (adr == mem->in(MemNode::Address) && 3527 val == mem->in(MemNode::ValueIn)) { 3528 // redundant StoreCM 3529 if (mem->req() > MemNode::OopStore) { 3530 // Hasn't been processed by this code yet. 3531 n->add_prec(mem->in(MemNode::OopStore)); 3532 } else { 3533 // Already converted to precedence edge 3534 for (uint i = mem->req(); i < mem->len(); i++) { 3535 // Accumulate any precedence edges 3536 if (mem->in(i) != NULL) { 3537 n->add_prec(mem->in(i)); 3538 } 3539 } 3540 // Everything above this point has been processed. 3541 done = true; 3542 } 3543 // Eliminate the previous StoreCM 3544 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3545 assert(mem->outcnt() == 0, "should be dead"); 3546 mem->disconnect_inputs(this); 3547 } else { 3548 prev = mem; 3549 } 3550 mem = prev->in(MemNode::Memory); 3551 } 3552 } 3553 } 3554 3555 3556 //------------------------------final_graph_reshaping_impl---------------------- 3557 // Implement items 1-5 from final_graph_reshaping below. 3558 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3559 3560 if ( n->outcnt() == 0 ) return; // dead node 3561 uint nop = n->Opcode(); 3562 3563 // Check for 2-input instruction with "last use" on right input. 3564 // Swap to left input. Implements item (2). 3565 if( n->req() == 3 && // two-input instruction 3566 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3567 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3568 n->in(2)->outcnt() == 1 &&// right use IS a last use 3569 !n->in(2)->is_Con() ) { // right use is not a constant 3570 // Check for commutative opcode 3571 switch( nop ) { 3572 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3573 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3574 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3575 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3576 case Op_AndL: case Op_XorL: case Op_OrL: 3577 case Op_AndI: case Op_XorI: case Op_OrI: { 3578 // Move "last use" input to left by swapping inputs 3579 n->swap_edges(1, 2); 3580 break; 3581 } 3582 default: 3583 break; 3584 } 3585 } 3586 3587 #ifdef ASSERT 3588 if( n->is_Mem() ) { 3589 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3590 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 3591 // oop will be recorded in oop map if load crosses safepoint 3592 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3593 LoadNode::is_immutable_value(n->in(MemNode::Address))), 3594 "raw memory operations should have control edge"); 3595 } 3596 if (n->is_MemBar()) { 3597 MemBarNode* mb = n->as_MemBar(); 3598 if (mb->trailing_store() || mb->trailing_load_store()) { 3599 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3600 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3601 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3602 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3603 } else if (mb->leading()) { 3604 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3605 } 3606 } 3607 #endif 3608 // Count FPU ops and common calls, implements item (3) 3609 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3610 if (!gc_handled) { 3611 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3612 } 3613 3614 // Collect CFG split points 3615 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3616 frc._tests.push(n); 3617 } 3618 } 3619 3620 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3621 switch( nop ) { 3622 // Count all float operations that may use FPU 3623 case Op_AddF: 3624 case Op_SubF: 3625 case Op_MulF: 3626 case Op_DivF: 3627 case Op_NegF: 3628 case Op_ModF: 3629 case Op_ConvI2F: 3630 case Op_ConF: 3631 case Op_CmpF: 3632 case Op_CmpF3: 3633 case Op_StoreF: 3634 case Op_LoadF: 3635 // case Op_ConvL2F: // longs are split into 32-bit halves 3636 frc.inc_float_count(); 3637 break; 3638 3639 case Op_ConvF2D: 3640 case Op_ConvD2F: 3641 frc.inc_float_count(); 3642 frc.inc_double_count(); 3643 break; 3644 3645 // Count all double operations that may use FPU 3646 case Op_AddD: 3647 case Op_SubD: 3648 case Op_MulD: 3649 case Op_DivD: 3650 case Op_NegD: 3651 case Op_ModD: 3652 case Op_ConvI2D: 3653 case Op_ConvD2I: 3654 // case Op_ConvL2D: // handled by leaf call 3655 // case Op_ConvD2L: // handled by leaf call 3656 case Op_ConD: 3657 case Op_CmpD: 3658 case Op_CmpD3: 3659 case Op_StoreD: 3660 case Op_LoadD: 3661 case Op_LoadD_unaligned: 3662 frc.inc_double_count(); 3663 break; 3664 case Op_Opaque1: // Remove Opaque Nodes before matching 3665 case Op_Opaque3: 3666 n->subsume_by(n->in(1), this); 3667 break; 3668 case Op_CallStaticJava: 3669 case Op_CallJava: 3670 case Op_CallDynamicJava: 3671 frc.inc_java_call_count(); // Count java call site; 3672 case Op_CallRuntime: 3673 case Op_CallLeaf: 3674 case Op_CallLeafVector: 3675 case Op_CallLeafNoFP: { 3676 assert (n->is_Call(), ""); 3677 CallNode *call = n->as_Call(); 3678 // Count call sites where the FP mode bit would have to be flipped. 3679 // Do not count uncommon runtime calls: 3680 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3681 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3682 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3683 frc.inc_call_count(); // Count the call site 3684 } else { // See if uncommon argument is shared 3685 Node *n = call->in(TypeFunc::Parms); 3686 int nop = n->Opcode(); 3687 // Clone shared simple arguments to uncommon calls, item (1). 3688 if (n->outcnt() > 1 && 3689 !n->is_Proj() && 3690 nop != Op_CreateEx && 3691 nop != Op_CheckCastPP && 3692 nop != Op_DecodeN && 3693 nop != Op_DecodeNKlass && 3694 !n->is_Mem() && 3695 !n->is_Phi()) { 3696 Node *x = n->clone(); 3697 call->set_req(TypeFunc::Parms, x); 3698 } 3699 } 3700 break; 3701 } 3702 3703 case Op_StoreCM: 3704 { 3705 // Convert OopStore dependence into precedence edge 3706 Node* prec = n->in(MemNode::OopStore); 3707 n->del_req(MemNode::OopStore); 3708 if (prec->is_MergeMem()) { 3709 MergeMemNode* mm = prec->as_MergeMem(); 3710 Node* base = mm->base_memory(); 3711 for (int i = AliasIdxRaw + 1; i < num_alias_types(); i++) { 3712 const TypePtr* adr_type = get_adr_type(i); 3713 if (adr_type->is_flat()) { 3714 Node* m = mm->memory_at(i); 3715 n->add_prec(m); 3716 } 3717 } 3718 if (mm->outcnt() == 0) { 3719 mm->disconnect_inputs(this); 3720 } 3721 } else { 3722 n->add_prec(prec); 3723 } 3724 eliminate_redundant_card_marks(n); 3725 } 3726 3727 // fall through 3728 3729 case Op_StoreB: 3730 case Op_StoreC: 3731 case Op_StoreI: 3732 case Op_StoreL: 3733 case Op_CompareAndSwapB: 3734 case Op_CompareAndSwapS: 3735 case Op_CompareAndSwapI: 3736 case Op_CompareAndSwapL: 3737 case Op_CompareAndSwapP: 3738 case Op_CompareAndSwapN: 3739 case Op_WeakCompareAndSwapB: 3740 case Op_WeakCompareAndSwapS: 3741 case Op_WeakCompareAndSwapI: 3742 case Op_WeakCompareAndSwapL: 3743 case Op_WeakCompareAndSwapP: 3744 case Op_WeakCompareAndSwapN: 3745 case Op_CompareAndExchangeB: 3746 case Op_CompareAndExchangeS: 3747 case Op_CompareAndExchangeI: 3748 case Op_CompareAndExchangeL: 3749 case Op_CompareAndExchangeP: 3750 case Op_CompareAndExchangeN: 3751 case Op_GetAndAddS: 3752 case Op_GetAndAddB: 3753 case Op_GetAndAddI: 3754 case Op_GetAndAddL: 3755 case Op_GetAndSetS: 3756 case Op_GetAndSetB: 3757 case Op_GetAndSetI: 3758 case Op_GetAndSetL: 3759 case Op_GetAndSetP: 3760 case Op_GetAndSetN: 3761 case Op_StoreP: 3762 case Op_StoreN: 3763 case Op_StoreNKlass: 3764 case Op_LoadB: 3765 case Op_LoadUB: 3766 case Op_LoadUS: 3767 case Op_LoadI: 3768 case Op_LoadKlass: 3769 case Op_LoadNKlass: 3770 case Op_LoadL: 3771 case Op_LoadL_unaligned: 3772 case Op_LoadP: 3773 case Op_LoadN: 3774 case Op_LoadRange: 3775 case Op_LoadS: 3776 break; 3777 3778 case Op_AddP: { // Assert sane base pointers 3779 Node *addp = n->in(AddPNode::Address); 3780 assert( !addp->is_AddP() || 3781 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3782 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3783 "Base pointers must match (addp %u)", addp->_idx ); 3784 #ifdef _LP64 3785 if ((UseCompressedOops || UseCompressedClassPointers) && 3786 addp->Opcode() == Op_ConP && 3787 addp == n->in(AddPNode::Base) && 3788 n->in(AddPNode::Offset)->is_Con()) { 3789 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3790 // on the platform and on the compressed oops mode. 3791 // Use addressing with narrow klass to load with offset on x86. 3792 // Some platforms can use the constant pool to load ConP. 3793 // Do this transformation here since IGVN will convert ConN back to ConP. 3794 const Type* t = addp->bottom_type(); 3795 bool is_oop = t->isa_oopptr() != NULL; 3796 bool is_klass = t->isa_klassptr() != NULL; 3797 3798 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3799 (is_klass && Matcher::const_klass_prefer_decode())) { 3800 Node* nn = NULL; 3801 3802 int op = is_oop ? Op_ConN : Op_ConNKlass; 3803 3804 // Look for existing ConN node of the same exact type. 3805 Node* r = root(); 3806 uint cnt = r->outcnt(); 3807 for (uint i = 0; i < cnt; i++) { 3808 Node* m = r->raw_out(i); 3809 if (m!= NULL && m->Opcode() == op && 3810 m->bottom_type()->make_ptr() == t) { 3811 nn = m; 3812 break; 3813 } 3814 } 3815 if (nn != NULL) { 3816 // Decode a narrow oop to match address 3817 // [R12 + narrow_oop_reg<<3 + offset] 3818 if (is_oop) { 3819 nn = new DecodeNNode(nn, t); 3820 } else { 3821 nn = new DecodeNKlassNode(nn, t); 3822 } 3823 // Check for succeeding AddP which uses the same Base. 3824 // Otherwise we will run into the assertion above when visiting that guy. 3825 for (uint i = 0; i < n->outcnt(); ++i) { 3826 Node *out_i = n->raw_out(i); 3827 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3828 out_i->set_req(AddPNode::Base, nn); 3829 #ifdef ASSERT 3830 for (uint j = 0; j < out_i->outcnt(); ++j) { 3831 Node *out_j = out_i->raw_out(j); 3832 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3833 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3834 } 3835 #endif 3836 } 3837 } 3838 n->set_req(AddPNode::Base, nn); 3839 n->set_req(AddPNode::Address, nn); 3840 if (addp->outcnt() == 0) { 3841 addp->disconnect_inputs(this); 3842 } 3843 } 3844 } 3845 } 3846 #endif 3847 break; 3848 } 3849 3850 case Op_CastPP: { 3851 // Remove CastPP nodes to gain more freedom during scheduling but 3852 // keep the dependency they encode as control or precedence edges 3853 // (if control is set already) on memory operations. Some CastPP 3854 // nodes don't have a control (don't carry a dependency): skip 3855 // those. 3856 if (n->in(0) != NULL) { 3857 ResourceMark rm; 3858 Unique_Node_List wq; 3859 wq.push(n); 3860 for (uint next = 0; next < wq.size(); ++next) { 3861 Node *m = wq.at(next); 3862 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3863 Node* use = m->fast_out(i); 3864 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3865 use->ensure_control_or_add_prec(n->in(0)); 3866 } else { 3867 switch(use->Opcode()) { 3868 case Op_AddP: 3869 case Op_DecodeN: 3870 case Op_DecodeNKlass: 3871 case Op_CheckCastPP: 3872 case Op_CastPP: 3873 wq.push(use); 3874 break; 3875 } 3876 } 3877 } 3878 } 3879 } 3880 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3881 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3882 Node* in1 = n->in(1); 3883 const Type* t = n->bottom_type(); 3884 Node* new_in1 = in1->clone(); 3885 new_in1->as_DecodeN()->set_type(t); 3886 3887 if (!Matcher::narrow_oop_use_complex_address()) { 3888 // 3889 // x86, ARM and friends can handle 2 adds in addressing mode 3890 // and Matcher can fold a DecodeN node into address by using 3891 // a narrow oop directly and do implicit NULL check in address: 3892 // 3893 // [R12 + narrow_oop_reg<<3 + offset] 3894 // NullCheck narrow_oop_reg 3895 // 3896 // On other platforms (Sparc) we have to keep new DecodeN node and 3897 // use it to do implicit NULL check in address: 3898 // 3899 // decode_not_null narrow_oop_reg, base_reg 3900 // [base_reg + offset] 3901 // NullCheck base_reg 3902 // 3903 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3904 // to keep the information to which NULL check the new DecodeN node 3905 // corresponds to use it as value in implicit_null_check(). 3906 // 3907 new_in1->set_req(0, n->in(0)); 3908 } 3909 3910 n->subsume_by(new_in1, this); 3911 if (in1->outcnt() == 0) { 3912 in1->disconnect_inputs(this); 3913 } 3914 } else { 3915 n->subsume_by(n->in(1), this); 3916 if (n->outcnt() == 0) { 3917 n->disconnect_inputs(this); 3918 } 3919 } 3920 break; 3921 } 3922 #ifdef _LP64 3923 case Op_CmpP: 3924 // Do this transformation here to preserve CmpPNode::sub() and 3925 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3926 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3927 Node* in1 = n->in(1); 3928 Node* in2 = n->in(2); 3929 if (!in1->is_DecodeNarrowPtr()) { 3930 in2 = in1; 3931 in1 = n->in(2); 3932 } 3933 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3934 3935 Node* new_in2 = NULL; 3936 if (in2->is_DecodeNarrowPtr()) { 3937 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3938 new_in2 = in2->in(1); 3939 } else if (in2->Opcode() == Op_ConP) { 3940 const Type* t = in2->bottom_type(); 3941 if (t == TypePtr::NULL_PTR) { 3942 assert(in1->is_DecodeN(), "compare klass to null?"); 3943 // Don't convert CmpP null check into CmpN if compressed 3944 // oops implicit null check is not generated. 3945 // This will allow to generate normal oop implicit null check. 3946 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3947 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3948 // 3949 // This transformation together with CastPP transformation above 3950 // will generated code for implicit NULL checks for compressed oops. 3951 // 3952 // The original code after Optimize() 3953 // 3954 // LoadN memory, narrow_oop_reg 3955 // decode narrow_oop_reg, base_reg 3956 // CmpP base_reg, NULL 3957 // CastPP base_reg // NotNull 3958 // Load [base_reg + offset], val_reg 3959 // 3960 // after these transformations will be 3961 // 3962 // LoadN memory, narrow_oop_reg 3963 // CmpN narrow_oop_reg, NULL 3964 // decode_not_null narrow_oop_reg, base_reg 3965 // Load [base_reg + offset], val_reg 3966 // 3967 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3968 // since narrow oops can be used in debug info now (see the code in 3969 // final_graph_reshaping_walk()). 3970 // 3971 // At the end the code will be matched to 3972 // on x86: 3973 // 3974 // Load_narrow_oop memory, narrow_oop_reg 3975 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3976 // NullCheck narrow_oop_reg 3977 // 3978 // and on sparc: 3979 // 3980 // Load_narrow_oop memory, narrow_oop_reg 3981 // decode_not_null narrow_oop_reg, base_reg 3982 // Load [base_reg + offset], val_reg 3983 // NullCheck base_reg 3984 // 3985 } else if (t->isa_oopptr()) { 3986 new_in2 = ConNode::make(t->make_narrowoop()); 3987 } else if (t->isa_klassptr()) { 3988 new_in2 = ConNode::make(t->make_narrowklass()); 3989 } 3990 } 3991 if (new_in2 != NULL) { 3992 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3993 n->subsume_by(cmpN, this); 3994 if (in1->outcnt() == 0) { 3995 in1->disconnect_inputs(this); 3996 } 3997 if (in2->outcnt() == 0) { 3998 in2->disconnect_inputs(this); 3999 } 4000 } 4001 } 4002 break; 4003 4004 case Op_DecodeN: 4005 case Op_DecodeNKlass: 4006 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 4007 // DecodeN could be pinned when it can't be fold into 4008 // an address expression, see the code for Op_CastPP above. 4009 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 4010 break; 4011 4012 case Op_EncodeP: 4013 case Op_EncodePKlass: { 4014 Node* in1 = n->in(1); 4015 if (in1->is_DecodeNarrowPtr()) { 4016 n->subsume_by(in1->in(1), this); 4017 } else if (in1->Opcode() == Op_ConP) { 4018 const Type* t = in1->bottom_type(); 4019 if (t == TypePtr::NULL_PTR) { 4020 assert(t->isa_oopptr(), "null klass?"); 4021 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 4022 } else if (t->isa_oopptr()) { 4023 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 4024 } else if (t->isa_klassptr()) { 4025 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 4026 } 4027 } 4028 if (in1->outcnt() == 0) { 4029 in1->disconnect_inputs(this); 4030 } 4031 break; 4032 } 4033 4034 case Op_Proj: { 4035 if (OptimizeStringConcat || IncrementalInline) { 4036 ProjNode* proj = n->as_Proj(); 4037 if (proj->_is_io_use) { 4038 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 4039 // Separate projections were used for the exception path which 4040 // are normally removed by a late inline. If it wasn't inlined 4041 // then they will hang around and should just be replaced with 4042 // the original one. Merge them. 4043 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 4044 if (non_io_proj != NULL) { 4045 proj->subsume_by(non_io_proj , this); 4046 } 4047 } 4048 } 4049 break; 4050 } 4051 4052 case Op_Phi: 4053 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 4054 // The EncodeP optimization may create Phi with the same edges 4055 // for all paths. It is not handled well by Register Allocator. 4056 Node* unique_in = n->in(1); 4057 assert(unique_in != NULL, ""); 4058 uint cnt = n->req(); 4059 for (uint i = 2; i < cnt; i++) { 4060 Node* m = n->in(i); 4061 assert(m != NULL, ""); 4062 if (unique_in != m) 4063 unique_in = NULL; 4064 } 4065 if (unique_in != NULL) { 4066 n->subsume_by(unique_in, this); 4067 } 4068 } 4069 break; 4070 4071 #endif 4072 4073 #ifdef ASSERT 4074 case Op_CastII: 4075 // Verify that all range check dependent CastII nodes were removed. 4076 if (n->isa_CastII()->has_range_check()) { 4077 n->dump(3); 4078 assert(false, "Range check dependent CastII node was not removed"); 4079 } 4080 break; 4081 #endif 4082 4083 case Op_ModI: 4084 if (UseDivMod) { 4085 // Check if a%b and a/b both exist 4086 Node* d = n->find_similar(Op_DivI); 4087 if (d) { 4088 // Replace them with a fused divmod if supported 4089 if (Matcher::has_match_rule(Op_DivModI)) { 4090 DivModINode* divmod = DivModINode::make(n); 4091 d->subsume_by(divmod->div_proj(), this); 4092 n->subsume_by(divmod->mod_proj(), this); 4093 } else { 4094 // replace a%b with a-((a/b)*b) 4095 Node* mult = new MulINode(d, d->in(2)); 4096 Node* sub = new SubINode(d->in(1), mult); 4097 n->subsume_by(sub, this); 4098 } 4099 } 4100 } 4101 break; 4102 4103 case Op_ModL: 4104 if (UseDivMod) { 4105 // Check if a%b and a/b both exist 4106 Node* d = n->find_similar(Op_DivL); 4107 if (d) { 4108 // Replace them with a fused divmod if supported 4109 if (Matcher::has_match_rule(Op_DivModL)) { 4110 DivModLNode* divmod = DivModLNode::make(n); 4111 d->subsume_by(divmod->div_proj(), this); 4112 n->subsume_by(divmod->mod_proj(), this); 4113 } else { 4114 // replace a%b with a-((a/b)*b) 4115 Node* mult = new MulLNode(d, d->in(2)); 4116 Node* sub = new SubLNode(d->in(1), mult); 4117 n->subsume_by(sub, this); 4118 } 4119 } 4120 } 4121 break; 4122 4123 case Op_UModI: 4124 if (UseDivMod) { 4125 // Check if a%b and a/b both exist 4126 Node* d = n->find_similar(Op_UDivI); 4127 if (d) { 4128 // Replace them with a fused unsigned divmod if supported 4129 if (Matcher::has_match_rule(Op_UDivModI)) { 4130 UDivModINode* divmod = UDivModINode::make(n); 4131 d->subsume_by(divmod->div_proj(), this); 4132 n->subsume_by(divmod->mod_proj(), this); 4133 } else { 4134 // replace a%b with a-((a/b)*b) 4135 Node* mult = new MulINode(d, d->in(2)); 4136 Node* sub = new SubINode(d->in(1), mult); 4137 n->subsume_by(sub, this); 4138 } 4139 } 4140 } 4141 break; 4142 4143 case Op_UModL: 4144 if (UseDivMod) { 4145 // Check if a%b and a/b both exist 4146 Node* d = n->find_similar(Op_UDivL); 4147 if (d) { 4148 // Replace them with a fused unsigned divmod if supported 4149 if (Matcher::has_match_rule(Op_UDivModL)) { 4150 UDivModLNode* divmod = UDivModLNode::make(n); 4151 d->subsume_by(divmod->div_proj(), this); 4152 n->subsume_by(divmod->mod_proj(), this); 4153 } else { 4154 // replace a%b with a-((a/b)*b) 4155 Node* mult = new MulLNode(d, d->in(2)); 4156 Node* sub = new SubLNode(d->in(1), mult); 4157 n->subsume_by(sub, this); 4158 } 4159 } 4160 } 4161 break; 4162 4163 case Op_LoadVector: 4164 case Op_StoreVector: 4165 case Op_LoadVectorGather: 4166 case Op_StoreVectorScatter: 4167 case Op_LoadVectorGatherMasked: 4168 case Op_StoreVectorScatterMasked: 4169 case Op_VectorCmpMasked: 4170 case Op_VectorMaskGen: 4171 case Op_LoadVectorMasked: 4172 case Op_StoreVectorMasked: 4173 break; 4174 4175 case Op_AddReductionVI: 4176 case Op_AddReductionVL: 4177 case Op_AddReductionVF: 4178 case Op_AddReductionVD: 4179 case Op_MulReductionVI: 4180 case Op_MulReductionVL: 4181 case Op_MulReductionVF: 4182 case Op_MulReductionVD: 4183 case Op_MinReductionV: 4184 case Op_MaxReductionV: 4185 case Op_AndReductionV: 4186 case Op_OrReductionV: 4187 case Op_XorReductionV: 4188 break; 4189 4190 case Op_PackB: 4191 case Op_PackS: 4192 case Op_PackI: 4193 case Op_PackF: 4194 case Op_PackL: 4195 case Op_PackD: 4196 if (n->req()-1 > 2) { 4197 // Replace many operand PackNodes with a binary tree for matching 4198 PackNode* p = (PackNode*) n; 4199 Node* btp = p->binary_tree_pack(1, n->req()); 4200 n->subsume_by(btp, this); 4201 } 4202 break; 4203 case Op_Loop: 4204 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 4205 case Op_CountedLoop: 4206 case Op_LongCountedLoop: 4207 case Op_OuterStripMinedLoop: 4208 if (n->as_Loop()->is_inner_loop()) { 4209 frc.inc_inner_loop_count(); 4210 } 4211 n->as_Loop()->verify_strip_mined(0); 4212 break; 4213 case Op_LShiftI: 4214 case Op_RShiftI: 4215 case Op_URShiftI: 4216 case Op_LShiftL: 4217 case Op_RShiftL: 4218 case Op_URShiftL: 4219 if (Matcher::need_masked_shift_count) { 4220 // The cpu's shift instructions don't restrict the count to the 4221 // lower 5/6 bits. We need to do the masking ourselves. 4222 Node* in2 = n->in(2); 4223 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 4224 const TypeInt* t = in2->find_int_type(); 4225 if (t != NULL && t->is_con()) { 4226 juint shift = t->get_con(); 4227 if (shift > mask) { // Unsigned cmp 4228 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 4229 } 4230 } else { 4231 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 4232 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 4233 n->set_req(2, shift); 4234 } 4235 } 4236 if (in2->outcnt() == 0) { // Remove dead node 4237 in2->disconnect_inputs(this); 4238 } 4239 } 4240 break; 4241 case Op_MemBarStoreStore: 4242 case Op_MemBarRelease: 4243 // Break the link with AllocateNode: it is no longer useful and 4244 // confuses register allocation. 4245 if (n->req() > MemBarNode::Precedent) { 4246 n->set_req(MemBarNode::Precedent, top()); 4247 } 4248 break; 4249 case Op_MemBarAcquire: { 4250 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 4251 // At parse time, the trailing MemBarAcquire for a volatile load 4252 // is created with an edge to the load. After optimizations, 4253 // that input may be a chain of Phis. If those phis have no 4254 // other use, then the MemBarAcquire keeps them alive and 4255 // register allocation can be confused. 4256 dead_nodes.push(n->in(MemBarNode::Precedent)); 4257 n->set_req(MemBarNode::Precedent, top()); 4258 } 4259 break; 4260 } 4261 case Op_Blackhole: 4262 break; 4263 case Op_RangeCheck: { 4264 RangeCheckNode* rc = n->as_RangeCheck(); 4265 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 4266 n->subsume_by(iff, this); 4267 frc._tests.push(iff); 4268 break; 4269 } 4270 case Op_ConvI2L: { 4271 if (!Matcher::convi2l_type_required) { 4272 // Code generation on some platforms doesn't need accurate 4273 // ConvI2L types. Widening the type can help remove redundant 4274 // address computations. 4275 n->as_Type()->set_type(TypeLong::INT); 4276 ResourceMark rm; 4277 Unique_Node_List wq; 4278 wq.push(n); 4279 for (uint next = 0; next < wq.size(); next++) { 4280 Node *m = wq.at(next); 4281 4282 for(;;) { 4283 // Loop over all nodes with identical inputs edges as m 4284 Node* k = m->find_similar(m->Opcode()); 4285 if (k == NULL) { 4286 break; 4287 } 4288 // Push their uses so we get a chance to remove node made 4289 // redundant 4290 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 4291 Node* u = k->fast_out(i); 4292 if (u->Opcode() == Op_LShiftL || 4293 u->Opcode() == Op_AddL || 4294 u->Opcode() == Op_SubL || 4295 u->Opcode() == Op_AddP) { 4296 wq.push(u); 4297 } 4298 } 4299 // Replace all nodes with identical edges as m with m 4300 k->subsume_by(m, this); 4301 } 4302 } 4303 } 4304 break; 4305 } 4306 case Op_CmpUL: { 4307 if (!Matcher::has_match_rule(Op_CmpUL)) { 4308 // No support for unsigned long comparisons 4309 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 4310 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 4311 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 4312 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 4313 Node* andl = new AndLNode(orl, remove_sign_mask); 4314 Node* cmp = new CmpLNode(andl, n->in(2)); 4315 n->subsume_by(cmp, this); 4316 } 4317 break; 4318 } 4319 #ifdef ASSERT 4320 case Op_InlineType: { 4321 n->dump(-1); 4322 assert(false, "inline type node was not removed"); 4323 break; 4324 } 4325 #endif 4326 default: 4327 assert(!n->is_Call(), ""); 4328 assert(!n->is_Mem(), ""); 4329 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4330 break; 4331 } 4332 } 4333 4334 //------------------------------final_graph_reshaping_walk--------------------- 4335 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4336 // requires that the walk visits a node's inputs before visiting the node. 4337 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 4338 Unique_Node_List sfpt; 4339 4340 frc._visited.set(root->_idx); // first, mark node as visited 4341 uint cnt = root->req(); 4342 Node *n = root; 4343 uint i = 0; 4344 while (true) { 4345 if (i < cnt) { 4346 // Place all non-visited non-null inputs onto stack 4347 Node* m = n->in(i); 4348 ++i; 4349 if (m != NULL && !frc._visited.test_set(m->_idx)) { 4350 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 4351 // compute worst case interpreter size in case of a deoptimization 4352 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4353 4354 sfpt.push(m); 4355 } 4356 cnt = m->req(); 4357 nstack.push(n, i); // put on stack parent and next input's index 4358 n = m; 4359 i = 0; 4360 } 4361 } else { 4362 // Now do post-visit work 4363 final_graph_reshaping_impl(n, frc, dead_nodes); 4364 if (nstack.is_empty()) 4365 break; // finished 4366 n = nstack.node(); // Get node from stack 4367 cnt = n->req(); 4368 i = nstack.index(); 4369 nstack.pop(); // Shift to the next node on stack 4370 } 4371 } 4372 4373 // Skip next transformation if compressed oops are not used. 4374 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4375 (!UseCompressedOops && !UseCompressedClassPointers)) 4376 return; 4377 4378 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4379 // It could be done for an uncommon traps or any safepoints/calls 4380 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4381 while (sfpt.size() > 0) { 4382 n = sfpt.pop(); 4383 JVMState *jvms = n->as_SafePoint()->jvms(); 4384 assert(jvms != NULL, "sanity"); 4385 int start = jvms->debug_start(); 4386 int end = n->req(); 4387 bool is_uncommon = (n->is_CallStaticJava() && 4388 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4389 for (int j = start; j < end; j++) { 4390 Node* in = n->in(j); 4391 if (in->is_DecodeNarrowPtr()) { 4392 bool safe_to_skip = true; 4393 if (!is_uncommon ) { 4394 // Is it safe to skip? 4395 for (uint i = 0; i < in->outcnt(); i++) { 4396 Node* u = in->raw_out(i); 4397 if (!u->is_SafePoint() || 4398 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4399 safe_to_skip = false; 4400 } 4401 } 4402 } 4403 if (safe_to_skip) { 4404 n->set_req(j, in->in(1)); 4405 } 4406 if (in->outcnt() == 0) { 4407 in->disconnect_inputs(this); 4408 } 4409 } 4410 } 4411 } 4412 } 4413 4414 //------------------------------final_graph_reshaping-------------------------- 4415 // Final Graph Reshaping. 4416 // 4417 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4418 // and not commoned up and forced early. Must come after regular 4419 // optimizations to avoid GVN undoing the cloning. Clone constant 4420 // inputs to Loop Phis; these will be split by the allocator anyways. 4421 // Remove Opaque nodes. 4422 // (2) Move last-uses by commutative operations to the left input to encourage 4423 // Intel update-in-place two-address operations and better register usage 4424 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4425 // calls canonicalizing them back. 4426 // (3) Count the number of double-precision FP ops, single-precision FP ops 4427 // and call sites. On Intel, we can get correct rounding either by 4428 // forcing singles to memory (requires extra stores and loads after each 4429 // FP bytecode) or we can set a rounding mode bit (requires setting and 4430 // clearing the mode bit around call sites). The mode bit is only used 4431 // if the relative frequency of single FP ops to calls is low enough. 4432 // This is a key transform for SPEC mpeg_audio. 4433 // (4) Detect infinite loops; blobs of code reachable from above but not 4434 // below. Several of the Code_Gen algorithms fail on such code shapes, 4435 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4436 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4437 // Detection is by looking for IfNodes where only 1 projection is 4438 // reachable from below or CatchNodes missing some targets. 4439 // (5) Assert for insane oop offsets in debug mode. 4440 4441 bool Compile::final_graph_reshaping() { 4442 // an infinite loop may have been eliminated by the optimizer, 4443 // in which case the graph will be empty. 4444 if (root()->req() == 1) { 4445 record_method_not_compilable("trivial infinite loop"); 4446 return true; 4447 } 4448 4449 // Expensive nodes have their control input set to prevent the GVN 4450 // from freely commoning them. There's no GVN beyond this point so 4451 // no need to keep the control input. We want the expensive nodes to 4452 // be freely moved to the least frequent code path by gcm. 4453 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4454 for (int i = 0; i < expensive_count(); i++) { 4455 _expensive_nodes.at(i)->set_req(0, NULL); 4456 } 4457 4458 Final_Reshape_Counts frc; 4459 4460 // Visit everybody reachable! 4461 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4462 Node_Stack nstack(live_nodes() >> 1); 4463 Unique_Node_List dead_nodes; 4464 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4465 4466 // Check for unreachable (from below) code (i.e., infinite loops). 4467 for( uint i = 0; i < frc._tests.size(); i++ ) { 4468 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4469 // Get number of CFG targets. 4470 // Note that PCTables include exception targets after calls. 4471 uint required_outcnt = n->required_outcnt(); 4472 if (n->outcnt() != required_outcnt) { 4473 // Check for a few special cases. Rethrow Nodes never take the 4474 // 'fall-thru' path, so expected kids is 1 less. 4475 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4476 if (n->in(0)->in(0)->is_Call()) { 4477 CallNode* call = n->in(0)->in(0)->as_Call(); 4478 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4479 required_outcnt--; // Rethrow always has 1 less kid 4480 } else if (call->req() > TypeFunc::Parms && 4481 call->is_CallDynamicJava()) { 4482 // Check for null receiver. In such case, the optimizer has 4483 // detected that the virtual call will always result in a null 4484 // pointer exception. The fall-through projection of this CatchNode 4485 // will not be populated. 4486 Node* arg0 = call->in(TypeFunc::Parms); 4487 if (arg0->is_Type() && 4488 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4489 required_outcnt--; 4490 } 4491 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4492 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4493 // Check for illegal array length. In such case, the optimizer has 4494 // detected that the allocation attempt will always result in an 4495 // exception. There is no fall-through projection of this CatchNode . 4496 assert(call->is_CallStaticJava(), "static call expected"); 4497 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4498 uint valid_length_test_input = call->req() - 1; 4499 Node* valid_length_test = call->in(valid_length_test_input); 4500 call->del_req(valid_length_test_input); 4501 if (valid_length_test->find_int_con(1) == 0) { 4502 required_outcnt--; 4503 } 4504 dead_nodes.push(valid_length_test); 4505 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4506 continue; 4507 } 4508 } 4509 } 4510 // Recheck with a better notion of 'required_outcnt' 4511 if (n->outcnt() != required_outcnt) { 4512 record_method_not_compilable("malformed control flow"); 4513 return true; // Not all targets reachable! 4514 } 4515 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4516 CallNode* call = n->in(0)->in(0)->as_Call(); 4517 if (call->entry_point() == OptoRuntime::new_array_Java() || 4518 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4519 assert(call->is_CallStaticJava(), "static call expected"); 4520 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4521 uint valid_length_test_input = call->req() - 1; 4522 dead_nodes.push(call->in(valid_length_test_input)); 4523 call->del_req(valid_length_test_input); // valid length test useless now 4524 } 4525 } 4526 // Check that I actually visited all kids. Unreached kids 4527 // must be infinite loops. 4528 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4529 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4530 record_method_not_compilable("infinite loop"); 4531 return true; // Found unvisited kid; must be unreach 4532 } 4533 4534 // Here so verification code in final_graph_reshaping_walk() 4535 // always see an OuterStripMinedLoopEnd 4536 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4537 IfNode* init_iff = n->as_If(); 4538 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4539 n->subsume_by(iff, this); 4540 } 4541 } 4542 4543 while (dead_nodes.size() > 0) { 4544 Node* m = dead_nodes.pop(); 4545 if (m->outcnt() == 0 && m != top()) { 4546 for (uint j = 0; j < m->req(); j++) { 4547 Node* in = m->in(j); 4548 if (in != NULL) { 4549 dead_nodes.push(in); 4550 } 4551 } 4552 m->disconnect_inputs(this); 4553 } 4554 } 4555 4556 #ifdef IA32 4557 // If original bytecodes contained a mixture of floats and doubles 4558 // check if the optimizer has made it homogeneous, item (3). 4559 if (UseSSE == 0 && 4560 frc.get_float_count() > 32 && 4561 frc.get_double_count() == 0 && 4562 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4563 set_24_bit_selection_and_mode(false, true); 4564 } 4565 #endif // IA32 4566 4567 set_java_calls(frc.get_java_call_count()); 4568 set_inner_loops(frc.get_inner_loop_count()); 4569 4570 // No infinite loops, no reason to bail out. 4571 return false; 4572 } 4573 4574 //-----------------------------too_many_traps---------------------------------- 4575 // Report if there are too many traps at the current method and bci. 4576 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4577 bool Compile::too_many_traps(ciMethod* method, 4578 int bci, 4579 Deoptimization::DeoptReason reason) { 4580 ciMethodData* md = method->method_data(); 4581 if (md->is_empty()) { 4582 // Assume the trap has not occurred, or that it occurred only 4583 // because of a transient condition during start-up in the interpreter. 4584 return false; 4585 } 4586 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4587 if (md->has_trap_at(bci, m, reason) != 0) { 4588 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4589 // Also, if there are multiple reasons, or if there is no per-BCI record, 4590 // assume the worst. 4591 if (log()) 4592 log()->elem("observe trap='%s' count='%d'", 4593 Deoptimization::trap_reason_name(reason), 4594 md->trap_count(reason)); 4595 return true; 4596 } else { 4597 // Ignore method/bci and see if there have been too many globally. 4598 return too_many_traps(reason, md); 4599 } 4600 } 4601 4602 // Less-accurate variant which does not require a method and bci. 4603 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4604 ciMethodData* logmd) { 4605 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4606 // Too many traps globally. 4607 // Note that we use cumulative trap_count, not just md->trap_count. 4608 if (log()) { 4609 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 4610 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4611 Deoptimization::trap_reason_name(reason), 4612 mcount, trap_count(reason)); 4613 } 4614 return true; 4615 } else { 4616 // The coast is clear. 4617 return false; 4618 } 4619 } 4620 4621 //--------------------------too_many_recompiles-------------------------------- 4622 // Report if there are too many recompiles at the current method and bci. 4623 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4624 // Is not eager to return true, since this will cause the compiler to use 4625 // Action_none for a trap point, to avoid too many recompilations. 4626 bool Compile::too_many_recompiles(ciMethod* method, 4627 int bci, 4628 Deoptimization::DeoptReason reason) { 4629 ciMethodData* md = method->method_data(); 4630 if (md->is_empty()) { 4631 // Assume the trap has not occurred, or that it occurred only 4632 // because of a transient condition during start-up in the interpreter. 4633 return false; 4634 } 4635 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4636 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4637 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4638 Deoptimization::DeoptReason per_bc_reason 4639 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4640 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4641 if ((per_bc_reason == Deoptimization::Reason_none 4642 || md->has_trap_at(bci, m, reason) != 0) 4643 // The trap frequency measure we care about is the recompile count: 4644 && md->trap_recompiled_at(bci, m) 4645 && md->overflow_recompile_count() >= bc_cutoff) { 4646 // Do not emit a trap here if it has already caused recompilations. 4647 // Also, if there are multiple reasons, or if there is no per-BCI record, 4648 // assume the worst. 4649 if (log()) 4650 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4651 Deoptimization::trap_reason_name(reason), 4652 md->trap_count(reason), 4653 md->overflow_recompile_count()); 4654 return true; 4655 } else if (trap_count(reason) != 0 4656 && decompile_count() >= m_cutoff) { 4657 // Too many recompiles globally, and we have seen this sort of trap. 4658 // Use cumulative decompile_count, not just md->decompile_count. 4659 if (log()) 4660 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4661 Deoptimization::trap_reason_name(reason), 4662 md->trap_count(reason), trap_count(reason), 4663 md->decompile_count(), decompile_count()); 4664 return true; 4665 } else { 4666 // The coast is clear. 4667 return false; 4668 } 4669 } 4670 4671 // Compute when not to trap. Used by matching trap based nodes and 4672 // NullCheck optimization. 4673 void Compile::set_allowed_deopt_reasons() { 4674 _allowed_reasons = 0; 4675 if (is_method_compilation()) { 4676 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4677 assert(rs < BitsPerInt, "recode bit map"); 4678 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4679 _allowed_reasons |= nth_bit(rs); 4680 } 4681 } 4682 } 4683 } 4684 4685 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4686 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4687 } 4688 4689 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4690 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4691 } 4692 4693 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4694 if (holder->is_initialized()) { 4695 return false; 4696 } 4697 if (holder->is_being_initialized()) { 4698 if (accessing_method->holder() == holder) { 4699 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4700 // <init>, or a static method. In all those cases, there was an initialization 4701 // barrier on the holder klass passed. 4702 if (accessing_method->is_class_initializer() || 4703 accessing_method->is_object_constructor() || 4704 accessing_method->is_static()) { 4705 return false; 4706 } 4707 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4708 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4709 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4710 // child class can become fully initialized while its parent class is still being initialized. 4711 if (accessing_method->is_class_initializer()) { 4712 return false; 4713 } 4714 } 4715 ciMethod* root = method(); // the root method of compilation 4716 if (root != accessing_method) { 4717 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4718 } 4719 } 4720 return true; 4721 } 4722 4723 #ifndef PRODUCT 4724 //------------------------------verify_bidirectional_edges--------------------- 4725 // For each input edge to a node (ie - for each Use-Def edge), verify that 4726 // there is a corresponding Def-Use edge. 4727 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4728 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4729 uint stack_size = live_nodes() >> 4; 4730 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4731 nstack.push(_root); 4732 4733 while (nstack.size() > 0) { 4734 Node* n = nstack.pop(); 4735 if (visited.member(n)) { 4736 continue; 4737 } 4738 visited.push(n); 4739 4740 // Walk over all input edges, checking for correspondence 4741 uint length = n->len(); 4742 for (uint i = 0; i < length; i++) { 4743 Node* in = n->in(i); 4744 if (in != NULL && !visited.member(in)) { 4745 nstack.push(in); // Put it on stack 4746 } 4747 if (in != NULL && !in->is_top()) { 4748 // Count instances of `next` 4749 int cnt = 0; 4750 for (uint idx = 0; idx < in->_outcnt; idx++) { 4751 if (in->_out[idx] == n) { 4752 cnt++; 4753 } 4754 } 4755 assert(cnt > 0, "Failed to find Def-Use edge."); 4756 // Check for duplicate edges 4757 // walk the input array downcounting the input edges to n 4758 for (uint j = 0; j < length; j++) { 4759 if (n->in(j) == in) { 4760 cnt--; 4761 } 4762 } 4763 assert(cnt == 0, "Mismatched edge count."); 4764 } else if (in == NULL) { 4765 assert(i == 0 || i >= n->req() || 4766 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4767 (n->is_Allocate() && i >= AllocateNode::InlineType) || 4768 (n->is_Unlock() && i == (n->req() - 1)) || 4769 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4770 "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges"); 4771 } else { 4772 assert(in->is_top(), "sanity"); 4773 // Nothing to check. 4774 } 4775 } 4776 } 4777 } 4778 4779 //------------------------------verify_graph_edges--------------------------- 4780 // Walk the Graph and verify that there is a one-to-one correspondence 4781 // between Use-Def edges and Def-Use edges in the graph. 4782 void Compile::verify_graph_edges(bool no_dead_code) { 4783 if (VerifyGraphEdges) { 4784 Unique_Node_List visited; 4785 4786 // Call graph walk to check edges 4787 verify_bidirectional_edges(visited); 4788 if (no_dead_code) { 4789 // Now make sure that no visited node is used by an unvisited node. 4790 bool dead_nodes = false; 4791 Unique_Node_List checked; 4792 while (visited.size() > 0) { 4793 Node* n = visited.pop(); 4794 checked.push(n); 4795 for (uint i = 0; i < n->outcnt(); i++) { 4796 Node* use = n->raw_out(i); 4797 if (checked.member(use)) continue; // already checked 4798 if (visited.member(use)) continue; // already in the graph 4799 if (use->is_Con()) continue; // a dead ConNode is OK 4800 // At this point, we have found a dead node which is DU-reachable. 4801 if (!dead_nodes) { 4802 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4803 dead_nodes = true; 4804 } 4805 use->dump(2); 4806 tty->print_cr("---"); 4807 checked.push(use); // No repeats; pretend it is now checked. 4808 } 4809 } 4810 assert(!dead_nodes, "using nodes must be reachable from root"); 4811 } 4812 } 4813 } 4814 #endif 4815 4816 // The Compile object keeps track of failure reasons separately from the ciEnv. 4817 // This is required because there is not quite a 1-1 relation between the 4818 // ciEnv and its compilation task and the Compile object. Note that one 4819 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4820 // to backtrack and retry without subsuming loads. Other than this backtracking 4821 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4822 // by the logic in C2Compiler. 4823 void Compile::record_failure(const char* reason) { 4824 if (log() != NULL) { 4825 log()->elem("failure reason='%s' phase='compile'", reason); 4826 } 4827 if (_failure_reason == NULL) { 4828 // Record the first failure reason. 4829 _failure_reason = reason; 4830 } 4831 4832 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4833 C->print_method(PHASE_FAILURE, 1); 4834 } 4835 _root = NULL; // flush the graph, too 4836 } 4837 4838 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4839 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4840 _phase_name(name), _dolog(CITimeVerbose) 4841 { 4842 if (_dolog) { 4843 C = Compile::current(); 4844 _log = C->log(); 4845 } else { 4846 C = NULL; 4847 _log = NULL; 4848 } 4849 if (_log != NULL) { 4850 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4851 _log->stamp(); 4852 _log->end_head(); 4853 } 4854 } 4855 4856 Compile::TracePhase::~TracePhase() { 4857 4858 C = Compile::current(); 4859 if (_dolog) { 4860 _log = C->log(); 4861 } else { 4862 _log = NULL; 4863 } 4864 4865 #ifdef ASSERT 4866 if (PrintIdealNodeCount) { 4867 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4868 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 4869 } 4870 4871 if (VerifyIdealNodeCount) { 4872 Compile::current()->print_missing_nodes(); 4873 } 4874 #endif 4875 4876 if (_log != NULL) { 4877 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4878 } 4879 } 4880 4881 //----------------------------static_subtype_check----------------------------- 4882 // Shortcut important common cases when superklass is exact: 4883 // (0) superklass is java.lang.Object (can occur in reflective code) 4884 // (1) subklass is already limited to a subtype of superklass => always ok 4885 // (2) subklass does not overlap with superklass => always fail 4886 // (3) superklass has NO subtypes and we can check with a simple compare. 4887 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4888 if (skip) { 4889 return SSC_full_test; // Let caller generate the general case. 4890 } 4891 4892 if (subk->is_java_subtype_of(superk)) { 4893 return SSC_always_true; // (0) and (1) this test cannot fail 4894 } 4895 4896 if (!subk->maybe_java_subtype_of(superk)) { 4897 return SSC_always_false; // (2) true path dead; no dynamic test needed 4898 } 4899 4900 const Type* superelem = superk; 4901 if (superk->isa_aryklassptr()) { 4902 int ignored; 4903 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4904 4905 // Do not fold the subtype check to an array klass pointer comparison for [V? arrays. 4906 // [QMyValue is a subtype of [LMyValue but the klass for [QMyValue is not equal to 4907 // the klass for [LMyValue. Perform a full test. 4908 if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() && 4909 superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) { 4910 return SSC_full_test; 4911 } 4912 } 4913 4914 if (superelem->isa_instklassptr()) { 4915 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4916 if (!ik->has_subklass()) { 4917 if (!ik->is_final()) { 4918 // Add a dependency if there is a chance of a later subclass. 4919 dependencies()->assert_leaf_type(ik); 4920 } 4921 if (!superk->maybe_java_subtype_of(subk)) { 4922 return SSC_always_false; 4923 } 4924 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4925 } 4926 } else { 4927 // A primitive array type has no subtypes. 4928 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4929 } 4930 4931 return SSC_full_test; 4932 } 4933 4934 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4935 #ifdef _LP64 4936 // The scaled index operand to AddP must be a clean 64-bit value. 4937 // Java allows a 32-bit int to be incremented to a negative 4938 // value, which appears in a 64-bit register as a large 4939 // positive number. Using that large positive number as an 4940 // operand in pointer arithmetic has bad consequences. 4941 // On the other hand, 32-bit overflow is rare, and the possibility 4942 // can often be excluded, if we annotate the ConvI2L node with 4943 // a type assertion that its value is known to be a small positive 4944 // number. (The prior range check has ensured this.) 4945 // This assertion is used by ConvI2LNode::Ideal. 4946 int index_max = max_jint - 1; // array size is max_jint, index is one less 4947 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4948 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4949 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4950 #endif 4951 return idx; 4952 } 4953 4954 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4955 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4956 if (ctrl != NULL) { 4957 // Express control dependency by a CastII node with a narrow type. 4958 value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4959 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4960 // node from floating above the range check during loop optimizations. Otherwise, the 4961 // ConvI2L node may be eliminated independently of the range check, causing the data path 4962 // to become TOP while the control path is still there (although it's unreachable). 4963 value->set_req(0, ctrl); 4964 value = phase->transform(value); 4965 } 4966 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4967 return phase->transform(new ConvI2LNode(value, ltype)); 4968 } 4969 4970 // The message about the current inlining is accumulated in 4971 // _print_inlining_stream and transferred into the _print_inlining_list 4972 // once we know whether inlining succeeds or not. For regular 4973 // inlining, messages are appended to the buffer pointed by 4974 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4975 // a new buffer is added after _print_inlining_idx in the list. This 4976 // way we can update the inlining message for late inlining call site 4977 // when the inlining is attempted again. 4978 void Compile::print_inlining_init() { 4979 if (print_inlining() || print_intrinsics()) { 4980 // print_inlining_init is actually called several times. 4981 print_inlining_reset(); 4982 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4983 } 4984 } 4985 4986 void Compile::print_inlining_reinit() { 4987 if (print_inlining() || print_intrinsics()) { 4988 print_inlining_reset(); 4989 } 4990 } 4991 4992 void Compile::print_inlining_reset() { 4993 _print_inlining_stream->reset(); 4994 } 4995 4996 void Compile::print_inlining_commit() { 4997 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4998 // Transfer the message from _print_inlining_stream to the current 4999 // _print_inlining_list buffer and clear _print_inlining_stream. 5000 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 5001 print_inlining_reset(); 5002 } 5003 5004 void Compile::print_inlining_push() { 5005 // Add new buffer to the _print_inlining_list at current position 5006 _print_inlining_idx++; 5007 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 5008 } 5009 5010 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 5011 return _print_inlining_list->at(_print_inlining_idx); 5012 } 5013 5014 void Compile::print_inlining_update(CallGenerator* cg) { 5015 if (print_inlining() || print_intrinsics()) { 5016 if (cg->is_late_inline()) { 5017 if (print_inlining_current()->cg() != cg && 5018 (print_inlining_current()->cg() != NULL || 5019 print_inlining_current()->ss()->size() != 0)) { 5020 print_inlining_push(); 5021 } 5022 print_inlining_commit(); 5023 print_inlining_current()->set_cg(cg); 5024 } else { 5025 if (print_inlining_current()->cg() != NULL) { 5026 print_inlining_push(); 5027 } 5028 print_inlining_commit(); 5029 } 5030 } 5031 } 5032 5033 void Compile::print_inlining_move_to(CallGenerator* cg) { 5034 // We resume inlining at a late inlining call site. Locate the 5035 // corresponding inlining buffer so that we can update it. 5036 if (print_inlining() || print_intrinsics()) { 5037 for (int i = 0; i < _print_inlining_list->length(); i++) { 5038 if (_print_inlining_list->at(i)->cg() == cg) { 5039 _print_inlining_idx = i; 5040 return; 5041 } 5042 } 5043 ShouldNotReachHere(); 5044 } 5045 } 5046 5047 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 5048 if (print_inlining() || print_intrinsics()) { 5049 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 5050 assert(print_inlining_current()->cg() == cg, "wrong entry"); 5051 // replace message with new message 5052 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 5053 print_inlining_commit(); 5054 print_inlining_current()->set_cg(cg); 5055 } 5056 } 5057 5058 void Compile::print_inlining_assert_ready() { 5059 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 5060 } 5061 5062 void Compile::process_print_inlining() { 5063 assert(_late_inlines.length() == 0, "not drained yet"); 5064 if (print_inlining() || print_intrinsics()) { 5065 ResourceMark rm; 5066 stringStream ss; 5067 assert(_print_inlining_list != NULL, "process_print_inlining should be called only once."); 5068 for (int i = 0; i < _print_inlining_list->length(); i++) { 5069 PrintInliningBuffer* pib = _print_inlining_list->at(i); 5070 ss.print("%s", pib->ss()->freeze()); 5071 delete pib; 5072 DEBUG_ONLY(_print_inlining_list->at_put(i, NULL)); 5073 } 5074 // Reset _print_inlining_list, it only contains destructed objects. 5075 // It is on the arena, so it will be freed when the arena is reset. 5076 _print_inlining_list = NULL; 5077 // _print_inlining_stream won't be used anymore, either. 5078 print_inlining_reset(); 5079 size_t end = ss.size(); 5080 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 5081 strncpy(_print_inlining_output, ss.freeze(), end+1); 5082 _print_inlining_output[end] = 0; 5083 } 5084 } 5085 5086 void Compile::dump_print_inlining() { 5087 if (_print_inlining_output != NULL) { 5088 tty->print_raw(_print_inlining_output); 5089 } 5090 } 5091 5092 void Compile::log_late_inline(CallGenerator* cg) { 5093 if (log() != NULL) { 5094 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 5095 cg->unique_id()); 5096 JVMState* p = cg->call_node()->jvms(); 5097 while (p != NULL) { 5098 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 5099 p = p->caller(); 5100 } 5101 log()->tail("late_inline"); 5102 } 5103 } 5104 5105 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 5106 log_late_inline(cg); 5107 if (log() != NULL) { 5108 log()->inline_fail(msg); 5109 } 5110 } 5111 5112 void Compile::log_inline_id(CallGenerator* cg) { 5113 if (log() != NULL) { 5114 // The LogCompilation tool needs a unique way to identify late 5115 // inline call sites. This id must be unique for this call site in 5116 // this compilation. Try to have it unique across compilations as 5117 // well because it can be convenient when grepping through the log 5118 // file. 5119 // Distinguish OSR compilations from others in case CICountOSR is 5120 // on. 5121 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 5122 cg->set_unique_id(id); 5123 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 5124 } 5125 } 5126 5127 void Compile::log_inline_failure(const char* msg) { 5128 if (C->log() != NULL) { 5129 C->log()->inline_fail(msg); 5130 } 5131 } 5132 5133 5134 // Dump inlining replay data to the stream. 5135 // Don't change thread state and acquire any locks. 5136 void Compile::dump_inline_data(outputStream* out) { 5137 InlineTree* inl_tree = ilt(); 5138 if (inl_tree != NULL) { 5139 out->print(" inline %d", inl_tree->count()); 5140 inl_tree->dump_replay_data(out); 5141 } 5142 } 5143 5144 void Compile::dump_inline_data_reduced(outputStream* out) { 5145 assert(ReplayReduce, ""); 5146 5147 InlineTree* inl_tree = ilt(); 5148 if (inl_tree == NULL) { 5149 return; 5150 } 5151 // Enable iterative replay file reduction 5152 // Output "compile" lines for depth 1 subtrees, 5153 // simulating that those trees were compiled 5154 // instead of inlined. 5155 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 5156 InlineTree* sub = inl_tree->subtrees().at(i); 5157 if (sub->inline_level() != 1) { 5158 continue; 5159 } 5160 5161 ciMethod* method = sub->method(); 5162 int entry_bci = -1; 5163 int comp_level = env()->task()->comp_level(); 5164 out->print("compile "); 5165 method->dump_name_as_ascii(out); 5166 out->print(" %d %d", entry_bci, comp_level); 5167 out->print(" inline %d", sub->count()); 5168 sub->dump_replay_data(out, -1); 5169 out->cr(); 5170 } 5171 } 5172 5173 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 5174 if (n1->Opcode() < n2->Opcode()) return -1; 5175 else if (n1->Opcode() > n2->Opcode()) return 1; 5176 5177 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 5178 for (uint i = 1; i < n1->req(); i++) { 5179 if (n1->in(i) < n2->in(i)) return -1; 5180 else if (n1->in(i) > n2->in(i)) return 1; 5181 } 5182 5183 return 0; 5184 } 5185 5186 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 5187 Node* n1 = *n1p; 5188 Node* n2 = *n2p; 5189 5190 return cmp_expensive_nodes(n1, n2); 5191 } 5192 5193 void Compile::sort_expensive_nodes() { 5194 if (!expensive_nodes_sorted()) { 5195 _expensive_nodes.sort(cmp_expensive_nodes); 5196 } 5197 } 5198 5199 bool Compile::expensive_nodes_sorted() const { 5200 for (int i = 1; i < _expensive_nodes.length(); i++) { 5201 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 5202 return false; 5203 } 5204 } 5205 return true; 5206 } 5207 5208 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 5209 if (_expensive_nodes.length() == 0) { 5210 return false; 5211 } 5212 5213 assert(OptimizeExpensiveOps, "optimization off?"); 5214 5215 // Take this opportunity to remove dead nodes from the list 5216 int j = 0; 5217 for (int i = 0; i < _expensive_nodes.length(); i++) { 5218 Node* n = _expensive_nodes.at(i); 5219 if (!n->is_unreachable(igvn)) { 5220 assert(n->is_expensive(), "should be expensive"); 5221 _expensive_nodes.at_put(j, n); 5222 j++; 5223 } 5224 } 5225 _expensive_nodes.trunc_to(j); 5226 5227 // Then sort the list so that similar nodes are next to each other 5228 // and check for at least two nodes of identical kind with same data 5229 // inputs. 5230 sort_expensive_nodes(); 5231 5232 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 5233 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 5234 return true; 5235 } 5236 } 5237 5238 return false; 5239 } 5240 5241 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 5242 if (_expensive_nodes.length() == 0) { 5243 return; 5244 } 5245 5246 assert(OptimizeExpensiveOps, "optimization off?"); 5247 5248 // Sort to bring similar nodes next to each other and clear the 5249 // control input of nodes for which there's only a single copy. 5250 sort_expensive_nodes(); 5251 5252 int j = 0; 5253 int identical = 0; 5254 int i = 0; 5255 bool modified = false; 5256 for (; i < _expensive_nodes.length()-1; i++) { 5257 assert(j <= i, "can't write beyond current index"); 5258 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 5259 identical++; 5260 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5261 continue; 5262 } 5263 if (identical > 0) { 5264 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5265 identical = 0; 5266 } else { 5267 Node* n = _expensive_nodes.at(i); 5268 igvn.replace_input_of(n, 0, NULL); 5269 igvn.hash_insert(n); 5270 modified = true; 5271 } 5272 } 5273 if (identical > 0) { 5274 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5275 } else if (_expensive_nodes.length() >= 1) { 5276 Node* n = _expensive_nodes.at(i); 5277 igvn.replace_input_of(n, 0, NULL); 5278 igvn.hash_insert(n); 5279 modified = true; 5280 } 5281 _expensive_nodes.trunc_to(j); 5282 if (modified) { 5283 igvn.optimize(); 5284 } 5285 } 5286 5287 void Compile::add_expensive_node(Node * n) { 5288 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 5289 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5290 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5291 if (OptimizeExpensiveOps) { 5292 _expensive_nodes.append(n); 5293 } else { 5294 // Clear control input and let IGVN optimize expensive nodes if 5295 // OptimizeExpensiveOps is off. 5296 n->set_req(0, NULL); 5297 } 5298 } 5299 5300 /** 5301 * Track coarsened Lock and Unlock nodes. 5302 */ 5303 5304 class Lock_List : public Node_List { 5305 uint _origin_cnt; 5306 public: 5307 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 5308 uint origin_cnt() const { return _origin_cnt; } 5309 }; 5310 5311 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 5312 int length = locks.length(); 5313 if (length > 0) { 5314 // Have to keep this list until locks elimination during Macro nodes elimination. 5315 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 5316 for (int i = 0; i < length; i++) { 5317 AbstractLockNode* lock = locks.at(i); 5318 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 5319 locks_list->push(lock); 5320 } 5321 _coarsened_locks.append(locks_list); 5322 } 5323 } 5324 5325 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 5326 int count = coarsened_count(); 5327 for (int i = 0; i < count; i++) { 5328 Node_List* locks_list = _coarsened_locks.at(i); 5329 for (uint j = 0; j < locks_list->size(); j++) { 5330 Node* lock = locks_list->at(j); 5331 assert(lock->is_AbstractLock(), "sanity"); 5332 if (!useful.member(lock)) { 5333 locks_list->yank(lock); 5334 } 5335 } 5336 } 5337 } 5338 5339 void Compile::remove_coarsened_lock(Node* n) { 5340 if (n->is_AbstractLock()) { 5341 int count = coarsened_count(); 5342 for (int i = 0; i < count; i++) { 5343 Node_List* locks_list = _coarsened_locks.at(i); 5344 locks_list->yank(n); 5345 } 5346 } 5347 } 5348 5349 bool Compile::coarsened_locks_consistent() { 5350 int count = coarsened_count(); 5351 for (int i = 0; i < count; i++) { 5352 bool unbalanced = false; 5353 bool modified = false; // track locks kind modifications 5354 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 5355 uint size = locks_list->size(); 5356 if (size == 0) { 5357 unbalanced = false; // All locks were eliminated - good 5358 } else if (size != locks_list->origin_cnt()) { 5359 unbalanced = true; // Some locks were removed from list 5360 } else { 5361 for (uint j = 0; j < size; j++) { 5362 Node* lock = locks_list->at(j); 5363 // All nodes in group should have the same state (modified or not) 5364 if (!lock->as_AbstractLock()->is_coarsened()) { 5365 if (j == 0) { 5366 // first on list was modified, the rest should be too for consistency 5367 modified = true; 5368 } else if (!modified) { 5369 // this lock was modified but previous locks on the list were not 5370 unbalanced = true; 5371 break; 5372 } 5373 } else if (modified) { 5374 // previous locks on list were modified but not this lock 5375 unbalanced = true; 5376 break; 5377 } 5378 } 5379 } 5380 if (unbalanced) { 5381 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 5382 #ifdef ASSERT 5383 if (PrintEliminateLocks) { 5384 tty->print_cr("=== unbalanced coarsened locks ==="); 5385 for (uint l = 0; l < size; l++) { 5386 locks_list->at(l)->dump(); 5387 } 5388 } 5389 #endif 5390 record_failure(C2Compiler::retry_no_locks_coarsening()); 5391 return false; 5392 } 5393 } 5394 return true; 5395 } 5396 5397 /** 5398 * Remove the speculative part of types and clean up the graph 5399 */ 5400 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5401 if (UseTypeSpeculation) { 5402 Unique_Node_List worklist; 5403 worklist.push(root()); 5404 int modified = 0; 5405 // Go over all type nodes that carry a speculative type, drop the 5406 // speculative part of the type and enqueue the node for an igvn 5407 // which may optimize it out. 5408 for (uint next = 0; next < worklist.size(); ++next) { 5409 Node *n = worklist.at(next); 5410 if (n->is_Type()) { 5411 TypeNode* tn = n->as_Type(); 5412 const Type* t = tn->type(); 5413 const Type* t_no_spec = t->remove_speculative(); 5414 if (t_no_spec != t) { 5415 bool in_hash = igvn.hash_delete(n); 5416 assert(in_hash, "node should be in igvn hash table"); 5417 tn->set_type(t_no_spec); 5418 igvn.hash_insert(n); 5419 igvn._worklist.push(n); // give it a chance to go away 5420 modified++; 5421 } 5422 } 5423 // Iterate over outs - endless loops is unreachable from below 5424 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5425 Node *m = n->fast_out(i); 5426 if (not_a_node(m)) { 5427 continue; 5428 } 5429 worklist.push(m); 5430 } 5431 } 5432 // Drop the speculative part of all types in the igvn's type table 5433 igvn.remove_speculative_types(); 5434 if (modified > 0) { 5435 igvn.optimize(); 5436 } 5437 #ifdef ASSERT 5438 // Verify that after the IGVN is over no speculative type has resurfaced 5439 worklist.clear(); 5440 worklist.push(root()); 5441 for (uint next = 0; next < worklist.size(); ++next) { 5442 Node *n = worklist.at(next); 5443 const Type* t = igvn.type_or_null(n); 5444 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 5445 if (n->is_Type()) { 5446 t = n->as_Type()->type(); 5447 assert(t == t->remove_speculative(), "no more speculative types"); 5448 } 5449 // Iterate over outs - endless loops is unreachable from below 5450 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5451 Node *m = n->fast_out(i); 5452 if (not_a_node(m)) { 5453 continue; 5454 } 5455 worklist.push(m); 5456 } 5457 } 5458 igvn.check_no_speculative_types(); 5459 #endif 5460 } 5461 } 5462 5463 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) { 5464 const TypeInstPtr* ta = phase->type(a)->isa_instptr(); 5465 const TypeInstPtr* tb = phase->type(b)->isa_instptr(); 5466 if (!EnableValhalla || ta == NULL || tb == NULL || 5467 ta->is_zero_type() || tb->is_zero_type() || 5468 !ta->can_be_inline_type() || !tb->can_be_inline_type()) { 5469 // Use old acmp if one operand is null or not an inline type 5470 return new CmpPNode(a, b); 5471 } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) { 5472 // We know that one operand is an inline type. Therefore, 5473 // new acmp will only return true if both operands are NULL. 5474 // Check if both operands are null by or'ing the oops. 5475 a = phase->transform(new CastP2XNode(NULL, a)); 5476 b = phase->transform(new CastP2XNode(NULL, b)); 5477 a = phase->transform(new OrXNode(a, b)); 5478 return new CmpXNode(a, phase->MakeConX(0)); 5479 } 5480 // Use new acmp 5481 return NULL; 5482 } 5483 5484 // Auxiliary methods to support randomized stressing/fuzzing. 5485 5486 int Compile::random() { 5487 _stress_seed = os::next_random(_stress_seed); 5488 return static_cast<int>(_stress_seed); 5489 } 5490 5491 // This method can be called the arbitrary number of times, with current count 5492 // as the argument. The logic allows selecting a single candidate from the 5493 // running list of candidates as follows: 5494 // int count = 0; 5495 // Cand* selected = null; 5496 // while(cand = cand->next()) { 5497 // if (randomized_select(++count)) { 5498 // selected = cand; 5499 // } 5500 // } 5501 // 5502 // Including count equalizes the chances any candidate is "selected". 5503 // This is useful when we don't have the complete list of candidates to choose 5504 // from uniformly. In this case, we need to adjust the randomicity of the 5505 // selection, or else we will end up biasing the selection towards the latter 5506 // candidates. 5507 // 5508 // Quick back-envelope calculation shows that for the list of n candidates 5509 // the equal probability for the candidate to persist as "best" can be 5510 // achieved by replacing it with "next" k-th candidate with the probability 5511 // of 1/k. It can be easily shown that by the end of the run, the 5512 // probability for any candidate is converged to 1/n, thus giving the 5513 // uniform distribution among all the candidates. 5514 // 5515 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5516 #define RANDOMIZED_DOMAIN_POW 29 5517 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5518 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5519 bool Compile::randomized_select(int count) { 5520 assert(count > 0, "only positive"); 5521 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5522 } 5523 5524 CloneMap& Compile::clone_map() { return _clone_map; } 5525 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5526 5527 void NodeCloneInfo::dump() const { 5528 tty->print(" {%d:%d} ", idx(), gen()); 5529 } 5530 5531 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5532 uint64_t val = value(old->_idx); 5533 NodeCloneInfo cio(val); 5534 assert(val != 0, "old node should be in the map"); 5535 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5536 insert(nnn->_idx, cin.get()); 5537 #ifndef PRODUCT 5538 if (is_debug()) { 5539 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5540 } 5541 #endif 5542 } 5543 5544 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5545 NodeCloneInfo cio(value(old->_idx)); 5546 if (cio.get() == 0) { 5547 cio.set(old->_idx, 0); 5548 insert(old->_idx, cio.get()); 5549 #ifndef PRODUCT 5550 if (is_debug()) { 5551 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5552 } 5553 #endif 5554 } 5555 clone(old, nnn, gen); 5556 } 5557 5558 int CloneMap::max_gen() const { 5559 int g = 0; 5560 DictI di(_dict); 5561 for(; di.test(); ++di) { 5562 int t = gen(di._key); 5563 if (g < t) { 5564 g = t; 5565 #ifndef PRODUCT 5566 if (is_debug()) { 5567 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5568 } 5569 #endif 5570 } 5571 } 5572 return g; 5573 } 5574 5575 void CloneMap::dump(node_idx_t key) const { 5576 uint64_t val = value(key); 5577 if (val != 0) { 5578 NodeCloneInfo ni(val); 5579 ni.dump(); 5580 } 5581 } 5582 5583 // Move Allocate nodes to the start of the list 5584 void Compile::sort_macro_nodes() { 5585 int count = macro_count(); 5586 int allocates = 0; 5587 for (int i = 0; i < count; i++) { 5588 Node* n = macro_node(i); 5589 if (n->is_Allocate()) { 5590 if (i != allocates) { 5591 Node* tmp = macro_node(allocates); 5592 _macro_nodes.at_put(allocates, n); 5593 _macro_nodes.at_put(i, tmp); 5594 } 5595 allocates++; 5596 } 5597 } 5598 } 5599 5600 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5601 EventCompilerPhase event; 5602 if (event.should_commit()) { 5603 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5604 } 5605 #ifndef PRODUCT 5606 ResourceMark rm; 5607 stringStream ss; 5608 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5609 if (n != nullptr) { 5610 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 5611 } 5612 5613 const char* name = ss.as_string(); 5614 if (should_print_igv(level)) { 5615 _igv_printer->print_method(name, level); 5616 } 5617 if (should_print_phase(cpt)) { 5618 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5619 } 5620 #endif 5621 C->_latest_stage_start_counter.stamp(); 5622 } 5623 5624 // Only used from CompileWrapper 5625 void Compile::begin_method() { 5626 #ifndef PRODUCT 5627 if (_method != NULL && should_print_igv(1)) { 5628 _igv_printer->begin_method(); 5629 } 5630 #endif 5631 C->_latest_stage_start_counter.stamp(); 5632 } 5633 5634 // Only used from CompileWrapper 5635 void Compile::end_method() { 5636 EventCompilerPhase event; 5637 if (event.should_commit()) { 5638 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5639 } 5640 5641 #ifndef PRODUCT 5642 if (_method != NULL && should_print_igv(1)) { 5643 _igv_printer->end_method(); 5644 } 5645 #endif 5646 } 5647 5648 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5649 #ifndef PRODUCT 5650 if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) { 5651 return true; 5652 } 5653 #endif 5654 return false; 5655 } 5656 5657 bool Compile::should_print_igv(int level) { 5658 #ifndef PRODUCT 5659 if (PrintIdealGraphLevel < 0) { // disabled by the user 5660 return false; 5661 } 5662 5663 bool need = directive()->IGVPrintLevelOption >= level; 5664 if (need && !_igv_printer) { 5665 _igv_printer = IdealGraphPrinter::printer(); 5666 _igv_printer->set_compile(this); 5667 } 5668 return need; 5669 #else 5670 return false; 5671 #endif 5672 } 5673 5674 #ifndef PRODUCT 5675 IdealGraphPrinter* Compile::_debug_file_printer = NULL; 5676 IdealGraphPrinter* Compile::_debug_network_printer = NULL; 5677 5678 // Called from debugger. Prints method to the default file with the default phase name. 5679 // This works regardless of any Ideal Graph Visualizer flags set or not. 5680 void igv_print() { 5681 Compile::current()->igv_print_method_to_file(); 5682 } 5683 5684 // Same as igv_print() above but with a specified phase name. 5685 void igv_print(const char* phase_name) { 5686 Compile::current()->igv_print_method_to_file(phase_name); 5687 } 5688 5689 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5690 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5691 // This works regardless of any Ideal Graph Visualizer flags set or not. 5692 void igv_print(bool network) { 5693 if (network) { 5694 Compile::current()->igv_print_method_to_network(); 5695 } else { 5696 Compile::current()->igv_print_method_to_file(); 5697 } 5698 } 5699 5700 // Same as igv_print(bool network) above but with a specified phase name. 5701 void igv_print(bool network, const char* phase_name) { 5702 if (network) { 5703 Compile::current()->igv_print_method_to_network(phase_name); 5704 } else { 5705 Compile::current()->igv_print_method_to_file(phase_name); 5706 } 5707 } 5708 5709 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5710 void igv_print_default() { 5711 Compile::current()->print_method(PHASE_DEBUG, 0); 5712 } 5713 5714 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5715 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5716 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5717 void igv_append() { 5718 Compile::current()->igv_print_method_to_file("Debug", true); 5719 } 5720 5721 // Same as igv_append() above but with a specified phase name. 5722 void igv_append(const char* phase_name) { 5723 Compile::current()->igv_print_method_to_file(phase_name, true); 5724 } 5725 5726 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5727 const char* file_name = "custom_debug.xml"; 5728 if (_debug_file_printer == NULL) { 5729 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5730 } else { 5731 _debug_file_printer->update_compiled_method(C->method()); 5732 } 5733 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5734 _debug_file_printer->print(phase_name, (Node*)C->root()); 5735 } 5736 5737 void Compile::igv_print_method_to_network(const char* phase_name) { 5738 if (_debug_network_printer == NULL) { 5739 _debug_network_printer = new IdealGraphPrinter(C); 5740 } else { 5741 _debug_network_printer->update_compiled_method(C->method()); 5742 } 5743 tty->print_cr("Method printed over network stream to IGV"); 5744 _debug_network_printer->print(phase_name, (Node*)C->root()); 5745 } 5746 #endif 5747 5748 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5749 if (type != NULL && phase->type(value)->higher_equal(type)) { 5750 return value; 5751 } 5752 Node* result = NULL; 5753 if (bt == T_BYTE) { 5754 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5755 result = new RShiftINode(result, phase->intcon(24)); 5756 } else if (bt == T_BOOLEAN) { 5757 result = new AndINode(value, phase->intcon(0xFF)); 5758 } else if (bt == T_CHAR) { 5759 result = new AndINode(value,phase->intcon(0xFFFF)); 5760 } else { 5761 assert(bt == T_SHORT, "unexpected narrow type"); 5762 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5763 result = new RShiftINode(result, phase->intcon(16)); 5764 } 5765 if (transform_res) { 5766 result = phase->transform(result); 5767 } 5768 return result; 5769 } 5770