< prev index next >

src/hotspot/share/opto/compile.cpp

Print this page

   1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"


  27 #include "ci/ciReplay.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "code/aotCodeCache.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compiler_globals.hpp"
  37 #include "compiler/compilerDefinitions.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "compiler/oopMap.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"

  62 #include "opto/locknode.hpp"
  63 #include "opto/loopnode.hpp"
  64 #include "opto/machnode.hpp"
  65 #include "opto/macro.hpp"
  66 #include "opto/matcher.hpp"
  67 #include "opto/mathexactnode.hpp"
  68 #include "opto/memnode.hpp"

  69 #include "opto/mulnode.hpp"

  70 #include "opto/narrowptrnode.hpp"
  71 #include "opto/node.hpp"
  72 #include "opto/opaquenode.hpp"
  73 #include "opto/opcodes.hpp"
  74 #include "opto/output.hpp"
  75 #include "opto/parse.hpp"
  76 #include "opto/phaseX.hpp"
  77 #include "opto/rootnode.hpp"
  78 #include "opto/runtime.hpp"
  79 #include "opto/stringopts.hpp"
  80 #include "opto/type.hpp"
  81 #include "opto/vector.hpp"
  82 #include "opto/vectornode.hpp"

  83 #include "runtime/globals_extension.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/timer.hpp"
  88 #include "utilities/align.hpp"
  89 #include "utilities/copy.hpp"
  90 #include "utilities/hashTable.hpp"
  91 #include "utilities/macros.hpp"
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == nullptr) {
  97     _mach_constant_base_node = new MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 

 388   // as dead to be conservative about the dead node count at any
 389   // given time.
 390   if (!dead->is_Con()) {
 391     record_dead_node(dead->_idx);
 392   }
 393   if (dead->is_macro()) {
 394     remove_macro_node(dead);
 395   }
 396   if (dead->is_expensive()) {
 397     remove_expensive_node(dead);
 398   }
 399   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 400     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 401   }
 402   if (dead->is_ParsePredicate()) {
 403     remove_parse_predicate(dead->as_ParsePredicate());
 404   }
 405   if (dead->for_post_loop_opts_igvn()) {
 406     remove_from_post_loop_opts_igvn(dead);
 407   }






 408   if (dead->for_merge_stores_igvn()) {
 409     remove_from_merge_stores_igvn(dead);
 410   }
 411   if (dead->is_Call()) {
 412     remove_useless_late_inlines(                &_late_inlines, dead);
 413     remove_useless_late_inlines(         &_string_late_inlines, dead);
 414     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 415     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 416 
 417     if (dead->is_CallStaticJava()) {
 418       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 419     }
 420   }
 421   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 422   bs->unregister_potential_barrier_node(dead);
 423 }
 424 
 425 // Disconnect all useless nodes by disconnecting those at the boundary.
 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 427   uint next = 0;

 435     // Use raw traversal of out edges since this code removes out edges
 436     int max = n->outcnt();
 437     for (int j = 0; j < max; ++j) {
 438       Node* child = n->raw_out(j);
 439       if (!useful.member(child)) {
 440         assert(!child->is_top() || child != top(),
 441                "If top is cached in Compile object it is in useful list");
 442         // Only need to remove this out-edge to the useless node
 443         n->raw_del_out(j);
 444         --j;
 445         --max;
 446         if (child->is_data_proj_of_pure_function(n)) {
 447           worklist.push(n);
 448         }
 449       }
 450     }
 451     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 452       assert(useful.member(n->unique_out()), "do not push a useless node");
 453       worklist.push(n->unique_out());
 454     }



 455   }
 456 
 457   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 458   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 459   // Remove useless Template Assertion Predicate opaque nodes
 460   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 461   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 462   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass







 463   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 464   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 465   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 466 #ifdef ASSERT
 467   if (_modified_nodes != nullptr) {
 468     _modified_nodes->remove_useless_nodes(useful.member_set());
 469   }
 470 #endif
 471 
 472   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 473   bs->eliminate_useless_gc_barriers(useful, this);
 474   // clean up the late inline lists
 475   remove_useless_late_inlines(                &_late_inlines, useful);
 476   remove_useless_late_inlines(         &_string_late_inlines, useful);
 477   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 478   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 479   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 480 }
 481 
 482 // ============================================================================

 629 
 630 
 631 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 632                  Options options, DirectiveSet* directive)
 633     : Phase(Compiler),
 634       _compile_id(ci_env->compile_id()),
 635       _options(options),
 636       _method(target),
 637       _entry_bci(osr_bci),
 638       _ilt(nullptr),
 639       _stub_function(nullptr),
 640       _stub_name(nullptr),
 641       _stub_id(StubId::NO_STUBID),
 642       _stub_entry_point(nullptr),
 643       _max_node_limit(MaxNodeLimit),
 644       _post_loop_opts_phase(false),
 645       _merge_stores_phase(false),
 646       _allow_macro_nodes(true),
 647       _inlining_progress(false),
 648       _inlining_incrementally(false),

 649       _do_cleanup(false),
 650       _has_reserved_stack_access(target->has_reserved_stack_access()),

 651 #ifndef PRODUCT
 652       _igv_idx(0),
 653       _trace_opto_output(directive->TraceOptoOutputOption),
 654 #endif
 655       _clinit_barrier_on_entry(false),
 656       _stress_seed(0),
 657       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 658       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 659       _env(ci_env),
 660       _directive(directive),
 661       _log(ci_env->log()),
 662       _first_failure_details(nullptr),
 663       _intrinsics(comp_arena(), 0, 0, nullptr),
 664       _macro_nodes(comp_arena(), 8, 0, nullptr),
 665       _parse_predicates(comp_arena(), 8, 0, nullptr),
 666       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 667       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 668       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),


 669       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 670       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 671       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 672       _congraph(nullptr),
 673       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 674           _unique(0),
 675       _dead_node_count(0),
 676       _dead_node_list(comp_arena()),
 677       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 678       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 679       _node_arena(&_node_arena_one),
 680       _mach_constant_base_node(nullptr),
 681       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 682       _initial_gvn(nullptr),
 683       _igvn_worklist(nullptr),
 684       _types(nullptr),
 685       _node_hash(nullptr),
 686       _late_inlines(comp_arena(), 2, 0, nullptr),
 687       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 688       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),

 757 #define MINIMUM_NODE_HASH  1023
 758 
 759   // GVN that will be run immediately on new nodes
 760   uint estimated_size = method()->code_size()*4+64;
 761   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 762   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 763   _types = new (comp_arena()) Type_Array(comp_arena());
 764   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 765   PhaseGVN gvn;
 766   set_initial_gvn(&gvn);
 767 
 768   { // Scope for timing the parser
 769     TracePhase tp(_t_parser);
 770 
 771     // Put top into the hash table ASAP.
 772     initial_gvn()->transform(top());
 773 
 774     // Set up tf(), start(), and find a CallGenerator.
 775     CallGenerator* cg = nullptr;
 776     if (is_osr_compilation()) {
 777       const TypeTuple *domain = StartOSRNode::osr_domain();
 778       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 779       init_tf(TypeFunc::make(domain, range));
 780       StartNode* s = new StartOSRNode(root(), domain);
 781       initial_gvn()->set_type_bottom(s);
 782       verify_start(s);
 783       cg = CallGenerator::for_osr(method(), entry_bci());
 784     } else {
 785       // Normal case.
 786       init_tf(TypeFunc::make(method()));
 787       StartNode* s = new StartNode(root(), tf()->domain());
 788       initial_gvn()->set_type_bottom(s);
 789       verify_start(s);
 790       float past_uses = method()->interpreter_invocation_count();
 791       float expected_uses = past_uses;
 792       cg = CallGenerator::for_inline(method(), expected_uses);
 793     }
 794     if (failing())  return;
 795     if (cg == nullptr) {
 796       const char* reason = InlineTree::check_can_parse(method());
 797       assert(reason != nullptr, "expect reason for parse failure");
 798       stringStream ss;
 799       ss.print("cannot parse method: %s", reason);
 800       record_method_not_compilable(ss.as_string());
 801       return;
 802     }
 803 
 804     gvn.set_type(root(), root()->bottom_type());
 805 
 806     JVMState* jvms = build_start_state(start(), tf());
 807     if ((jvms = cg->generate(jvms)) == nullptr) {

 868     print_ideal_ir("print_ideal");
 869   }
 870 #endif
 871 
 872 #ifdef ASSERT
 873   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 874   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 875 #endif
 876 
 877   // Dump compilation data to replay it.
 878   if (directive->DumpReplayOption) {
 879     env()->dump_replay_data(_compile_id);
 880   }
 881   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 882     env()->dump_inline_data(_compile_id);
 883   }
 884 
 885   // Now that we know the size of all the monitors we can add a fixed slot
 886   // for the original deopt pc.
 887   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);










 888   set_fixed_slots(next_slot);
 889 
 890   // Compute when to use implicit null checks. Used by matching trap based
 891   // nodes and NullCheck optimization.
 892   set_allowed_deopt_reasons();
 893 
 894   // Now generate code
 895   Code_Gen();
 896 }
 897 
 898 //------------------------------Compile----------------------------------------
 899 // Compile a runtime stub
 900 Compile::Compile(ciEnv* ci_env,
 901                  TypeFunc_generator generator,
 902                  address stub_function,
 903                  const char* stub_name,
 904                  StubId stub_id,
 905                  int is_fancy_jump,
 906                  bool pass_tls,
 907                  bool return_pc,
 908                  DirectiveSet* directive)
 909     : Phase(Compiler),
 910       _compile_id(0),
 911       _options(Options::for_runtime_stub()),
 912       _method(nullptr),
 913       _entry_bci(InvocationEntryBci),
 914       _stub_function(stub_function),
 915       _stub_name(stub_name),
 916       _stub_id(stub_id),
 917       _stub_entry_point(nullptr),
 918       _max_node_limit(MaxNodeLimit),
 919       _post_loop_opts_phase(false),
 920       _merge_stores_phase(false),
 921       _allow_macro_nodes(true),
 922       _inlining_progress(false),
 923       _inlining_incrementally(false),
 924       _has_reserved_stack_access(false),

 925 #ifndef PRODUCT
 926       _igv_idx(0),
 927       _trace_opto_output(directive->TraceOptoOutputOption),
 928 #endif
 929       _clinit_barrier_on_entry(false),
 930       _stress_seed(0),
 931       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 932       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 933       _env(ci_env),
 934       _directive(directive),
 935       _log(ci_env->log()),
 936       _first_failure_details(nullptr),
 937       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 938       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 939       _congraph(nullptr),
 940       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 941           _unique(0),
 942       _dead_node_count(0),
 943       _dead_node_list(comp_arena()),
 944       _node_arena_one(mtCompiler, Arena::Tag::tag_node),

1059   _fixed_slots = 0;
1060   set_has_split_ifs(false);
1061   set_has_loops(false); // first approximation
1062   set_has_stringbuilder(false);
1063   set_has_boxed_value(false);
1064   _trap_can_recompile = false;  // no traps emitted yet
1065   _major_progress = true; // start out assuming good things will happen
1066   set_has_unsafe_access(false);
1067   set_max_vector_size(0);
1068   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1069   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1070   set_decompile_count(0);
1071 
1072 #ifndef PRODUCT
1073   _phase_counter = 0;
1074   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1075 #endif
1076 
1077   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1078   _loop_opts_cnt = LoopOptsCount;




1079   set_do_inlining(Inline);
1080   set_max_inline_size(MaxInlineSize);
1081   set_freq_inline_size(FreqInlineSize);
1082   set_do_scheduling(OptoScheduling);
1083 
1084   set_do_vector_loop(false);
1085   set_has_monitors(false);
1086   set_has_scoped_access(false);
1087 
1088   if (AllowVectorizeOnDemand) {
1089     if (has_method() && _directive->VectorizeOption) {
1090       set_do_vector_loop(true);
1091       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1092     } else if (has_method() && method()->name() != nullptr &&
1093                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1094       set_do_vector_loop(true);
1095     }
1096   }
1097   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1098   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})

1339 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1340   assert(do_aliasing(), "Aliasing should be enabled");
1341   int offset = tj->offset();
1342   TypePtr::PTR ptr = tj->ptr();
1343 
1344   // Known instance (scalarizable allocation) alias only with itself.
1345   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1346                        tj->is_oopptr()->is_known_instance();
1347 
1348   // Process weird unsafe references.
1349   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1350     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1351     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1352     tj = TypeOopPtr::BOTTOM;
1353     ptr = tj->ptr();
1354     offset = tj->offset();
1355   }
1356 
1357   // Array pointers need some flattening
1358   const TypeAryPtr* ta = tj->isa_aryptr();
1359   if (ta && ta->is_stable()) {
1360     // Erase stability property for alias analysis.
1361     tj = ta = ta->cast_to_stable(false);
1362   }
1363   if( ta && is_known_inst ) {
1364     if ( offset != Type::OffsetBot &&
1365          offset > arrayOopDesc::length_offset_in_bytes() ) {
1366       offset = Type::OffsetBot; // Flatten constant access into array body only
1367       tj = ta = ta->
1368               remove_speculative()->
1369               cast_to_ptr_type(ptr)->
1370               with_offset(offset);
1371     }
1372   } else if (ta) {
1373     // For arrays indexed by constant indices, we flatten the alias
1374     // space to include all of the array body.  Only the header, klass
1375     // and array length can be accessed un-aliased.
1376     if( offset != Type::OffsetBot ) {
1377       if( ta->const_oop() ) { // MethodData* or Method*
1378         offset = Type::OffsetBot;   // Flatten constant access into array body
1379         tj = ta = ta->
1380                 remove_speculative()->
1381                 cast_to_ptr_type(ptr)->
1382                 cast_to_exactness(false)->
1383                 with_offset(offset);
1384       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1385         // range is OK as-is.
1386         tj = ta = TypeAryPtr::RANGE;
1387       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1388         tj = TypeInstPtr::KLASS; // all klass loads look alike
1389         ta = TypeAryPtr::RANGE; // generic ignored junk
1390         ptr = TypePtr::BotPTR;
1391       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1392         tj = TypeInstPtr::MARK;
1393         ta = TypeAryPtr::RANGE; // generic ignored junk
1394         ptr = TypePtr::BotPTR;
1395       } else {                  // Random constant offset into array body
1396         offset = Type::OffsetBot;   // Flatten constant access into array body
1397         tj = ta = ta->
1398                 remove_speculative()->
1399                 cast_to_ptr_type(ptr)->
1400                 cast_to_exactness(false)->
1401                 with_offset(offset);
1402       }
1403     }
1404     // Arrays of fixed size alias with arrays of unknown size.
1405     if (ta->size() != TypeInt::POS) {
1406       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1407       tj = ta = ta->
1408               remove_speculative()->
1409               cast_to_ptr_type(ptr)->
1410               with_ary(tary)->
1411               cast_to_exactness(false);
1412     }
1413     // Arrays of known objects become arrays of unknown objects.
1414     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1415       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1416       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1417     }
1418     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1419       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1420       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1421     }

1422     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1423     // cannot be distinguished by bytecode alone.
1424     if (ta->elem() == TypeInt::BOOL) {
1425       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1426       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1427       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1428     }
1429     // During the 2nd round of IterGVN, NotNull castings are removed.
1430     // Make sure the Bottom and NotNull variants alias the same.
1431     // Also, make sure exact and non-exact variants alias the same.
1432     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1433       tj = ta = ta->
1434               remove_speculative()->
1435               cast_to_ptr_type(TypePtr::BotPTR)->
1436               cast_to_exactness(false)->
1437               with_offset(offset);




1438     }
1439   }
1440 
1441   // Oop pointers need some flattening
1442   const TypeInstPtr *to = tj->isa_instptr();
1443   if (to && to != TypeOopPtr::BOTTOM) {
1444     ciInstanceKlass* ik = to->instance_klass();

1445     if( ptr == TypePtr::Constant ) {
1446       if (ik != ciEnv::current()->Class_klass() ||
1447           offset < ik->layout_helper_size_in_bytes()) {
1448         // No constant oop pointers (such as Strings); they alias with
1449         // unknown strings.
1450         assert(!is_known_inst, "not scalarizable allocation");
1451         tj = to = to->
1452                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1453                 remove_speculative()->
1454                 cast_to_ptr_type(TypePtr::BotPTR)->
1455                 cast_to_exactness(false);
1456       }
1457     } else if( is_known_inst ) {
1458       tj = to; // Keep NotNull and klass_is_exact for instance type
1459     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1460       // During the 2nd round of IterGVN, NotNull castings are removed.
1461       // Make sure the Bottom and NotNull variants alias the same.
1462       // Also, make sure exact and non-exact variants alias the same.
1463       tj = to = to->
1464               remove_speculative()->
1465               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1466               cast_to_ptr_type(TypePtr::BotPTR)->
1467               cast_to_exactness(false);
1468     }
1469     if (to->speculative() != nullptr) {
1470       tj = to = to->remove_speculative();
1471     }
1472     // Canonicalize the holder of this field
1473     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1474       // First handle header references such as a LoadKlassNode, even if the
1475       // object's klass is unloaded at compile time (4965979).
1476       if (!is_known_inst) { // Do it only for non-instance types
1477         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1478       }
1479     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1480       // Static fields are in the space above the normal instance
1481       // fields in the java.lang.Class instance.
1482       if (ik != ciEnv::current()->Class_klass()) {
1483         to = nullptr;
1484         tj = TypeOopPtr::BOTTOM;
1485         offset = tj->offset();
1486       }
1487     } else {
1488       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1489       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1490       assert(tj->offset() == offset, "no change to offset expected");
1491       bool xk = to->klass_is_exact();
1492       int instance_id = to->instance_id();
1493 
1494       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1495       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1496       // its interfaces are included.
1497       if (xk && ik->equals(canonical_holder)) {
1498         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");

1499       } else {
1500         assert(xk || !is_known_inst, "Known instance should be exact type");
1501         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);

1502       }
1503     }
1504   }
1505 
1506   // Klass pointers to object array klasses need some flattening
1507   const TypeKlassPtr *tk = tj->isa_klassptr();
1508   if( tk ) {
1509     // If we are referencing a field within a Klass, we need
1510     // to assume the worst case of an Object.  Both exact and
1511     // inexact types must flatten to the same alias class so
1512     // use NotNull as the PTR.
1513     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1514       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1515                                        env()->Object_klass(),
1516                                        offset);

1517     }
1518 
1519     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1520       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1521       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1522         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1523       } else {
1524         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1525       }
1526     }
1527 
1528     // Check for precise loads from the primary supertype array and force them
1529     // to the supertype cache alias index.  Check for generic array loads from
1530     // the primary supertype array and also force them to the supertype cache
1531     // alias index.  Since the same load can reach both, we need to merge
1532     // these 2 disparate memories into the same alias class.  Since the
1533     // primary supertype array is read-only, there's no chance of confusion
1534     // where we bypass an array load and an array store.
1535     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1536     if (offset == Type::OffsetBot ||
1537         (offset >= primary_supers_offset &&
1538          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1539         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1540       offset = in_bytes(Klass::secondary_super_cache_offset());
1541       tj = tk = tk->with_offset(offset);
1542     }
1543   }
1544 
1545   // Flatten all Raw pointers together.
1546   if (tj->base() == Type::RawPtr)
1547     tj = TypeRawPtr::BOTTOM;

1637   intptr_t key = (intptr_t) adr_type;
1638   key ^= key >> logAliasCacheSize;
1639   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1640 }
1641 
1642 
1643 //-----------------------------grow_alias_types--------------------------------
1644 void Compile::grow_alias_types() {
1645   const int old_ats  = _max_alias_types; // how many before?
1646   const int new_ats  = old_ats;          // how many more?
1647   const int grow_ats = old_ats+new_ats;  // how many now?
1648   _max_alias_types = grow_ats;
1649   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1650   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1651   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1652   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1653 }
1654 
1655 
1656 //--------------------------------find_alias_type------------------------------
1657 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1658   if (!do_aliasing()) {
1659     return alias_type(AliasIdxBot);
1660   }
1661 
1662   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1663   if (ace->_adr_type == adr_type) {
1664     return alias_type(ace->_index);



1665   }
1666 
1667   // Handle special cases.
1668   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1669   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1670 
1671   // Do it the slow way.
1672   const TypePtr* flat = flatten_alias_type(adr_type);
1673 
1674 #ifdef ASSERT
1675   {
1676     ResourceMark rm;
1677     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1678            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1679     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1680            Type::str(adr_type));
1681     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1682       const TypeOopPtr* foop = flat->is_oopptr();
1683       // Scalarizable allocations have exact klass always.
1684       bool exact = !foop->klass_is_exact() || foop->is_known_instance();

1694     if (alias_type(i)->adr_type() == flat) {
1695       idx = i;
1696       break;
1697     }
1698   }
1699 
1700   if (idx == AliasIdxTop) {
1701     if (no_create)  return nullptr;
1702     // Grow the array if necessary.
1703     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1704     // Add a new alias type.
1705     idx = _num_alias_types++;
1706     _alias_types[idx]->Init(idx, flat);
1707     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1708     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1709     if (flat->isa_instptr()) {
1710       if (flat->offset() == java_lang_Class::klass_offset()
1711           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1712         alias_type(idx)->set_rewritable(false);
1713     }

1714     if (flat->isa_aryptr()) {
1715 #ifdef ASSERT
1716       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1717       // (T_BYTE has the weakest alignment and size restrictions...)
1718       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1719 #endif

1720       if (flat->offset() == TypePtr::OffsetBot) {
1721         alias_type(idx)->set_element(flat->is_aryptr()->elem());







1722       }
1723     }
1724     if (flat->isa_klassptr()) {
1725       if (UseCompactObjectHeaders) {
1726         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1727           alias_type(idx)->set_rewritable(false);
1728       }
1729       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1730         alias_type(idx)->set_rewritable(false);
1731       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1732         alias_type(idx)->set_rewritable(false);
1733       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1734         alias_type(idx)->set_rewritable(false);


1735       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1736         alias_type(idx)->set_rewritable(false);
1737     }
1738 
1739     if (flat->isa_instklassptr()) {
1740       if (flat->offset() == in_bytes(InstanceKlass::access_flags_offset())) {
1741         alias_type(idx)->set_rewritable(false);
1742       }
1743     }
1744     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1745     // but the base pointer type is not distinctive enough to identify
1746     // references into JavaThread.)
1747 
1748     // Check for final fields.
1749     const TypeInstPtr* tinst = flat->isa_instptr();
1750     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1751       ciField* field;
1752       if (tinst->const_oop() != nullptr &&
1753           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1754           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1755         // static field
1756         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1757         field = k->get_field_by_offset(tinst->offset(), true);




1758       } else {
1759         ciInstanceKlass *k = tinst->instance_klass();
1760         field = k->get_field_by_offset(tinst->offset(), false);
1761       }
1762       assert(field == nullptr ||
1763              original_field == nullptr ||
1764              (field->holder() == original_field->holder() &&
1765               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1766               field->is_static() == original_field->is_static()), "wrong field?");
1767       // Set field() and is_rewritable() attributes.
1768       if (field != nullptr)  alias_type(idx)->set_field(field);







1769     }
1770   }
1771 
1772   // Fill the cache for next time.
1773   ace->_adr_type = adr_type;
1774   ace->_index    = idx;
1775   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");

1776 
1777   // Might as well try to fill the cache for the flattened version, too.
1778   AliasCacheEntry* face = probe_alias_cache(flat);
1779   if (face->_adr_type == nullptr) {
1780     face->_adr_type = flat;
1781     face->_index    = idx;
1782     assert(alias_type(flat) == alias_type(idx), "flat type must work too");

1783   }
1784 
1785   return alias_type(idx);
1786 }
1787 
1788 
1789 Compile::AliasType* Compile::alias_type(ciField* field) {
1790   const TypeOopPtr* t;
1791   if (field->is_static())
1792     t = TypeInstPtr::make(field->holder()->java_mirror());
1793   else
1794     t = TypeOopPtr::make_from_klass_raw(field->holder());
1795   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1796   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1797   return atp;
1798 }
1799 
1800 
1801 //------------------------------have_alias_type--------------------------------
1802 bool Compile::have_alias_type(const TypePtr* adr_type) {

1884   assert(!C->major_progress(), "not cleared");
1885 
1886   if (_for_post_loop_igvn.length() > 0) {
1887     while (_for_post_loop_igvn.length() > 0) {
1888       Node* n = _for_post_loop_igvn.pop();
1889       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1890       igvn._worklist.push(n);
1891     }
1892     igvn.optimize();
1893     if (failing()) return;
1894     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1895     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1896 
1897     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1898     if (C->major_progress()) {
1899       C->clear_major_progress(); // ensure that major progress is now clear
1900     }
1901   }
1902 }
1903 



































































































































































































































































































































































































































































































































1904 void Compile::record_for_merge_stores_igvn(Node* n) {
1905   if (!n->for_merge_stores_igvn()) {
1906     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1907     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1908     _for_merge_stores_igvn.append(n);
1909   }
1910 }
1911 
1912 void Compile::remove_from_merge_stores_igvn(Node* n) {
1913   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1914   _for_merge_stores_igvn.remove(n);
1915 }
1916 
1917 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1918 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1919 // the stores, and we merge the wrong sequence of stores.
1920 // Example:
1921 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1922 // Apply MergeStores:
1923 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI

2002       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
2003       Bytecodes::Code c = iter.cur_bc();
2004       Node* lhs = nullptr;
2005       Node* rhs = nullptr;
2006       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
2007         lhs = unc->peek_operand(0);
2008         rhs = unc->peek_operand(1);
2009       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2010         lhs = unc->peek_operand(0);
2011       }
2012 
2013       ResourceMark rm;
2014       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2015       assert(live_locals.is_valid(), "broken liveness info");
2016       int len = (int)live_locals.size();
2017 
2018       for (int i = 0; i < len; i++) {
2019         Node* local = unc->local(jvms, i);
2020         // kill local using the liveness of next_bci.
2021         // give up when the local looks like an operand to secure reexecution.
2022         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2023           uint idx = jvms->locoff() + i;
2024 #ifdef ASSERT
2025           if (PrintOpto && Verbose) {
2026             tty->print("[unstable_if] kill local#%d: ", idx);
2027             local->dump();
2028             tty->cr();
2029           }
2030 #endif
2031           igvn.replace_input_of(unc, idx, top());
2032           modified = true;
2033         }
2034       }
2035     }
2036 
2037     // keep the mondified trap for late query
2038     if (modified) {
2039       trap->set_modified();
2040     } else {
2041       _unstable_if_traps.delete_at(i);
2042     }
2043   }
2044   igvn.optimize();
2045 }
2046 
2047 // StringOpts and late inlining of string methods
2048 void Compile::inline_string_calls(bool parse_time) {
2049   {
2050     // remove useless nodes to make the usage analysis simpler
2051     ResourceMark rm;
2052     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2053   }
2054 
2055   {
2056     ResourceMark rm;
2057     print_method(PHASE_BEFORE_STRINGOPTS, 3);

2229 
2230   if (_string_late_inlines.length() > 0) {
2231     assert(has_stringbuilder(), "inconsistent");
2232 
2233     inline_string_calls(false);
2234 
2235     if (failing())  return;
2236 
2237     inline_incrementally_cleanup(igvn);
2238   }
2239 
2240   set_inlining_incrementally(false);
2241 }
2242 
2243 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2244   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2245   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2246   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2247   // as if "inlining_incrementally() == true" were set.
2248   assert(inlining_incrementally() == false, "not allowed");
2249   assert(_modified_nodes == nullptr, "not allowed");




2250   assert(_late_inlines.length() > 0, "sanity");
2251 
2252   while (_late_inlines.length() > 0) {
2253     igvn_worklist()->ensure_empty(); // should be done with igvn
2254 
2255     while (inline_incrementally_one()) {
2256       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2257     }
2258     if (failing())  return;
2259 
2260     inline_incrementally_cleanup(igvn);
2261   }


2262 }
2263 
2264 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2265   if (_loop_opts_cnt > 0) {
2266     while (major_progress() && (_loop_opts_cnt > 0)) {
2267       TracePhase tp(_t_idealLoop);
2268       PhaseIdealLoop::optimize(igvn, mode);
2269       _loop_opts_cnt--;
2270       if (failing())  return false;
2271       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2272     }
2273   }
2274   return true;
2275 }
2276 
2277 // Remove edges from "root" to each SafePoint at a backward branch.
2278 // They were inserted during parsing (see add_safepoint()) to make
2279 // infinite loops without calls or exceptions visible to root, i.e.,
2280 // useful.
2281 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {

2385     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2386   }
2387   assert(!has_vbox_nodes(), "sanity");
2388 
2389   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2390     Compile::TracePhase tp(_t_renumberLive);
2391     igvn_worklist()->ensure_empty(); // should be done with igvn
2392     {
2393       ResourceMark rm;
2394       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2395     }
2396     igvn.reset();
2397     igvn.optimize();
2398     if (failing()) return;
2399   }
2400 
2401   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2402   // safepoints
2403   remove_root_to_sfpts_edges(igvn);
2404 





2405   if (failing())  return;
2406 











2407   if (has_loops()) {
2408     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2409   }
2410 
2411   // Perform escape analysis
2412   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2413     if (has_loops()) {
2414       // Cleanup graph (remove dead nodes).
2415       TracePhase tp(_t_idealLoop);
2416       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2417       if (failing())  return;













2418     }

2419     bool progress;
2420     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2421     do {
2422       ConnectionGraph::do_analysis(this, &igvn);
2423 
2424       if (failing())  return;
2425 
2426       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2427 
2428       // Optimize out fields loads from scalar replaceable allocations.
2429       igvn.optimize();
2430       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2431 
2432       if (failing()) return;
2433 
2434       if (congraph() != nullptr && macro_count() > 0) {
2435         TracePhase tp(_t_macroEliminate);
2436         PhaseMacroExpand mexp(igvn);
2437         mexp.eliminate_macro_nodes();
2438         if (failing()) return;


2439         print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2440 
2441         igvn.set_delay_transform(false);
2442         igvn.optimize();
2443         if (failing()) return;
2444 
2445         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2446       }
2447 
2448       ConnectionGraph::verify_ram_nodes(this, root());
2449       if (failing())  return;
2450 
2451       progress = do_iterative_escape_analysis() &&
2452                  (macro_count() < mcount) &&
2453                  ConnectionGraph::has_candidates(this);
2454       // Try again if candidates exist and made progress
2455       // by removing some allocations and/or locks.
2456     } while (progress);
2457   }
2458 





2459   // Loop transforms on the ideal graph.  Range Check Elimination,
2460   // peeling, unrolling, etc.
2461 
2462   // Set loop opts counter
2463   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2464     {
2465       TracePhase tp(_t_idealLoop);
2466       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2467       _loop_opts_cnt--;
2468       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2469       if (failing())  return;
2470     }
2471     // Loop opts pass if partial peeling occurred in previous pass
2472     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2473       TracePhase tp(_t_idealLoop);
2474       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2475       _loop_opts_cnt--;
2476       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2477       if (failing())  return;
2478     }

2515   // Loop transforms on the ideal graph.  Range Check Elimination,
2516   // peeling, unrolling, etc.
2517   if (!optimize_loops(igvn, LoopOptsDefault)) {
2518     return;
2519   }
2520 
2521   if (failing())  return;
2522 
2523   C->clear_major_progress(); // ensure that major progress is now clear
2524 
2525   process_for_post_loop_opts_igvn(igvn);
2526 
2527   process_for_merge_stores_igvn(igvn);
2528 
2529   if (failing())  return;
2530 
2531 #ifdef ASSERT
2532   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2533 #endif
2534 








2535   {
2536     TracePhase tp(_t_macroExpand);







2537     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2538     PhaseMacroExpand  mex(igvn);
2539     // Do not allow new macro nodes once we start to eliminate and expand
2540     C->reset_allow_macro_nodes();
2541     // Last attempt to eliminate macro nodes before expand
2542     mex.eliminate_macro_nodes();
2543     if (failing()) {
2544       return;
2545     }
2546     mex.eliminate_opaque_looplimit_macro_nodes();
2547     if (failing()) {
2548       return;
2549     }
2550     print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2551     if (mex.expand_macro_nodes()) {
2552       assert(failing(), "must bail out w/ explicit message");
2553       return;
2554     }
2555     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2556   }
2557 




2558   {
2559     TracePhase tp(_t_barrierExpand);
2560     if (bs->expand_barriers(this, igvn)) {
2561       assert(failing(), "must bail out w/ explicit message");
2562       return;
2563     }
2564     print_method(PHASE_BARRIER_EXPANSION, 2);
2565   }
2566 
2567   if (C->max_vector_size() > 0) {
2568     C->optimize_logic_cones(igvn);
2569     igvn.optimize();
2570     if (failing()) return;
2571   }
2572 
2573   DEBUG_ONLY( _modified_nodes = nullptr; )

2574 
2575   assert(igvn._worklist.size() == 0, "not empty");
2576 
2577   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2578 
2579   if (_late_inlines.length() > 0) {
2580     // More opportunities to optimize virtual and MH calls.
2581     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2582     process_late_inline_calls_no_inline(igvn);
2583     if (failing())  return;
2584   }
2585  } // (End scope of igvn; run destructor if necessary for asserts.)
2586 
2587  check_no_dead_use();
2588 
2589  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2590  // to remove hashes to unlock nodes for modifications.
2591  C->node_hash()->clear();
2592 
2593  // A method with only infinite loops has no edges entering loops from root
2594  {
2595    TracePhase tp(_t_graphReshaping);
2596    if (final_graph_reshaping()) {
2597      assert(failing(), "must bail out w/ explicit message");
2598      return;
2599    }
2600  }
2601 
2602  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2603  DEBUG_ONLY(set_phase_optimize_finished();)
2604 }

3310   case Op_CmpD3:
3311   case Op_StoreD:
3312   case Op_LoadD:
3313   case Op_LoadD_unaligned:
3314     frc.inc_double_count();
3315     break;
3316   case Op_Opaque1:              // Remove Opaque Nodes before matching
3317     n->subsume_by(n->in(1), this);
3318     break;
3319   case Op_CallLeafPure: {
3320     // If the pure call is not supported, then lower to a CallLeaf.
3321     if (!Matcher::match_rule_supported(Op_CallLeafPure)) {
3322       CallNode* call = n->as_Call();
3323       CallNode* new_call = new CallLeafNode(call->tf(), call->entry_point(),
3324                                             call->_name, TypeRawPtr::BOTTOM);
3325       new_call->init_req(TypeFunc::Control, call->in(TypeFunc::Control));
3326       new_call->init_req(TypeFunc::I_O, C->top());
3327       new_call->init_req(TypeFunc::Memory, C->top());
3328       new_call->init_req(TypeFunc::ReturnAdr, C->top());
3329       new_call->init_req(TypeFunc::FramePtr, C->top());
3330       for (unsigned int i = TypeFunc::Parms; i < call->tf()->domain()->cnt(); i++) {
3331         new_call->init_req(i, call->in(i));
3332       }
3333       n->subsume_by(new_call, this);
3334     }
3335     frc.inc_call_count();
3336     break;
3337   }
3338   case Op_CallStaticJava:
3339   case Op_CallJava:
3340   case Op_CallDynamicJava:
3341     frc.inc_java_call_count(); // Count java call site;
3342   case Op_CallRuntime:
3343   case Op_CallLeaf:
3344   case Op_CallLeafVector:
3345   case Op_CallLeafNoFP: {
3346     assert (n->is_Call(), "");
3347     CallNode *call = n->as_Call();
3348     // Count call sites where the FP mode bit would have to be flipped.
3349     // Do not count uncommon runtime calls:
3350     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,

3356       int nop = n->Opcode();
3357       // Clone shared simple arguments to uncommon calls, item (1).
3358       if (n->outcnt() > 1 &&
3359           !n->is_Proj() &&
3360           nop != Op_CreateEx &&
3361           nop != Op_CheckCastPP &&
3362           nop != Op_DecodeN &&
3363           nop != Op_DecodeNKlass &&
3364           !n->is_Mem() &&
3365           !n->is_Phi()) {
3366         Node *x = n->clone();
3367         call->set_req(TypeFunc::Parms, x);
3368       }
3369     }
3370     break;
3371   }
3372   case Op_StoreB:
3373   case Op_StoreC:
3374   case Op_StoreI:
3375   case Op_StoreL:

3376   case Op_CompareAndSwapB:
3377   case Op_CompareAndSwapS:
3378   case Op_CompareAndSwapI:
3379   case Op_CompareAndSwapL:
3380   case Op_CompareAndSwapP:
3381   case Op_CompareAndSwapN:
3382   case Op_WeakCompareAndSwapB:
3383   case Op_WeakCompareAndSwapS:
3384   case Op_WeakCompareAndSwapI:
3385   case Op_WeakCompareAndSwapL:
3386   case Op_WeakCompareAndSwapP:
3387   case Op_WeakCompareAndSwapN:
3388   case Op_CompareAndExchangeB:
3389   case Op_CompareAndExchangeS:
3390   case Op_CompareAndExchangeI:
3391   case Op_CompareAndExchangeL:
3392   case Op_CompareAndExchangeP:
3393   case Op_CompareAndExchangeN:
3394   case Op_GetAndAddS:
3395   case Op_GetAndAddB:

3905           k->subsume_by(m, this);
3906         }
3907       }
3908     }
3909     break;
3910   }
3911   case Op_CmpUL: {
3912     if (!Matcher::has_match_rule(Op_CmpUL)) {
3913       // No support for unsigned long comparisons
3914       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3915       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3916       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3917       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3918       Node* andl = new AndLNode(orl, remove_sign_mask);
3919       Node* cmp = new CmpLNode(andl, n->in(2));
3920       n->subsume_by(cmp, this);
3921     }
3922     break;
3923   }
3924 #ifdef ASSERT





3925   case Op_ConNKlass: {
3926     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3927     ciKlass* klass = tp->is_klassptr()->exact_klass();
3928     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3929     break;
3930   }
3931 #endif
3932   default:
3933     assert(!n->is_Call(), "");
3934     assert(!n->is_Mem(), "");
3935     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3936     break;
3937   }
3938 }
3939 
3940 //------------------------------final_graph_reshaping_walk---------------------
3941 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3942 // requires that the walk visits a node's inputs before visiting the node.
3943 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3944   Unique_Node_List sfpt;

4280   }
4281 }
4282 
4283 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4284   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4285 }
4286 
4287 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4288   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4289 }
4290 
4291 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4292   if (holder->is_initialized()) {
4293     return false;
4294   }
4295   if (holder->is_being_initialized()) {
4296     if (accessing_method->holder() == holder) {
4297       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4298       // <init>, or a static method. In all those cases, there was an initialization
4299       // barrier on the holder klass passed.
4300       if (accessing_method->is_static_initializer() ||
4301           accessing_method->is_object_initializer() ||
4302           accessing_method->is_static()) {
4303         return false;
4304       }
4305     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4306       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4307       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4308       // child class can become fully initialized while its parent class is still being initialized.
4309       if (accessing_method->is_static_initializer()) {
4310         return false;
4311       }
4312     }
4313     ciMethod* root = method(); // the root method of compilation
4314     if (root != accessing_method) {
4315       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4316     }
4317   }
4318   return true;
4319 }
4320 
4321 #ifndef PRODUCT
4322 //------------------------------verify_bidirectional_edges---------------------
4323 // For each input edge to a node (ie - for each Use-Def edge), verify that
4324 // there is a corresponding Def-Use edge.
4325 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4326   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4327   uint stack_size = live_nodes() >> 4;
4328   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4329   if (root_and_safepoints != nullptr) {

4359       if (in != nullptr && !in->is_top()) {
4360         // Count instances of `next`
4361         int cnt = 0;
4362         for (uint idx = 0; idx < in->_outcnt; idx++) {
4363           if (in->_out[idx] == n) {
4364             cnt++;
4365           }
4366         }
4367         assert(cnt > 0, "Failed to find Def-Use edge.");
4368         // Check for duplicate edges
4369         // walk the input array downcounting the input edges to n
4370         for (uint j = 0; j < length; j++) {
4371           if (n->in(j) == in) {
4372             cnt--;
4373           }
4374         }
4375         assert(cnt == 0, "Mismatched edge count.");
4376       } else if (in == nullptr) {
4377         assert(i == 0 || i >= n->req() ||
4378                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||

4379                (n->is_Unlock() && i == (n->req() - 1)) ||
4380                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4381               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4382       } else {
4383         assert(in->is_top(), "sanity");
4384         // Nothing to check.
4385       }
4386     }
4387   }
4388 }
4389 
4390 //------------------------------verify_graph_edges---------------------------
4391 // Walk the Graph and verify that there is a one-to-one correspondence
4392 // between Use-Def edges and Def-Use edges in the graph.
4393 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4394   if (VerifyGraphEdges) {
4395     Unique_Node_List visited;
4396 
4397     // Call graph walk to check edges
4398     verify_bidirectional_edges(visited, root_and_safepoints);
4399     if (no_dead_code) {
4400       // Now make sure that no visited node is used by an unvisited node.
4401       bool dead_nodes = false;

4512 // (1) subklass is already limited to a subtype of superklass => always ok
4513 // (2) subklass does not overlap with superklass => always fail
4514 // (3) superklass has NO subtypes and we can check with a simple compare.
4515 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4516   if (skip) {
4517     return SSC_full_test;       // Let caller generate the general case.
4518   }
4519 
4520   if (subk->is_java_subtype_of(superk)) {
4521     return SSC_always_true; // (0) and (1)  this test cannot fail
4522   }
4523 
4524   if (!subk->maybe_java_subtype_of(superk)) {
4525     return SSC_always_false; // (2) true path dead; no dynamic test needed
4526   }
4527 
4528   const Type* superelem = superk;
4529   if (superk->isa_aryklassptr()) {
4530     int ignored;
4531     superelem = superk->is_aryklassptr()->base_element_type(ignored);







4532   }
4533 
4534   if (superelem->isa_instklassptr()) {
4535     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4536     if (!ik->has_subklass()) {
4537       if (!ik->is_final()) {
4538         // Add a dependency if there is a chance of a later subclass.
4539         dependencies()->assert_leaf_type(ik);
4540       }
4541       if (!superk->maybe_java_subtype_of(subk)) {
4542         return SSC_always_false;
4543       }
4544       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4545     }
4546   } else {
4547     // A primitive array type has no subtypes.
4548     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4549   }
4550 
4551   return SSC_full_test;

5350   } else {
5351     _debug_network_printer->update_compiled_method(C->method());
5352   }
5353   tty->print_cr("Method printed over network stream to IGV");
5354   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5355 }
5356 #endif // !PRODUCT
5357 
5358 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5359   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5360     return value;
5361   }
5362   Node* result = nullptr;
5363   if (bt == T_BYTE) {
5364     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5365     result = new RShiftINode(result, phase->intcon(24));
5366   } else if (bt == T_BOOLEAN) {
5367     result = new AndINode(value, phase->intcon(0xFF));
5368   } else if (bt == T_CHAR) {
5369     result = new AndINode(value,phase->intcon(0xFFFF));


5370   } else {
5371     assert(bt == T_SHORT, "unexpected narrow type");
5372     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5373     result = new RShiftINode(result, phase->intcon(16));
5374   }
5375   if (transform_res) {
5376     result = phase->transform(result);
5377   }
5378   return result;
5379 }
5380 
5381 void Compile::record_method_not_compilable_oom() {
5382   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5383 }
5384 
5385 #ifndef PRODUCT
5386 // Collects all the control inputs from nodes on the worklist and from their data dependencies
5387 static void find_candidate_control_inputs(Unique_Node_List& worklist, Unique_Node_List& candidates) {
5388   // Follow non-control edges until we reach CFG nodes
5389   for (uint i = 0; i < worklist.size(); i++) {

   1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "ci/ciFlatArray.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciReplay.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "code/aotCodeCache.hpp"
  32 #include "code/exceptionHandlerTable.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "compiler/compilationFailureInfo.hpp"
  35 #include "compiler/compilationMemoryStatistic.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/compileLog.hpp"
  38 #include "compiler/compiler_globals.hpp"
  39 #include "compiler/compilerDefinitions.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "compiler/oopMap.hpp"
  43 #include "gc/shared/barrierSet.hpp"
  44 #include "gc/shared/c2/barrierSetC2.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm_io.h"
  47 #include "memory/allocation.hpp"
  48 #include "memory/arena.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/block.hpp"
  52 #include "opto/c2compiler.hpp"
  53 #include "opto/callGenerator.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/castnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/chaitin.hpp"
  58 #include "opto/compile.hpp"
  59 #include "opto/connode.hpp"
  60 #include "opto/convertnode.hpp"
  61 #include "opto/divnode.hpp"
  62 #include "opto/escape.hpp"
  63 #include "opto/idealGraphPrinter.hpp"
  64 #include "opto/inlinetypenode.hpp"
  65 #include "opto/locknode.hpp"
  66 #include "opto/loopnode.hpp"
  67 #include "opto/machnode.hpp"
  68 #include "opto/macro.hpp"
  69 #include "opto/matcher.hpp"
  70 #include "opto/mathexactnode.hpp"
  71 #include "opto/memnode.hpp"
  72 #include "opto/movenode.hpp"
  73 #include "opto/mulnode.hpp"
  74 #include "opto/multnode.hpp"
  75 #include "opto/narrowptrnode.hpp"
  76 #include "opto/node.hpp"
  77 #include "opto/opaquenode.hpp"
  78 #include "opto/opcodes.hpp"
  79 #include "opto/output.hpp"
  80 #include "opto/parse.hpp"
  81 #include "opto/phaseX.hpp"
  82 #include "opto/rootnode.hpp"
  83 #include "opto/runtime.hpp"
  84 #include "opto/stringopts.hpp"
  85 #include "opto/type.hpp"
  86 #include "opto/vector.hpp"
  87 #include "opto/vectornode.hpp"
  88 #include "runtime/arguments.hpp"
  89 #include "runtime/globals_extension.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/signature.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/timer.hpp"
  94 #include "utilities/align.hpp"
  95 #include "utilities/copy.hpp"
  96 #include "utilities/hashTable.hpp"
  97 #include "utilities/macros.hpp"
  98 
  99 // -------------------- Compile::mach_constant_base_node -----------------------
 100 // Constant table base node singleton.
 101 MachConstantBaseNode* Compile::mach_constant_base_node() {
 102   if (_mach_constant_base_node == nullptr) {
 103     _mach_constant_base_node = new MachConstantBaseNode();
 104     _mach_constant_base_node->add_req(C->root());
 105   }
 106   return _mach_constant_base_node;
 107 }
 108 

 394   // as dead to be conservative about the dead node count at any
 395   // given time.
 396   if (!dead->is_Con()) {
 397     record_dead_node(dead->_idx);
 398   }
 399   if (dead->is_macro()) {
 400     remove_macro_node(dead);
 401   }
 402   if (dead->is_expensive()) {
 403     remove_expensive_node(dead);
 404   }
 405   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 406     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 407   }
 408   if (dead->is_ParsePredicate()) {
 409     remove_parse_predicate(dead->as_ParsePredicate());
 410   }
 411   if (dead->for_post_loop_opts_igvn()) {
 412     remove_from_post_loop_opts_igvn(dead);
 413   }
 414   if (dead->is_InlineType()) {
 415     remove_inline_type(dead);
 416   }
 417   if (dead->is_LoadFlat() || dead->is_StoreFlat()) {
 418     remove_flat_access(dead);
 419   }
 420   if (dead->for_merge_stores_igvn()) {
 421     remove_from_merge_stores_igvn(dead);
 422   }
 423   if (dead->is_Call()) {
 424     remove_useless_late_inlines(                &_late_inlines, dead);
 425     remove_useless_late_inlines(         &_string_late_inlines, dead);
 426     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 427     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 428 
 429     if (dead->is_CallStaticJava()) {
 430       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 431     }
 432   }
 433   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 434   bs->unregister_potential_barrier_node(dead);
 435 }
 436 
 437 // Disconnect all useless nodes by disconnecting those at the boundary.
 438 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 439   uint next = 0;

 447     // Use raw traversal of out edges since this code removes out edges
 448     int max = n->outcnt();
 449     for (int j = 0; j < max; ++j) {
 450       Node* child = n->raw_out(j);
 451       if (!useful.member(child)) {
 452         assert(!child->is_top() || child != top(),
 453                "If top is cached in Compile object it is in useful list");
 454         // Only need to remove this out-edge to the useless node
 455         n->raw_del_out(j);
 456         --j;
 457         --max;
 458         if (child->is_data_proj_of_pure_function(n)) {
 459           worklist.push(n);
 460         }
 461       }
 462     }
 463     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 464       assert(useful.member(n->unique_out()), "do not push a useless node");
 465       worklist.push(n->unique_out());
 466     }
 467     if (n->outcnt() == 0) {
 468       worklist.push(n);
 469     }
 470   }
 471 
 472   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 473   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 474   // Remove useless Template Assertion Predicate opaque nodes
 475   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 476   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 477   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 478   remove_useless_nodes(_inline_type_nodes,  useful); // remove useless inline type nodes
 479   remove_useless_nodes(_flat_access_nodes, useful);  // remove useless flat access nodes
 480 #ifdef ASSERT
 481   if (_modified_nodes != nullptr) {
 482     _modified_nodes->remove_useless_nodes(useful.member_set());
 483   }
 484 #endif
 485   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 486   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 487   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 488 #ifdef ASSERT
 489   if (_modified_nodes != nullptr) {
 490     _modified_nodes->remove_useless_nodes(useful.member_set());
 491   }
 492 #endif
 493 
 494   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 495   bs->eliminate_useless_gc_barriers(useful, this);
 496   // clean up the late inline lists
 497   remove_useless_late_inlines(                &_late_inlines, useful);
 498   remove_useless_late_inlines(         &_string_late_inlines, useful);
 499   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 500   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 501   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 502 }
 503 
 504 // ============================================================================

 651 
 652 
 653 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 654                  Options options, DirectiveSet* directive)
 655     : Phase(Compiler),
 656       _compile_id(ci_env->compile_id()),
 657       _options(options),
 658       _method(target),
 659       _entry_bci(osr_bci),
 660       _ilt(nullptr),
 661       _stub_function(nullptr),
 662       _stub_name(nullptr),
 663       _stub_id(StubId::NO_STUBID),
 664       _stub_entry_point(nullptr),
 665       _max_node_limit(MaxNodeLimit),
 666       _post_loop_opts_phase(false),
 667       _merge_stores_phase(false),
 668       _allow_macro_nodes(true),
 669       _inlining_progress(false),
 670       _inlining_incrementally(false),
 671       _strength_reduction(false),
 672       _do_cleanup(false),
 673       _has_reserved_stack_access(target->has_reserved_stack_access()),
 674       _has_circular_inline_type(false),
 675 #ifndef PRODUCT
 676       _igv_idx(0),
 677       _trace_opto_output(directive->TraceOptoOutputOption),
 678 #endif
 679       _clinit_barrier_on_entry(false),
 680       _stress_seed(0),
 681       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 682       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 683       _env(ci_env),
 684       _directive(directive),
 685       _log(ci_env->log()),
 686       _first_failure_details(nullptr),
 687       _intrinsics(comp_arena(), 0, 0, nullptr),
 688       _macro_nodes(comp_arena(), 8, 0, nullptr),
 689       _parse_predicates(comp_arena(), 8, 0, nullptr),
 690       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 691       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 692       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 693       _inline_type_nodes (comp_arena(), 8, 0, nullptr),
 694       _flat_access_nodes(comp_arena(), 8, 0, nullptr),
 695       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 696       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 697       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 698       _congraph(nullptr),
 699       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 700           _unique(0),
 701       _dead_node_count(0),
 702       _dead_node_list(comp_arena()),
 703       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 704       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 705       _node_arena(&_node_arena_one),
 706       _mach_constant_base_node(nullptr),
 707       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 708       _initial_gvn(nullptr),
 709       _igvn_worklist(nullptr),
 710       _types(nullptr),
 711       _node_hash(nullptr),
 712       _late_inlines(comp_arena(), 2, 0, nullptr),
 713       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 714       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),

 783 #define MINIMUM_NODE_HASH  1023
 784 
 785   // GVN that will be run immediately on new nodes
 786   uint estimated_size = method()->code_size()*4+64;
 787   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 788   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 789   _types = new (comp_arena()) Type_Array(comp_arena());
 790   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 791   PhaseGVN gvn;
 792   set_initial_gvn(&gvn);
 793 
 794   { // Scope for timing the parser
 795     TracePhase tp(_t_parser);
 796 
 797     // Put top into the hash table ASAP.
 798     initial_gvn()->transform(top());
 799 
 800     // Set up tf(), start(), and find a CallGenerator.
 801     CallGenerator* cg = nullptr;
 802     if (is_osr_compilation()) {
 803       init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true));
 804       StartNode* s = new StartOSRNode(root(), tf()->domain_sig());


 805       initial_gvn()->set_type_bottom(s);
 806       verify_start(s);
 807       cg = CallGenerator::for_osr(method(), entry_bci());
 808     } else {
 809       // Normal case.
 810       init_tf(TypeFunc::make(method()));
 811       StartNode* s = new StartNode(root(), tf()->domain_cc());
 812       initial_gvn()->set_type_bottom(s);
 813       verify_start(s);
 814       float past_uses = method()->interpreter_invocation_count();
 815       float expected_uses = past_uses;
 816       cg = CallGenerator::for_inline(method(), expected_uses);
 817     }
 818     if (failing())  return;
 819     if (cg == nullptr) {
 820       const char* reason = InlineTree::check_can_parse(method());
 821       assert(reason != nullptr, "expect reason for parse failure");
 822       stringStream ss;
 823       ss.print("cannot parse method: %s", reason);
 824       record_method_not_compilable(ss.as_string());
 825       return;
 826     }
 827 
 828     gvn.set_type(root(), root()->bottom_type());
 829 
 830     JVMState* jvms = build_start_state(start(), tf());
 831     if ((jvms = cg->generate(jvms)) == nullptr) {

 892     print_ideal_ir("print_ideal");
 893   }
 894 #endif
 895 
 896 #ifdef ASSERT
 897   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 898   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 899 #endif
 900 
 901   // Dump compilation data to replay it.
 902   if (directive->DumpReplayOption) {
 903     env()->dump_replay_data(_compile_id);
 904   }
 905   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 906     env()->dump_inline_data(_compile_id);
 907   }
 908 
 909   // Now that we know the size of all the monitors we can add a fixed slot
 910   // for the original deopt pc.
 911   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 912   if (needs_stack_repair()) {
 913     // One extra slot for the special stack increment value
 914     next_slot += 2;
 915   }
 916   // TODO 8284443 Only reserve extra slot if needed
 917   if (InlineTypeReturnedAsFields) {
 918     // One extra slot to hold the null marker for a nullable
 919     // inline type return if we run out of registers.
 920     next_slot += 2;
 921   }
 922   set_fixed_slots(next_slot);
 923 
 924   // Compute when to use implicit null checks. Used by matching trap based
 925   // nodes and NullCheck optimization.
 926   set_allowed_deopt_reasons();
 927 
 928   // Now generate code
 929   Code_Gen();
 930 }
 931 
 932 //------------------------------Compile----------------------------------------
 933 // Compile a runtime stub
 934 Compile::Compile(ciEnv* ci_env,
 935                  TypeFunc_generator generator,
 936                  address stub_function,
 937                  const char* stub_name,
 938                  StubId stub_id,
 939                  int is_fancy_jump,
 940                  bool pass_tls,
 941                  bool return_pc,
 942                  DirectiveSet* directive)
 943     : Phase(Compiler),
 944       _compile_id(0),
 945       _options(Options::for_runtime_stub()),
 946       _method(nullptr),
 947       _entry_bci(InvocationEntryBci),
 948       _stub_function(stub_function),
 949       _stub_name(stub_name),
 950       _stub_id(stub_id),
 951       _stub_entry_point(nullptr),
 952       _max_node_limit(MaxNodeLimit),
 953       _post_loop_opts_phase(false),
 954       _merge_stores_phase(false),
 955       _allow_macro_nodes(true),
 956       _inlining_progress(false),
 957       _inlining_incrementally(false),
 958       _has_reserved_stack_access(false),
 959       _has_circular_inline_type(false),
 960 #ifndef PRODUCT
 961       _igv_idx(0),
 962       _trace_opto_output(directive->TraceOptoOutputOption),
 963 #endif
 964       _clinit_barrier_on_entry(false),
 965       _stress_seed(0),
 966       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 967       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 968       _env(ci_env),
 969       _directive(directive),
 970       _log(ci_env->log()),
 971       _first_failure_details(nullptr),
 972       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 973       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 974       _congraph(nullptr),
 975       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 976           _unique(0),
 977       _dead_node_count(0),
 978       _dead_node_list(comp_arena()),
 979       _node_arena_one(mtCompiler, Arena::Tag::tag_node),

1094   _fixed_slots = 0;
1095   set_has_split_ifs(false);
1096   set_has_loops(false); // first approximation
1097   set_has_stringbuilder(false);
1098   set_has_boxed_value(false);
1099   _trap_can_recompile = false;  // no traps emitted yet
1100   _major_progress = true; // start out assuming good things will happen
1101   set_has_unsafe_access(false);
1102   set_max_vector_size(0);
1103   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1104   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1105   set_decompile_count(0);
1106 
1107 #ifndef PRODUCT
1108   _phase_counter = 0;
1109   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1110 #endif
1111 
1112   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1113   _loop_opts_cnt = LoopOptsCount;
1114   _has_flat_accesses = false;
1115   _flat_accesses_share_alias = true;
1116   _scalarize_in_safepoints = false;
1117 
1118   set_do_inlining(Inline);
1119   set_max_inline_size(MaxInlineSize);
1120   set_freq_inline_size(FreqInlineSize);
1121   set_do_scheduling(OptoScheduling);
1122 
1123   set_do_vector_loop(false);
1124   set_has_monitors(false);
1125   set_has_scoped_access(false);
1126 
1127   if (AllowVectorizeOnDemand) {
1128     if (has_method() && _directive->VectorizeOption) {
1129       set_do_vector_loop(true);
1130       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1131     } else if (has_method() && method()->name() != nullptr &&
1132                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1133       set_do_vector_loop(true);
1134     }
1135   }
1136   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1137   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})

1378 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1379   assert(do_aliasing(), "Aliasing should be enabled");
1380   int offset = tj->offset();
1381   TypePtr::PTR ptr = tj->ptr();
1382 
1383   // Known instance (scalarizable allocation) alias only with itself.
1384   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1385                        tj->is_oopptr()->is_known_instance();
1386 
1387   // Process weird unsafe references.
1388   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1389     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1390     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1391     tj = TypeOopPtr::BOTTOM;
1392     ptr = tj->ptr();
1393     offset = tj->offset();
1394   }
1395 
1396   // Array pointers need some flattening
1397   const TypeAryPtr* ta = tj->isa_aryptr();




1398   if( ta && is_known_inst ) {
1399     if ( offset != Type::OffsetBot &&
1400          offset > arrayOopDesc::length_offset_in_bytes() ) {
1401       offset = Type::OffsetBot; // Flatten constant access into array body only
1402       tj = ta = ta->
1403               remove_speculative()->
1404               cast_to_ptr_type(ptr)->
1405               with_offset(offset);
1406     }
1407   } else if (ta) {
1408     // Common slices
1409     if (offset == arrayOopDesc::length_offset_in_bytes()) {
1410       return TypeAryPtr::RANGE;
1411     } else if (offset == oopDesc::klass_offset_in_bytes()) {
1412       return TypeInstPtr::KLASS;
1413     } else if (offset == oopDesc::mark_offset_in_bytes()) {
1414       return TypeInstPtr::MARK;
1415     }
1416 
1417     // Remove size and stability
1418     const TypeAry* normalized_ary = TypeAry::make(ta->elem(), TypeInt::POS, false, ta->is_flat(), ta->is_not_flat(), ta->is_not_null_free(), ta->is_atomic());
1419     // Remove ptr, const_oop, and offset
1420     if (ta->elem() == Type::BOTTOM) {
1421       // Bottom array (meet of int[] and byte[] for example), accesses to it will be done with
1422       // Unsafe. This should alias with all arrays. For now just leave it as it is (this is
1423       // incorrect, see JDK-8331133).
1424       tj = ta = TypeAryPtr::make(TypePtr::BotPTR, nullptr, normalized_ary, nullptr, false, Type::Offset::bottom);
1425     } else if (ta->elem()->make_oopptr() != nullptr) {
1426       // Object arrays, keep field_offset
1427       tj = ta = TypeAryPtr::make(TypePtr::BotPTR, nullptr, normalized_ary, nullptr, ta->klass_is_exact(), Type::Offset::bottom, Type::Offset(ta->field_offset()));
1428     } else {
1429       // Primitive arrays
1430       tj = ta = TypeAryPtr::make(TypePtr::BotPTR, nullptr, normalized_ary, ta->exact_klass(), true, Type::Offset::bottom);

























1431     }
1432 
1433     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1434     // cannot be distinguished by bytecode alone.
1435     if (ta->elem() == TypeInt::BOOL) {
1436       tj = ta = TypeAryPtr::BYTES;
1437     }
1438 
1439     // All arrays of references share the same slice
1440     if (!ta->is_flat() && ta->elem()->make_oopptr() != nullptr) {
1441       const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, TypeInt::POS, false, false, true, true, true);
1442       tj = ta = TypeAryPtr::make(TypePtr::BotPTR, nullptr, tary, nullptr, false, Type::Offset::bottom);
1443     }
1444 
1445     if (ta->is_flat()) {
1446       if (_flat_accesses_share_alias) {
1447         // Initially all flattened array accesses share a single slice
1448         tj = ta = TypeAryPtr::INLINES;
1449       } else {
1450         // Flat accesses are always exact
1451         tj = ta = ta->cast_to_exactness(true);
1452       }
1453     }
1454   }
1455 
1456   // Oop pointers need some flattening
1457   const TypeInstPtr *to = tj->isa_instptr();
1458   if (to && to != TypeOopPtr::BOTTOM) {
1459     ciInstanceKlass* ik = to->instance_klass();
1460     tj = to = to->cast_to_maybe_flat_in_array(); // flatten to maybe flat in array
1461     if( ptr == TypePtr::Constant ) {
1462       if (ik != ciEnv::current()->Class_klass() ||
1463           offset < ik->layout_helper_size_in_bytes()) {
1464         // No constant oop pointers (such as Strings); they alias with
1465         // unknown strings.
1466         assert(!is_known_inst, "not scalarizable allocation");
1467         tj = to = to->
1468                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1469                 remove_speculative()->
1470                 cast_to_ptr_type(TypePtr::BotPTR)->
1471                 cast_to_exactness(false);
1472       }
1473     } else if( is_known_inst ) {
1474       tj = to; // Keep NotNull and klass_is_exact for instance type
1475     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1476       // During the 2nd round of IterGVN, NotNull castings are removed.
1477       // Make sure the Bottom and NotNull variants alias the same.
1478       // Also, make sure exact and non-exact variants alias the same.
1479       tj = to = to->
1480               remove_speculative()->
1481               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1482               cast_to_ptr_type(TypePtr::BotPTR)->
1483               cast_to_exactness(false);
1484     }
1485     if (to->speculative() != nullptr) {
1486       tj = to = to->remove_speculative();
1487     }
1488     // Canonicalize the holder of this field
1489     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1490       // First handle header references such as a LoadKlassNode, even if the
1491       // object's klass is unloaded at compile time (4965979).
1492       if (!is_known_inst) { // Do it only for non-instance types
1493         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset));
1494       }
1495     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1496       // Static fields are in the space above the normal instance
1497       // fields in the java.lang.Class instance.
1498       if (ik != ciEnv::current()->Class_klass()) {
1499         to = nullptr;
1500         tj = TypeOopPtr::BOTTOM;
1501         offset = tj->offset();
1502       }
1503     } else {
1504       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1505       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1506       assert(tj->offset() == offset, "no change to offset expected");
1507       bool xk = to->klass_is_exact();
1508       int instance_id = to->instance_id();
1509 
1510       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1511       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1512       // its interfaces are included.
1513       if (xk && ik->equals(canonical_holder)) {
1514         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id,
1515                                        TypePtr::MaybeFlat), "exact type should be canonical type");
1516       } else {
1517         assert(xk || !is_known_inst, "Known instance should be exact type");
1518         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id,
1519                                     TypePtr::MaybeFlat);
1520       }
1521     }
1522   }
1523 
1524   // Klass pointers to object array klasses need some flattening
1525   const TypeKlassPtr *tk = tj->isa_klassptr();
1526   if( tk ) {
1527     // If we are referencing a field within a Klass, we need
1528     // to assume the worst case of an Object.  Both exact and
1529     // inexact types must flatten to the same alias class so
1530     // use NotNull as the PTR.
1531     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1532       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1533                                        env()->Object_klass(),
1534                                        Type::Offset(offset),
1535                                        TypePtr::MaybeFlat);
1536     }
1537 
1538     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1539       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1540       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1541         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset), TypePtr::MaybeFlat);
1542       } else {
1543         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_flat(), tk->is_null_free(), tk->is_atomic(), tk->is_aryklassptr()->is_refined_type());
1544       }
1545     }

1546     // Check for precise loads from the primary supertype array and force them
1547     // to the supertype cache alias index.  Check for generic array loads from
1548     // the primary supertype array and also force them to the supertype cache
1549     // alias index.  Since the same load can reach both, we need to merge
1550     // these 2 disparate memories into the same alias class.  Since the
1551     // primary supertype array is read-only, there's no chance of confusion
1552     // where we bypass an array load and an array store.
1553     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1554     if (offset == Type::OffsetBot ||
1555         (offset >= primary_supers_offset &&
1556          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1557         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1558       offset = in_bytes(Klass::secondary_super_cache_offset());
1559       tj = tk = tk->with_offset(offset);
1560     }
1561   }
1562 
1563   // Flatten all Raw pointers together.
1564   if (tj->base() == Type::RawPtr)
1565     tj = TypeRawPtr::BOTTOM;

1655   intptr_t key = (intptr_t) adr_type;
1656   key ^= key >> logAliasCacheSize;
1657   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1658 }
1659 
1660 
1661 //-----------------------------grow_alias_types--------------------------------
1662 void Compile::grow_alias_types() {
1663   const int old_ats  = _max_alias_types; // how many before?
1664   const int new_ats  = old_ats;          // how many more?
1665   const int grow_ats = old_ats+new_ats;  // how many now?
1666   _max_alias_types = grow_ats;
1667   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1668   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1669   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1670   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1671 }
1672 
1673 
1674 //--------------------------------find_alias_type------------------------------
1675 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) {
1676   if (!do_aliasing()) {
1677     return alias_type(AliasIdxBot);
1678   }
1679 
1680   AliasCacheEntry* ace = nullptr;
1681   if (!uncached) {
1682     ace = probe_alias_cache(adr_type);
1683     if (ace->_adr_type == adr_type) {
1684       return alias_type(ace->_index);
1685     }
1686   }
1687 
1688   // Handle special cases.
1689   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1690   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1691 
1692   // Do it the slow way.
1693   const TypePtr* flat = flatten_alias_type(adr_type);
1694 
1695 #ifdef ASSERT
1696   {
1697     ResourceMark rm;
1698     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1699            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1700     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1701            Type::str(adr_type));
1702     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1703       const TypeOopPtr* foop = flat->is_oopptr();
1704       // Scalarizable allocations have exact klass always.
1705       bool exact = !foop->klass_is_exact() || foop->is_known_instance();

1715     if (alias_type(i)->adr_type() == flat) {
1716       idx = i;
1717       break;
1718     }
1719   }
1720 
1721   if (idx == AliasIdxTop) {
1722     if (no_create)  return nullptr;
1723     // Grow the array if necessary.
1724     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1725     // Add a new alias type.
1726     idx = _num_alias_types++;
1727     _alias_types[idx]->Init(idx, flat);
1728     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1729     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1730     if (flat->isa_instptr()) {
1731       if (flat->offset() == java_lang_Class::klass_offset()
1732           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1733         alias_type(idx)->set_rewritable(false);
1734     }
1735     ciField* field = nullptr;
1736     if (flat->isa_aryptr()) {
1737 #ifdef ASSERT
1738       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1739       // (T_BYTE has the weakest alignment and size restrictions...)
1740       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1741 #endif
1742       const Type* elemtype = flat->is_aryptr()->elem();
1743       if (flat->offset() == TypePtr::OffsetBot) {
1744         alias_type(idx)->set_element(elemtype);
1745       }
1746       int field_offset = flat->is_aryptr()->field_offset().get();
1747       if (flat->is_flat() &&
1748           field_offset != Type::OffsetBot) {
1749         ciInlineKlass* vk = elemtype->inline_klass();
1750         field_offset += vk->payload_offset();
1751         field = vk->get_field_by_offset(field_offset, false);
1752       }
1753     }
1754     if (flat->isa_klassptr()) {
1755       if (UseCompactObjectHeaders) {
1756         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1757           alias_type(idx)->set_rewritable(false);
1758       }
1759       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1760         alias_type(idx)->set_rewritable(false);
1761       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1762         alias_type(idx)->set_rewritable(false);
1763       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1764         alias_type(idx)->set_rewritable(false);
1765       if (flat->offset() == in_bytes(Klass::layout_helper_offset()))
1766         alias_type(idx)->set_rewritable(false);
1767       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1768         alias_type(idx)->set_rewritable(false);
1769     }
1770 
1771     if (flat->isa_instklassptr()) {
1772       if (flat->offset() == in_bytes(InstanceKlass::access_flags_offset())) {
1773         alias_type(idx)->set_rewritable(false);
1774       }
1775     }
1776     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1777     // but the base pointer type is not distinctive enough to identify
1778     // references into JavaThread.)
1779 
1780     // Check for final fields.
1781     const TypeInstPtr* tinst = flat->isa_instptr();
1782     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {

1783       if (tinst->const_oop() != nullptr &&
1784           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1785           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1786         // static field
1787         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1788         field = k->get_field_by_offset(tinst->offset(), true);
1789       } else if (tinst->is_inlinetypeptr()) {
1790         // Inline type field
1791         ciInlineKlass* vk = tinst->inline_klass();
1792         field = vk->get_field_by_offset(tinst->offset(), false);
1793       } else {
1794         ciInstanceKlass *k = tinst->instance_klass();
1795         field = k->get_field_by_offset(tinst->offset(), false);
1796       }
1797     }
1798     assert(field == nullptr ||
1799            original_field == nullptr ||
1800            (field->holder() == original_field->holder() &&
1801             field->offset_in_bytes() == original_field->offset_in_bytes() &&
1802             field->is_static() == original_field->is_static()), "wrong field?");
1803     // Set field() and is_rewritable() attributes.
1804     if (field != nullptr) {
1805       alias_type(idx)->set_field(field);
1806       if (flat->isa_aryptr()) {
1807         // Fields of flat arrays are rewritable although they are declared final
1808         assert(flat->is_flat(), "must be a flat array");
1809         alias_type(idx)->set_rewritable(true);
1810       }
1811     }
1812   }
1813 
1814   // Fill the cache for next time.
1815   if (!uncached) {
1816     ace->_adr_type = adr_type;
1817     ace->_index    = idx;
1818     assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1819 
1820     // Might as well try to fill the cache for the flattened version, too.
1821     AliasCacheEntry* face = probe_alias_cache(flat);
1822     if (face->_adr_type == nullptr) {
1823       face->_adr_type = flat;
1824       face->_index    = idx;
1825       assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1826     }
1827   }
1828 
1829   return alias_type(idx);
1830 }
1831 
1832 
1833 Compile::AliasType* Compile::alias_type(ciField* field) {
1834   const TypeOopPtr* t;
1835   if (field->is_static())
1836     t = TypeInstPtr::make(field->holder()->java_mirror());
1837   else
1838     t = TypeOopPtr::make_from_klass_raw(field->holder());
1839   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1840   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1841   return atp;
1842 }
1843 
1844 
1845 //------------------------------have_alias_type--------------------------------
1846 bool Compile::have_alias_type(const TypePtr* adr_type) {

1928   assert(!C->major_progress(), "not cleared");
1929 
1930   if (_for_post_loop_igvn.length() > 0) {
1931     while (_for_post_loop_igvn.length() > 0) {
1932       Node* n = _for_post_loop_igvn.pop();
1933       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1934       igvn._worklist.push(n);
1935     }
1936     igvn.optimize();
1937     if (failing()) return;
1938     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1939     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1940 
1941     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1942     if (C->major_progress()) {
1943       C->clear_major_progress(); // ensure that major progress is now clear
1944     }
1945   }
1946 }
1947 
1948 void Compile::add_inline_type(Node* n) {
1949   assert(n->is_InlineType(), "unexpected node");
1950   _inline_type_nodes.push(n);
1951 }
1952 
1953 void Compile::remove_inline_type(Node* n) {
1954   assert(n->is_InlineType(), "unexpected node");
1955   if (_inline_type_nodes.contains(n)) {
1956     _inline_type_nodes.remove(n);
1957   }
1958 }
1959 
1960 // Does the return value keep otherwise useless inline type allocations alive?
1961 static bool return_val_keeps_allocations_alive(Node* ret_val) {
1962   ResourceMark rm;
1963   Unique_Node_List wq;
1964   wq.push(ret_val);
1965   bool some_allocations = false;
1966   for (uint i = 0; i < wq.size(); i++) {
1967     Node* n = wq.at(i);
1968     if (n->outcnt() > 1) {
1969       // Some other use for the allocation
1970       return false;
1971     } else if (n->is_InlineType()) {
1972       wq.push(n->in(1));
1973     } else if (n->is_Phi()) {
1974       for (uint j = 1; j < n->req(); j++) {
1975         wq.push(n->in(j));
1976       }
1977     } else if (n->is_CheckCastPP() &&
1978                n->in(1)->is_Proj() &&
1979                n->in(1)->in(0)->is_Allocate()) {
1980       some_allocations = true;
1981     } else if (n->is_CheckCastPP()) {
1982       wq.push(n->in(1));
1983     }
1984   }
1985   return some_allocations;
1986 }
1987 
1988 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) {
1989   // Make sure that the return value does not keep an otherwise unused allocation alive
1990   if (tf()->returns_inline_type_as_fields()) {
1991     Node* ret = nullptr;
1992     for (uint i = 1; i < root()->req(); i++) {
1993       Node* in = root()->in(i);
1994       if (in->Opcode() == Op_Return) {
1995         assert(ret == nullptr, "only one return");
1996         ret = in;
1997       }
1998     }
1999     if (ret != nullptr) {
2000       Node* ret_val = ret->in(TypeFunc::Parms);
2001       if (igvn.type(ret_val)->isa_oopptr() &&
2002           return_val_keeps_allocations_alive(ret_val)) {
2003         igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn));
2004         assert(ret_val->outcnt() == 0, "should be dead now");
2005         igvn.remove_dead_node(ret_val);
2006       }
2007     }
2008   }
2009   if (_inline_type_nodes.length() == 0) {
2010     // keep the graph canonical
2011     igvn.optimize();
2012     return;
2013   }
2014   // Scalarize inline types in safepoint debug info.
2015   // Delay this until all inlining is over to avoid getting inconsistent debug info.
2016   set_scalarize_in_safepoints(true);
2017   for (int i = _inline_type_nodes.length()-1; i >= 0; i--) {
2018     InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType();
2019     vt->make_scalar_in_safepoints(&igvn);
2020     igvn.record_for_igvn(vt);
2021   }
2022   if (remove) {
2023     // Remove inline type nodes by replacing them with their oop input
2024     while (_inline_type_nodes.length() > 0) {
2025       InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType();
2026       if (vt->outcnt() == 0) {
2027         igvn.remove_dead_node(vt);
2028         continue;
2029       }
2030       for (DUIterator i = vt->outs(); vt->has_out(i); i++) {
2031         DEBUG_ONLY(bool must_be_buffered = false);
2032         Node* u = vt->out(i);
2033         // Check if any users are blackholes. If so, rewrite them to use either the
2034         // allocated buffer, or individual components, instead of the inline type node
2035         // that goes away.
2036         if (u->is_Blackhole()) {
2037           BlackholeNode* bh = u->as_Blackhole();
2038 
2039           // Unlink the old input
2040           int idx = bh->find_edge(vt);
2041           assert(idx != -1, "The edge should be there");
2042           bh->del_req(idx);
2043           --i;
2044 
2045           if (vt->is_allocated(&igvn)) {
2046             // Already has the allocated instance, blackhole that
2047             bh->add_req(vt->get_oop());
2048           } else {
2049             // Not allocated yet, blackhole the components
2050             for (uint c = 0; c < vt->field_count(); c++) {
2051               bh->add_req(vt->field_value(c));
2052             }
2053           }
2054 
2055           // Node modified, record for IGVN
2056           igvn.record_for_igvn(bh);
2057         }
2058 #ifdef ASSERT
2059         // Verify that inline type is buffered when replacing by oop
2060         else if (u->is_InlineType()) {
2061           // InlineType uses don't need buffering because they are about to be replaced as well
2062         } else if (u->is_Phi()) {
2063           // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through
2064         } else {
2065           must_be_buffered = true;
2066         }
2067         if (must_be_buffered && !vt->is_allocated(&igvn)) {
2068           vt->dump(0);
2069           u->dump(0);
2070           assert(false, "Should have been buffered");
2071         }
2072 #endif
2073       }
2074       igvn.replace_node(vt, vt->get_oop());
2075     }
2076   }
2077   igvn.optimize();
2078 }
2079 
2080 void Compile::add_flat_access(Node* n) {
2081   assert(n != nullptr && (n->Opcode() == Op_LoadFlat || n->Opcode() == Op_StoreFlat), "unexpected node %s", n == nullptr ? "nullptr" : n->Name());
2082   assert(!_flat_access_nodes.contains(n), "duplicate insertion");
2083   _flat_access_nodes.push(n);
2084 }
2085 
2086 void Compile::remove_flat_access(Node* n) {
2087   assert(n != nullptr && (n->Opcode() == Op_LoadFlat || n->Opcode() == Op_StoreFlat), "unexpected node %s", n == nullptr ? "nullptr" : n->Name());
2088   _flat_access_nodes.remove_if_existing(n);
2089 }
2090 
2091 void Compile::process_flat_accesses(PhaseIterGVN& igvn) {
2092   assert(igvn._worklist.size() == 0, "should be empty");
2093   igvn.set_delay_transform(true);
2094   for (int i = _flat_access_nodes.length() - 1; i >= 0; i--) {
2095     Node* n = _flat_access_nodes.at(i);
2096     assert(n != nullptr, "unexpected nullptr");
2097     if (n->is_LoadFlat()) {
2098       LoadFlatNode* loadn = n->as_LoadFlat();
2099       // Expending a flat load atomically means that we get a chunk of memory spanning multiple fields
2100       // that we chop with bitwise operations. That is too subtle for some optimizations, especially
2101       // constant folding when fields are constant. If we can get a constant object from which we are
2102       // flat-loading, we can simply replace the loads at compilation-time by the field of the constant
2103       // object.
2104       ciInstance* loaded_from = nullptr;
2105       if (FoldStableValues) {
2106         const TypeOopPtr* base_type = igvn.type(loadn->base())->is_oopptr();
2107         ciObject* oop = base_type->const_oop();
2108         int off = igvn.type(loadn->ptr())->isa_ptr()->offset();
2109 
2110         if (oop != nullptr && oop->is_instance()) {
2111           ciInstance* holder = oop->as_instance();
2112           ciKlass* klass = holder->klass();
2113           ciInstanceKlass* iklass = klass->as_instance_klass();
2114           ciField* field = iklass->get_non_flat_field_by_offset(off);
2115 
2116           if (field->is_stable()) {
2117             ciConstant fv = holder->field_value(field);
2118             if (is_reference_type(fv.basic_type()) && fv.as_object()->is_instance()) {
2119               // The field value is an object, not null. We can use stability.
2120               loaded_from = fv.as_object()->as_instance();
2121             }
2122           }
2123         } else if (oop != nullptr && oop->is_array() && off != Type::OffsetBot) {
2124           ciArray* array = oop->as_array();
2125           ciConstant elt = array->element_value_by_offset(off);
2126           const TypeAryPtr* aryptr = base_type->is_aryptr();
2127           if (aryptr->is_stable() && aryptr->is_atomic() && is_reference_type(elt.basic_type()) && elt.as_object()->is_instance()) {
2128             loaded_from = elt.as_object()->as_instance();
2129           }
2130         }
2131       }
2132 
2133       if (loaded_from != nullptr) {
2134         loadn->expand_constant(igvn, loaded_from);
2135       } else {
2136         loadn->expand_atomic(igvn);
2137       }
2138     } else {
2139       n->as_StoreFlat()->expand_atomic(igvn);
2140     }
2141   }
2142   _flat_access_nodes.clear_and_deallocate();
2143   igvn.set_delay_transform(false);
2144   igvn.optimize();
2145 }
2146 
2147 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) {
2148   DEBUG_ONLY(igvn.verify_empty_worklist(nullptr));
2149   if (!_has_flat_accesses) {
2150     return;
2151   }
2152   // Initially, all flat array accesses share the same slice to
2153   // keep dependencies with Object[] array accesses (that could be
2154   // to a flat array) correct. We're done with parsing so we
2155   // now know all flat array accesses in this compile
2156   // unit. Let's move flat array accesses to their own slice,
2157   // one per element field. This should help memory access
2158   // optimizations.
2159   ResourceMark rm;
2160   Unique_Node_List wq;
2161   wq.push(root());
2162 
2163   Node_List mergememnodes;
2164   Node_List memnodes;
2165 
2166   // Alias index currently shared by all flat memory accesses
2167   int index = get_alias_index(TypeAryPtr::INLINES);
2168 
2169   // Find MergeMem nodes and flat array accesses
2170   for (uint i = 0; i < wq.size(); i++) {
2171     Node* n = wq.at(i);
2172     if (n->is_Mem()) {
2173       const TypePtr* adr_type = nullptr;
2174       adr_type = get_adr_type(get_alias_index(n->adr_type()));
2175       if (adr_type == TypeAryPtr::INLINES) {
2176         memnodes.push(n);
2177       }
2178     } else if (n->is_MergeMem()) {
2179       MergeMemNode* mm = n->as_MergeMem();
2180       if (mm->memory_at(index) != mm->base_memory()) {
2181         mergememnodes.push(n);
2182       }
2183     }
2184     for (uint j = 0; j < n->req(); j++) {
2185       Node* m = n->in(j);
2186       if (m != nullptr) {
2187         wq.push(m);
2188       }
2189     }
2190   }
2191 
2192   _flat_accesses_share_alias = false;
2193 
2194   // We are going to change the slice for the flat array
2195   // accesses so we need to clear the cache entries that refer to
2196   // them.
2197   for (uint i = 0; i < AliasCacheSize; i++) {
2198     AliasCacheEntry* ace = &_alias_cache[i];
2199     if (ace->_adr_type != nullptr &&
2200         ace->_adr_type->is_flat()) {
2201       ace->_adr_type = nullptr;
2202       ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop
2203     }
2204   }
2205 
2206 #ifdef ASSERT
2207   for (uint i = 0; i < memnodes.size(); i++) {
2208     Node* m = memnodes.at(i);
2209     const TypePtr* adr_type = m->adr_type();
2210     m->as_Mem()->set_adr_type(adr_type);
2211   }
2212 #endif // ASSERT
2213 
2214   int start_alias = num_alias_types(); // Start of new aliases
2215   Node_Stack stack(0);
2216 #ifdef ASSERT
2217   VectorSet seen(Thread::current()->resource_area());
2218 #endif
2219   // Now let's fix the memory graph so each flat array access
2220   // is moved to the right slice. Start from the MergeMem nodes.
2221   uint last = unique();
2222   for (uint i = 0; i < mergememnodes.size(); i++) {
2223     MergeMemNode* current = mergememnodes.at(i)->as_MergeMem();
2224     if (current->outcnt() == 0) {
2225       // This node is killed by a previous iteration
2226       continue;
2227     }
2228 
2229     Node* n = current->memory_at(index);
2230     MergeMemNode* mm = nullptr;
2231     do {
2232       // Follow memory edges through memory accesses, phis and
2233       // narrow membars and push nodes on the stack. Once we hit
2234       // bottom memory, we pop element off the stack one at a
2235       // time, in reverse order, and move them to the right slice
2236       // by changing their memory edges.
2237       if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() ||
2238           (n->adr_type() == TypeAryPtr::INLINES && !n->is_NarrowMemProj())) {
2239         assert(!seen.test_set(n->_idx), "");
2240         // Uses (a load for instance) will need to be moved to the
2241         // right slice as well and will get a new memory state
2242         // that we don't know yet. The use could also be the
2243         // backedge of a loop. We put a place holder node between
2244         // the memory node and its uses. We replace that place
2245         // holder with the correct memory state once we know it,
2246         // i.e. when nodes are popped off the stack. Using the
2247         // place holder make the logic work in the presence of
2248         // loops.
2249         if (n->outcnt() > 1) {
2250           Node* place_holder = nullptr;
2251           assert(!n->has_out_with(Op_Node), "");
2252           for (DUIterator k = n->outs(); n->has_out(k); k++) {
2253             Node* u = n->out(k);
2254             if (u != current && u->_idx < last) {
2255               bool success = false;
2256               for (uint l = 0; l < u->req(); l++) {
2257                 if (!stack.is_empty() && u == stack.node() && l == stack.index()) {
2258                   continue;
2259                 }
2260                 Node* in = u->in(l);
2261                 if (in == n) {
2262                   if (place_holder == nullptr) {
2263                     place_holder = new Node(1);
2264                     place_holder->init_req(0, n);
2265                   }
2266                   igvn.replace_input_of(u, l, place_holder);
2267                   success = true;
2268                 }
2269               }
2270               if (success) {
2271                 --k;
2272               }
2273             }
2274           }
2275         }
2276         if (n->is_Phi()) {
2277           stack.push(n, 1);
2278           n = n->in(1);
2279         } else if (n->is_Mem()) {
2280           stack.push(n, n->req());
2281           n = n->in(MemNode::Memory);
2282         } else {
2283           assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, "");
2284           stack.push(n, n->req());
2285           n = n->in(0)->in(TypeFunc::Memory);
2286         }
2287       } else {
2288         assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || n->is_NarrowMemProj(), "");
2289         // Build a new MergeMem node to carry the new memory state
2290         // as we build it. IGVN should fold extraneous MergeMem
2291         // nodes.
2292         if (n->is_NarrowMemProj()) {
2293           // We need 1 NarrowMemProj for each slice of this array
2294           InitializeNode* init = n->in(0)->as_Initialize();
2295           AllocateNode* alloc = init->allocation();
2296           Node* klass_node = alloc->in(AllocateNode::KlassNode);
2297           const TypeAryKlassPtr* klass_type = klass_node->bottom_type()->isa_aryklassptr();
2298           assert(klass_type != nullptr, "must be an array");
2299           assert(klass_type->klass_is_exact(), "must be an exact klass");
2300           ciArrayKlass* klass = klass_type->exact_klass()->as_array_klass();
2301           assert(klass->is_flat_array_klass(), "must be a flat array");
2302           ciInlineKlass* elem_klass = klass->element_klass()->as_inline_klass();
2303           const TypeAryPtr* oop_type = klass_type->as_instance_type()->is_aryptr();
2304           assert(oop_type->klass_is_exact(), "must be an exact klass");
2305 
2306           Node* base = alloc->in(TypeFunc::Memory);
2307           assert(base->bottom_type() == Type::MEMORY, "the memory input of AllocateNode must be a memory");
2308           assert(base->adr_type() == TypePtr::BOTTOM, "the memory input of AllocateNode must be a bottom memory");
2309           // Must create a MergeMem with base as the base memory, do not clone if base is a
2310           // MergeMem because it may not be processed yet
2311           mm = MergeMemNode::make(nullptr);
2312           mm->set_base_memory(base);
2313           for (int j = 0; j < elem_klass->nof_nonstatic_fields(); j++) {
2314             int field_offset = elem_klass->nonstatic_field_at(j)->offset_in_bytes() - elem_klass->payload_offset();
2315             const TypeAryPtr* field_ptr = oop_type->with_offset(Type::OffsetBot)->with_field_offset(field_offset);
2316             int field_alias_idx = get_alias_index(field_ptr);
2317             assert(field_ptr == get_adr_type(field_alias_idx), "must match");
2318             Node* new_proj = new NarrowMemProjNode(init, field_ptr);
2319             igvn.register_new_node_with_optimizer(new_proj);
2320             mm->set_memory_at(field_alias_idx, new_proj);
2321           }
2322           if (!klass->is_elem_null_free()) {
2323             int nm_offset = elem_klass->null_marker_offset_in_payload();
2324             const TypeAryPtr* nm_ptr = oop_type->with_offset(Type::OffsetBot)->with_field_offset(nm_offset);
2325             int nm_alias_idx = get_alias_index(nm_ptr);
2326             assert(nm_ptr == get_adr_type(nm_alias_idx), "must match");
2327             Node* new_proj = new NarrowMemProjNode(init, nm_ptr);
2328             igvn.register_new_node_with_optimizer(new_proj);
2329             mm->set_memory_at(nm_alias_idx, new_proj);
2330           }
2331 
2332           // Replace all uses of the old NarrowMemProj with the correct state
2333           MergeMemNode* new_n = MergeMemNode::make(mm);
2334           igvn.register_new_node_with_optimizer(new_n);
2335           igvn.replace_node(n, new_n);
2336         } else {
2337           // Must create a MergeMem with n as the base memory, do not clone if n is a MergeMem
2338           // because it may not be processed yet
2339           mm = MergeMemNode::make(nullptr);
2340           mm->set_base_memory(n);
2341         }
2342 
2343         igvn.register_new_node_with_optimizer(mm);
2344         while (stack.size() > 0) {
2345           Node* m = stack.node();
2346           uint idx = stack.index();
2347           if (m->is_Mem()) {
2348             // Move memory node to its new slice
2349             const TypePtr* adr_type = m->adr_type();
2350             int alias = get_alias_index(adr_type);
2351             Node* prev = mm->memory_at(alias);
2352             igvn.replace_input_of(m, MemNode::Memory, prev);
2353             mm->set_memory_at(alias, m);
2354           } else if (m->is_Phi()) {
2355             // We need as many new phis as there are new aliases
2356             Node* new_phi_in = MergeMemNode::make(mm);
2357             igvn.register_new_node_with_optimizer(new_phi_in);
2358             igvn.replace_input_of(m, idx, new_phi_in);
2359             if (idx == m->req()-1) {
2360               Node* r = m->in(0);
2361               for (int j = start_alias; j < num_alias_types(); j++) {
2362                 const TypePtr* adr_type = get_adr_type(j);
2363                 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) {
2364                   continue;
2365                 }
2366                 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j));
2367                 igvn.register_new_node_with_optimizer(phi);
2368                 for (uint k = 1; k < m->req(); k++) {
2369                   phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j));
2370                 }
2371                 mm->set_memory_at(j, phi);
2372               }
2373               Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2374               igvn.register_new_node_with_optimizer(base_phi);
2375               for (uint k = 1; k < m->req(); k++) {
2376                 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory());
2377               }
2378               mm->set_base_memory(base_phi);
2379             }
2380           } else {
2381             // This is a MemBarCPUOrder node from
2382             // Parse::array_load()/Parse::array_store(), in the
2383             // branch that handles flat arrays hidden under
2384             // an Object[] array. We also need one new membar per
2385             // new alias to keep the unknown access that the
2386             // membars protect properly ordered with accesses to
2387             // known flat array.
2388             assert(m->is_Proj(), "projection expected");
2389             Node* ctrl = m->in(0)->in(TypeFunc::Control);
2390             igvn.replace_input_of(m->in(0), TypeFunc::Control, top());
2391             for (int j = start_alias; j < num_alias_types(); j++) {
2392               const TypePtr* adr_type = get_adr_type(j);
2393               if (!adr_type->isa_aryptr() || !adr_type->is_flat()) {
2394                 continue;
2395               }
2396               MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr);
2397               igvn.register_new_node_with_optimizer(mb);
2398               Node* mem = mm->memory_at(j);
2399               mb->init_req(TypeFunc::Control, ctrl);
2400               mb->init_req(TypeFunc::Memory, mem);
2401               ctrl = new ProjNode(mb, TypeFunc::Control);
2402               igvn.register_new_node_with_optimizer(ctrl);
2403               mem = new ProjNode(mb, TypeFunc::Memory);
2404               igvn.register_new_node_with_optimizer(mem);
2405               mm->set_memory_at(j, mem);
2406             }
2407             igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl);
2408           }
2409           if (idx < m->req()-1) {
2410             idx += 1;
2411             stack.set_index(idx);
2412             n = m->in(idx);
2413             break;
2414           }
2415           // Take care of place holder nodes
2416           if (m->has_out_with(Op_Node)) {
2417             Node* place_holder = m->find_out_with(Op_Node);
2418             if (place_holder != nullptr) {
2419               Node* mm_clone = mm->clone();
2420               igvn.register_new_node_with_optimizer(mm_clone);
2421               Node* hook = new Node(1);
2422               hook->init_req(0, mm);
2423               igvn.replace_node(place_holder, mm_clone);
2424               hook->destruct(&igvn);
2425             }
2426             assert(!m->has_out_with(Op_Node), "place holder should be gone now");
2427           }
2428           stack.pop();
2429         }
2430       }
2431     } while(stack.size() > 0);
2432     // Fix the memory state at the MergeMem we started from
2433     igvn.rehash_node_delayed(current);
2434     for (int j = start_alias; j < num_alias_types(); j++) {
2435       const TypePtr* adr_type = get_adr_type(j);
2436       if (!adr_type->isa_aryptr() || !adr_type->is_flat()) {
2437         continue;
2438       }
2439       current->set_memory_at(j, mm);
2440     }
2441     current->set_memory_at(index, current->base_memory());
2442   }
2443   igvn.optimize();
2444 
2445 #ifdef ASSERT
2446   wq.clear();
2447   wq.push(root());
2448   for (uint i = 0; i < wq.size(); i++) {
2449     Node* n = wq.at(i);
2450     assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph");
2451     for (uint j = 0; j < n->req(); j++) {
2452       Node* m = n->in(j);
2453       if (m != nullptr) {
2454         wq.push(m);
2455       }
2456     }
2457   }
2458 #endif
2459 
2460   print_method(PHASE_SPLIT_INLINES_ARRAY, 2);
2461 }
2462 
2463 void Compile::record_for_merge_stores_igvn(Node* n) {
2464   if (!n->for_merge_stores_igvn()) {
2465     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
2466     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
2467     _for_merge_stores_igvn.append(n);
2468   }
2469 }
2470 
2471 void Compile::remove_from_merge_stores_igvn(Node* n) {
2472   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
2473   _for_merge_stores_igvn.remove(n);
2474 }
2475 
2476 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
2477 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
2478 // the stores, and we merge the wrong sequence of stores.
2479 // Example:
2480 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
2481 // Apply MergeStores:
2482 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI

2561       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
2562       Bytecodes::Code c = iter.cur_bc();
2563       Node* lhs = nullptr;
2564       Node* rhs = nullptr;
2565       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
2566         lhs = unc->peek_operand(0);
2567         rhs = unc->peek_operand(1);
2568       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2569         lhs = unc->peek_operand(0);
2570       }
2571 
2572       ResourceMark rm;
2573       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2574       assert(live_locals.is_valid(), "broken liveness info");
2575       int len = (int)live_locals.size();
2576 
2577       for (int i = 0; i < len; i++) {
2578         Node* local = unc->local(jvms, i);
2579         // kill local using the liveness of next_bci.
2580         // give up when the local looks like an operand to secure reexecution.
2581         if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) {
2582           uint idx = jvms->locoff() + i;
2583 #ifdef ASSERT
2584           if (PrintOpto && Verbose) {
2585             tty->print("[unstable_if] kill local#%d: ", idx);
2586             local->dump();
2587             tty->cr();
2588           }
2589 #endif
2590           igvn.replace_input_of(unc, idx, top());
2591           modified = true;
2592         }
2593       }
2594     }
2595 
2596     // keep the modified trap for late query
2597     if (modified) {
2598       trap->set_modified();
2599     } else {
2600       _unstable_if_traps.delete_at(i);
2601     }
2602   }
2603   igvn.optimize();
2604 }
2605 
2606 // StringOpts and late inlining of string methods
2607 void Compile::inline_string_calls(bool parse_time) {
2608   {
2609     // remove useless nodes to make the usage analysis simpler
2610     ResourceMark rm;
2611     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2612   }
2613 
2614   {
2615     ResourceMark rm;
2616     print_method(PHASE_BEFORE_STRINGOPTS, 3);

2788 
2789   if (_string_late_inlines.length() > 0) {
2790     assert(has_stringbuilder(), "inconsistent");
2791 
2792     inline_string_calls(false);
2793 
2794     if (failing())  return;
2795 
2796     inline_incrementally_cleanup(igvn);
2797   }
2798 
2799   set_inlining_incrementally(false);
2800 }
2801 
2802 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2803   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2804   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2805   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2806   // as if "inlining_incrementally() == true" were set.
2807   assert(inlining_incrementally() == false, "not allowed");
2808   set_strength_reduction(true);
2809 #ifdef ASSERT
2810   Unique_Node_List* modified_nodes = _modified_nodes;
2811   _modified_nodes = nullptr;
2812 #endif
2813   assert(_late_inlines.length() > 0, "sanity");
2814 
2815   while (_late_inlines.length() > 0) {
2816     igvn_worklist()->ensure_empty(); // should be done with igvn
2817 
2818     while (inline_incrementally_one()) {
2819       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2820     }
2821     if (failing())  return;
2822 
2823     inline_incrementally_cleanup(igvn);
2824   }
2825   DEBUG_ONLY( _modified_nodes = modified_nodes; )
2826   set_strength_reduction(false);
2827 }
2828 
2829 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2830   if (_loop_opts_cnt > 0) {
2831     while (major_progress() && (_loop_opts_cnt > 0)) {
2832       TracePhase tp(_t_idealLoop);
2833       PhaseIdealLoop::optimize(igvn, mode);
2834       _loop_opts_cnt--;
2835       if (failing())  return false;
2836       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2837     }
2838   }
2839   return true;
2840 }
2841 
2842 // Remove edges from "root" to each SafePoint at a backward branch.
2843 // They were inserted during parsing (see add_safepoint()) to make
2844 // infinite loops without calls or exceptions visible to root, i.e.,
2845 // useful.
2846 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {

2950     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2951   }
2952   assert(!has_vbox_nodes(), "sanity");
2953 
2954   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2955     Compile::TracePhase tp(_t_renumberLive);
2956     igvn_worklist()->ensure_empty(); // should be done with igvn
2957     {
2958       ResourceMark rm;
2959       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2960     }
2961     igvn.reset();
2962     igvn.optimize();
2963     if (failing()) return;
2964   }
2965 
2966   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2967   // safepoints
2968   remove_root_to_sfpts_edges(igvn);
2969 
2970   // Process inline type nodes now that all inlining is over
2971   process_inline_types(igvn);
2972 
2973   adjust_flat_array_access_aliases(igvn);
2974 
2975   if (failing())  return;
2976 
2977   if (C->macro_count() > 0) {
2978     // Eliminate some macro nodes before EA to reduce analysis pressure
2979     PhaseMacroExpand mexp(igvn);
2980     mexp.eliminate_macro_nodes(/* eliminate_locks= */ false);
2981     if (failing()) {
2982       return;
2983     }
2984     igvn.set_delay_transform(false);
2985     print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2986   }
2987 
2988   if (has_loops()) {
2989     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2990   }
2991 
2992   // Perform escape analysis
2993   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2994     if (has_loops()) {
2995       // Cleanup graph (remove dead nodes).
2996       TracePhase tp(_t_idealLoop);
2997       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2998       if (failing()) {
2999         return;
3000       }
3001       print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
3002       if (C->macro_count() > 0) {
3003         // Eliminate some macro nodes before EA to reduce analysis pressure
3004         PhaseMacroExpand mexp(igvn);
3005         mexp.eliminate_macro_nodes(/* eliminate_locks= */ false);
3006         if (failing()) {
3007           return;
3008         }
3009         igvn.set_delay_transform(false);
3010         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
3011       }
3012     }
3013 
3014     bool progress;

3015     do {
3016       ConnectionGraph::do_analysis(this, &igvn);
3017 
3018       if (failing())  return;
3019 
3020       int mcount = macro_count(); // Record number of allocations and locks before IGVN
3021 
3022       // Optimize out fields loads from scalar replaceable allocations.
3023       igvn.optimize();
3024       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
3025 
3026       if (failing()) return;
3027 
3028       if (congraph() != nullptr && macro_count() > 0) {
3029         TracePhase tp(_t_macroEliminate);
3030         PhaseMacroExpand mexp(igvn);
3031         mexp.eliminate_macro_nodes();
3032         if (failing()) {
3033           return;
3034         }
3035         print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
3036 
3037         igvn.set_delay_transform(false);



3038         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
3039       }
3040 
3041       ConnectionGraph::verify_ram_nodes(this, root());
3042       if (failing())  return;
3043 
3044       progress = do_iterative_escape_analysis() &&
3045                  (macro_count() < mcount) &&
3046                  ConnectionGraph::has_candidates(this);
3047       // Try again if candidates exist and made progress
3048       // by removing some allocations and/or locks.
3049     } while (progress);
3050   }
3051 
3052   process_flat_accesses(igvn);
3053   if (failing()) {
3054     return;
3055   }
3056 
3057   // Loop transforms on the ideal graph.  Range Check Elimination,
3058   // peeling, unrolling, etc.
3059 
3060   // Set loop opts counter
3061   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
3062     {
3063       TracePhase tp(_t_idealLoop);
3064       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
3065       _loop_opts_cnt--;
3066       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
3067       if (failing())  return;
3068     }
3069     // Loop opts pass if partial peeling occurred in previous pass
3070     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
3071       TracePhase tp(_t_idealLoop);
3072       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
3073       _loop_opts_cnt--;
3074       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
3075       if (failing())  return;
3076     }

3113   // Loop transforms on the ideal graph.  Range Check Elimination,
3114   // peeling, unrolling, etc.
3115   if (!optimize_loops(igvn, LoopOptsDefault)) {
3116     return;
3117   }
3118 
3119   if (failing())  return;
3120 
3121   C->clear_major_progress(); // ensure that major progress is now clear
3122 
3123   process_for_post_loop_opts_igvn(igvn);
3124 
3125   process_for_merge_stores_igvn(igvn);
3126 
3127   if (failing())  return;
3128 
3129 #ifdef ASSERT
3130   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
3131 #endif
3132 
3133   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
3134 
3135   if (_late_inlines.length() > 0) {
3136     // More opportunities to optimize virtual and MH calls.
3137     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
3138     process_late_inline_calls_no_inline(igvn);
3139   }
3140 
3141   {
3142     TracePhase tp(_t_macroExpand);
3143     PhaseMacroExpand mex(igvn);
3144     // Last attempt to eliminate macro nodes.
3145     mex.eliminate_macro_nodes();
3146     if (failing()) {
3147       return;
3148     }
3149 
3150     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);

3151     // Do not allow new macro nodes once we start to eliminate and expand
3152     C->reset_allow_macro_nodes();
3153     // Last attempt to eliminate macro nodes before expand
3154     mex.eliminate_macro_nodes();
3155     if (failing()) {
3156       return;
3157     }
3158     mex.eliminate_opaque_looplimit_macro_nodes();
3159     if (failing()) {
3160       return;
3161     }
3162     print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
3163     if (mex.expand_macro_nodes()) {
3164       assert(failing(), "must bail out w/ explicit message");
3165       return;
3166     }
3167     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
3168   }
3169 
3170   // Process inline type nodes again and remove them. From here
3171   // on we don't need to keep track of field values anymore.
3172   process_inline_types(igvn, /* remove= */ true);
3173 
3174   {
3175     TracePhase tp(_t_barrierExpand);
3176     if (bs->expand_barriers(this, igvn)) {
3177       assert(failing(), "must bail out w/ explicit message");
3178       return;
3179     }
3180     print_method(PHASE_BARRIER_EXPANSION, 2);
3181   }
3182 
3183   if (C->max_vector_size() > 0) {
3184     C->optimize_logic_cones(igvn);
3185     igvn.optimize();
3186     if (failing()) return;
3187   }
3188 
3189   DEBUG_ONLY( _modified_nodes = nullptr; )
3190   DEBUG_ONLY( _late_inlines.clear(); )
3191 
3192   assert(igvn._worklist.size() == 0, "not empty");









3193  } // (End scope of igvn; run destructor if necessary for asserts.)
3194 
3195  check_no_dead_use();
3196 
3197  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
3198  // to remove hashes to unlock nodes for modifications.
3199  C->node_hash()->clear();
3200 
3201  // A method with only infinite loops has no edges entering loops from root
3202  {
3203    TracePhase tp(_t_graphReshaping);
3204    if (final_graph_reshaping()) {
3205      assert(failing(), "must bail out w/ explicit message");
3206      return;
3207    }
3208  }
3209 
3210  print_method(PHASE_OPTIMIZE_FINISHED, 2);
3211  DEBUG_ONLY(set_phase_optimize_finished();)
3212 }

3918   case Op_CmpD3:
3919   case Op_StoreD:
3920   case Op_LoadD:
3921   case Op_LoadD_unaligned:
3922     frc.inc_double_count();
3923     break;
3924   case Op_Opaque1:              // Remove Opaque Nodes before matching
3925     n->subsume_by(n->in(1), this);
3926     break;
3927   case Op_CallLeafPure: {
3928     // If the pure call is not supported, then lower to a CallLeaf.
3929     if (!Matcher::match_rule_supported(Op_CallLeafPure)) {
3930       CallNode* call = n->as_Call();
3931       CallNode* new_call = new CallLeafNode(call->tf(), call->entry_point(),
3932                                             call->_name, TypeRawPtr::BOTTOM);
3933       new_call->init_req(TypeFunc::Control, call->in(TypeFunc::Control));
3934       new_call->init_req(TypeFunc::I_O, C->top());
3935       new_call->init_req(TypeFunc::Memory, C->top());
3936       new_call->init_req(TypeFunc::ReturnAdr, C->top());
3937       new_call->init_req(TypeFunc::FramePtr, C->top());
3938       for (unsigned int i = TypeFunc::Parms; i < call->tf()->domain_sig()->cnt(); i++) {
3939         new_call->init_req(i, call->in(i));
3940       }
3941       n->subsume_by(new_call, this);
3942     }
3943     frc.inc_call_count();
3944     break;
3945   }
3946   case Op_CallStaticJava:
3947   case Op_CallJava:
3948   case Op_CallDynamicJava:
3949     frc.inc_java_call_count(); // Count java call site;
3950   case Op_CallRuntime:
3951   case Op_CallLeaf:
3952   case Op_CallLeafVector:
3953   case Op_CallLeafNoFP: {
3954     assert (n->is_Call(), "");
3955     CallNode *call = n->as_Call();
3956     // Count call sites where the FP mode bit would have to be flipped.
3957     // Do not count uncommon runtime calls:
3958     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,

3964       int nop = n->Opcode();
3965       // Clone shared simple arguments to uncommon calls, item (1).
3966       if (n->outcnt() > 1 &&
3967           !n->is_Proj() &&
3968           nop != Op_CreateEx &&
3969           nop != Op_CheckCastPP &&
3970           nop != Op_DecodeN &&
3971           nop != Op_DecodeNKlass &&
3972           !n->is_Mem() &&
3973           !n->is_Phi()) {
3974         Node *x = n->clone();
3975         call->set_req(TypeFunc::Parms, x);
3976       }
3977     }
3978     break;
3979   }
3980   case Op_StoreB:
3981   case Op_StoreC:
3982   case Op_StoreI:
3983   case Op_StoreL:
3984   case Op_StoreLSpecial:
3985   case Op_CompareAndSwapB:
3986   case Op_CompareAndSwapS:
3987   case Op_CompareAndSwapI:
3988   case Op_CompareAndSwapL:
3989   case Op_CompareAndSwapP:
3990   case Op_CompareAndSwapN:
3991   case Op_WeakCompareAndSwapB:
3992   case Op_WeakCompareAndSwapS:
3993   case Op_WeakCompareAndSwapI:
3994   case Op_WeakCompareAndSwapL:
3995   case Op_WeakCompareAndSwapP:
3996   case Op_WeakCompareAndSwapN:
3997   case Op_CompareAndExchangeB:
3998   case Op_CompareAndExchangeS:
3999   case Op_CompareAndExchangeI:
4000   case Op_CompareAndExchangeL:
4001   case Op_CompareAndExchangeP:
4002   case Op_CompareAndExchangeN:
4003   case Op_GetAndAddS:
4004   case Op_GetAndAddB:

4514           k->subsume_by(m, this);
4515         }
4516       }
4517     }
4518     break;
4519   }
4520   case Op_CmpUL: {
4521     if (!Matcher::has_match_rule(Op_CmpUL)) {
4522       // No support for unsigned long comparisons
4523       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
4524       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
4525       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
4526       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
4527       Node* andl = new AndLNode(orl, remove_sign_mask);
4528       Node* cmp = new CmpLNode(andl, n->in(2));
4529       n->subsume_by(cmp, this);
4530     }
4531     break;
4532   }
4533 #ifdef ASSERT
4534   case Op_InlineType: {
4535     n->dump(-1);
4536     assert(false, "inline type node was not removed");
4537     break;
4538   }
4539   case Op_ConNKlass: {
4540     const TypePtr* tp = n->as_Type()->type()->make_ptr();
4541     ciKlass* klass = tp->is_klassptr()->exact_klass();
4542     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
4543     break;
4544   }
4545 #endif
4546   default:
4547     assert(!n->is_Call(), "");
4548     assert(!n->is_Mem(), "");
4549     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
4550     break;
4551   }
4552 }
4553 
4554 //------------------------------final_graph_reshaping_walk---------------------
4555 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
4556 // requires that the walk visits a node's inputs before visiting the node.
4557 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
4558   Unique_Node_List sfpt;

4894   }
4895 }
4896 
4897 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4898   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4899 }
4900 
4901 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4902   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4903 }
4904 
4905 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4906   if (holder->is_initialized()) {
4907     return false;
4908   }
4909   if (holder->is_being_initialized()) {
4910     if (accessing_method->holder() == holder) {
4911       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4912       // <init>, or a static method. In all those cases, there was an initialization
4913       // barrier on the holder klass passed.
4914       if (accessing_method->is_class_initializer() ||
4915           accessing_method->is_object_constructor() ||
4916           accessing_method->is_static()) {
4917         return false;
4918       }
4919     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4920       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4921       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4922       // child class can become fully initialized while its parent class is still being initialized.
4923       if (accessing_method->is_class_initializer()) {
4924         return false;
4925       }
4926     }
4927     ciMethod* root = method(); // the root method of compilation
4928     if (root != accessing_method) {
4929       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4930     }
4931   }
4932   return true;
4933 }
4934 
4935 #ifndef PRODUCT
4936 //------------------------------verify_bidirectional_edges---------------------
4937 // For each input edge to a node (ie - for each Use-Def edge), verify that
4938 // there is a corresponding Def-Use edge.
4939 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4940   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4941   uint stack_size = live_nodes() >> 4;
4942   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4943   if (root_and_safepoints != nullptr) {

4973       if (in != nullptr && !in->is_top()) {
4974         // Count instances of `next`
4975         int cnt = 0;
4976         for (uint idx = 0; idx < in->_outcnt; idx++) {
4977           if (in->_out[idx] == n) {
4978             cnt++;
4979           }
4980         }
4981         assert(cnt > 0, "Failed to find Def-Use edge.");
4982         // Check for duplicate edges
4983         // walk the input array downcounting the input edges to n
4984         for (uint j = 0; j < length; j++) {
4985           if (n->in(j) == in) {
4986             cnt--;
4987           }
4988         }
4989         assert(cnt == 0, "Mismatched edge count.");
4990       } else if (in == nullptr) {
4991         assert(i == 0 || i >= n->req() ||
4992                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4993                (n->is_Allocate() && i >= AllocateNode::InlineType) ||
4994                (n->is_Unlock() && i == (n->req() - 1)) ||
4995                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4996               "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges");
4997       } else {
4998         assert(in->is_top(), "sanity");
4999         // Nothing to check.
5000       }
5001     }
5002   }
5003 }
5004 
5005 //------------------------------verify_graph_edges---------------------------
5006 // Walk the Graph and verify that there is a one-to-one correspondence
5007 // between Use-Def edges and Def-Use edges in the graph.
5008 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
5009   if (VerifyGraphEdges) {
5010     Unique_Node_List visited;
5011 
5012     // Call graph walk to check edges
5013     verify_bidirectional_edges(visited, root_and_safepoints);
5014     if (no_dead_code) {
5015       // Now make sure that no visited node is used by an unvisited node.
5016       bool dead_nodes = false;

5127 // (1) subklass is already limited to a subtype of superklass => always ok
5128 // (2) subklass does not overlap with superklass => always fail
5129 // (3) superklass has NO subtypes and we can check with a simple compare.
5130 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
5131   if (skip) {
5132     return SSC_full_test;       // Let caller generate the general case.
5133   }
5134 
5135   if (subk->is_java_subtype_of(superk)) {
5136     return SSC_always_true; // (0) and (1)  this test cannot fail
5137   }
5138 
5139   if (!subk->maybe_java_subtype_of(superk)) {
5140     return SSC_always_false; // (2) true path dead; no dynamic test needed
5141   }
5142 
5143   const Type* superelem = superk;
5144   if (superk->isa_aryklassptr()) {
5145     int ignored;
5146     superelem = superk->is_aryklassptr()->base_element_type(ignored);
5147 
5148     // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays
5149     // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test.
5150     if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() &&
5151         superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) {
5152       return SSC_full_test;
5153     }
5154   }
5155 
5156   if (superelem->isa_instklassptr()) {
5157     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
5158     if (!ik->has_subklass()) {
5159       if (!ik->is_final()) {
5160         // Add a dependency if there is a chance of a later subclass.
5161         dependencies()->assert_leaf_type(ik);
5162       }
5163       if (!superk->maybe_java_subtype_of(subk)) {
5164         return SSC_always_false;
5165       }
5166       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
5167     }
5168   } else {
5169     // A primitive array type has no subtypes.
5170     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
5171   }
5172 
5173   return SSC_full_test;

5972   } else {
5973     _debug_network_printer->update_compiled_method(C->method());
5974   }
5975   tty->print_cr("Method printed over network stream to IGV");
5976   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5977 }
5978 #endif // !PRODUCT
5979 
5980 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5981   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5982     return value;
5983   }
5984   Node* result = nullptr;
5985   if (bt == T_BYTE) {
5986     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5987     result = new RShiftINode(result, phase->intcon(24));
5988   } else if (bt == T_BOOLEAN) {
5989     result = new AndINode(value, phase->intcon(0xFF));
5990   } else if (bt == T_CHAR) {
5991     result = new AndINode(value,phase->intcon(0xFFFF));
5992   } else if (bt == T_FLOAT) {
5993     result = new MoveI2FNode(value);
5994   } else {
5995     assert(bt == T_SHORT, "unexpected narrow type");
5996     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5997     result = new RShiftINode(result, phase->intcon(16));
5998   }
5999   if (transform_res) {
6000     result = phase->transform(result);
6001   }
6002   return result;
6003 }
6004 
6005 void Compile::record_method_not_compilable_oom() {
6006   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
6007 }
6008 
6009 #ifndef PRODUCT
6010 // Collects all the control inputs from nodes on the worklist and from their data dependencies
6011 static void find_candidate_control_inputs(Unique_Node_List& worklist, Unique_Node_List& candidates) {
6012   // Follow non-control edges until we reach CFG nodes
6013   for (uint i = 0; i < worklist.size(); i++) {
< prev index next >