< prev index next >

src/hotspot/share/opto/compile.cpp

Print this page

  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"

  62 #include "opto/locknode.hpp"
  63 #include "opto/loopnode.hpp"
  64 #include "opto/machnode.hpp"
  65 #include "opto/macro.hpp"
  66 #include "opto/matcher.hpp"
  67 #include "opto/mathexactnode.hpp"
  68 #include "opto/memnode.hpp"

  69 #include "opto/mulnode.hpp"
  70 #include "opto/narrowptrnode.hpp"
  71 #include "opto/node.hpp"
  72 #include "opto/opaquenode.hpp"
  73 #include "opto/opcodes.hpp"
  74 #include "opto/output.hpp"
  75 #include "opto/parse.hpp"
  76 #include "opto/phaseX.hpp"
  77 #include "opto/rootnode.hpp"
  78 #include "opto/runtime.hpp"
  79 #include "opto/stringopts.hpp"
  80 #include "opto/type.hpp"
  81 #include "opto/vector.hpp"
  82 #include "opto/vectornode.hpp"
  83 #include "runtime/globals_extension.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/timer.hpp"
  88 #include "utilities/align.hpp"

 388   // as dead to be conservative about the dead node count at any
 389   // given time.
 390   if (!dead->is_Con()) {
 391     record_dead_node(dead->_idx);
 392   }
 393   if (dead->is_macro()) {
 394     remove_macro_node(dead);
 395   }
 396   if (dead->is_expensive()) {
 397     remove_expensive_node(dead);
 398   }
 399   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 400     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 401   }
 402   if (dead->is_ParsePredicate()) {
 403     remove_parse_predicate(dead->as_ParsePredicate());
 404   }
 405   if (dead->for_post_loop_opts_igvn()) {
 406     remove_from_post_loop_opts_igvn(dead);
 407   }



 408   if (dead->for_merge_stores_igvn()) {
 409     remove_from_merge_stores_igvn(dead);
 410   }
 411   if (dead->is_Call()) {
 412     remove_useless_late_inlines(                &_late_inlines, dead);
 413     remove_useless_late_inlines(         &_string_late_inlines, dead);
 414     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 415     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 416 
 417     if (dead->is_CallStaticJava()) {
 418       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 419     }
 420   }
 421   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 422   bs->unregister_potential_barrier_node(dead);
 423 }
 424 
 425 // Disconnect all useless nodes by disconnecting those at the boundary.
 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 427   uint next = 0;

 435     // Use raw traversal of out edges since this code removes out edges
 436     int max = n->outcnt();
 437     for (int j = 0; j < max; ++j) {
 438       Node* child = n->raw_out(j);
 439       if (!useful.member(child)) {
 440         assert(!child->is_top() || child != top(),
 441                "If top is cached in Compile object it is in useful list");
 442         // Only need to remove this out-edge to the useless node
 443         n->raw_del_out(j);
 444         --j;
 445         --max;
 446         if (child->is_data_proj_of_pure_function(n)) {
 447           worklist.push(n);
 448         }
 449       }
 450     }
 451     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 452       assert(useful.member(n->unique_out()), "do not push a useless node");
 453       worklist.push(n->unique_out());
 454     }



 455   }
 456 
 457   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 458   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 459   // Remove useless Template Assertion Predicate opaque nodes
 460   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 461   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 462   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass






 463   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 464   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 465   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 466 #ifdef ASSERT
 467   if (_modified_nodes != nullptr) {
 468     _modified_nodes->remove_useless_nodes(useful.member_set());
 469   }
 470 #endif
 471 
 472   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 473   bs->eliminate_useless_gc_barriers(useful, this);
 474   // clean up the late inline lists
 475   remove_useless_late_inlines(                &_late_inlines, useful);
 476   remove_useless_late_inlines(         &_string_late_inlines, useful);
 477   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 478   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 479   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 480 }
 481 
 482 // ============================================================================

 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 630                  Options options, DirectiveSet* directive)
 631     : Phase(Compiler),
 632       _compile_id(ci_env->compile_id()),
 633       _options(options),
 634       _method(target),
 635       _entry_bci(osr_bci),
 636       _ilt(nullptr),
 637       _stub_function(nullptr),
 638       _stub_name(nullptr),
 639       _stub_id(-1),
 640       _stub_entry_point(nullptr),
 641       _max_node_limit(MaxNodeLimit),
 642       _post_loop_opts_phase(false),
 643       _merge_stores_phase(false),
 644       _allow_macro_nodes(true),
 645       _inlining_progress(false),
 646       _inlining_incrementally(false),
 647       _do_cleanup(false),
 648       _has_reserved_stack_access(target->has_reserved_stack_access()),

 649 #ifndef PRODUCT
 650       _igv_idx(0),
 651       _trace_opto_output(directive->TraceOptoOutputOption),
 652 #endif
 653       _has_method_handle_invokes(false),
 654       _clinit_barrier_on_entry(false),
 655       _stress_seed(0),
 656       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 657       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 658       _env(ci_env),
 659       _directive(directive),
 660       _log(ci_env->log()),
 661       _first_failure_details(nullptr),
 662       _intrinsics(comp_arena(), 0, 0, nullptr),
 663       _macro_nodes(comp_arena(), 8, 0, nullptr),
 664       _parse_predicates(comp_arena(), 8, 0, nullptr),
 665       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 666       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 667       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),

 668       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 669       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 670       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 671       _congraph(nullptr),
 672       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 673           _unique(0),
 674       _dead_node_count(0),
 675       _dead_node_list(comp_arena()),
 676       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 677       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 678       _node_arena(&_node_arena_one),
 679       _mach_constant_base_node(nullptr),
 680       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 681       _initial_gvn(nullptr),
 682       _igvn_worklist(nullptr),
 683       _types(nullptr),
 684       _node_hash(nullptr),
 685       _late_inlines(comp_arena(), 2, 0, nullptr),
 686       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 687       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),

 754 #define MINIMUM_NODE_HASH  1023
 755 
 756   // GVN that will be run immediately on new nodes
 757   uint estimated_size = method()->code_size()*4+64;
 758   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 759   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 760   _types = new (comp_arena()) Type_Array(comp_arena());
 761   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 762   PhaseGVN gvn;
 763   set_initial_gvn(&gvn);
 764 
 765   { // Scope for timing the parser
 766     TracePhase tp(_t_parser);
 767 
 768     // Put top into the hash table ASAP.
 769     initial_gvn()->transform(top());
 770 
 771     // Set up tf(), start(), and find a CallGenerator.
 772     CallGenerator* cg = nullptr;
 773     if (is_osr_compilation()) {
 774       const TypeTuple *domain = StartOSRNode::osr_domain();
 775       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 776       init_tf(TypeFunc::make(domain, range));
 777       StartNode* s = new StartOSRNode(root(), domain);
 778       initial_gvn()->set_type_bottom(s);
 779       verify_start(s);
 780       cg = CallGenerator::for_osr(method(), entry_bci());
 781     } else {
 782       // Normal case.
 783       init_tf(TypeFunc::make(method()));
 784       StartNode* s = new StartNode(root(), tf()->domain());
 785       initial_gvn()->set_type_bottom(s);
 786       verify_start(s);
 787       float past_uses = method()->interpreter_invocation_count();
 788       float expected_uses = past_uses;
 789       cg = CallGenerator::for_inline(method(), expected_uses);
 790     }
 791     if (failing())  return;
 792     if (cg == nullptr) {
 793       const char* reason = InlineTree::check_can_parse(method());
 794       assert(reason != nullptr, "expect reason for parse failure");
 795       stringStream ss;
 796       ss.print("cannot parse method: %s", reason);
 797       record_method_not_compilable(ss.as_string());
 798       return;
 799     }
 800 
 801     gvn.set_type(root(), root()->bottom_type());
 802 
 803     JVMState* jvms = build_start_state(start(), tf());
 804     if ((jvms = cg->generate(jvms)) == nullptr) {

 865     print_ideal_ir("print_ideal");
 866   }
 867 #endif
 868 
 869 #ifdef ASSERT
 870   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 871   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 872 #endif
 873 
 874   // Dump compilation data to replay it.
 875   if (directive->DumpReplayOption) {
 876     env()->dump_replay_data(_compile_id);
 877   }
 878   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 879     env()->dump_inline_data(_compile_id);
 880   }
 881 
 882   // Now that we know the size of all the monitors we can add a fixed slot
 883   // for the original deopt pc.
 884   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);










 885   set_fixed_slots(next_slot);
 886 
 887   // Compute when to use implicit null checks. Used by matching trap based
 888   // nodes and NullCheck optimization.
 889   set_allowed_deopt_reasons();
 890 
 891   // Now generate code
 892   Code_Gen();
 893 }
 894 
 895 //------------------------------Compile----------------------------------------
 896 // Compile a runtime stub
 897 Compile::Compile(ciEnv* ci_env,
 898                  TypeFunc_generator generator,
 899                  address stub_function,
 900                  const char* stub_name,
 901                  int stub_id,
 902                  int is_fancy_jump,
 903                  bool pass_tls,
 904                  bool return_pc,
 905                  DirectiveSet* directive)
 906     : Phase(Compiler),
 907       _compile_id(0),
 908       _options(Options::for_runtime_stub()),
 909       _method(nullptr),
 910       _entry_bci(InvocationEntryBci),
 911       _stub_function(stub_function),
 912       _stub_name(stub_name),
 913       _stub_id(stub_id),
 914       _stub_entry_point(nullptr),
 915       _max_node_limit(MaxNodeLimit),
 916       _post_loop_opts_phase(false),
 917       _merge_stores_phase(false),
 918       _allow_macro_nodes(true),
 919       _inlining_progress(false),
 920       _inlining_incrementally(false),
 921       _has_reserved_stack_access(false),

 922 #ifndef PRODUCT
 923       _igv_idx(0),
 924       _trace_opto_output(directive->TraceOptoOutputOption),
 925 #endif
 926       _has_method_handle_invokes(false),
 927       _clinit_barrier_on_entry(false),
 928       _stress_seed(0),
 929       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 930       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 931       _env(ci_env),
 932       _directive(directive),
 933       _log(ci_env->log()),
 934       _first_failure_details(nullptr),
 935       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 936       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 937       _congraph(nullptr),
 938       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 939           _unique(0),
 940       _dead_node_count(0),
 941       _dead_node_list(comp_arena()),

1054   _fixed_slots = 0;
1055   set_has_split_ifs(false);
1056   set_has_loops(false); // first approximation
1057   set_has_stringbuilder(false);
1058   set_has_boxed_value(false);
1059   _trap_can_recompile = false;  // no traps emitted yet
1060   _major_progress = true; // start out assuming good things will happen
1061   set_has_unsafe_access(false);
1062   set_max_vector_size(0);
1063   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1064   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1065   set_decompile_count(0);
1066 
1067 #ifndef PRODUCT
1068   _phase_counter = 0;
1069   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1070 #endif
1071 
1072   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1073   _loop_opts_cnt = LoopOptsCount;




1074   set_do_inlining(Inline);
1075   set_max_inline_size(MaxInlineSize);
1076   set_freq_inline_size(FreqInlineSize);
1077   set_do_scheduling(OptoScheduling);
1078 
1079   set_do_vector_loop(false);
1080   set_has_monitors(false);
1081   set_has_scoped_access(false);
1082 
1083   if (AllowVectorizeOnDemand) {
1084     if (has_method() && _directive->VectorizeOption) {
1085       set_do_vector_loop(true);
1086       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1087     } else if (has_method() && method()->name() != nullptr &&
1088                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1089       set_do_vector_loop(true);
1090     }
1091   }
1092   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1093   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})

1338 
1339   // Known instance (scalarizable allocation) alias only with itself.
1340   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1341                        tj->is_oopptr()->is_known_instance();
1342 
1343   // Process weird unsafe references.
1344   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1345     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1346     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1347     tj = TypeOopPtr::BOTTOM;
1348     ptr = tj->ptr();
1349     offset = tj->offset();
1350   }
1351 
1352   // Array pointers need some flattening
1353   const TypeAryPtr* ta = tj->isa_aryptr();
1354   if (ta && ta->is_stable()) {
1355     // Erase stability property for alias analysis.
1356     tj = ta = ta->cast_to_stable(false);
1357   }









1358   if( ta && is_known_inst ) {
1359     if ( offset != Type::OffsetBot &&
1360          offset > arrayOopDesc::length_offset_in_bytes() ) {
1361       offset = Type::OffsetBot; // Flatten constant access into array body only
1362       tj = ta = ta->
1363               remove_speculative()->
1364               cast_to_ptr_type(ptr)->
1365               with_offset(offset);
1366     }
1367   } else if (ta) {
1368     // For arrays indexed by constant indices, we flatten the alias
1369     // space to include all of the array body.  Only the header, klass
1370     // and array length can be accessed un-aliased.


1371     if( offset != Type::OffsetBot ) {
1372       if( ta->const_oop() ) { // MethodData* or Method*
1373         offset = Type::OffsetBot;   // Flatten constant access into array body
1374         tj = ta = ta->
1375                 remove_speculative()->
1376                 cast_to_ptr_type(ptr)->
1377                 cast_to_exactness(false)->
1378                 with_offset(offset);
1379       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1380         // range is OK as-is.
1381         tj = ta = TypeAryPtr::RANGE;
1382       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1383         tj = TypeInstPtr::KLASS; // all klass loads look alike
1384         ta = TypeAryPtr::RANGE; // generic ignored junk
1385         ptr = TypePtr::BotPTR;
1386       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1387         tj = TypeInstPtr::MARK;
1388         ta = TypeAryPtr::RANGE; // generic ignored junk
1389         ptr = TypePtr::BotPTR;
1390       } else {                  // Random constant offset into array body
1391         offset = Type::OffsetBot;   // Flatten constant access into array body
1392         tj = ta = ta->
1393                 remove_speculative()->
1394                 cast_to_ptr_type(ptr)->
1395                 cast_to_exactness(false)->
1396                 with_offset(offset);
1397       }
1398     }
1399     // Arrays of fixed size alias with arrays of unknown size.
1400     if (ta->size() != TypeInt::POS) {
1401       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1402       tj = ta = ta->
1403               remove_speculative()->
1404               cast_to_ptr_type(ptr)->
1405               with_ary(tary)->
1406               cast_to_exactness(false);
1407     }
1408     // Arrays of known objects become arrays of unknown objects.
1409     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1410       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1411       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1412     }
1413     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1414       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1415       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);





1416     }
1417     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1418     // cannot be distinguished by bytecode alone.
1419     if (ta->elem() == TypeInt::BOOL) {
1420       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1421       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1423     }
1424     // During the 2nd round of IterGVN, NotNull castings are removed.
1425     // Make sure the Bottom and NotNull variants alias the same.
1426     // Also, make sure exact and non-exact variants alias the same.
1427     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1428       tj = ta = ta->
1429               remove_speculative()->
1430               cast_to_ptr_type(TypePtr::BotPTR)->
1431               cast_to_exactness(false)->
1432               with_offset(offset);
1433     }
1434   }
1435 
1436   // Oop pointers need some flattening
1437   const TypeInstPtr *to = tj->isa_instptr();
1438   if (to && to != TypeOopPtr::BOTTOM) {
1439     ciInstanceKlass* ik = to->instance_klass();
1440     if( ptr == TypePtr::Constant ) {
1441       if (ik != ciEnv::current()->Class_klass() ||
1442           offset < ik->layout_helper_size_in_bytes()) {

1452     } else if( is_known_inst ) {
1453       tj = to; // Keep NotNull and klass_is_exact for instance type
1454     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1455       // During the 2nd round of IterGVN, NotNull castings are removed.
1456       // Make sure the Bottom and NotNull variants alias the same.
1457       // Also, make sure exact and non-exact variants alias the same.
1458       tj = to = to->
1459               remove_speculative()->
1460               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1461               cast_to_ptr_type(TypePtr::BotPTR)->
1462               cast_to_exactness(false);
1463     }
1464     if (to->speculative() != nullptr) {
1465       tj = to = to->remove_speculative();
1466     }
1467     // Canonicalize the holder of this field
1468     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1469       // First handle header references such as a LoadKlassNode, even if the
1470       // object's klass is unloaded at compile time (4965979).
1471       if (!is_known_inst) { // Do it only for non-instance types
1472         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1473       }
1474     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1475       // Static fields are in the space above the normal instance
1476       // fields in the java.lang.Class instance.
1477       if (ik != ciEnv::current()->Class_klass()) {
1478         to = nullptr;
1479         tj = TypeOopPtr::BOTTOM;
1480         offset = tj->offset();
1481       }
1482     } else {
1483       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1484       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1485       assert(tj->offset() == offset, "no change to offset expected");
1486       bool xk = to->klass_is_exact();
1487       int instance_id = to->instance_id();
1488 
1489       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1490       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1491       // its interfaces are included.
1492       if (xk && ik->equals(canonical_holder)) {
1493         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1494       } else {
1495         assert(xk || !is_known_inst, "Known instance should be exact type");
1496         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1497       }
1498     }
1499   }
1500 
1501   // Klass pointers to object array klasses need some flattening
1502   const TypeKlassPtr *tk = tj->isa_klassptr();
1503   if( tk ) {
1504     // If we are referencing a field within a Klass, we need
1505     // to assume the worst case of an Object.  Both exact and
1506     // inexact types must flatten to the same alias class so
1507     // use NotNull as the PTR.
1508     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1509       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1510                                        env()->Object_klass(),
1511                                        offset);
1512     }
1513 
1514     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1515       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1516       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1517         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1518       } else {
1519         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1520       }
1521     }
1522 
1523     // Check for precise loads from the primary supertype array and force them
1524     // to the supertype cache alias index.  Check for generic array loads from
1525     // the primary supertype array and also force them to the supertype cache
1526     // alias index.  Since the same load can reach both, we need to merge
1527     // these 2 disparate memories into the same alias class.  Since the
1528     // primary supertype array is read-only, there's no chance of confusion
1529     // where we bypass an array load and an array store.
1530     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1531     if (offset == Type::OffsetBot ||
1532         (offset >= primary_supers_offset &&
1533          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1534         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1535       offset = in_bytes(Klass::secondary_super_cache_offset());
1536       tj = tk = tk->with_offset(offset);
1537     }
1538   }
1539 
1540   // Flatten all Raw pointers together.
1541   if (tj->base() == Type::RawPtr)
1542     tj = TypeRawPtr::BOTTOM;

1632   intptr_t key = (intptr_t) adr_type;
1633   key ^= key >> logAliasCacheSize;
1634   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1635 }
1636 
1637 
1638 //-----------------------------grow_alias_types--------------------------------
1639 void Compile::grow_alias_types() {
1640   const int old_ats  = _max_alias_types; // how many before?
1641   const int new_ats  = old_ats;          // how many more?
1642   const int grow_ats = old_ats+new_ats;  // how many now?
1643   _max_alias_types = grow_ats;
1644   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1645   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1646   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1647   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1648 }
1649 
1650 
1651 //--------------------------------find_alias_type------------------------------
1652 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1653   if (!do_aliasing()) {
1654     return alias_type(AliasIdxBot);
1655   }
1656 
1657   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1658   if (ace->_adr_type == adr_type) {
1659     return alias_type(ace->_index);



1660   }
1661 
1662   // Handle special cases.
1663   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1664   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1665 
1666   // Do it the slow way.
1667   const TypePtr* flat = flatten_alias_type(adr_type);
1668 
1669 #ifdef ASSERT
1670   {
1671     ResourceMark rm;
1672     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1673            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1674     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1675            Type::str(adr_type));
1676     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1677       const TypeOopPtr* foop = flat->is_oopptr();
1678       // Scalarizable allocations have exact klass always.
1679       bool exact = !foop->klass_is_exact() || foop->is_known_instance();

1689     if (alias_type(i)->adr_type() == flat) {
1690       idx = i;
1691       break;
1692     }
1693   }
1694 
1695   if (idx == AliasIdxTop) {
1696     if (no_create)  return nullptr;
1697     // Grow the array if necessary.
1698     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1699     // Add a new alias type.
1700     idx = _num_alias_types++;
1701     _alias_types[idx]->Init(idx, flat);
1702     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1703     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1704     if (flat->isa_instptr()) {
1705       if (flat->offset() == java_lang_Class::klass_offset()
1706           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1707         alias_type(idx)->set_rewritable(false);
1708     }

1709     if (flat->isa_aryptr()) {
1710 #ifdef ASSERT
1711       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1712       // (T_BYTE has the weakest alignment and size restrictions...)
1713       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1714 #endif

1715       if (flat->offset() == TypePtr::OffsetBot) {
1716         alias_type(idx)->set_element(flat->is_aryptr()->elem());







1717       }
1718     }
1719     if (flat->isa_klassptr()) {
1720       if (UseCompactObjectHeaders) {
1721         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1722           alias_type(idx)->set_rewritable(false);
1723       }
1724       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1725         alias_type(idx)->set_rewritable(false);
1726       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1727         alias_type(idx)->set_rewritable(false);
1728       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1729         alias_type(idx)->set_rewritable(false);
1730       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1731         alias_type(idx)->set_rewritable(false);


1732       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1733         alias_type(idx)->set_rewritable(false);
1734     }
1735     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1736     // but the base pointer type is not distinctive enough to identify
1737     // references into JavaThread.)
1738 
1739     // Check for final fields.
1740     const TypeInstPtr* tinst = flat->isa_instptr();
1741     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1742       ciField* field;
1743       if (tinst->const_oop() != nullptr &&
1744           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1745           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1746         // static field
1747         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1748         field = k->get_field_by_offset(tinst->offset(), true);




1749       } else {
1750         ciInstanceKlass *k = tinst->instance_klass();
1751         field = k->get_field_by_offset(tinst->offset(), false);
1752       }
1753       assert(field == nullptr ||
1754              original_field == nullptr ||
1755              (field->holder() == original_field->holder() &&
1756               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1757               field->is_static() == original_field->is_static()), "wrong field?");
1758       // Set field() and is_rewritable() attributes.
1759       if (field != nullptr)  alias_type(idx)->set_field(field);







1760     }
1761   }
1762 
1763   // Fill the cache for next time.
1764   ace->_adr_type = adr_type;
1765   ace->_index    = idx;
1766   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");

1767 
1768   // Might as well try to fill the cache for the flattened version, too.
1769   AliasCacheEntry* face = probe_alias_cache(flat);
1770   if (face->_adr_type == nullptr) {
1771     face->_adr_type = flat;
1772     face->_index    = idx;
1773     assert(alias_type(flat) == alias_type(idx), "flat type must work too");

1774   }
1775 
1776   return alias_type(idx);
1777 }
1778 
1779 
1780 Compile::AliasType* Compile::alias_type(ciField* field) {
1781   const TypeOopPtr* t;
1782   if (field->is_static())
1783     t = TypeInstPtr::make(field->holder()->java_mirror());
1784   else
1785     t = TypeOopPtr::make_from_klass_raw(field->holder());
1786   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1787   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1788   return atp;
1789 }
1790 
1791 
1792 //------------------------------have_alias_type--------------------------------
1793 bool Compile::have_alias_type(const TypePtr* adr_type) {

1875   assert(!C->major_progress(), "not cleared");
1876 
1877   if (_for_post_loop_igvn.length() > 0) {
1878     while (_for_post_loop_igvn.length() > 0) {
1879       Node* n = _for_post_loop_igvn.pop();
1880       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1881       igvn._worklist.push(n);
1882     }
1883     igvn.optimize();
1884     if (failing()) return;
1885     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1886     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1887 
1888     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1889     if (C->major_progress()) {
1890       C->clear_major_progress(); // ensure that major progress is now clear
1891     }
1892   }
1893 }
1894 














































































































































































































































































































































































































1895 void Compile::record_for_merge_stores_igvn(Node* n) {
1896   if (!n->for_merge_stores_igvn()) {
1897     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1898     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1899     _for_merge_stores_igvn.append(n);
1900   }
1901 }
1902 
1903 void Compile::remove_from_merge_stores_igvn(Node* n) {
1904   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1905   _for_merge_stores_igvn.remove(n);
1906 }
1907 
1908 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1909 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1910 // the stores, and we merge the wrong sequence of stores.
1911 // Example:
1912 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1913 // Apply MergeStores:
1914 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI

1993       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1994       Bytecodes::Code c = iter.cur_bc();
1995       Node* lhs = nullptr;
1996       Node* rhs = nullptr;
1997       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1998         lhs = unc->peek_operand(0);
1999         rhs = unc->peek_operand(1);
2000       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2001         lhs = unc->peek_operand(0);
2002       }
2003 
2004       ResourceMark rm;
2005       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2006       assert(live_locals.is_valid(), "broken liveness info");
2007       int len = (int)live_locals.size();
2008 
2009       for (int i = 0; i < len; i++) {
2010         Node* local = unc->local(jvms, i);
2011         // kill local using the liveness of next_bci.
2012         // give up when the local looks like an operand to secure reexecution.
2013         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2014           uint idx = jvms->locoff() + i;
2015 #ifdef ASSERT
2016           if (PrintOpto && Verbose) {
2017             tty->print("[unstable_if] kill local#%d: ", idx);
2018             local->dump();
2019             tty->cr();
2020           }
2021 #endif
2022           igvn.replace_input_of(unc, idx, top());
2023           modified = true;
2024         }
2025       }
2026     }
2027 
2028     // keep the mondified trap for late query
2029     if (modified) {
2030       trap->set_modified();
2031     } else {
2032       _unstable_if_traps.delete_at(i);
2033     }
2034   }
2035   igvn.optimize();
2036 }
2037 
2038 // StringOpts and late inlining of string methods
2039 void Compile::inline_string_calls(bool parse_time) {
2040   {
2041     // remove useless nodes to make the usage analysis simpler
2042     ResourceMark rm;
2043     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2044   }
2045 
2046   {
2047     ResourceMark rm;
2048     print_method(PHASE_BEFORE_STRINGOPTS, 3);

2214 
2215   if (_string_late_inlines.length() > 0) {
2216     assert(has_stringbuilder(), "inconsistent");
2217 
2218     inline_string_calls(false);
2219 
2220     if (failing())  return;
2221 
2222     inline_incrementally_cleanup(igvn);
2223   }
2224 
2225   set_inlining_incrementally(false);
2226 }
2227 
2228 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2229   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2230   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2231   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2232   // as if "inlining_incrementally() == true" were set.
2233   assert(inlining_incrementally() == false, "not allowed");
2234   assert(_modified_nodes == nullptr, "not allowed");



2235   assert(_late_inlines.length() > 0, "sanity");
2236 
2237   while (_late_inlines.length() > 0) {
2238     igvn_worklist()->ensure_empty(); // should be done with igvn
2239 
2240     while (inline_incrementally_one()) {
2241       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2242     }
2243     if (failing())  return;
2244 
2245     inline_incrementally_cleanup(igvn);
2246   }

2247 }
2248 
2249 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2250   if (_loop_opts_cnt > 0) {
2251     while (major_progress() && (_loop_opts_cnt > 0)) {
2252       TracePhase tp(_t_idealLoop);
2253       PhaseIdealLoop::optimize(igvn, mode);
2254       _loop_opts_cnt--;
2255       if (failing())  return false;
2256       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2257     }
2258   }
2259   return true;
2260 }
2261 
2262 // Remove edges from "root" to each SafePoint at a backward branch.
2263 // They were inserted during parsing (see add_safepoint()) to make
2264 // infinite loops without calls or exceptions visible to root, i.e.,
2265 // useful.
2266 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {

2371     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2372   }
2373   assert(!has_vbox_nodes(), "sanity");
2374 
2375   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2376     Compile::TracePhase tp(_t_renumberLive);
2377     igvn_worklist()->ensure_empty(); // should be done with igvn
2378     {
2379       ResourceMark rm;
2380       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2381     }
2382     igvn.reset_from_gvn(initial_gvn());
2383     igvn.optimize();
2384     if (failing()) return;
2385   }
2386 
2387   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2388   // safepoints
2389   remove_root_to_sfpts_edges(igvn);
2390 





2391   if (failing())  return;
2392 











2393   if (has_loops()) {
2394     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2395   }
2396 
2397   // Perform escape analysis
2398   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2399     if (has_loops()) {
2400       // Cleanup graph (remove dead nodes).
2401       TracePhase tp(_t_idealLoop);
2402       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2403       if (failing())  return;













2404     }

2405     bool progress;
2406     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2407     do {
2408       ConnectionGraph::do_analysis(this, &igvn);
2409 
2410       if (failing())  return;
2411 
2412       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2413 
2414       // Optimize out fields loads from scalar replaceable allocations.
2415       igvn.optimize();
2416       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2417 
2418       if (failing()) return;
2419 
2420       if (congraph() != nullptr && macro_count() > 0) {
2421         TracePhase tp(_t_macroEliminate);
2422         PhaseMacroExpand mexp(igvn);
2423         mexp.eliminate_macro_nodes();
2424         if (failing()) return;


2425         print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2426 
2427         igvn.set_delay_transform(false);
2428         igvn.optimize();
2429         if (failing()) return;
2430 
2431         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2432       }
2433 
2434       ConnectionGraph::verify_ram_nodes(this, root());
2435       if (failing())  return;
2436 
2437       progress = do_iterative_escape_analysis() &&
2438                  (macro_count() < mcount) &&
2439                  ConnectionGraph::has_candidates(this);
2440       // Try again if candidates exist and made progress
2441       // by removing some allocations and/or locks.
2442     } while (progress);
2443   }
2444 
2445   // Loop transforms on the ideal graph.  Range Check Elimination,
2446   // peeling, unrolling, etc.
2447 
2448   // Set loop opts counter
2449   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2450     {

2501   // Loop transforms on the ideal graph.  Range Check Elimination,
2502   // peeling, unrolling, etc.
2503   if (!optimize_loops(igvn, LoopOptsDefault)) {
2504     return;
2505   }
2506 
2507   if (failing())  return;
2508 
2509   C->clear_major_progress(); // ensure that major progress is now clear
2510 
2511   process_for_post_loop_opts_igvn(igvn);
2512 
2513   process_for_merge_stores_igvn(igvn);
2514 
2515   if (failing())  return;
2516 
2517 #ifdef ASSERT
2518   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2519 #endif
2520 








2521   {
2522     TracePhase tp(_t_macroExpand);







2523     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2524     PhaseMacroExpand  mex(igvn);
2525     // Do not allow new macro nodes once we start to eliminate and expand
2526     C->reset_allow_macro_nodes();
2527     // Last attempt to eliminate macro nodes before expand
2528     mex.eliminate_macro_nodes();
2529     if (failing()) {
2530       return;
2531     }
2532     mex.eliminate_opaque_looplimit_macro_nodes();
2533     if (failing()) {
2534       return;
2535     }
2536     print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2537     if (mex.expand_macro_nodes()) {
2538       assert(failing(), "must bail out w/ explicit message");
2539       return;
2540     }
2541     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2542   }
2543 




2544   {
2545     TracePhase tp(_t_barrierExpand);
2546     if (bs->expand_barriers(this, igvn)) {
2547       assert(failing(), "must bail out w/ explicit message");
2548       return;
2549     }
2550     print_method(PHASE_BARRIER_EXPANSION, 2);
2551   }
2552 
2553   if (C->max_vector_size() > 0) {
2554     C->optimize_logic_cones(igvn);
2555     igvn.optimize();
2556     if (failing()) return;
2557   }
2558 
2559   DEBUG_ONLY( _modified_nodes = nullptr; )

2560 
2561   assert(igvn._worklist.size() == 0, "not empty");
2562 
2563   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2564 
2565   if (_late_inlines.length() > 0) {
2566     // More opportunities to optimize virtual and MH calls.
2567     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2568     process_late_inline_calls_no_inline(igvn);
2569     if (failing())  return;
2570   }
2571  } // (End scope of igvn; run destructor if necessary for asserts.)
2572 
2573  check_no_dead_use();
2574 
2575  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2576  // to remove hashes to unlock nodes for modifications.
2577  C->node_hash()->clear();
2578 
2579  // A method with only infinite loops has no edges entering loops from root
2580  {
2581    TracePhase tp(_t_graphReshaping);
2582    if (final_graph_reshaping()) {
2583      assert(failing(), "must bail out w/ explicit message");
2584      return;
2585    }
2586  }
2587 
2588  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2589  DEBUG_ONLY(set_phase_optimize_finished();)
2590 }

3323       int nop = n->Opcode();
3324       // Clone shared simple arguments to uncommon calls, item (1).
3325       if (n->outcnt() > 1 &&
3326           !n->is_Proj() &&
3327           nop != Op_CreateEx &&
3328           nop != Op_CheckCastPP &&
3329           nop != Op_DecodeN &&
3330           nop != Op_DecodeNKlass &&
3331           !n->is_Mem() &&
3332           !n->is_Phi()) {
3333         Node *x = n->clone();
3334         call->set_req(TypeFunc::Parms, x);
3335       }
3336     }
3337     break;
3338   }
3339   case Op_StoreB:
3340   case Op_StoreC:
3341   case Op_StoreI:
3342   case Op_StoreL:

3343   case Op_CompareAndSwapB:
3344   case Op_CompareAndSwapS:
3345   case Op_CompareAndSwapI:
3346   case Op_CompareAndSwapL:
3347   case Op_CompareAndSwapP:
3348   case Op_CompareAndSwapN:
3349   case Op_WeakCompareAndSwapB:
3350   case Op_WeakCompareAndSwapS:
3351   case Op_WeakCompareAndSwapI:
3352   case Op_WeakCompareAndSwapL:
3353   case Op_WeakCompareAndSwapP:
3354   case Op_WeakCompareAndSwapN:
3355   case Op_CompareAndExchangeB:
3356   case Op_CompareAndExchangeS:
3357   case Op_CompareAndExchangeI:
3358   case Op_CompareAndExchangeL:
3359   case Op_CompareAndExchangeP:
3360   case Op_CompareAndExchangeN:
3361   case Op_GetAndAddS:
3362   case Op_GetAndAddB:

3866           k->subsume_by(m, this);
3867         }
3868       }
3869     }
3870     break;
3871   }
3872   case Op_CmpUL: {
3873     if (!Matcher::has_match_rule(Op_CmpUL)) {
3874       // No support for unsigned long comparisons
3875       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3876       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3877       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3878       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3879       Node* andl = new AndLNode(orl, remove_sign_mask);
3880       Node* cmp = new CmpLNode(andl, n->in(2));
3881       n->subsume_by(cmp, this);
3882     }
3883     break;
3884   }
3885 #ifdef ASSERT





3886   case Op_ConNKlass: {
3887     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3888     ciKlass* klass = tp->is_klassptr()->exact_klass();
3889     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3890     break;
3891   }
3892 #endif
3893   default:
3894     assert(!n->is_Call(), "");
3895     assert(!n->is_Mem(), "");
3896     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3897     break;
3898   }
3899 }
3900 
3901 //------------------------------final_graph_reshaping_walk---------------------
3902 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3903 // requires that the walk visits a node's inputs before visiting the node.
3904 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3905   Unique_Node_List sfpt;

4241   }
4242 }
4243 
4244 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4245   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4246 }
4247 
4248 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4249   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4250 }
4251 
4252 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4253   if (holder->is_initialized()) {
4254     return false;
4255   }
4256   if (holder->is_being_initialized()) {
4257     if (accessing_method->holder() == holder) {
4258       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4259       // <init>, or a static method. In all those cases, there was an initialization
4260       // barrier on the holder klass passed.
4261       if (accessing_method->is_static_initializer() ||
4262           accessing_method->is_object_initializer() ||
4263           accessing_method->is_static()) {
4264         return false;
4265       }
4266     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4267       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4268       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4269       // child class can become fully initialized while its parent class is still being initialized.
4270       if (accessing_method->is_static_initializer()) {
4271         return false;
4272       }
4273     }
4274     ciMethod* root = method(); // the root method of compilation
4275     if (root != accessing_method) {
4276       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4277     }
4278   }
4279   return true;
4280 }
4281 
4282 #ifndef PRODUCT
4283 //------------------------------verify_bidirectional_edges---------------------
4284 // For each input edge to a node (ie - for each Use-Def edge), verify that
4285 // there is a corresponding Def-Use edge.
4286 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4287   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4288   uint stack_size = live_nodes() >> 4;
4289   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4290   if (root_and_safepoints != nullptr) {

4320       if (in != nullptr && !in->is_top()) {
4321         // Count instances of `next`
4322         int cnt = 0;
4323         for (uint idx = 0; idx < in->_outcnt; idx++) {
4324           if (in->_out[idx] == n) {
4325             cnt++;
4326           }
4327         }
4328         assert(cnt > 0, "Failed to find Def-Use edge.");
4329         // Check for duplicate edges
4330         // walk the input array downcounting the input edges to n
4331         for (uint j = 0; j < length; j++) {
4332           if (n->in(j) == in) {
4333             cnt--;
4334           }
4335         }
4336         assert(cnt == 0, "Mismatched edge count.");
4337       } else if (in == nullptr) {
4338         assert(i == 0 || i >= n->req() ||
4339                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||

4340                (n->is_Unlock() && i == (n->req() - 1)) ||
4341                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4342               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4343       } else {
4344         assert(in->is_top(), "sanity");
4345         // Nothing to check.
4346       }
4347     }
4348   }
4349 }
4350 
4351 //------------------------------verify_graph_edges---------------------------
4352 // Walk the Graph and verify that there is a one-to-one correspondence
4353 // between Use-Def edges and Def-Use edges in the graph.
4354 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4355   if (VerifyGraphEdges) {
4356     Unique_Node_List visited;
4357 
4358     // Call graph walk to check edges
4359     verify_bidirectional_edges(visited, root_and_safepoints);
4360     if (no_dead_code) {
4361       // Now make sure that no visited node is used by an unvisited node.
4362       bool dead_nodes = false;

4473 // (1) subklass is already limited to a subtype of superklass => always ok
4474 // (2) subklass does not overlap with superklass => always fail
4475 // (3) superklass has NO subtypes and we can check with a simple compare.
4476 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4477   if (skip) {
4478     return SSC_full_test;       // Let caller generate the general case.
4479   }
4480 
4481   if (subk->is_java_subtype_of(superk)) {
4482     return SSC_always_true; // (0) and (1)  this test cannot fail
4483   }
4484 
4485   if (!subk->maybe_java_subtype_of(superk)) {
4486     return SSC_always_false; // (2) true path dead; no dynamic test needed
4487   }
4488 
4489   const Type* superelem = superk;
4490   if (superk->isa_aryklassptr()) {
4491     int ignored;
4492     superelem = superk->is_aryklassptr()->base_element_type(ignored);







4493   }
4494 
4495   if (superelem->isa_instklassptr()) {
4496     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4497     if (!ik->has_subklass()) {
4498       if (!ik->is_final()) {
4499         // Add a dependency if there is a chance of a later subclass.
4500         dependencies()->assert_leaf_type(ik);
4501       }
4502       if (!superk->maybe_java_subtype_of(subk)) {
4503         return SSC_always_false;
4504       }
4505       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4506     }
4507   } else {
4508     // A primitive array type has no subtypes.
4509     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4510   }
4511 
4512   return SSC_full_test;

4956       const Type* t = igvn.type_or_null(n);
4957       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4958       if (n->is_Type()) {
4959         t = n->as_Type()->type();
4960         assert(t == t->remove_speculative(), "no more speculative types");
4961       }
4962       // Iterate over outs - endless loops is unreachable from below
4963       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4964         Node *m = n->fast_out(i);
4965         if (not_a_node(m)) {
4966           continue;
4967         }
4968         worklist.push(m);
4969       }
4970     }
4971     igvn.check_no_speculative_types();
4972 #endif
4973   }
4974 }
4975 





















4976 // Auxiliary methods to support randomized stressing/fuzzing.
4977 
4978 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4979   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4980     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4981     FLAG_SET_ERGO(StressSeed, _stress_seed);
4982   } else {
4983     _stress_seed = StressSeed;
4984   }
4985   if (_log != nullptr) {
4986     _log->elem("stress_test seed='%u'", _stress_seed);
4987   }
4988 }
4989 
4990 int Compile::random() {
4991   _stress_seed = os::next_random(_stress_seed);
4992   return static_cast<int>(_stress_seed);
4993 }
4994 
4995 // This method can be called the arbitrary number of times, with current count

5311   } else {
5312     _debug_network_printer->update_compiled_method(C->method());
5313   }
5314   tty->print_cr("Method printed over network stream to IGV");
5315   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5316 }
5317 #endif // !PRODUCT
5318 
5319 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5320   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5321     return value;
5322   }
5323   Node* result = nullptr;
5324   if (bt == T_BYTE) {
5325     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5326     result = new RShiftINode(result, phase->intcon(24));
5327   } else if (bt == T_BOOLEAN) {
5328     result = new AndINode(value, phase->intcon(0xFF));
5329   } else if (bt == T_CHAR) {
5330     result = new AndINode(value,phase->intcon(0xFFFF));


5331   } else {
5332     assert(bt == T_SHORT, "unexpected narrow type");
5333     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5334     result = new RShiftINode(result, phase->intcon(16));
5335   }
5336   if (transform_res) {
5337     result = phase->transform(result);
5338   }
5339   return result;
5340 }
5341 
5342 void Compile::record_method_not_compilable_oom() {
5343   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5344 }

  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"
  62 #include "opto/inlinetypenode.hpp"
  63 #include "opto/locknode.hpp"
  64 #include "opto/loopnode.hpp"
  65 #include "opto/machnode.hpp"
  66 #include "opto/macro.hpp"
  67 #include "opto/matcher.hpp"
  68 #include "opto/mathexactnode.hpp"
  69 #include "opto/memnode.hpp"
  70 #include "opto/movenode.hpp"
  71 #include "opto/mulnode.hpp"
  72 #include "opto/narrowptrnode.hpp"
  73 #include "opto/node.hpp"
  74 #include "opto/opaquenode.hpp"
  75 #include "opto/opcodes.hpp"
  76 #include "opto/output.hpp"
  77 #include "opto/parse.hpp"
  78 #include "opto/phaseX.hpp"
  79 #include "opto/rootnode.hpp"
  80 #include "opto/runtime.hpp"
  81 #include "opto/stringopts.hpp"
  82 #include "opto/type.hpp"
  83 #include "opto/vector.hpp"
  84 #include "opto/vectornode.hpp"
  85 #include "runtime/globals_extension.hpp"
  86 #include "runtime/sharedRuntime.hpp"
  87 #include "runtime/signature.hpp"
  88 #include "runtime/stubRoutines.hpp"
  89 #include "runtime/timer.hpp"
  90 #include "utilities/align.hpp"

 390   // as dead to be conservative about the dead node count at any
 391   // given time.
 392   if (!dead->is_Con()) {
 393     record_dead_node(dead->_idx);
 394   }
 395   if (dead->is_macro()) {
 396     remove_macro_node(dead);
 397   }
 398   if (dead->is_expensive()) {
 399     remove_expensive_node(dead);
 400   }
 401   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 402     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 403   }
 404   if (dead->is_ParsePredicate()) {
 405     remove_parse_predicate(dead->as_ParsePredicate());
 406   }
 407   if (dead->for_post_loop_opts_igvn()) {
 408     remove_from_post_loop_opts_igvn(dead);
 409   }
 410   if (dead->is_InlineType()) {
 411     remove_inline_type(dead);
 412   }
 413   if (dead->for_merge_stores_igvn()) {
 414     remove_from_merge_stores_igvn(dead);
 415   }
 416   if (dead->is_Call()) {
 417     remove_useless_late_inlines(                &_late_inlines, dead);
 418     remove_useless_late_inlines(         &_string_late_inlines, dead);
 419     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 420     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 421 
 422     if (dead->is_CallStaticJava()) {
 423       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 424     }
 425   }
 426   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 427   bs->unregister_potential_barrier_node(dead);
 428 }
 429 
 430 // Disconnect all useless nodes by disconnecting those at the boundary.
 431 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 432   uint next = 0;

 440     // Use raw traversal of out edges since this code removes out edges
 441     int max = n->outcnt();
 442     for (int j = 0; j < max; ++j) {
 443       Node* child = n->raw_out(j);
 444       if (!useful.member(child)) {
 445         assert(!child->is_top() || child != top(),
 446                "If top is cached in Compile object it is in useful list");
 447         // Only need to remove this out-edge to the useless node
 448         n->raw_del_out(j);
 449         --j;
 450         --max;
 451         if (child->is_data_proj_of_pure_function(n)) {
 452           worklist.push(n);
 453         }
 454       }
 455     }
 456     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 457       assert(useful.member(n->unique_out()), "do not push a useless node");
 458       worklist.push(n->unique_out());
 459     }
 460     if (n->outcnt() == 0) {
 461       worklist.push(n);
 462     }
 463   }
 464 
 465   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 466   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 467   // Remove useless Template Assertion Predicate opaque nodes
 468   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 469   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 470   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 471   remove_useless_nodes(_inline_type_nodes,  useful); // remove useless inline type nodes
 472 #ifdef ASSERT
 473   if (_modified_nodes != nullptr) {
 474     _modified_nodes->remove_useless_nodes(useful.member_set());
 475   }
 476 #endif
 477   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 478   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 479   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 480 #ifdef ASSERT
 481   if (_modified_nodes != nullptr) {
 482     _modified_nodes->remove_useless_nodes(useful.member_set());
 483   }
 484 #endif
 485 
 486   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 487   bs->eliminate_useless_gc_barriers(useful, this);
 488   // clean up the late inline lists
 489   remove_useless_late_inlines(                &_late_inlines, useful);
 490   remove_useless_late_inlines(         &_string_late_inlines, useful);
 491   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 492   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 493   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 494 }
 495 
 496 // ============================================================================

 643 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 644                  Options options, DirectiveSet* directive)
 645     : Phase(Compiler),
 646       _compile_id(ci_env->compile_id()),
 647       _options(options),
 648       _method(target),
 649       _entry_bci(osr_bci),
 650       _ilt(nullptr),
 651       _stub_function(nullptr),
 652       _stub_name(nullptr),
 653       _stub_id(-1),
 654       _stub_entry_point(nullptr),
 655       _max_node_limit(MaxNodeLimit),
 656       _post_loop_opts_phase(false),
 657       _merge_stores_phase(false),
 658       _allow_macro_nodes(true),
 659       _inlining_progress(false),
 660       _inlining_incrementally(false),
 661       _do_cleanup(false),
 662       _has_reserved_stack_access(target->has_reserved_stack_access()),
 663       _has_circular_inline_type(false),
 664 #ifndef PRODUCT
 665       _igv_idx(0),
 666       _trace_opto_output(directive->TraceOptoOutputOption),
 667 #endif
 668       _has_method_handle_invokes(false),
 669       _clinit_barrier_on_entry(false),
 670       _stress_seed(0),
 671       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 672       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 673       _env(ci_env),
 674       _directive(directive),
 675       _log(ci_env->log()),
 676       _first_failure_details(nullptr),
 677       _intrinsics(comp_arena(), 0, 0, nullptr),
 678       _macro_nodes(comp_arena(), 8, 0, nullptr),
 679       _parse_predicates(comp_arena(), 8, 0, nullptr),
 680       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 681       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 682       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 683       _inline_type_nodes (comp_arena(), 8, 0, nullptr),
 684       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 685       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 686       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 687       _congraph(nullptr),
 688       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 689           _unique(0),
 690       _dead_node_count(0),
 691       _dead_node_list(comp_arena()),
 692       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 693       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 694       _node_arena(&_node_arena_one),
 695       _mach_constant_base_node(nullptr),
 696       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 697       _initial_gvn(nullptr),
 698       _igvn_worklist(nullptr),
 699       _types(nullptr),
 700       _node_hash(nullptr),
 701       _late_inlines(comp_arena(), 2, 0, nullptr),
 702       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 703       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),

 770 #define MINIMUM_NODE_HASH  1023
 771 
 772   // GVN that will be run immediately on new nodes
 773   uint estimated_size = method()->code_size()*4+64;
 774   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 775   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 776   _types = new (comp_arena()) Type_Array(comp_arena());
 777   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 778   PhaseGVN gvn;
 779   set_initial_gvn(&gvn);
 780 
 781   { // Scope for timing the parser
 782     TracePhase tp(_t_parser);
 783 
 784     // Put top into the hash table ASAP.
 785     initial_gvn()->transform(top());
 786 
 787     // Set up tf(), start(), and find a CallGenerator.
 788     CallGenerator* cg = nullptr;
 789     if (is_osr_compilation()) {
 790       init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true));
 791       StartNode* s = new StartOSRNode(root(), tf()->domain_sig());


 792       initial_gvn()->set_type_bottom(s);
 793       verify_start(s);
 794       cg = CallGenerator::for_osr(method(), entry_bci());
 795     } else {
 796       // Normal case.
 797       init_tf(TypeFunc::make(method()));
 798       StartNode* s = new StartNode(root(), tf()->domain_cc());
 799       initial_gvn()->set_type_bottom(s);
 800       verify_start(s);
 801       float past_uses = method()->interpreter_invocation_count();
 802       float expected_uses = past_uses;
 803       cg = CallGenerator::for_inline(method(), expected_uses);
 804     }
 805     if (failing())  return;
 806     if (cg == nullptr) {
 807       const char* reason = InlineTree::check_can_parse(method());
 808       assert(reason != nullptr, "expect reason for parse failure");
 809       stringStream ss;
 810       ss.print("cannot parse method: %s", reason);
 811       record_method_not_compilable(ss.as_string());
 812       return;
 813     }
 814 
 815     gvn.set_type(root(), root()->bottom_type());
 816 
 817     JVMState* jvms = build_start_state(start(), tf());
 818     if ((jvms = cg->generate(jvms)) == nullptr) {

 879     print_ideal_ir("print_ideal");
 880   }
 881 #endif
 882 
 883 #ifdef ASSERT
 884   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 885   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 886 #endif
 887 
 888   // Dump compilation data to replay it.
 889   if (directive->DumpReplayOption) {
 890     env()->dump_replay_data(_compile_id);
 891   }
 892   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 893     env()->dump_inline_data(_compile_id);
 894   }
 895 
 896   // Now that we know the size of all the monitors we can add a fixed slot
 897   // for the original deopt pc.
 898   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 899   if (needs_stack_repair()) {
 900     // One extra slot for the special stack increment value
 901     next_slot += 2;
 902   }
 903   // TODO 8284443 Only reserve extra slot if needed
 904   if (InlineTypeReturnedAsFields) {
 905     // One extra slot to hold the null marker for a nullable
 906     // inline type return if we run out of registers.
 907     next_slot += 2;
 908   }
 909   set_fixed_slots(next_slot);
 910 
 911   // Compute when to use implicit null checks. Used by matching trap based
 912   // nodes and NullCheck optimization.
 913   set_allowed_deopt_reasons();
 914 
 915   // Now generate code
 916   Code_Gen();
 917 }
 918 
 919 //------------------------------Compile----------------------------------------
 920 // Compile a runtime stub
 921 Compile::Compile(ciEnv* ci_env,
 922                  TypeFunc_generator generator,
 923                  address stub_function,
 924                  const char* stub_name,
 925                  int stub_id,
 926                  int is_fancy_jump,
 927                  bool pass_tls,
 928                  bool return_pc,
 929                  DirectiveSet* directive)
 930     : Phase(Compiler),
 931       _compile_id(0),
 932       _options(Options::for_runtime_stub()),
 933       _method(nullptr),
 934       _entry_bci(InvocationEntryBci),
 935       _stub_function(stub_function),
 936       _stub_name(stub_name),
 937       _stub_id(stub_id),
 938       _stub_entry_point(nullptr),
 939       _max_node_limit(MaxNodeLimit),
 940       _post_loop_opts_phase(false),
 941       _merge_stores_phase(false),
 942       _allow_macro_nodes(true),
 943       _inlining_progress(false),
 944       _inlining_incrementally(false),
 945       _has_reserved_stack_access(false),
 946       _has_circular_inline_type(false),
 947 #ifndef PRODUCT
 948       _igv_idx(0),
 949       _trace_opto_output(directive->TraceOptoOutputOption),
 950 #endif
 951       _has_method_handle_invokes(false),
 952       _clinit_barrier_on_entry(false),
 953       _stress_seed(0),
 954       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 955       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 956       _env(ci_env),
 957       _directive(directive),
 958       _log(ci_env->log()),
 959       _first_failure_details(nullptr),
 960       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 961       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 962       _congraph(nullptr),
 963       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 964           _unique(0),
 965       _dead_node_count(0),
 966       _dead_node_list(comp_arena()),

1079   _fixed_slots = 0;
1080   set_has_split_ifs(false);
1081   set_has_loops(false); // first approximation
1082   set_has_stringbuilder(false);
1083   set_has_boxed_value(false);
1084   _trap_can_recompile = false;  // no traps emitted yet
1085   _major_progress = true; // start out assuming good things will happen
1086   set_has_unsafe_access(false);
1087   set_max_vector_size(0);
1088   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1089   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1090   set_decompile_count(0);
1091 
1092 #ifndef PRODUCT
1093   _phase_counter = 0;
1094   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1095 #endif
1096 
1097   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1098   _loop_opts_cnt = LoopOptsCount;
1099   _has_flat_accesses = false;
1100   _flat_accesses_share_alias = true;
1101   _scalarize_in_safepoints = false;
1102 
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107 
1108   set_do_vector_loop(false);
1109   set_has_monitors(false);
1110   set_has_scoped_access(false);
1111 
1112   if (AllowVectorizeOnDemand) {
1113     if (has_method() && _directive->VectorizeOption) {
1114       set_do_vector_loop(true);
1115       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1116     } else if (has_method() && method()->name() != nullptr &&
1117                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1118       set_do_vector_loop(true);
1119     }
1120   }
1121   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1122   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})

1367 
1368   // Known instance (scalarizable allocation) alias only with itself.
1369   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1370                        tj->is_oopptr()->is_known_instance();
1371 
1372   // Process weird unsafe references.
1373   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1374     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1375     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1376     tj = TypeOopPtr::BOTTOM;
1377     ptr = tj->ptr();
1378     offset = tj->offset();
1379   }
1380 
1381   // Array pointers need some flattening
1382   const TypeAryPtr* ta = tj->isa_aryptr();
1383   if (ta && ta->is_stable()) {
1384     // Erase stability property for alias analysis.
1385     tj = ta = ta->cast_to_stable(false);
1386   }
1387   if (ta && ta->is_not_flat()) {
1388     // Erase not flat property for alias analysis.
1389     tj = ta = ta->cast_to_not_flat(false);
1390   }
1391   if (ta && ta->is_not_null_free()) {
1392     // Erase not null free property for alias analysis.
1393     tj = ta = ta->cast_to_not_null_free(false);
1394   }
1395 
1396   if( ta && is_known_inst ) {
1397     if ( offset != Type::OffsetBot &&
1398          offset > arrayOopDesc::length_offset_in_bytes() ) {
1399       offset = Type::OffsetBot; // Flatten constant access into array body only
1400       tj = ta = ta->
1401               remove_speculative()->
1402               cast_to_ptr_type(ptr)->
1403               with_offset(offset);
1404     }
1405   } else if (ta) {
1406     // For arrays indexed by constant indices, we flatten the alias
1407     // space to include all of the array body.  Only the header, klass
1408     // and array length can be accessed un-aliased.
1409     // For flat inline type array, each field has its own slice so
1410     // we must include the field offset.
1411     if( offset != Type::OffsetBot ) {
1412       if( ta->const_oop() ) { // MethodData* or Method*
1413         offset = Type::OffsetBot;   // Flatten constant access into array body
1414         tj = ta = ta->
1415                 remove_speculative()->
1416                 cast_to_ptr_type(ptr)->
1417                 cast_to_exactness(false)->
1418                 with_offset(offset);
1419       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1420         // range is OK as-is.
1421         tj = ta = TypeAryPtr::RANGE;
1422       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1423         tj = TypeInstPtr::KLASS; // all klass loads look alike
1424         ta = TypeAryPtr::RANGE; // generic ignored junk
1425         ptr = TypePtr::BotPTR;
1426       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1427         tj = TypeInstPtr::MARK;
1428         ta = TypeAryPtr::RANGE; // generic ignored junk
1429         ptr = TypePtr::BotPTR;
1430       } else {                  // Random constant offset into array body
1431         offset = Type::OffsetBot;   // Flatten constant access into array body
1432         tj = ta = ta->
1433                 remove_speculative()->
1434                 cast_to_ptr_type(ptr)->
1435                 cast_to_exactness(false)->
1436                 with_offset(offset);
1437       }
1438     }
1439     // Arrays of fixed size alias with arrays of unknown size.
1440     if (ta->size() != TypeInt::POS) {
1441       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1442       tj = ta = ta->
1443               remove_speculative()->
1444               cast_to_ptr_type(ptr)->
1445               with_ary(tary)->
1446               cast_to_exactness(false);
1447     }
1448     // Arrays of known objects become arrays of unknown objects.
1449     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1450       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1451       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset());
1452     }
1453     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1454       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1455       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset());
1456     }
1457     // Initially all flattened array accesses share a single slice
1458     if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flat_accesses_share_alias) {
1459       const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true);
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), Type::Offset(Type::OffsetBot));
1461     }
1462     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1463     // cannot be distinguished by bytecode alone.
1464     if (ta->elem() == TypeInt::BOOL) {
1465       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1466       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1467       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1468     }
1469     // During the 2nd round of IterGVN, NotNull castings are removed.
1470     // Make sure the Bottom and NotNull variants alias the same.
1471     // Also, make sure exact and non-exact variants alias the same.
1472     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1473       tj = ta = ta->
1474               remove_speculative()->
1475               cast_to_ptr_type(TypePtr::BotPTR)->
1476               cast_to_exactness(false)->
1477               with_offset(offset);
1478     }
1479   }
1480 
1481   // Oop pointers need some flattening
1482   const TypeInstPtr *to = tj->isa_instptr();
1483   if (to && to != TypeOopPtr::BOTTOM) {
1484     ciInstanceKlass* ik = to->instance_klass();
1485     if( ptr == TypePtr::Constant ) {
1486       if (ik != ciEnv::current()->Class_klass() ||
1487           offset < ik->layout_helper_size_in_bytes()) {

1497     } else if( is_known_inst ) {
1498       tj = to; // Keep NotNull and klass_is_exact for instance type
1499     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1500       // During the 2nd round of IterGVN, NotNull castings are removed.
1501       // Make sure the Bottom and NotNull variants alias the same.
1502       // Also, make sure exact and non-exact variants alias the same.
1503       tj = to = to->
1504               remove_speculative()->
1505               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1506               cast_to_ptr_type(TypePtr::BotPTR)->
1507               cast_to_exactness(false);
1508     }
1509     if (to->speculative() != nullptr) {
1510       tj = to = to->remove_speculative();
1511     }
1512     // Canonicalize the holder of this field
1513     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1514       // First handle header references such as a LoadKlassNode, even if the
1515       // object's klass is unloaded at compile time (4965979).
1516       if (!is_known_inst) { // Do it only for non-instance types
1517         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset));
1518       }
1519     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1520       // Static fields are in the space above the normal instance
1521       // fields in the java.lang.Class instance.
1522       if (ik != ciEnv::current()->Class_klass()) {
1523         to = nullptr;
1524         tj = TypeOopPtr::BOTTOM;
1525         offset = tj->offset();
1526       }
1527     } else {
1528       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1529       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1530       assert(tj->offset() == offset, "no change to offset expected");
1531       bool xk = to->klass_is_exact();
1532       int instance_id = to->instance_id();
1533 
1534       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1535       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1536       // its interfaces are included.
1537       if (xk && ik->equals(canonical_holder)) {
1538         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id), "exact type should be canonical type");
1539       } else {
1540         assert(xk || !is_known_inst, "Known instance should be exact type");
1541         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id);
1542       }
1543     }
1544   }
1545 
1546   // Klass pointers to object array klasses need some flattening
1547   const TypeKlassPtr *tk = tj->isa_klassptr();
1548   if( tk ) {
1549     // If we are referencing a field within a Klass, we need
1550     // to assume the worst case of an Object.  Both exact and
1551     // inexact types must flatten to the same alias class so
1552     // use NotNull as the PTR.
1553     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1554       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1555                                        env()->Object_klass(),
1556                                        Type::Offset(offset));
1557     }
1558 
1559     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1560       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1561       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1562         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset));
1563       } else {
1564         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_flat(), tk->is_null_free(), tk->is_atomic(), tk->is_aryklassptr()->is_vm_type());
1565       }
1566     }

1567     // Check for precise loads from the primary supertype array and force them
1568     // to the supertype cache alias index.  Check for generic array loads from
1569     // the primary supertype array and also force them to the supertype cache
1570     // alias index.  Since the same load can reach both, we need to merge
1571     // these 2 disparate memories into the same alias class.  Since the
1572     // primary supertype array is read-only, there's no chance of confusion
1573     // where we bypass an array load and an array store.
1574     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1575     if (offset == Type::OffsetBot ||
1576         (offset >= primary_supers_offset &&
1577          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1578         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1579       offset = in_bytes(Klass::secondary_super_cache_offset());
1580       tj = tk = tk->with_offset(offset);
1581     }
1582   }
1583 
1584   // Flatten all Raw pointers together.
1585   if (tj->base() == Type::RawPtr)
1586     tj = TypeRawPtr::BOTTOM;

1676   intptr_t key = (intptr_t) adr_type;
1677   key ^= key >> logAliasCacheSize;
1678   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1679 }
1680 
1681 
1682 //-----------------------------grow_alias_types--------------------------------
1683 void Compile::grow_alias_types() {
1684   const int old_ats  = _max_alias_types; // how many before?
1685   const int new_ats  = old_ats;          // how many more?
1686   const int grow_ats = old_ats+new_ats;  // how many now?
1687   _max_alias_types = grow_ats;
1688   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1689   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1690   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1691   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1692 }
1693 
1694 
1695 //--------------------------------find_alias_type------------------------------
1696 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) {
1697   if (!do_aliasing()) {
1698     return alias_type(AliasIdxBot);
1699   }
1700 
1701   AliasCacheEntry* ace = nullptr;
1702   if (!uncached) {
1703     ace = probe_alias_cache(adr_type);
1704     if (ace->_adr_type == adr_type) {
1705       return alias_type(ace->_index);
1706     }
1707   }
1708 
1709   // Handle special cases.
1710   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1711   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1712 
1713   // Do it the slow way.
1714   const TypePtr* flat = flatten_alias_type(adr_type);
1715 
1716 #ifdef ASSERT
1717   {
1718     ResourceMark rm;
1719     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1720            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1721     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1722            Type::str(adr_type));
1723     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1724       const TypeOopPtr* foop = flat->is_oopptr();
1725       // Scalarizable allocations have exact klass always.
1726       bool exact = !foop->klass_is_exact() || foop->is_known_instance();

1736     if (alias_type(i)->adr_type() == flat) {
1737       idx = i;
1738       break;
1739     }
1740   }
1741 
1742   if (idx == AliasIdxTop) {
1743     if (no_create)  return nullptr;
1744     // Grow the array if necessary.
1745     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1746     // Add a new alias type.
1747     idx = _num_alias_types++;
1748     _alias_types[idx]->Init(idx, flat);
1749     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1750     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1751     if (flat->isa_instptr()) {
1752       if (flat->offset() == java_lang_Class::klass_offset()
1753           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1754         alias_type(idx)->set_rewritable(false);
1755     }
1756     ciField* field = nullptr;
1757     if (flat->isa_aryptr()) {
1758 #ifdef ASSERT
1759       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1760       // (T_BYTE has the weakest alignment and size restrictions...)
1761       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1762 #endif
1763       const Type* elemtype = flat->is_aryptr()->elem();
1764       if (flat->offset() == TypePtr::OffsetBot) {
1765         alias_type(idx)->set_element(elemtype);
1766       }
1767       int field_offset = flat->is_aryptr()->field_offset().get();
1768       if (flat->is_flat() &&
1769           field_offset != Type::OffsetBot) {
1770         ciInlineKlass* vk = elemtype->inline_klass();
1771         field_offset += vk->payload_offset();
1772         field = vk->get_field_by_offset(field_offset, false);
1773       }
1774     }
1775     if (flat->isa_klassptr()) {
1776       if (UseCompactObjectHeaders) {
1777         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1778           alias_type(idx)->set_rewritable(false);
1779       }
1780       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1781         alias_type(idx)->set_rewritable(false);
1782       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1783         alias_type(idx)->set_rewritable(false);
1784       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1785         alias_type(idx)->set_rewritable(false);
1786       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1787         alias_type(idx)->set_rewritable(false);
1788       if (flat->offset() == in_bytes(Klass::layout_helper_offset()))
1789         alias_type(idx)->set_rewritable(false);
1790       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1791         alias_type(idx)->set_rewritable(false);
1792     }
1793     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1794     // but the base pointer type is not distinctive enough to identify
1795     // references into JavaThread.)
1796 
1797     // Check for final fields.
1798     const TypeInstPtr* tinst = flat->isa_instptr();
1799     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {

1800       if (tinst->const_oop() != nullptr &&
1801           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1802           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1803         // static field
1804         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1805         field = k->get_field_by_offset(tinst->offset(), true);
1806       } else if (tinst->is_inlinetypeptr()) {
1807         // Inline type field
1808         ciInlineKlass* vk = tinst->inline_klass();
1809         field = vk->get_field_by_offset(tinst->offset(), false);
1810       } else {
1811         ciInstanceKlass *k = tinst->instance_klass();
1812         field = k->get_field_by_offset(tinst->offset(), false);
1813       }
1814     }
1815     assert(field == nullptr ||
1816            original_field == nullptr ||
1817            (field->holder() == original_field->holder() &&
1818             field->offset_in_bytes() == original_field->offset_in_bytes() &&
1819             field->is_static() == original_field->is_static()), "wrong field?");
1820     // Set field() and is_rewritable() attributes.
1821     if (field != nullptr) {
1822       alias_type(idx)->set_field(field);
1823       if (flat->isa_aryptr()) {
1824         // Fields of flat arrays are rewritable although they are declared final
1825         assert(flat->is_flat(), "must be a flat array");
1826         alias_type(idx)->set_rewritable(true);
1827       }
1828     }
1829   }
1830 
1831   // Fill the cache for next time.
1832   if (!uncached) {
1833     ace->_adr_type = adr_type;
1834     ace->_index    = idx;
1835     assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1836 
1837     // Might as well try to fill the cache for the flattened version, too.
1838     AliasCacheEntry* face = probe_alias_cache(flat);
1839     if (face->_adr_type == nullptr) {
1840       face->_adr_type = flat;
1841       face->_index    = idx;
1842       assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1843     }
1844   }
1845 
1846   return alias_type(idx);
1847 }
1848 
1849 
1850 Compile::AliasType* Compile::alias_type(ciField* field) {
1851   const TypeOopPtr* t;
1852   if (field->is_static())
1853     t = TypeInstPtr::make(field->holder()->java_mirror());
1854   else
1855     t = TypeOopPtr::make_from_klass_raw(field->holder());
1856   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1857   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1858   return atp;
1859 }
1860 
1861 
1862 //------------------------------have_alias_type--------------------------------
1863 bool Compile::have_alias_type(const TypePtr* adr_type) {

1945   assert(!C->major_progress(), "not cleared");
1946 
1947   if (_for_post_loop_igvn.length() > 0) {
1948     while (_for_post_loop_igvn.length() > 0) {
1949       Node* n = _for_post_loop_igvn.pop();
1950       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1951       igvn._worklist.push(n);
1952     }
1953     igvn.optimize();
1954     if (failing()) return;
1955     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1956     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1957 
1958     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1959     if (C->major_progress()) {
1960       C->clear_major_progress(); // ensure that major progress is now clear
1961     }
1962   }
1963 }
1964 
1965 void Compile::add_inline_type(Node* n) {
1966   assert(n->is_InlineType(), "unexpected node");
1967   _inline_type_nodes.push(n);
1968 }
1969 
1970 void Compile::remove_inline_type(Node* n) {
1971   assert(n->is_InlineType(), "unexpected node");
1972   if (_inline_type_nodes.contains(n)) {
1973     _inline_type_nodes.remove(n);
1974   }
1975 }
1976 
1977 // Does the return value keep otherwise useless inline type allocations alive?
1978 static bool return_val_keeps_allocations_alive(Node* ret_val) {
1979   ResourceMark rm;
1980   Unique_Node_List wq;
1981   wq.push(ret_val);
1982   bool some_allocations = false;
1983   for (uint i = 0; i < wq.size(); i++) {
1984     Node* n = wq.at(i);
1985     if (n->outcnt() > 1) {
1986       // Some other use for the allocation
1987       return false;
1988     } else if (n->is_InlineType()) {
1989       wq.push(n->in(1));
1990     } else if (n->is_Phi()) {
1991       for (uint j = 1; j < n->req(); j++) {
1992         wq.push(n->in(j));
1993       }
1994     } else if (n->is_CheckCastPP() &&
1995                n->in(1)->is_Proj() &&
1996                n->in(1)->in(0)->is_Allocate()) {
1997       some_allocations = true;
1998     } else if (n->is_CheckCastPP()) {
1999       wq.push(n->in(1));
2000     }
2001   }
2002   return some_allocations;
2003 }
2004 
2005 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) {
2006   // Make sure that the return value does not keep an otherwise unused allocation alive
2007   if (tf()->returns_inline_type_as_fields()) {
2008     Node* ret = nullptr;
2009     for (uint i = 1; i < root()->req(); i++) {
2010       Node* in = root()->in(i);
2011       if (in->Opcode() == Op_Return) {
2012         assert(ret == nullptr, "only one return");
2013         ret = in;
2014       }
2015     }
2016     if (ret != nullptr) {
2017       Node* ret_val = ret->in(TypeFunc::Parms);
2018       if (igvn.type(ret_val)->isa_oopptr() &&
2019           return_val_keeps_allocations_alive(ret_val)) {
2020         igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn));
2021         assert(ret_val->outcnt() == 0, "should be dead now");
2022         igvn.remove_dead_node(ret_val);
2023       }
2024     }
2025   }
2026   if (_inline_type_nodes.length() == 0) {
2027     return;
2028   }
2029   // Scalarize inline types in safepoint debug info.
2030   // Delay this until all inlining is over to avoid getting inconsistent debug info.
2031   set_scalarize_in_safepoints(true);
2032   for (int i = _inline_type_nodes.length()-1; i >= 0; i--) {
2033     InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType();
2034     vt->make_scalar_in_safepoints(&igvn);
2035     igvn.record_for_igvn(vt);
2036   }
2037   if (remove) {
2038     // Remove inline type nodes by replacing them with their oop input
2039     while (_inline_type_nodes.length() > 0) {
2040       InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType();
2041       if (vt->outcnt() == 0) {
2042         igvn.remove_dead_node(vt);
2043         continue;
2044       }
2045       for (DUIterator i = vt->outs(); vt->has_out(i); i++) {
2046         DEBUG_ONLY(bool must_be_buffered = false);
2047         Node* u = vt->out(i);
2048         // Check if any users are blackholes. If so, rewrite them to use either the
2049         // allocated buffer, or individual components, instead of the inline type node
2050         // that goes away.
2051         if (u->is_Blackhole()) {
2052           BlackholeNode* bh = u->as_Blackhole();
2053 
2054           // Unlink the old input
2055           int idx = bh->find_edge(vt);
2056           assert(idx != -1, "The edge should be there");
2057           bh->del_req(idx);
2058           --i;
2059 
2060           if (vt->is_allocated(&igvn)) {
2061             // Already has the allocated instance, blackhole that
2062             bh->add_req(vt->get_oop());
2063           } else {
2064             // Not allocated yet, blackhole the components
2065             for (uint c = 0; c < vt->field_count(); c++) {
2066               bh->add_req(vt->field_value(c));
2067             }
2068           }
2069 
2070           // Node modified, record for IGVN
2071           igvn.record_for_igvn(bh);
2072         }
2073 #ifdef ASSERT
2074         // Verify that inline type is buffered when replacing by oop
2075         else if (u->is_InlineType()) {
2076           // InlineType uses don't need buffering because they are about to be replaced as well
2077         } else if (u->is_Phi()) {
2078           // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through
2079         } else {
2080           must_be_buffered = true;
2081         }
2082         if (must_be_buffered && !vt->is_allocated(&igvn)) {
2083           vt->dump(0);
2084           u->dump(0);
2085           assert(false, "Should have been buffered");
2086         }
2087 #endif
2088       }
2089       igvn.replace_node(vt, vt->get_oop());
2090     }
2091   }
2092   igvn.optimize();
2093 }
2094 
2095 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) {
2096   if (!_has_flat_accesses) {
2097     return;
2098   }
2099   // Initially, all flat array accesses share the same slice to
2100   // keep dependencies with Object[] array accesses (that could be
2101   // to a flat array) correct. We're done with parsing so we
2102   // now know all flat array accesses in this compile
2103   // unit. Let's move flat array accesses to their own slice,
2104   // one per element field. This should help memory access
2105   // optimizations.
2106   ResourceMark rm;
2107   Unique_Node_List wq;
2108   wq.push(root());
2109 
2110   Node_List mergememnodes;
2111   Node_List memnodes;
2112 
2113   // Alias index currently shared by all flat memory accesses
2114   int index = get_alias_index(TypeAryPtr::INLINES);
2115 
2116   // Find MergeMem nodes and flat array accesses
2117   for (uint i = 0; i < wq.size(); i++) {
2118     Node* n = wq.at(i);
2119     if (n->is_Mem()) {
2120       const TypePtr* adr_type = nullptr;
2121       adr_type = get_adr_type(get_alias_index(n->adr_type()));
2122       if (adr_type == TypeAryPtr::INLINES) {
2123         memnodes.push(n);
2124       }
2125     } else if (n->is_MergeMem()) {
2126       MergeMemNode* mm = n->as_MergeMem();
2127       if (mm->memory_at(index) != mm->base_memory()) {
2128         mergememnodes.push(n);
2129       }
2130     }
2131     for (uint j = 0; j < n->req(); j++) {
2132       Node* m = n->in(j);
2133       if (m != nullptr) {
2134         wq.push(m);
2135       }
2136     }
2137   }
2138 
2139   if (memnodes.size() > 0) {
2140     _flat_accesses_share_alias = false;
2141 
2142     // We are going to change the slice for the flat array
2143     // accesses so we need to clear the cache entries that refer to
2144     // them.
2145     for (uint i = 0; i < AliasCacheSize; i++) {
2146       AliasCacheEntry* ace = &_alias_cache[i];
2147       if (ace->_adr_type != nullptr &&
2148           ace->_adr_type->is_flat()) {
2149         ace->_adr_type = nullptr;
2150         ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop
2151       }
2152     }
2153 
2154     // Find what aliases we are going to add
2155     int start_alias = num_alias_types()-1;
2156     int stop_alias = 0;
2157 
2158     for (uint i = 0; i < memnodes.size(); i++) {
2159       Node* m = memnodes.at(i);
2160       const TypePtr* adr_type = nullptr;
2161       adr_type = m->adr_type();
2162 #ifdef ASSERT
2163       m->as_Mem()->set_adr_type(adr_type);
2164 #endif
2165       int idx = get_alias_index(adr_type);
2166       start_alias = MIN2(start_alias, idx);
2167       stop_alias = MAX2(stop_alias, idx);
2168     }
2169 
2170     assert(stop_alias >= start_alias, "should have expanded aliases");
2171 
2172     Node_Stack stack(0);
2173 #ifdef ASSERT
2174     VectorSet seen(Thread::current()->resource_area());
2175 #endif
2176     // Now let's fix the memory graph so each flat array access
2177     // is moved to the right slice. Start from the MergeMem nodes.
2178     uint last = unique();
2179     for (uint i = 0; i < mergememnodes.size(); i++) {
2180       MergeMemNode* current = mergememnodes.at(i)->as_MergeMem();
2181       Node* n = current->memory_at(index);
2182       MergeMemNode* mm = nullptr;
2183       do {
2184         // Follow memory edges through memory accesses, phis and
2185         // narrow membars and push nodes on the stack. Once we hit
2186         // bottom memory, we pop element off the stack one at a
2187         // time, in reverse order, and move them to the right slice
2188         // by changing their memory edges.
2189         if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) {
2190           assert(!seen.test_set(n->_idx), "");
2191           // Uses (a load for instance) will need to be moved to the
2192           // right slice as well and will get a new memory state
2193           // that we don't know yet. The use could also be the
2194           // backedge of a loop. We put a place holder node between
2195           // the memory node and its uses. We replace that place
2196           // holder with the correct memory state once we know it,
2197           // i.e. when nodes are popped off the stack. Using the
2198           // place holder make the logic work in the presence of
2199           // loops.
2200           if (n->outcnt() > 1) {
2201             Node* place_holder = nullptr;
2202             assert(!n->has_out_with(Op_Node), "");
2203             for (DUIterator k = n->outs(); n->has_out(k); k++) {
2204               Node* u = n->out(k);
2205               if (u != current && u->_idx < last) {
2206                 bool success = false;
2207                 for (uint l = 0; l < u->req(); l++) {
2208                   if (!stack.is_empty() && u == stack.node() && l == stack.index()) {
2209                     continue;
2210                   }
2211                   Node* in = u->in(l);
2212                   if (in == n) {
2213                     if (place_holder == nullptr) {
2214                       place_holder = new Node(1);
2215                       place_holder->init_req(0, n);
2216                     }
2217                     igvn.replace_input_of(u, l, place_holder);
2218                     success = true;
2219                   }
2220                 }
2221                 if (success) {
2222                   --k;
2223                 }
2224               }
2225             }
2226           }
2227           if (n->is_Phi()) {
2228             stack.push(n, 1);
2229             n = n->in(1);
2230           } else if (n->is_Mem()) {
2231             stack.push(n, n->req());
2232             n = n->in(MemNode::Memory);
2233           } else {
2234             assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, "");
2235             stack.push(n, n->req());
2236             n = n->in(0)->in(TypeFunc::Memory);
2237           }
2238         } else {
2239           assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), "");
2240           // Build a new MergeMem node to carry the new memory state
2241           // as we build it. IGVN should fold extraneous MergeMem
2242           // nodes.
2243           mm = MergeMemNode::make(n);
2244           igvn.register_new_node_with_optimizer(mm);
2245           while (stack.size() > 0) {
2246             Node* m = stack.node();
2247             uint idx = stack.index();
2248             if (m->is_Mem()) {
2249               // Move memory node to its new slice
2250               const TypePtr* adr_type = m->adr_type();
2251               int alias = get_alias_index(adr_type);
2252               Node* prev = mm->memory_at(alias);
2253               igvn.replace_input_of(m, MemNode::Memory, prev);
2254               mm->set_memory_at(alias, m);
2255             } else if (m->is_Phi()) {
2256               // We need as many new phis as there are new aliases
2257               igvn.replace_input_of(m, idx, mm);
2258               if (idx == m->req()-1) {
2259                 Node* r = m->in(0);
2260                 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2261                   const TypePtr* adr_type = get_adr_type(j);
2262                   if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) {
2263                     continue;
2264                   }
2265                   Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j));
2266                   igvn.register_new_node_with_optimizer(phi);
2267                   for (uint k = 1; k < m->req(); k++) {
2268                     phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j));
2269                   }
2270                   mm->set_memory_at(j, phi);
2271                 }
2272                 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2273                 igvn.register_new_node_with_optimizer(base_phi);
2274                 for (uint k = 1; k < m->req(); k++) {
2275                   base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory());
2276                 }
2277                 mm->set_base_memory(base_phi);
2278               }
2279             } else {
2280               // This is a MemBarCPUOrder node from
2281               // Parse::array_load()/Parse::array_store(), in the
2282               // branch that handles flat arrays hidden under
2283               // an Object[] array. We also need one new membar per
2284               // new alias to keep the unknown access that the
2285               // membars protect properly ordered with accesses to
2286               // known flat array.
2287               assert(m->is_Proj(), "projection expected");
2288               Node* ctrl = m->in(0)->in(TypeFunc::Control);
2289               igvn.replace_input_of(m->in(0), TypeFunc::Control, top());
2290               for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2291                 const TypePtr* adr_type = get_adr_type(j);
2292                 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) {
2293                   continue;
2294                 }
2295                 MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr);
2296                 igvn.register_new_node_with_optimizer(mb);
2297                 Node* mem = mm->memory_at(j);
2298                 mb->init_req(TypeFunc::Control, ctrl);
2299                 mb->init_req(TypeFunc::Memory, mem);
2300                 ctrl = new ProjNode(mb, TypeFunc::Control);
2301                 igvn.register_new_node_with_optimizer(ctrl);
2302                 mem = new ProjNode(mb, TypeFunc::Memory);
2303                 igvn.register_new_node_with_optimizer(mem);
2304                 mm->set_memory_at(j, mem);
2305               }
2306               igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl);
2307             }
2308             if (idx < m->req()-1) {
2309               idx += 1;
2310               stack.set_index(idx);
2311               n = m->in(idx);
2312               break;
2313             }
2314             // Take care of place holder nodes
2315             if (m->has_out_with(Op_Node)) {
2316               Node* place_holder = m->find_out_with(Op_Node);
2317               if (place_holder != nullptr) {
2318                 Node* mm_clone = mm->clone();
2319                 igvn.register_new_node_with_optimizer(mm_clone);
2320                 Node* hook = new Node(1);
2321                 hook->init_req(0, mm);
2322                 igvn.replace_node(place_holder, mm_clone);
2323                 hook->destruct(&igvn);
2324               }
2325               assert(!m->has_out_with(Op_Node), "place holder should be gone now");
2326             }
2327             stack.pop();
2328           }
2329         }
2330       } while(stack.size() > 0);
2331       // Fix the memory state at the MergeMem we started from
2332       igvn.rehash_node_delayed(current);
2333       for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) {
2334         const TypePtr* adr_type = get_adr_type(j);
2335         if (!adr_type->isa_aryptr() || !adr_type->is_flat()) {
2336           continue;
2337         }
2338         current->set_memory_at(j, mm);
2339       }
2340       current->set_memory_at(index, current->base_memory());
2341     }
2342     igvn.optimize();
2343   }
2344   print_method(PHASE_SPLIT_INLINES_ARRAY, 2);
2345 #ifdef ASSERT
2346   if (!_flat_accesses_share_alias) {
2347     wq.clear();
2348     wq.push(root());
2349     for (uint i = 0; i < wq.size(); i++) {
2350       Node* n = wq.at(i);
2351       assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph");
2352       for (uint j = 0; j < n->req(); j++) {
2353         Node* m = n->in(j);
2354         if (m != nullptr) {
2355           wq.push(m);
2356         }
2357       }
2358     }
2359   }
2360 #endif
2361 }
2362 
2363 void Compile::record_for_merge_stores_igvn(Node* n) {
2364   if (!n->for_merge_stores_igvn()) {
2365     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
2366     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
2367     _for_merge_stores_igvn.append(n);
2368   }
2369 }
2370 
2371 void Compile::remove_from_merge_stores_igvn(Node* n) {
2372   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
2373   _for_merge_stores_igvn.remove(n);
2374 }
2375 
2376 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
2377 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
2378 // the stores, and we merge the wrong sequence of stores.
2379 // Example:
2380 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
2381 // Apply MergeStores:
2382 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI

2461       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
2462       Bytecodes::Code c = iter.cur_bc();
2463       Node* lhs = nullptr;
2464       Node* rhs = nullptr;
2465       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
2466         lhs = unc->peek_operand(0);
2467         rhs = unc->peek_operand(1);
2468       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2469         lhs = unc->peek_operand(0);
2470       }
2471 
2472       ResourceMark rm;
2473       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2474       assert(live_locals.is_valid(), "broken liveness info");
2475       int len = (int)live_locals.size();
2476 
2477       for (int i = 0; i < len; i++) {
2478         Node* local = unc->local(jvms, i);
2479         // kill local using the liveness of next_bci.
2480         // give up when the local looks like an operand to secure reexecution.
2481         if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) {
2482           uint idx = jvms->locoff() + i;
2483 #ifdef ASSERT
2484           if (PrintOpto && Verbose) {
2485             tty->print("[unstable_if] kill local#%d: ", idx);
2486             local->dump();
2487             tty->cr();
2488           }
2489 #endif
2490           igvn.replace_input_of(unc, idx, top());
2491           modified = true;
2492         }
2493       }
2494     }
2495 
2496     // keep the modified trap for late query
2497     if (modified) {
2498       trap->set_modified();
2499     } else {
2500       _unstable_if_traps.delete_at(i);
2501     }
2502   }
2503   igvn.optimize();
2504 }
2505 
2506 // StringOpts and late inlining of string methods
2507 void Compile::inline_string_calls(bool parse_time) {
2508   {
2509     // remove useless nodes to make the usage analysis simpler
2510     ResourceMark rm;
2511     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2512   }
2513 
2514   {
2515     ResourceMark rm;
2516     print_method(PHASE_BEFORE_STRINGOPTS, 3);

2682 
2683   if (_string_late_inlines.length() > 0) {
2684     assert(has_stringbuilder(), "inconsistent");
2685 
2686     inline_string_calls(false);
2687 
2688     if (failing())  return;
2689 
2690     inline_incrementally_cleanup(igvn);
2691   }
2692 
2693   set_inlining_incrementally(false);
2694 }
2695 
2696 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2697   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2698   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2699   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2700   // as if "inlining_incrementally() == true" were set.
2701   assert(inlining_incrementally() == false, "not allowed");
2702 #ifdef ASSERT
2703   Unique_Node_List* modified_nodes = _modified_nodes;
2704   _modified_nodes = nullptr;
2705 #endif
2706   assert(_late_inlines.length() > 0, "sanity");
2707 
2708   while (_late_inlines.length() > 0) {
2709     igvn_worklist()->ensure_empty(); // should be done with igvn
2710 
2711     while (inline_incrementally_one()) {
2712       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2713     }
2714     if (failing())  return;
2715 
2716     inline_incrementally_cleanup(igvn);
2717   }
2718   DEBUG_ONLY( _modified_nodes = modified_nodes; )
2719 }
2720 
2721 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2722   if (_loop_opts_cnt > 0) {
2723     while (major_progress() && (_loop_opts_cnt > 0)) {
2724       TracePhase tp(_t_idealLoop);
2725       PhaseIdealLoop::optimize(igvn, mode);
2726       _loop_opts_cnt--;
2727       if (failing())  return false;
2728       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2729     }
2730   }
2731   return true;
2732 }
2733 
2734 // Remove edges from "root" to each SafePoint at a backward branch.
2735 // They were inserted during parsing (see add_safepoint()) to make
2736 // infinite loops without calls or exceptions visible to root, i.e.,
2737 // useful.
2738 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {

2843     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2844   }
2845   assert(!has_vbox_nodes(), "sanity");
2846 
2847   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2848     Compile::TracePhase tp(_t_renumberLive);
2849     igvn_worklist()->ensure_empty(); // should be done with igvn
2850     {
2851       ResourceMark rm;
2852       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2853     }
2854     igvn.reset_from_gvn(initial_gvn());
2855     igvn.optimize();
2856     if (failing()) return;
2857   }
2858 
2859   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2860   // safepoints
2861   remove_root_to_sfpts_edges(igvn);
2862 
2863   // Process inline type nodes now that all inlining is over
2864   process_inline_types(igvn);
2865 
2866   adjust_flat_array_access_aliases(igvn);
2867 
2868   if (failing())  return;
2869 
2870   if (C->macro_count() > 0) {
2871     // Eliminate some macro nodes before EA to reduce analysis pressure
2872     PhaseMacroExpand mexp(igvn);
2873     mexp.eliminate_macro_nodes(/* eliminate_locks= */ false);
2874     if (failing()) {
2875       return;
2876     }
2877     igvn.set_delay_transform(false);
2878     print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2879   }
2880 
2881   if (has_loops()) {
2882     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2883   }
2884 
2885   // Perform escape analysis
2886   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2887     if (has_loops()) {
2888       // Cleanup graph (remove dead nodes).
2889       TracePhase tp(_t_idealLoop);
2890       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2891       if (failing()) {
2892         return;
2893       }
2894       print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2895       if (C->macro_count() > 0) {
2896         // Eliminate some macro nodes before EA to reduce analysis pressure
2897         PhaseMacroExpand mexp(igvn);
2898         mexp.eliminate_macro_nodes(/* eliminate_locks= */ false);
2899         if (failing()) {
2900           return;
2901         }
2902         igvn.set_delay_transform(false);
2903         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2904       }
2905     }
2906 
2907     bool progress;

2908     do {
2909       ConnectionGraph::do_analysis(this, &igvn);
2910 
2911       if (failing())  return;
2912 
2913       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2914 
2915       // Optimize out fields loads from scalar replaceable allocations.
2916       igvn.optimize();
2917       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2918 
2919       if (failing()) return;
2920 
2921       if (congraph() != nullptr && macro_count() > 0) {
2922         TracePhase tp(_t_macroEliminate);
2923         PhaseMacroExpand mexp(igvn);
2924         mexp.eliminate_macro_nodes();
2925         if (failing()) {
2926           return;
2927         }
2928         print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2929 
2930         igvn.set_delay_transform(false);



2931         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2932       }
2933 
2934       ConnectionGraph::verify_ram_nodes(this, root());
2935       if (failing())  return;
2936 
2937       progress = do_iterative_escape_analysis() &&
2938                  (macro_count() < mcount) &&
2939                  ConnectionGraph::has_candidates(this);
2940       // Try again if candidates exist and made progress
2941       // by removing some allocations and/or locks.
2942     } while (progress);
2943   }
2944 
2945   // Loop transforms on the ideal graph.  Range Check Elimination,
2946   // peeling, unrolling, etc.
2947 
2948   // Set loop opts counter
2949   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2950     {

3001   // Loop transforms on the ideal graph.  Range Check Elimination,
3002   // peeling, unrolling, etc.
3003   if (!optimize_loops(igvn, LoopOptsDefault)) {
3004     return;
3005   }
3006 
3007   if (failing())  return;
3008 
3009   C->clear_major_progress(); // ensure that major progress is now clear
3010 
3011   process_for_post_loop_opts_igvn(igvn);
3012 
3013   process_for_merge_stores_igvn(igvn);
3014 
3015   if (failing())  return;
3016 
3017 #ifdef ASSERT
3018   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
3019 #endif
3020 
3021   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
3022 
3023   if (_late_inlines.length() > 0) {
3024     // More opportunities to optimize virtual and MH calls.
3025     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
3026     process_late_inline_calls_no_inline(igvn);
3027   }
3028 
3029   {
3030     TracePhase tp(_t_macroExpand);
3031     PhaseMacroExpand mex(igvn);
3032     // Last attempt to eliminate macro nodes.
3033     mex.eliminate_macro_nodes();
3034     if (failing()) {
3035       return;
3036     }
3037 
3038     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);

3039     // Do not allow new macro nodes once we start to eliminate and expand
3040     C->reset_allow_macro_nodes();
3041     // Last attempt to eliminate macro nodes before expand
3042     mex.eliminate_macro_nodes();
3043     if (failing()) {
3044       return;
3045     }
3046     mex.eliminate_opaque_looplimit_macro_nodes();
3047     if (failing()) {
3048       return;
3049     }
3050     print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
3051     if (mex.expand_macro_nodes()) {
3052       assert(failing(), "must bail out w/ explicit message");
3053       return;
3054     }
3055     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
3056   }
3057 
3058   // Process inline type nodes again and remove them. From here
3059   // on we don't need to keep track of field values anymore.
3060   process_inline_types(igvn, /* remove= */ true);
3061 
3062   {
3063     TracePhase tp(_t_barrierExpand);
3064     if (bs->expand_barriers(this, igvn)) {
3065       assert(failing(), "must bail out w/ explicit message");
3066       return;
3067     }
3068     print_method(PHASE_BARRIER_EXPANSION, 2);
3069   }
3070 
3071   if (C->max_vector_size() > 0) {
3072     C->optimize_logic_cones(igvn);
3073     igvn.optimize();
3074     if (failing()) return;
3075   }
3076 
3077   DEBUG_ONLY( _modified_nodes = nullptr; )
3078   DEBUG_ONLY( _late_inlines.clear(); )
3079 
3080   assert(igvn._worklist.size() == 0, "not empty");









3081  } // (End scope of igvn; run destructor if necessary for asserts.)
3082 
3083  check_no_dead_use();
3084 
3085  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
3086  // to remove hashes to unlock nodes for modifications.
3087  C->node_hash()->clear();
3088 
3089  // A method with only infinite loops has no edges entering loops from root
3090  {
3091    TracePhase tp(_t_graphReshaping);
3092    if (final_graph_reshaping()) {
3093      assert(failing(), "must bail out w/ explicit message");
3094      return;
3095    }
3096  }
3097 
3098  print_method(PHASE_OPTIMIZE_FINISHED, 2);
3099  DEBUG_ONLY(set_phase_optimize_finished();)
3100 }

3833       int nop = n->Opcode();
3834       // Clone shared simple arguments to uncommon calls, item (1).
3835       if (n->outcnt() > 1 &&
3836           !n->is_Proj() &&
3837           nop != Op_CreateEx &&
3838           nop != Op_CheckCastPP &&
3839           nop != Op_DecodeN &&
3840           nop != Op_DecodeNKlass &&
3841           !n->is_Mem() &&
3842           !n->is_Phi()) {
3843         Node *x = n->clone();
3844         call->set_req(TypeFunc::Parms, x);
3845       }
3846     }
3847     break;
3848   }
3849   case Op_StoreB:
3850   case Op_StoreC:
3851   case Op_StoreI:
3852   case Op_StoreL:
3853   case Op_StoreLSpecial:
3854   case Op_CompareAndSwapB:
3855   case Op_CompareAndSwapS:
3856   case Op_CompareAndSwapI:
3857   case Op_CompareAndSwapL:
3858   case Op_CompareAndSwapP:
3859   case Op_CompareAndSwapN:
3860   case Op_WeakCompareAndSwapB:
3861   case Op_WeakCompareAndSwapS:
3862   case Op_WeakCompareAndSwapI:
3863   case Op_WeakCompareAndSwapL:
3864   case Op_WeakCompareAndSwapP:
3865   case Op_WeakCompareAndSwapN:
3866   case Op_CompareAndExchangeB:
3867   case Op_CompareAndExchangeS:
3868   case Op_CompareAndExchangeI:
3869   case Op_CompareAndExchangeL:
3870   case Op_CompareAndExchangeP:
3871   case Op_CompareAndExchangeN:
3872   case Op_GetAndAddS:
3873   case Op_GetAndAddB:

4377           k->subsume_by(m, this);
4378         }
4379       }
4380     }
4381     break;
4382   }
4383   case Op_CmpUL: {
4384     if (!Matcher::has_match_rule(Op_CmpUL)) {
4385       // No support for unsigned long comparisons
4386       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
4387       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
4388       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
4389       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
4390       Node* andl = new AndLNode(orl, remove_sign_mask);
4391       Node* cmp = new CmpLNode(andl, n->in(2));
4392       n->subsume_by(cmp, this);
4393     }
4394     break;
4395   }
4396 #ifdef ASSERT
4397   case Op_InlineType: {
4398     n->dump(-1);
4399     assert(false, "inline type node was not removed");
4400     break;
4401   }
4402   case Op_ConNKlass: {
4403     const TypePtr* tp = n->as_Type()->type()->make_ptr();
4404     ciKlass* klass = tp->is_klassptr()->exact_klass();
4405     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
4406     break;
4407   }
4408 #endif
4409   default:
4410     assert(!n->is_Call(), "");
4411     assert(!n->is_Mem(), "");
4412     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
4413     break;
4414   }
4415 }
4416 
4417 //------------------------------final_graph_reshaping_walk---------------------
4418 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
4419 // requires that the walk visits a node's inputs before visiting the node.
4420 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
4421   Unique_Node_List sfpt;

4757   }
4758 }
4759 
4760 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4761   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4762 }
4763 
4764 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4765   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4766 }
4767 
4768 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4769   if (holder->is_initialized()) {
4770     return false;
4771   }
4772   if (holder->is_being_initialized()) {
4773     if (accessing_method->holder() == holder) {
4774       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4775       // <init>, or a static method. In all those cases, there was an initialization
4776       // barrier on the holder klass passed.
4777       if (accessing_method->is_class_initializer() ||
4778           accessing_method->is_object_constructor() ||
4779           accessing_method->is_static()) {
4780         return false;
4781       }
4782     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4783       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4784       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4785       // child class can become fully initialized while its parent class is still being initialized.
4786       if (accessing_method->is_class_initializer()) {
4787         return false;
4788       }
4789     }
4790     ciMethod* root = method(); // the root method of compilation
4791     if (root != accessing_method) {
4792       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4793     }
4794   }
4795   return true;
4796 }
4797 
4798 #ifndef PRODUCT
4799 //------------------------------verify_bidirectional_edges---------------------
4800 // For each input edge to a node (ie - for each Use-Def edge), verify that
4801 // there is a corresponding Def-Use edge.
4802 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4803   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4804   uint stack_size = live_nodes() >> 4;
4805   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4806   if (root_and_safepoints != nullptr) {

4836       if (in != nullptr && !in->is_top()) {
4837         // Count instances of `next`
4838         int cnt = 0;
4839         for (uint idx = 0; idx < in->_outcnt; idx++) {
4840           if (in->_out[idx] == n) {
4841             cnt++;
4842           }
4843         }
4844         assert(cnt > 0, "Failed to find Def-Use edge.");
4845         // Check for duplicate edges
4846         // walk the input array downcounting the input edges to n
4847         for (uint j = 0; j < length; j++) {
4848           if (n->in(j) == in) {
4849             cnt--;
4850           }
4851         }
4852         assert(cnt == 0, "Mismatched edge count.");
4853       } else if (in == nullptr) {
4854         assert(i == 0 || i >= n->req() ||
4855                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4856                (n->is_Allocate() && i >= AllocateNode::InlineType) ||
4857                (n->is_Unlock() && i == (n->req() - 1)) ||
4858                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4859               "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges");
4860       } else {
4861         assert(in->is_top(), "sanity");
4862         // Nothing to check.
4863       }
4864     }
4865   }
4866 }
4867 
4868 //------------------------------verify_graph_edges---------------------------
4869 // Walk the Graph and verify that there is a one-to-one correspondence
4870 // between Use-Def edges and Def-Use edges in the graph.
4871 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4872   if (VerifyGraphEdges) {
4873     Unique_Node_List visited;
4874 
4875     // Call graph walk to check edges
4876     verify_bidirectional_edges(visited, root_and_safepoints);
4877     if (no_dead_code) {
4878       // Now make sure that no visited node is used by an unvisited node.
4879       bool dead_nodes = false;

4990 // (1) subklass is already limited to a subtype of superklass => always ok
4991 // (2) subklass does not overlap with superklass => always fail
4992 // (3) superklass has NO subtypes and we can check with a simple compare.
4993 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4994   if (skip) {
4995     return SSC_full_test;       // Let caller generate the general case.
4996   }
4997 
4998   if (subk->is_java_subtype_of(superk)) {
4999     return SSC_always_true; // (0) and (1)  this test cannot fail
5000   }
5001 
5002   if (!subk->maybe_java_subtype_of(superk)) {
5003     return SSC_always_false; // (2) true path dead; no dynamic test needed
5004   }
5005 
5006   const Type* superelem = superk;
5007   if (superk->isa_aryklassptr()) {
5008     int ignored;
5009     superelem = superk->is_aryklassptr()->base_element_type(ignored);
5010 
5011     // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays
5012     // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test.
5013     if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() &&
5014         superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) {
5015       return SSC_full_test;
5016     }
5017   }
5018 
5019   if (superelem->isa_instklassptr()) {
5020     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
5021     if (!ik->has_subklass()) {
5022       if (!ik->is_final()) {
5023         // Add a dependency if there is a chance of a later subclass.
5024         dependencies()->assert_leaf_type(ik);
5025       }
5026       if (!superk->maybe_java_subtype_of(subk)) {
5027         return SSC_always_false;
5028       }
5029       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
5030     }
5031   } else {
5032     // A primitive array type has no subtypes.
5033     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
5034   }
5035 
5036   return SSC_full_test;

5480       const Type* t = igvn.type_or_null(n);
5481       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
5482       if (n->is_Type()) {
5483         t = n->as_Type()->type();
5484         assert(t == t->remove_speculative(), "no more speculative types");
5485       }
5486       // Iterate over outs - endless loops is unreachable from below
5487       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5488         Node *m = n->fast_out(i);
5489         if (not_a_node(m)) {
5490           continue;
5491         }
5492         worklist.push(m);
5493       }
5494     }
5495     igvn.check_no_speculative_types();
5496 #endif
5497   }
5498 }
5499 
5500 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
5501   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
5502   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
5503   if (!EnableValhalla || ta == nullptr || tb == nullptr ||
5504       ta->is_zero_type() || tb->is_zero_type() ||
5505       !ta->can_be_inline_type() || !tb->can_be_inline_type()) {
5506     // Use old acmp if one operand is null or not an inline type
5507     return new CmpPNode(a, b);
5508   } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) {
5509     // We know that one operand is an inline type. Therefore,
5510     // new acmp will only return true if both operands are nullptr.
5511     // Check if both operands are null by or'ing the oops.
5512     a = phase->transform(new CastP2XNode(nullptr, a));
5513     b = phase->transform(new CastP2XNode(nullptr, b));
5514     a = phase->transform(new OrXNode(a, b));
5515     return new CmpXNode(a, phase->MakeConX(0));
5516   }
5517   // Use new acmp
5518   return nullptr;
5519 }
5520 
5521 // Auxiliary methods to support randomized stressing/fuzzing.
5522 
5523 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
5524   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
5525     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
5526     FLAG_SET_ERGO(StressSeed, _stress_seed);
5527   } else {
5528     _stress_seed = StressSeed;
5529   }
5530   if (_log != nullptr) {
5531     _log->elem("stress_test seed='%u'", _stress_seed);
5532   }
5533 }
5534 
5535 int Compile::random() {
5536   _stress_seed = os::next_random(_stress_seed);
5537   return static_cast<int>(_stress_seed);
5538 }
5539 
5540 // This method can be called the arbitrary number of times, with current count

5856   } else {
5857     _debug_network_printer->update_compiled_method(C->method());
5858   }
5859   tty->print_cr("Method printed over network stream to IGV");
5860   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5861 }
5862 #endif // !PRODUCT
5863 
5864 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5865   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5866     return value;
5867   }
5868   Node* result = nullptr;
5869   if (bt == T_BYTE) {
5870     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5871     result = new RShiftINode(result, phase->intcon(24));
5872   } else if (bt == T_BOOLEAN) {
5873     result = new AndINode(value, phase->intcon(0xFF));
5874   } else if (bt == T_CHAR) {
5875     result = new AndINode(value,phase->intcon(0xFFFF));
5876   } else if (bt == T_FLOAT) {
5877     result = new MoveI2FNode(value);
5878   } else {
5879     assert(bt == T_SHORT, "unexpected narrow type");
5880     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5881     result = new RShiftINode(result, phase->intcon(16));
5882   }
5883   if (transform_res) {
5884     result = phase->transform(result);
5885   }
5886   return result;
5887 }
5888 
5889 void Compile::record_method_not_compilable_oom() {
5890   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5891 }
< prev index next >