1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 50 class AbstractLockNode; 51 class AddPNode; 52 class Block; 53 class Bundle; 54 class CallGenerator; 55 class CallStaticJavaNode; 56 class CloneMap; 57 class CompilationFailureInfo; 58 class ConnectionGraph; 59 class IdealGraphPrinter; 60 class InlineTree; 61 class Matcher; 62 class MachConstantNode; 63 class MachConstantBaseNode; 64 class MachNode; 65 class MachOper; 66 class MachSafePointNode; 67 class Node; 68 class Node_Array; 69 class Node_List; 70 class Node_Notes; 71 class NodeHash; 72 class NodeCloneInfo; 73 class OptoReg; 74 class ParsePredicateNode; 75 class PhaseCFG; 76 class PhaseGVN; 77 class PhaseIterGVN; 78 class PhaseRegAlloc; 79 class PhaseCCP; 80 class PhaseOutput; 81 class RootNode; 82 class relocInfo; 83 class StartNode; 84 class SafePointNode; 85 class JVMState; 86 class Type; 87 class TypeInt; 88 class TypeInteger; 89 class TypeKlassPtr; 90 class TypePtr; 91 class TypeOopPtr; 92 class TypeFunc; 93 class TypeVect; 94 class Type_Array; 95 class Unique_Node_List; 96 class UnstableIfTrap; 97 class nmethod; 98 class Node_Stack; 99 struct Final_Reshape_Counts; 100 class VerifyMeetResult; 101 102 enum LoopOptsMode { 103 LoopOptsDefault, 104 LoopOptsNone, 105 LoopOptsMaxUnroll, 106 LoopOptsShenandoahExpand, 107 LoopOptsShenandoahPostExpand, 108 LoopOptsSkipSplitIf, 109 LoopOptsVerify 110 }; 111 112 // The type of all node counts and indexes. 113 // It must hold at least 16 bits, but must also be fast to load and store. 114 // This type, if less than 32 bits, could limit the number of possible nodes. 115 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 116 typedef unsigned int node_idx_t; 117 118 class NodeCloneInfo { 119 private: 120 uint64_t _idx_clone_orig; 121 public: 122 123 void set_idx(node_idx_t idx) { 124 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 125 } 126 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 127 128 void set_gen(int generation) { 129 uint64_t g = (uint64_t)generation << 32; 130 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 131 } 132 int gen() const { return (int)(_idx_clone_orig >> 32); } 133 134 void set(uint64_t x) { _idx_clone_orig = x; } 135 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 136 uint64_t get() const { return _idx_clone_orig; } 137 138 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 139 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 140 141 void dump_on(outputStream* st) const; 142 }; 143 144 class CloneMap { 145 friend class Compile; 146 private: 147 bool _debug; 148 Dict* _dict; 149 int _clone_idx; // current cloning iteration/generation in loop unroll 150 public: 151 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 152 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 153 Dict* dict() const { return _dict; } 154 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 155 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 156 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 157 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 158 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 159 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 160 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 161 int max_gen() const; 162 void clone(Node* old, Node* nnn, int gen); 163 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 164 void dump(node_idx_t key, outputStream* st) const; 165 166 int clone_idx() const { return _clone_idx; } 167 void set_clone_idx(int x) { _clone_idx = x; } 168 bool is_debug() const { return _debug; } 169 void set_debug(bool debug) { _debug = debug; } 170 171 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 172 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 173 }; 174 175 class Options { 176 friend class Compile; 177 friend class VMStructs; 178 private: 179 const bool _subsume_loads; // Load can be matched as part of a larger op. 180 const bool _do_escape_analysis; // Do escape analysis. 181 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 182 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 183 const bool _eliminate_boxing; // Do boxing elimination. 184 const bool _do_locks_coarsening; // Do locks coarsening 185 const bool _do_superword; // Do SuperWord 186 const bool _install_code; // Install the code that was compiled 187 public: 188 Options(bool subsume_loads, 189 bool do_escape_analysis, 190 bool do_iterative_escape_analysis, 191 bool do_reduce_allocation_merges, 192 bool eliminate_boxing, 193 bool do_locks_coarsening, 194 bool do_superword, 195 bool install_code) : 196 _subsume_loads(subsume_loads), 197 _do_escape_analysis(do_escape_analysis), 198 _do_iterative_escape_analysis(do_iterative_escape_analysis), 199 _do_reduce_allocation_merges(do_reduce_allocation_merges), 200 _eliminate_boxing(eliminate_boxing), 201 _do_locks_coarsening(do_locks_coarsening), 202 _do_superword(do_superword), 203 _install_code(install_code) { 204 } 205 206 static Options for_runtime_stub() { 207 return Options( 208 /* subsume_loads = */ true, 209 /* do_escape_analysis = */ false, 210 /* do_iterative_escape_analysis = */ false, 211 /* do_reduce_allocation_merges = */ false, 212 /* eliminate_boxing = */ false, 213 /* do_lock_coarsening = */ false, 214 /* do_superword = */ true, 215 /* install_code = */ true 216 ); 217 } 218 }; 219 220 //------------------------------Compile---------------------------------------- 221 // This class defines a top-level Compiler invocation. 222 223 class Compile : public Phase { 224 friend class VMStructs; 225 226 public: 227 // Fixed alias indexes. (See also MergeMemNode.) 228 enum { 229 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 230 AliasIdxBot = 2, // pseudo-index, aliases to everything 231 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 232 }; 233 234 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 235 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 236 // then brackets are put into the log, with time stamps and node counts. 237 // (The time collection itself is always conditionalized on CITime.) 238 class TracePhase : public TraceTime { 239 private: 240 Compile* _compile; 241 CompileLog* _log; 242 const char* _phase_name; 243 bool _dolog; 244 public: 245 TracePhase(const char* name, elapsedTimer* accumulator); 246 ~TracePhase(); 247 }; 248 249 // Information per category of alias (memory slice) 250 class AliasType { 251 private: 252 friend class Compile; 253 254 int _index; // unique index, used with MergeMemNode 255 const TypePtr* _adr_type; // normalized address type 256 ciField* _field; // relevant instance field, or null if none 257 const Type* _element; // relevant array element type, or null if none 258 bool _is_rewritable; // false if the memory is write-once only 259 int _general_index; // if this is type is an instance, the general 260 // type that this is an instance of 261 262 void Init(int i, const TypePtr* at); 263 264 public: 265 int index() const { return _index; } 266 const TypePtr* adr_type() const { return _adr_type; } 267 ciField* field() const { return _field; } 268 const Type* element() const { return _element; } 269 bool is_rewritable() const { return _is_rewritable; } 270 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 271 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 272 273 void set_rewritable(bool z) { _is_rewritable = z; } 274 void set_field(ciField* f) { 275 assert(!_field,""); 276 _field = f; 277 if (f->is_final() || f->is_stable()) { 278 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 279 _is_rewritable = false; 280 } 281 } 282 void set_element(const Type* e) { 283 assert(_element == nullptr, ""); 284 _element = e; 285 } 286 287 BasicType basic_type() const; 288 289 void print_on(outputStream* st) PRODUCT_RETURN; 290 }; 291 292 enum { 293 logAliasCacheSize = 6, 294 AliasCacheSize = (1<<logAliasCacheSize) 295 }; 296 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 297 enum { 298 trapHistLength = MethodData::_trap_hist_limit 299 }; 300 301 private: 302 // Fixed parameters to this compilation. 303 const int _compile_id; 304 const Options _options; // Compilation options 305 ciMethod* _method; // The method being compiled. 306 int _entry_bci; // entry bci for osr methods. 307 const TypeFunc* _tf; // My kind of signature 308 InlineTree* _ilt; // Ditto (temporary). 309 address _stub_function; // VM entry for stub being compiled, or null 310 const char* _stub_name; // Name of stub or adapter being compiled, or null 311 address _stub_entry_point; // Compile code entry for generated stub, or null 312 313 // Control of this compilation. 314 int _max_inline_size; // Max inline size for this compilation 315 int _freq_inline_size; // Max hot method inline size for this compilation 316 int _fixed_slots; // count of frame slots not allocated by the register 317 // allocator i.e. locks, original deopt pc, etc. 318 uintx _max_node_limit; // Max unique node count during a single compilation. 319 320 bool _post_loop_opts_phase; // Loop opts are finished. 321 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 322 323 int _major_progress; // Count of something big happening 324 bool _inlining_progress; // progress doing incremental inlining? 325 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 326 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 327 bool _has_loops; // True if the method _may_ have some loops 328 bool _has_split_ifs; // True if the method _may_ have some split-if 329 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 330 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 331 bool _has_boxed_value; // True if a boxed object is allocated 332 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 333 uint _max_vector_size; // Maximum size of generated vectors 334 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 335 uint _trap_hist[trapHistLength]; // Cumulative traps 336 bool _trap_can_recompile; // Have we emitted a recompiling trap? 337 uint _decompile_count; // Cumulative decompilation counts. 338 bool _do_inlining; // True if we intend to do inlining 339 bool _do_scheduling; // True if we intend to do scheduling 340 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 341 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 342 bool _use_cmove; // True if CMove should be used without profitability analysis 343 bool _do_aliasing; // True if we intend to do aliasing 344 bool _print_assembly; // True if we should dump assembly code for this compilation 345 bool _print_inlining; // True if we should print inlining for this compilation 346 bool _print_intrinsics; // True if we should print intrinsics for this compilation 347 #ifndef PRODUCT 348 uint _igv_idx; // Counter for IGV node identifiers 349 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 350 bool _trace_opto_output; 351 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 352 #endif 353 bool _has_irreducible_loop; // Found irreducible loops 354 // JSR 292 355 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 356 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 357 bool _has_scoped_access; // For shared scope closure 358 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 359 int _loop_opts_cnt; // loop opts round 360 uint _stress_seed; // Seed for stress testing 361 362 // Compilation environment. 363 Arena _comp_arena; // Arena with lifetime equivalent to Compile 364 void* _barrier_set_state; // Potential GC barrier state for Compile 365 ciEnv* _env; // CI interface 366 DirectiveSet* _directive; // Compiler directive 367 CompileLog* _log; // from CompilerThread 368 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 369 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 370 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 371 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 372 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 373 GrowableArray<Node*> _template_assertion_predicate_opaqs; // List of Opaque4 nodes for Template Assertion Predicates. 374 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 375 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 376 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 377 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 378 ConnectionGraph* _congraph; 379 #ifndef PRODUCT 380 IdealGraphPrinter* _igv_printer; 381 static IdealGraphPrinter* _debug_file_printer; 382 static IdealGraphPrinter* _debug_network_printer; 383 #endif 384 385 386 // Node management 387 uint _unique; // Counter for unique Node indices 388 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 389 // So use this to keep count and make the call O(1). 390 VectorSet _dead_node_list; // Set of dead nodes 391 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 392 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 393 394 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 395 396 // Arenas for new-space and old-space nodes. 397 // Swapped between using _node_arena. 398 // The lifetime of the old-space nodes is during xform. 399 Arena _node_arena_one; 400 Arena _node_arena_two; 401 Arena* _node_arena; 402 public: 403 Arena* swap_old_and_new() { 404 Arena* filled_arena_ptr = _node_arena; 405 Arena* old_arena_ptr = old_arena(); 406 old_arena_ptr->destruct_contents(); 407 _node_arena = old_arena_ptr; 408 return filled_arena_ptr; 409 } 410 private: 411 RootNode* _root; // Unique root of compilation, or null after bail-out. 412 Node* _top; // Unique top node. (Reset by various phases.) 413 414 Node* _immutable_memory; // Initial memory state 415 416 Node* _recent_alloc_obj; 417 Node* _recent_alloc_ctl; 418 419 // Constant table 420 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 421 422 423 // Blocked array of debugging and profiling information, 424 // tracked per node. 425 enum { _log2_node_notes_block_size = 8, 426 _node_notes_block_size = (1<<_log2_node_notes_block_size) 427 }; 428 GrowableArray<Node_Notes*>* _node_note_array; 429 Node_Notes* _default_node_notes; // default notes for new nodes 430 431 // After parsing and every bulk phase we hang onto the Root instruction. 432 // The RootNode instruction is where the whole program begins. It produces 433 // the initial Control and BOTTOM for everybody else. 434 435 // Type management 436 Arena _Compile_types; // Arena for all types 437 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 438 Dict* _type_dict; // Intern table 439 CloneMap _clone_map; // used for recording history of cloned nodes 440 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 441 ciMethod* _last_tf_m; // Cache for 442 const TypeFunc* _last_tf; // TypeFunc::make 443 AliasType** _alias_types; // List of alias types seen so far. 444 int _num_alias_types; // Logical length of _alias_types 445 int _max_alias_types; // Physical length of _alias_types 446 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 447 448 // Parsing, optimization 449 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 450 451 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 452 // If pushed outside IGVN, the Node is processed in the next IGVN round. 453 Unique_Node_List* _igvn_worklist; 454 455 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 456 Type_Array* _types; 457 458 // Shared node hash table for GVN, IGVN and CCP. 459 NodeHash* _node_hash; 460 461 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 462 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 463 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 464 465 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 466 467 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 468 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 469 470 // "MemLimit" directive was specified and the memory limit was hit during compilation 471 bool _oom; 472 473 // Inlining may not happen in parse order which would make 474 // PrintInlining output confusing. Keep track of PrintInlining 475 // pieces in order. 476 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 477 private: 478 CallGenerator* _cg; 479 stringStream _ss; 480 static const size_t default_stream_buffer_size = 128; 481 482 public: 483 PrintInliningBuffer() 484 : _cg(nullptr), _ss(default_stream_buffer_size) {} 485 486 stringStream* ss() { return &_ss; } 487 CallGenerator* cg() { return _cg; } 488 void set_cg(CallGenerator* cg) { _cg = cg; } 489 }; 490 491 stringStream* _print_inlining_stream; 492 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 493 int _print_inlining_idx; 494 char* _print_inlining_output; 495 496 // Only keep nodes in the expensive node list that need to be optimized 497 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 498 // Use for sorting expensive nodes to bring similar nodes together 499 static int cmp_expensive_nodes(Node** n1, Node** n2); 500 // Expensive nodes list already sorted? 501 bool expensive_nodes_sorted() const; 502 // Remove the speculative part of types and clean up the graph 503 void remove_speculative_types(PhaseIterGVN &igvn); 504 505 void* _replay_inline_data; // Pointer to data loaded from file 506 507 void print_inlining_init(); 508 void print_inlining_reinit(); 509 void print_inlining_commit(); 510 void print_inlining_push(); 511 PrintInliningBuffer* print_inlining_current(); 512 513 void log_late_inline_failure(CallGenerator* cg, const char* msg); 514 DEBUG_ONLY(bool _exception_backedge;) 515 516 void record_method_not_compilable_oom(); 517 518 public: 519 520 void* barrier_set_state() const { return _barrier_set_state; } 521 522 stringStream* print_inlining_stream() { 523 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 524 return _print_inlining_stream; 525 } 526 527 void print_inlining_update(CallGenerator* cg); 528 void print_inlining_update_delayed(CallGenerator* cg); 529 void print_inlining_move_to(CallGenerator* cg); 530 void print_inlining_assert_ready(); 531 void print_inlining_reset(); 532 533 void print_inlining(ciMethod* method, int inline_level, int bci, InliningResult result, const char* msg = nullptr) { 534 stringStream ss; 535 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, result, msg); 536 print_inlining_stream()->print("%s", ss.freeze()); 537 } 538 539 #ifndef PRODUCT 540 IdealGraphPrinter* igv_printer() { return _igv_printer; } 541 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 542 #endif 543 544 void log_late_inline(CallGenerator* cg); 545 void log_inline_id(CallGenerator* cg); 546 void log_inline_failure(const char* msg); 547 548 void* replay_inline_data() const { return _replay_inline_data; } 549 550 // Dump inlining replay data to the stream. 551 void dump_inline_data(outputStream* out); 552 void dump_inline_data_reduced(outputStream* out); 553 554 private: 555 // Matching, CFG layout, allocation, code generation 556 PhaseCFG* _cfg; // Results of CFG finding 557 int _java_calls; // Number of java calls in the method 558 int _inner_loops; // Number of inner loops in the method 559 Matcher* _matcher; // Engine to map ideal to machine instructions 560 PhaseRegAlloc* _regalloc; // Results of register allocation. 561 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 562 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 563 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 564 int _interpreter_frame_size; 565 566 PhaseOutput* _output; 567 568 public: 569 // Accessors 570 571 // The Compile instance currently active in this (compiler) thread. 572 static Compile* current() { 573 return (Compile*) ciEnv::current()->compiler_data(); 574 } 575 576 int interpreter_frame_size() const { return _interpreter_frame_size; } 577 578 PhaseOutput* output() const { return _output; } 579 void set_output(PhaseOutput* o) { _output = o; } 580 581 // ID for this compilation. Useful for setting breakpoints in the debugger. 582 int compile_id() const { return _compile_id; } 583 DirectiveSet* directive() const { return _directive; } 584 585 // Does this compilation allow instructions to subsume loads? User 586 // instructions that subsume a load may result in an unschedulable 587 // instruction sequence. 588 bool subsume_loads() const { return _options._subsume_loads; } 589 /** Do escape analysis. */ 590 bool do_escape_analysis() const { return _options._do_escape_analysis; } 591 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 592 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 593 /** Do boxing elimination. */ 594 bool eliminate_boxing() const { return _options._eliminate_boxing; } 595 /** Do aggressive boxing elimination. */ 596 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 597 bool should_install_code() const { return _options._install_code; } 598 /** Do locks coarsening. */ 599 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 600 bool do_superword() const { return _options._do_superword; } 601 602 // Other fixed compilation parameters. 603 ciMethod* method() const { return _method; } 604 int entry_bci() const { return _entry_bci; } 605 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 606 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 607 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 608 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 609 InlineTree* ilt() const { return _ilt; } 610 address stub_function() const { return _stub_function; } 611 const char* stub_name() const { return _stub_name; } 612 address stub_entry_point() const { return _stub_entry_point; } 613 void set_stub_entry_point(address z) { _stub_entry_point = z; } 614 615 // Control of this compilation. 616 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 617 void set_fixed_slots(int n) { _fixed_slots = n; } 618 int major_progress() const { return _major_progress; } 619 void set_inlining_progress(bool z) { _inlining_progress = z; } 620 int inlining_progress() const { return _inlining_progress; } 621 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 622 int inlining_incrementally() const { return _inlining_incrementally; } 623 void set_do_cleanup(bool z) { _do_cleanup = z; } 624 int do_cleanup() const { return _do_cleanup; } 625 void set_major_progress() { _major_progress++; } 626 void restore_major_progress(int progress) { _major_progress += progress; } 627 void clear_major_progress() { _major_progress = 0; } 628 int max_inline_size() const { return _max_inline_size; } 629 void set_freq_inline_size(int n) { _freq_inline_size = n; } 630 int freq_inline_size() const { return _freq_inline_size; } 631 void set_max_inline_size(int n) { _max_inline_size = n; } 632 bool has_loops() const { return _has_loops; } 633 void set_has_loops(bool z) { _has_loops = z; } 634 bool has_split_ifs() const { return _has_split_ifs; } 635 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 636 bool has_unsafe_access() const { return _has_unsafe_access; } 637 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 638 bool has_stringbuilder() const { return _has_stringbuilder; } 639 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 640 bool has_boxed_value() const { return _has_boxed_value; } 641 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 642 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 643 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 644 uint max_vector_size() const { return _max_vector_size; } 645 void set_max_vector_size(uint s) { _max_vector_size = s; } 646 bool clear_upper_avx() const { return _clear_upper_avx; } 647 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 648 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 649 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 650 bool trap_can_recompile() const { return _trap_can_recompile; } 651 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 652 uint decompile_count() const { return _decompile_count; } 653 void set_decompile_count(uint c) { _decompile_count = c; } 654 bool allow_range_check_smearing() const; 655 bool do_inlining() const { return _do_inlining; } 656 void set_do_inlining(bool z) { _do_inlining = z; } 657 bool do_scheduling() const { return _do_scheduling; } 658 void set_do_scheduling(bool z) { _do_scheduling = z; } 659 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 660 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 661 bool do_vector_loop() const { return _do_vector_loop; } 662 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 663 bool use_cmove() const { return _use_cmove; } 664 void set_use_cmove(bool z) { _use_cmove = z; } 665 bool do_aliasing() const { return _do_aliasing; } 666 bool print_assembly() const { return _print_assembly; } 667 void set_print_assembly(bool z) { _print_assembly = z; } 668 bool print_inlining() const { return _print_inlining; } 669 void set_print_inlining(bool z) { _print_inlining = z; } 670 bool print_intrinsics() const { return _print_intrinsics; } 671 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 672 uint max_node_limit() const { return (uint)_max_node_limit; } 673 void set_max_node_limit(uint n) { _max_node_limit = n; } 674 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 675 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 676 bool has_monitors() const { return _has_monitors; } 677 void set_has_monitors(bool v) { _has_monitors = v; } 678 bool has_scoped_access() const { return _has_scoped_access; } 679 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 680 681 // check the CompilerOracle for special behaviours for this compile 682 bool method_has_option(CompileCommandEnum option) { 683 return method() != nullptr && method()->has_option(option); 684 } 685 686 #ifndef PRODUCT 687 uint next_igv_idx() { return _igv_idx++; } 688 bool trace_opto_output() const { return _trace_opto_output; } 689 void print_ideal_ir(const char* phase_name); 690 bool should_print_ideal() const { return _directive->PrintIdealOption; } 691 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 692 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 693 int _in_dump_cnt; // Required for dumping ir nodes. 694 #endif 695 bool has_irreducible_loop() const { return _has_irreducible_loop; } 696 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 697 698 // JSR 292 699 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 700 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 701 702 Ticks _latest_stage_start_counter; 703 704 void begin_method(); 705 void end_method(); 706 bool should_print_igv(int level); 707 bool should_print_phase(CompilerPhaseType cpt); 708 709 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 710 711 #ifndef PRODUCT 712 void dump_igv(const char* graph_name, int level = 3) { 713 if (should_print_igv(level)) { 714 _igv_printer->print_method(graph_name, level); 715 } 716 } 717 718 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 719 void igv_print_method_to_network(const char* phase_name = "Debug"); 720 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 721 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 722 #endif 723 724 int macro_count() const { return _macro_nodes.length(); } 725 int parse_predicate_count() const { return _parse_predicates.length(); } 726 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); } 727 int expensive_count() const { return _expensive_nodes.length(); } 728 int coarsened_count() const { return _coarsened_locks.length(); } 729 730 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 731 ParsePredicateNode* parse_predicate(int idx) const { return _parse_predicates.at(idx); } 732 733 Node* template_assertion_predicate_opaq_node(int idx) const { 734 return _template_assertion_predicate_opaqs.at(idx); 735 } 736 737 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 738 739 ConnectionGraph* congraph() { return _congraph;} 740 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 741 void add_macro_node(Node * n) { 742 //assert(n->is_macro(), "must be a macro node"); 743 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 744 _macro_nodes.append(n); 745 } 746 void remove_macro_node(Node* n) { 747 // this function may be called twice for a node so we can only remove it 748 // if it's still existing. 749 _macro_nodes.remove_if_existing(n); 750 // Remove from coarsened locks list if present 751 if (coarsened_count() > 0) { 752 remove_coarsened_lock(n); 753 } 754 } 755 void add_expensive_node(Node* n); 756 void remove_expensive_node(Node* n) { 757 _expensive_nodes.remove_if_existing(n); 758 } 759 760 void add_parse_predicate(ParsePredicateNode* n) { 761 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 762 _parse_predicates.append(n); 763 } 764 765 void remove_parse_predicate(ParsePredicateNode* n) { 766 if (parse_predicate_count() > 0) { 767 _parse_predicates.remove_if_existing(n); 768 } 769 } 770 771 void add_template_assertion_predicate_opaq(Node* n) { 772 assert(!_template_assertion_predicate_opaqs.contains(n), 773 "duplicate entry in template assertion predicate opaque4 list"); 774 _template_assertion_predicate_opaqs.append(n); 775 } 776 777 void remove_template_assertion_predicate_opaq(Node* n) { 778 if (template_assertion_predicate_count() > 0) { 779 _template_assertion_predicate_opaqs.remove_if_existing(n); 780 } 781 } 782 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 783 void remove_coarsened_lock(Node* n); 784 bool coarsened_locks_consistent(); 785 void mark_unbalanced_boxes() const; 786 787 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 788 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 789 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 790 791 #ifdef ASSERT 792 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 793 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 794 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 795 #endif 796 797 bool allow_macro_nodes() { return _allow_macro_nodes; } 798 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 799 800 void record_for_post_loop_opts_igvn(Node* n); 801 void remove_from_post_loop_opts_igvn(Node* n); 802 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 803 804 void record_unstable_if_trap(UnstableIfTrap* trap); 805 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 806 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 807 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 808 809 void shuffle_macro_nodes(); 810 void sort_macro_nodes(); 811 812 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 813 814 // Are there candidate expensive nodes for optimization? 815 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 816 // Check whether n1 and n2 are similar 817 static int cmp_expensive_nodes(Node* n1, Node* n2); 818 // Sort expensive nodes to locate similar expensive nodes 819 void sort_expensive_nodes(); 820 821 // Compilation environment. 822 Arena* comp_arena() { return &_comp_arena; } 823 ciEnv* env() const { return _env; } 824 CompileLog* log() const { return _log; } 825 826 bool failing_internal() const { 827 return _env->failing() || 828 _failure_reason.get() != nullptr; 829 } 830 831 const char* failure_reason() const { 832 return _env->failing() ? _env->failure_reason() 833 : _failure_reason.get(); 834 } 835 836 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 837 838 bool failing() { 839 if (failing_internal()) { 840 return true; 841 } 842 #ifdef ASSERT 843 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 844 if (phase_verify_ideal_loop()) { 845 return false; 846 } 847 if (StressBailout) { 848 return fail_randomly(); 849 } 850 #endif 851 return false; 852 } 853 854 #ifdef ASSERT 855 bool fail_randomly(); 856 bool failure_is_artificial(); 857 #endif 858 859 bool failure_reason_is(const char* r) const { 860 return (r == _failure_reason.get()) || 861 (r != nullptr && 862 _failure_reason.get() != nullptr && 863 strcmp(r, _failure_reason.get()) == 0); 864 } 865 866 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 867 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 868 env()->record_method_not_compilable(reason); 869 // Record failure reason. 870 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 871 } 872 bool check_node_count(uint margin, const char* reason) { 873 if (oom()) { 874 record_method_not_compilable_oom(); 875 return true; 876 } 877 if (live_nodes() + margin > max_node_limit()) { 878 record_method_not_compilable(reason); 879 return true; 880 } else { 881 return false; 882 } 883 } 884 bool oom() const { return _oom; } 885 void set_oom() { _oom = true; } 886 887 // Node management 888 uint unique() const { return _unique; } 889 uint next_unique() { return _unique++; } 890 void set_unique(uint i) { _unique = i; } 891 Arena* node_arena() { return _node_arena; } 892 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 893 RootNode* root() const { return _root; } 894 void set_root(RootNode* r) { _root = r; } 895 StartNode* start() const; // (Derived from root.) 896 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 897 Node* immutable_memory(); 898 899 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 900 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 901 void set_recent_alloc(Node* ctl, Node* obj) { 902 _recent_alloc_ctl = ctl; 903 _recent_alloc_obj = obj; 904 } 905 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 906 _dead_node_count++; 907 } 908 void reset_dead_node_list() { _dead_node_list.reset(); 909 _dead_node_count = 0; 910 } 911 uint live_nodes() const { 912 int val = _unique - _dead_node_count; 913 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 914 return (uint) val; 915 } 916 #ifdef ASSERT 917 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 918 bool phase_optimize_finished() const { return _phase_optimize_finished; } 919 uint count_live_nodes_by_graph_walk(); 920 void print_missing_nodes(); 921 #endif 922 923 // Record modified nodes to check that they are put on IGVN worklist 924 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 925 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 926 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 927 928 MachConstantBaseNode* mach_constant_base_node(); 929 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 930 // Generated by adlc, true if CallNode requires MachConstantBase. 931 bool needs_deep_clone_jvms(); 932 933 // Handy undefined Node 934 Node* top() const { return _top; } 935 936 // these are used by guys who need to know about creation and transformation of top: 937 Node* cached_top_node() { return _top; } 938 void set_cached_top_node(Node* tn); 939 940 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 941 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 942 Node_Notes* default_node_notes() const { return _default_node_notes; } 943 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 944 945 Node_Notes* node_notes_at(int idx) { 946 return locate_node_notes(_node_note_array, idx, false); 947 } 948 inline bool set_node_notes_at(int idx, Node_Notes* value); 949 950 // Copy notes from source to dest, if they exist. 951 // Overwrite dest only if source provides something. 952 // Return true if information was moved. 953 bool copy_node_notes_to(Node* dest, Node* source); 954 955 // Workhorse function to sort out the blocked Node_Notes array: 956 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 957 int idx, bool can_grow = false); 958 959 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 960 961 // Type management 962 Arena* type_arena() { return _type_arena; } 963 Dict* type_dict() { return _type_dict; } 964 size_t type_last_size() { return _type_last_size; } 965 int num_alias_types() { return _num_alias_types; } 966 967 void init_type_arena() { _type_arena = &_Compile_types; } 968 void set_type_arena(Arena* a) { _type_arena = a; } 969 void set_type_dict(Dict* d) { _type_dict = d; } 970 void set_type_last_size(size_t sz) { _type_last_size = sz; } 971 972 const TypeFunc* last_tf(ciMethod* m) { 973 return (m == _last_tf_m) ? _last_tf : nullptr; 974 } 975 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 976 assert(m != nullptr || tf == nullptr, ""); 977 _last_tf_m = m; 978 _last_tf = tf; 979 } 980 981 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 982 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 983 bool have_alias_type(const TypePtr* adr_type); 984 AliasType* alias_type(ciField* field); 985 986 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 987 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 988 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 989 990 // Building nodes 991 void rethrow_exceptions(JVMState* jvms); 992 void return_values(JVMState* jvms); 993 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 994 995 // Decide how to build a call. 996 // The profile factor is a discount to apply to this site's interp. profile. 997 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 998 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 999 bool allow_intrinsics = true); 1000 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 1001 return should_delay_string_inlining(call_method, jvms) || 1002 should_delay_boxing_inlining(call_method, jvms) || 1003 should_delay_vector_inlining(call_method, jvms); 1004 } 1005 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 1006 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 1007 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 1008 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 1009 1010 // Helper functions to identify inlining potential at call-site 1011 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1012 ciKlass* holder, ciMethod* callee, 1013 const TypeOopPtr* receiver_type, bool is_virtual, 1014 bool &call_does_dispatch, int &vtable_index, 1015 bool check_access = true); 1016 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1017 ciMethod* callee, const TypeOopPtr* receiver_type, 1018 bool check_access = true); 1019 1020 // Report if there were too many traps at a current method and bci. 1021 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1022 // If there is no MDO at all, report no trap unless told to assume it. 1023 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1024 // This version, unspecific to a particular bci, asks if 1025 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1026 bool too_many_traps(Deoptimization::DeoptReason reason, 1027 // Privately used parameter for logging: 1028 ciMethodData* logmd = nullptr); 1029 // Report if there were too many recompiles at a method and bci. 1030 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1031 // Report if there were too many traps or recompiles at a method and bci. 1032 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1033 return too_many_traps(method, bci, reason) || 1034 too_many_recompiles(method, bci, reason); 1035 } 1036 // Return a bitset with the reasons where deoptimization is allowed, 1037 // i.e., where there were not too many uncommon traps. 1038 int _allowed_reasons; 1039 int allowed_deopt_reasons() { return _allowed_reasons; } 1040 void set_allowed_deopt_reasons(); 1041 1042 // Parsing, optimization 1043 PhaseGVN* initial_gvn() { return _initial_gvn; } 1044 Unique_Node_List* igvn_worklist() { 1045 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1046 return _igvn_worklist; 1047 } 1048 Type_Array* types() { 1049 assert(_types != nullptr, "must be created in Compile::Compile"); 1050 return _types; 1051 } 1052 NodeHash* node_hash() { 1053 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1054 return _node_hash; 1055 } 1056 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1057 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1058 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1059 1060 // Replace n by nn using initial_gvn, calling hash_delete and 1061 // record_for_igvn as needed. 1062 void gvn_replace_by(Node* n, Node* nn); 1063 1064 1065 void identify_useful_nodes(Unique_Node_List &useful); 1066 void update_dead_node_list(Unique_Node_List &useful); 1067 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist); 1068 1069 void remove_useless_node(Node* dead); 1070 1071 // Record this CallGenerator for inlining at the end of parsing. 1072 void add_late_inline(CallGenerator* cg) { 1073 _late_inlines.insert_before(_late_inlines_pos, cg); 1074 _late_inlines_pos++; 1075 } 1076 1077 void prepend_late_inline(CallGenerator* cg) { 1078 _late_inlines.insert_before(0, cg); 1079 } 1080 1081 void add_string_late_inline(CallGenerator* cg) { 1082 _string_late_inlines.push(cg); 1083 } 1084 1085 void add_boxing_late_inline(CallGenerator* cg) { 1086 _boxing_late_inlines.push(cg); 1087 } 1088 1089 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1090 _vector_reboxing_late_inlines.push(cg); 1091 } 1092 1093 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1094 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1095 1096 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1097 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1098 1099 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1100 1101 void process_print_inlining(); 1102 void dump_print_inlining(); 1103 1104 bool over_inlining_cutoff() const { 1105 if (!inlining_incrementally()) { 1106 return unique() > (uint)NodeCountInliningCutoff; 1107 } else { 1108 // Give some room for incremental inlining algorithm to "breathe" 1109 // and avoid thrashing when live node count is close to the limit. 1110 // Keep in mind that live_nodes() isn't accurate during inlining until 1111 // dead node elimination step happens (see Compile::inline_incrementally). 1112 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1113 } 1114 } 1115 1116 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1117 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1118 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1119 1120 bool inline_incrementally_one(); 1121 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1122 void inline_incrementally(PhaseIterGVN& igvn); 1123 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1124 void inline_string_calls(bool parse_time); 1125 void inline_boxing_calls(PhaseIterGVN& igvn); 1126 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1127 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1128 1129 void inline_vector_reboxing_calls(); 1130 bool has_vbox_nodes(); 1131 1132 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1133 1134 // Matching, CFG layout, allocation, code generation 1135 PhaseCFG* cfg() { return _cfg; } 1136 bool has_java_calls() const { return _java_calls > 0; } 1137 int java_calls() const { return _java_calls; } 1138 int inner_loops() const { return _inner_loops; } 1139 Matcher* matcher() { return _matcher; } 1140 PhaseRegAlloc* regalloc() { return _regalloc; } 1141 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1142 Arena* indexSet_arena() { return _indexSet_arena; } 1143 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1144 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1145 1146 void update_interpreter_frame_size(int size) { 1147 if (_interpreter_frame_size < size) { 1148 _interpreter_frame_size = size; 1149 } 1150 } 1151 1152 void set_matcher(Matcher* m) { _matcher = m; } 1153 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1154 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1155 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1156 1157 void set_java_calls(int z) { _java_calls = z; } 1158 void set_inner_loops(int z) { _inner_loops = z; } 1159 1160 Dependencies* dependencies() { return env()->dependencies(); } 1161 1162 // Major entry point. Given a Scope, compile the associated method. 1163 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1164 // replacement, entry_bci indicates the bytecode for which to compile a 1165 // continuation. 1166 Compile(ciEnv* ci_env, ciMethod* target, 1167 int entry_bci, Options options, DirectiveSet* directive); 1168 1169 // Second major entry point. From the TypeFunc signature, generate code 1170 // to pass arguments from the Java calling convention to the C calling 1171 // convention. 1172 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1173 address stub_function, const char *stub_name, 1174 int is_fancy_jump, bool pass_tls, 1175 bool return_pc, DirectiveSet* directive); 1176 1177 ~Compile(); 1178 1179 // Are we compiling a method? 1180 bool has_method() { return method() != nullptr; } 1181 1182 // Maybe print some information about this compile. 1183 void print_compile_messages(); 1184 1185 // Final graph reshaping, a post-pass after the regular optimizer is done. 1186 bool final_graph_reshaping(); 1187 1188 // returns true if adr is completely contained in the given alias category 1189 bool must_alias(const TypePtr* adr, int alias_idx); 1190 1191 // returns true if adr overlaps with the given alias category 1192 bool can_alias(const TypePtr* adr, int alias_idx); 1193 1194 // Stack slots that may be unused by the calling convention but must 1195 // otherwise be preserved. On Intel this includes the return address. 1196 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1197 uint in_preserve_stack_slots() { 1198 return SharedRuntime::in_preserve_stack_slots(); 1199 } 1200 1201 // "Top of Stack" slots that may be unused by the calling convention but must 1202 // otherwise be preserved. 1203 // On Intel these are not necessary and the value can be zero. 1204 static uint out_preserve_stack_slots() { 1205 return SharedRuntime::out_preserve_stack_slots(); 1206 } 1207 1208 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1209 // for calls to C. Supports the var-args backing area for register parms. 1210 uint varargs_C_out_slots_killed() const; 1211 1212 // Number of Stack Slots consumed by a synchronization entry 1213 int sync_stack_slots() const; 1214 1215 // Compute the name of old_SP. See <arch>.ad for frame layout. 1216 OptoReg::Name compute_old_SP(); 1217 1218 private: 1219 // Phase control: 1220 void Init(bool aliasing); // Prepare for a single compilation 1221 void Optimize(); // Given a graph, optimize it 1222 void Code_Gen(); // Generate code from a graph 1223 1224 // Management of the AliasType table. 1225 void grow_alias_types(); 1226 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1227 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1228 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1229 1230 void verify_top(Node*) const PRODUCT_RETURN; 1231 1232 // Intrinsic setup. 1233 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1234 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1235 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1236 void register_intrinsic(CallGenerator* cg); // update fn 1237 1238 #ifndef PRODUCT 1239 static juint _intrinsic_hist_count[]; 1240 static jubyte _intrinsic_hist_flags[]; 1241 #endif 1242 // Function calls made by the public function final_graph_reshaping. 1243 // No need to be made public as they are not called elsewhere. 1244 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1245 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1246 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1247 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1248 1249 // Logic cone optimization. 1250 void optimize_logic_cones(PhaseIterGVN &igvn); 1251 void collect_logic_cone_roots(Unique_Node_List& list); 1252 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1253 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1254 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1255 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1256 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1257 void check_no_dead_use() const NOT_DEBUG_RETURN; 1258 1259 public: 1260 1261 // Note: Histogram array size is about 1 Kb. 1262 enum { // flag bits: 1263 _intrinsic_worked = 1, // succeeded at least once 1264 _intrinsic_failed = 2, // tried it but it failed 1265 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1266 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1267 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1268 }; 1269 // Update histogram. Return boolean if this is a first-time occurrence. 1270 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1271 bool is_virtual, int flags) PRODUCT_RETURN0; 1272 static void print_intrinsic_statistics() PRODUCT_RETURN; 1273 1274 // Graph verification code 1275 // Walk the node list, verifying that there is a one-to-one 1276 // correspondence between Use-Def edges and Def-Use edges 1277 // The option no_dead_code enables stronger checks that the 1278 // graph is strongly connected from root in both directions. 1279 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1280 1281 // Verify bi-directional correspondence of edges 1282 void verify_bidirectional_edges(Unique_Node_List &visited); 1283 1284 // End-of-run dumps. 1285 static void print_statistics() PRODUCT_RETURN; 1286 1287 // Verify ADLC assumptions during startup 1288 static void adlc_verification() PRODUCT_RETURN; 1289 1290 // Definitions of pd methods 1291 static void pd_compiler2_init(); 1292 1293 // Static parse-time type checking logic for gen_subtype_check: 1294 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1295 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1296 1297 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1298 // Optional control dependency (for example, on range check) 1299 Node* ctrl = nullptr); 1300 1301 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1302 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1303 1304 // Auxiliary methods for randomized fuzzing/stressing 1305 int random(); 1306 bool randomized_select(int count); 1307 1308 // seed random number generation and log the seed for repeatability. 1309 void initialize_stress_seed(const DirectiveSet* directive); 1310 1311 // supporting clone_map 1312 CloneMap& clone_map(); 1313 void set_clone_map(Dict* d); 1314 1315 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1316 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1317 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1318 1319 #ifdef IA32 1320 private: 1321 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1322 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1323 1324 // Remember if this compilation changes hardware mode to 24-bit precision. 1325 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1326 _select_24_bit_instr = selection; 1327 _in_24_bit_fp_mode = mode; 1328 } 1329 1330 public: 1331 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1332 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1333 #endif // IA32 1334 #ifdef ASSERT 1335 VerifyMeetResult* _type_verify; 1336 void set_exception_backedge() { _exception_backedge = true; } 1337 bool has_exception_backedge() const { return _exception_backedge; } 1338 #endif 1339 1340 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1341 BasicType out_bt, BasicType in_bt); 1342 1343 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1344 }; 1345 1346 #endif // SHARE_OPTO_COMPILE_HPP