1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallNode; 57 class CallStaticJavaNode; 58 class CloneMap; 59 class CompilationFailureInfo; 60 class ConnectionGraph; 61 class IdealGraphPrinter; 62 class InlineTree; 63 class Matcher; 64 class MachConstantNode; 65 class MachConstantBaseNode; 66 class MachNode; 67 class MachOper; 68 class MachSafePointNode; 69 class Node; 70 class Node_Array; 71 class Node_List; 72 class Node_Notes; 73 class NodeHash; 74 class NodeCloneInfo; 75 class OptoReg; 76 class ParsePredicateNode; 77 class PhaseCFG; 78 class PhaseGVN; 79 class PhaseIterGVN; 80 class PhaseRegAlloc; 81 class PhaseCCP; 82 class PhaseOutput; 83 class RootNode; 84 class relocInfo; 85 class StartNode; 86 class SafePointNode; 87 class JVMState; 88 class Type; 89 class TypeInt; 90 class TypeInteger; 91 class TypeKlassPtr; 92 class TypePtr; 93 class TypeOopPtr; 94 class TypeFunc; 95 class TypeVect; 96 class Type_Array; 97 class Unique_Node_List; 98 class UnstableIfTrap; 99 class InlineTypeNode; 100 class nmethod; 101 class Node_Stack; 102 struct Final_Reshape_Counts; 103 class VerifyMeetResult; 104 105 enum LoopOptsMode { 106 LoopOptsDefault, 107 LoopOptsNone, 108 LoopOptsMaxUnroll, 109 LoopOptsShenandoahExpand, 110 LoopOptsShenandoahPostExpand, 111 LoopOptsSkipSplitIf, 112 LoopOptsVerify 113 }; 114 115 // The type of all node counts and indexes. 116 // It must hold at least 16 bits, but must also be fast to load and store. 117 // This type, if less than 32 bits, could limit the number of possible nodes. 118 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 119 typedef unsigned int node_idx_t; 120 121 class NodeCloneInfo { 122 private: 123 uint64_t _idx_clone_orig; 124 public: 125 126 void set_idx(node_idx_t idx) { 127 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 128 } 129 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 130 131 void set_gen(int generation) { 132 uint64_t g = (uint64_t)generation << 32; 133 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 134 } 135 int gen() const { return (int)(_idx_clone_orig >> 32); } 136 137 void set(uint64_t x) { _idx_clone_orig = x; } 138 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 139 uint64_t get() const { return _idx_clone_orig; } 140 141 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 142 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 143 144 void dump_on(outputStream* st) const; 145 }; 146 147 class CloneMap { 148 friend class Compile; 149 private: 150 bool _debug; 151 Dict* _dict; 152 int _clone_idx; // current cloning iteration/generation in loop unroll 153 public: 154 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 155 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 156 Dict* dict() const { return _dict; } 157 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 158 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 159 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 160 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 161 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 162 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 163 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 164 int max_gen() const; 165 void clone(Node* old, Node* nnn, int gen); 166 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 167 void dump(node_idx_t key, outputStream* st) const; 168 169 int clone_idx() const { return _clone_idx; } 170 void set_clone_idx(int x) { _clone_idx = x; } 171 bool is_debug() const { return _debug; } 172 void set_debug(bool debug) { _debug = debug; } 173 174 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 175 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 176 }; 177 178 class Options { 179 friend class Compile; 180 friend class VMStructs; 181 private: 182 const bool _subsume_loads; // Load can be matched as part of a larger op. 183 const bool _do_escape_analysis; // Do escape analysis. 184 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 185 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 186 const bool _eliminate_boxing; // Do boxing elimination. 187 const bool _do_locks_coarsening; // Do locks coarsening 188 const bool _do_superword; // Do SuperWord 189 const bool _install_code; // Install the code that was compiled 190 public: 191 Options(bool subsume_loads, 192 bool do_escape_analysis, 193 bool do_iterative_escape_analysis, 194 bool do_reduce_allocation_merges, 195 bool eliminate_boxing, 196 bool do_locks_coarsening, 197 bool do_superword, 198 bool install_code) : 199 _subsume_loads(subsume_loads), 200 _do_escape_analysis(do_escape_analysis), 201 _do_iterative_escape_analysis(do_iterative_escape_analysis), 202 _do_reduce_allocation_merges(do_reduce_allocation_merges), 203 _eliminate_boxing(eliminate_boxing), 204 _do_locks_coarsening(do_locks_coarsening), 205 _do_superword(do_superword), 206 _install_code(install_code) { 207 } 208 209 static Options for_runtime_stub() { 210 return Options( 211 /* subsume_loads = */ true, 212 /* do_escape_analysis = */ false, 213 /* do_iterative_escape_analysis = */ false, 214 /* do_reduce_allocation_merges = */ false, 215 /* eliminate_boxing = */ false, 216 /* do_lock_coarsening = */ false, 217 /* do_superword = */ true, 218 /* install_code = */ true 219 ); 220 } 221 }; 222 223 //------------------------------Compile---------------------------------------- 224 // This class defines a top-level Compiler invocation. 225 226 class Compile : public Phase { 227 friend class VMStructs; 228 229 public: 230 // Fixed alias indexes. (See also MergeMemNode.) 231 enum { 232 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 233 AliasIdxBot = 2, // pseudo-index, aliases to everything 234 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 235 }; 236 237 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 238 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 239 // then brackets are put into the log, with time stamps and node counts. 240 // (The time collection itself is always conditionalized on CITime.) 241 class TracePhase : public TraceTime { 242 private: 243 Compile* _compile; 244 CompileLog* _log; 245 bool _dolog; 246 public: 247 TracePhase(PhaseTraceId phaseTraceId); 248 TracePhase(const char* name, PhaseTraceId phaseTraceId); 249 ~TracePhase(); 250 const char* phase_name() const { return title(); } 251 }; 252 253 // Information per category of alias (memory slice) 254 class AliasType { 255 private: 256 friend class Compile; 257 258 int _index; // unique index, used with MergeMemNode 259 const TypePtr* _adr_type; // normalized address type 260 ciField* _field; // relevant instance field, or null if none 261 const Type* _element; // relevant array element type, or null if none 262 bool _is_rewritable; // false if the memory is write-once only 263 int _general_index; // if this is type is an instance, the general 264 // type that this is an instance of 265 266 void Init(int i, const TypePtr* at); 267 268 public: 269 int index() const { return _index; } 270 const TypePtr* adr_type() const { return _adr_type; } 271 ciField* field() const { return _field; } 272 const Type* element() const { return _element; } 273 bool is_rewritable() const { return _is_rewritable; } 274 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 275 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 276 277 void set_rewritable(bool z) { _is_rewritable = z; } 278 void set_field(ciField* f) { 279 assert(!_field,""); 280 _field = f; 281 if (f->is_final() || f->is_stable()) { 282 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 283 _is_rewritable = false; 284 } 285 } 286 void set_element(const Type* e) { 287 assert(_element == nullptr, ""); 288 _element = e; 289 } 290 291 BasicType basic_type() const; 292 293 void print_on(outputStream* st) PRODUCT_RETURN; 294 }; 295 296 enum { 297 logAliasCacheSize = 6, 298 AliasCacheSize = (1<<logAliasCacheSize) 299 }; 300 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 301 enum { 302 trapHistLength = MethodData::_trap_hist_limit 303 }; 304 305 private: 306 // Fixed parameters to this compilation. 307 const int _compile_id; 308 const Options _options; // Compilation options 309 ciMethod* _method; // The method being compiled. 310 int _entry_bci; // entry bci for osr methods. 311 const TypeFunc* _tf; // My kind of signature 312 InlineTree* _ilt; // Ditto (temporary). 313 address _stub_function; // VM entry for stub being compiled, or null 314 const char* _stub_name; // Name of stub or adapter being compiled, or null 315 address _stub_entry_point; // Compile code entry for generated stub, or null 316 317 // Control of this compilation. 318 int _max_inline_size; // Max inline size for this compilation 319 int _freq_inline_size; // Max hot method inline size for this compilation 320 int _fixed_slots; // count of frame slots not allocated by the register 321 // allocator i.e. locks, original deopt pc, etc. 322 uintx _max_node_limit; // Max unique node count during a single compilation. 323 324 bool _post_loop_opts_phase; // Loop opts are finished. 325 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 326 327 int _major_progress; // Count of something big happening 328 bool _inlining_progress; // progress doing incremental inlining? 329 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 330 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 331 bool _has_loops; // True if the method _may_ have some loops 332 bool _has_split_ifs; // True if the method _may_ have some split-if 333 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 334 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 335 bool _has_boxed_value; // True if a boxed object is allocated 336 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 337 bool _has_circular_inline_type; // True if method loads an inline type with a circular, non-flat field 338 uint _max_vector_size; // Maximum size of generated vectors 339 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 340 uint _trap_hist[trapHistLength]; // Cumulative traps 341 bool _trap_can_recompile; // Have we emitted a recompiling trap? 342 uint _decompile_count; // Cumulative decompilation counts. 343 bool _do_inlining; // True if we intend to do inlining 344 bool _do_scheduling; // True if we intend to do scheduling 345 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 346 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 347 bool _use_cmove; // True if CMove should be used without profitability analysis 348 bool _do_aliasing; // True if we intend to do aliasing 349 bool _print_assembly; // True if we should dump assembly code for this compilation 350 bool _print_inlining; // True if we should print inlining for this compilation 351 bool _print_intrinsics; // True if we should print intrinsics for this compilation 352 #ifndef PRODUCT 353 uint _igv_idx; // Counter for IGV node identifiers 354 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 355 bool _trace_opto_output; 356 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 357 #endif 358 bool _has_irreducible_loop; // Found irreducible loops 359 // JSR 292 360 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 361 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 362 bool _has_scoped_access; // For shared scope closure 363 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 364 int _loop_opts_cnt; // loop opts round 365 bool _has_flat_accesses; // Any known flat array accesses? 366 bool _flat_accesses_share_alias; // Initially all flat array share a single slice 367 bool _scalarize_in_safepoints; // Scalarize inline types in safepoint debug info 368 uint _stress_seed; // Seed for stress testing 369 370 // Compilation environment. 371 Arena _comp_arena; // Arena with lifetime equivalent to Compile 372 void* _barrier_set_state; // Potential GC barrier state for Compile 373 ciEnv* _env; // CI interface 374 DirectiveSet* _directive; // Compiler directive 375 CompileLog* _log; // from CompilerThread 376 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 377 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 378 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 379 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 380 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 381 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates. 382 GrowableArray<Node*> _template_assertion_predicate_opaqs; 383 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 384 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 385 GrowableArray<Node*> _inline_type_nodes; // List of InlineType nodes 386 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 387 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 388 ConnectionGraph* _congraph; 389 #ifndef PRODUCT 390 IdealGraphPrinter* _igv_printer; 391 static IdealGraphPrinter* _debug_file_printer; 392 static IdealGraphPrinter* _debug_network_printer; 393 #endif 394 395 396 // Node management 397 uint _unique; // Counter for unique Node indices 398 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 399 // So use this to keep count and make the call O(1). 400 VectorSet _dead_node_list; // Set of dead nodes 401 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 402 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 403 404 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 405 406 // Arenas for new-space and old-space nodes. 407 // Swapped between using _node_arena. 408 // The lifetime of the old-space nodes is during xform. 409 Arena _node_arena_one; 410 Arena _node_arena_two; 411 Arena* _node_arena; 412 public: 413 Arena* swap_old_and_new() { 414 Arena* filled_arena_ptr = _node_arena; 415 Arena* old_arena_ptr = old_arena(); 416 old_arena_ptr->destruct_contents(); 417 _node_arena = old_arena_ptr; 418 return filled_arena_ptr; 419 } 420 private: 421 RootNode* _root; // Unique root of compilation, or null after bail-out. 422 Node* _top; // Unique top node. (Reset by various phases.) 423 424 Node* _immutable_memory; // Initial memory state 425 426 Node* _recent_alloc_obj; 427 Node* _recent_alloc_ctl; 428 429 // Constant table 430 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 431 432 433 // Blocked array of debugging and profiling information, 434 // tracked per node. 435 enum { _log2_node_notes_block_size = 8, 436 _node_notes_block_size = (1<<_log2_node_notes_block_size) 437 }; 438 GrowableArray<Node_Notes*>* _node_note_array; 439 Node_Notes* _default_node_notes; // default notes for new nodes 440 441 // After parsing and every bulk phase we hang onto the Root instruction. 442 // The RootNode instruction is where the whole program begins. It produces 443 // the initial Control and BOTTOM for everybody else. 444 445 // Type management 446 Arena _Compile_types; // Arena for all types 447 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 448 Dict* _type_dict; // Intern table 449 CloneMap _clone_map; // used for recording history of cloned nodes 450 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 451 ciMethod* _last_tf_m; // Cache for 452 const TypeFunc* _last_tf; // TypeFunc::make 453 AliasType** _alias_types; // List of alias types seen so far. 454 int _num_alias_types; // Logical length of _alias_types 455 int _max_alias_types; // Physical length of _alias_types 456 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 457 458 // Parsing, optimization 459 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 460 461 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 462 // If pushed outside IGVN, the Node is processed in the next IGVN round. 463 Unique_Node_List* _igvn_worklist; 464 465 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 466 Type_Array* _types; 467 468 // Shared node hash table for GVN, IGVN and CCP. 469 NodeHash* _node_hash; 470 471 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 472 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 473 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 474 475 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 476 477 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 478 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 479 480 // "MemLimit" directive was specified and the memory limit was hit during compilation 481 bool _oom; 482 483 // Only keep nodes in the expensive node list that need to be optimized 484 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 485 // Use for sorting expensive nodes to bring similar nodes together 486 static int cmp_expensive_nodes(Node** n1, Node** n2); 487 // Expensive nodes list already sorted? 488 bool expensive_nodes_sorted() const; 489 // Remove the speculative part of types and clean up the graph 490 void remove_speculative_types(PhaseIterGVN &igvn); 491 492 void* _replay_inline_data; // Pointer to data loaded from file 493 494 void log_late_inline_failure(CallGenerator* cg, const char* msg); 495 DEBUG_ONLY(bool _exception_backedge;) 496 497 void record_method_not_compilable_oom(); 498 499 InlinePrinter _inline_printer; 500 501 public: 502 void* barrier_set_state() const { return _barrier_set_state; } 503 504 InlinePrinter* inline_printer() { return &_inline_printer; } 505 506 #ifndef PRODUCT 507 IdealGraphPrinter* igv_printer() { return _igv_printer; } 508 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 509 #endif 510 511 void log_late_inline(CallGenerator* cg); 512 void log_inline_id(CallGenerator* cg); 513 void log_inline_failure(const char* msg); 514 515 void* replay_inline_data() const { return _replay_inline_data; } 516 517 // Dump inlining replay data to the stream. 518 void dump_inline_data(outputStream* out); 519 void dump_inline_data_reduced(outputStream* out); 520 521 private: 522 // Matching, CFG layout, allocation, code generation 523 PhaseCFG* _cfg; // Results of CFG finding 524 int _java_calls; // Number of java calls in the method 525 int _inner_loops; // Number of inner loops in the method 526 Matcher* _matcher; // Engine to map ideal to machine instructions 527 PhaseRegAlloc* _regalloc; // Results of register allocation. 528 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 529 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 530 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 531 int _interpreter_frame_size; 532 533 PhaseOutput* _output; 534 535 public: 536 // Accessors 537 538 // The Compile instance currently active in this (compiler) thread. 539 static Compile* current() { 540 return (Compile*) ciEnv::current()->compiler_data(); 541 } 542 543 int interpreter_frame_size() const { return _interpreter_frame_size; } 544 545 PhaseOutput* output() const { return _output; } 546 void set_output(PhaseOutput* o) { _output = o; } 547 548 // ID for this compilation. Useful for setting breakpoints in the debugger. 549 int compile_id() const { return _compile_id; } 550 DirectiveSet* directive() const { return _directive; } 551 552 // Does this compilation allow instructions to subsume loads? User 553 // instructions that subsume a load may result in an unschedulable 554 // instruction sequence. 555 bool subsume_loads() const { return _options._subsume_loads; } 556 /** Do escape analysis. */ 557 bool do_escape_analysis() const { return _options._do_escape_analysis; } 558 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 559 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 560 /** Do boxing elimination. */ 561 bool eliminate_boxing() const { return _options._eliminate_boxing; } 562 /** Do aggressive boxing elimination. */ 563 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 564 bool should_install_code() const { return _options._install_code; } 565 /** Do locks coarsening. */ 566 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 567 bool do_superword() const { return _options._do_superword; } 568 569 // Other fixed compilation parameters. 570 ciMethod* method() const { return _method; } 571 int entry_bci() const { return _entry_bci; } 572 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 573 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 574 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 575 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 576 InlineTree* ilt() const { return _ilt; } 577 address stub_function() const { return _stub_function; } 578 const char* stub_name() const { return _stub_name; } 579 address stub_entry_point() const { return _stub_entry_point; } 580 void set_stub_entry_point(address z) { _stub_entry_point = z; } 581 582 // Control of this compilation. 583 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 584 void set_fixed_slots(int n) { _fixed_slots = n; } 585 int major_progress() const { return _major_progress; } 586 void set_inlining_progress(bool z) { _inlining_progress = z; } 587 int inlining_progress() const { return _inlining_progress; } 588 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 589 int inlining_incrementally() const { return _inlining_incrementally; } 590 void set_do_cleanup(bool z) { _do_cleanup = z; } 591 int do_cleanup() const { return _do_cleanup; } 592 void set_major_progress() { _major_progress++; } 593 void restore_major_progress(int progress) { _major_progress += progress; } 594 void clear_major_progress() { _major_progress = 0; } 595 int max_inline_size() const { return _max_inline_size; } 596 void set_freq_inline_size(int n) { _freq_inline_size = n; } 597 int freq_inline_size() const { return _freq_inline_size; } 598 void set_max_inline_size(int n) { _max_inline_size = n; } 599 bool has_loops() const { return _has_loops; } 600 void set_has_loops(bool z) { _has_loops = z; } 601 bool has_split_ifs() const { return _has_split_ifs; } 602 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 603 bool has_unsafe_access() const { return _has_unsafe_access; } 604 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 605 bool has_stringbuilder() const { return _has_stringbuilder; } 606 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 607 bool has_boxed_value() const { return _has_boxed_value; } 608 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 609 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 610 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 611 bool has_circular_inline_type() const { return _has_circular_inline_type; } 612 void set_has_circular_inline_type(bool z) { _has_circular_inline_type = z; } 613 uint max_vector_size() const { return _max_vector_size; } 614 void set_max_vector_size(uint s) { _max_vector_size = s; } 615 bool clear_upper_avx() const { return _clear_upper_avx; } 616 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 617 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 618 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 619 bool trap_can_recompile() const { return _trap_can_recompile; } 620 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 621 uint decompile_count() const { return _decompile_count; } 622 void set_decompile_count(uint c) { _decompile_count = c; } 623 bool allow_range_check_smearing() const; 624 bool do_inlining() const { return _do_inlining; } 625 void set_do_inlining(bool z) { _do_inlining = z; } 626 bool do_scheduling() const { return _do_scheduling; } 627 void set_do_scheduling(bool z) { _do_scheduling = z; } 628 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 629 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 630 bool do_vector_loop() const { return _do_vector_loop; } 631 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 632 bool use_cmove() const { return _use_cmove; } 633 void set_use_cmove(bool z) { _use_cmove = z; } 634 bool do_aliasing() const { return _do_aliasing; } 635 bool print_assembly() const { return _print_assembly; } 636 void set_print_assembly(bool z) { _print_assembly = z; } 637 bool print_inlining() const { return _print_inlining; } 638 void set_print_inlining(bool z) { _print_inlining = z; } 639 bool print_intrinsics() const { return _print_intrinsics; } 640 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 641 uint max_node_limit() const { return (uint)_max_node_limit; } 642 void set_max_node_limit(uint n) { _max_node_limit = n; } 643 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 644 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 645 void set_flat_accesses() { _has_flat_accesses = true; } 646 bool flat_accesses_share_alias() const { return _flat_accesses_share_alias; } 647 void set_flat_accesses_share_alias(bool z) { _flat_accesses_share_alias = z; } 648 bool scalarize_in_safepoints() const { return _scalarize_in_safepoints; } 649 void set_scalarize_in_safepoints(bool z) { _scalarize_in_safepoints = z; } 650 651 // Support for scalarized inline type calling convention 652 bool has_scalarized_args() const { return _method != nullptr && _method->has_scalarized_args(); } 653 bool needs_stack_repair() const { return _method != nullptr && _method->get_Method()->c2_needs_stack_repair(); } 654 655 bool has_monitors() const { return _has_monitors; } 656 void set_has_monitors(bool v) { _has_monitors = v; } 657 bool has_scoped_access() const { return _has_scoped_access; } 658 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 659 660 // check the CompilerOracle for special behaviours for this compile 661 bool method_has_option(CompileCommandEnum option) { 662 return method() != nullptr && method()->has_option(option); 663 } 664 665 #ifndef PRODUCT 666 uint next_igv_idx() { return _igv_idx++; } 667 bool trace_opto_output() const { return _trace_opto_output; } 668 void print_ideal_ir(const char* phase_name); 669 bool should_print_ideal() const { return _directive->PrintIdealOption; } 670 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 671 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 672 int _in_dump_cnt; // Required for dumping ir nodes. 673 #endif 674 bool has_irreducible_loop() const { return _has_irreducible_loop; } 675 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 676 677 // JSR 292 678 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 679 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 680 681 Ticks _latest_stage_start_counter; 682 683 void begin_method(); 684 void end_method(); 685 bool should_print_igv(int level); 686 bool should_print_phase(CompilerPhaseType cpt); 687 688 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 689 690 #ifndef PRODUCT 691 void init_igv(); 692 void dump_igv(const char* graph_name, int level = 3) { 693 if (should_print_igv(level)) { 694 _igv_printer->print_graph(graph_name); 695 } 696 } 697 698 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 699 void igv_print_method_to_network(const char* phase_name = "Debug"); 700 void igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes); 701 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 702 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 703 #endif 704 705 int macro_count() const { return _macro_nodes.length(); } 706 int parse_predicate_count() const { return _parse_predicates.length(); } 707 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); } 708 int expensive_count() const { return _expensive_nodes.length(); } 709 int coarsened_count() const { return _coarsened_locks.length(); } 710 711 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 712 ParsePredicateNode* parse_predicate(int idx) const { return _parse_predicates.at(idx); } 713 714 Node* template_assertion_predicate_opaq_node(int idx) const { 715 return _template_assertion_predicate_opaqs.at(idx); 716 } 717 718 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 719 720 ConnectionGraph* congraph() { return _congraph;} 721 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 722 void add_macro_node(Node * n) { 723 //assert(n->is_macro(), "must be a macro node"); 724 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 725 _macro_nodes.append(n); 726 } 727 void remove_macro_node(Node* n) { 728 // this function may be called twice for a node so we can only remove it 729 // if it's still existing. 730 _macro_nodes.remove_if_existing(n); 731 // Remove from coarsened locks list if present 732 if (coarsened_count() > 0) { 733 remove_coarsened_lock(n); 734 } 735 } 736 void add_expensive_node(Node* n); 737 void remove_expensive_node(Node* n) { 738 _expensive_nodes.remove_if_existing(n); 739 } 740 741 void add_parse_predicate(ParsePredicateNode* n) { 742 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 743 _parse_predicates.append(n); 744 } 745 746 void remove_parse_predicate(ParsePredicateNode* n) { 747 if (parse_predicate_count() > 0) { 748 _parse_predicates.remove_if_existing(n); 749 } 750 } 751 752 void add_template_assertion_predicate_opaq(Node* n) { 753 assert(!_template_assertion_predicate_opaqs.contains(n), 754 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 755 _template_assertion_predicate_opaqs.append(n); 756 } 757 758 void remove_template_assertion_predicate_opaq(Node* n) { 759 if (template_assertion_predicate_count() > 0) { 760 _template_assertion_predicate_opaqs.remove_if_existing(n); 761 } 762 } 763 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 764 void remove_coarsened_lock(Node* n); 765 bool coarsened_locks_consistent(); 766 void mark_unbalanced_boxes() const; 767 768 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 769 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 770 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 771 772 #ifdef ASSERT 773 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 774 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 775 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 776 #endif 777 778 bool allow_macro_nodes() { return _allow_macro_nodes; } 779 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 780 781 void record_for_post_loop_opts_igvn(Node* n); 782 void remove_from_post_loop_opts_igvn(Node* n); 783 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 784 785 // Keep track of inline type nodes for later processing 786 void add_inline_type(Node* n); 787 void remove_inline_type(Node* n); 788 void process_inline_types(PhaseIterGVN &igvn, bool remove = false); 789 790 void adjust_flat_array_access_aliases(PhaseIterGVN& igvn); 791 792 void record_unstable_if_trap(UnstableIfTrap* trap); 793 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 794 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 795 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 796 797 void shuffle_macro_nodes(); 798 void sort_macro_nodes(); 799 800 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 801 802 // Are there candidate expensive nodes for optimization? 803 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 804 // Check whether n1 and n2 are similar 805 static int cmp_expensive_nodes(Node* n1, Node* n2); 806 // Sort expensive nodes to locate similar expensive nodes 807 void sort_expensive_nodes(); 808 809 // Compilation environment. 810 Arena* comp_arena() { return &_comp_arena; } 811 ciEnv* env() const { return _env; } 812 CompileLog* log() const { return _log; } 813 814 bool failing_internal() const { 815 return _env->failing() || 816 _failure_reason.get() != nullptr; 817 } 818 819 const char* failure_reason() const { 820 return _env->failing() ? _env->failure_reason() 821 : _failure_reason.get(); 822 } 823 824 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 825 826 bool failing() { 827 if (failing_internal()) { 828 return true; 829 } 830 #ifdef ASSERT 831 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 832 if (phase_verify_ideal_loop()) { 833 return false; 834 } 835 if (StressBailout) { 836 return fail_randomly(); 837 } 838 #endif 839 return false; 840 } 841 842 #ifdef ASSERT 843 bool fail_randomly(); 844 bool failure_is_artificial(); 845 #endif 846 847 bool failure_reason_is(const char* r) const { 848 return (r == _failure_reason.get()) || 849 (r != nullptr && 850 _failure_reason.get() != nullptr && 851 strcmp(r, _failure_reason.get()) == 0); 852 } 853 854 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 855 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 856 env()->record_method_not_compilable(reason); 857 // Record failure reason. 858 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 859 } 860 bool check_node_count(uint margin, const char* reason) { 861 if (oom()) { 862 record_method_not_compilable_oom(); 863 return true; 864 } 865 if (live_nodes() + margin > max_node_limit()) { 866 record_method_not_compilable(reason); 867 return true; 868 } else { 869 return false; 870 } 871 } 872 bool oom() const { return _oom; } 873 void set_oom() { _oom = true; } 874 875 // Node management 876 uint unique() const { return _unique; } 877 uint next_unique() { return _unique++; } 878 void set_unique(uint i) { _unique = i; } 879 Arena* node_arena() { return _node_arena; } 880 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 881 RootNode* root() const { return _root; } 882 void set_root(RootNode* r) { _root = r; } 883 StartNode* start() const; // (Derived from root.) 884 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 885 Node* immutable_memory(); 886 887 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 888 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 889 void set_recent_alloc(Node* ctl, Node* obj) { 890 _recent_alloc_ctl = ctl; 891 _recent_alloc_obj = obj; 892 } 893 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 894 _dead_node_count++; 895 } 896 void reset_dead_node_list() { _dead_node_list.reset(); 897 _dead_node_count = 0; 898 } 899 uint live_nodes() const { 900 int val = _unique - _dead_node_count; 901 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 902 return (uint) val; 903 } 904 #ifdef ASSERT 905 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 906 bool phase_optimize_finished() const { return _phase_optimize_finished; } 907 uint count_live_nodes_by_graph_walk(); 908 void print_missing_nodes(); 909 #endif 910 911 // Record modified nodes to check that they are put on IGVN worklist 912 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 913 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 914 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 915 916 MachConstantBaseNode* mach_constant_base_node(); 917 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 918 // Generated by adlc, true if CallNode requires MachConstantBase. 919 bool needs_deep_clone_jvms(); 920 921 // Handy undefined Node 922 Node* top() const { return _top; } 923 924 // these are used by guys who need to know about creation and transformation of top: 925 Node* cached_top_node() { return _top; } 926 void set_cached_top_node(Node* tn); 927 928 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 929 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 930 Node_Notes* default_node_notes() const { return _default_node_notes; } 931 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 932 933 Node_Notes* node_notes_at(int idx); 934 935 inline bool set_node_notes_at(int idx, Node_Notes* value); 936 // Copy notes from source to dest, if they exist. 937 // Overwrite dest only if source provides something. 938 // Return true if information was moved. 939 bool copy_node_notes_to(Node* dest, Node* source); 940 941 // Workhorse function to sort out the blocked Node_Notes array: 942 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 943 int idx, bool can_grow = false); 944 945 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 946 947 // Type management 948 Arena* type_arena() { return _type_arena; } 949 Dict* type_dict() { return _type_dict; } 950 size_t type_last_size() { return _type_last_size; } 951 int num_alias_types() { return _num_alias_types; } 952 953 void init_type_arena() { _type_arena = &_Compile_types; } 954 void set_type_arena(Arena* a) { _type_arena = a; } 955 void set_type_dict(Dict* d) { _type_dict = d; } 956 void set_type_last_size(size_t sz) { _type_last_size = sz; } 957 958 const TypeFunc* last_tf(ciMethod* m) { 959 return (m == _last_tf_m) ? _last_tf : nullptr; 960 } 961 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 962 assert(m != nullptr || tf == nullptr, ""); 963 _last_tf_m = m; 964 _last_tf = tf; 965 } 966 967 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 968 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr, bool uncached = false) { return find_alias_type(adr_type, false, field, uncached); } 969 bool have_alias_type(const TypePtr* adr_type); 970 AliasType* alias_type(ciField* field); 971 972 int get_alias_index(const TypePtr* at, bool uncached = false) { return alias_type(at, nullptr, uncached)->index(); } 973 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 974 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 975 976 // Building nodes 977 void rethrow_exceptions(JVMState* jvms); 978 void return_values(JVMState* jvms); 979 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 980 981 // Decide how to build a call. 982 // The profile factor is a discount to apply to this site's interp. profile. 983 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 984 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 985 bool allow_intrinsics = true); 986 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 987 return should_delay_string_inlining(call_method, jvms) || 988 should_delay_boxing_inlining(call_method, jvms) || 989 should_delay_vector_inlining(call_method, jvms); 990 } 991 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 992 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 993 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 994 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 995 996 // Helper functions to identify inlining potential at call-site 997 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 998 ciKlass* holder, ciMethod* callee, 999 const TypeOopPtr* receiver_type, bool is_virtual, 1000 bool &call_does_dispatch, int &vtable_index, 1001 bool check_access = true); 1002 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1003 ciMethod* callee, const TypeOopPtr* receiver_type, 1004 bool check_access = true); 1005 1006 // Report if there were too many traps at a current method and bci. 1007 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1008 // If there is no MDO at all, report no trap unless told to assume it. 1009 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1010 // This version, unspecific to a particular bci, asks if 1011 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1012 bool too_many_traps(Deoptimization::DeoptReason reason, 1013 // Privately used parameter for logging: 1014 ciMethodData* logmd = nullptr); 1015 // Report if there were too many recompiles at a method and bci. 1016 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1017 // Report if there were too many traps or recompiles at a method and bci. 1018 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1019 return too_many_traps(method, bci, reason) || 1020 too_many_recompiles(method, bci, reason); 1021 } 1022 // Return a bitset with the reasons where deoptimization is allowed, 1023 // i.e., where there were not too many uncommon traps. 1024 int _allowed_reasons; 1025 int allowed_deopt_reasons() { return _allowed_reasons; } 1026 void set_allowed_deopt_reasons(); 1027 1028 // Parsing, optimization 1029 PhaseGVN* initial_gvn() { return _initial_gvn; } 1030 Unique_Node_List* igvn_worklist() { 1031 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1032 return _igvn_worklist; 1033 } 1034 Type_Array* types() { 1035 assert(_types != nullptr, "must be created in Compile::Compile"); 1036 return _types; 1037 } 1038 NodeHash* node_hash() { 1039 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1040 return _node_hash; 1041 } 1042 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1043 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1044 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1045 1046 // Replace n by nn using initial_gvn, calling hash_delete and 1047 // record_for_igvn as needed. 1048 void gvn_replace_by(Node* n, Node* nn); 1049 1050 1051 void identify_useful_nodes(Unique_Node_List &useful); 1052 void update_dead_node_list(Unique_Node_List &useful); 1053 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist); 1054 1055 void remove_useless_node(Node* dead); 1056 1057 // Record this CallGenerator for inlining at the end of parsing. 1058 void add_late_inline(CallGenerator* cg) { 1059 _late_inlines.insert_before(_late_inlines_pos, cg); 1060 _late_inlines_pos++; 1061 } 1062 1063 void prepend_late_inline(CallGenerator* cg) { 1064 _late_inlines.insert_before(0, cg); 1065 } 1066 1067 void add_string_late_inline(CallGenerator* cg) { 1068 _string_late_inlines.push(cg); 1069 } 1070 1071 void add_boxing_late_inline(CallGenerator* cg) { 1072 _boxing_late_inlines.push(cg); 1073 } 1074 1075 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1076 _vector_reboxing_late_inlines.push(cg); 1077 } 1078 1079 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1080 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1081 1082 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1083 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1084 1085 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1086 1087 void dump_print_inlining(); 1088 1089 bool over_inlining_cutoff() const { 1090 if (!inlining_incrementally()) { 1091 return unique() > (uint)NodeCountInliningCutoff; 1092 } else { 1093 // Give some room for incremental inlining algorithm to "breathe" 1094 // and avoid thrashing when live node count is close to the limit. 1095 // Keep in mind that live_nodes() isn't accurate during inlining until 1096 // dead node elimination step happens (see Compile::inline_incrementally). 1097 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1098 } 1099 } 1100 1101 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1102 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1103 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1104 1105 bool inline_incrementally_one(); 1106 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1107 void inline_incrementally(PhaseIterGVN& igvn); 1108 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1109 void inline_string_calls(bool parse_time); 1110 void inline_boxing_calls(PhaseIterGVN& igvn); 1111 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1112 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1113 1114 void inline_vector_reboxing_calls(); 1115 bool has_vbox_nodes(); 1116 1117 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1118 1119 // Matching, CFG layout, allocation, code generation 1120 PhaseCFG* cfg() { return _cfg; } 1121 bool has_java_calls() const { return _java_calls > 0; } 1122 int java_calls() const { return _java_calls; } 1123 int inner_loops() const { return _inner_loops; } 1124 Matcher* matcher() { return _matcher; } 1125 PhaseRegAlloc* regalloc() { return _regalloc; } 1126 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1127 Arena* indexSet_arena() { return _indexSet_arena; } 1128 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1129 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1130 1131 void update_interpreter_frame_size(int size) { 1132 if (_interpreter_frame_size < size) { 1133 _interpreter_frame_size = size; 1134 } 1135 } 1136 1137 void set_matcher(Matcher* m) { _matcher = m; } 1138 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1139 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1140 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1141 1142 void set_java_calls(int z) { _java_calls = z; } 1143 void set_inner_loops(int z) { _inner_loops = z; } 1144 1145 Dependencies* dependencies() { return env()->dependencies(); } 1146 1147 // Major entry point. Given a Scope, compile the associated method. 1148 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1149 // replacement, entry_bci indicates the bytecode for which to compile a 1150 // continuation. 1151 Compile(ciEnv* ci_env, ciMethod* target, 1152 int entry_bci, Options options, DirectiveSet* directive); 1153 1154 // Second major entry point. From the TypeFunc signature, generate code 1155 // to pass arguments from the Java calling convention to the C calling 1156 // convention. 1157 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1158 address stub_function, const char *stub_name, 1159 int is_fancy_jump, bool pass_tls, 1160 bool return_pc, DirectiveSet* directive); 1161 1162 ~Compile(); 1163 1164 // Are we compiling a method? 1165 bool has_method() { return method() != nullptr; } 1166 1167 // Maybe print some information about this compile. 1168 void print_compile_messages(); 1169 1170 // Final graph reshaping, a post-pass after the regular optimizer is done. 1171 bool final_graph_reshaping(); 1172 1173 // returns true if adr is completely contained in the given alias category 1174 bool must_alias(const TypePtr* adr, int alias_idx); 1175 1176 // returns true if adr overlaps with the given alias category 1177 bool can_alias(const TypePtr* adr, int alias_idx); 1178 1179 // Stack slots that may be unused by the calling convention but must 1180 // otherwise be preserved. On Intel this includes the return address. 1181 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1182 uint in_preserve_stack_slots() { 1183 return SharedRuntime::in_preserve_stack_slots(); 1184 } 1185 1186 // "Top of Stack" slots that may be unused by the calling convention but must 1187 // otherwise be preserved. 1188 // On Intel these are not necessary and the value can be zero. 1189 static uint out_preserve_stack_slots() { 1190 return SharedRuntime::out_preserve_stack_slots(); 1191 } 1192 1193 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1194 // for calls to C. Supports the var-args backing area for register parms. 1195 uint varargs_C_out_slots_killed() const; 1196 1197 // Number of Stack Slots consumed by a synchronization entry 1198 int sync_stack_slots() const; 1199 1200 // Compute the name of old_SP. See <arch>.ad for frame layout. 1201 OptoReg::Name compute_old_SP(); 1202 1203 private: 1204 // Phase control: 1205 void Init(bool aliasing); // Prepare for a single compilation 1206 void Optimize(); // Given a graph, optimize it 1207 void Code_Gen(); // Generate code from a graph 1208 1209 // Management of the AliasType table. 1210 void grow_alias_types(); 1211 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1212 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1213 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field, bool uncached = false); 1214 1215 void verify_top(Node*) const PRODUCT_RETURN; 1216 1217 // Intrinsic setup. 1218 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1219 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1220 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1221 void register_intrinsic(CallGenerator* cg); // update fn 1222 1223 #ifndef PRODUCT 1224 static juint _intrinsic_hist_count[]; 1225 static jubyte _intrinsic_hist_flags[]; 1226 #endif 1227 // Function calls made by the public function final_graph_reshaping. 1228 // No need to be made public as they are not called elsewhere. 1229 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1230 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1231 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1232 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1233 1234 // Logic cone optimization. 1235 void optimize_logic_cones(PhaseIterGVN &igvn); 1236 void collect_logic_cone_roots(Unique_Node_List& list); 1237 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1238 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1239 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1240 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1241 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1242 void check_no_dead_use() const NOT_DEBUG_RETURN; 1243 1244 public: 1245 1246 // Note: Histogram array size is about 1 Kb. 1247 enum { // flag bits: 1248 _intrinsic_worked = 1, // succeeded at least once 1249 _intrinsic_failed = 2, // tried it but it failed 1250 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1251 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1252 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1253 }; 1254 // Update histogram. Return boolean if this is a first-time occurrence. 1255 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1256 bool is_virtual, int flags) PRODUCT_RETURN0; 1257 static void print_intrinsic_statistics() PRODUCT_RETURN; 1258 1259 // Graph verification code 1260 // Walk the node list, verifying that there is a one-to-one 1261 // correspondence between Use-Def edges and Def-Use edges 1262 // The option no_dead_code enables stronger checks that the 1263 // graph is strongly connected from root in both directions. 1264 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1265 1266 // Verify bi-directional correspondence of edges 1267 void verify_bidirectional_edges(Unique_Node_List &visited); 1268 1269 // End-of-run dumps. 1270 static void print_statistics() PRODUCT_RETURN; 1271 1272 // Verify ADLC assumptions during startup 1273 static void adlc_verification() PRODUCT_RETURN; 1274 1275 // Definitions of pd methods 1276 static void pd_compiler2_init(); 1277 1278 // Static parse-time type checking logic for gen_subtype_check: 1279 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1280 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1281 1282 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1283 // Optional control dependency (for example, on range check) 1284 Node* ctrl = nullptr); 1285 1286 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1287 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1288 1289 Node* optimize_acmp(PhaseGVN* phase, Node* a, Node* b); 1290 1291 // Auxiliary method for randomized fuzzing/stressing 1292 int random(); 1293 bool randomized_select(int count); 1294 1295 // seed random number generation and log the seed for repeatability. 1296 void initialize_stress_seed(const DirectiveSet* directive); 1297 1298 // supporting clone_map 1299 CloneMap& clone_map(); 1300 void set_clone_map(Dict* d); 1301 1302 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1303 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1304 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1305 1306 #ifdef IA32 1307 private: 1308 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1309 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1310 1311 // Remember if this compilation changes hardware mode to 24-bit precision. 1312 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1313 _select_24_bit_instr = selection; 1314 _in_24_bit_fp_mode = mode; 1315 } 1316 1317 public: 1318 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1319 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1320 #endif // IA32 1321 #ifdef ASSERT 1322 VerifyMeetResult* _type_verify; 1323 void set_exception_backedge() { _exception_backedge = true; } 1324 bool has_exception_backedge() const { return _exception_backedge; } 1325 #endif 1326 1327 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1328 BasicType out_bt, BasicType in_bt); 1329 1330 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1331 }; 1332 1333 #endif // SHARE_OPTO_COMPILE_HPP