1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerEvent.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 49 class AbstractLockNode; 50 class AddPNode; 51 class Block; 52 class Bundle; 53 class CallGenerator; 54 class CallNode; 55 class CallStaticJavaNode; 56 class CloneMap; 57 class ConnectionGraph; 58 class IdealGraphPrinter; 59 class InlineTree; 60 class Matcher; 61 class MachConstantNode; 62 class MachConstantBaseNode; 63 class MachNode; 64 class MachOper; 65 class MachSafePointNode; 66 class Node; 67 class Node_Array; 68 class Node_List; 69 class Node_Notes; 70 class NodeCloneInfo; 71 class OptoReg; 72 class PhaseCFG; 73 class PhaseGVN; 74 class PhaseIterGVN; 75 class PhaseRegAlloc; 76 class PhaseCCP; 77 class PhaseOutput; 78 class RootNode; 79 class relocInfo; 80 class StartNode; 81 class SafePointNode; 82 class JVMState; 83 class Type; 84 class TypeInt; 85 class TypeInteger; 86 class TypeKlassPtr; 87 class TypePtr; 88 class TypeOopPtr; 89 class TypeFunc; 90 class TypeVect; 91 class Unique_Node_List; 92 class UnstableIfTrap; 93 class InlineTypeNode; 94 class nmethod; 95 class Node_Stack; 96 struct Final_Reshape_Counts; 97 98 enum LoopOptsMode { 99 LoopOptsDefault, 100 LoopOptsNone, 101 LoopOptsMaxUnroll, 102 LoopOptsShenandoahExpand, 103 LoopOptsShenandoahPostExpand, 104 LoopOptsSkipSplitIf, 105 LoopOptsVerify 106 }; 107 108 // The type of all node counts and indexes. 109 // It must hold at least 16 bits, but must also be fast to load and store. 110 // This type, if less than 32 bits, could limit the number of possible nodes. 111 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 112 typedef unsigned int node_idx_t; 113 114 class NodeCloneInfo { 115 private: 116 uint64_t _idx_clone_orig; 117 public: 118 119 void set_idx(node_idx_t idx) { 120 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 121 } 122 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 123 124 void set_gen(int generation) { 125 uint64_t g = (uint64_t)generation << 32; 126 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 127 } 128 int gen() const { return (int)(_idx_clone_orig >> 32); } 129 130 void set(uint64_t x) { _idx_clone_orig = x; } 131 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 132 uint64_t get() const { return _idx_clone_orig; } 133 134 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 135 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 136 137 void dump() const; 138 }; 139 140 class CloneMap { 141 friend class Compile; 142 private: 143 bool _debug; 144 Dict* _dict; 145 int _clone_idx; // current cloning iteration/generation in loop unroll 146 public: 147 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 148 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 149 Dict* dict() const { return _dict; } 150 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } 151 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 152 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 153 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 154 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 155 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 156 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 157 int max_gen() const; 158 void clone(Node* old, Node* nnn, int gen); 159 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 160 void dump(node_idx_t key) const; 161 162 int clone_idx() const { return _clone_idx; } 163 void set_clone_idx(int x) { _clone_idx = x; } 164 bool is_debug() const { return _debug; } 165 void set_debug(bool debug) { _debug = debug; } 166 167 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 168 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 169 }; 170 171 class Options { 172 friend class Compile; 173 friend class VMStructs; 174 private: 175 const bool _subsume_loads; // Load can be matched as part of a larger op. 176 const bool _do_escape_analysis; // Do escape analysis. 177 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 178 const bool _eliminate_boxing; // Do boxing elimination. 179 const bool _do_locks_coarsening; // Do locks coarsening 180 const bool _install_code; // Install the code that was compiled 181 public: 182 Options(bool subsume_loads, bool do_escape_analysis, 183 bool do_iterative_escape_analysis, 184 bool eliminate_boxing, bool do_locks_coarsening, 185 bool install_code) : 186 _subsume_loads(subsume_loads), 187 _do_escape_analysis(do_escape_analysis), 188 _do_iterative_escape_analysis(do_iterative_escape_analysis), 189 _eliminate_boxing(eliminate_boxing), 190 _do_locks_coarsening(do_locks_coarsening), 191 _install_code(install_code) { 192 } 193 194 static Options for_runtime_stub() { 195 return Options( 196 /* subsume_loads = */ true, 197 /* do_escape_analysis = */ false, 198 /* do_iterative_escape_analysis = */ false, 199 /* eliminate_boxing = */ false, 200 /* do_lock_coarsening = */ false, 201 /* install_code = */ true 202 ); 203 } 204 }; 205 206 //------------------------------Compile---------------------------------------- 207 // This class defines a top-level Compiler invocation. 208 209 class Compile : public Phase { 210 friend class VMStructs; 211 212 public: 213 // Fixed alias indexes. (See also MergeMemNode.) 214 enum { 215 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 216 AliasIdxBot = 2, // pseudo-index, aliases to everything 217 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 218 }; 219 220 // Variant of TraceTime(NULL, &_t_accumulator, CITime); 221 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 222 // then brackets are put into the log, with time stamps and node counts. 223 // (The time collection itself is always conditionalized on CITime.) 224 class TracePhase : public TraceTime { 225 private: 226 Compile* C; 227 CompileLog* _log; 228 const char* _phase_name; 229 bool _dolog; 230 public: 231 TracePhase(const char* name, elapsedTimer* accumulator); 232 ~TracePhase(); 233 }; 234 235 // Information per category of alias (memory slice) 236 class AliasType { 237 private: 238 friend class Compile; 239 240 int _index; // unique index, used with MergeMemNode 241 const TypePtr* _adr_type; // normalized address type 242 ciField* _field; // relevant instance field, or null if none 243 const Type* _element; // relevant array element type, or null if none 244 bool _is_rewritable; // false if the memory is write-once only 245 int _general_index; // if this is type is an instance, the general 246 // type that this is an instance of 247 248 void Init(int i, const TypePtr* at); 249 250 public: 251 int index() const { return _index; } 252 const TypePtr* adr_type() const { return _adr_type; } 253 ciField* field() const { return _field; } 254 const Type* element() const { return _element; } 255 bool is_rewritable() const { return _is_rewritable; } 256 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 257 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 258 259 void set_rewritable(bool z) { _is_rewritable = z; } 260 void set_field(ciField* f) { 261 assert(!_field,""); 262 _field = f; 263 if (f->is_final() || f->is_stable()) { 264 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 265 _is_rewritable = false; 266 } 267 } 268 void set_element(const Type* e) { 269 assert(_element == NULL, ""); 270 _element = e; 271 } 272 273 BasicType basic_type() const; 274 275 void print_on(outputStream* st) PRODUCT_RETURN; 276 }; 277 278 enum { 279 logAliasCacheSize = 6, 280 AliasCacheSize = (1<<logAliasCacheSize) 281 }; 282 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 283 enum { 284 trapHistLength = MethodData::_trap_hist_limit 285 }; 286 287 private: 288 // Fixed parameters to this compilation. 289 const int _compile_id; 290 const Options _options; // Compilation options 291 ciMethod* _method; // The method being compiled. 292 int _entry_bci; // entry bci for osr methods. 293 const TypeFunc* _tf; // My kind of signature 294 InlineTree* _ilt; // Ditto (temporary). 295 address _stub_function; // VM entry for stub being compiled, or NULL 296 const char* _stub_name; // Name of stub or adapter being compiled, or NULL 297 address _stub_entry_point; // Compile code entry for generated stub, or NULL 298 299 // Control of this compilation. 300 int _max_inline_size; // Max inline size for this compilation 301 int _freq_inline_size; // Max hot method inline size for this compilation 302 int _fixed_slots; // count of frame slots not allocated by the register 303 // allocator i.e. locks, original deopt pc, etc. 304 uintx _max_node_limit; // Max unique node count during a single compilation. 305 306 bool _post_loop_opts_phase; // Loop opts are finished. 307 308 int _major_progress; // Count of something big happening 309 bool _inlining_progress; // progress doing incremental inlining? 310 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 311 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 312 bool _has_loops; // True if the method _may_ have some loops 313 bool _has_split_ifs; // True if the method _may_ have some split-if 314 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 315 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 316 bool _has_boxed_value; // True if a boxed object is allocated 317 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 318 uint _max_vector_size; // Maximum size of generated vectors 319 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 320 uint _trap_hist[trapHistLength]; // Cumulative traps 321 bool _trap_can_recompile; // Have we emitted a recompiling trap? 322 uint _decompile_count; // Cumulative decompilation counts. 323 bool _do_inlining; // True if we intend to do inlining 324 bool _do_scheduling; // True if we intend to do scheduling 325 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 326 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 327 bool _use_cmove; // True if CMove should be used without profitability analysis 328 bool _do_aliasing; // True if we intend to do aliasing 329 bool _print_assembly; // True if we should dump assembly code for this compilation 330 bool _print_inlining; // True if we should print inlining for this compilation 331 bool _print_intrinsics; // True if we should print intrinsics for this compilation 332 #ifndef PRODUCT 333 uint _igv_idx; // Counter for IGV node identifiers 334 bool _trace_opto_output; 335 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 336 #endif 337 bool _has_irreducible_loop; // Found irreducible loops 338 // JSR 292 339 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 340 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 341 RTMState _rtm_state; // State of Restricted Transactional Memory usage 342 int _loop_opts_cnt; // loop opts round 343 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 344 bool _has_flattened_accesses; // Any known flattened array accesses? 345 bool _flattened_accesses_share_alias; // Initially all flattened array share a single slice 346 bool _scalarize_in_safepoints; // Scalarize inline types in safepoint debug info 347 uint _stress_seed; // Seed for stress testing 348 349 // Compilation environment. 350 Arena _comp_arena; // Arena with lifetime equivalent to Compile 351 void* _barrier_set_state; // Potential GC barrier state for Compile 352 ciEnv* _env; // CI interface 353 DirectiveSet* _directive; // Compiler directive 354 CompileLog* _log; // from CompilerThread 355 const char* _failure_reason; // for record_failure/failing pattern 356 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 357 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 358 GrowableArray<Node*> _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. 359 GrowableArray<Node*> _skeleton_predicate_opaqs; // List of Opaque4 nodes for the loop skeleton predicates. 360 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 361 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 362 GrowableArray<Node*> _inline_type_nodes; // List of InlineType nodes 363 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 364 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 365 ConnectionGraph* _congraph; 366 #ifndef PRODUCT 367 IdealGraphPrinter* _igv_printer; 368 static IdealGraphPrinter* _debug_file_printer; 369 static IdealGraphPrinter* _debug_network_printer; 370 #endif 371 372 373 // Node management 374 uint _unique; // Counter for unique Node indices 375 VectorSet _dead_node_list; // Set of dead nodes 376 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 377 // So use this to keep count and make the call O(1). 378 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 379 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 380 381 debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx> 382 Arena _node_arena; // Arena for new-space Nodes 383 Arena _old_arena; // Arena for old-space Nodes, lifetime during xform 384 RootNode* _root; // Unique root of compilation, or NULL after bail-out. 385 Node* _top; // Unique top node. (Reset by various phases.) 386 387 Node* _immutable_memory; // Initial memory state 388 389 Node* _recent_alloc_obj; 390 Node* _recent_alloc_ctl; 391 392 // Constant table 393 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 394 395 396 // Blocked array of debugging and profiling information, 397 // tracked per node. 398 enum { _log2_node_notes_block_size = 8, 399 _node_notes_block_size = (1<<_log2_node_notes_block_size) 400 }; 401 GrowableArray<Node_Notes*>* _node_note_array; 402 Node_Notes* _default_node_notes; // default notes for new nodes 403 404 // After parsing and every bulk phase we hang onto the Root instruction. 405 // The RootNode instruction is where the whole program begins. It produces 406 // the initial Control and BOTTOM for everybody else. 407 408 // Type management 409 Arena _Compile_types; // Arena for all types 410 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 411 Dict* _type_dict; // Intern table 412 CloneMap _clone_map; // used for recording history of cloned nodes 413 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 414 ciMethod* _last_tf_m; // Cache for 415 const TypeFunc* _last_tf; // TypeFunc::make 416 AliasType** _alias_types; // List of alias types seen so far. 417 int _num_alias_types; // Logical length of _alias_types 418 int _max_alias_types; // Physical length of _alias_types 419 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 420 421 // Parsing, optimization 422 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 423 Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN 424 425 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 426 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 427 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 428 429 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 430 431 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 432 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 433 434 // Inlining may not happen in parse order which would make 435 // PrintInlining output confusing. Keep track of PrintInlining 436 // pieces in order. 437 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 438 private: 439 CallGenerator* _cg; 440 stringStream _ss; 441 static const size_t default_stream_buffer_size = 128; 442 443 public: 444 PrintInliningBuffer() 445 : _cg(NULL), _ss(default_stream_buffer_size) {} 446 447 stringStream* ss() { return &_ss; } 448 CallGenerator* cg() { return _cg; } 449 void set_cg(CallGenerator* cg) { _cg = cg; } 450 }; 451 452 stringStream* _print_inlining_stream; 453 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 454 int _print_inlining_idx; 455 char* _print_inlining_output; 456 457 // Only keep nodes in the expensive node list that need to be optimized 458 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 459 // Use for sorting expensive nodes to bring similar nodes together 460 static int cmp_expensive_nodes(Node** n1, Node** n2); 461 // Expensive nodes list already sorted? 462 bool expensive_nodes_sorted() const; 463 // Remove the speculative part of types and clean up the graph 464 void remove_speculative_types(PhaseIterGVN &igvn); 465 466 void* _replay_inline_data; // Pointer to data loaded from file 467 468 void print_inlining_init(); 469 void print_inlining_reinit(); 470 void print_inlining_commit(); 471 void print_inlining_push(); 472 PrintInliningBuffer* print_inlining_current(); 473 474 void log_late_inline_failure(CallGenerator* cg, const char* msg); 475 DEBUG_ONLY(bool _exception_backedge;) 476 477 public: 478 479 void* barrier_set_state() const { return _barrier_set_state; } 480 481 stringStream* print_inlining_stream() { 482 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 483 return _print_inlining_stream; 484 } 485 486 void print_inlining_update(CallGenerator* cg); 487 void print_inlining_update_delayed(CallGenerator* cg); 488 void print_inlining_move_to(CallGenerator* cg); 489 void print_inlining_assert_ready(); 490 void print_inlining_reset(); 491 492 void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) { 493 stringStream ss; 494 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); 495 print_inlining_stream()->print("%s", ss.freeze()); 496 } 497 498 #ifndef PRODUCT 499 IdealGraphPrinter* igv_printer() { return _igv_printer; } 500 #endif 501 502 void log_late_inline(CallGenerator* cg); 503 void log_inline_id(CallGenerator* cg); 504 void log_inline_failure(const char* msg); 505 506 void* replay_inline_data() const { return _replay_inline_data; } 507 508 // Dump inlining replay data to the stream. 509 void dump_inline_data(outputStream* out); 510 void dump_inline_data_reduced(outputStream* out); 511 512 private: 513 // Matching, CFG layout, allocation, code generation 514 PhaseCFG* _cfg; // Results of CFG finding 515 int _java_calls; // Number of java calls in the method 516 int _inner_loops; // Number of inner loops in the method 517 Matcher* _matcher; // Engine to map ideal to machine instructions 518 PhaseRegAlloc* _regalloc; // Results of register allocation. 519 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 520 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 521 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 522 int _interpreter_frame_size; 523 524 PhaseOutput* _output; 525 526 public: 527 // Accessors 528 529 // The Compile instance currently active in this (compiler) thread. 530 static Compile* current() { 531 return (Compile*) ciEnv::current()->compiler_data(); 532 } 533 534 int interpreter_frame_size() const { return _interpreter_frame_size; } 535 536 PhaseOutput* output() const { return _output; } 537 void set_output(PhaseOutput* o) { _output = o; } 538 539 // ID for this compilation. Useful for setting breakpoints in the debugger. 540 int compile_id() const { return _compile_id; } 541 DirectiveSet* directive() const { return _directive; } 542 543 // Does this compilation allow instructions to subsume loads? User 544 // instructions that subsume a load may result in an unschedulable 545 // instruction sequence. 546 bool subsume_loads() const { return _options._subsume_loads; } 547 /** Do escape analysis. */ 548 bool do_escape_analysis() const { return _options._do_escape_analysis; } 549 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 550 /** Do boxing elimination. */ 551 bool eliminate_boxing() const { return _options._eliminate_boxing; } 552 /** Do aggressive boxing elimination. */ 553 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 554 bool should_install_code() const { return _options._install_code; } 555 /** Do locks coarsening. */ 556 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 557 558 // Other fixed compilation parameters. 559 ciMethod* method() const { return _method; } 560 int entry_bci() const { return _entry_bci; } 561 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 562 bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } 563 const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } 564 void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } 565 InlineTree* ilt() const { return _ilt; } 566 address stub_function() const { return _stub_function; } 567 const char* stub_name() const { return _stub_name; } 568 address stub_entry_point() const { return _stub_entry_point; } 569 void set_stub_entry_point(address z) { _stub_entry_point = z; } 570 571 // Control of this compilation. 572 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 573 void set_fixed_slots(int n) { _fixed_slots = n; } 574 int major_progress() const { return _major_progress; } 575 void set_inlining_progress(bool z) { _inlining_progress = z; } 576 int inlining_progress() const { return _inlining_progress; } 577 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 578 int inlining_incrementally() const { return _inlining_incrementally; } 579 void set_do_cleanup(bool z) { _do_cleanup = z; } 580 int do_cleanup() const { return _do_cleanup; } 581 void set_major_progress() { _major_progress++; } 582 void restore_major_progress(int progress) { _major_progress += progress; } 583 void clear_major_progress() { _major_progress = 0; } 584 int max_inline_size() const { return _max_inline_size; } 585 void set_freq_inline_size(int n) { _freq_inline_size = n; } 586 int freq_inline_size() const { return _freq_inline_size; } 587 void set_max_inline_size(int n) { _max_inline_size = n; } 588 bool has_loops() const { return _has_loops; } 589 void set_has_loops(bool z) { _has_loops = z; } 590 bool has_split_ifs() const { return _has_split_ifs; } 591 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 592 bool has_unsafe_access() const { return _has_unsafe_access; } 593 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 594 bool has_stringbuilder() const { return _has_stringbuilder; } 595 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 596 bool has_boxed_value() const { return _has_boxed_value; } 597 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 598 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 599 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 600 uint max_vector_size() const { return _max_vector_size; } 601 void set_max_vector_size(uint s) { _max_vector_size = s; } 602 bool clear_upper_avx() const { return _clear_upper_avx; } 603 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 604 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 605 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 606 bool trap_can_recompile() const { return _trap_can_recompile; } 607 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 608 uint decompile_count() const { return _decompile_count; } 609 void set_decompile_count(uint c) { _decompile_count = c; } 610 bool allow_range_check_smearing() const; 611 bool do_inlining() const { return _do_inlining; } 612 void set_do_inlining(bool z) { _do_inlining = z; } 613 bool do_scheduling() const { return _do_scheduling; } 614 void set_do_scheduling(bool z) { _do_scheduling = z; } 615 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 616 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 617 bool do_vector_loop() const { return _do_vector_loop; } 618 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 619 bool use_cmove() const { return _use_cmove; } 620 void set_use_cmove(bool z) { _use_cmove = z; } 621 bool do_aliasing() const { return _do_aliasing; } 622 bool print_assembly() const { return _print_assembly; } 623 void set_print_assembly(bool z) { _print_assembly = z; } 624 bool print_inlining() const { return _print_inlining; } 625 void set_print_inlining(bool z) { _print_inlining = z; } 626 bool print_intrinsics() const { return _print_intrinsics; } 627 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 628 RTMState rtm_state() const { return _rtm_state; } 629 void set_rtm_state(RTMState s) { _rtm_state = s; } 630 bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } 631 bool profile_rtm() const { return _rtm_state == ProfileRTM; } 632 uint max_node_limit() const { return (uint)_max_node_limit; } 633 void set_max_node_limit(uint n) { _max_node_limit = n; } 634 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 635 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 636 void set_flattened_accesses() { _has_flattened_accesses = true; } 637 bool flattened_accesses_share_alias() const { return _flattened_accesses_share_alias; } 638 void set_flattened_accesses_share_alias(bool z) { _flattened_accesses_share_alias = z; } 639 bool scalarize_in_safepoints() const { return _scalarize_in_safepoints; } 640 void set_scalarize_in_safepoints(bool z) { _scalarize_in_safepoints = z; } 641 642 // Support for scalarized inline type calling convention 643 bool has_scalarized_args() const { return _method != NULL && _method->has_scalarized_args(); } 644 bool needs_stack_repair() const { return _method != NULL && _method->get_Method()->c2_needs_stack_repair(); } 645 646 bool has_monitors() const { return _has_monitors; } 647 void set_has_monitors(bool v) { _has_monitors = v; } 648 649 // check the CompilerOracle for special behaviours for this compile 650 bool method_has_option(enum CompileCommand option) { 651 return method() != NULL && method()->has_option(option); 652 } 653 654 #ifndef PRODUCT 655 uint next_igv_idx() { return _igv_idx++; } 656 bool trace_opto_output() const { return _trace_opto_output; } 657 void print_ideal_ir(const char* phase_name); 658 bool should_print_ideal() const { return _directive->PrintIdealOption; } 659 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 660 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 661 int _in_dump_cnt; // Required for dumping ir nodes. 662 #endif 663 bool has_irreducible_loop() const { return _has_irreducible_loop; } 664 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 665 666 // JSR 292 667 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 668 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 669 670 Ticks _latest_stage_start_counter; 671 672 void begin_method(); 673 void end_method(); 674 bool should_print_igv(int level); 675 bool should_print_phase(CompilerPhaseType cpt); 676 677 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 678 679 #ifndef PRODUCT 680 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 681 void igv_print_method_to_network(const char* phase_name = "Debug"); 682 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 683 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 684 #endif 685 686 int macro_count() const { return _macro_nodes.length(); } 687 int predicate_count() const { return _predicate_opaqs.length(); } 688 int skeleton_predicate_count() const { return _skeleton_predicate_opaqs.length(); } 689 int expensive_count() const { return _expensive_nodes.length(); } 690 int coarsened_count() const { return _coarsened_locks.length(); } 691 692 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 693 Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs.at(idx); } 694 Node* skeleton_predicate_opaque4_node(int idx) const { return _skeleton_predicate_opaqs.at(idx); } 695 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 696 697 ConnectionGraph* congraph() { return _congraph;} 698 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 699 void add_macro_node(Node * n) { 700 //assert(n->is_macro(), "must be a macro node"); 701 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 702 _macro_nodes.append(n); 703 } 704 void remove_macro_node(Node* n) { 705 // this function may be called twice for a node so we can only remove it 706 // if it's still existing. 707 _macro_nodes.remove_if_existing(n); 708 // remove from _predicate_opaqs list also if it is there 709 if (predicate_count() > 0) { 710 _predicate_opaqs.remove_if_existing(n); 711 } 712 // Remove from coarsened locks list if present 713 if (coarsened_count() > 0) { 714 remove_coarsened_lock(n); 715 } 716 } 717 void add_expensive_node(Node* n); 718 void remove_expensive_node(Node* n) { 719 _expensive_nodes.remove_if_existing(n); 720 } 721 void add_predicate_opaq(Node* n) { 722 assert(!_predicate_opaqs.contains(n), "duplicate entry in predicate opaque1"); 723 assert(_macro_nodes.contains(n), "should have already been in macro list"); 724 _predicate_opaqs.append(n); 725 } 726 void add_skeleton_predicate_opaq(Node* n) { 727 assert(!_skeleton_predicate_opaqs.contains(n), "duplicate entry in skeleton predicate opaque4 list"); 728 _skeleton_predicate_opaqs.append(n); 729 } 730 void remove_skeleton_predicate_opaq(Node* n) { 731 if (skeleton_predicate_count() > 0) { 732 _skeleton_predicate_opaqs.remove_if_existing(n); 733 } 734 } 735 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 736 void remove_coarsened_lock(Node* n); 737 bool coarsened_locks_consistent(); 738 739 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 740 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 741 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 742 743 void record_for_post_loop_opts_igvn(Node* n); 744 void remove_from_post_loop_opts_igvn(Node* n); 745 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 746 747 // Keep track of inline type nodes for later processing 748 void add_inline_type(Node* n); 749 void remove_inline_type(Node* n); 750 void process_inline_types(PhaseIterGVN &igvn, bool remove = false); 751 752 void adjust_flattened_array_access_aliases(PhaseIterGVN& igvn); 753 754 void record_unstable_if_trap(UnstableIfTrap* trap); 755 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 756 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 757 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 758 759 void sort_macro_nodes(); 760 761 // remove the opaque nodes that protect the predicates so that the unused checks and 762 // uncommon traps will be eliminated from the graph. 763 void cleanup_loop_predicates(PhaseIterGVN &igvn); 764 bool is_predicate_opaq(Node* n) { 765 return _predicate_opaqs.contains(n); 766 } 767 768 // Are there candidate expensive nodes for optimization? 769 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 770 // Check whether n1 and n2 are similar 771 static int cmp_expensive_nodes(Node* n1, Node* n2); 772 // Sort expensive nodes to locate similar expensive nodes 773 void sort_expensive_nodes(); 774 775 // Compilation environment. 776 Arena* comp_arena() { return &_comp_arena; } 777 ciEnv* env() const { return _env; } 778 CompileLog* log() const { return _log; } 779 bool failing() const { return _env->failing() || _failure_reason != NULL; } 780 const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } 781 782 bool failure_reason_is(const char* r) const { 783 return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0); 784 } 785 786 void record_failure(const char* reason); 787 void record_method_not_compilable(const char* reason) { 788 env()->record_method_not_compilable(reason); 789 // Record failure reason. 790 record_failure(reason); 791 } 792 bool check_node_count(uint margin, const char* reason) { 793 if (live_nodes() + margin > max_node_limit()) { 794 record_method_not_compilable(reason); 795 return true; 796 } else { 797 return false; 798 } 799 } 800 801 // Node management 802 uint unique() const { return _unique; } 803 uint next_unique() { return _unique++; } 804 void set_unique(uint i) { _unique = i; } 805 static int debug_idx() { return debug_only(_debug_idx)+0; } 806 static void set_debug_idx(int i) { debug_only(_debug_idx = i); } 807 Arena* node_arena() { return &_node_arena; } 808 Arena* old_arena() { return &_old_arena; } 809 RootNode* root() const { return _root; } 810 void set_root(RootNode* r) { _root = r; } 811 StartNode* start() const; // (Derived from root.) 812 void init_start(StartNode* s); 813 Node* immutable_memory(); 814 815 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 816 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 817 void set_recent_alloc(Node* ctl, Node* obj) { 818 _recent_alloc_ctl = ctl; 819 _recent_alloc_obj = obj; 820 } 821 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 822 _dead_node_count++; 823 } 824 void reset_dead_node_list() { _dead_node_list.reset(); 825 _dead_node_count = 0; 826 } 827 uint live_nodes() const { 828 int val = _unique - _dead_node_count; 829 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 830 return (uint) val; 831 } 832 #ifdef ASSERT 833 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 834 bool phase_optimize_finished() const { return _phase_optimize_finished; } 835 uint count_live_nodes_by_graph_walk(); 836 void print_missing_nodes(); 837 #endif 838 839 // Record modified nodes to check that they are put on IGVN worklist 840 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 841 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 842 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 843 844 MachConstantBaseNode* mach_constant_base_node(); 845 bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; } 846 // Generated by adlc, true if CallNode requires MachConstantBase. 847 bool needs_deep_clone_jvms(); 848 849 // Handy undefined Node 850 Node* top() const { return _top; } 851 852 // these are used by guys who need to know about creation and transformation of top: 853 Node* cached_top_node() { return _top; } 854 void set_cached_top_node(Node* tn); 855 856 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 857 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 858 Node_Notes* default_node_notes() const { return _default_node_notes; } 859 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 860 861 Node_Notes* node_notes_at(int idx) { 862 return locate_node_notes(_node_note_array, idx, false); 863 } 864 inline bool set_node_notes_at(int idx, Node_Notes* value); 865 866 // Copy notes from source to dest, if they exist. 867 // Overwrite dest only if source provides something. 868 // Return true if information was moved. 869 bool copy_node_notes_to(Node* dest, Node* source); 870 871 // Workhorse function to sort out the blocked Node_Notes array: 872 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 873 int idx, bool can_grow = false); 874 875 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 876 877 // Type management 878 Arena* type_arena() { return _type_arena; } 879 Dict* type_dict() { return _type_dict; } 880 size_t type_last_size() { return _type_last_size; } 881 int num_alias_types() { return _num_alias_types; } 882 883 void init_type_arena() { _type_arena = &_Compile_types; } 884 void set_type_arena(Arena* a) { _type_arena = a; } 885 void set_type_dict(Dict* d) { _type_dict = d; } 886 void set_type_last_size(size_t sz) { _type_last_size = sz; } 887 888 const TypeFunc* last_tf(ciMethod* m) { 889 return (m == _last_tf_m) ? _last_tf : NULL; 890 } 891 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 892 assert(m != NULL || tf == NULL, ""); 893 _last_tf_m = m; 894 _last_tf = tf; 895 } 896 897 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 898 AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL, bool uncached = false) { return find_alias_type(adr_type, false, field, uncached); } 899 bool have_alias_type(const TypePtr* adr_type); 900 AliasType* alias_type(ciField* field); 901 902 int get_alias_index(const TypePtr* at, bool uncached = false) { return alias_type(at, NULL, uncached)->index(); } 903 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 904 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 905 906 // Building nodes 907 void rethrow_exceptions(JVMState* jvms); 908 void return_values(JVMState* jvms); 909 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 910 911 // Decide how to build a call. 912 // The profile factor is a discount to apply to this site's interp. profile. 913 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 914 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL, 915 bool allow_intrinsics = true); 916 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 917 return should_delay_string_inlining(call_method, jvms) || 918 should_delay_boxing_inlining(call_method, jvms) || 919 should_delay_vector_inlining(call_method, jvms); 920 } 921 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 922 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 923 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 924 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 925 926 // Helper functions to identify inlining potential at call-site 927 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 928 ciKlass* holder, ciMethod* callee, 929 const TypeOopPtr* receiver_type, bool is_virtual, 930 bool &call_does_dispatch, int &vtable_index, 931 bool check_access = true); 932 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 933 ciMethod* callee, const TypeOopPtr* receiver_type, 934 bool check_access = true); 935 936 // Report if there were too many traps at a current method and bci. 937 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 938 // If there is no MDO at all, report no trap unless told to assume it. 939 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 940 // This version, unspecific to a particular bci, asks if 941 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 942 bool too_many_traps(Deoptimization::DeoptReason reason, 943 // Privately used parameter for logging: 944 ciMethodData* logmd = NULL); 945 // Report if there were too many recompiles at a method and bci. 946 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 947 // Report if there were too many traps or recompiles at a method and bci. 948 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 949 return too_many_traps(method, bci, reason) || 950 too_many_recompiles(method, bci, reason); 951 } 952 // Return a bitset with the reasons where deoptimization is allowed, 953 // i.e., where there were not too many uncommon traps. 954 int _allowed_reasons; 955 int allowed_deopt_reasons() { return _allowed_reasons; } 956 void set_allowed_deopt_reasons(); 957 958 // Parsing, optimization 959 PhaseGVN* initial_gvn() { return _initial_gvn; } 960 Unique_Node_List* for_igvn() { return _for_igvn; } 961 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. 962 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 963 void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } 964 965 // Replace n by nn using initial_gvn, calling hash_delete and 966 // record_for_igvn as needed. 967 void gvn_replace_by(Node* n, Node* nn); 968 969 970 void identify_useful_nodes(Unique_Node_List &useful); 971 void update_dead_node_list(Unique_Node_List &useful); 972 void disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist); 973 974 void remove_useless_node(Node* dead); 975 976 // Record this CallGenerator for inlining at the end of parsing. 977 void add_late_inline(CallGenerator* cg) { 978 _late_inlines.insert_before(_late_inlines_pos, cg); 979 _late_inlines_pos++; 980 } 981 982 void prepend_late_inline(CallGenerator* cg) { 983 _late_inlines.insert_before(0, cg); 984 } 985 986 void add_string_late_inline(CallGenerator* cg) { 987 _string_late_inlines.push(cg); 988 } 989 990 void add_boxing_late_inline(CallGenerator* cg) { 991 _boxing_late_inlines.push(cg); 992 } 993 994 void add_vector_reboxing_late_inline(CallGenerator* cg) { 995 _vector_reboxing_late_inlines.push(cg); 996 } 997 998 void remove_useless_nodes (GrowableArray<Node*>& node_list, Unique_Node_List &useful); 999 1000 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1001 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1002 1003 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1004 1005 void process_print_inlining(); 1006 void dump_print_inlining(); 1007 1008 bool over_inlining_cutoff() const { 1009 if (!inlining_incrementally()) { 1010 return unique() > (uint)NodeCountInliningCutoff; 1011 } else { 1012 // Give some room for incremental inlining algorithm to "breathe" 1013 // and avoid thrashing when live node count is close to the limit. 1014 // Keep in mind that live_nodes() isn't accurate during inlining until 1015 // dead node elimination step happens (see Compile::inline_incrementally). 1016 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1017 } 1018 } 1019 1020 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1021 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1022 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1023 1024 bool inline_incrementally_one(); 1025 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1026 void inline_incrementally(PhaseIterGVN& igvn); 1027 void inline_string_calls(bool parse_time); 1028 void inline_boxing_calls(PhaseIterGVN& igvn); 1029 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1030 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1031 1032 void inline_vector_reboxing_calls(); 1033 bool has_vbox_nodes(); 1034 1035 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1036 1037 // Matching, CFG layout, allocation, code generation 1038 PhaseCFG* cfg() { return _cfg; } 1039 bool has_java_calls() const { return _java_calls > 0; } 1040 int java_calls() const { return _java_calls; } 1041 int inner_loops() const { return _inner_loops; } 1042 Matcher* matcher() { return _matcher; } 1043 PhaseRegAlloc* regalloc() { return _regalloc; } 1044 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1045 Arena* indexSet_arena() { return _indexSet_arena; } 1046 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1047 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1048 1049 void update_interpreter_frame_size(int size) { 1050 if (_interpreter_frame_size < size) { 1051 _interpreter_frame_size = size; 1052 } 1053 } 1054 1055 void set_matcher(Matcher* m) { _matcher = m; } 1056 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1057 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1058 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1059 1060 void set_java_calls(int z) { _java_calls = z; } 1061 void set_inner_loops(int z) { _inner_loops = z; } 1062 1063 Dependencies* dependencies() { return env()->dependencies(); } 1064 1065 // Major entry point. Given a Scope, compile the associated method. 1066 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1067 // replacement, entry_bci indicates the bytecode for which to compile a 1068 // continuation. 1069 Compile(ciEnv* ci_env, ciMethod* target, 1070 int entry_bci, Options options, DirectiveSet* directive); 1071 1072 // Second major entry point. From the TypeFunc signature, generate code 1073 // to pass arguments from the Java calling convention to the C calling 1074 // convention. 1075 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1076 address stub_function, const char *stub_name, 1077 int is_fancy_jump, bool pass_tls, 1078 bool return_pc, DirectiveSet* directive); 1079 1080 ~Compile() { 1081 delete _print_inlining_stream; 1082 }; 1083 1084 // Are we compiling a method? 1085 bool has_method() { return method() != NULL; } 1086 1087 // Maybe print some information about this compile. 1088 void print_compile_messages(); 1089 1090 // Final graph reshaping, a post-pass after the regular optimizer is done. 1091 bool final_graph_reshaping(); 1092 1093 // returns true if adr is completely contained in the given alias category 1094 bool must_alias(const TypePtr* adr, int alias_idx); 1095 1096 // returns true if adr overlaps with the given alias category 1097 bool can_alias(const TypePtr* adr, int alias_idx); 1098 1099 // Stack slots that may be unused by the calling convention but must 1100 // otherwise be preserved. On Intel this includes the return address. 1101 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1102 uint in_preserve_stack_slots() { 1103 return SharedRuntime::in_preserve_stack_slots(); 1104 } 1105 1106 // "Top of Stack" slots that may be unused by the calling convention but must 1107 // otherwise be preserved. 1108 // On Intel these are not necessary and the value can be zero. 1109 static uint out_preserve_stack_slots() { 1110 return SharedRuntime::out_preserve_stack_slots(); 1111 } 1112 1113 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1114 // for calls to C. Supports the var-args backing area for register parms. 1115 uint varargs_C_out_slots_killed() const; 1116 1117 // Number of Stack Slots consumed by a synchronization entry 1118 int sync_stack_slots() const; 1119 1120 // Compute the name of old_SP. See <arch>.ad for frame layout. 1121 OptoReg::Name compute_old_SP(); 1122 1123 private: 1124 // Phase control: 1125 void Init(bool aliasing); // Prepare for a single compilation 1126 void Optimize(); // Given a graph, optimize it 1127 void Code_Gen(); // Generate code from a graph 1128 1129 // Management of the AliasType table. 1130 void grow_alias_types(); 1131 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1132 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1133 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field, bool uncached = false); 1134 1135 void verify_top(Node*) const PRODUCT_RETURN; 1136 1137 // Intrinsic setup. 1138 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1139 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1140 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1141 void register_intrinsic(CallGenerator* cg); // update fn 1142 1143 #ifndef PRODUCT 1144 static juint _intrinsic_hist_count[]; 1145 static jubyte _intrinsic_hist_flags[]; 1146 #endif 1147 // Function calls made by the public function final_graph_reshaping. 1148 // No need to be made public as they are not called elsewhere. 1149 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1150 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1151 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1152 void eliminate_redundant_card_marks(Node* n); 1153 1154 // Logic cone optimization. 1155 void optimize_logic_cones(PhaseIterGVN &igvn); 1156 void collect_logic_cone_roots(Unique_Node_List& list); 1157 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1158 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1159 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1160 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1161 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1162 void check_no_dead_use() const NOT_DEBUG_RETURN; 1163 1164 public: 1165 1166 // Note: Histogram array size is about 1 Kb. 1167 enum { // flag bits: 1168 _intrinsic_worked = 1, // succeeded at least once 1169 _intrinsic_failed = 2, // tried it but it failed 1170 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1171 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1172 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1173 }; 1174 // Update histogram. Return boolean if this is a first-time occurrence. 1175 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1176 bool is_virtual, int flags) PRODUCT_RETURN0; 1177 static void print_intrinsic_statistics() PRODUCT_RETURN; 1178 1179 // Graph verification code 1180 // Walk the node list, verifying that there is a one-to-one 1181 // correspondence between Use-Def edges and Def-Use edges 1182 // The option no_dead_code enables stronger checks that the 1183 // graph is strongly connected from root in both directions. 1184 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1185 1186 // Verify bi-directional correspondence of edges 1187 void verify_bidirectional_edges(Unique_Node_List &visited); 1188 1189 // End-of-run dumps. 1190 static void print_statistics() PRODUCT_RETURN; 1191 1192 // Verify ADLC assumptions during startup 1193 static void adlc_verification() PRODUCT_RETURN; 1194 1195 // Definitions of pd methods 1196 static void pd_compiler2_init(); 1197 1198 // Static parse-time type checking logic for gen_subtype_check: 1199 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1200 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1201 1202 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1203 // Optional control dependency (for example, on range check) 1204 Node* ctrl = NULL); 1205 1206 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1207 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1208 1209 Node* optimize_acmp(PhaseGVN* phase, Node* a, Node* b); 1210 1211 // Auxiliary method for randomized fuzzing/stressing 1212 int random(); 1213 bool randomized_select(int count); 1214 1215 // supporting clone_map 1216 CloneMap& clone_map(); 1217 void set_clone_map(Dict* d); 1218 1219 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1220 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1221 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1222 1223 #ifdef IA32 1224 private: 1225 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1226 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1227 1228 // Remember if this compilation changes hardware mode to 24-bit precision. 1229 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1230 _select_24_bit_instr = selection; 1231 _in_24_bit_fp_mode = mode; 1232 } 1233 1234 public: 1235 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1236 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1237 #endif // IA32 1238 #ifdef ASSERT 1239 bool _type_verify_symmetry; 1240 void set_exception_backedge() { _exception_backedge = true; } 1241 bool has_exception_backedge() const { return _exception_backedge; } 1242 #endif 1243 1244 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1245 BasicType out_bt, BasicType in_bt); 1246 1247 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1248 }; 1249 1250 #endif // SHARE_OPTO_COMPILE_HPP