1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerEvent.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 49 class AbstractLockNode; 50 class AddPNode; 51 class Block; 52 class Bundle; 53 class CallGenerator; 54 class CallNode; 55 class CloneMap; 56 class ConnectionGraph; 57 class IdealGraphPrinter; 58 class InlineTree; 59 class Int_Array; 60 class Matcher; 61 class MachConstantNode; 62 class MachConstantBaseNode; 63 class MachNode; 64 class MachOper; 65 class MachSafePointNode; 66 class Node; 67 class Node_Array; 68 class Node_List; 69 class Node_Notes; 70 class NodeCloneInfo; 71 class OptoReg; 72 class PhaseCFG; 73 class PhaseGVN; 74 class PhaseIterGVN; 75 class PhaseRegAlloc; 76 class PhaseCCP; 77 class PhaseOutput; 78 class RootNode; 79 class relocInfo; 80 class Scope; 81 class StartNode; 82 class SafePointNode; 83 class JVMState; 84 class Type; 85 class TypeData; 86 class TypeInt; 87 class TypeInteger; 88 class TypePtr; 89 class TypeOopPtr; 90 class TypeFunc; 91 class TypeVect; 92 class Unique_Node_List; 93 class InlineTypeBaseNode; 94 class nmethod; 95 class Node_Stack; 96 struct Final_Reshape_Counts; 97 98 enum LoopOptsMode { 99 LoopOptsDefault, 100 LoopOptsNone, 101 LoopOptsMaxUnroll, 102 LoopOptsShenandoahExpand, 103 LoopOptsShenandoahPostExpand, 104 LoopOptsSkipSplitIf, 105 LoopOptsVerify 106 }; 107 108 typedef unsigned int node_idx_t; 109 class NodeCloneInfo { 110 private: 111 uint64_t _idx_clone_orig; 112 public: 113 114 void set_idx(node_idx_t idx) { 115 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 116 } 117 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 118 119 void set_gen(int generation) { 120 uint64_t g = (uint64_t)generation << 32; 121 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 122 } 123 int gen() const { return (int)(_idx_clone_orig >> 32); } 124 125 void set(uint64_t x) { _idx_clone_orig = x; } 126 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 127 uint64_t get() const { return _idx_clone_orig; } 128 129 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 130 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 131 132 void dump() const; 133 }; 134 135 class CloneMap { 136 friend class Compile; 137 private: 138 bool _debug; 139 Dict* _dict; 140 int _clone_idx; // current cloning iteration/generation in loop unroll 141 public: 142 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 143 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 144 Dict* dict() const { return _dict; } 145 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } 146 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 147 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 148 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 149 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 150 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 151 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 152 int max_gen() const; 153 void clone(Node* old, Node* nnn, int gen); 154 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 155 void dump(node_idx_t key) const; 156 157 int clone_idx() const { return _clone_idx; } 158 void set_clone_idx(int x) { _clone_idx = x; } 159 bool is_debug() const { return _debug; } 160 void set_debug(bool debug) { _debug = debug; } 161 static const char* debug_option_name; 162 163 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 164 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 165 }; 166 167 class Options { 168 friend class Compile; 169 friend class VMStructs; 170 private: 171 const bool _subsume_loads; // Load can be matched as part of a larger op. 172 const bool _do_escape_analysis; // Do escape analysis. 173 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 174 const bool _eliminate_boxing; // Do boxing elimination. 175 const bool _do_locks_coarsening; // Do locks coarsening 176 const bool _install_code; // Install the code that was compiled 177 public: 178 Options(bool subsume_loads, bool do_escape_analysis, 179 bool do_iterative_escape_analysis, 180 bool eliminate_boxing, bool do_locks_coarsening, 181 bool install_code) : 182 _subsume_loads(subsume_loads), 183 _do_escape_analysis(do_escape_analysis), 184 _do_iterative_escape_analysis(do_iterative_escape_analysis), 185 _eliminate_boxing(eliminate_boxing), 186 _do_locks_coarsening(do_locks_coarsening), 187 _install_code(install_code) { 188 } 189 190 static Options for_runtime_stub() { 191 return Options( 192 /* subsume_loads = */ true, 193 /* do_escape_analysis = */ false, 194 /* do_iterative_escape_analysis = */ false, 195 /* eliminate_boxing = */ false, 196 /* do_lock_coarsening = */ false, 197 /* install_code = */ true 198 ); 199 } 200 }; 201 202 //------------------------------Compile---------------------------------------- 203 // This class defines a top-level Compiler invocation. 204 205 class Compile : public Phase { 206 friend class VMStructs; 207 208 public: 209 // Fixed alias indexes. (See also MergeMemNode.) 210 enum { 211 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 212 AliasIdxBot = 2, // pseudo-index, aliases to everything 213 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 214 }; 215 216 // Variant of TraceTime(NULL, &_t_accumulator, CITime); 217 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 218 // then brackets are put into the log, with time stamps and node counts. 219 // (The time collection itself is always conditionalized on CITime.) 220 class TracePhase : public TraceTime { 221 private: 222 Compile* C; 223 CompileLog* _log; 224 const char* _phase_name; 225 bool _dolog; 226 public: 227 TracePhase(const char* name, elapsedTimer* accumulator); 228 ~TracePhase(); 229 }; 230 231 // Information per category of alias (memory slice) 232 class AliasType { 233 private: 234 friend class Compile; 235 236 int _index; // unique index, used with MergeMemNode 237 const TypePtr* _adr_type; // normalized address type 238 ciField* _field; // relevant instance field, or null if none 239 const Type* _element; // relevant array element type, or null if none 240 bool _is_rewritable; // false if the memory is write-once only 241 int _general_index; // if this is type is an instance, the general 242 // type that this is an instance of 243 244 void Init(int i, const TypePtr* at); 245 246 public: 247 int index() const { return _index; } 248 const TypePtr* adr_type() const { return _adr_type; } 249 ciField* field() const { return _field; } 250 const Type* element() const { return _element; } 251 bool is_rewritable() const { return _is_rewritable; } 252 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 253 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 254 255 void set_rewritable(bool z) { _is_rewritable = z; } 256 void set_field(ciField* f) { 257 assert(!_field,""); 258 _field = f; 259 if (f->is_final() || f->is_stable()) { 260 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 261 _is_rewritable = false; 262 } 263 } 264 void set_element(const Type* e) { 265 assert(_element == NULL, ""); 266 _element = e; 267 } 268 269 BasicType basic_type() const; 270 271 void print_on(outputStream* st) PRODUCT_RETURN; 272 }; 273 274 enum { 275 logAliasCacheSize = 6, 276 AliasCacheSize = (1<<logAliasCacheSize) 277 }; 278 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 279 enum { 280 trapHistLength = MethodData::_trap_hist_limit 281 }; 282 283 private: 284 // Fixed parameters to this compilation. 285 const int _compile_id; 286 const Options _options; // Compilation options 287 ciMethod* _method; // The method being compiled. 288 int _entry_bci; // entry bci for osr methods. 289 const TypeFunc* _tf; // My kind of signature 290 InlineTree* _ilt; // Ditto (temporary). 291 address _stub_function; // VM entry for stub being compiled, or NULL 292 const char* _stub_name; // Name of stub or adapter being compiled, or NULL 293 address _stub_entry_point; // Compile code entry for generated stub, or NULL 294 295 // Control of this compilation. 296 int _max_inline_size; // Max inline size for this compilation 297 int _freq_inline_size; // Max hot method inline size for this compilation 298 int _fixed_slots; // count of frame slots not allocated by the register 299 // allocator i.e. locks, original deopt pc, etc. 300 uintx _max_node_limit; // Max unique node count during a single compilation. 301 302 bool _post_loop_opts_phase; // Loop opts are finished. 303 304 int _major_progress; // Count of something big happening 305 bool _inlining_progress; // progress doing incremental inlining? 306 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 307 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 308 bool _has_loops; // True if the method _may_ have some loops 309 bool _has_split_ifs; // True if the method _may_ have some split-if 310 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 311 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 312 bool _has_boxed_value; // True if a boxed object is allocated 313 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 314 uint _max_vector_size; // Maximum size of generated vectors 315 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 316 uint _trap_hist[trapHistLength]; // Cumulative traps 317 bool _trap_can_recompile; // Have we emitted a recompiling trap? 318 uint _decompile_count; // Cumulative decompilation counts. 319 bool _do_inlining; // True if we intend to do inlining 320 bool _do_scheduling; // True if we intend to do scheduling 321 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 322 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 323 bool _use_cmove; // True if CMove should be used without profitability analysis 324 bool _age_code; // True if we need to profile code age (decrement the aging counter) 325 int _AliasLevel; // Locally-adjusted version of AliasLevel flag. 326 bool _print_assembly; // True if we should dump assembly code for this compilation 327 bool _print_inlining; // True if we should print inlining for this compilation 328 bool _print_intrinsics; // True if we should print intrinsics for this compilation 329 #ifndef PRODUCT 330 uint _igv_idx; // Counter for IGV node identifiers 331 bool _trace_opto_output; 332 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 333 #endif 334 bool _has_irreducible_loop; // Found irreducible loops 335 // JSR 292 336 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 337 RTMState _rtm_state; // State of Restricted Transactional Memory usage 338 int _loop_opts_cnt; // loop opts round 339 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 340 bool _has_flattened_accesses; // Any known flattened array accesses? 341 bool _flattened_accesses_share_alias; // Initially all flattened array share a single slice 342 bool _scalarize_in_safepoints; // Scalarize inline types in safepoint debug info 343 uint _stress_seed; // Seed for stress testing 344 345 // Compilation environment. 346 Arena _comp_arena; // Arena with lifetime equivalent to Compile 347 void* _barrier_set_state; // Potential GC barrier state for Compile 348 ciEnv* _env; // CI interface 349 DirectiveSet* _directive; // Compiler directive 350 CompileLog* _log; // from CompilerThread 351 const char* _failure_reason; // for record_failure/failing pattern 352 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 353 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 354 GrowableArray<Node*> _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. 355 GrowableArray<Node*> _skeleton_predicate_opaqs; // List of Opaque4 nodes for the loop skeleton predicates. 356 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 357 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 358 GrowableArray<Node*> _inline_type_nodes; // List of InlineType nodes 359 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 360 ConnectionGraph* _congraph; 361 #ifndef PRODUCT 362 IdealGraphPrinter* _igv_printer; 363 static IdealGraphPrinter* _debug_file_printer; 364 static IdealGraphPrinter* _debug_network_printer; 365 #endif 366 367 368 // Node management 369 uint _unique; // Counter for unique Node indices 370 VectorSet _dead_node_list; // Set of dead nodes 371 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 372 // So use this to keep count and make the call O(1). 373 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 374 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 375 376 debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx> 377 Arena _node_arena; // Arena for new-space Nodes 378 Arena _old_arena; // Arena for old-space Nodes, lifetime during xform 379 RootNode* _root; // Unique root of compilation, or NULL after bail-out. 380 Node* _top; // Unique top node. (Reset by various phases.) 381 382 Node* _immutable_memory; // Initial memory state 383 384 Node* _recent_alloc_obj; 385 Node* _recent_alloc_ctl; 386 387 // Constant table 388 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 389 390 391 // Blocked array of debugging and profiling information, 392 // tracked per node. 393 enum { _log2_node_notes_block_size = 8, 394 _node_notes_block_size = (1<<_log2_node_notes_block_size) 395 }; 396 GrowableArray<Node_Notes*>* _node_note_array; 397 Node_Notes* _default_node_notes; // default notes for new nodes 398 399 // After parsing and every bulk phase we hang onto the Root instruction. 400 // The RootNode instruction is where the whole program begins. It produces 401 // the initial Control and BOTTOM for everybody else. 402 403 // Type management 404 Arena _Compile_types; // Arena for all types 405 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 406 Dict* _type_dict; // Intern table 407 CloneMap _clone_map; // used for recording history of cloned nodes 408 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 409 ciMethod* _last_tf_m; // Cache for 410 const TypeFunc* _last_tf; // TypeFunc::make 411 AliasType** _alias_types; // List of alias types seen so far. 412 int _num_alias_types; // Logical length of _alias_types 413 int _max_alias_types; // Physical length of _alias_types 414 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 415 416 // Parsing, optimization 417 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 418 Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN 419 420 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 421 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 422 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 423 424 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 425 426 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 427 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 428 429 GrowableArray<RuntimeStub*> _native_invokers; 430 431 // Inlining may not happen in parse order which would make 432 // PrintInlining output confusing. Keep track of PrintInlining 433 // pieces in order. 434 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 435 private: 436 CallGenerator* _cg; 437 stringStream _ss; 438 static const size_t default_stream_buffer_size = 128; 439 440 public: 441 PrintInliningBuffer() 442 : _cg(NULL), _ss(default_stream_buffer_size) {} 443 444 stringStream* ss() { return &_ss; } 445 CallGenerator* cg() { return _cg; } 446 void set_cg(CallGenerator* cg) { _cg = cg; } 447 }; 448 449 stringStream* _print_inlining_stream; 450 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 451 int _print_inlining_idx; 452 char* _print_inlining_output; 453 454 // Only keep nodes in the expensive node list that need to be optimized 455 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 456 // Use for sorting expensive nodes to bring similar nodes together 457 static int cmp_expensive_nodes(Node** n1, Node** n2); 458 // Expensive nodes list already sorted? 459 bool expensive_nodes_sorted() const; 460 // Remove the speculative part of types and clean up the graph 461 void remove_speculative_types(PhaseIterGVN &igvn); 462 463 void* _replay_inline_data; // Pointer to data loaded from file 464 465 void print_inlining_stream_free(); 466 void print_inlining_init(); 467 void print_inlining_reinit(); 468 void print_inlining_commit(); 469 void print_inlining_push(); 470 PrintInliningBuffer* print_inlining_current(); 471 472 void log_late_inline_failure(CallGenerator* cg, const char* msg); 473 DEBUG_ONLY(bool _exception_backedge;) 474 475 public: 476 477 void* barrier_set_state() const { return _barrier_set_state; } 478 479 outputStream* print_inlining_stream() const { 480 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 481 return _print_inlining_stream; 482 } 483 484 void print_inlining_update(CallGenerator* cg); 485 void print_inlining_update_delayed(CallGenerator* cg); 486 void print_inlining_move_to(CallGenerator* cg); 487 void print_inlining_assert_ready(); 488 void print_inlining_reset(); 489 490 void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) { 491 stringStream ss; 492 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); 493 print_inlining_stream()->print("%s", ss.as_string()); 494 } 495 496 #ifndef PRODUCT 497 IdealGraphPrinter* igv_printer() { return _igv_printer; } 498 #endif 499 500 void log_late_inline(CallGenerator* cg); 501 void log_inline_id(CallGenerator* cg); 502 void log_inline_failure(const char* msg); 503 504 void* replay_inline_data() const { return _replay_inline_data; } 505 506 // Dump inlining replay data to the stream. 507 void dump_inline_data(outputStream* out); 508 509 private: 510 // Matching, CFG layout, allocation, code generation 511 PhaseCFG* _cfg; // Results of CFG finding 512 int _java_calls; // Number of java calls in the method 513 int _inner_loops; // Number of inner loops in the method 514 Matcher* _matcher; // Engine to map ideal to machine instructions 515 PhaseRegAlloc* _regalloc; // Results of register allocation. 516 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 517 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 518 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 519 int _interpreter_frame_size; 520 521 PhaseOutput* _output; 522 523 public: 524 // Accessors 525 526 // The Compile instance currently active in this (compiler) thread. 527 static Compile* current() { 528 return (Compile*) ciEnv::current()->compiler_data(); 529 } 530 531 int interpreter_frame_size() const { return _interpreter_frame_size; } 532 533 PhaseOutput* output() const { return _output; } 534 void set_output(PhaseOutput* o) { _output = o; } 535 536 // ID for this compilation. Useful for setting breakpoints in the debugger. 537 int compile_id() const { return _compile_id; } 538 DirectiveSet* directive() const { return _directive; } 539 540 // Does this compilation allow instructions to subsume loads? User 541 // instructions that subsume a load may result in an unschedulable 542 // instruction sequence. 543 bool subsume_loads() const { return _options._subsume_loads; } 544 /** Do escape analysis. */ 545 bool do_escape_analysis() const { return _options._do_escape_analysis; } 546 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 547 /** Do boxing elimination. */ 548 bool eliminate_boxing() const { return _options._eliminate_boxing; } 549 /** Do aggressive boxing elimination. */ 550 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 551 bool should_install_code() const { return _options._install_code; } 552 /** Do locks coarsening. */ 553 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 554 555 // Other fixed compilation parameters. 556 ciMethod* method() const { return _method; } 557 int entry_bci() const { return _entry_bci; } 558 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 559 bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } 560 const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } 561 void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } 562 InlineTree* ilt() const { return _ilt; } 563 address stub_function() const { return _stub_function; } 564 const char* stub_name() const { return _stub_name; } 565 address stub_entry_point() const { return _stub_entry_point; } 566 void set_stub_entry_point(address z) { _stub_entry_point = z; } 567 568 // Control of this compilation. 569 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 570 void set_fixed_slots(int n) { _fixed_slots = n; } 571 int major_progress() const { return _major_progress; } 572 void set_inlining_progress(bool z) { _inlining_progress = z; } 573 int inlining_progress() const { return _inlining_progress; } 574 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 575 int inlining_incrementally() const { return _inlining_incrementally; } 576 void set_do_cleanup(bool z) { _do_cleanup = z; } 577 int do_cleanup() const { return _do_cleanup; } 578 void set_major_progress() { _major_progress++; } 579 void restore_major_progress(int progress) { _major_progress += progress; } 580 void clear_major_progress() { _major_progress = 0; } 581 int max_inline_size() const { return _max_inline_size; } 582 void set_freq_inline_size(int n) { _freq_inline_size = n; } 583 int freq_inline_size() const { return _freq_inline_size; } 584 void set_max_inline_size(int n) { _max_inline_size = n; } 585 bool has_loops() const { return _has_loops; } 586 void set_has_loops(bool z) { _has_loops = z; } 587 bool has_split_ifs() const { return _has_split_ifs; } 588 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 589 bool has_unsafe_access() const { return _has_unsafe_access; } 590 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 591 bool has_stringbuilder() const { return _has_stringbuilder; } 592 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 593 bool has_boxed_value() const { return _has_boxed_value; } 594 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 595 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 596 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 597 uint max_vector_size() const { return _max_vector_size; } 598 void set_max_vector_size(uint s) { _max_vector_size = s; } 599 bool clear_upper_avx() const { return _clear_upper_avx; } 600 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 601 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 602 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 603 bool trap_can_recompile() const { return _trap_can_recompile; } 604 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 605 uint decompile_count() const { return _decompile_count; } 606 void set_decompile_count(uint c) { _decompile_count = c; } 607 bool allow_range_check_smearing() const; 608 bool do_inlining() const { return _do_inlining; } 609 void set_do_inlining(bool z) { _do_inlining = z; } 610 bool do_scheduling() const { return _do_scheduling; } 611 void set_do_scheduling(bool z) { _do_scheduling = z; } 612 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 613 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 614 bool do_vector_loop() const { return _do_vector_loop; } 615 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 616 bool use_cmove() const { return _use_cmove; } 617 void set_use_cmove(bool z) { _use_cmove = z; } 618 bool age_code() const { return _age_code; } 619 void set_age_code(bool z) { _age_code = z; } 620 int AliasLevel() const { return _AliasLevel; } 621 bool print_assembly() const { return _print_assembly; } 622 void set_print_assembly(bool z) { _print_assembly = z; } 623 bool print_inlining() const { return _print_inlining; } 624 void set_print_inlining(bool z) { _print_inlining = z; } 625 bool print_intrinsics() const { return _print_intrinsics; } 626 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 627 RTMState rtm_state() const { return _rtm_state; } 628 void set_rtm_state(RTMState s) { _rtm_state = s; } 629 bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } 630 bool profile_rtm() const { return _rtm_state == ProfileRTM; } 631 uint max_node_limit() const { return (uint)_max_node_limit; } 632 void set_max_node_limit(uint n) { _max_node_limit = n; } 633 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 634 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 635 void set_flattened_accesses() { _has_flattened_accesses = true; } 636 bool flattened_accesses_share_alias() const { return _flattened_accesses_share_alias; } 637 void set_flattened_accesses_share_alias(bool z) { _flattened_accesses_share_alias = z; } 638 bool scalarize_in_safepoints() const { return _scalarize_in_safepoints; } 639 void set_scalarize_in_safepoints(bool z) { _scalarize_in_safepoints = z; } 640 641 // Support for scalarized inline type calling convention 642 bool has_scalarized_args() const { return _method != NULL && _method->has_scalarized_args(); } 643 bool needs_stack_repair() const { return _method != NULL && _method->get_Method()->c2_needs_stack_repair(); } 644 645 // check the CompilerOracle for special behaviours for this compile 646 bool method_has_option(enum CompileCommand option) { 647 return method() != NULL && method()->has_option(option); 648 } 649 650 #ifndef PRODUCT 651 uint next_igv_idx() { return _igv_idx++; } 652 bool trace_opto_output() const { return _trace_opto_output; } 653 void print_ideal_ir(const char* phase_name); 654 bool should_print_ideal() const { return _directive->PrintIdealOption; } 655 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 656 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 657 int _in_dump_cnt; // Required for dumping ir nodes. 658 #endif 659 bool has_irreducible_loop() const { return _has_irreducible_loop; } 660 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 661 662 // JSR 292 663 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 664 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 665 666 Ticks _latest_stage_start_counter; 667 668 void begin_method(); 669 void end_method(); 670 bool should_print_igv(int level); 671 bool should_print_phase(CompilerPhaseType cpt); 672 673 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 674 675 #ifndef PRODUCT 676 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 677 void igv_print_method_to_network(const char* phase_name = "Debug"); 678 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 679 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 680 #endif 681 682 int macro_count() const { return _macro_nodes.length(); } 683 int predicate_count() const { return _predicate_opaqs.length(); } 684 int skeleton_predicate_count() const { return _skeleton_predicate_opaqs.length(); } 685 int expensive_count() const { return _expensive_nodes.length(); } 686 int coarsened_count() const { return _coarsened_locks.length(); } 687 688 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 689 Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs.at(idx); } 690 Node* skeleton_predicate_opaque4_node(int idx) const { return _skeleton_predicate_opaqs.at(idx); } 691 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 692 693 ConnectionGraph* congraph() { return _congraph;} 694 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 695 void add_macro_node(Node * n) { 696 //assert(n->is_macro(), "must be a macro node"); 697 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 698 _macro_nodes.append(n); 699 } 700 void remove_macro_node(Node* n) { 701 // this function may be called twice for a node so we can only remove it 702 // if it's still existing. 703 _macro_nodes.remove_if_existing(n); 704 // remove from _predicate_opaqs list also if it is there 705 if (predicate_count() > 0) { 706 _predicate_opaqs.remove_if_existing(n); 707 } 708 // Remove from coarsened locks list if present 709 if (coarsened_count() > 0) { 710 remove_coarsened_lock(n); 711 } 712 } 713 void add_expensive_node(Node* n); 714 void remove_expensive_node(Node* n) { 715 _expensive_nodes.remove_if_existing(n); 716 } 717 void add_predicate_opaq(Node* n) { 718 assert(!_predicate_opaqs.contains(n), "duplicate entry in predicate opaque1"); 719 assert(_macro_nodes.contains(n), "should have already been in macro list"); 720 _predicate_opaqs.append(n); 721 } 722 void add_skeleton_predicate_opaq(Node* n) { 723 assert(!_skeleton_predicate_opaqs.contains(n), "duplicate entry in skeleton predicate opaque4 list"); 724 _skeleton_predicate_opaqs.append(n); 725 } 726 void remove_skeleton_predicate_opaq(Node* n) { 727 if (skeleton_predicate_count() > 0) { 728 _skeleton_predicate_opaqs.remove_if_existing(n); 729 } 730 } 731 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 732 void remove_coarsened_lock(Node* n); 733 bool coarsened_locks_consistent(); 734 735 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 736 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 737 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 738 739 void record_for_post_loop_opts_igvn(Node* n); 740 void remove_from_post_loop_opts_igvn(Node* n); 741 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 742 743 // Keep track of inline type nodes for later processing 744 void add_inline_type(Node* n); 745 void remove_inline_type(Node* n); 746 void process_inline_types(PhaseIterGVN &igvn, bool remove = false); 747 748 void adjust_flattened_array_access_aliases(PhaseIterGVN& igvn); 749 750 void sort_macro_nodes(); 751 752 // remove the opaque nodes that protect the predicates so that the unused checks and 753 // uncommon traps will be eliminated from the graph. 754 void cleanup_loop_predicates(PhaseIterGVN &igvn); 755 bool is_predicate_opaq(Node* n) { 756 return _predicate_opaqs.contains(n); 757 } 758 759 // Are there candidate expensive nodes for optimization? 760 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 761 // Check whether n1 and n2 are similar 762 static int cmp_expensive_nodes(Node* n1, Node* n2); 763 // Sort expensive nodes to locate similar expensive nodes 764 void sort_expensive_nodes(); 765 766 // Compilation environment. 767 Arena* comp_arena() { return &_comp_arena; } 768 ciEnv* env() const { return _env; } 769 CompileLog* log() const { return _log; } 770 bool failing() const { return _env->failing() || _failure_reason != NULL; } 771 const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } 772 773 bool failure_reason_is(const char* r) const { 774 return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0); 775 } 776 777 void record_failure(const char* reason); 778 void record_method_not_compilable(const char* reason) { 779 env()->record_method_not_compilable(reason); 780 // Record failure reason. 781 record_failure(reason); 782 } 783 bool check_node_count(uint margin, const char* reason) { 784 if (live_nodes() + margin > max_node_limit()) { 785 record_method_not_compilable(reason); 786 return true; 787 } else { 788 return false; 789 } 790 } 791 792 // Node management 793 uint unique() const { return _unique; } 794 uint next_unique() { return _unique++; } 795 void set_unique(uint i) { _unique = i; } 796 static int debug_idx() { return debug_only(_debug_idx)+0; } 797 static void set_debug_idx(int i) { debug_only(_debug_idx = i); } 798 Arena* node_arena() { return &_node_arena; } 799 Arena* old_arena() { return &_old_arena; } 800 RootNode* root() const { return _root; } 801 void set_root(RootNode* r) { _root = r; } 802 StartNode* start() const; // (Derived from root.) 803 void init_start(StartNode* s); 804 Node* immutable_memory(); 805 806 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 807 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 808 void set_recent_alloc(Node* ctl, Node* obj) { 809 _recent_alloc_ctl = ctl; 810 _recent_alloc_obj = obj; 811 } 812 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 813 _dead_node_count++; 814 } 815 void reset_dead_node_list() { _dead_node_list.reset(); 816 _dead_node_count = 0; 817 } 818 uint live_nodes() const { 819 int val = _unique - _dead_node_count; 820 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 821 return (uint) val; 822 } 823 #ifdef ASSERT 824 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 825 bool phase_optimize_finished() const { return _phase_optimize_finished; } 826 uint count_live_nodes_by_graph_walk(); 827 void print_missing_nodes(); 828 #endif 829 830 // Record modified nodes to check that they are put on IGVN worklist 831 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 832 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 833 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 834 835 MachConstantBaseNode* mach_constant_base_node(); 836 bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; } 837 // Generated by adlc, true if CallNode requires MachConstantBase. 838 bool needs_deep_clone_jvms(); 839 840 // Handy undefined Node 841 Node* top() const { return _top; } 842 843 // these are used by guys who need to know about creation and transformation of top: 844 Node* cached_top_node() { return _top; } 845 void set_cached_top_node(Node* tn); 846 847 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 848 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 849 Node_Notes* default_node_notes() const { return _default_node_notes; } 850 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 851 852 Node_Notes* node_notes_at(int idx) { 853 return locate_node_notes(_node_note_array, idx, false); 854 } 855 inline bool set_node_notes_at(int idx, Node_Notes* value); 856 857 // Copy notes from source to dest, if they exist. 858 // Overwrite dest only if source provides something. 859 // Return true if information was moved. 860 bool copy_node_notes_to(Node* dest, Node* source); 861 862 // Workhorse function to sort out the blocked Node_Notes array: 863 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 864 int idx, bool can_grow = false); 865 866 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 867 868 // Type management 869 Arena* type_arena() { return _type_arena; } 870 Dict* type_dict() { return _type_dict; } 871 size_t type_last_size() { return _type_last_size; } 872 int num_alias_types() { return _num_alias_types; } 873 874 void init_type_arena() { _type_arena = &_Compile_types; } 875 void set_type_arena(Arena* a) { _type_arena = a; } 876 void set_type_dict(Dict* d) { _type_dict = d; } 877 void set_type_last_size(size_t sz) { _type_last_size = sz; } 878 879 const TypeFunc* last_tf(ciMethod* m) { 880 return (m == _last_tf_m) ? _last_tf : NULL; 881 } 882 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 883 assert(m != NULL || tf == NULL, ""); 884 _last_tf_m = m; 885 _last_tf = tf; 886 } 887 888 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 889 AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL, bool uncached = false) { return find_alias_type(adr_type, false, field, uncached); } 890 bool have_alias_type(const TypePtr* adr_type); 891 AliasType* alias_type(ciField* field); 892 893 int get_alias_index(const TypePtr* at, bool uncached = false) { return alias_type(at, NULL, uncached)->index(); } 894 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 895 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 896 897 // Building nodes 898 void rethrow_exceptions(JVMState* jvms); 899 void return_values(JVMState* jvms); 900 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 901 902 // Decide how to build a call. 903 // The profile factor is a discount to apply to this site's interp. profile. 904 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 905 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL, 906 bool allow_intrinsics = true); 907 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 908 return should_delay_string_inlining(call_method, jvms) || 909 should_delay_boxing_inlining(call_method, jvms) || 910 should_delay_vector_inlining(call_method, jvms); 911 } 912 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 913 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 914 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 915 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 916 917 // Helper functions to identify inlining potential at call-site 918 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 919 ciKlass* holder, ciMethod* callee, 920 const TypeOopPtr* receiver_type, bool is_virtual, 921 bool &call_does_dispatch, int &vtable_index, 922 bool check_access = true); 923 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 924 ciMethod* callee, const TypeOopPtr* receiver_type, 925 bool check_access = true); 926 927 // Report if there were too many traps at a current method and bci. 928 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 929 // If there is no MDO at all, report no trap unless told to assume it. 930 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 931 // This version, unspecific to a particular bci, asks if 932 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 933 bool too_many_traps(Deoptimization::DeoptReason reason, 934 // Privately used parameter for logging: 935 ciMethodData* logmd = NULL); 936 // Report if there were too many recompiles at a method and bci. 937 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 938 // Report if there were too many traps or recompiles at a method and bci. 939 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 940 return too_many_traps(method, bci, reason) || 941 too_many_recompiles(method, bci, reason); 942 } 943 // Return a bitset with the reasons where deoptimization is allowed, 944 // i.e., where there were not too many uncommon traps. 945 int _allowed_reasons; 946 int allowed_deopt_reasons() { return _allowed_reasons; } 947 void set_allowed_deopt_reasons(); 948 949 // Parsing, optimization 950 PhaseGVN* initial_gvn() { return _initial_gvn; } 951 Unique_Node_List* for_igvn() { return _for_igvn; } 952 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. 953 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 954 void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } 955 956 // Replace n by nn using initial_gvn, calling hash_delete and 957 // record_for_igvn as needed. 958 void gvn_replace_by(Node* n, Node* nn); 959 960 961 void identify_useful_nodes(Unique_Node_List &useful); 962 void update_dead_node_list(Unique_Node_List &useful); 963 void disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist); 964 965 void remove_useless_node(Node* dead); 966 967 // Record this CallGenerator for inlining at the end of parsing. 968 void add_late_inline(CallGenerator* cg) { 969 _late_inlines.insert_before(_late_inlines_pos, cg); 970 _late_inlines_pos++; 971 } 972 973 void prepend_late_inline(CallGenerator* cg) { 974 _late_inlines.insert_before(0, cg); 975 } 976 977 void add_string_late_inline(CallGenerator* cg) { 978 _string_late_inlines.push(cg); 979 } 980 981 void add_boxing_late_inline(CallGenerator* cg) { 982 _boxing_late_inlines.push(cg); 983 } 984 985 void add_vector_reboxing_late_inline(CallGenerator* cg) { 986 _vector_reboxing_late_inlines.push(cg); 987 } 988 989 void add_native_invoker(RuntimeStub* stub); 990 991 const GrowableArray<RuntimeStub*> native_invokers() const { return _native_invokers; } 992 993 void remove_useless_nodes (GrowableArray<Node*>& node_list, Unique_Node_List &useful); 994 995 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 996 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 997 998 void remove_useless_coarsened_locks(Unique_Node_List& useful); 999 1000 void process_print_inlining(); 1001 void dump_print_inlining(); 1002 1003 bool over_inlining_cutoff() const { 1004 if (!inlining_incrementally()) { 1005 return unique() > (uint)NodeCountInliningCutoff; 1006 } else { 1007 // Give some room for incremental inlining algorithm to "breathe" 1008 // and avoid thrashing when live node count is close to the limit. 1009 // Keep in mind that live_nodes() isn't accurate during inlining until 1010 // dead node elimination step happens (see Compile::inline_incrementally). 1011 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1012 } 1013 } 1014 1015 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1016 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1017 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1018 1019 bool inline_incrementally_one(); 1020 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1021 void inline_incrementally(PhaseIterGVN& igvn); 1022 void inline_string_calls(bool parse_time); 1023 void inline_boxing_calls(PhaseIterGVN& igvn); 1024 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1025 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1026 1027 void inline_vector_reboxing_calls(); 1028 bool has_vbox_nodes(); 1029 1030 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1031 1032 // Matching, CFG layout, allocation, code generation 1033 PhaseCFG* cfg() { return _cfg; } 1034 bool has_java_calls() const { return _java_calls > 0; } 1035 int java_calls() const { return _java_calls; } 1036 int inner_loops() const { return _inner_loops; } 1037 Matcher* matcher() { return _matcher; } 1038 PhaseRegAlloc* regalloc() { return _regalloc; } 1039 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1040 Arena* indexSet_arena() { return _indexSet_arena; } 1041 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1042 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1043 1044 void update_interpreter_frame_size(int size) { 1045 if (_interpreter_frame_size < size) { 1046 _interpreter_frame_size = size; 1047 } 1048 } 1049 1050 void set_matcher(Matcher* m) { _matcher = m; } 1051 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1052 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1053 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1054 1055 void set_java_calls(int z) { _java_calls = z; } 1056 void set_inner_loops(int z) { _inner_loops = z; } 1057 1058 Dependencies* dependencies() { return env()->dependencies(); } 1059 1060 // Major entry point. Given a Scope, compile the associated method. 1061 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1062 // replacement, entry_bci indicates the bytecode for which to compile a 1063 // continuation. 1064 Compile(ciEnv* ci_env, ciMethod* target, 1065 int entry_bci, Options options, DirectiveSet* directive); 1066 1067 // Second major entry point. From the TypeFunc signature, generate code 1068 // to pass arguments from the Java calling convention to the C calling 1069 // convention. 1070 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1071 address stub_function, const char *stub_name, 1072 int is_fancy_jump, bool pass_tls, 1073 bool return_pc, DirectiveSet* directive); 1074 1075 // Are we compiling a method? 1076 bool has_method() { return method() != NULL; } 1077 1078 // Maybe print some information about this compile. 1079 void print_compile_messages(); 1080 1081 // Final graph reshaping, a post-pass after the regular optimizer is done. 1082 bool final_graph_reshaping(); 1083 1084 // returns true if adr is completely contained in the given alias category 1085 bool must_alias(const TypePtr* adr, int alias_idx); 1086 1087 // returns true if adr overlaps with the given alias category 1088 bool can_alias(const TypePtr* adr, int alias_idx); 1089 1090 // Stack slots that may be unused by the calling convention but must 1091 // otherwise be preserved. On Intel this includes the return address. 1092 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1093 uint in_preserve_stack_slots() { 1094 return SharedRuntime::in_preserve_stack_slots(); 1095 } 1096 1097 // "Top of Stack" slots that may be unused by the calling convention but must 1098 // otherwise be preserved. 1099 // On Intel these are not necessary and the value can be zero. 1100 static uint out_preserve_stack_slots() { 1101 return SharedRuntime::out_preserve_stack_slots(); 1102 } 1103 1104 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1105 // for calls to C. Supports the var-args backing area for register parms. 1106 uint varargs_C_out_slots_killed() const; 1107 1108 // Number of Stack Slots consumed by a synchronization entry 1109 int sync_stack_slots() const; 1110 1111 // Compute the name of old_SP. See <arch>.ad for frame layout. 1112 OptoReg::Name compute_old_SP(); 1113 1114 private: 1115 // Phase control: 1116 void Init(int aliaslevel); // Prepare for a single compilation 1117 int Inline_Warm(); // Find more inlining work. 1118 void Finish_Warm(); // Give up on further inlines. 1119 void Optimize(); // Given a graph, optimize it 1120 void Code_Gen(); // Generate code from a graph 1121 1122 // Management of the AliasType table. 1123 void grow_alias_types(); 1124 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1125 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1126 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field, bool uncached = false); 1127 1128 void verify_top(Node*) const PRODUCT_RETURN; 1129 1130 // Intrinsic setup. 1131 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1132 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1133 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1134 void register_intrinsic(CallGenerator* cg); // update fn 1135 1136 #ifndef PRODUCT 1137 static juint _intrinsic_hist_count[]; 1138 static jubyte _intrinsic_hist_flags[]; 1139 #endif 1140 // Function calls made by the public function final_graph_reshaping. 1141 // No need to be made public as they are not called elsewhere. 1142 void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc); 1143 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop); 1144 void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ); 1145 void eliminate_redundant_card_marks(Node* n); 1146 1147 // Logic cone optimization. 1148 void optimize_logic_cones(PhaseIterGVN &igvn); 1149 void collect_logic_cone_roots(Unique_Node_List& list); 1150 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1151 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1152 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1153 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1154 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1155 void check_no_dead_use() const NOT_DEBUG_RETURN; 1156 1157 public: 1158 1159 // Note: Histogram array size is about 1 Kb. 1160 enum { // flag bits: 1161 _intrinsic_worked = 1, // succeeded at least once 1162 _intrinsic_failed = 2, // tried it but it failed 1163 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1164 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1165 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1166 }; 1167 // Update histogram. Return boolean if this is a first-time occurrence. 1168 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1169 bool is_virtual, int flags) PRODUCT_RETURN0; 1170 static void print_intrinsic_statistics() PRODUCT_RETURN; 1171 1172 // Graph verification code 1173 // Walk the node list, verifying that there is a one-to-one 1174 // correspondence between Use-Def edges and Def-Use edges 1175 // The option no_dead_code enables stronger checks that the 1176 // graph is strongly connected from root in both directions. 1177 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1178 1179 // End-of-run dumps. 1180 static void print_statistics() PRODUCT_RETURN; 1181 1182 // Verify ADLC assumptions during startup 1183 static void adlc_verification() PRODUCT_RETURN; 1184 1185 // Definitions of pd methods 1186 static void pd_compiler2_init(); 1187 1188 // Static parse-time type checking logic for gen_subtype_check: 1189 enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1190 int static_subtype_check(ciKlass* superk, ciKlass* subk); 1191 1192 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1193 // Optional control dependency (for example, on range check) 1194 Node* ctrl = NULL); 1195 1196 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1197 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1198 1199 Node* optimize_acmp(PhaseGVN* phase, Node* a, Node* b); 1200 1201 // Auxiliary method for randomized fuzzing/stressing 1202 int random(); 1203 bool randomized_select(int count); 1204 1205 // supporting clone_map 1206 CloneMap& clone_map(); 1207 void set_clone_map(Dict* d); 1208 1209 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1210 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1211 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1212 1213 #ifdef IA32 1214 private: 1215 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1216 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1217 1218 // Remember if this compilation changes hardware mode to 24-bit precision. 1219 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1220 _select_24_bit_instr = selection; 1221 _in_24_bit_fp_mode = mode; 1222 } 1223 1224 public: 1225 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1226 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1227 #endif // IA32 1228 #ifdef ASSERT 1229 bool _type_verify_symmetry; 1230 void set_exception_backedge() { _exception_backedge = true; } 1231 bool has_exception_backedge() const { return _exception_backedge; } 1232 #endif 1233 1234 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1235 BasicType bt); 1236 1237 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1238 }; 1239 1240 #endif // SHARE_OPTO_COMPILE_HPP