1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerEvent.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 49 class AbstractLockNode; 50 class AddPNode; 51 class Block; 52 class Bundle; 53 class CallGenerator; 54 class CallNode; 55 class CallStaticJavaNode; 56 class CloneMap; 57 class ConnectionGraph; 58 class IdealGraphPrinter; 59 class InlineTree; 60 class Matcher; 61 class MachConstantNode; 62 class MachConstantBaseNode; 63 class MachNode; 64 class MachOper; 65 class MachSafePointNode; 66 class Node; 67 class Node_Array; 68 class Node_List; 69 class Node_Notes; 70 class NodeCloneInfo; 71 class OptoReg; 72 class PhaseCFG; 73 class PhaseGVN; 74 class PhaseIterGVN; 75 class PhaseRegAlloc; 76 class PhaseCCP; 77 class PhaseOutput; 78 class RootNode; 79 class relocInfo; 80 class StartNode; 81 class SafePointNode; 82 class JVMState; 83 class Type; 84 class TypeInt; 85 class TypeInteger; 86 class TypeKlassPtr; 87 class TypePtr; 88 class TypeOopPtr; 89 class TypeFunc; 90 class TypeVect; 91 class Unique_Node_List; 92 class UnstableIfTrap; 93 class InlineTypeNode; 94 class nmethod; 95 class Node_Stack; 96 struct Final_Reshape_Counts; 97 class VerifyMeetResult; 98 99 enum LoopOptsMode { 100 LoopOptsDefault, 101 LoopOptsNone, 102 LoopOptsMaxUnroll, 103 LoopOptsShenandoahExpand, 104 LoopOptsShenandoahPostExpand, 105 LoopOptsSkipSplitIf, 106 LoopOptsVerify 107 }; 108 109 // The type of all node counts and indexes. 110 // It must hold at least 16 bits, but must also be fast to load and store. 111 // This type, if less than 32 bits, could limit the number of possible nodes. 112 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 113 typedef unsigned int node_idx_t; 114 115 class NodeCloneInfo { 116 private: 117 uint64_t _idx_clone_orig; 118 public: 119 120 void set_idx(node_idx_t idx) { 121 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 122 } 123 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 124 125 void set_gen(int generation) { 126 uint64_t g = (uint64_t)generation << 32; 127 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 128 } 129 int gen() const { return (int)(_idx_clone_orig >> 32); } 130 131 void set(uint64_t x) { _idx_clone_orig = x; } 132 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 133 uint64_t get() const { return _idx_clone_orig; } 134 135 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 136 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 137 138 void dump() const; 139 }; 140 141 class CloneMap { 142 friend class Compile; 143 private: 144 bool _debug; 145 Dict* _dict; 146 int _clone_idx; // current cloning iteration/generation in loop unroll 147 public: 148 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 149 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 150 Dict* dict() const { return _dict; } 151 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 152 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 153 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 154 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 155 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 156 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 157 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 158 int max_gen() const; 159 void clone(Node* old, Node* nnn, int gen); 160 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 161 void dump(node_idx_t key) const; 162 163 int clone_idx() const { return _clone_idx; } 164 void set_clone_idx(int x) { _clone_idx = x; } 165 bool is_debug() const { return _debug; } 166 void set_debug(bool debug) { _debug = debug; } 167 168 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 169 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 170 }; 171 172 class Options { 173 friend class Compile; 174 friend class VMStructs; 175 private: 176 const bool _subsume_loads; // Load can be matched as part of a larger op. 177 const bool _do_escape_analysis; // Do escape analysis. 178 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 179 const bool _eliminate_boxing; // Do boxing elimination. 180 const bool _do_locks_coarsening; // Do locks coarsening 181 const bool _install_code; // Install the code that was compiled 182 public: 183 Options(bool subsume_loads, bool do_escape_analysis, 184 bool do_iterative_escape_analysis, 185 bool eliminate_boxing, bool do_locks_coarsening, 186 bool install_code) : 187 _subsume_loads(subsume_loads), 188 _do_escape_analysis(do_escape_analysis), 189 _do_iterative_escape_analysis(do_iterative_escape_analysis), 190 _eliminate_boxing(eliminate_boxing), 191 _do_locks_coarsening(do_locks_coarsening), 192 _install_code(install_code) { 193 } 194 195 static Options for_runtime_stub() { 196 return Options( 197 /* subsume_loads = */ true, 198 /* do_escape_analysis = */ false, 199 /* do_iterative_escape_analysis = */ false, 200 /* eliminate_boxing = */ false, 201 /* do_lock_coarsening = */ false, 202 /* install_code = */ true 203 ); 204 } 205 }; 206 207 //------------------------------Compile---------------------------------------- 208 // This class defines a top-level Compiler invocation. 209 210 class Compile : public Phase { 211 friend class VMStructs; 212 213 public: 214 // Fixed alias indexes. (See also MergeMemNode.) 215 enum { 216 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 217 AliasIdxBot = 2, // pseudo-index, aliases to everything 218 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 219 }; 220 221 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 222 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 223 // then brackets are put into the log, with time stamps and node counts. 224 // (The time collection itself is always conditionalized on CITime.) 225 class TracePhase : public TraceTime { 226 private: 227 Compile* C; 228 CompileLog* _log; 229 const char* _phase_name; 230 bool _dolog; 231 public: 232 TracePhase(const char* name, elapsedTimer* accumulator); 233 ~TracePhase(); 234 }; 235 236 // Information per category of alias (memory slice) 237 class AliasType { 238 private: 239 friend class Compile; 240 241 int _index; // unique index, used with MergeMemNode 242 const TypePtr* _adr_type; // normalized address type 243 ciField* _field; // relevant instance field, or null if none 244 const Type* _element; // relevant array element type, or null if none 245 bool _is_rewritable; // false if the memory is write-once only 246 int _general_index; // if this is type is an instance, the general 247 // type that this is an instance of 248 249 void Init(int i, const TypePtr* at); 250 251 public: 252 int index() const { return _index; } 253 const TypePtr* adr_type() const { return _adr_type; } 254 ciField* field() const { return _field; } 255 const Type* element() const { return _element; } 256 bool is_rewritable() const { return _is_rewritable; } 257 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 258 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 259 260 void set_rewritable(bool z) { _is_rewritable = z; } 261 void set_field(ciField* f) { 262 assert(!_field,""); 263 _field = f; 264 if (f->is_final() || f->is_stable()) { 265 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 266 _is_rewritable = false; 267 } 268 } 269 void set_element(const Type* e) { 270 assert(_element == nullptr, ""); 271 _element = e; 272 } 273 274 BasicType basic_type() const; 275 276 void print_on(outputStream* st) PRODUCT_RETURN; 277 }; 278 279 enum { 280 logAliasCacheSize = 6, 281 AliasCacheSize = (1<<logAliasCacheSize) 282 }; 283 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 284 enum { 285 trapHistLength = MethodData::_trap_hist_limit 286 }; 287 288 private: 289 // Fixed parameters to this compilation. 290 const int _compile_id; 291 const Options _options; // Compilation options 292 ciMethod* _method; // The method being compiled. 293 int _entry_bci; // entry bci for osr methods. 294 const TypeFunc* _tf; // My kind of signature 295 InlineTree* _ilt; // Ditto (temporary). 296 address _stub_function; // VM entry for stub being compiled, or null 297 const char* _stub_name; // Name of stub or adapter being compiled, or null 298 address _stub_entry_point; // Compile code entry for generated stub, or null 299 300 // Control of this compilation. 301 int _max_inline_size; // Max inline size for this compilation 302 int _freq_inline_size; // Max hot method inline size for this compilation 303 int _fixed_slots; // count of frame slots not allocated by the register 304 // allocator i.e. locks, original deopt pc, etc. 305 uintx _max_node_limit; // Max unique node count during a single compilation. 306 307 bool _post_loop_opts_phase; // Loop opts are finished. 308 309 int _major_progress; // Count of something big happening 310 bool _inlining_progress; // progress doing incremental inlining? 311 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 312 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 313 bool _has_loops; // True if the method _may_ have some loops 314 bool _has_split_ifs; // True if the method _may_ have some split-if 315 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 316 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 317 bool _has_boxed_value; // True if a boxed object is allocated 318 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 319 bool _has_circular_inline_type; // True if method loads an inline type with a circular, non-flattened field 320 uint _max_vector_size; // Maximum size of generated vectors 321 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 322 uint _trap_hist[trapHistLength]; // Cumulative traps 323 bool _trap_can_recompile; // Have we emitted a recompiling trap? 324 uint _decompile_count; // Cumulative decompilation counts. 325 bool _do_inlining; // True if we intend to do inlining 326 bool _do_scheduling; // True if we intend to do scheduling 327 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 328 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 329 bool _use_cmove; // True if CMove should be used without profitability analysis 330 bool _do_aliasing; // True if we intend to do aliasing 331 bool _print_assembly; // True if we should dump assembly code for this compilation 332 bool _print_inlining; // True if we should print inlining for this compilation 333 bool _print_intrinsics; // True if we should print intrinsics for this compilation 334 #ifndef PRODUCT 335 uint _igv_idx; // Counter for IGV node identifiers 336 bool _trace_opto_output; 337 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 338 #endif 339 bool _has_irreducible_loop; // Found irreducible loops 340 // JSR 292 341 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 342 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 343 RTMState _rtm_state; // State of Restricted Transactional Memory usage 344 int _loop_opts_cnt; // loop opts round 345 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 346 bool _has_flattened_accesses; // Any known flattened array accesses? 347 bool _flattened_accesses_share_alias; // Initially all flattened array share a single slice 348 bool _scalarize_in_safepoints; // Scalarize inline types in safepoint debug info 349 uint _stress_seed; // Seed for stress testing 350 351 // Compilation environment. 352 Arena _comp_arena; // Arena with lifetime equivalent to Compile 353 void* _barrier_set_state; // Potential GC barrier state for Compile 354 ciEnv* _env; // CI interface 355 DirectiveSet* _directive; // Compiler directive 356 CompileLog* _log; // from CompilerThread 357 const char* _failure_reason; // for record_failure/failing pattern 358 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 359 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 360 GrowableArray<Node*> _parse_predicate_opaqs; // List of Opaque1 nodes for the Parse Predicates. 361 GrowableArray<Node*> _template_assertion_predicate_opaqs; // List of Opaque4 nodes for Template Assertion Predicates. 362 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 363 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 364 GrowableArray<Node*> _inline_type_nodes; // List of InlineType nodes 365 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 366 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 367 ConnectionGraph* _congraph; 368 #ifndef PRODUCT 369 IdealGraphPrinter* _igv_printer; 370 static IdealGraphPrinter* _debug_file_printer; 371 static IdealGraphPrinter* _debug_network_printer; 372 #endif 373 374 375 // Node management 376 uint _unique; // Counter for unique Node indices 377 VectorSet _dead_node_list; // Set of dead nodes 378 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 379 // So use this to keep count and make the call O(1). 380 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 381 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 382 383 Arena _node_arena; // Arena for new-space Nodes 384 Arena _old_arena; // Arena for old-space Nodes, lifetime during xform 385 RootNode* _root; // Unique root of compilation, or null after bail-out. 386 Node* _top; // Unique top node. (Reset by various phases.) 387 388 Node* _immutable_memory; // Initial memory state 389 390 Node* _recent_alloc_obj; 391 Node* _recent_alloc_ctl; 392 393 // Constant table 394 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 395 396 397 // Blocked array of debugging and profiling information, 398 // tracked per node. 399 enum { _log2_node_notes_block_size = 8, 400 _node_notes_block_size = (1<<_log2_node_notes_block_size) 401 }; 402 GrowableArray<Node_Notes*>* _node_note_array; 403 Node_Notes* _default_node_notes; // default notes for new nodes 404 405 // After parsing and every bulk phase we hang onto the Root instruction. 406 // The RootNode instruction is where the whole program begins. It produces 407 // the initial Control and BOTTOM for everybody else. 408 409 // Type management 410 Arena _Compile_types; // Arena for all types 411 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 412 Dict* _type_dict; // Intern table 413 CloneMap _clone_map; // used for recording history of cloned nodes 414 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 415 ciMethod* _last_tf_m; // Cache for 416 const TypeFunc* _last_tf; // TypeFunc::make 417 AliasType** _alias_types; // List of alias types seen so far. 418 int _num_alias_types; // Logical length of _alias_types 419 int _max_alias_types; // Physical length of _alias_types 420 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 421 422 // Parsing, optimization 423 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 424 Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN 425 426 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 427 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 428 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 429 430 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 431 432 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 433 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 434 435 // Inlining may not happen in parse order which would make 436 // PrintInlining output confusing. Keep track of PrintInlining 437 // pieces in order. 438 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 439 private: 440 CallGenerator* _cg; 441 stringStream _ss; 442 static const size_t default_stream_buffer_size = 128; 443 444 public: 445 PrintInliningBuffer() 446 : _cg(nullptr), _ss(default_stream_buffer_size) {} 447 448 stringStream* ss() { return &_ss; } 449 CallGenerator* cg() { return _cg; } 450 void set_cg(CallGenerator* cg) { _cg = cg; } 451 }; 452 453 stringStream* _print_inlining_stream; 454 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 455 int _print_inlining_idx; 456 char* _print_inlining_output; 457 458 // Only keep nodes in the expensive node list that need to be optimized 459 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 460 // Use for sorting expensive nodes to bring similar nodes together 461 static int cmp_expensive_nodes(Node** n1, Node** n2); 462 // Expensive nodes list already sorted? 463 bool expensive_nodes_sorted() const; 464 // Remove the speculative part of types and clean up the graph 465 void remove_speculative_types(PhaseIterGVN &igvn); 466 467 void* _replay_inline_data; // Pointer to data loaded from file 468 469 void print_inlining_init(); 470 void print_inlining_reinit(); 471 void print_inlining_commit(); 472 void print_inlining_push(); 473 PrintInliningBuffer* print_inlining_current(); 474 475 void log_late_inline_failure(CallGenerator* cg, const char* msg); 476 DEBUG_ONLY(bool _exception_backedge;) 477 478 public: 479 480 void* barrier_set_state() const { return _barrier_set_state; } 481 482 stringStream* print_inlining_stream() { 483 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 484 return _print_inlining_stream; 485 } 486 487 void print_inlining_update(CallGenerator* cg); 488 void print_inlining_update_delayed(CallGenerator* cg); 489 void print_inlining_move_to(CallGenerator* cg); 490 void print_inlining_assert_ready(); 491 void print_inlining_reset(); 492 493 void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = nullptr) { 494 stringStream ss; 495 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); 496 print_inlining_stream()->print("%s", ss.freeze()); 497 } 498 499 #ifndef PRODUCT 500 IdealGraphPrinter* igv_printer() { return _igv_printer; } 501 #endif 502 503 void log_late_inline(CallGenerator* cg); 504 void log_inline_id(CallGenerator* cg); 505 void log_inline_failure(const char* msg); 506 507 void* replay_inline_data() const { return _replay_inline_data; } 508 509 // Dump inlining replay data to the stream. 510 void dump_inline_data(outputStream* out); 511 void dump_inline_data_reduced(outputStream* out); 512 513 private: 514 // Matching, CFG layout, allocation, code generation 515 PhaseCFG* _cfg; // Results of CFG finding 516 int _java_calls; // Number of java calls in the method 517 int _inner_loops; // Number of inner loops in the method 518 Matcher* _matcher; // Engine to map ideal to machine instructions 519 PhaseRegAlloc* _regalloc; // Results of register allocation. 520 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 521 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 522 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 523 int _interpreter_frame_size; 524 525 PhaseOutput* _output; 526 527 public: 528 // Accessors 529 530 // The Compile instance currently active in this (compiler) thread. 531 static Compile* current() { 532 return (Compile*) ciEnv::current()->compiler_data(); 533 } 534 535 int interpreter_frame_size() const { return _interpreter_frame_size; } 536 537 PhaseOutput* output() const { return _output; } 538 void set_output(PhaseOutput* o) { _output = o; } 539 540 // ID for this compilation. Useful for setting breakpoints in the debugger. 541 int compile_id() const { return _compile_id; } 542 DirectiveSet* directive() const { return _directive; } 543 544 // Does this compilation allow instructions to subsume loads? User 545 // instructions that subsume a load may result in an unschedulable 546 // instruction sequence. 547 bool subsume_loads() const { return _options._subsume_loads; } 548 /** Do escape analysis. */ 549 bool do_escape_analysis() const { return _options._do_escape_analysis; } 550 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 551 /** Do boxing elimination. */ 552 bool eliminate_boxing() const { return _options._eliminate_boxing; } 553 /** Do aggressive boxing elimination. */ 554 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 555 bool should_install_code() const { return _options._install_code; } 556 /** Do locks coarsening. */ 557 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 558 559 // Other fixed compilation parameters. 560 ciMethod* method() const { return _method; } 561 int entry_bci() const { return _entry_bci; } 562 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 563 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 564 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 565 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 566 InlineTree* ilt() const { return _ilt; } 567 address stub_function() const { return _stub_function; } 568 const char* stub_name() const { return _stub_name; } 569 address stub_entry_point() const { return _stub_entry_point; } 570 void set_stub_entry_point(address z) { _stub_entry_point = z; } 571 572 // Control of this compilation. 573 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 574 void set_fixed_slots(int n) { _fixed_slots = n; } 575 int major_progress() const { return _major_progress; } 576 void set_inlining_progress(bool z) { _inlining_progress = z; } 577 int inlining_progress() const { return _inlining_progress; } 578 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 579 int inlining_incrementally() const { return _inlining_incrementally; } 580 void set_do_cleanup(bool z) { _do_cleanup = z; } 581 int do_cleanup() const { return _do_cleanup; } 582 void set_major_progress() { _major_progress++; } 583 void restore_major_progress(int progress) { _major_progress += progress; } 584 void clear_major_progress() { _major_progress = 0; } 585 int max_inline_size() const { return _max_inline_size; } 586 void set_freq_inline_size(int n) { _freq_inline_size = n; } 587 int freq_inline_size() const { return _freq_inline_size; } 588 void set_max_inline_size(int n) { _max_inline_size = n; } 589 bool has_loops() const { return _has_loops; } 590 void set_has_loops(bool z) { _has_loops = z; } 591 bool has_split_ifs() const { return _has_split_ifs; } 592 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 593 bool has_unsafe_access() const { return _has_unsafe_access; } 594 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 595 bool has_stringbuilder() const { return _has_stringbuilder; } 596 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 597 bool has_boxed_value() const { return _has_boxed_value; } 598 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 599 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 600 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 601 bool has_circular_inline_type() const { return _has_circular_inline_type; } 602 void set_has_circular_inline_type(bool z) { _has_circular_inline_type = z; } 603 uint max_vector_size() const { return _max_vector_size; } 604 void set_max_vector_size(uint s) { _max_vector_size = s; } 605 bool clear_upper_avx() const { return _clear_upper_avx; } 606 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 607 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 608 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 609 bool trap_can_recompile() const { return _trap_can_recompile; } 610 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 611 uint decompile_count() const { return _decompile_count; } 612 void set_decompile_count(uint c) { _decompile_count = c; } 613 bool allow_range_check_smearing() const; 614 bool do_inlining() const { return _do_inlining; } 615 void set_do_inlining(bool z) { _do_inlining = z; } 616 bool do_scheduling() const { return _do_scheduling; } 617 void set_do_scheduling(bool z) { _do_scheduling = z; } 618 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 619 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 620 bool do_vector_loop() const { return _do_vector_loop; } 621 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 622 bool use_cmove() const { return _use_cmove; } 623 void set_use_cmove(bool z) { _use_cmove = z; } 624 bool do_aliasing() const { return _do_aliasing; } 625 bool print_assembly() const { return _print_assembly; } 626 void set_print_assembly(bool z) { _print_assembly = z; } 627 bool print_inlining() const { return _print_inlining; } 628 void set_print_inlining(bool z) { _print_inlining = z; } 629 bool print_intrinsics() const { return _print_intrinsics; } 630 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 631 RTMState rtm_state() const { return _rtm_state; } 632 void set_rtm_state(RTMState s) { _rtm_state = s; } 633 bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } 634 bool profile_rtm() const { return _rtm_state == ProfileRTM; } 635 uint max_node_limit() const { return (uint)_max_node_limit; } 636 void set_max_node_limit(uint n) { _max_node_limit = n; } 637 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 638 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 639 void set_flattened_accesses() { _has_flattened_accesses = true; } 640 bool flattened_accesses_share_alias() const { return _flattened_accesses_share_alias; } 641 void set_flattened_accesses_share_alias(bool z) { _flattened_accesses_share_alias = z; } 642 bool scalarize_in_safepoints() const { return _scalarize_in_safepoints; } 643 void set_scalarize_in_safepoints(bool z) { _scalarize_in_safepoints = z; } 644 645 // Support for scalarized inline type calling convention 646 bool has_scalarized_args() const { return _method != nullptr && _method->has_scalarized_args(); } 647 bool needs_stack_repair() const { return _method != nullptr && _method->get_Method()->c2_needs_stack_repair(); } 648 649 bool has_monitors() const { return _has_monitors; } 650 void set_has_monitors(bool v) { _has_monitors = v; } 651 652 // check the CompilerOracle for special behaviours for this compile 653 bool method_has_option(enum CompileCommand option) { 654 return method() != nullptr && method()->has_option(option); 655 } 656 657 #ifndef PRODUCT 658 uint next_igv_idx() { return _igv_idx++; } 659 bool trace_opto_output() const { return _trace_opto_output; } 660 void print_ideal_ir(const char* phase_name); 661 bool should_print_ideal() const { return _directive->PrintIdealOption; } 662 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 663 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 664 int _in_dump_cnt; // Required for dumping ir nodes. 665 #endif 666 bool has_irreducible_loop() const { return _has_irreducible_loop; } 667 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 668 669 // JSR 292 670 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 671 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 672 673 Ticks _latest_stage_start_counter; 674 675 void begin_method(); 676 void end_method(); 677 bool should_print_igv(int level); 678 bool should_print_phase(CompilerPhaseType cpt); 679 680 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 681 682 #ifndef PRODUCT 683 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 684 void igv_print_method_to_network(const char* phase_name = "Debug"); 685 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 686 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 687 #endif 688 689 int macro_count() const { return _macro_nodes.length(); } 690 int parse_predicate_count() const { return _parse_predicate_opaqs.length(); } 691 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); } 692 int expensive_count() const { return _expensive_nodes.length(); } 693 int coarsened_count() const { return _coarsened_locks.length(); } 694 695 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 696 Node* parse_predicate_opaque1_node(int idx) const { return _parse_predicate_opaqs.at(idx); } 697 698 Node* template_assertion_predicate_opaq_node(int idx) const { 699 return _template_assertion_predicate_opaqs.at(idx); 700 } 701 702 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 703 704 ConnectionGraph* congraph() { return _congraph;} 705 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 706 void add_macro_node(Node * n) { 707 //assert(n->is_macro(), "must be a macro node"); 708 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 709 _macro_nodes.append(n); 710 } 711 void remove_macro_node(Node* n) { 712 // this function may be called twice for a node so we can only remove it 713 // if it's still existing. 714 _macro_nodes.remove_if_existing(n); 715 // remove from _parse_predicate_opaqs list also if it is there 716 if (parse_predicate_count() > 0) { 717 _parse_predicate_opaqs.remove_if_existing(n); 718 } 719 // Remove from coarsened locks list if present 720 if (coarsened_count() > 0) { 721 remove_coarsened_lock(n); 722 } 723 } 724 void add_expensive_node(Node* n); 725 void remove_expensive_node(Node* n) { 726 _expensive_nodes.remove_if_existing(n); 727 } 728 void add_parse_predicate_opaq(Node* n) { 729 assert(!_parse_predicate_opaqs.contains(n), "duplicate entry in Parse Predicate opaque1 list"); 730 assert(_macro_nodes.contains(n), "should have already been in macro list"); 731 _parse_predicate_opaqs.append(n); 732 } 733 void add_template_assertion_predicate_opaq(Node* n) { 734 assert(!_template_assertion_predicate_opaqs.contains(n), 735 "duplicate entry in template assertion predicate opaque4 list"); 736 _template_assertion_predicate_opaqs.append(n); 737 } 738 void remove_template_assertion_predicate_opaq(Node* n) { 739 if (template_assertion_predicate_count() > 0) { 740 _template_assertion_predicate_opaqs.remove_if_existing(n); 741 } 742 } 743 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 744 void remove_coarsened_lock(Node* n); 745 bool coarsened_locks_consistent(); 746 747 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 748 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 749 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 750 751 void record_for_post_loop_opts_igvn(Node* n); 752 void remove_from_post_loop_opts_igvn(Node* n); 753 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 754 755 // Keep track of inline type nodes for later processing 756 void add_inline_type(Node* n); 757 void remove_inline_type(Node* n); 758 void process_inline_types(PhaseIterGVN &igvn, bool remove = false); 759 760 void adjust_flattened_array_access_aliases(PhaseIterGVN& igvn); 761 762 void record_unstable_if_trap(UnstableIfTrap* trap); 763 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 764 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 765 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 766 767 void sort_macro_nodes(); 768 769 // Remove the opaque nodes that protect the Parse Predicates so that the unused checks and 770 // uncommon traps will be eliminated from the graph. 771 void cleanup_parse_predicates(PhaseIterGVN &igvn) const; 772 bool is_predicate_opaq(Node* n) const { 773 return _parse_predicate_opaqs.contains(n); 774 } 775 776 // Are there candidate expensive nodes for optimization? 777 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 778 // Check whether n1 and n2 are similar 779 static int cmp_expensive_nodes(Node* n1, Node* n2); 780 // Sort expensive nodes to locate similar expensive nodes 781 void sort_expensive_nodes(); 782 783 // Compilation environment. 784 Arena* comp_arena() { return &_comp_arena; } 785 ciEnv* env() const { return _env; } 786 CompileLog* log() const { return _log; } 787 bool failing() const { return _env->failing() || _failure_reason != nullptr; } 788 const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } 789 790 bool failure_reason_is(const char* r) const { 791 return (r == _failure_reason) || (r != nullptr && _failure_reason != nullptr && strcmp(r, _failure_reason) == 0); 792 } 793 794 void record_failure(const char* reason); 795 void record_method_not_compilable(const char* reason) { 796 env()->record_method_not_compilable(reason); 797 // Record failure reason. 798 record_failure(reason); 799 } 800 bool check_node_count(uint margin, const char* reason) { 801 if (live_nodes() + margin > max_node_limit()) { 802 record_method_not_compilable(reason); 803 return true; 804 } else { 805 return false; 806 } 807 } 808 809 // Node management 810 uint unique() const { return _unique; } 811 uint next_unique() { return _unique++; } 812 void set_unique(uint i) { _unique = i; } 813 Arena* node_arena() { return &_node_arena; } 814 Arena* old_arena() { return &_old_arena; } 815 RootNode* root() const { return _root; } 816 void set_root(RootNode* r) { _root = r; } 817 StartNode* start() const; // (Derived from root.) 818 void init_start(StartNode* s); 819 Node* immutable_memory(); 820 821 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 822 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 823 void set_recent_alloc(Node* ctl, Node* obj) { 824 _recent_alloc_ctl = ctl; 825 _recent_alloc_obj = obj; 826 } 827 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 828 _dead_node_count++; 829 } 830 void reset_dead_node_list() { _dead_node_list.reset(); 831 _dead_node_count = 0; 832 } 833 uint live_nodes() const { 834 int val = _unique - _dead_node_count; 835 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 836 return (uint) val; 837 } 838 #ifdef ASSERT 839 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 840 bool phase_optimize_finished() const { return _phase_optimize_finished; } 841 uint count_live_nodes_by_graph_walk(); 842 void print_missing_nodes(); 843 #endif 844 845 // Record modified nodes to check that they are put on IGVN worklist 846 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 847 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 848 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 849 850 MachConstantBaseNode* mach_constant_base_node(); 851 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 852 // Generated by adlc, true if CallNode requires MachConstantBase. 853 bool needs_deep_clone_jvms(); 854 855 // Handy undefined Node 856 Node* top() const { return _top; } 857 858 // these are used by guys who need to know about creation and transformation of top: 859 Node* cached_top_node() { return _top; } 860 void set_cached_top_node(Node* tn); 861 862 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 863 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 864 Node_Notes* default_node_notes() const { return _default_node_notes; } 865 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 866 867 Node_Notes* node_notes_at(int idx) { 868 return locate_node_notes(_node_note_array, idx, false); 869 } 870 inline bool set_node_notes_at(int idx, Node_Notes* value); 871 872 // Copy notes from source to dest, if they exist. 873 // Overwrite dest only if source provides something. 874 // Return true if information was moved. 875 bool copy_node_notes_to(Node* dest, Node* source); 876 877 // Workhorse function to sort out the blocked Node_Notes array: 878 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 879 int idx, bool can_grow = false); 880 881 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 882 883 // Type management 884 Arena* type_arena() { return _type_arena; } 885 Dict* type_dict() { return _type_dict; } 886 size_t type_last_size() { return _type_last_size; } 887 int num_alias_types() { return _num_alias_types; } 888 889 void init_type_arena() { _type_arena = &_Compile_types; } 890 void set_type_arena(Arena* a) { _type_arena = a; } 891 void set_type_dict(Dict* d) { _type_dict = d; } 892 void set_type_last_size(size_t sz) { _type_last_size = sz; } 893 894 const TypeFunc* last_tf(ciMethod* m) { 895 return (m == _last_tf_m) ? _last_tf : nullptr; 896 } 897 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 898 assert(m != nullptr || tf == nullptr, ""); 899 _last_tf_m = m; 900 _last_tf = tf; 901 } 902 903 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 904 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr, bool uncached = false) { return find_alias_type(adr_type, false, field, uncached); } 905 bool have_alias_type(const TypePtr* adr_type); 906 AliasType* alias_type(ciField* field); 907 908 int get_alias_index(const TypePtr* at, bool uncached = false) { return alias_type(at, nullptr, uncached)->index(); } 909 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 910 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 911 912 // Building nodes 913 void rethrow_exceptions(JVMState* jvms); 914 void return_values(JVMState* jvms); 915 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 916 917 // Decide how to build a call. 918 // The profile factor is a discount to apply to this site's interp. profile. 919 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 920 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 921 bool allow_intrinsics = true); 922 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 923 return should_delay_string_inlining(call_method, jvms) || 924 should_delay_boxing_inlining(call_method, jvms) || 925 should_delay_vector_inlining(call_method, jvms); 926 } 927 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 928 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 929 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 930 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 931 932 // Helper functions to identify inlining potential at call-site 933 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 934 ciKlass* holder, ciMethod* callee, 935 const TypeOopPtr* receiver_type, bool is_virtual, 936 bool &call_does_dispatch, int &vtable_index, 937 bool check_access = true); 938 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 939 ciMethod* callee, const TypeOopPtr* receiver_type, 940 bool check_access = true); 941 942 // Report if there were too many traps at a current method and bci. 943 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 944 // If there is no MDO at all, report no trap unless told to assume it. 945 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 946 // This version, unspecific to a particular bci, asks if 947 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 948 bool too_many_traps(Deoptimization::DeoptReason reason, 949 // Privately used parameter for logging: 950 ciMethodData* logmd = nullptr); 951 // Report if there were too many recompiles at a method and bci. 952 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 953 // Report if there were too many traps or recompiles at a method and bci. 954 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 955 return too_many_traps(method, bci, reason) || 956 too_many_recompiles(method, bci, reason); 957 } 958 // Return a bitset with the reasons where deoptimization is allowed, 959 // i.e., where there were not too many uncommon traps. 960 int _allowed_reasons; 961 int allowed_deopt_reasons() { return _allowed_reasons; } 962 void set_allowed_deopt_reasons(); 963 964 // Parsing, optimization 965 PhaseGVN* initial_gvn() { return _initial_gvn; } 966 Unique_Node_List* for_igvn() { return _for_igvn; } 967 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 968 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 969 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 970 void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } 971 972 // Replace n by nn using initial_gvn, calling hash_delete and 973 // record_for_igvn as needed. 974 void gvn_replace_by(Node* n, Node* nn); 975 976 977 void identify_useful_nodes(Unique_Node_List &useful); 978 void update_dead_node_list(Unique_Node_List &useful); 979 void disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist); 980 981 void remove_useless_node(Node* dead); 982 983 // Record this CallGenerator for inlining at the end of parsing. 984 void add_late_inline(CallGenerator* cg) { 985 _late_inlines.insert_before(_late_inlines_pos, cg); 986 _late_inlines_pos++; 987 } 988 989 void prepend_late_inline(CallGenerator* cg) { 990 _late_inlines.insert_before(0, cg); 991 } 992 993 void add_string_late_inline(CallGenerator* cg) { 994 _string_late_inlines.push(cg); 995 } 996 997 void add_boxing_late_inline(CallGenerator* cg) { 998 _boxing_late_inlines.push(cg); 999 } 1000 1001 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1002 _vector_reboxing_late_inlines.push(cg); 1003 } 1004 1005 void remove_useless_nodes (GrowableArray<Node*>& node_list, Unique_Node_List &useful); 1006 1007 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1008 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1009 1010 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1011 1012 void process_print_inlining(); 1013 void dump_print_inlining(); 1014 1015 bool over_inlining_cutoff() const { 1016 if (!inlining_incrementally()) { 1017 return unique() > (uint)NodeCountInliningCutoff; 1018 } else { 1019 // Give some room for incremental inlining algorithm to "breathe" 1020 // and avoid thrashing when live node count is close to the limit. 1021 // Keep in mind that live_nodes() isn't accurate during inlining until 1022 // dead node elimination step happens (see Compile::inline_incrementally). 1023 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1024 } 1025 } 1026 1027 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1028 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1029 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1030 1031 bool inline_incrementally_one(); 1032 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1033 void inline_incrementally(PhaseIterGVN& igvn); 1034 void inline_string_calls(bool parse_time); 1035 void inline_boxing_calls(PhaseIterGVN& igvn); 1036 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1037 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1038 1039 void inline_vector_reboxing_calls(); 1040 bool has_vbox_nodes(); 1041 1042 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1043 1044 // Matching, CFG layout, allocation, code generation 1045 PhaseCFG* cfg() { return _cfg; } 1046 bool has_java_calls() const { return _java_calls > 0; } 1047 int java_calls() const { return _java_calls; } 1048 int inner_loops() const { return _inner_loops; } 1049 Matcher* matcher() { return _matcher; } 1050 PhaseRegAlloc* regalloc() { return _regalloc; } 1051 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1052 Arena* indexSet_arena() { return _indexSet_arena; } 1053 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1054 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1055 1056 void update_interpreter_frame_size(int size) { 1057 if (_interpreter_frame_size < size) { 1058 _interpreter_frame_size = size; 1059 } 1060 } 1061 1062 void set_matcher(Matcher* m) { _matcher = m; } 1063 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1064 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1065 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1066 1067 void set_java_calls(int z) { _java_calls = z; } 1068 void set_inner_loops(int z) { _inner_loops = z; } 1069 1070 Dependencies* dependencies() { return env()->dependencies(); } 1071 1072 // Major entry point. Given a Scope, compile the associated method. 1073 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1074 // replacement, entry_bci indicates the bytecode for which to compile a 1075 // continuation. 1076 Compile(ciEnv* ci_env, ciMethod* target, 1077 int entry_bci, Options options, DirectiveSet* directive); 1078 1079 // Second major entry point. From the TypeFunc signature, generate code 1080 // to pass arguments from the Java calling convention to the C calling 1081 // convention. 1082 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1083 address stub_function, const char *stub_name, 1084 int is_fancy_jump, bool pass_tls, 1085 bool return_pc, DirectiveSet* directive); 1086 1087 ~Compile() { 1088 delete _print_inlining_stream; 1089 }; 1090 1091 // Are we compiling a method? 1092 bool has_method() { return method() != nullptr; } 1093 1094 // Maybe print some information about this compile. 1095 void print_compile_messages(); 1096 1097 // Final graph reshaping, a post-pass after the regular optimizer is done. 1098 bool final_graph_reshaping(); 1099 1100 // returns true if adr is completely contained in the given alias category 1101 bool must_alias(const TypePtr* adr, int alias_idx); 1102 1103 // returns true if adr overlaps with the given alias category 1104 bool can_alias(const TypePtr* adr, int alias_idx); 1105 1106 // Stack slots that may be unused by the calling convention but must 1107 // otherwise be preserved. On Intel this includes the return address. 1108 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1109 uint in_preserve_stack_slots() { 1110 return SharedRuntime::in_preserve_stack_slots(); 1111 } 1112 1113 // "Top of Stack" slots that may be unused by the calling convention but must 1114 // otherwise be preserved. 1115 // On Intel these are not necessary and the value can be zero. 1116 static uint out_preserve_stack_slots() { 1117 return SharedRuntime::out_preserve_stack_slots(); 1118 } 1119 1120 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1121 // for calls to C. Supports the var-args backing area for register parms. 1122 uint varargs_C_out_slots_killed() const; 1123 1124 // Number of Stack Slots consumed by a synchronization entry 1125 int sync_stack_slots() const; 1126 1127 // Compute the name of old_SP. See <arch>.ad for frame layout. 1128 OptoReg::Name compute_old_SP(); 1129 1130 private: 1131 // Phase control: 1132 void Init(bool aliasing); // Prepare for a single compilation 1133 void Optimize(); // Given a graph, optimize it 1134 void Code_Gen(); // Generate code from a graph 1135 1136 // Management of the AliasType table. 1137 void grow_alias_types(); 1138 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1139 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1140 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field, bool uncached = false); 1141 1142 void verify_top(Node*) const PRODUCT_RETURN; 1143 1144 // Intrinsic setup. 1145 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1146 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1147 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1148 void register_intrinsic(CallGenerator* cg); // update fn 1149 1150 #ifndef PRODUCT 1151 static juint _intrinsic_hist_count[]; 1152 static jubyte _intrinsic_hist_flags[]; 1153 #endif 1154 // Function calls made by the public function final_graph_reshaping. 1155 // No need to be made public as they are not called elsewhere. 1156 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1157 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1158 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1159 void eliminate_redundant_card_marks(Node* n); 1160 1161 // Logic cone optimization. 1162 void optimize_logic_cones(PhaseIterGVN &igvn); 1163 void collect_logic_cone_roots(Unique_Node_List& list); 1164 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1165 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1166 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1167 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1168 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1169 void check_no_dead_use() const NOT_DEBUG_RETURN; 1170 1171 public: 1172 1173 // Note: Histogram array size is about 1 Kb. 1174 enum { // flag bits: 1175 _intrinsic_worked = 1, // succeeded at least once 1176 _intrinsic_failed = 2, // tried it but it failed 1177 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1178 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1179 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1180 }; 1181 // Update histogram. Return boolean if this is a first-time occurrence. 1182 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1183 bool is_virtual, int flags) PRODUCT_RETURN0; 1184 static void print_intrinsic_statistics() PRODUCT_RETURN; 1185 1186 // Graph verification code 1187 // Walk the node list, verifying that there is a one-to-one 1188 // correspondence between Use-Def edges and Def-Use edges 1189 // The option no_dead_code enables stronger checks that the 1190 // graph is strongly connected from root in both directions. 1191 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1192 1193 // Verify bi-directional correspondence of edges 1194 void verify_bidirectional_edges(Unique_Node_List &visited); 1195 1196 // End-of-run dumps. 1197 static void print_statistics() PRODUCT_RETURN; 1198 1199 // Verify ADLC assumptions during startup 1200 static void adlc_verification() PRODUCT_RETURN; 1201 1202 // Definitions of pd methods 1203 static void pd_compiler2_init(); 1204 1205 // Static parse-time type checking logic for gen_subtype_check: 1206 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1207 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1208 1209 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1210 // Optional control dependency (for example, on range check) 1211 Node* ctrl = nullptr); 1212 1213 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1214 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1215 1216 Node* optimize_acmp(PhaseGVN* phase, Node* a, Node* b); 1217 1218 // Auxiliary method for randomized fuzzing/stressing 1219 int random(); 1220 bool randomized_select(int count); 1221 1222 // supporting clone_map 1223 CloneMap& clone_map(); 1224 void set_clone_map(Dict* d); 1225 1226 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1227 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1228 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1229 1230 #ifdef IA32 1231 private: 1232 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1233 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1234 1235 // Remember if this compilation changes hardware mode to 24-bit precision. 1236 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1237 _select_24_bit_instr = selection; 1238 _in_24_bit_fp_mode = mode; 1239 } 1240 1241 public: 1242 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1243 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1244 #endif // IA32 1245 #ifdef ASSERT 1246 VerifyMeetResult* _type_verify; 1247 void set_exception_backedge() { _exception_backedge = true; } 1248 bool has_exception_backedge() const { return _exception_backedge; } 1249 #endif 1250 1251 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1252 BasicType out_bt, BasicType in_bt); 1253 1254 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1255 }; 1256 1257 #endif // SHARE_OPTO_COMPILE_HPP