1 /* 2 * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/castnode.hpp" 28 #include "opto/convertnode.hpp" 29 #include "opto/matcher.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/subnode.hpp" 32 #include "runtime/sharedRuntime.hpp" 33 34 //============================================================================= 35 //------------------------------Identity--------------------------------------- 36 Node* Conv2BNode::Identity(PhaseGVN* phase) { 37 const Type *t = phase->type( in(1) ); 38 if( t == Type::TOP ) return in(1); 39 if( t == TypeInt::ZERO ) return in(1); 40 if( t == TypeInt::ONE ) return in(1); 41 if( t == TypeInt::BOOL ) return in(1); 42 return this; 43 } 44 45 //------------------------------Value------------------------------------------ 46 const Type* Conv2BNode::Value(PhaseGVN* phase) const { 47 const Type *t = phase->type( in(1) ); 48 if( t == Type::TOP ) return Type::TOP; 49 if( t == TypeInt::ZERO ) return TypeInt::ZERO; 50 if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO; 51 const TypePtr *tp = t->isa_ptr(); 52 if( tp != NULL ) { 53 if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP; 54 if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE; 55 if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE; 56 return TypeInt::BOOL; 57 } 58 if (t->base() != Type::Int) return TypeInt::BOOL; 59 const TypeInt *ti = t->is_int(); 60 if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE; 61 return TypeInt::BOOL; 62 } 63 64 65 // The conversions operations are all Alpha sorted. Please keep it that way! 66 //============================================================================= 67 //------------------------------Value------------------------------------------ 68 const Type* ConvD2FNode::Value(PhaseGVN* phase) const { 69 const Type *t = phase->type( in(1) ); 70 if( t == Type::TOP ) return Type::TOP; 71 if( t == Type::DOUBLE ) return Type::FLOAT; 72 const TypeD *td = t->is_double_constant(); 73 return TypeF::make( (float)td->getd() ); 74 } 75 76 //------------------------------Ideal------------------------------------------ 77 // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float. 78 Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) { 79 if ( in(1)->Opcode() == Op_SqrtD ) { 80 Node* sqrtd = in(1); 81 if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) { 82 if ( Matcher::match_rule_supported(Op_SqrtF) ) { 83 Node* convf2d = sqrtd->in(1); 84 return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1)); 85 } 86 } 87 } 88 return NULL; 89 } 90 91 //------------------------------Identity--------------------------------------- 92 // Float's can be converted to doubles with no loss of bits. Hence 93 // converting a float to a double and back to a float is a NOP. 94 Node* ConvD2FNode::Identity(PhaseGVN* phase) { 95 return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this; 96 } 97 98 //============================================================================= 99 //------------------------------Value------------------------------------------ 100 const Type* ConvD2INode::Value(PhaseGVN* phase) const { 101 const Type *t = phase->type( in(1) ); 102 if( t == Type::TOP ) return Type::TOP; 103 if( t == Type::DOUBLE ) return TypeInt::INT; 104 const TypeD *td = t->is_double_constant(); 105 return TypeInt::make( SharedRuntime::d2i( td->getd() ) ); 106 } 107 108 //------------------------------Ideal------------------------------------------ 109 // If converting to an int type, skip any rounding nodes 110 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 111 if (in(1)->Opcode() == Op_RoundDouble) { 112 set_req(1, in(1)->in(1)); 113 return this; 114 } 115 return NULL; 116 } 117 118 //------------------------------Identity--------------------------------------- 119 // Int's can be converted to doubles with no loss of bits. Hence 120 // converting an integer to a double and back to an integer is a NOP. 121 Node* ConvD2INode::Identity(PhaseGVN* phase) { 122 return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this; 123 } 124 125 //============================================================================= 126 //------------------------------Value------------------------------------------ 127 const Type* ConvD2LNode::Value(PhaseGVN* phase) const { 128 const Type *t = phase->type( in(1) ); 129 if( t == Type::TOP ) return Type::TOP; 130 if( t == Type::DOUBLE ) return TypeLong::LONG; 131 const TypeD *td = t->is_double_constant(); 132 return TypeLong::make( SharedRuntime::d2l( td->getd() ) ); 133 } 134 135 //------------------------------Identity--------------------------------------- 136 Node* ConvD2LNode::Identity(PhaseGVN* phase) { 137 // Remove ConvD2L->ConvL2D->ConvD2L sequences. 138 if( in(1) ->Opcode() == Op_ConvL2D && 139 in(1)->in(1)->Opcode() == Op_ConvD2L ) 140 return in(1)->in(1); 141 return this; 142 } 143 144 //------------------------------Ideal------------------------------------------ 145 // If converting to an int type, skip any rounding nodes 146 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 147 if (in(1)->Opcode() == Op_RoundDouble) { 148 set_req(1, in(1)->in(1)); 149 return this; 150 } 151 return NULL; 152 } 153 154 //============================================================================= 155 //------------------------------Value------------------------------------------ 156 const Type* ConvF2DNode::Value(PhaseGVN* phase) const { 157 const Type *t = phase->type( in(1) ); 158 if( t == Type::TOP ) return Type::TOP; 159 if( t == Type::FLOAT ) return Type::DOUBLE; 160 const TypeF *tf = t->is_float_constant(); 161 return TypeD::make( (double)tf->getf() ); 162 } 163 164 //============================================================================= 165 //------------------------------Value------------------------------------------ 166 const Type* ConvF2INode::Value(PhaseGVN* phase) const { 167 const Type *t = phase->type( in(1) ); 168 if( t == Type::TOP ) return Type::TOP; 169 if( t == Type::FLOAT ) return TypeInt::INT; 170 const TypeF *tf = t->is_float_constant(); 171 return TypeInt::make( SharedRuntime::f2i( tf->getf() ) ); 172 } 173 174 //------------------------------Identity--------------------------------------- 175 Node* ConvF2INode::Identity(PhaseGVN* phase) { 176 // Remove ConvF2I->ConvI2F->ConvF2I sequences. 177 if( in(1) ->Opcode() == Op_ConvI2F && 178 in(1)->in(1)->Opcode() == Op_ConvF2I ) 179 return in(1)->in(1); 180 return this; 181 } 182 183 //------------------------------Ideal------------------------------------------ 184 // If converting to an int type, skip any rounding nodes 185 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 186 if (in(1)->Opcode() == Op_RoundFloat) { 187 set_req(1, in(1)->in(1)); 188 return this; 189 } 190 return NULL; 191 } 192 193 //============================================================================= 194 //------------------------------Value------------------------------------------ 195 const Type* ConvF2LNode::Value(PhaseGVN* phase) const { 196 const Type *t = phase->type( in(1) ); 197 if( t == Type::TOP ) return Type::TOP; 198 if( t == Type::FLOAT ) return TypeLong::LONG; 199 const TypeF *tf = t->is_float_constant(); 200 return TypeLong::make( SharedRuntime::f2l( tf->getf() ) ); 201 } 202 203 //------------------------------Identity--------------------------------------- 204 Node* ConvF2LNode::Identity(PhaseGVN* phase) { 205 // Remove ConvF2L->ConvL2F->ConvF2L sequences. 206 if( in(1) ->Opcode() == Op_ConvL2F && 207 in(1)->in(1)->Opcode() == Op_ConvF2L ) 208 return in(1)->in(1); 209 return this; 210 } 211 212 //------------------------------Ideal------------------------------------------ 213 // If converting to an int type, skip any rounding nodes 214 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 215 if (in(1)->Opcode() == Op_RoundFloat) { 216 set_req(1, in(1)->in(1)); 217 return this; 218 } 219 return NULL; 220 } 221 222 //============================================================================= 223 //------------------------------Value------------------------------------------ 224 const Type* ConvI2DNode::Value(PhaseGVN* phase) const { 225 const Type *t = phase->type( in(1) ); 226 if( t == Type::TOP ) return Type::TOP; 227 const TypeInt *ti = t->is_int(); 228 if( ti->is_con() ) return TypeD::make( (double)ti->get_con() ); 229 return bottom_type(); 230 } 231 232 //============================================================================= 233 //------------------------------Value------------------------------------------ 234 const Type* ConvI2FNode::Value(PhaseGVN* phase) const { 235 const Type *t = phase->type( in(1) ); 236 if( t == Type::TOP ) return Type::TOP; 237 const TypeInt *ti = t->is_int(); 238 if( ti->is_con() ) return TypeF::make( (float)ti->get_con() ); 239 return bottom_type(); 240 } 241 242 //------------------------------Identity--------------------------------------- 243 Node* ConvI2FNode::Identity(PhaseGVN* phase) { 244 // Remove ConvI2F->ConvF2I->ConvI2F sequences. 245 if( in(1) ->Opcode() == Op_ConvF2I && 246 in(1)->in(1)->Opcode() == Op_ConvI2F ) 247 return in(1)->in(1); 248 return this; 249 } 250 251 //============================================================================= 252 //------------------------------Value------------------------------------------ 253 const Type* ConvI2LNode::Value(PhaseGVN* phase) const { 254 const Type *t = phase->type( in(1) ); 255 if (t == Type::TOP) { 256 return Type::TOP; 257 } 258 const TypeInt *ti = t->is_int(); 259 const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen); 260 // Join my declared type against my incoming type. 261 tl = tl->filter(_type); 262 if (!tl->isa_long()) { 263 return tl; 264 } 265 const TypeLong* this_type = tl->is_long(); 266 // Do NOT remove this node's type assertion until no more loop ops can happen. 267 if (phase->C->post_loop_opts_phase()) { 268 const TypeInt* in_type = phase->type(in(1))->isa_int(); 269 if (in_type != NULL && 270 (in_type->_lo != this_type->_lo || 271 in_type->_hi != this_type->_hi)) { 272 // Although this WORSENS the type, it increases GVN opportunities, 273 // because I2L nodes with the same input will common up, regardless 274 // of slightly differing type assertions. Such slight differences 275 // arise routinely as a result of loop unrolling, so this is a 276 // post-unrolling graph cleanup. Choose a type which depends only 277 // on my input. (Exception: Keep a range assertion of >=0 or <0.) 278 jlong lo1 = this_type->_lo; 279 jlong hi1 = this_type->_hi; 280 int w1 = this_type->_widen; 281 if (lo1 >= 0) { 282 // Keep a range assertion of >=0. 283 lo1 = 0; hi1 = max_jint; 284 } else if (hi1 < 0) { 285 // Keep a range assertion of <0. 286 lo1 = min_jint; hi1 = -1; 287 } else { 288 lo1 = min_jint; hi1 = max_jint; 289 } 290 return TypeLong::make(MAX2((jlong)in_type->_lo, lo1), 291 MIN2((jlong)in_type->_hi, hi1), 292 MAX2((int)in_type->_widen, w1)); 293 } 294 } 295 return this_type; 296 } 297 298 static inline bool long_ranges_overlap(jlong lo1, jlong hi1, 299 jlong lo2, jlong hi2) { 300 // Two ranges overlap iff one range's low point falls in the other range. 301 return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1); 302 } 303 304 #ifdef _LP64 305 // If there is an existing ConvI2L node with the given parent and type, return 306 // it. Otherwise, create and return a new one. Both reusing existing ConvI2L 307 // nodes and postponing the idealization of new ones are needed to avoid an 308 // explosion of recursive Ideal() calls when compiling long AddI chains. 309 static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent, 310 const TypeLong* type) { 311 Node* n = new ConvI2LNode(parent, type); 312 Node* existing = igvn->hash_find_insert(n); 313 if (existing != NULL) { 314 n->destruct(igvn); 315 return existing; 316 } 317 return igvn->register_new_node_with_optimizer(n); 318 } 319 #endif 320 321 bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 322 BasicType bt) { 323 int op = z->Opcode(); 324 if (op == Op_AddI || op == Op_SubI) { 325 Node* x = z->in(1); 326 Node* y = z->in(2); 327 assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal"); 328 if (phase->type(x) == Type::TOP) { 329 return false; 330 } 331 if (phase->type(y) == Type::TOP) { 332 return false; 333 } 334 const TypeInt* tx = phase->type(x)->is_int(); 335 const TypeInt* ty = phase->type(y)->is_int(); 336 337 jlong xlo = tx->is_int()->_lo; 338 jlong xhi = tx->is_int()->_hi; 339 jlong ylo = ty->is_int()->_lo; 340 jlong yhi = ty->is_int()->_hi; 341 jlong zlo = tz->lo_as_long(); 342 jlong zhi = tz->hi_as_long(); 343 jlong vbit = CONST64(1) << BitsPerInt; 344 int widen = MAX2(tx->_widen, ty->_widen); 345 if (op == Op_SubI) { 346 jlong ylo0 = ylo; 347 ylo = -yhi; 348 yhi = -ylo0; 349 } 350 // See if x+y can cause positive overflow into z+2**32 351 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) { 352 return false; 353 } 354 // See if x+y can cause negative overflow into z-2**32 355 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) { 356 return false; 357 } 358 // Now it's always safe to assume x+y does not overflow. 359 // This is true even if some pairs x,y might cause overflow, as long 360 // as that overflow value cannot fall into [zlo,zhi]. 361 362 // Confident that the arithmetic is "as if infinite precision", 363 // we can now use z's range to put constraints on those of x and y. 364 // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a 365 // more "restricted" range by intersecting [xlo,xhi] with the 366 // range obtained by subtracting y's range from the asserted range 367 // of the I2L conversion. Here's the interval arithmetic algebra: 368 // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo] 369 // => x in [zlo-yhi, zhi-ylo] 370 // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi] 371 // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo] 372 jlong rxlo = MAX2(xlo, zlo - yhi); 373 jlong rxhi = MIN2(xhi, zhi - ylo); 374 // And similarly, x changing place with y: 375 jlong rylo = MAX2(ylo, zlo - xhi); 376 jlong ryhi = MIN2(yhi, zhi - xlo); 377 if (rxlo > rxhi || rylo > ryhi) { 378 return false; // x or y is dying; don't mess w/ it 379 } 380 if (op == Op_SubI) { 381 jlong rylo0 = rylo; 382 rylo = -ryhi; 383 ryhi = -rylo0; 384 } 385 assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow"); 386 assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow"); 387 rx = TypeInteger::make(rxlo, rxhi, widen, bt); 388 ry = TypeInteger::make(rylo, ryhi, widen, bt); 389 return true; 390 } 391 return false; 392 } 393 394 395 //------------------------------Ideal------------------------------------------ 396 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 397 const TypeLong* this_type = this->type()->is_long(); 398 if (can_reshape && !phase->C->post_loop_opts_phase()) { 399 // makes sure we run ::Value to potentially remove type assertion after loop opts 400 phase->C->record_for_post_loop_opts_igvn(this); 401 } 402 #ifdef _LP64 403 // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) 404 // but only if x and y have subranges that cannot cause 32-bit overflow, 405 // under the assumption that x+y is in my own subrange this->type(). 406 407 // This assumption is based on a constraint (i.e., type assertion) 408 // established in Parse::array_addressing or perhaps elsewhere. 409 // This constraint has been adjoined to the "natural" type of 410 // the incoming argument in(0). We know (because of runtime 411 // checks) - that the result value I2L(x+y) is in the joined range. 412 // Hence we can restrict the incoming terms (x, y) to values such 413 // that their sum also lands in that range. 414 415 // This optimization is useful only on 64-bit systems, where we hope 416 // the addition will end up subsumed in an addressing mode. 417 // It is necessary to do this when optimizing an unrolled array 418 // copy loop such as x[i++] = y[i++]. 419 420 // On 32-bit systems, it's better to perform as much 32-bit math as 421 // possible before the I2L conversion, because 32-bit math is cheaper. 422 // There's no common reason to "leak" a constant offset through the I2L. 423 // Addressing arithmetic will not absorb it as part of a 64-bit AddL. 424 PhaseIterGVN* igvn = phase->is_IterGVN(); 425 Node* z = in(1); 426 const TypeInteger* rx = NULL; 427 const TypeInteger* ry = NULL; 428 if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_LONG)) { 429 if (igvn == NULL) { 430 // Postpone this optimization to iterative GVN, where we can handle deep 431 // AddI chains without an exponential number of recursive Ideal() calls. 432 phase->record_for_igvn(this); 433 return NULL; 434 } 435 int op = z->Opcode(); 436 Node* x = z->in(1); 437 Node* y = z->in(2); 438 439 Node* cx = find_or_make_convI2L(igvn, x, rx->is_long()); 440 Node* cy = find_or_make_convI2L(igvn, y, ry->is_long()); 441 switch (op) { 442 case Op_AddI: return new AddLNode(cx, cy); 443 case Op_SubI: return new SubLNode(cx, cy); 444 default: ShouldNotReachHere(); 445 } 446 } 447 #endif //_LP64 448 449 return NULL; 450 } 451 452 //============================================================================= 453 //------------------------------Value------------------------------------------ 454 const Type* ConvL2DNode::Value(PhaseGVN* phase) const { 455 const Type *t = phase->type( in(1) ); 456 if( t == Type::TOP ) return Type::TOP; 457 const TypeLong *tl = t->is_long(); 458 if( tl->is_con() ) return TypeD::make( (double)tl->get_con() ); 459 return bottom_type(); 460 } 461 462 //============================================================================= 463 //------------------------------Value------------------------------------------ 464 const Type* ConvL2FNode::Value(PhaseGVN* phase) const { 465 const Type *t = phase->type( in(1) ); 466 if( t == Type::TOP ) return Type::TOP; 467 const TypeLong *tl = t->is_long(); 468 if( tl->is_con() ) return TypeF::make( (float)tl->get_con() ); 469 return bottom_type(); 470 } 471 472 //============================================================================= 473 //----------------------------Identity----------------------------------------- 474 Node* ConvL2INode::Identity(PhaseGVN* phase) { 475 // Convert L2I(I2L(x)) => x 476 if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1); 477 return this; 478 } 479 480 //------------------------------Value------------------------------------------ 481 const Type* ConvL2INode::Value(PhaseGVN* phase) const { 482 const Type *t = phase->type( in(1) ); 483 if( t == Type::TOP ) return Type::TOP; 484 const TypeLong *tl = t->is_long(); 485 const TypeInt* ti = TypeInt::INT; 486 if (tl->is_con()) { 487 // Easy case. 488 ti = TypeInt::make((jint)tl->get_con()); 489 } else if (tl->_lo >= min_jint && tl->_hi <= max_jint) { 490 ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen); 491 } 492 return ti->filter(_type); 493 } 494 495 //------------------------------Ideal------------------------------------------ 496 // Return a node which is more "ideal" than the current node. 497 // Blow off prior masking to int 498 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 499 Node *andl = in(1); 500 uint andl_op = andl->Opcode(); 501 if( andl_op == Op_AndL ) { 502 // Blow off prior masking to int 503 if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) { 504 set_req_X(1,andl->in(1), phase); 505 return this; 506 } 507 } 508 509 // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 510 // This replaces an 'AddL' with an 'AddI'. 511 if( andl_op == Op_AddL ) { 512 // Don't do this for nodes which have more than one user since 513 // we'll end up computing the long add anyway. 514 if (andl->outcnt() > 1) return NULL; 515 516 Node* x = andl->in(1); 517 Node* y = andl->in(2); 518 assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" ); 519 if (phase->type(x) == Type::TOP) return NULL; 520 if (phase->type(y) == Type::TOP) return NULL; 521 Node *add1 = phase->transform(new ConvL2INode(x)); 522 Node *add2 = phase->transform(new ConvL2INode(y)); 523 return new AddINode(add1,add2); 524 } 525 526 // Disable optimization: LoadL->ConvL2I ==> LoadI. 527 // It causes problems (sizes of Load and Store nodes do not match) 528 // in objects initialization code and Escape Analysis. 529 return NULL; 530 } 531 532 533 534 //============================================================================= 535 //------------------------------Identity--------------------------------------- 536 // Remove redundant roundings 537 Node* RoundFloatNode::Identity(PhaseGVN* phase) { 538 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); 539 // Do not round constants 540 if (phase->type(in(1))->base() == Type::FloatCon) return in(1); 541 int op = in(1)->Opcode(); 542 // Redundant rounding 543 if( op == Op_RoundFloat ) return in(1); 544 // Already rounded 545 if( op == Op_Parm ) return in(1); 546 if( op == Op_LoadF ) return in(1); 547 return this; 548 } 549 550 //------------------------------Value------------------------------------------ 551 const Type* RoundFloatNode::Value(PhaseGVN* phase) const { 552 return phase->type( in(1) ); 553 } 554 555 //============================================================================= 556 //------------------------------Identity--------------------------------------- 557 // Remove redundant roundings. Incoming arguments are already rounded. 558 Node* RoundDoubleNode::Identity(PhaseGVN* phase) { 559 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); 560 // Do not round constants 561 if (phase->type(in(1))->base() == Type::DoubleCon) return in(1); 562 int op = in(1)->Opcode(); 563 // Redundant rounding 564 if( op == Op_RoundDouble ) return in(1); 565 // Already rounded 566 if( op == Op_Parm ) return in(1); 567 if( op == Op_LoadD ) return in(1); 568 if( op == Op_ConvF2D ) return in(1); 569 if( op == Op_ConvI2D ) return in(1); 570 return this; 571 } 572 573 //------------------------------Value------------------------------------------ 574 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const { 575 return phase->type( in(1) ); 576 } 577 578 //============================================================================= 579 RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) { 580 ConINode* rm = gvn.intcon(rmode); 581 return new RoundDoubleModeNode(arg, (Node *)rm); 582 } 583 584 //------------------------------Identity--------------------------------------- 585 // Remove redundant roundings. 586 Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) { 587 int op = in(1)->Opcode(); 588 // Redundant rounding e.g. floor(ceil(n)) -> ceil(n) 589 if(op == Op_RoundDoubleMode) return in(1); 590 return this; 591 } 592 const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const { 593 return Type::DOUBLE; 594 } 595 //=============================================================================