1 /*
  2  * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "opto/addnode.hpp"
 27 #include "opto/castnode.hpp"
 28 #include "opto/convertnode.hpp"
 29 #include "opto/matcher.hpp"
 30 #include "opto/phaseX.hpp"
 31 #include "opto/subnode.hpp"
 32 #include "runtime/stubRoutines.hpp"
 33 
 34 //=============================================================================
 35 //------------------------------Identity---------------------------------------
 36 Node* Conv2BNode::Identity(PhaseGVN* phase) {
 37   const Type *t = phase->type( in(1) );
 38   if( t == Type::TOP ) return in(1);
 39   if( t == TypeInt::ZERO ) return in(1);
 40   if( t == TypeInt::ONE ) return in(1);
 41   if( t == TypeInt::BOOL ) return in(1);
 42   return this;
 43 }
 44 
 45 //------------------------------Value------------------------------------------
 46 const Type* Conv2BNode::Value(PhaseGVN* phase) const {
 47   const Type *t = phase->type( in(1) );
 48   if( t == Type::TOP ) return Type::TOP;
 49   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
 50   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
 51   const TypePtr *tp = t->isa_ptr();
 52   if(tp != nullptr) {
 53     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
 54     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
 55     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
 56     return TypeInt::BOOL;
 57   }
 58   if (t->base() != Type::Int) return TypeInt::BOOL;
 59   const TypeInt *ti = t->is_int();
 60   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
 61   return TypeInt::BOOL;
 62 }
 63 
 64 
 65 // The conversions operations are all Alpha sorted.  Please keep it that way!
 66 //=============================================================================
 67 //------------------------------Value------------------------------------------
 68 const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
 69   const Type *t = phase->type( in(1) );
 70   if( t == Type::TOP ) return Type::TOP;
 71   if( t == Type::DOUBLE ) return Type::FLOAT;
 72   const TypeD *td = t->is_double_constant();
 73   return TypeF::make( (float)td->getd() );
 74 }
 75 
 76 //------------------------------Ideal------------------------------------------
 77 // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
 78 Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 79   if ( in(1)->Opcode() == Op_SqrtD ) {
 80     Node* sqrtd = in(1);
 81     if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
 82       if ( Matcher::match_rule_supported(Op_SqrtF) ) {
 83         Node* convf2d = sqrtd->in(1);
 84         return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
 85       }
 86     }
 87   }
 88   return nullptr;
 89 }
 90 
 91 //------------------------------Identity---------------------------------------
 92 // Float's can be converted to doubles with no loss of bits.  Hence
 93 // converting a float to a double and back to a float is a NOP.
 94 Node* ConvD2FNode::Identity(PhaseGVN* phase) {
 95   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
 96 }
 97 
 98 //=============================================================================
 99 //------------------------------Value------------------------------------------
100 const Type* ConvD2INode::Value(PhaseGVN* phase) const {
101   const Type *t = phase->type( in(1) );
102   if( t == Type::TOP ) return Type::TOP;
103   if( t == Type::DOUBLE ) return TypeInt::INT;
104   const TypeD *td = t->is_double_constant();
105   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
106 }
107 
108 //------------------------------Ideal------------------------------------------
109 // If converting to an int type, skip any rounding nodes
110 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
111   if (in(1)->Opcode() == Op_RoundDouble) {
112     set_req(1, in(1)->in(1));
113     return this;
114   }
115   return nullptr;
116 }
117 
118 //------------------------------Identity---------------------------------------
119 // Int's can be converted to doubles with no loss of bits.  Hence
120 // converting an integer to a double and back to an integer is a NOP.
121 Node* ConvD2INode::Identity(PhaseGVN* phase) {
122   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
123 }
124 
125 //=============================================================================
126 //------------------------------Value------------------------------------------
127 const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
128   const Type *t = phase->type( in(1) );
129   if( t == Type::TOP ) return Type::TOP;
130   if( t == Type::DOUBLE ) return TypeLong::LONG;
131   const TypeD *td = t->is_double_constant();
132   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
133 }
134 
135 //------------------------------Identity---------------------------------------
136 Node* ConvD2LNode::Identity(PhaseGVN* phase) {
137   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
138   if( in(1)       ->Opcode() == Op_ConvL2D &&
139      in(1)->in(1)->Opcode() == Op_ConvD2L )
140   return in(1)->in(1);
141   return this;
142 }
143 
144 //------------------------------Ideal------------------------------------------
145 // If converting to an int type, skip any rounding nodes
146 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
147   if (in(1)->Opcode() == Op_RoundDouble) {
148     set_req(1, in(1)->in(1));
149     return this;
150   }
151   return nullptr;
152 }
153 
154 //=============================================================================
155 //------------------------------Value------------------------------------------
156 const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
157   const Type *t = phase->type( in(1) );
158   if( t == Type::TOP ) return Type::TOP;
159   if( t == Type::FLOAT ) return Type::DOUBLE;
160   const TypeF *tf = t->is_float_constant();
161   return TypeD::make( (double)tf->getf() );
162 }
163 
164 //=============================================================================
165 //------------------------------Value------------------------------------------
166 const Type* ConvF2HFNode::Value(PhaseGVN* phase) const {
167   const Type *t = phase->type( in(1) );
168   if (t == Type::TOP) return Type::TOP;
169   if (t == Type::FLOAT) return TypeInt::SHORT;
170   if (StubRoutines::f2hf_adr() == nullptr) return bottom_type();
171 
172   const TypeF *tf = t->is_float_constant();
173   return TypeInt::make( StubRoutines::f2hf(tf->getf()) );
174 }
175 
176 //=============================================================================
177 //------------------------------Value------------------------------------------
178 const Type* ConvF2INode::Value(PhaseGVN* phase) const {
179   const Type *t = phase->type( in(1) );
180   if( t == Type::TOP )       return Type::TOP;
181   if( t == Type::FLOAT ) return TypeInt::INT;
182   const TypeF *tf = t->is_float_constant();
183   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
184 }
185 
186 //------------------------------Identity---------------------------------------
187 Node* ConvF2INode::Identity(PhaseGVN* phase) {
188   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
189   if( in(1)       ->Opcode() == Op_ConvI2F &&
190      in(1)->in(1)->Opcode() == Op_ConvF2I )
191   return in(1)->in(1);
192   return this;
193 }
194 
195 //------------------------------Ideal------------------------------------------
196 // If converting to an int type, skip any rounding nodes
197 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
198   if (in(1)->Opcode() == Op_RoundFloat) {
199     set_req(1, in(1)->in(1));
200     return this;
201   }
202   return nullptr;
203 }
204 
205 //=============================================================================
206 //------------------------------Value------------------------------------------
207 const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
208   const Type *t = phase->type( in(1) );
209   if( t == Type::TOP )       return Type::TOP;
210   if( t == Type::FLOAT ) return TypeLong::LONG;
211   const TypeF *tf = t->is_float_constant();
212   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
213 }
214 
215 //------------------------------Identity---------------------------------------
216 Node* ConvF2LNode::Identity(PhaseGVN* phase) {
217   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
218   if( in(1)       ->Opcode() == Op_ConvL2F &&
219      in(1)->in(1)->Opcode() == Op_ConvF2L )
220   return in(1)->in(1);
221   return this;
222 }
223 
224 //------------------------------Ideal------------------------------------------
225 // If converting to an int type, skip any rounding nodes
226 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
227   if (in(1)->Opcode() == Op_RoundFloat) {
228     set_req(1, in(1)->in(1));
229     return this;
230   }
231   return nullptr;
232 }
233 
234 //=============================================================================
235 //------------------------------Value------------------------------------------
236 const Type* ConvHF2FNode::Value(PhaseGVN* phase) const {
237   const Type *t = phase->type( in(1) );
238   if (t == Type::TOP) return Type::TOP;
239   if (t == TypeInt::SHORT) return Type::FLOAT;
240   if (StubRoutines::hf2f_adr() == nullptr) return bottom_type();
241 
242   const TypeInt *ti = t->is_int();
243   if (ti->is_con()) {
244     return TypeF::make( StubRoutines::hf2f(ti->get_con()) );
245   }
246   return bottom_type();
247 }
248 
249 //=============================================================================
250 //------------------------------Value------------------------------------------
251 const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
252   const Type *t = phase->type( in(1) );
253   if( t == Type::TOP ) return Type::TOP;
254   const TypeInt *ti = t->is_int();
255   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
256   return bottom_type();
257 }
258 
259 //=============================================================================
260 //------------------------------Value------------------------------------------
261 const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
262   const Type *t = phase->type( in(1) );
263   if( t == Type::TOP ) return Type::TOP;
264   const TypeInt *ti = t->is_int();
265   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
266   return bottom_type();
267 }
268 
269 //------------------------------Identity---------------------------------------
270 Node* ConvI2FNode::Identity(PhaseGVN* phase) {
271   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
272   if( in(1)       ->Opcode() == Op_ConvF2I &&
273      in(1)->in(1)->Opcode() == Op_ConvI2F )
274   return in(1)->in(1);
275   return this;
276 }
277 
278 //=============================================================================
279 //------------------------------Value------------------------------------------
280 const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
281   const Type *t = phase->type( in(1) );
282   if (t == Type::TOP) {
283     return Type::TOP;
284   }
285   const TypeInt *ti = t->is_int();
286   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
287   // Join my declared type against my incoming type.
288   tl = tl->filter(_type);
289   if (!tl->isa_long()) {
290     return tl;
291   }
292   const TypeLong* this_type = tl->is_long();
293   // Do NOT remove this node's type assertion until no more loop ops can happen.
294   if (phase->C->post_loop_opts_phase()) {
295     const TypeInt* in_type = phase->type(in(1))->isa_int();
296     if (in_type != nullptr &&
297         (in_type->_lo != this_type->_lo ||
298          in_type->_hi != this_type->_hi)) {
299       // Although this WORSENS the type, it increases GVN opportunities,
300       // because I2L nodes with the same input will common up, regardless
301       // of slightly differing type assertions.  Such slight differences
302       // arise routinely as a result of loop unrolling, so this is a
303       // post-unrolling graph cleanup.  Choose a type which depends only
304       // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
305       jlong lo1 = this_type->_lo;
306       jlong hi1 = this_type->_hi;
307       int   w1  = this_type->_widen;
308       if (lo1 >= 0) {
309         // Keep a range assertion of >=0.
310         lo1 = 0;        hi1 = max_jint;
311       } else if (hi1 < 0) {
312         // Keep a range assertion of <0.
313         lo1 = min_jint; hi1 = -1;
314       } else {
315         lo1 = min_jint; hi1 = max_jint;
316       }
317       return TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
318                             MIN2((jlong)in_type->_hi, hi1),
319                             MAX2((int)in_type->_widen, w1));
320     }
321   }
322   return this_type;
323 }
324 
325 Node* ConvI2LNode::Identity(PhaseGVN* phase) {
326   // If type is in "int" sub-range, we can
327   // convert I2L(L2I(x)) => x
328   // since the conversions have no effect.
329   if (in(1)->Opcode() == Op_ConvL2I) {
330     Node* x = in(1)->in(1);
331     const TypeLong* t = phase->type(x)->isa_long();
332     if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) {
333       return x;
334     }
335   }
336   return this;
337 }
338 
339 #ifdef ASSERT
340 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
341                                        jlong lo2, jlong hi2) {
342   // Two ranges overlap iff one range's low point falls in the other range.
343   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
344 }
345 #endif
346 
347 template<class T> static bool subtract_overflows(T x, T y) {
348   T s = java_subtract(x, y);
349   return (x >= 0) && (y < 0) && (s < 0);
350 }
351 
352 template<class T> static bool subtract_underflows(T x, T y) {
353   T s = java_subtract(x, y);
354   return (x < 0) && (y > 0) && (s > 0);
355 }
356 
357 template<class T> static bool add_overflows(T x, T y) {
358   T s = java_add(x, y);
359   return (x > 0) && (y > 0) && (s < 0);
360 }
361 
362 template<class T> static bool add_underflows(T x, T y) {
363   T s = java_add(x, y);
364   return (x < 0) && (y < 0) && (s >= 0);
365 }
366 
367 template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
368                                              const Node* n, bool pos) {
369   assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
370   T x_y_lo;
371   T x_y_hi;
372   bool x_y_lo_overflow;
373   bool x_y_hi_overflow;
374 
375   if (n->is_Sub()) {
376     x_y_lo = java_subtract(xlo, yhi);
377     x_y_hi = java_subtract(xhi, ylo);
378     x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi);
379     x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo);
380   } else {
381     assert(n->is_Add(), "Add or Sub only");
382     x_y_lo = java_add(xlo, ylo);
383     x_y_hi = java_add(xhi, yhi);
384     x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo);
385     x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi);
386   }
387   assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow");
388   assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow");
389 
390   // Two ranges overlap iff one range's low point falls in the other range.
391   // nbits = 32 or 64
392   if (pos) {
393     // (zlo + 2**nbits  <= x_y_lo && x_y_lo <= zhi ** nbits)
394     if (x_y_lo_overflow) {
395       if (zlo <= x_y_lo && x_y_lo <= zhi) {
396         return true;
397       }
398     }
399 
400     // (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi)
401     if (x_y_hi_overflow) {
402       if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) {
403         return true;
404       }
405     }
406   } else {
407     // (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits)
408     if (x_y_hi_overflow) {
409       if (zlo <= x_y_hi && x_y_hi <= zhi) {
410         return true;
411       }
412     }
413 
414     // (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi)
415     if (x_y_lo_overflow) {
416       if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) {
417         return true;
418       }
419     }
420   }
421 
422   return false;
423 }
424 
425 static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
426                            const Node* n, bool pos, BasicType bt) {
427   jlong xlo = tx->lo_as_long();
428   jlong xhi = tx->hi_as_long();
429   jlong ylo = ty->lo_as_long();
430   jlong yhi = ty->hi_as_long();
431   jlong zlo = tz->lo_as_long();
432   jlong zhi = tz->hi_as_long();
433 
434   if (bt == T_INT) {
435     // See if x+y can cause positive overflow into z+2**32
436     // See if x+y can cause negative overflow into z-2**32
437     bool res =  ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
438                                checked_cast<jint>(xhi), checked_cast<jint>(yhi),
439                                checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos);
440 #ifdef ASSERT
441     jlong vbit = CONST64(1) << BitsPerInt;
442     if (n->Opcode() == Op_SubI) {
443       jlong ylo0 = ylo;
444       ylo = -yhi;
445       yhi = -ylo0;
446     }
447     assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result");
448 #endif
449     return res;
450   }
451   assert(bt == T_LONG, "only int or long");
452   // See if x+y can cause positive overflow into z+2**64
453   // See if x+y can cause negative overflow into z-2**64
454   return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos);
455 }
456 
457 #ifdef ASSERT
458 static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
459                                          jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
460                                          const Node* n) {
461   jlong xlo = tx->lo_as_long();
462   jlong xhi = tx->hi_as_long();
463   jlong ylo = ty->lo_as_long();
464   jlong yhi = ty->hi_as_long();
465   jlong zlo = tz->lo_as_long();
466   jlong zhi = tz->hi_as_long();
467   if (n->is_Sub()) {
468     swap(ylo, yhi);
469     ylo = -ylo;
470     yhi = -yhi;
471   }
472 
473   rxlo = MAX2(xlo, zlo - yhi);
474   rxhi = MIN2(xhi, zhi - ylo);
475   rylo = MAX2(ylo, zlo - xhi);
476   ryhi = MIN2(yhi, zhi - xlo);
477   if (rxlo > rxhi || rylo > ryhi) {
478     return false;
479   }
480   if (n->is_Sub()) {
481     swap(rylo, ryhi);
482     rylo = -rylo;
483     ryhi = -ryhi;
484   }
485   assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow");
486   assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow");
487   return true;
488 }
489 #endif
490 
491 template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
492                                                      jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
493                                                      const Node* n) {
494   assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
495 
496   // Now it's always safe to assume x+y does not overflow.
497   // This is true even if some pairs x,y might cause overflow, as long
498   // as that overflow value cannot fall into [zlo,zhi].
499 
500   // Confident that the arithmetic is "as if infinite precision",
501   // we can now use n's range to put constraints on those of x and y.
502   // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
503   // more "restricted" range by intersecting [xlo,xhi] with the
504   // range obtained by subtracting y's range from the asserted range
505   // of the I2L conversion.  Here's the interval arithmetic algebra:
506   //    x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
507   //    => x in [zlo-yhi, zhi-ylo]
508   //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
509   //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
510   // And similarly, x changing place with y.
511   if (n->is_Sub()) {
512     if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) ||
513         subtract_overflows(xlo, zhi)) {
514       return false;
515     }
516     rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo));
517     rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi));
518     ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo));
519     rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi));
520   } else {
521     assert(n->is_Add(), "Add or Sub only");
522     if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) ||
523         subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) {
524       return false;
525     }
526     rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi));
527     rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo));
528     rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi));
529     ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo));
530   }
531 
532   if (rxlo > rxhi || rylo > ryhi) {
533     return false; // x or y is dying; don't mess w/ it
534   }
535 
536   return true;
537 }
538 
539 static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
540                                    const TypeInteger*& rx, const TypeInteger*& ry,
541                                    const Node* n, const BasicType in_bt, BasicType out_bt) {
542 
543   jlong xlo = tx->lo_as_long();
544   jlong xhi = tx->hi_as_long();
545   jlong ylo = ty->lo_as_long();
546   jlong yhi = ty->hi_as_long();
547   jlong zlo = tz->lo_as_long();
548   jlong zhi = tz->hi_as_long();
549   jlong rxlo, rxhi, rylo, ryhi;
550 
551   if (in_bt == T_INT) {
552 #ifdef ASSERT
553     jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi;
554     bool expected = compute_updates_ranges_verif(tx, ty, tz,
555                                                  expected_rxlo, expected_rxhi,
556                                                  expected_rylo, expected_ryhi, n);
557 #endif
558     if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
559                                 checked_cast<jint>(xhi), checked_cast<jint>(yhi),
560                                 checked_cast<jint>(zlo), checked_cast<jint>(zhi),
561                                 rxlo, rxhi, rylo, ryhi, n)) {
562       assert(!expected, "inconsistent");
563       return false;
564     }
565     assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent");
566   } else {
567     if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi,
568                             rxlo, rxhi, rylo, ryhi, n)) {
569       return false;
570     }
571   }
572 
573   int widen =  MAX2(tx->widen_limit(), ty->widen_limit());
574   rx = TypeInteger::make(rxlo, rxhi, widen, out_bt);
575   ry = TypeInteger::make(rylo, ryhi, widen, out_bt);
576   return true;
577 }
578 
579 #ifdef _LP64
580 // If there is an existing ConvI2L node with the given parent and type, return
581 // it. Otherwise, create and return a new one. Both reusing existing ConvI2L
582 // nodes and postponing the idealization of new ones are needed to avoid an
583 // explosion of recursive Ideal() calls when compiling long AddI chains.
584 static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
585                                   const TypeLong* type) {
586   Node* n = new ConvI2LNode(parent, type);
587   Node* existing = igvn->hash_find_insert(n);
588   if (existing != nullptr) {
589     n->destruct(igvn);
590     return existing;
591   }
592   return igvn->register_new_node_with_optimizer(n);
593 }
594 #endif
595 
596 bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
597                             BasicType in_bt, BasicType out_bt) {
598   int op = z->Opcode();
599   if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) {
600     Node* x = z->in(1);
601     Node* y = z->in(2);
602     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
603     if (phase->type(x) == Type::TOP) {
604       return false;
605     }
606     if (phase->type(y) == Type::TOP) {
607       return false;
608     }
609     const TypeInteger* tx = phase->type(x)->is_integer(in_bt);
610     const TypeInteger* ty = phase->type(y)->is_integer(in_bt);
611 
612     if (ranges_overlap(tx, ty, tz, z, true, in_bt) ||
613         ranges_overlap(tx, ty, tz, z, false, in_bt)) {
614       return false;
615     }
616     return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt);
617   }
618   return false;
619 }
620 
621 
622 //------------------------------Ideal------------------------------------------
623 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
624   const TypeLong* this_type = this->type()->is_long();
625   if (can_reshape && !phase->C->post_loop_opts_phase()) {
626     // makes sure we run ::Value to potentially remove type assertion after loop opts
627     phase->C->record_for_post_loop_opts_igvn(this);
628   }
629 #ifdef _LP64
630   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
631   // but only if x and y have subranges that cannot cause 32-bit overflow,
632   // under the assumption that x+y is in my own subrange this->type().
633 
634   // This assumption is based on a constraint (i.e., type assertion)
635   // established in Parse::array_addressing or perhaps elsewhere.
636   // This constraint has been adjoined to the "natural" type of
637   // the incoming argument in(0).  We know (because of runtime
638   // checks) - that the result value I2L(x+y) is in the joined range.
639   // Hence we can restrict the incoming terms (x, y) to values such
640   // that their sum also lands in that range.
641 
642   // This optimization is useful only on 64-bit systems, where we hope
643   // the addition will end up subsumed in an addressing mode.
644   // It is necessary to do this when optimizing an unrolled array
645   // copy loop such as x[i++] = y[i++].
646 
647   // On 32-bit systems, it's better to perform as much 32-bit math as
648   // possible before the I2L conversion, because 32-bit math is cheaper.
649   // There's no common reason to "leak" a constant offset through the I2L.
650   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
651   PhaseIterGVN* igvn = phase->is_IterGVN();
652   Node* z = in(1);
653   const TypeInteger* rx = nullptr;
654   const TypeInteger* ry = nullptr;
655   if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) {
656     if (igvn == nullptr) {
657       // Postpone this optimization to iterative GVN, where we can handle deep
658       // AddI chains without an exponential number of recursive Ideal() calls.
659       phase->record_for_igvn(this);
660       return nullptr;
661     }
662     int op = z->Opcode();
663     Node* x = z->in(1);
664     Node* y = z->in(2);
665 
666     Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
667     Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
668     switch (op) {
669       case Op_AddI:  return new AddLNode(cx, cy);
670       case Op_SubI:  return new SubLNode(cx, cy);
671       default:       ShouldNotReachHere();
672     }
673   }
674 #endif //_LP64
675 
676   return nullptr;
677 }
678 
679 //=============================================================================
680 //------------------------------Value------------------------------------------
681 const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
682   const Type *t = phase->type( in(1) );
683   if( t == Type::TOP ) return Type::TOP;
684   const TypeLong *tl = t->is_long();
685   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
686   return bottom_type();
687 }
688 
689 //=============================================================================
690 //------------------------------Value------------------------------------------
691 const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
692   const Type *t = phase->type( in(1) );
693   if( t == Type::TOP ) return Type::TOP;
694   const TypeLong *tl = t->is_long();
695   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
696   return bottom_type();
697 }
698 
699 //=============================================================================
700 //----------------------------Identity-----------------------------------------
701 Node* ConvL2INode::Identity(PhaseGVN* phase) {
702   // Convert L2I(I2L(x)) => x
703   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
704   return this;
705 }
706 
707 //------------------------------Value------------------------------------------
708 const Type* ConvL2INode::Value(PhaseGVN* phase) const {
709   const Type *t = phase->type( in(1) );
710   if( t == Type::TOP ) return Type::TOP;
711   const TypeLong *tl = t->is_long();
712   const TypeInt* ti = TypeInt::INT;
713   if (tl->is_con()) {
714     // Easy case.
715     ti = TypeInt::make((jint)tl->get_con());
716   } else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
717     ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
718   }
719   return ti->filter(_type);
720 }
721 
722 //------------------------------Ideal------------------------------------------
723 // Return a node which is more "ideal" than the current node.
724 // Blow off prior masking to int
725 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
726   Node *andl = in(1);
727   uint andl_op = andl->Opcode();
728   if( andl_op == Op_AndL ) {
729     // Blow off prior masking to int
730     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
731       set_req_X(1,andl->in(1), phase);
732       return this;
733     }
734   }
735 
736   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
737   // This replaces an 'AddL' with an 'AddI'.
738   if( andl_op == Op_AddL ) {
739     // Don't do this for nodes which have more than one user since
740     // we'll end up computing the long add anyway.
741     if (andl->outcnt() > 1) return nullptr;
742 
743     Node* x = andl->in(1);
744     Node* y = andl->in(2);
745     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
746     if (phase->type(x) == Type::TOP)  return nullptr;
747     if (phase->type(y) == Type::TOP)  return nullptr;
748     Node *add1 = phase->transform(new ConvL2INode(x));
749     Node *add2 = phase->transform(new ConvL2INode(y));
750     return new AddINode(add1,add2);
751   }
752 
753   // Disable optimization: LoadL->ConvL2I ==> LoadI.
754   // It causes problems (sizes of Load and Store nodes do not match)
755   // in objects initialization code and Escape Analysis.
756   return nullptr;
757 }
758 
759 
760 
761 //=============================================================================
762 //------------------------------Identity---------------------------------------
763 // Remove redundant roundings
764 Node* RoundFloatNode::Identity(PhaseGVN* phase) {
765   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
766   // Do not round constants
767   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
768   int op = in(1)->Opcode();
769   // Redundant rounding
770   if( op == Op_RoundFloat ) return in(1);
771   // Already rounded
772   if( op == Op_Parm ) return in(1);
773   if( op == Op_LoadF ) return in(1);
774   return this;
775 }
776 
777 //------------------------------Value------------------------------------------
778 const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
779   return phase->type( in(1) );
780 }
781 
782 //=============================================================================
783 //------------------------------Identity---------------------------------------
784 // Remove redundant roundings.  Incoming arguments are already rounded.
785 Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
786   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
787   // Do not round constants
788   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
789   int op = in(1)->Opcode();
790   // Redundant rounding
791   if( op == Op_RoundDouble ) return in(1);
792   // Already rounded
793   if( op == Op_Parm ) return in(1);
794   if( op == Op_LoadD ) return in(1);
795   if( op == Op_ConvF2D ) return in(1);
796   if( op == Op_ConvI2D ) return in(1);
797   return this;
798 }
799 
800 //------------------------------Value------------------------------------------
801 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
802   return phase->type( in(1) );
803 }
804 
805 //=============================================================================
806 RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
807   ConINode* rm = gvn.intcon(rmode);
808   return new RoundDoubleModeNode(arg, (Node *)rm);
809 }
810 
811 //------------------------------Identity---------------------------------------
812 // Remove redundant roundings.
813 Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
814   int op = in(1)->Opcode();
815   // Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
816   if(op == Op_RoundDoubleMode) return in(1);
817   return this;
818 }
819 const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
820   return Type::DOUBLE;
821 }
822 //=============================================================================