1 /* 2 * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/castnode.hpp" 28 #include "opto/connode.hpp" 29 #include "opto/convertnode.hpp" 30 #include "opto/inlinetypenode.hpp" 31 #include "opto/matcher.hpp" 32 #include "opto/movenode.hpp" 33 #include "opto/phaseX.hpp" 34 #include "opto/subnode.hpp" 35 #include "runtime/stubRoutines.hpp" 36 #include "utilities/checkedCast.hpp" 37 38 //============================================================================= 39 //------------------------------Identity--------------------------------------- 40 Node* Conv2BNode::Identity(PhaseGVN* phase) { 41 const Type *t = phase->type( in(1) ); 42 if( t == Type::TOP ) return in(1); 43 if( t == TypeInt::ZERO ) return in(1); 44 if( t == TypeInt::ONE ) return in(1); 45 if( t == TypeInt::BOOL ) return in(1); 46 return this; 47 } 48 49 //------------------------------Value------------------------------------------ 50 const Type* Conv2BNode::Value(PhaseGVN* phase) const { 51 const Type *t = phase->type( in(1) ); 52 if( t == Type::TOP ) return Type::TOP; 53 if( t == TypeInt::ZERO ) return TypeInt::ZERO; 54 if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO; 55 const TypePtr *tp = t->isa_ptr(); 56 if(tp != nullptr) { 57 if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP; 58 if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE; 59 if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE; 60 return TypeInt::BOOL; 61 } 62 if (t->base() != Type::Int) return TypeInt::BOOL; 63 const TypeInt *ti = t->is_int(); 64 if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE; 65 return TypeInt::BOOL; 66 } 67 68 //------------------------------Ideal------------------------------------------ 69 Node* Conv2BNode::Ideal(PhaseGVN* phase, bool can_reshape) { 70 if (in(1)->is_InlineType()) { 71 // Null checking a scalarized but nullable inline type. Check the IsInit 72 // input instead of the oop input to avoid keeping buffer allocations alive. 73 set_req_X(1, in(1)->as_InlineType()->get_is_init(), phase); 74 return this; 75 } 76 if (!Matcher::match_rule_supported(Op_Conv2B)) { 77 if (phase->C->post_loop_opts_phase()) { 78 // Get type of comparison to make 79 const Type* t = phase->type(in(1)); 80 Node* cmp = nullptr; 81 if (t->isa_int()) { 82 cmp = phase->transform(new CmpINode(in(1), phase->intcon(0))); 83 } else if (t->isa_ptr()) { 84 cmp = phase->transform(new CmpPNode(in(1), phase->zerocon(BasicType::T_OBJECT))); 85 } else { 86 assert(false, "Unrecognized comparison for Conv2B: %s", NodeClassNames[in(1)->Opcode()]); 87 } 88 89 // Replace Conv2B with the cmove 90 Node* bol = phase->transform(new BoolNode(cmp, BoolTest::eq)); 91 return new CMoveINode(bol, phase->intcon(1), phase->intcon(0), TypeInt::BOOL); 92 } else { 93 phase->C->record_for_post_loop_opts_igvn(this); 94 } 95 } 96 return nullptr; 97 } 98 99 uint ConvertNode::ideal_reg() const { 100 return _type->ideal_reg(); 101 } 102 103 Node* ConvertNode::create_convert(BasicType source, BasicType target, Node* input) { 104 if (source == T_INT) { 105 if (target == T_LONG) { 106 return new ConvI2LNode(input); 107 } else if (target == T_FLOAT) { 108 return new ConvI2FNode(input); 109 } else if (target == T_DOUBLE) { 110 return new ConvI2DNode(input); 111 } 112 } else if (source == T_LONG) { 113 if (target == T_INT) { 114 return new ConvL2INode(input); 115 } else if (target == T_FLOAT) { 116 return new ConvL2FNode(input); 117 } else if (target == T_DOUBLE) { 118 return new ConvL2DNode(input); 119 } 120 } else if (source == T_FLOAT) { 121 if (target == T_INT) { 122 return new ConvF2INode(input); 123 } else if (target == T_LONG) { 124 return new ConvF2LNode(input); 125 } else if (target == T_DOUBLE) { 126 return new ConvF2DNode(input); 127 } else if (target == T_SHORT) { 128 return new ConvF2HFNode(input); 129 } 130 } else if (source == T_DOUBLE) { 131 if (target == T_INT) { 132 return new ConvD2INode(input); 133 } else if (target == T_LONG) { 134 return new ConvD2LNode(input); 135 } else if (target == T_FLOAT) { 136 return new ConvD2FNode(input); 137 } 138 } else if (source == T_SHORT) { 139 if (target == T_FLOAT) { 140 return new ConvHF2FNode(input); 141 } 142 } 143 144 assert(false, "Couldn't create conversion for type %s to %s", type2name(source), type2name(target)); 145 return nullptr; 146 } 147 148 // The conversions operations are all Alpha sorted. Please keep it that way! 149 //============================================================================= 150 //------------------------------Value------------------------------------------ 151 const Type* ConvD2FNode::Value(PhaseGVN* phase) const { 152 const Type *t = phase->type( in(1) ); 153 if( t == Type::TOP ) return Type::TOP; 154 if( t == Type::DOUBLE ) return Type::FLOAT; 155 const TypeD *td = t->is_double_constant(); 156 return TypeF::make( (float)td->getd() ); 157 } 158 159 //------------------------------Ideal------------------------------------------ 160 // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float. 161 Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) { 162 if ( in(1)->Opcode() == Op_SqrtD ) { 163 Node* sqrtd = in(1); 164 if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) { 165 if ( Matcher::match_rule_supported(Op_SqrtF) ) { 166 Node* convf2d = sqrtd->in(1); 167 return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1)); 168 } 169 } 170 } 171 return nullptr; 172 } 173 174 //------------------------------Identity--------------------------------------- 175 // Float's can be converted to doubles with no loss of bits. Hence 176 // converting a float to a double and back to a float is a NOP. 177 Node* ConvD2FNode::Identity(PhaseGVN* phase) { 178 return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this; 179 } 180 181 //============================================================================= 182 //------------------------------Value------------------------------------------ 183 const Type* ConvD2INode::Value(PhaseGVN* phase) const { 184 const Type *t = phase->type( in(1) ); 185 if( t == Type::TOP ) return Type::TOP; 186 if( t == Type::DOUBLE ) return TypeInt::INT; 187 const TypeD *td = t->is_double_constant(); 188 return TypeInt::make( SharedRuntime::d2i( td->getd() ) ); 189 } 190 191 //------------------------------Ideal------------------------------------------ 192 // If converting to an int type, skip any rounding nodes 193 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 194 if (in(1)->Opcode() == Op_RoundDouble) { 195 set_req(1, in(1)->in(1)); 196 return this; 197 } 198 return nullptr; 199 } 200 201 //------------------------------Identity--------------------------------------- 202 // Int's can be converted to doubles with no loss of bits. Hence 203 // converting an integer to a double and back to an integer is a NOP. 204 Node* ConvD2INode::Identity(PhaseGVN* phase) { 205 return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this; 206 } 207 208 //============================================================================= 209 //------------------------------Value------------------------------------------ 210 const Type* ConvD2LNode::Value(PhaseGVN* phase) const { 211 const Type *t = phase->type( in(1) ); 212 if( t == Type::TOP ) return Type::TOP; 213 if( t == Type::DOUBLE ) return TypeLong::LONG; 214 const TypeD *td = t->is_double_constant(); 215 return TypeLong::make( SharedRuntime::d2l( td->getd() ) ); 216 } 217 218 //------------------------------Identity--------------------------------------- 219 Node* ConvD2LNode::Identity(PhaseGVN* phase) { 220 // Remove ConvD2L->ConvL2D->ConvD2L sequences. 221 if( in(1) ->Opcode() == Op_ConvL2D && 222 in(1)->in(1)->Opcode() == Op_ConvD2L ) 223 return in(1)->in(1); 224 return this; 225 } 226 227 //------------------------------Ideal------------------------------------------ 228 // If converting to an int type, skip any rounding nodes 229 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 230 if (in(1)->Opcode() == Op_RoundDouble) { 231 set_req(1, in(1)->in(1)); 232 return this; 233 } 234 return nullptr; 235 } 236 237 //============================================================================= 238 //------------------------------Value------------------------------------------ 239 const Type* ConvF2DNode::Value(PhaseGVN* phase) const { 240 const Type *t = phase->type( in(1) ); 241 if( t == Type::TOP ) return Type::TOP; 242 if( t == Type::FLOAT ) return Type::DOUBLE; 243 const TypeF *tf = t->is_float_constant(); 244 return TypeD::make( (double)tf->getf() ); 245 } 246 247 //============================================================================= 248 //------------------------------Value------------------------------------------ 249 const Type* ConvF2HFNode::Value(PhaseGVN* phase) const { 250 const Type *t = phase->type( in(1) ); 251 if (t == Type::TOP) return Type::TOP; 252 if (t == Type::FLOAT || StubRoutines::f2hf_adr() == nullptr) { 253 return TypeInt::SHORT; 254 } 255 256 const TypeF *tf = t->is_float_constant(); 257 return TypeInt::make( StubRoutines::f2hf(tf->getf()) ); 258 } 259 260 //============================================================================= 261 //------------------------------Value------------------------------------------ 262 const Type* ConvF2INode::Value(PhaseGVN* phase) const { 263 const Type *t = phase->type( in(1) ); 264 if( t == Type::TOP ) return Type::TOP; 265 if( t == Type::FLOAT ) return TypeInt::INT; 266 const TypeF *tf = t->is_float_constant(); 267 return TypeInt::make( SharedRuntime::f2i( tf->getf() ) ); 268 } 269 270 //------------------------------Identity--------------------------------------- 271 Node* ConvF2INode::Identity(PhaseGVN* phase) { 272 // Remove ConvF2I->ConvI2F->ConvF2I sequences. 273 if( in(1) ->Opcode() == Op_ConvI2F && 274 in(1)->in(1)->Opcode() == Op_ConvF2I ) 275 return in(1)->in(1); 276 return this; 277 } 278 279 //------------------------------Ideal------------------------------------------ 280 // If converting to an int type, skip any rounding nodes 281 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 282 if (in(1)->Opcode() == Op_RoundFloat) { 283 set_req(1, in(1)->in(1)); 284 return this; 285 } 286 return nullptr; 287 } 288 289 //============================================================================= 290 //------------------------------Value------------------------------------------ 291 const Type* ConvF2LNode::Value(PhaseGVN* phase) const { 292 const Type *t = phase->type( in(1) ); 293 if( t == Type::TOP ) return Type::TOP; 294 if( t == Type::FLOAT ) return TypeLong::LONG; 295 const TypeF *tf = t->is_float_constant(); 296 return TypeLong::make( SharedRuntime::f2l( tf->getf() ) ); 297 } 298 299 //------------------------------Identity--------------------------------------- 300 Node* ConvF2LNode::Identity(PhaseGVN* phase) { 301 // Remove ConvF2L->ConvL2F->ConvF2L sequences. 302 if( in(1) ->Opcode() == Op_ConvL2F && 303 in(1)->in(1)->Opcode() == Op_ConvF2L ) 304 return in(1)->in(1); 305 return this; 306 } 307 308 //------------------------------Ideal------------------------------------------ 309 // If converting to an int type, skip any rounding nodes 310 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 311 if (in(1)->Opcode() == Op_RoundFloat) { 312 set_req(1, in(1)->in(1)); 313 return this; 314 } 315 return nullptr; 316 } 317 318 //============================================================================= 319 //------------------------------Value------------------------------------------ 320 const Type* ConvHF2FNode::Value(PhaseGVN* phase) const { 321 const Type *t = phase->type( in(1) ); 322 if (t == Type::TOP) return Type::TOP; 323 if (t == TypeInt::SHORT || StubRoutines::hf2f_adr() == nullptr) { 324 return Type::FLOAT; 325 } 326 327 const TypeInt *ti = t->is_int(); 328 if (ti->is_con()) { 329 return TypeF::make( StubRoutines::hf2f(ti->get_con()) ); 330 } 331 return Type::FLOAT; 332 } 333 334 //============================================================================= 335 //------------------------------Value------------------------------------------ 336 const Type* ConvI2DNode::Value(PhaseGVN* phase) const { 337 const Type *t = phase->type( in(1) ); 338 if( t == Type::TOP ) return Type::TOP; 339 const TypeInt *ti = t->is_int(); 340 if( ti->is_con() ) return TypeD::make( (double)ti->get_con() ); 341 return Type::DOUBLE; 342 } 343 344 //============================================================================= 345 //------------------------------Value------------------------------------------ 346 const Type* ConvI2FNode::Value(PhaseGVN* phase) const { 347 const Type *t = phase->type( in(1) ); 348 if( t == Type::TOP ) return Type::TOP; 349 const TypeInt *ti = t->is_int(); 350 if( ti->is_con() ) return TypeF::make( (float)ti->get_con() ); 351 return Type::FLOAT; 352 } 353 354 //------------------------------Identity--------------------------------------- 355 Node* ConvI2FNode::Identity(PhaseGVN* phase) { 356 // Remove ConvI2F->ConvF2I->ConvI2F sequences. 357 if( in(1) ->Opcode() == Op_ConvF2I && 358 in(1)->in(1)->Opcode() == Op_ConvI2F ) 359 return in(1)->in(1); 360 return this; 361 } 362 363 //============================================================================= 364 //------------------------------Value------------------------------------------ 365 const Type* ConvI2LNode::Value(PhaseGVN* phase) const { 366 const Type *t = phase->type( in(1) ); 367 if (t == Type::TOP) { 368 return Type::TOP; 369 } 370 const TypeInt *ti = t->is_int(); 371 const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen); 372 // Join my declared type against my incoming type. 373 tl = tl->filter(_type); 374 if (!tl->isa_long()) { 375 return tl; 376 } 377 const TypeLong* this_type = tl->is_long(); 378 // Do NOT remove this node's type assertion until no more loop ops can happen. 379 if (phase->C->post_loop_opts_phase()) { 380 const TypeInt* in_type = phase->type(in(1))->isa_int(); 381 if (in_type != nullptr && 382 (in_type->_lo != this_type->_lo || 383 in_type->_hi != this_type->_hi)) { 384 // Although this WORSENS the type, it increases GVN opportunities, 385 // because I2L nodes with the same input will common up, regardless 386 // of slightly differing type assertions. Such slight differences 387 // arise routinely as a result of loop unrolling, so this is a 388 // post-unrolling graph cleanup. Choose a type which depends only 389 // on my input. (Exception: Keep a range assertion of >=0 or <0.) 390 jlong lo1 = this_type->_lo; 391 jlong hi1 = this_type->_hi; 392 int w1 = this_type->_widen; 393 if (lo1 >= 0) { 394 // Keep a range assertion of >=0. 395 lo1 = 0; hi1 = max_jint; 396 } else if (hi1 < 0) { 397 // Keep a range assertion of <0. 398 lo1 = min_jint; hi1 = -1; 399 } else { 400 lo1 = min_jint; hi1 = max_jint; 401 } 402 return TypeLong::make(MAX2((jlong)in_type->_lo, lo1), 403 MIN2((jlong)in_type->_hi, hi1), 404 MAX2((int)in_type->_widen, w1)); 405 } 406 } 407 return this_type; 408 } 409 410 Node* ConvI2LNode::Identity(PhaseGVN* phase) { 411 // If type is in "int" sub-range, we can 412 // convert I2L(L2I(x)) => x 413 // since the conversions have no effect. 414 if (in(1)->Opcode() == Op_ConvL2I) { 415 Node* x = in(1)->in(1); 416 const TypeLong* t = phase->type(x)->isa_long(); 417 if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) { 418 return x; 419 } 420 } 421 return this; 422 } 423 424 #ifdef ASSERT 425 static inline bool long_ranges_overlap(jlong lo1, jlong hi1, 426 jlong lo2, jlong hi2) { 427 // Two ranges overlap iff one range's low point falls in the other range. 428 return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1); 429 } 430 #endif 431 432 template<class T> static bool subtract_overflows(T x, T y) { 433 T s = java_subtract(x, y); 434 return (x >= 0) && (y < 0) && (s < 0); 435 } 436 437 template<class T> static bool subtract_underflows(T x, T y) { 438 T s = java_subtract(x, y); 439 return (x < 0) && (y > 0) && (s > 0); 440 } 441 442 template<class T> static bool add_overflows(T x, T y) { 443 T s = java_add(x, y); 444 return (x > 0) && (y > 0) && (s < 0); 445 } 446 447 template<class T> static bool add_underflows(T x, T y) { 448 T s = java_add(x, y); 449 return (x < 0) && (y < 0) && (s >= 0); 450 } 451 452 template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi, 453 const Node* n, bool pos) { 454 assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types"); 455 T x_y_lo; 456 T x_y_hi; 457 bool x_y_lo_overflow; 458 bool x_y_hi_overflow; 459 460 if (n->is_Sub()) { 461 x_y_lo = java_subtract(xlo, yhi); 462 x_y_hi = java_subtract(xhi, ylo); 463 x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi); 464 x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo); 465 } else { 466 assert(n->is_Add(), "Add or Sub only"); 467 x_y_lo = java_add(xlo, ylo); 468 x_y_hi = java_add(xhi, yhi); 469 x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo); 470 x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi); 471 } 472 assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow"); 473 assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow"); 474 475 // Two ranges overlap iff one range's low point falls in the other range. 476 // nbits = 32 or 64 477 if (pos) { 478 // (zlo + 2**nbits <= x_y_lo && x_y_lo <= zhi ** nbits) 479 if (x_y_lo_overflow) { 480 if (zlo <= x_y_lo && x_y_lo <= zhi) { 481 return true; 482 } 483 } 484 485 // (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi) 486 if (x_y_hi_overflow) { 487 if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) { 488 return true; 489 } 490 } 491 } else { 492 // (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits) 493 if (x_y_hi_overflow) { 494 if (zlo <= x_y_hi && x_y_hi <= zhi) { 495 return true; 496 } 497 } 498 499 // (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi) 500 if (x_y_lo_overflow) { 501 if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) { 502 return true; 503 } 504 } 505 } 506 507 return false; 508 } 509 510 static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz, 511 const Node* n, bool pos, BasicType bt) { 512 jlong xlo = tx->lo_as_long(); 513 jlong xhi = tx->hi_as_long(); 514 jlong ylo = ty->lo_as_long(); 515 jlong yhi = ty->hi_as_long(); 516 jlong zlo = tz->lo_as_long(); 517 jlong zhi = tz->hi_as_long(); 518 519 if (bt == T_INT) { 520 // See if x+y can cause positive overflow into z+2**32 521 // See if x+y can cause negative overflow into z-2**32 522 bool res = ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo), 523 checked_cast<jint>(xhi), checked_cast<jint>(yhi), 524 checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos); 525 #ifdef ASSERT 526 jlong vbit = CONST64(1) << BitsPerInt; 527 if (n->Opcode() == Op_SubI) { 528 jlong ylo0 = ylo; 529 ylo = -yhi; 530 yhi = -ylo0; 531 } 532 assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result"); 533 #endif 534 return res; 535 } 536 assert(bt == T_LONG, "only int or long"); 537 // See if x+y can cause positive overflow into z+2**64 538 // See if x+y can cause negative overflow into z-2**64 539 return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos); 540 } 541 542 #ifdef ASSERT 543 static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz, 544 jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi, 545 const Node* n) { 546 jlong xlo = tx->lo_as_long(); 547 jlong xhi = tx->hi_as_long(); 548 jlong ylo = ty->lo_as_long(); 549 jlong yhi = ty->hi_as_long(); 550 jlong zlo = tz->lo_as_long(); 551 jlong zhi = tz->hi_as_long(); 552 if (n->is_Sub()) { 553 swap(ylo, yhi); 554 ylo = -ylo; 555 yhi = -yhi; 556 } 557 558 rxlo = MAX2(xlo, zlo - yhi); 559 rxhi = MIN2(xhi, zhi - ylo); 560 rylo = MAX2(ylo, zlo - xhi); 561 ryhi = MIN2(yhi, zhi - xlo); 562 if (rxlo > rxhi || rylo > ryhi) { 563 return false; 564 } 565 if (n->is_Sub()) { 566 swap(rylo, ryhi); 567 rylo = -rylo; 568 ryhi = -ryhi; 569 } 570 assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow"); 571 assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow"); 572 return true; 573 } 574 #endif 575 576 template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi, 577 jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi, 578 const Node* n) { 579 assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types"); 580 581 // Now it's always safe to assume x+y does not overflow. 582 // This is true even if some pairs x,y might cause overflow, as long 583 // as that overflow value cannot fall into [zlo,zhi]. 584 585 // Confident that the arithmetic is "as if infinite precision", 586 // we can now use n's range to put constraints on those of x and y. 587 // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a 588 // more "restricted" range by intersecting [xlo,xhi] with the 589 // range obtained by subtracting y's range from the asserted range 590 // of the I2L conversion. Here's the interval arithmetic algebra: 591 // x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo] 592 // => x in [zlo-yhi, zhi-ylo] 593 // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi] 594 // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo] 595 // And similarly, x changing place with y. 596 if (n->is_Sub()) { 597 if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) || 598 subtract_overflows(xlo, zhi)) { 599 return false; 600 } 601 rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo)); 602 rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi)); 603 ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo)); 604 rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi)); 605 } else { 606 assert(n->is_Add(), "Add or Sub only"); 607 if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) || 608 subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) { 609 return false; 610 } 611 rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi)); 612 rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo)); 613 rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi)); 614 ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo)); 615 } 616 617 if (rxlo > rxhi || rylo > ryhi) { 618 return false; // x or y is dying; don't mess w/ it 619 } 620 621 return true; 622 } 623 624 static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz, 625 const TypeInteger*& rx, const TypeInteger*& ry, 626 const Node* n, const BasicType in_bt, BasicType out_bt) { 627 628 jlong xlo = tx->lo_as_long(); 629 jlong xhi = tx->hi_as_long(); 630 jlong ylo = ty->lo_as_long(); 631 jlong yhi = ty->hi_as_long(); 632 jlong zlo = tz->lo_as_long(); 633 jlong zhi = tz->hi_as_long(); 634 jlong rxlo, rxhi, rylo, ryhi; 635 636 if (in_bt == T_INT) { 637 #ifdef ASSERT 638 jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi; 639 bool expected = compute_updates_ranges_verif(tx, ty, tz, 640 expected_rxlo, expected_rxhi, 641 expected_rylo, expected_ryhi, n); 642 #endif 643 if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo), 644 checked_cast<jint>(xhi), checked_cast<jint>(yhi), 645 checked_cast<jint>(zlo), checked_cast<jint>(zhi), 646 rxlo, rxhi, rylo, ryhi, n)) { 647 assert(!expected, "inconsistent"); 648 return false; 649 } 650 assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent"); 651 } else { 652 if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi, 653 rxlo, rxhi, rylo, ryhi, n)) { 654 return false; 655 } 656 } 657 658 int widen = MAX2(tx->widen_limit(), ty->widen_limit()); 659 rx = TypeInteger::make(rxlo, rxhi, widen, out_bt); 660 ry = TypeInteger::make(rylo, ryhi, widen, out_bt); 661 return true; 662 } 663 664 #ifdef _LP64 665 // If there is an existing ConvI2L node with the given parent and type, return 666 // it. Otherwise, create and return a new one. Both reusing existing ConvI2L 667 // nodes and postponing the idealization of new ones are needed to avoid an 668 // explosion of recursive Ideal() calls when compiling long AddI chains. 669 static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent, 670 const TypeLong* type) { 671 Node* n = new ConvI2LNode(parent, type); 672 Node* existing = igvn->hash_find_insert(n); 673 if (existing != nullptr) { 674 n->destruct(igvn); 675 return existing; 676 } 677 return igvn->register_new_node_with_optimizer(n); 678 } 679 #endif 680 681 bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 682 BasicType in_bt, BasicType out_bt) { 683 int op = z->Opcode(); 684 if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) { 685 Node* x = z->in(1); 686 Node* y = z->in(2); 687 assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal"); 688 if (phase->type(x) == Type::TOP) { 689 return false; 690 } 691 if (phase->type(y) == Type::TOP) { 692 return false; 693 } 694 const TypeInteger* tx = phase->type(x)->is_integer(in_bt); 695 const TypeInteger* ty = phase->type(y)->is_integer(in_bt); 696 697 if (ranges_overlap(tx, ty, tz, z, true, in_bt) || 698 ranges_overlap(tx, ty, tz, z, false, in_bt)) { 699 return false; 700 } 701 return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt); 702 } 703 return false; 704 } 705 706 707 //------------------------------Ideal------------------------------------------ 708 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { 709 const TypeLong* this_type = this->type()->is_long(); 710 if (can_reshape && !phase->C->post_loop_opts_phase()) { 711 // makes sure we run ::Value to potentially remove type assertion after loop opts 712 phase->C->record_for_post_loop_opts_igvn(this); 713 } 714 #ifdef _LP64 715 // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) 716 // but only if x and y have subranges that cannot cause 32-bit overflow, 717 // under the assumption that x+y is in my own subrange this->type(). 718 719 // This assumption is based on a constraint (i.e., type assertion) 720 // established in Parse::array_addressing or perhaps elsewhere. 721 // This constraint has been adjoined to the "natural" type of 722 // the incoming argument in(0). We know (because of runtime 723 // checks) - that the result value I2L(x+y) is in the joined range. 724 // Hence we can restrict the incoming terms (x, y) to values such 725 // that their sum also lands in that range. 726 727 // This optimization is useful only on 64-bit systems, where we hope 728 // the addition will end up subsumed in an addressing mode. 729 // It is necessary to do this when optimizing an unrolled array 730 // copy loop such as x[i++] = y[i++]. 731 732 // On 32-bit systems, it's better to perform as much 32-bit math as 733 // possible before the I2L conversion, because 32-bit math is cheaper. 734 // There's no common reason to "leak" a constant offset through the I2L. 735 // Addressing arithmetic will not absorb it as part of a 64-bit AddL. 736 PhaseIterGVN* igvn = phase->is_IterGVN(); 737 Node* z = in(1); 738 const TypeInteger* rx = nullptr; 739 const TypeInteger* ry = nullptr; 740 if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) { 741 if (igvn == nullptr) { 742 // Postpone this optimization to iterative GVN, where we can handle deep 743 // AddI chains without an exponential number of recursive Ideal() calls. 744 phase->record_for_igvn(this); 745 return nullptr; 746 } 747 int op = z->Opcode(); 748 Node* x = z->in(1); 749 Node* y = z->in(2); 750 751 Node* cx = find_or_make_convI2L(igvn, x, rx->is_long()); 752 Node* cy = find_or_make_convI2L(igvn, y, ry->is_long()); 753 switch (op) { 754 case Op_AddI: return new AddLNode(cx, cy); 755 case Op_SubI: return new SubLNode(cx, cy); 756 default: ShouldNotReachHere(); 757 } 758 } 759 #endif //_LP64 760 761 return nullptr; 762 } 763 764 //============================================================================= 765 //------------------------------Value------------------------------------------ 766 const Type* ConvL2DNode::Value(PhaseGVN* phase) const { 767 const Type *t = phase->type( in(1) ); 768 if( t == Type::TOP ) return Type::TOP; 769 const TypeLong *tl = t->is_long(); 770 if( tl->is_con() ) return TypeD::make( (double)tl->get_con() ); 771 return Type::DOUBLE; 772 } 773 774 //============================================================================= 775 //------------------------------Value------------------------------------------ 776 const Type* ConvL2FNode::Value(PhaseGVN* phase) const { 777 const Type *t = phase->type( in(1) ); 778 if( t == Type::TOP ) return Type::TOP; 779 const TypeLong *tl = t->is_long(); 780 if( tl->is_con() ) return TypeF::make( (float)tl->get_con() ); 781 return Type::FLOAT; 782 } 783 784 //============================================================================= 785 //----------------------------Identity----------------------------------------- 786 Node* ConvL2INode::Identity(PhaseGVN* phase) { 787 // Convert L2I(I2L(x)) => x 788 if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1); 789 return this; 790 } 791 792 //------------------------------Value------------------------------------------ 793 const Type* ConvL2INode::Value(PhaseGVN* phase) const { 794 const Type *t = phase->type( in(1) ); 795 if( t == Type::TOP ) return Type::TOP; 796 const TypeLong *tl = t->is_long(); 797 const TypeInt* ti = TypeInt::INT; 798 if (tl->is_con()) { 799 // Easy case. 800 ti = TypeInt::make((jint)tl->get_con()); 801 } else if (tl->_lo >= min_jint && tl->_hi <= max_jint) { 802 ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen); 803 } 804 return ti->filter(_type); 805 } 806 807 //------------------------------Ideal------------------------------------------ 808 // Return a node which is more "ideal" than the current node. 809 // Blow off prior masking to int 810 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) { 811 Node *andl = in(1); 812 uint andl_op = andl->Opcode(); 813 if( andl_op == Op_AndL ) { 814 // Blow off prior masking to int 815 if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) { 816 set_req_X(1,andl->in(1), phase); 817 return this; 818 } 819 } 820 821 // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 822 // This replaces an 'AddL' with an 'AddI'. 823 if( andl_op == Op_AddL ) { 824 // Don't do this for nodes which have more than one user since 825 // we'll end up computing the long add anyway. 826 if (andl->outcnt() > 1) return nullptr; 827 828 Node* x = andl->in(1); 829 Node* y = andl->in(2); 830 assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" ); 831 if (phase->type(x) == Type::TOP) return nullptr; 832 if (phase->type(y) == Type::TOP) return nullptr; 833 Node *add1 = phase->transform(new ConvL2INode(x)); 834 Node *add2 = phase->transform(new ConvL2INode(y)); 835 return new AddINode(add1,add2); 836 } 837 838 // Disable optimization: LoadL->ConvL2I ==> LoadI. 839 // It causes problems (sizes of Load and Store nodes do not match) 840 // in objects initialization code and Escape Analysis. 841 return nullptr; 842 } 843 844 845 846 //============================================================================= 847 //------------------------------Identity--------------------------------------- 848 // Remove redundant roundings 849 Node* RoundFloatNode::Identity(PhaseGVN* phase) { 850 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); 851 // Do not round constants 852 if (phase->type(in(1))->base() == Type::FloatCon) return in(1); 853 int op = in(1)->Opcode(); 854 // Redundant rounding 855 if( op == Op_RoundFloat ) return in(1); 856 // Already rounded 857 if( op == Op_Parm ) return in(1); 858 if( op == Op_LoadF ) return in(1); 859 return this; 860 } 861 862 //------------------------------Value------------------------------------------ 863 const Type* RoundFloatNode::Value(PhaseGVN* phase) const { 864 return phase->type( in(1) ); 865 } 866 867 //============================================================================= 868 //------------------------------Identity--------------------------------------- 869 // Remove redundant roundings. Incoming arguments are already rounded. 870 Node* RoundDoubleNode::Identity(PhaseGVN* phase) { 871 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); 872 // Do not round constants 873 if (phase->type(in(1))->base() == Type::DoubleCon) return in(1); 874 int op = in(1)->Opcode(); 875 // Redundant rounding 876 if( op == Op_RoundDouble ) return in(1); 877 // Already rounded 878 if( op == Op_Parm ) return in(1); 879 if( op == Op_LoadD ) return in(1); 880 if( op == Op_ConvF2D ) return in(1); 881 if( op == Op_ConvI2D ) return in(1); 882 return this; 883 } 884 885 //------------------------------Value------------------------------------------ 886 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const { 887 return phase->type( in(1) ); 888 } 889 890 //============================================================================= 891 RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) { 892 ConINode* rm = gvn.intcon(rmode); 893 return new RoundDoubleModeNode(arg, (Node *)rm); 894 } 895 896 //------------------------------Identity--------------------------------------- 897 // Remove redundant roundings. 898 Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) { 899 int op = in(1)->Opcode(); 900 // Redundant rounding e.g. floor(ceil(n)) -> ceil(n) 901 if(op == Op_RoundDoubleMode) return in(1); 902 return this; 903 } 904 const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const { 905 return Type::DOUBLE; 906 } 907 //=============================================================================