1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "memory/allocation.inline.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/connode.hpp"
28 #include "opto/convertnode.hpp"
29 #include "opto/divnode.hpp"
30 #include "opto/machnode.hpp"
31 #include "opto/matcher.hpp"
32 #include "opto/movenode.hpp"
33 #include "opto/mulnode.hpp"
34 #include "opto/phaseX.hpp"
35 #include "opto/runtime.hpp"
36 #include "opto/subnode.hpp"
37 #include "utilities/powerOfTwo.hpp"
38
39 // Portions of code courtesy of Clifford Click
40
41 // Optimization - Graph Style
42
43 #include <math.h>
44
45 ModFloatingNode::ModFloatingNode(Compile* C, const TypeFunc* tf, address addr, const char* name) : CallLeafPureNode(tf, addr, name, TypeRawPtr::BOTTOM) {
46 add_flag(Flag_is_macro);
47 C->add_macro_node(this);
48 }
49
50 ModDNode::ModDNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::drem), "drem") {
51 init_req(TypeFunc::Parms + 0, a);
52 init_req(TypeFunc::Parms + 1, C->top());
53 init_req(TypeFunc::Parms + 2, b);
54 init_req(TypeFunc::Parms + 3, C->top());
55 }
56
57 ModFNode::ModFNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::modf_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::frem), "frem") {
58 init_req(TypeFunc::Parms + 0, a);
59 init_req(TypeFunc::Parms + 1, b);
60 }
61
62 //----------------------magic_int_divide_constants-----------------------------
63 // Compute magic multiplier and shift constant for converting a 32 bit divide
64 // by constant into a multiply/shift/add series. Return false if calculations
65 // fail.
66 //
67 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
68 // minor type name and parameter changes.
69 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
70 int32_t p;
71 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
72 const uint32_t two31 = 0x80000000L; // 2**31.
73
74 ad = ABS(d);
75 if (d == 0 || d == 1) return false;
76 t = two31 + ((uint32_t)d >> 31);
77 anc = t - 1 - t%ad; // Absolute value of nc.
78 p = 31; // Init. p.
79 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
80 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
81 q2 = two31/ad; // Init. q2 = 2**p/|d|.
82 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
83 do {
84 p = p + 1;
85 q1 = 2*q1; // Update q1 = 2**p/|nc|.
86 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
87 if (r1 >= anc) { // (Must be an unsigned
88 q1 = q1 + 1; // comparison here).
89 r1 = r1 - anc;
90 }
91 q2 = 2*q2; // Update q2 = 2**p/|d|.
92 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
93 if (r2 >= ad) { // (Must be an unsigned
94 q2 = q2 + 1; // comparison here).
95 r2 = r2 - ad;
96 }
97 delta = ad - r2;
98 } while (q1 < delta || (q1 == delta && r1 == 0));
99
100 M = q2 + 1;
101 if (d < 0) M = -M; // Magic number and
102 s = p - 32; // shift amount to return.
103
104 return true;
105 }
106
107 //--------------------------transform_int_divide-------------------------------
108 // Convert a division by constant divisor into an alternate Ideal graph.
109 // Return null if no transformation occurs.
110 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
111
112 // Check for invalid divisors
113 assert( divisor != 0 && divisor != min_jint,
114 "bad divisor for transforming to long multiply" );
115
116 bool d_pos = divisor >= 0;
117 jint d = d_pos ? divisor : -divisor;
118 const int N = 32;
119
120 // Result
121 Node *q = nullptr;
122
123 if (d == 1) {
124 // division by +/- 1
125 if (!d_pos) {
126 // Just negate the value
127 q = new SubINode(phase->intcon(0), dividend);
128 }
129 } else if ( is_power_of_2(d) ) {
130 // division by +/- a power of 2
131
132 // See if we can simply do a shift without rounding
133 bool needs_rounding = true;
134 const Type *dt = phase->type(dividend);
135 const TypeInt *dti = dt->isa_int();
136 if (dti && dti->_lo >= 0) {
137 // we don't need to round a positive dividend
138 needs_rounding = false;
139 } else if( dividend->Opcode() == Op_AndI ) {
140 // An AND mask of sufficient size clears the low bits and
141 // I can avoid rounding.
142 const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
143 if( andconi_t && andconi_t->is_con() ) {
144 jint andconi = andconi_t->get_con();
145 if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
146 if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
147 dividend = dividend->in(1);
148 needs_rounding = false;
149 }
150 }
151 }
152
153 // Add rounding to the shift to handle the sign bit
154 int l = log2i_graceful(d - 1) + 1;
155 if (needs_rounding) {
156 // Divide-by-power-of-2 can be made into a shift, but you have to do
157 // more math for the rounding. You need to add 0 for positive
158 // numbers, and "i-1" for negative numbers. Example: i=4, so the
159 // shift is by 2. You need to add 3 to negative dividends and 0 to
160 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
161 // (-2+3)>>2 becomes 0, etc.
162
163 // Compute 0 or -1, based on sign bit
164 Node *sign = phase->transform(new RShiftINode(dividend, phase->intcon(N - 1)));
165 // Mask sign bit to the low sign bits
166 Node *round = phase->transform(new URShiftINode(sign, phase->intcon(N - l)));
167 // Round up before shifting
168 dividend = phase->transform(new AddINode(dividend, round));
169 }
170
171 // Shift for division
172 q = new RShiftINode(dividend, phase->intcon(l));
173
174 if (!d_pos) {
175 q = new SubINode(phase->intcon(0), phase->transform(q));
176 }
177 } else {
178 // Attempt the jint constant divide -> multiply transform found in
179 // "Division by Invariant Integers using Multiplication"
180 // by Granlund and Montgomery
181 // See also "Hacker's Delight", chapter 10 by Warren.
182
183 jint magic_const;
184 jint shift_const;
185 if (magic_int_divide_constants(d, magic_const, shift_const)) {
186 Node *magic = phase->longcon(magic_const);
187 Node *dividend_long = phase->transform(new ConvI2LNode(dividend));
188
189 // Compute the high half of the dividend x magic multiplication
190 Node *mul_hi = phase->transform(new MulLNode(dividend_long, magic));
191
192 if (magic_const < 0) {
193 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N)));
194 mul_hi = phase->transform(new ConvL2INode(mul_hi));
195
196 // The magic multiplier is too large for a 32 bit constant. We've adjusted
197 // it down by 2^32, but have to add 1 dividend back in after the multiplication.
198 // This handles the "overflow" case described by Granlund and Montgomery.
199 mul_hi = phase->transform(new AddINode(dividend, mul_hi));
200
201 // Shift over the (adjusted) mulhi
202 if (shift_const != 0) {
203 mul_hi = phase->transform(new RShiftINode(mul_hi, phase->intcon(shift_const)));
204 }
205 } else {
206 // No add is required, we can merge the shifts together.
207 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
208 mul_hi = phase->transform(new ConvL2INode(mul_hi));
209 }
210
211 // Get a 0 or -1 from the sign of the dividend.
212 Node *addend0 = mul_hi;
213 Node *addend1 = phase->transform(new RShiftINode(dividend, phase->intcon(N-1)));
214
215 // If the divisor is negative, swap the order of the input addends;
216 // this has the effect of negating the quotient.
217 if (!d_pos) {
218 Node *temp = addend0; addend0 = addend1; addend1 = temp;
219 }
220
221 // Adjust the final quotient by subtracting -1 (adding 1)
222 // from the mul_hi.
223 q = new SubINode(addend0, addend1);
224 }
225 }
226
227 return q;
228 }
229
230 //---------------------magic_long_divide_constants-----------------------------
231 // Compute magic multiplier and shift constant for converting a 64 bit divide
232 // by constant into a multiply/shift/add series. Return false if calculations
233 // fail.
234 //
235 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
236 // minor type name and parameter changes. Adjusted to 64 bit word width.
237 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
238 int64_t p;
239 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
240 const uint64_t two63 = UCONST64(0x8000000000000000); // 2**63.
241
242 ad = ABS(d);
243 if (d == 0 || d == 1) return false;
244 t = two63 + ((uint64_t)d >> 63);
245 anc = t - 1 - t%ad; // Absolute value of nc.
246 p = 63; // Init. p.
247 q1 = two63/anc; // Init. q1 = 2**p/|nc|.
248 r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
249 q2 = two63/ad; // Init. q2 = 2**p/|d|.
250 r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
251 do {
252 p = p + 1;
253 q1 = 2*q1; // Update q1 = 2**p/|nc|.
254 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
255 if (r1 >= anc) { // (Must be an unsigned
256 q1 = q1 + 1; // comparison here).
257 r1 = r1 - anc;
258 }
259 q2 = 2*q2; // Update q2 = 2**p/|d|.
260 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
261 if (r2 >= ad) { // (Must be an unsigned
262 q2 = q2 + 1; // comparison here).
263 r2 = r2 - ad;
264 }
265 delta = ad - r2;
266 } while (q1 < delta || (q1 == delta && r1 == 0));
267
268 M = q2 + 1;
269 if (d < 0) M = -M; // Magic number and
270 s = p - 64; // shift amount to return.
271
272 return true;
273 }
274
275 //---------------------long_by_long_mulhi--------------------------------------
276 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
277 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
278 // If the architecture supports a 64x64 mulhi, there is
279 // no need to synthesize it in ideal nodes.
280 if (Matcher::has_match_rule(Op_MulHiL)) {
281 Node* v = phase->longcon(magic_const);
282 return new MulHiLNode(dividend, v);
283 }
284
285 // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
286 //
287 // int mulhs(int u, int v) {
288 // unsigned u0, v0, w0;
289 // int u1, v1, w1, w2, t;
290 //
291 // u0 = u & 0xFFFF; u1 = u >> 16;
292 // v0 = v & 0xFFFF; v1 = v >> 16;
293 // w0 = u0*v0;
294 // t = u1*v0 + (w0 >> 16);
295 // w1 = t & 0xFFFF;
296 // w2 = t >> 16;
297 // w1 = u0*v1 + w1;
298 // return u1*v1 + w2 + (w1 >> 16);
299 // }
300 //
301 // Note: The version above is for 32x32 multiplications, while the
302 // following inline comments are adapted to 64x64.
303
304 const int N = 64;
305
306 // Dummy node to keep intermediate nodes alive during construction
307 Node* hook = new Node(4);
308
309 // u0 = u & 0xFFFFFFFF; u1 = u >> 32;
310 Node* u0 = phase->transform(new AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
311 Node* u1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N / 2)));
312 hook->init_req(0, u0);
313 hook->init_req(1, u1);
314
315 // v0 = v & 0xFFFFFFFF; v1 = v >> 32;
316 Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
317 Node* v1 = phase->longcon(magic_const >> (N / 2));
318
319 // w0 = u0*v0;
320 Node* w0 = phase->transform(new MulLNode(u0, v0));
321
322 // t = u1*v0 + (w0 >> 32);
323 Node* u1v0 = phase->transform(new MulLNode(u1, v0));
324 Node* temp = phase->transform(new URShiftLNode(w0, phase->intcon(N / 2)));
325 Node* t = phase->transform(new AddLNode(u1v0, temp));
326 hook->init_req(2, t);
327
328 // w1 = t & 0xFFFFFFFF;
329 Node* w1 = phase->transform(new AndLNode(t, phase->longcon(0xFFFFFFFF)));
330 hook->init_req(3, w1);
331
332 // w2 = t >> 32;
333 Node* w2 = phase->transform(new RShiftLNode(t, phase->intcon(N / 2)));
334
335 // w1 = u0*v1 + w1;
336 Node* u0v1 = phase->transform(new MulLNode(u0, v1));
337 w1 = phase->transform(new AddLNode(u0v1, w1));
338
339 // return u1*v1 + w2 + (w1 >> 32);
340 Node* u1v1 = phase->transform(new MulLNode(u1, v1));
341 Node* temp1 = phase->transform(new AddLNode(u1v1, w2));
342 Node* temp2 = phase->transform(new RShiftLNode(w1, phase->intcon(N / 2)));
343
344 // Remove the bogus extra edges used to keep things alive
345 hook->destruct(phase);
346
347 return new AddLNode(temp1, temp2);
348 }
349
350
351 //--------------------------transform_long_divide------------------------------
352 // Convert a division by constant divisor into an alternate Ideal graph.
353 // Return null if no transformation occurs.
354 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
355 // Check for invalid divisors
356 assert( divisor != 0L && divisor != min_jlong,
357 "bad divisor for transforming to long multiply" );
358
359 bool d_pos = divisor >= 0;
360 jlong d = d_pos ? divisor : -divisor;
361 const int N = 64;
362
363 // Result
364 Node *q = nullptr;
365
366 if (d == 1) {
367 // division by +/- 1
368 if (!d_pos) {
369 // Just negate the value
370 q = new SubLNode(phase->longcon(0), dividend);
371 }
372 } else if ( is_power_of_2(d) ) {
373
374 // division by +/- a power of 2
375
376 // See if we can simply do a shift without rounding
377 bool needs_rounding = true;
378 const Type *dt = phase->type(dividend);
379 const TypeLong *dtl = dt->isa_long();
380
381 if (dtl && dtl->_lo > 0) {
382 // we don't need to round a positive dividend
383 needs_rounding = false;
384 } else if( dividend->Opcode() == Op_AndL ) {
385 // An AND mask of sufficient size clears the low bits and
386 // I can avoid rounding.
387 const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
388 if( andconl_t && andconl_t->is_con() ) {
389 jlong andconl = andconl_t->get_con();
390 if( andconl < 0 && is_power_of_2(-andconl) && (-andconl) >= d ) {
391 if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
392 dividend = dividend->in(1);
393 needs_rounding = false;
394 }
395 }
396 }
397
398 // Add rounding to the shift to handle the sign bit
399 int l = log2i_graceful(d - 1) + 1;
400 if (needs_rounding) {
401 // Divide-by-power-of-2 can be made into a shift, but you have to do
402 // more math for the rounding. You need to add 0 for positive
403 // numbers, and "i-1" for negative numbers. Example: i=4, so the
404 // shift is by 2. You need to add 3 to negative dividends and 0 to
405 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
406 // (-2+3)>>2 becomes 0, etc.
407
408 // Compute 0 or -1, based on sign bit
409 Node *sign = phase->transform(new RShiftLNode(dividend, phase->intcon(N - 1)));
410 // Mask sign bit to the low sign bits
411 Node *round = phase->transform(new URShiftLNode(sign, phase->intcon(N - l)));
412 // Round up before shifting
413 dividend = phase->transform(new AddLNode(dividend, round));
414 }
415
416 // Shift for division
417 q = new RShiftLNode(dividend, phase->intcon(l));
418
419 if (!d_pos) {
420 q = new SubLNode(phase->longcon(0), phase->transform(q));
421 }
422 } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
423 // it is faster than code generated below.
424 // Attempt the jlong constant divide -> multiply transform found in
425 // "Division by Invariant Integers using Multiplication"
426 // by Granlund and Montgomery
427 // See also "Hacker's Delight", chapter 10 by Warren.
428
429 jlong magic_const;
430 jint shift_const;
431 if (magic_long_divide_constants(d, magic_const, shift_const)) {
432 // Compute the high half of the dividend x magic multiplication
433 Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
434
435 // The high half of the 128-bit multiply is computed.
436 if (magic_const < 0) {
437 // The magic multiplier is too large for a 64 bit constant. We've adjusted
438 // it down by 2^64, but have to add 1 dividend back in after the multiplication.
439 // This handles the "overflow" case described by Granlund and Montgomery.
440 mul_hi = phase->transform(new AddLNode(dividend, mul_hi));
441 }
442
443 // Shift over the (adjusted) mulhi
444 if (shift_const != 0) {
445 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(shift_const)));
446 }
447
448 // Get a 0 or -1 from the sign of the dividend.
449 Node *addend0 = mul_hi;
450 Node *addend1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N-1)));
451
452 // If the divisor is negative, swap the order of the input addends;
453 // this has the effect of negating the quotient.
454 if (!d_pos) {
455 Node *temp = addend0; addend0 = addend1; addend1 = temp;
456 }
457
458 // Adjust the final quotient by subtracting -1 (adding 1)
459 // from the mul_hi.
460 q = new SubLNode(addend0, addend1);
461 }
462 }
463
464 return q;
465 }
466
467 template <typename TypeClass, typename Unsigned>
468 Node* unsigned_div_ideal(PhaseGVN* phase, bool can_reshape, Node* div) {
469 // Check for dead control input
470 if (div->in(0) != nullptr && div->remove_dead_region(phase, can_reshape)) {
471 return div;
472 }
473 // Don't bother trying to transform a dead node
474 if (div->in(0) != nullptr && div->in(0)->is_top()) {
475 return nullptr;
476 }
477
478 const Type* t = phase->type(div->in(2));
479 if (t == Type::TOP) {
480 return nullptr;
481 }
482 const TypeClass* type_divisor = t->cast<TypeClass>();
483
484 // Check for useless control input
485 // Check for excluding div-zero case
486 if (div->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
487 div->set_req(0, nullptr); // Yank control input
488 return div;
489 }
490
491 if (!type_divisor->is_con()) {
492 return nullptr;
493 }
494 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con()); // Get divisor
495
496 if (divisor == 0 || divisor == 1) {
497 return nullptr; // Dividing by zero constant does not idealize
498 }
499
500 if (is_power_of_2(divisor)) {
501 return make_urshift<TypeClass>(div->in(1), phase->intcon(log2i_graceful(divisor)));
502 }
503
504 return nullptr;
505 }
506
507
508 //=============================================================================
509 //------------------------------Identity---------------------------------------
510 // If the divisor is 1, we are an identity on the dividend.
511 Node* DivINode::Identity(PhaseGVN* phase) {
512 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
513 }
514
515 //------------------------------Idealize---------------------------------------
516 // Divides can be changed to multiplies and/or shifts
517 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
518 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
519 // Don't bother trying to transform a dead node
520 if( in(0) && in(0)->is_top() ) return nullptr;
521
522 const Type *t = phase->type( in(2) );
523 if( t == TypeInt::ONE ) // Identity?
524 return nullptr; // Skip it
525
526 const TypeInt *ti = t->isa_int();
527 if( !ti ) return nullptr;
528
529 // Check for useless control input
530 // Check for excluding div-zero case
531 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
532 set_req(0, nullptr); // Yank control input
533 return this;
534 }
535
536 if( !ti->is_con() ) return nullptr;
537 jint i = ti->get_con(); // Get divisor
538
539 if (i == 0) return nullptr; // Dividing by zero constant does not idealize
540
541 // Dividing by MININT does not optimize as a power-of-2 shift.
542 if( i == min_jint ) return nullptr;
543
544 return transform_int_divide( phase, in(1), i );
545 }
546
547 //------------------------------Value------------------------------------------
548 // A DivINode divides its inputs. The third input is a Control input, used to
549 // prevent hoisting the divide above an unsafe test.
550 const Type* DivINode::Value(PhaseGVN* phase) const {
551 // Either input is TOP ==> the result is TOP
552 const Type *t1 = phase->type( in(1) );
553 const Type *t2 = phase->type( in(2) );
554 if( t1 == Type::TOP ) return Type::TOP;
555 if( t2 == Type::TOP ) return Type::TOP;
556
557 // x/x == 1 since we always generate the dynamic divisor check for 0.
558 if (in(1) == in(2)) {
559 return TypeInt::ONE;
560 }
561
562 // Either input is BOTTOM ==> the result is the local BOTTOM
563 const Type *bot = bottom_type();
564 if( (t1 == bot) || (t2 == bot) ||
565 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
566 return bot;
567
568 // Divide the two numbers. We approximate.
569 // If divisor is a constant and not zero
570 const TypeInt *i1 = t1->is_int();
571 const TypeInt *i2 = t2->is_int();
572 int widen = MAX2(i1->_widen, i2->_widen);
573
574 if( i2->is_con() && i2->get_con() != 0 ) {
575 int32_t d = i2->get_con(); // Divisor
576 jint lo, hi;
577 if( d >= 0 ) {
578 lo = i1->_lo/d;
579 hi = i1->_hi/d;
580 } else {
581 if( d == -1 && i1->_lo == min_jint ) {
582 // 'min_jint/-1' throws arithmetic exception during compilation
583 lo = min_jint;
584 // do not support holes, 'hi' must go to either min_jint or max_jint:
585 // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
586 hi = i1->_hi == min_jint ? min_jint : max_jint;
587 } else {
588 lo = i1->_hi/d;
589 hi = i1->_lo/d;
590 }
591 }
592 return TypeInt::make(lo, hi, widen);
593 }
594
595 // If the dividend is a constant
596 if( i1->is_con() ) {
597 int32_t d = i1->get_con();
598 if( d < 0 ) {
599 if( d == min_jint ) {
600 // (-min_jint) == min_jint == (min_jint / -1)
601 return TypeInt::make(min_jint, max_jint/2 + 1, widen);
602 } else {
603 return TypeInt::make(d, -d, widen);
604 }
605 }
606 return TypeInt::make(-d, d, widen);
607 }
608
609 // Otherwise we give up all hope
610 return TypeInt::INT;
611 }
612
613
614 //=============================================================================
615 //------------------------------Identity---------------------------------------
616 // If the divisor is 1, we are an identity on the dividend.
617 Node* DivLNode::Identity(PhaseGVN* phase) {
618 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
619 }
620
621 //------------------------------Idealize---------------------------------------
622 // Dividing by a power of 2 is a shift.
623 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
624 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
625 // Don't bother trying to transform a dead node
626 if( in(0) && in(0)->is_top() ) return nullptr;
627
628 const Type *t = phase->type( in(2) );
629 if( t == TypeLong::ONE ) // Identity?
630 return nullptr; // Skip it
631
632 const TypeLong *tl = t->isa_long();
633 if( !tl ) return nullptr;
634
635 // Check for useless control input
636 // Check for excluding div-zero case
637 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
638 set_req(0, nullptr); // Yank control input
639 return this;
640 }
641
642 if( !tl->is_con() ) return nullptr;
643 jlong l = tl->get_con(); // Get divisor
644
645 if (l == 0) return nullptr; // Dividing by zero constant does not idealize
646
647 // Dividing by MINLONG does not optimize as a power-of-2 shift.
648 if( l == min_jlong ) return nullptr;
649
650 return transform_long_divide( phase, in(1), l );
651 }
652
653 //------------------------------Value------------------------------------------
654 // A DivLNode divides its inputs. The third input is a Control input, used to
655 // prevent hoisting the divide above an unsafe test.
656 const Type* DivLNode::Value(PhaseGVN* phase) const {
657 // Either input is TOP ==> the result is TOP
658 const Type *t1 = phase->type( in(1) );
659 const Type *t2 = phase->type( in(2) );
660 if( t1 == Type::TOP ) return Type::TOP;
661 if( t2 == Type::TOP ) return Type::TOP;
662
663 // x/x == 1 since we always generate the dynamic divisor check for 0.
664 if (in(1) == in(2)) {
665 return TypeLong::ONE;
666 }
667
668 // Either input is BOTTOM ==> the result is the local BOTTOM
669 const Type *bot = bottom_type();
670 if( (t1 == bot) || (t2 == bot) ||
671 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
672 return bot;
673
674 // Divide the two numbers. We approximate.
675 // If divisor is a constant and not zero
676 const TypeLong *i1 = t1->is_long();
677 const TypeLong *i2 = t2->is_long();
678 int widen = MAX2(i1->_widen, i2->_widen);
679
680 if( i2->is_con() && i2->get_con() != 0 ) {
681 jlong d = i2->get_con(); // Divisor
682 jlong lo, hi;
683 if( d >= 0 ) {
684 lo = i1->_lo/d;
685 hi = i1->_hi/d;
686 } else {
687 if( d == CONST64(-1) && i1->_lo == min_jlong ) {
688 // 'min_jlong/-1' throws arithmetic exception during compilation
689 lo = min_jlong;
690 // do not support holes, 'hi' must go to either min_jlong or max_jlong:
691 // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
692 hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
693 } else {
694 lo = i1->_hi/d;
695 hi = i1->_lo/d;
696 }
697 }
698 return TypeLong::make(lo, hi, widen);
699 }
700
701 // If the dividend is a constant
702 if( i1->is_con() ) {
703 jlong d = i1->get_con();
704 if( d < 0 ) {
705 if( d == min_jlong ) {
706 // (-min_jlong) == min_jlong == (min_jlong / -1)
707 return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
708 } else {
709 return TypeLong::make(d, -d, widen);
710 }
711 }
712 return TypeLong::make(-d, d, widen);
713 }
714
715 // Otherwise we give up all hope
716 return TypeLong::LONG;
717 }
718
719
720 //=============================================================================
721 //------------------------------Value------------------------------------------
722 // An DivFNode divides its inputs. The third input is a Control input, used to
723 // prevent hoisting the divide above an unsafe test.
724 const Type* DivFNode::Value(PhaseGVN* phase) const {
725 // Either input is TOP ==> the result is TOP
726 const Type *t1 = phase->type( in(1) );
727 const Type *t2 = phase->type( in(2) );
728 if( t1 == Type::TOP ) return Type::TOP;
729 if( t2 == Type::TOP ) return Type::TOP;
730
731 // Either input is BOTTOM ==> the result is the local BOTTOM
732 const Type *bot = bottom_type();
733 if( (t1 == bot) || (t2 == bot) ||
734 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
735 return bot;
736
737 // x/x == 1, we ignore 0/0.
738 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
739 // Does not work for variables because of NaN's
740 if (in(1) == in(2) && t1->base() == Type::FloatCon &&
741 !g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) { // could be negative ZERO or NaN
742 return TypeF::ONE;
743 }
744
745 if( t2 == TypeF::ONE )
746 return t1;
747
748 // If divisor is a constant and not zero, divide them numbers
749 if( t1->base() == Type::FloatCon &&
750 t2->base() == Type::FloatCon &&
751 t2->getf() != 0.0 ) // could be negative zero
752 return TypeF::make( t1->getf()/t2->getf() );
753
754 // If the dividend is a constant zero
755 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
756 // Test TypeF::ZERO is not sufficient as it could be negative zero
757
758 if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
759 return TypeF::ZERO;
760
761 // Otherwise we give up all hope
762 return Type::FLOAT;
763 }
764
765 //------------------------------isA_Copy---------------------------------------
766 // Dividing by self is 1.
767 // If the divisor is 1, we are an identity on the dividend.
768 Node* DivFNode::Identity(PhaseGVN* phase) {
769 return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
770 }
771
772
773 //------------------------------Idealize---------------------------------------
774 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
775 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
776 // Don't bother trying to transform a dead node
777 if( in(0) && in(0)->is_top() ) return nullptr;
778
779 const Type *t2 = phase->type( in(2) );
780 if( t2 == TypeF::ONE ) // Identity?
781 return nullptr; // Skip it
782
783 const TypeF *tf = t2->isa_float_constant();
784 if( !tf ) return nullptr;
785 if( tf->base() != Type::FloatCon ) return nullptr;
786
787 // Check for out of range values
788 if( tf->is_nan() || !tf->is_finite() ) return nullptr;
789
790 // Get the value
791 float f = tf->getf();
792 int exp;
793
794 // Only for special case of dividing by a power of 2
795 if( frexp((double)f, &exp) != 0.5 ) return nullptr;
796
797 // Limit the range of acceptable exponents
798 if( exp < -126 || exp > 126 ) return nullptr;
799
800 // Compute the reciprocal
801 float reciprocal = ((float)1.0) / f;
802
803 assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
804
805 // return multiplication by the reciprocal
806 return (new MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
807 }
808 //=============================================================================
809 //------------------------------Value------------------------------------------
810 // An DivHFNode divides its inputs. The third input is a Control input, used to
811 // prevent hoisting the divide above an unsafe test.
812 const Type* DivHFNode::Value(PhaseGVN* phase) const {
813 // Either input is TOP ==> the result is TOP
814 const Type* t1 = phase->type(in(1));
815 const Type* t2 = phase->type(in(2));
816 if(t1 == Type::TOP) { return Type::TOP; }
817 if(t2 == Type::TOP) { return Type::TOP; }
818
819 // Either input is BOTTOM ==> the result is the local BOTTOM
820 const Type* bot = bottom_type();
821 if((t1 == bot) || (t2 == bot) ||
822 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
823 return bot;
824 }
825
826 if (t1->base() == Type::HalfFloatCon &&
827 t2->base() == Type::HalfFloatCon) {
828 // IEEE 754 floating point comparison treats 0.0 and -0.0 as equals.
829
830 // Division of a zero by a zero results in NaN.
831 if (t1->getf() == 0.0f && t2->getf() == 0.0f) {
832 return TypeH::make(NAN);
833 }
834
835 // As per C++ standard section 7.6.5 (expr.mul), behavior is undefined only if
836 // the second operand is 0.0. In all other situations, we can expect a standard-compliant
837 // C++ compiler to generate code following IEEE 754 semantics.
838 if (t2->getf() == 0.0) {
839 // If either operand is NaN, the result is NaN
840 if (g_isnan(t1->getf())) {
841 return TypeH::make(NAN);
842 } else {
843 // Division of a nonzero finite value by a zero results in a signed infinity. Also,
844 // division of an infinity by a finite value results in a signed infinity.
845 bool res_sign_neg = (jint_cast(t1->getf()) < 0) ^ (jint_cast(t2->getf()) < 0);
846 const TypeF* res = res_sign_neg ? TypeF::NEG_INF : TypeF::POS_INF;
847 return TypeH::make(res->getf());
848 }
849 }
850
851 return TypeH::make(t1->getf() / t2->getf());
852 }
853
854 // Otherwise we give up all hope
855 return Type::HALF_FLOAT;
856 }
857
858 //-----------------------------------------------------------------------------
859 // Dividing by self is 1.
860 // IF the divisor is 1, we are an identity on the dividend.
861 Node* DivHFNode::Identity(PhaseGVN* phase) {
862 return (phase->type( in(2) ) == TypeH::ONE) ? in(1) : this;
863 }
864
865
866 //------------------------------Idealize---------------------------------------
867 Node* DivHFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
868 if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) return this;
869 // Don't bother trying to transform a dead node
870 if (in(0) != nullptr && in(0)->is_top()) { return nullptr; }
871
872 const Type* t2 = phase->type(in(2));
873 if (t2 == TypeH::ONE) { // Identity?
874 return nullptr; // Skip it
875 }
876 const TypeH* tf = t2->isa_half_float_constant();
877 if(tf == nullptr) { return nullptr; }
878 if(tf->base() != Type::HalfFloatCon) { return nullptr; }
879
880 // Check for out of range values
881 if(tf->is_nan() || !tf->is_finite()) { return nullptr; }
882
883 // Get the value
884 float f = tf->getf();
885 int exp;
886
887 // Consider the following geometric progression series of POT(power of two) numbers.
888 // 0.5 x 2^0 = 0.5, 0.5 x 2^1 = 1.0, 0.5 x 2^2 = 2.0, 0.5 x 2^3 = 4.0 ... 0.5 x 2^n,
889 // In all the above cases, normalized mantissa returned by frexp routine will
890 // be exactly equal to 0.5 while exponent will be 0,1,2,3...n
891 // Perform division to multiplication transform only if divisor is a POT value.
892 if(frexp((double)f, &exp) != 0.5) { return nullptr; }
893
894 // Limit the range of acceptable exponents
895 if(exp < -14 || exp > 15) { return nullptr; }
896
897 // Since divisor is a POT number, hence its reciprocal will never
898 // overflow 11 bits precision range of Float16
899 // value if exponent returned by frexp routine strictly lie
900 // within the exponent range of normal min(0x1.0P-14) and
901 // normal max(0x1.ffcP+15) values.
902 // Thus we can safely compute the reciprocal of divisor without
903 // any concerns about the precision loss and transform the division
904 // into a multiplication operation.
905 float reciprocal = ((float)1.0) / f;
906
907 assert(frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2");
908
909 // return multiplication by the reciprocal
910 return (new MulHFNode(in(1), phase->makecon(TypeH::make(reciprocal))));
911 }
912
913 //=============================================================================
914 //------------------------------Value------------------------------------------
915 // An DivDNode divides its inputs. The third input is a Control input, used to
916 // prevent hoisting the divide above an unsafe test.
917 const Type* DivDNode::Value(PhaseGVN* phase) const {
918 // Either input is TOP ==> the result is TOP
919 const Type *t1 = phase->type( in(1) );
920 const Type *t2 = phase->type( in(2) );
921 if( t1 == Type::TOP ) return Type::TOP;
922 if( t2 == Type::TOP ) return Type::TOP;
923
924 // Either input is BOTTOM ==> the result is the local BOTTOM
925 const Type *bot = bottom_type();
926 if( (t1 == bot) || (t2 == bot) ||
927 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
928 return bot;
929
930 // x/x == 1, we ignore 0/0.
931 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
932 // Does not work for variables because of NaN's
933 if (in(1) == in(2) && t1->base() == Type::DoubleCon &&
934 !g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) { // could be negative ZERO or NaN
935 return TypeD::ONE;
936 }
937
938 if( t2 == TypeD::ONE )
939 return t1;
940
941 // If divisor is a constant and not zero, divide them numbers
942 if( t1->base() == Type::DoubleCon &&
943 t2->base() == Type::DoubleCon &&
944 t2->getd() != 0.0 ) // could be negative zero
945 return TypeD::make( t1->getd()/t2->getd() );
946
947 // If the dividend is a constant zero
948 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
949 // Test TypeF::ZERO is not sufficient as it could be negative zero
950 if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
951 return TypeD::ZERO;
952
953 // Otherwise we give up all hope
954 return Type::DOUBLE;
955 }
956
957
958 //------------------------------isA_Copy---------------------------------------
959 // Dividing by self is 1.
960 // If the divisor is 1, we are an identity on the dividend.
961 Node* DivDNode::Identity(PhaseGVN* phase) {
962 return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
963 }
964
965 //------------------------------Idealize---------------------------------------
966 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
967 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
968 // Don't bother trying to transform a dead node
969 if( in(0) && in(0)->is_top() ) return nullptr;
970
971 const Type *t2 = phase->type( in(2) );
972 if( t2 == TypeD::ONE ) // Identity?
973 return nullptr; // Skip it
974
975 const TypeD *td = t2->isa_double_constant();
976 if( !td ) return nullptr;
977 if( td->base() != Type::DoubleCon ) return nullptr;
978
979 // Check for out of range values
980 if( td->is_nan() || !td->is_finite() ) return nullptr;
981
982 // Get the value
983 double d = td->getd();
984 int exp;
985
986 // Only for special case of dividing by a power of 2
987 if( frexp(d, &exp) != 0.5 ) return nullptr;
988
989 // Limit the range of acceptable exponents
990 if( exp < -1021 || exp > 1022 ) return nullptr;
991
992 // Compute the reciprocal
993 double reciprocal = 1.0 / d;
994
995 assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
996
997 // return multiplication by the reciprocal
998 return (new MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
999 }
1000
1001 //=============================================================================
1002 //------------------------------Identity---------------------------------------
1003 // If the divisor is 1, we are an identity on the dividend.
1004 Node* UDivINode::Identity(PhaseGVN* phase) {
1005 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
1006 }
1007 //------------------------------Value------------------------------------------
1008 // A UDivINode divides its inputs. The third input is a Control input, used to
1009 // prevent hoisting the divide above an unsafe test.
1010 const Type* UDivINode::Value(PhaseGVN* phase) const {
1011 // Either input is TOP ==> the result is TOP
1012 const Type *t1 = phase->type( in(1) );
1013 const Type *t2 = phase->type( in(2) );
1014 if( t1 == Type::TOP ) return Type::TOP;
1015 if( t2 == Type::TOP ) return Type::TOP;
1016
1017 // x/x == 1 since we always generate the dynamic divisor check for 0.
1018 if (in(1) == in(2)) {
1019 return TypeInt::ONE;
1020 }
1021
1022 // Either input is BOTTOM ==> the result is the local BOTTOM
1023 const Type *bot = bottom_type();
1024 if( (t1 == bot) || (t2 == bot) ||
1025 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1026 return bot;
1027
1028 // Otherwise we give up all hope
1029 return TypeInt::INT;
1030 }
1031
1032 //------------------------------Idealize---------------------------------------
1033 Node *UDivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1034 return unsigned_div_ideal<TypeInt, juint>(phase, can_reshape, this);
1035 }
1036
1037 //=============================================================================
1038 //------------------------------Identity---------------------------------------
1039 // If the divisor is 1, we are an identity on the dividend.
1040 Node* UDivLNode::Identity(PhaseGVN* phase) {
1041 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
1042 }
1043 //------------------------------Value------------------------------------------
1044 // A UDivLNode divides its inputs. The third input is a Control input, used to
1045 // prevent hoisting the divide above an unsafe test.
1046 const Type* UDivLNode::Value(PhaseGVN* phase) const {
1047 // Either input is TOP ==> the result is TOP
1048 const Type *t1 = phase->type( in(1) );
1049 const Type *t2 = phase->type( in(2) );
1050 if( t1 == Type::TOP ) return Type::TOP;
1051 if( t2 == Type::TOP ) return Type::TOP;
1052
1053 // x/x == 1 since we always generate the dynamic divisor check for 0.
1054 if (in(1) == in(2)) {
1055 return TypeLong::ONE;
1056 }
1057
1058 // Either input is BOTTOM ==> the result is the local BOTTOM
1059 const Type *bot = bottom_type();
1060 if( (t1 == bot) || (t2 == bot) ||
1061 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1062 return bot;
1063
1064 // Otherwise we give up all hope
1065 return TypeLong::LONG;
1066 }
1067
1068 //------------------------------Idealize---------------------------------------
1069 Node *UDivLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1070 return unsigned_div_ideal<TypeLong, julong>(phase, can_reshape, this);
1071 }
1072
1073 //=============================================================================
1074 //------------------------------Idealize---------------------------------------
1075 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1076 // Check for dead control input
1077 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1078 // Don't bother trying to transform a dead node
1079 if( in(0) && in(0)->is_top() ) return nullptr;
1080
1081 // Get the modulus
1082 const Type *t = phase->type( in(2) );
1083 if( t == Type::TOP ) return nullptr;
1084 const TypeInt *ti = t->is_int();
1085
1086 // Check for useless control input
1087 // Check for excluding mod-zero case
1088 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
1089 set_req(0, nullptr); // Yank control input
1090 return this;
1091 }
1092
1093 // See if we are MOD'ing by 2^k or 2^k-1.
1094 if( !ti->is_con() ) return nullptr;
1095 jint con = ti->get_con();
1096
1097 Node *hook = new Node(1);
1098
1099 // First, special check for modulo 2^k-1
1100 if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
1101 uint k = exact_log2(con+1); // Extract k
1102
1103 // Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
1104 static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1105 int trip_count = 1;
1106 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1107
1108 // If the unroll factor is not too large, and if conditional moves are
1109 // ok, then use this case
1110 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1111 Node *x = in(1); // Value being mod'd
1112 Node *divisor = in(2); // Also is mask
1113
1114 hook->init_req(0, x); // Add a use to x to prevent him from dying
1115 // Generate code to reduce X rapidly to nearly 2^k-1.
1116 for( int i = 0; i < trip_count; i++ ) {
1117 Node *xl = phase->transform( new AndINode(x,divisor) );
1118 Node *xh = phase->transform( new RShiftINode(x,phase->intcon(k)) ); // Must be signed
1119 x = phase->transform( new AddINode(xh,xl) );
1120 hook->set_req(0, x);
1121 }
1122
1123 // Generate sign-fixup code. Was original value positive?
1124 // int hack_res = (i >= 0) ? divisor : 1;
1125 Node *cmp1 = phase->transform( new CmpINode( in(1), phase->intcon(0) ) );
1126 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1127 Node *cmov1= phase->transform( new CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
1128 // if( x >= hack_res ) x -= divisor;
1129 Node *sub = phase->transform( new SubINode( x, divisor ) );
1130 Node *cmp2 = phase->transform( new CmpINode( x, cmov1 ) );
1131 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1132 // Convention is to not transform the return value of an Ideal
1133 // since Ideal is expected to return a modified 'this' or a new node.
1134 Node *cmov2= new CMoveINode(bol2, x, sub, TypeInt::INT);
1135 // cmov2 is now the mod
1136
1137 // Now remove the bogus extra edges used to keep things alive
1138 hook->destruct(phase);
1139 return cmov2;
1140 }
1141 }
1142
1143 // Fell thru, the unroll case is not appropriate. Transform the modulo
1144 // into a long multiply/int multiply/subtract case
1145
1146 // Cannot handle mod 0, and min_jint isn't handled by the transform
1147 if( con == 0 || con == min_jint ) return nullptr;
1148
1149 // Get the absolute value of the constant; at this point, we can use this
1150 jint pos_con = (con >= 0) ? con : -con;
1151
1152 // integer Mod 1 is always 0
1153 if( pos_con == 1 ) return new ConINode(TypeInt::ZERO);
1154
1155 int log2_con = -1;
1156
1157 // If this is a power of two, they maybe we can mask it
1158 if (is_power_of_2(pos_con)) {
1159 log2_con = log2i_exact(pos_con);
1160
1161 const Type *dt = phase->type(in(1));
1162 const TypeInt *dti = dt->isa_int();
1163
1164 // See if this can be masked, if the dividend is non-negative
1165 if( dti && dti->_lo >= 0 )
1166 return ( new AndINode( in(1), phase->intcon( pos_con-1 ) ) );
1167 }
1168
1169 // Save in(1) so that it cannot be changed or deleted
1170 hook->init_req(0, in(1));
1171
1172 // Divide using the transform from DivI to MulL
1173 Node *result = transform_int_divide( phase, in(1), pos_con );
1174 if (result != nullptr) {
1175 Node *divide = phase->transform(result);
1176
1177 // Re-multiply, using a shift if this is a power of two
1178 Node *mult = nullptr;
1179
1180 if( log2_con >= 0 )
1181 mult = phase->transform( new LShiftINode( divide, phase->intcon( log2_con ) ) );
1182 else
1183 mult = phase->transform( new MulINode( divide, phase->intcon( pos_con ) ) );
1184
1185 // Finally, subtract the multiplied divided value from the original
1186 result = new SubINode( in(1), mult );
1187 }
1188
1189 // Now remove the bogus extra edges used to keep things alive
1190 hook->destruct(phase);
1191
1192 // return the value
1193 return result;
1194 }
1195
1196 //------------------------------Value------------------------------------------
1197 static const Type* mod_value(const PhaseGVN* phase, const Node* in1, const Node* in2, const BasicType bt) {
1198 assert(bt == T_INT || bt == T_LONG, "unexpected basic type");
1199 // Either input is TOP ==> the result is TOP
1200 const Type* t1 = phase->type(in1);
1201 const Type* t2 = phase->type(in2);
1202 if (t1 == Type::TOP) { return Type::TOP; }
1203 if (t2 == Type::TOP) { return Type::TOP; }
1204
1205 // Mod by zero? Throw exception at runtime!
1206 if (t2 == TypeInteger::zero(bt)) {
1207 return Type::TOP;
1208 }
1209
1210 // We always generate the dynamic check for 0.
1211 // 0 MOD X is 0
1212 if (t1 == TypeInteger::zero(bt)) { return t1; }
1213
1214 // X MOD X is 0
1215 if (in1 == in2) {
1216 return TypeInteger::zero(bt);
1217 }
1218
1219 const TypeInteger* i1 = t1->is_integer(bt);
1220 const TypeInteger* i2 = t2->is_integer(bt);
1221 if (i1->is_con() && i2->is_con()) {
1222 // We must be modulo'ing 2 int constants.
1223 // Special case: min_jlong % '-1' is UB, and e.g., x86 triggers a division error.
1224 // Any value % -1 is 0, so we can return 0 and avoid that scenario.
1225 if (i2->get_con_as_long(bt) == -1) {
1226 return TypeInteger::zero(bt);
1227 }
1228 return TypeInteger::make(i1->get_con_as_long(bt) % i2->get_con_as_long(bt), bt);
1229 }
1230 // We checked that t2 is not the zero constant. Hence, at least i2->_lo or i2->_hi must be non-zero,
1231 // and hence its absoute value is bigger than zero. Hence, the magnitude of the divisor (i.e. the
1232 // largest absolute value for any value in i2) must be in the range [1, 2^31] or [1, 2^63], depending
1233 // on the BasicType.
1234 julong divisor_magnitude = MAX2(g_uabs(i2->lo_as_long()), g_uabs(i2->hi_as_long()));
1235 // JVMS lrem bytecode: "the magnitude of the result is always less than the magnitude of the divisor"
1236 // "less than" means we can subtract 1 to get an inclusive upper bound in [0, 2^31-1] or [0, 2^63-1], respectively
1237 jlong hi = static_cast<jlong>(divisor_magnitude - 1);
1238 jlong lo = -hi;
1239 // JVMS lrem bytecode: "the result of the remainder operation can be negative only if the dividend
1240 // is negative and can be positive only if the dividend is positive"
1241 // Note that with a dividend with bounds e.g. lo == -4 and hi == -1 can still result in values
1242 // below lo; i.e., -3 % 3 == 0.
1243 // That means we cannot restrict the bound that is closer to zero beyond knowing its sign (or zero).
1244 if (i1->hi_as_long() <= 0) {
1245 // all dividends are not positive, so the result is not positive
1246 hi = 0;
1247 // if the dividend is known to be closer to zero, use that as a lower limit
1248 lo = MAX2(lo, i1->lo_as_long());
1249 } else if (i1->lo_as_long() >= 0) {
1250 // all dividends are not negative, so the result is not negative
1251 lo = 0;
1252 // if the dividend is known to be closer to zero, use that as an upper limit
1253 hi = MIN2(hi, i1->hi_as_long());
1254 } else {
1255 // Mixed signs, so we don't know the sign of the result, but the result is
1256 // either the dividend itself or a value closer to zero than the dividend,
1257 // and it is closer to zero than the divisor.
1258 // As we know i1->_lo < 0 and i1->_hi > 0, we can use these bounds directly.
1259 lo = MAX2(lo, i1->lo_as_long());
1260 hi = MIN2(hi, i1->hi_as_long());
1261 }
1262 return TypeInteger::make(lo, hi, MAX2(i1->_widen, i2->_widen), bt);
1263 }
1264
1265 const Type* ModINode::Value(PhaseGVN* phase) const {
1266 return mod_value(phase, in(1), in(2), T_INT);
1267 }
1268
1269 //=============================================================================
1270 //------------------------------Idealize---------------------------------------
1271
1272 template <typename TypeClass, typename Unsigned>
1273 static Node* unsigned_mod_ideal(PhaseGVN* phase, bool can_reshape, Node* mod) {
1274 // Check for dead control input
1275 if (mod->in(0) != nullptr && mod->remove_dead_region(phase, can_reshape)) {
1276 return mod;
1277 }
1278 // Don't bother trying to transform a dead node
1279 if (mod->in(0) != nullptr && mod->in(0)->is_top()) {
1280 return nullptr;
1281 }
1282
1283 // Get the modulus
1284 const Type* t = phase->type(mod->in(2));
1285 if (t == Type::TOP) {
1286 return nullptr;
1287 }
1288 const TypeClass* type_divisor = t->cast<TypeClass>();
1289
1290 // Check for useless control input
1291 // Check for excluding mod-zero case
1292 if (mod->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
1293 mod->set_req(0, nullptr); // Yank control input
1294 return mod;
1295 }
1296
1297 if (!type_divisor->is_con()) {
1298 return nullptr;
1299 }
1300 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1301
1302 if (divisor == 0) {
1303 return nullptr;
1304 }
1305
1306 if (is_power_of_2(divisor)) {
1307 return make_and<TypeClass>(mod->in(1), phase->makecon(TypeClass::make(divisor - 1)));
1308 }
1309
1310 return nullptr;
1311 }
1312
1313 template <typename TypeClass, typename Unsigned, typename Signed>
1314 static const Type* unsigned_mod_value(PhaseGVN* phase, const Node* mod) {
1315 const Type* t1 = phase->type(mod->in(1));
1316 const Type* t2 = phase->type(mod->in(2));
1317 if (t1 == Type::TOP) {
1318 return Type::TOP;
1319 }
1320 if (t2 == Type::TOP) {
1321 return Type::TOP;
1322 }
1323
1324 // 0 MOD X is 0
1325 if (t1 == TypeClass::ZERO) {
1326 return TypeClass::ZERO;
1327 }
1328 // X MOD X is 0
1329 if (mod->in(1) == mod->in(2)) {
1330 return TypeClass::ZERO;
1331 }
1332
1333 // Either input is BOTTOM ==> the result is the local BOTTOM
1334 const Type* bot = mod->bottom_type();
1335 if ((t1 == bot) || (t2 == bot) ||
1336 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
1337 return bot;
1338 }
1339
1340 const TypeClass* type_divisor = t2->cast<TypeClass>();
1341 if (type_divisor->is_con() && type_divisor->get_con() == 1) {
1342 return TypeClass::ZERO;
1343 }
1344
1345 // Mod by zero? Throw an exception at runtime!
1346 if (type_divisor->is_con() && type_divisor->get_con() == 0) {
1347 return TypeClass::POS;
1348 }
1349
1350 const TypeClass* type_dividend = t1->cast<TypeClass>();
1351 if (type_dividend->is_con() && type_divisor->is_con()) {
1352 Unsigned dividend = static_cast<Unsigned>(type_dividend->get_con());
1353 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1354 return TypeClass::make(static_cast<Signed>(dividend % divisor));
1355 }
1356
1357 return bot;
1358 }
1359
1360 Node* UModINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1361 return unsigned_mod_ideal<TypeInt, juint>(phase, can_reshape, this);
1362 }
1363
1364 const Type* UModINode::Value(PhaseGVN* phase) const {
1365 return unsigned_mod_value<TypeInt, juint, jint>(phase, this);
1366 }
1367
1368 //=============================================================================
1369 //------------------------------Idealize---------------------------------------
1370 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1371 // Check for dead control input
1372 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1373 // Don't bother trying to transform a dead node
1374 if( in(0) && in(0)->is_top() ) return nullptr;
1375
1376 // Get the modulus
1377 const Type *t = phase->type( in(2) );
1378 if( t == Type::TOP ) return nullptr;
1379 const TypeLong *tl = t->is_long();
1380
1381 // Check for useless control input
1382 // Check for excluding mod-zero case
1383 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
1384 set_req(0, nullptr); // Yank control input
1385 return this;
1386 }
1387
1388 // See if we are MOD'ing by 2^k or 2^k-1.
1389 if( !tl->is_con() ) return nullptr;
1390 jlong con = tl->get_con();
1391
1392 Node *hook = new Node(1);
1393
1394 // Expand mod
1395 if(con >= 0 && con < max_jlong && is_power_of_2(con + 1)) {
1396 uint k = log2i_exact(con + 1); // Extract k
1397
1398 // Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
1399 // Used to help a popular random number generator which does a long-mod
1400 // of 2^31-1 and shows up in SpecJBB and SciMark.
1401 static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1402 int trip_count = 1;
1403 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1404
1405 // If the unroll factor is not too large, and if conditional moves are
1406 // ok, then use this case
1407 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1408 Node *x = in(1); // Value being mod'd
1409 Node *divisor = in(2); // Also is mask
1410
1411 hook->init_req(0, x); // Add a use to x to prevent him from dying
1412 // Generate code to reduce X rapidly to nearly 2^k-1.
1413 for( int i = 0; i < trip_count; i++ ) {
1414 Node *xl = phase->transform( new AndLNode(x,divisor) );
1415 Node *xh = phase->transform( new RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1416 x = phase->transform( new AddLNode(xh,xl) );
1417 hook->set_req(0, x); // Add a use to x to prevent him from dying
1418 }
1419
1420 // Generate sign-fixup code. Was original value positive?
1421 // long hack_res = (i >= 0) ? divisor : CONST64(1);
1422 Node *cmp1 = phase->transform( new CmpLNode( in(1), phase->longcon(0) ) );
1423 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1424 Node *cmov1= phase->transform( new CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1425 // if( x >= hack_res ) x -= divisor;
1426 Node *sub = phase->transform( new SubLNode( x, divisor ) );
1427 Node *cmp2 = phase->transform( new CmpLNode( x, cmov1 ) );
1428 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1429 // Convention is to not transform the return value of an Ideal
1430 // since Ideal is expected to return a modified 'this' or a new node.
1431 Node *cmov2= new CMoveLNode(bol2, x, sub, TypeLong::LONG);
1432 // cmov2 is now the mod
1433
1434 // Now remove the bogus extra edges used to keep things alive
1435 hook->destruct(phase);
1436 return cmov2;
1437 }
1438 }
1439
1440 // Fell thru, the unroll case is not appropriate. Transform the modulo
1441 // into a long multiply/int multiply/subtract case
1442
1443 // Cannot handle mod 0, and min_jlong isn't handled by the transform
1444 if( con == 0 || con == min_jlong ) return nullptr;
1445
1446 // Get the absolute value of the constant; at this point, we can use this
1447 jlong pos_con = (con >= 0) ? con : -con;
1448
1449 // integer Mod 1 is always 0
1450 if( pos_con == 1 ) return new ConLNode(TypeLong::ZERO);
1451
1452 int log2_con = -1;
1453
1454 // If this is a power of two, then maybe we can mask it
1455 if (is_power_of_2(pos_con)) {
1456 log2_con = log2i_exact(pos_con);
1457
1458 const Type *dt = phase->type(in(1));
1459 const TypeLong *dtl = dt->isa_long();
1460
1461 // See if this can be masked, if the dividend is non-negative
1462 if( dtl && dtl->_lo >= 0 )
1463 return ( new AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1464 }
1465
1466 // Save in(1) so that it cannot be changed or deleted
1467 hook->init_req(0, in(1));
1468
1469 // Divide using the transform from DivL to MulL
1470 Node *result = transform_long_divide( phase, in(1), pos_con );
1471 if (result != nullptr) {
1472 Node *divide = phase->transform(result);
1473
1474 // Re-multiply, using a shift if this is a power of two
1475 Node *mult = nullptr;
1476
1477 if( log2_con >= 0 )
1478 mult = phase->transform( new LShiftLNode( divide, phase->intcon( log2_con ) ) );
1479 else
1480 mult = phase->transform( new MulLNode( divide, phase->longcon( pos_con ) ) );
1481
1482 // Finally, subtract the multiplied divided value from the original
1483 result = new SubLNode( in(1), mult );
1484 }
1485
1486 // Now remove the bogus extra edges used to keep things alive
1487 hook->destruct(phase);
1488
1489 // return the value
1490 return result;
1491 }
1492
1493 //------------------------------Value------------------------------------------
1494 const Type* ModLNode::Value(PhaseGVN* phase) const {
1495 return mod_value(phase, in(1), in(2), T_LONG);
1496 }
1497
1498 Node *UModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1499 return unsigned_mod_ideal<TypeLong, julong>(phase, can_reshape, this);
1500 }
1501
1502 const Type* UModLNode::Value(PhaseGVN* phase) const {
1503 return unsigned_mod_value<TypeLong, julong, jlong>(phase, this);
1504 }
1505
1506 const Type* ModFNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1507 // If either number is not a constant, we know nothing.
1508 if ((dividend->base() != Type::FloatCon) || (divisor->base() != Type::FloatCon)) {
1509 return nullptr; // note: x%x can be either NaN or 0
1510 }
1511
1512 float dividend_f = dividend->getf();
1513 float divisor_f = divisor->getf();
1514 jint dividend_i = jint_cast(dividend_f); // note: *(int*)&f1, not just (int)f1
1515 jint divisor_i = jint_cast(divisor_f);
1516
1517 // If either is a NaN, return an input NaN
1518 if (g_isnan(dividend_f)) {
1519 return dividend;
1520 }
1521 if (g_isnan(divisor_f)) {
1522 return divisor;
1523 }
1524
1525 // If an operand is infinity or the divisor is +/- zero, punt.
1526 if (!g_isfinite(dividend_f) || !g_isfinite(divisor_f) || divisor_i == 0 || divisor_i == min_jint) {
1527 return nullptr;
1528 }
1529
1530 // We must be modulo'ing 2 float constants.
1531 // Make sure that the sign of the fmod is equal to the sign of the dividend
1532 jint xr = jint_cast(fmod(dividend_f, divisor_f));
1533 if ((dividend_i ^ xr) < 0) {
1534 xr ^= min_jint;
1535 }
1536
1537 return TypeF::make(jfloat_cast(xr));
1538 }
1539
1540 const Type* ModDNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1541 // If either number is not a constant, we know nothing.
1542 if ((dividend->base() != Type::DoubleCon) || (divisor->base() != Type::DoubleCon)) {
1543 return nullptr; // note: x%x can be either NaN or 0
1544 }
1545
1546 double dividend_d = dividend->getd();
1547 double divisor_d = divisor->getd();
1548 jlong dividend_l = jlong_cast(dividend_d); // note: *(long*)&f1, not just (long)f1
1549 jlong divisor_l = jlong_cast(divisor_d);
1550
1551 // If either is a NaN, return an input NaN
1552 if (g_isnan(dividend_d)) {
1553 return dividend;
1554 }
1555 if (g_isnan(divisor_d)) {
1556 return divisor;
1557 }
1558
1559 // If an operand is infinity or the divisor is +/- zero, punt.
1560 if (!g_isfinite(dividend_d) || !g_isfinite(divisor_d) || divisor_l == 0 || divisor_l == min_jlong) {
1561 return nullptr;
1562 }
1563
1564 // We must be modulo'ing 2 double constants.
1565 // Make sure that the sign of the fmod is equal to the sign of the dividend
1566 jlong xr = jlong_cast(fmod(dividend_d, divisor_d));
1567 if ((dividend_l ^ xr) < 0) {
1568 xr ^= min_jlong;
1569 }
1570
1571 return TypeD::make(jdouble_cast(xr));
1572 }
1573
1574 Node* ModFloatingNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1575 if (can_reshape) {
1576 PhaseIterGVN* igvn = phase->is_IterGVN();
1577
1578 // Either input is TOP ==> the result is TOP
1579 const Type* dividend_type = phase->type(dividend());
1580 const Type* divisor_type = phase->type(divisor());
1581 if (dividend_type == Type::TOP || divisor_type == Type::TOP) {
1582 return phase->C->top();
1583 }
1584 const Type* constant_result = get_result_if_constant(dividend_type, divisor_type);
1585 if (constant_result != nullptr) {
1586 return make_tuple_of_input_state_and_constant_result(igvn, constant_result);
1587 }
1588 }
1589
1590 return CallLeafPureNode::Ideal(phase, can_reshape);
1591 }
1592
1593 /* Give a tuple node for ::Ideal to return, made of the input state (control to return addr)
1594 * and the given constant result. Idealization of projections will make sure to transparently
1595 * propagate the input state and replace the result by the said constant.
1596 */
1597 TupleNode* ModFloatingNode::make_tuple_of_input_state_and_constant_result(PhaseIterGVN* phase, const Type* con) const {
1598 Node* con_node = phase->makecon(con);
1599 TupleNode* tuple = TupleNode::make(
1600 tf()->range(),
1601 in(TypeFunc::Control),
1602 in(TypeFunc::I_O),
1603 in(TypeFunc::Memory),
1604 in(TypeFunc::FramePtr),
1605 in(TypeFunc::ReturnAdr),
1606 con_node);
1607
1608 return tuple;
1609 }
1610
1611 //=============================================================================
1612
1613 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1614 init_req(0, c);
1615 init_req(1, dividend);
1616 init_req(2, divisor);
1617 }
1618
1619 DivModNode* DivModNode::make(Node* div_or_mod, BasicType bt, bool is_unsigned) {
1620 assert(bt == T_INT || bt == T_LONG, "only int or long input pattern accepted");
1621
1622 if (bt == T_INT) {
1623 if (is_unsigned) {
1624 return UDivModINode::make(div_or_mod);
1625 } else {
1626 return DivModINode::make(div_or_mod);
1627 }
1628 } else {
1629 if (is_unsigned) {
1630 return UDivModLNode::make(div_or_mod);
1631 } else {
1632 return DivModLNode::make(div_or_mod);
1633 }
1634 }
1635 }
1636
1637 //------------------------------make------------------------------------------
1638 DivModINode* DivModINode::make(Node* div_or_mod) {
1639 Node* n = div_or_mod;
1640 assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1641 "only div or mod input pattern accepted");
1642
1643 DivModINode* divmod = new DivModINode(n->in(0), n->in(1), n->in(2));
1644 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1645 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1646 return divmod;
1647 }
1648
1649 //------------------------------make------------------------------------------
1650 DivModLNode* DivModLNode::make(Node* div_or_mod) {
1651 Node* n = div_or_mod;
1652 assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1653 "only div or mod input pattern accepted");
1654
1655 DivModLNode* divmod = new DivModLNode(n->in(0), n->in(1), n->in(2));
1656 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1657 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1658 return divmod;
1659 }
1660
1661 //------------------------------match------------------------------------------
1662 // return result(s) along with their RegMask info
1663 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1664 uint ideal_reg = proj->ideal_reg();
1665 RegMask rm;
1666 if (proj->_con == div_proj_num) {
1667 rm.assignFrom(match->divI_proj_mask());
1668 } else {
1669 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1670 rm.assignFrom(match->modI_proj_mask());
1671 }
1672 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1673 }
1674
1675
1676 //------------------------------match------------------------------------------
1677 // return result(s) along with their RegMask info
1678 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1679 uint ideal_reg = proj->ideal_reg();
1680 RegMask rm;
1681 if (proj->_con == div_proj_num) {
1682 rm.assignFrom(match->divL_proj_mask());
1683 } else {
1684 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1685 rm.assignFrom(match->modL_proj_mask());
1686 }
1687 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1688 }
1689
1690 //------------------------------make------------------------------------------
1691 UDivModINode* UDivModINode::make(Node* div_or_mod) {
1692 Node* n = div_or_mod;
1693 assert(n->Opcode() == Op_UDivI || n->Opcode() == Op_UModI,
1694 "only div or mod input pattern accepted");
1695
1696 UDivModINode* divmod = new UDivModINode(n->in(0), n->in(1), n->in(2));
1697 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1698 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1699 return divmod;
1700 }
1701
1702 //------------------------------make------------------------------------------
1703 UDivModLNode* UDivModLNode::make(Node* div_or_mod) {
1704 Node* n = div_or_mod;
1705 assert(n->Opcode() == Op_UDivL || n->Opcode() == Op_UModL,
1706 "only div or mod input pattern accepted");
1707
1708 UDivModLNode* divmod = new UDivModLNode(n->in(0), n->in(1), n->in(2));
1709 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1710 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1711 return divmod;
1712 }
1713
1714 //------------------------------match------------------------------------------
1715 // return result(s) along with their RegMask info
1716 Node* UDivModINode::match( const ProjNode *proj, const Matcher *match ) {
1717 uint ideal_reg = proj->ideal_reg();
1718 RegMask rm;
1719 if (proj->_con == div_proj_num) {
1720 rm.assignFrom(match->divI_proj_mask());
1721 } else {
1722 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1723 rm.assignFrom(match->modI_proj_mask());
1724 }
1725 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1726 }
1727
1728
1729 //------------------------------match------------------------------------------
1730 // return result(s) along with their RegMask info
1731 Node* UDivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1732 uint ideal_reg = proj->ideal_reg();
1733 RegMask rm;
1734 if (proj->_con == div_proj_num) {
1735 rm.assignFrom(match->divL_proj_mask());
1736 } else {
1737 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1738 rm.assignFrom(match->modL_proj_mask());
1739 }
1740 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1741 }