1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "memory/allocation.inline.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/connode.hpp"
28 #include "opto/convertnode.hpp"
29 #include "opto/divnode.hpp"
30 #include "opto/machnode.hpp"
31 #include "opto/matcher.hpp"
32 #include "opto/movenode.hpp"
33 #include "opto/mulnode.hpp"
34 #include "opto/phaseX.hpp"
35 #include "opto/runtime.hpp"
36 #include "opto/subnode.hpp"
37 #include "utilities/powerOfTwo.hpp"
38
39 // Portions of code courtesy of Clifford Click
40
41 // Optimization - Graph Style
42
43 #include <math.h>
44
45 ModFloatingNode::ModFloatingNode(Compile* C, const TypeFunc* tf, address addr, const char* name) : CallLeafPureNode(tf, addr, name) {
46 add_flag(Flag_is_macro);
47 C->add_macro_node(this);
48 }
49
50 ModDNode::ModDNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::drem), "drem") {
51 init_req(TypeFunc::Parms + 0, a);
52 init_req(TypeFunc::Parms + 1, C->top());
53 init_req(TypeFunc::Parms + 2, b);
54 init_req(TypeFunc::Parms + 3, C->top());
55 }
56
57 ModFNode::ModFNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::modf_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::frem), "frem") {
58 init_req(TypeFunc::Parms + 0, a);
59 init_req(TypeFunc::Parms + 1, b);
60 }
61
62 //----------------------magic_int_divide_constants-----------------------------
63 // Compute magic multiplier and shift constant for converting a 32 bit divide
64 // by constant into a multiply/shift/add series. Return false if calculations
65 // fail.
66 //
67 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
68 // minor type name and parameter changes.
69 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
70 int32_t p;
71 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
72 const uint32_t two31 = 0x80000000L; // 2**31.
73
74 ad = ABS(d);
75 if (d == 0 || d == 1) return false;
76 t = two31 + ((uint32_t)d >> 31);
77 anc = t - 1 - t%ad; // Absolute value of nc.
78 p = 31; // Init. p.
79 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
80 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
81 q2 = two31/ad; // Init. q2 = 2**p/|d|.
82 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
83 do {
84 p = p + 1;
85 q1 = 2*q1; // Update q1 = 2**p/|nc|.
86 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
87 if (r1 >= anc) { // (Must be an unsigned
88 q1 = q1 + 1; // comparison here).
89 r1 = r1 - anc;
90 }
91 q2 = 2*q2; // Update q2 = 2**p/|d|.
92 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
93 if (r2 >= ad) { // (Must be an unsigned
94 q2 = q2 + 1; // comparison here).
95 r2 = r2 - ad;
96 }
97 delta = ad - r2;
98 } while (q1 < delta || (q1 == delta && r1 == 0));
99
100 M = q2 + 1;
101 if (d < 0) M = -M; // Magic number and
102 s = p - 32; // shift amount to return.
103
104 return true;
105 }
106
107 //--------------------------transform_int_divide-------------------------------
108 // Convert a division by constant divisor into an alternate Ideal graph.
109 // Return null if no transformation occurs.
110 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
111
112 // Check for invalid divisors
113 assert( divisor != 0 && divisor != min_jint,
114 "bad divisor for transforming to long multiply" );
115
116 bool d_pos = divisor >= 0;
117 jint d = d_pos ? divisor : -divisor;
118 const int N = 32;
119
120 // Result
121 Node *q = nullptr;
122
123 if (d == 1) {
124 // division by +/- 1
125 if (!d_pos) {
126 // Just negate the value
127 q = new SubINode(phase->intcon(0), dividend);
128 }
129 } else if ( is_power_of_2(d) ) {
130 // division by +/- a power of 2
131
132 // See if we can simply do a shift without rounding
133 bool needs_rounding = true;
134 const Type *dt = phase->type(dividend);
135 const TypeInt *dti = dt->isa_int();
136 if (dti && dti->_lo >= 0) {
137 // we don't need to round a positive dividend
138 needs_rounding = false;
139 } else if( dividend->Opcode() == Op_AndI ) {
140 // An AND mask of sufficient size clears the low bits and
141 // I can avoid rounding.
142 const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
143 if( andconi_t && andconi_t->is_con() ) {
144 jint andconi = andconi_t->get_con();
145 if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
146 if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
147 dividend = dividend->in(1);
148 needs_rounding = false;
149 }
150 }
151 }
152
153 // Add rounding to the shift to handle the sign bit
154 int l = log2i_graceful(d - 1) + 1;
155 if (needs_rounding) {
156 // Divide-by-power-of-2 can be made into a shift, but you have to do
157 // more math for the rounding. You need to add 0 for positive
158 // numbers, and "i-1" for negative numbers. Example: i=4, so the
159 // shift is by 2. You need to add 3 to negative dividends and 0 to
160 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
161 // (-2+3)>>2 becomes 0, etc.
162
163 // Compute 0 or -1, based on sign bit
164 Node *sign = phase->transform(new RShiftINode(dividend, phase->intcon(N - 1)));
165 // Mask sign bit to the low sign bits
166 Node *round = phase->transform(new URShiftINode(sign, phase->intcon(N - l)));
167 // Round up before shifting
168 dividend = phase->transform(new AddINode(dividend, round));
169 }
170
171 // Shift for division
172 q = new RShiftINode(dividend, phase->intcon(l));
173
174 if (!d_pos) {
175 q = new SubINode(phase->intcon(0), phase->transform(q));
176 }
177 } else {
178 // Attempt the jint constant divide -> multiply transform found in
179 // "Division by Invariant Integers using Multiplication"
180 // by Granlund and Montgomery
181 // See also "Hacker's Delight", chapter 10 by Warren.
182
183 jint magic_const;
184 jint shift_const;
185 if (magic_int_divide_constants(d, magic_const, shift_const)) {
186 Node *magic = phase->longcon(magic_const);
187 Node *dividend_long = phase->transform(new ConvI2LNode(dividend));
188
189 // Compute the high half of the dividend x magic multiplication
190 Node *mul_hi = phase->transform(new MulLNode(dividend_long, magic));
191
192 if (magic_const < 0) {
193 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N)));
194 mul_hi = phase->transform(new ConvL2INode(mul_hi));
195
196 // The magic multiplier is too large for a 32 bit constant. We've adjusted
197 // it down by 2^32, but have to add 1 dividend back in after the multiplication.
198 // This handles the "overflow" case described by Granlund and Montgomery.
199 mul_hi = phase->transform(new AddINode(dividend, mul_hi));
200
201 // Shift over the (adjusted) mulhi
202 if (shift_const != 0) {
203 mul_hi = phase->transform(new RShiftINode(mul_hi, phase->intcon(shift_const)));
204 }
205 } else {
206 // No add is required, we can merge the shifts together.
207 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
208 mul_hi = phase->transform(new ConvL2INode(mul_hi));
209 }
210
211 // Get a 0 or -1 from the sign of the dividend.
212 Node *addend0 = mul_hi;
213 Node *addend1 = phase->transform(new RShiftINode(dividend, phase->intcon(N-1)));
214
215 // If the divisor is negative, swap the order of the input addends;
216 // this has the effect of negating the quotient.
217 if (!d_pos) {
218 Node *temp = addend0; addend0 = addend1; addend1 = temp;
219 }
220
221 // Adjust the final quotient by subtracting -1 (adding 1)
222 // from the mul_hi.
223 q = new SubINode(addend0, addend1);
224 }
225 }
226
227 return q;
228 }
229
230 //---------------------magic_long_divide_constants-----------------------------
231 // Compute magic multiplier and shift constant for converting a 64 bit divide
232 // by constant into a multiply/shift/add series. Return false if calculations
233 // fail.
234 //
235 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
236 // minor type name and parameter changes. Adjusted to 64 bit word width.
237 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
238 int64_t p;
239 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
240 const uint64_t two63 = UCONST64(0x8000000000000000); // 2**63.
241
242 ad = ABS(d);
243 if (d == 0 || d == 1) return false;
244 t = two63 + ((uint64_t)d >> 63);
245 anc = t - 1 - t%ad; // Absolute value of nc.
246 p = 63; // Init. p.
247 q1 = two63/anc; // Init. q1 = 2**p/|nc|.
248 r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
249 q2 = two63/ad; // Init. q2 = 2**p/|d|.
250 r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
251 do {
252 p = p + 1;
253 q1 = 2*q1; // Update q1 = 2**p/|nc|.
254 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
255 if (r1 >= anc) { // (Must be an unsigned
256 q1 = q1 + 1; // comparison here).
257 r1 = r1 - anc;
258 }
259 q2 = 2*q2; // Update q2 = 2**p/|d|.
260 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
261 if (r2 >= ad) { // (Must be an unsigned
262 q2 = q2 + 1; // comparison here).
263 r2 = r2 - ad;
264 }
265 delta = ad - r2;
266 } while (q1 < delta || (q1 == delta && r1 == 0));
267
268 M = q2 + 1;
269 if (d < 0) M = -M; // Magic number and
270 s = p - 64; // shift amount to return.
271
272 return true;
273 }
274
275 //---------------------long_by_long_mulhi--------------------------------------
276 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
277 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
278 // If the architecture supports a 64x64 mulhi, there is
279 // no need to synthesize it in ideal nodes.
280 if (Matcher::has_match_rule(Op_MulHiL)) {
281 Node* v = phase->longcon(magic_const);
282 return new MulHiLNode(dividend, v);
283 }
284
285 // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
286 //
287 // int mulhs(int u, int v) {
288 // unsigned u0, v0, w0;
289 // int u1, v1, w1, w2, t;
290 //
291 // u0 = u & 0xFFFF; u1 = u >> 16;
292 // v0 = v & 0xFFFF; v1 = v >> 16;
293 // w0 = u0*v0;
294 // t = u1*v0 + (w0 >> 16);
295 // w1 = t & 0xFFFF;
296 // w2 = t >> 16;
297 // w1 = u0*v1 + w1;
298 // return u1*v1 + w2 + (w1 >> 16);
299 // }
300 //
301 // Note: The version above is for 32x32 multiplications, while the
302 // following inline comments are adapted to 64x64.
303
304 const int N = 64;
305
306 // Dummy node to keep intermediate nodes alive during construction
307 Node* hook = new Node(4);
308
309 // u0 = u & 0xFFFFFFFF; u1 = u >> 32;
310 Node* u0 = phase->transform(new AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
311 Node* u1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N / 2)));
312 hook->init_req(0, u0);
313 hook->init_req(1, u1);
314
315 // v0 = v & 0xFFFFFFFF; v1 = v >> 32;
316 Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
317 Node* v1 = phase->longcon(magic_const >> (N / 2));
318
319 // w0 = u0*v0;
320 Node* w0 = phase->transform(new MulLNode(u0, v0));
321
322 // t = u1*v0 + (w0 >> 32);
323 Node* u1v0 = phase->transform(new MulLNode(u1, v0));
324 Node* temp = phase->transform(new URShiftLNode(w0, phase->intcon(N / 2)));
325 Node* t = phase->transform(new AddLNode(u1v0, temp));
326 hook->init_req(2, t);
327
328 // w1 = t & 0xFFFFFFFF;
329 Node* w1 = phase->transform(new AndLNode(t, phase->longcon(0xFFFFFFFF)));
330 hook->init_req(3, w1);
331
332 // w2 = t >> 32;
333 Node* w2 = phase->transform(new RShiftLNode(t, phase->intcon(N / 2)));
334
335 // w1 = u0*v1 + w1;
336 Node* u0v1 = phase->transform(new MulLNode(u0, v1));
337 w1 = phase->transform(new AddLNode(u0v1, w1));
338
339 // return u1*v1 + w2 + (w1 >> 32);
340 Node* u1v1 = phase->transform(new MulLNode(u1, v1));
341 Node* temp1 = phase->transform(new AddLNode(u1v1, w2));
342 Node* temp2 = phase->transform(new RShiftLNode(w1, phase->intcon(N / 2)));
343
344 // Remove the bogus extra edges used to keep things alive
345 hook->destruct(phase);
346
347 return new AddLNode(temp1, temp2);
348 }
349
350
351 //--------------------------transform_long_divide------------------------------
352 // Convert a division by constant divisor into an alternate Ideal graph.
353 // Return null if no transformation occurs.
354 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
355 // Check for invalid divisors
356 assert( divisor != 0L && divisor != min_jlong,
357 "bad divisor for transforming to long multiply" );
358
359 bool d_pos = divisor >= 0;
360 jlong d = d_pos ? divisor : -divisor;
361 const int N = 64;
362
363 // Result
364 Node *q = nullptr;
365
366 if (d == 1) {
367 // division by +/- 1
368 if (!d_pos) {
369 // Just negate the value
370 q = new SubLNode(phase->longcon(0), dividend);
371 }
372 } else if ( is_power_of_2(d) ) {
373
374 // division by +/- a power of 2
375
376 // See if we can simply do a shift without rounding
377 bool needs_rounding = true;
378 const Type *dt = phase->type(dividend);
379 const TypeLong *dtl = dt->isa_long();
380
381 if (dtl && dtl->_lo > 0) {
382 // we don't need to round a positive dividend
383 needs_rounding = false;
384 } else if( dividend->Opcode() == Op_AndL ) {
385 // An AND mask of sufficient size clears the low bits and
386 // I can avoid rounding.
387 const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
388 if( andconl_t && andconl_t->is_con() ) {
389 jlong andconl = andconl_t->get_con();
390 if( andconl < 0 && is_power_of_2(-andconl) && (-andconl) >= d ) {
391 if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
392 dividend = dividend->in(1);
393 needs_rounding = false;
394 }
395 }
396 }
397
398 // Add rounding to the shift to handle the sign bit
399 int l = log2i_graceful(d - 1) + 1;
400 if (needs_rounding) {
401 // Divide-by-power-of-2 can be made into a shift, but you have to do
402 // more math for the rounding. You need to add 0 for positive
403 // numbers, and "i-1" for negative numbers. Example: i=4, so the
404 // shift is by 2. You need to add 3 to negative dividends and 0 to
405 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
406 // (-2+3)>>2 becomes 0, etc.
407
408 // Compute 0 or -1, based on sign bit
409 Node *sign = phase->transform(new RShiftLNode(dividend, phase->intcon(N - 1)));
410 // Mask sign bit to the low sign bits
411 Node *round = phase->transform(new URShiftLNode(sign, phase->intcon(N - l)));
412 // Round up before shifting
413 dividend = phase->transform(new AddLNode(dividend, round));
414 }
415
416 // Shift for division
417 q = new RShiftLNode(dividend, phase->intcon(l));
418
419 if (!d_pos) {
420 q = new SubLNode(phase->longcon(0), phase->transform(q));
421 }
422 } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
423 // it is faster than code generated below.
424 // Attempt the jlong constant divide -> multiply transform found in
425 // "Division by Invariant Integers using Multiplication"
426 // by Granlund and Montgomery
427 // See also "Hacker's Delight", chapter 10 by Warren.
428
429 jlong magic_const;
430 jint shift_const;
431 if (magic_long_divide_constants(d, magic_const, shift_const)) {
432 // Compute the high half of the dividend x magic multiplication
433 Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
434
435 // The high half of the 128-bit multiply is computed.
436 if (magic_const < 0) {
437 // The magic multiplier is too large for a 64 bit constant. We've adjusted
438 // it down by 2^64, but have to add 1 dividend back in after the multiplication.
439 // This handles the "overflow" case described by Granlund and Montgomery.
440 mul_hi = phase->transform(new AddLNode(dividend, mul_hi));
441 }
442
443 // Shift over the (adjusted) mulhi
444 if (shift_const != 0) {
445 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(shift_const)));
446 }
447
448 // Get a 0 or -1 from the sign of the dividend.
449 Node *addend0 = mul_hi;
450 Node *addend1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N-1)));
451
452 // If the divisor is negative, swap the order of the input addends;
453 // this has the effect of negating the quotient.
454 if (!d_pos) {
455 Node *temp = addend0; addend0 = addend1; addend1 = temp;
456 }
457
458 // Adjust the final quotient by subtracting -1 (adding 1)
459 // from the mul_hi.
460 q = new SubLNode(addend0, addend1);
461 }
462 }
463
464 return q;
465 }
466
467 template <typename TypeClass, typename Unsigned>
468 Node* unsigned_div_ideal(PhaseGVN* phase, bool can_reshape, Node* div) {
469 // Check for dead control input
470 if (div->in(0) != nullptr && div->remove_dead_region(phase, can_reshape)) {
471 return div;
472 }
473 // Don't bother trying to transform a dead node
474 if (div->in(0) != nullptr && div->in(0)->is_top()) {
475 return nullptr;
476 }
477
478 const Type* t = phase->type(div->in(2));
479 if (t == Type::TOP) {
480 return nullptr;
481 }
482 const TypeClass* type_divisor = t->cast<TypeClass>();
483
484 // Check for useless control input
485 // Check for excluding div-zero case
486 if (div->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
487 div->set_req(0, nullptr); // Yank control input
488 return div;
489 }
490
491 if (!type_divisor->is_con()) {
492 return nullptr;
493 }
494 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con()); // Get divisor
495
496 if (divisor == 0 || divisor == 1) {
497 return nullptr; // Dividing by zero constant does not idealize
498 }
499
500 if (is_power_of_2(divisor)) {
501 return make_urshift<TypeClass>(div->in(1), phase->intcon(log2i_graceful(divisor)));
502 }
503
504 return nullptr;
505 }
506
507 template<typename IntegerType>
508 static const IntegerType* compute_signed_div_type(const IntegerType* i1, const IntegerType* i2) {
509 typedef typename IntegerType::NativeType NativeType;
510 assert(!i2->is_con() || i2->get_con() != 0, "Can't handle zero constant divisor");
511 int widen = MAX2(i1->_widen, i2->_widen);
512
513 // Case A: divisor range spans zero (i2->_lo < 0 < i2->_hi)
514 // We split into two subproblems to avoid division by 0:
515 // - negative part: [i2->_lo, −1]
516 // - positive part: [1, i2->_hi]
517 // Then we union the results by taking the min of all lower‐bounds and
518 // the max of all upper‐bounds from the two halves.
519 if (i2->_lo < 0 && i2->_hi > 0) {
520 // Handle negative part of the divisor range
521 const IntegerType* neg_part = compute_signed_div_type(i1, IntegerType::make(i2->_lo, -1, widen));
522 // Handle positive part of the divisor range
523 const IntegerType* pos_part = compute_signed_div_type(i1, IntegerType::make(1, i2->_hi, widen));
524 // Merge results
525 NativeType new_lo = MIN2(neg_part->_lo, pos_part->_lo);
526 NativeType new_hi = MAX2(neg_part->_hi, pos_part->_hi);
527 assert(new_hi >= new_lo, "sanity");
528 return IntegerType::make(new_lo, new_hi, widen);
529 }
530
531 // Case B: divisor range does NOT span zero.
532 // Here i2 is entirely negative or entirely positive.
533 // Then i1/i2 is monotonic in i1 and i2 (when i2 keeps the same sign).
534 // Therefore the extrema occur at the four “corners”:
535 // (i1->_lo, i2->_hi), (i1->_lo, i2->_lo), (i1->_hi, i2->_lo), (i1->_hi, i2->_hi).
536 // We compute all four and take the min and max.
537 // A special case handles overflow when dividing the most‐negative value by −1.
538
539 // adjust i2 bounds to not include zero, as zero always throws
540 NativeType i2_lo = i2->_lo == 0 ? 1 : i2->_lo;
541 NativeType i2_hi = i2->_hi == 0 ? -1 : i2->_hi;
542 constexpr NativeType min_val = std::numeric_limits<NativeType>::min();
543 static_assert(min_val == min_jint || min_val == min_jlong, "min has to be either min_jint or min_jlong");
544 constexpr NativeType max_val = std::numeric_limits<NativeType>::max();
545 static_assert(max_val == max_jint || max_val == max_jlong, "max has to be either max_jint or max_jlong");
546
547 // Special overflow case: min_val / (-1) == min_val (cf. JVMS§6.5 idiv/ldiv)
548 // We need to be careful that we never run min_val / (-1) in C++ code, as this overflow is UB there
549 if (i1->_lo == min_val && i2_hi == -1) {
550 NativeType new_lo = min_val;
551 NativeType new_hi;
552 // compute new_hi depending on whether divisor or dividend is non-constant.
553 // i2 is purely in the negative domain here (as i2_hi is -1)
554 // which means the maximum value this division can yield is either
555 if (!i1->is_con()) {
556 // a) non-constant dividend: i1 could be min_val + 1.
557 // -> i1 / i2 = (min_val + 1) / -1 = max_val is possible.
558 new_hi = max_val;
559 assert((min_val + 1) / -1 == new_hi, "new_hi should be max_val");
560 } else if (i2_lo != i2_hi) {
561 // b) i1 is constant min_val, i2 is non-constant.
562 // if i2 = -1 -> i1 / i2 = min_val / -1 = min_val
563 // if i2 < -1 -> i1 / i2 <= min_val / -2 = (max_val / 2) + 1
564 new_hi = (max_val / 2) + 1;
565 assert(min_val / -2 == new_hi, "new_hi should be (max_val / 2) + 1)");
566 } else {
567 // c) i1 is constant min_val, i2 is constant -1.
568 // -> i1 / i2 = min_val / -1 = min_val
569 new_hi = min_val;
570 }
571
572 #ifdef ASSERT
573 // validate new_hi for non-constant divisor
574 if (i2_lo != i2_hi) {
575 assert(i2_lo != -1, "Special case not possible here, as i2_lo has to be < i2_hi");
576 NativeType result = i1->_lo / i2_lo;
577 assert(new_hi >= result, "computed wrong value for new_hi");
578 }
579
580 // validate new_hi for non-constant dividend
581 if (!i1->is_con()) {
582 assert(i2_hi > min_val, "Special case not possible here, as i1->_hi has to be > min");
583 NativeType result1 = i1->_hi / i2_lo;
584 NativeType result2 = i1->_hi / i2_hi;
585 assert(new_hi >= result1 && new_hi >= result2, "computed wrong value for new_hi");
586 }
587 #endif
588
589 return IntegerType::make(new_lo, new_hi, widen);
590 }
591 assert((i1->_lo != min_val && i1->_hi != min_val) || (i2_hi != -1 && i2_lo != -1), "should have filtered out before");
592
593 // Special case not possible here, calculate all corners normally
594 NativeType corner1 = i1->_lo / i2_lo;
595 NativeType corner2 = i1->_lo / i2_hi;
596 NativeType corner3 = i1->_hi / i2_lo;
597 NativeType corner4 = i1->_hi / i2_hi;
598
599 NativeType new_lo = MIN4(corner1, corner2, corner3, corner4);
600 NativeType new_hi = MAX4(corner1, corner2, corner3, corner4);
601 return IntegerType::make(new_lo, new_hi, widen);
602 }
603
604 //=============================================================================
605 //------------------------------Identity---------------------------------------
606 // If the divisor is 1, we are an identity on the dividend.
607 Node* DivINode::Identity(PhaseGVN* phase) {
608 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
609 }
610
611 //------------------------------Idealize---------------------------------------
612 // Divides can be changed to multiplies and/or shifts
613 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
614 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
615 // Don't bother trying to transform a dead node
616 if( in(0) && in(0)->is_top() ) return nullptr;
617
618 const Type *t = phase->type( in(2) );
619 if( t == TypeInt::ONE ) // Identity?
620 return nullptr; // Skip it
621
622 const TypeInt *ti = t->isa_int();
623 if( !ti ) return nullptr;
624
625 // Check for useless control input
626 // Check for excluding div-zero case
627 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
628 set_req(0, nullptr); // Yank control input
629 return this;
630 }
631
632 if( !ti->is_con() ) return nullptr;
633 jint i = ti->get_con(); // Get divisor
634
635 if (i == 0) return nullptr; // Dividing by zero constant does not idealize
636
637 // Dividing by MININT does not optimize as a power-of-2 shift.
638 if( i == min_jint ) return nullptr;
639
640 return transform_int_divide( phase, in(1), i );
641 }
642
643 //------------------------------Value------------------------------------------
644 // A DivINode divides its inputs. The third input is a Control input, used to
645 // prevent hoisting the divide above an unsafe test.
646 const Type* DivINode::Value(PhaseGVN* phase) const {
647 // Either input is TOP ==> the result is TOP
648 const Type* t1 = phase->type(in(1));
649 const Type* t2 = phase->type(in(2));
650 if (t1 == Type::TOP || t2 == Type::TOP) {
651 return Type::TOP;
652 }
653
654 if (t2 == TypeInt::ZERO) {
655 // this division will always throw an exception
656 return Type::TOP;
657 }
658
659 // x/x == 1 since we always generate the dynamic divisor check for 0.
660 if (in(1) == in(2)) {
661 return TypeInt::ONE;
662 }
663
664 const TypeInt* i1 = t1->is_int();
665 const TypeInt* i2 = t2->is_int();
666
667 return compute_signed_div_type<TypeInt>(i1, i2);
668 }
669
670
671 //=============================================================================
672 //------------------------------Identity---------------------------------------
673 // If the divisor is 1, we are an identity on the dividend.
674 Node* DivLNode::Identity(PhaseGVN* phase) {
675 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
676 }
677
678 //------------------------------Idealize---------------------------------------
679 // Dividing by a power of 2 is a shift.
680 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
681 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
682 // Don't bother trying to transform a dead node
683 if( in(0) && in(0)->is_top() ) return nullptr;
684
685 const Type *t = phase->type( in(2) );
686 if( t == TypeLong::ONE ) // Identity?
687 return nullptr; // Skip it
688
689 const TypeLong *tl = t->isa_long();
690 if( !tl ) return nullptr;
691
692 // Check for useless control input
693 // Check for excluding div-zero case
694 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
695 set_req(0, nullptr); // Yank control input
696 return this;
697 }
698
699 if( !tl->is_con() ) return nullptr;
700 jlong l = tl->get_con(); // Get divisor
701
702 if (l == 0) return nullptr; // Dividing by zero constant does not idealize
703
704 // Dividing by MINLONG does not optimize as a power-of-2 shift.
705 if( l == min_jlong ) return nullptr;
706
707 return transform_long_divide( phase, in(1), l );
708 }
709
710 //------------------------------Value------------------------------------------
711 // A DivLNode divides its inputs. The third input is a Control input, used to
712 // prevent hoisting the divide above an unsafe test.
713 const Type* DivLNode::Value(PhaseGVN* phase) const {
714 // Either input is TOP ==> the result is TOP
715 const Type* t1 = phase->type(in(1));
716 const Type* t2 = phase->type(in(2));
717 if (t1 == Type::TOP || t2 == Type::TOP) {
718 return Type::TOP;
719 }
720
721 if (t2 == TypeLong::ZERO) {
722 // this division will always throw an exception
723 return Type::TOP;
724 }
725
726 // x/x == 1 since we always generate the dynamic divisor check for 0.
727 if (in(1) == in(2)) {
728 return TypeLong::ONE;
729 }
730
731 const TypeLong* i1 = t1->is_long();
732 const TypeLong* i2 = t2->is_long();
733
734 return compute_signed_div_type<TypeLong>(i1, i2);
735 }
736
737
738 //=============================================================================
739 //------------------------------Value------------------------------------------
740 // An DivFNode divides its inputs. The third input is a Control input, used to
741 // prevent hoisting the divide above an unsafe test.
742 const Type* DivFNode::Value(PhaseGVN* phase) const {
743 // Either input is TOP ==> the result is TOP
744 const Type *t1 = phase->type( in(1) );
745 const Type *t2 = phase->type( in(2) );
746 if( t1 == Type::TOP ) return Type::TOP;
747 if( t2 == Type::TOP ) return Type::TOP;
748
749 // Either input is BOTTOM ==> the result is the local BOTTOM
750 const Type *bot = bottom_type();
751 if( (t1 == bot) || (t2 == bot) ||
752 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
753 return bot;
754
755 // x/x == 1, we ignore 0/0.
756 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
757 // Does not work for variables because of NaN's
758 if (in(1) == in(2) && t1->base() == Type::FloatCon &&
759 !g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) { // could be negative ZERO or NaN
760 return TypeF::ONE;
761 }
762
763 if( t2 == TypeF::ONE )
764 return t1;
765
766 // If divisor is a constant and not zero, divide them numbers
767 if( t1->base() == Type::FloatCon &&
768 t2->base() == Type::FloatCon &&
769 t2->getf() != 0.0 ) // could be negative zero
770 return TypeF::make( t1->getf()/t2->getf() );
771
772 // If the dividend is a constant zero
773 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
774 // Test TypeF::ZERO is not sufficient as it could be negative zero
775
776 if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
777 return TypeF::ZERO;
778
779 // Otherwise we give up all hope
780 return Type::FLOAT;
781 }
782
783 //------------------------------isA_Copy---------------------------------------
784 // Dividing by self is 1.
785 // If the divisor is 1, we are an identity on the dividend.
786 Node* DivFNode::Identity(PhaseGVN* phase) {
787 return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
788 }
789
790
791 //------------------------------Idealize---------------------------------------
792 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
793 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
794 // Don't bother trying to transform a dead node
795 if( in(0) && in(0)->is_top() ) return nullptr;
796
797 const Type *t2 = phase->type( in(2) );
798 if( t2 == TypeF::ONE ) // Identity?
799 return nullptr; // Skip it
800
801 const TypeF *tf = t2->isa_float_constant();
802 if( !tf ) return nullptr;
803 if( tf->base() != Type::FloatCon ) return nullptr;
804
805 // Check for out of range values
806 if( tf->is_nan() || !tf->is_finite() ) return nullptr;
807
808 // Get the value
809 float f = tf->getf();
810 int exp;
811
812 // Only for special case of dividing by a power of 2
813 if( frexp((double)f, &exp) != 0.5 ) return nullptr;
814
815 // Limit the range of acceptable exponents
816 if( exp < -126 || exp > 126 ) return nullptr;
817
818 // Compute the reciprocal
819 float reciprocal = ((float)1.0) / f;
820
821 assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
822
823 // return multiplication by the reciprocal
824 return (new MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
825 }
826 //=============================================================================
827 //------------------------------Value------------------------------------------
828 // An DivHFNode divides its inputs. The third input is a Control input, used to
829 // prevent hoisting the divide above an unsafe test.
830 const Type* DivHFNode::Value(PhaseGVN* phase) const {
831 // Either input is TOP ==> the result is TOP
832 const Type* t1 = phase->type(in(1));
833 const Type* t2 = phase->type(in(2));
834 if(t1 == Type::TOP) { return Type::TOP; }
835 if(t2 == Type::TOP) { return Type::TOP; }
836
837 // Either input is BOTTOM ==> the result is the local BOTTOM
838 const Type* bot = bottom_type();
839 if((t1 == bot) || (t2 == bot) ||
840 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
841 return bot;
842 }
843
844 if (t1->base() == Type::HalfFloatCon &&
845 t2->base() == Type::HalfFloatCon) {
846 // IEEE 754 floating point comparison treats 0.0 and -0.0 as equals.
847
848 // Division of a zero by a zero results in NaN.
849 if (t1->getf() == 0.0f && t2->getf() == 0.0f) {
850 return TypeH::make(NAN);
851 }
852
853 // As per C++ standard section 7.6.5 (expr.mul), behavior is undefined only if
854 // the second operand is 0.0. In all other situations, we can expect a standard-compliant
855 // C++ compiler to generate code following IEEE 754 semantics.
856 if (t2->getf() == 0.0) {
857 // If either operand is NaN, the result is NaN
858 if (g_isnan(t1->getf())) {
859 return TypeH::make(NAN);
860 } else {
861 // Division of a nonzero finite value by a zero results in a signed infinity. Also,
862 // division of an infinity by a finite value results in a signed infinity.
863 bool res_sign_neg = (jint_cast(t1->getf()) < 0) ^ (jint_cast(t2->getf()) < 0);
864 const TypeF* res = res_sign_neg ? TypeF::NEG_INF : TypeF::POS_INF;
865 return TypeH::make(res->getf());
866 }
867 }
868
869 return TypeH::make(t1->getf() / t2->getf());
870 }
871
872 // Otherwise we give up all hope
873 return Type::HALF_FLOAT;
874 }
875
876 //-----------------------------------------------------------------------------
877 // Dividing by self is 1.
878 // IF the divisor is 1, we are an identity on the dividend.
879 Node* DivHFNode::Identity(PhaseGVN* phase) {
880 return (phase->type( in(2) ) == TypeH::ONE) ? in(1) : this;
881 }
882
883
884 //------------------------------Idealize---------------------------------------
885 Node* DivHFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
886 if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) return this;
887 // Don't bother trying to transform a dead node
888 if (in(0) != nullptr && in(0)->is_top()) { return nullptr; }
889
890 const Type* t2 = phase->type(in(2));
891 if (t2 == TypeH::ONE) { // Identity?
892 return nullptr; // Skip it
893 }
894 const TypeH* tf = t2->isa_half_float_constant();
895 if(tf == nullptr) { return nullptr; }
896 if(tf->base() != Type::HalfFloatCon) { return nullptr; }
897
898 // Check for out of range values
899 if(tf->is_nan() || !tf->is_finite()) { return nullptr; }
900
901 // Get the value
902 float f = tf->getf();
903 int exp;
904
905 // Consider the following geometric progression series of POT(power of two) numbers.
906 // 0.5 x 2^0 = 0.5, 0.5 x 2^1 = 1.0, 0.5 x 2^2 = 2.0, 0.5 x 2^3 = 4.0 ... 0.5 x 2^n,
907 // In all the above cases, normalized mantissa returned by frexp routine will
908 // be exactly equal to 0.5 while exponent will be 0,1,2,3...n
909 // Perform division to multiplication transform only if divisor is a POT value.
910 if(frexp((double)f, &exp) != 0.5) { return nullptr; }
911
912 // Limit the range of acceptable exponents
913 if(exp < -14 || exp > 15) { return nullptr; }
914
915 // Since divisor is a POT number, hence its reciprocal will never
916 // overflow 11 bits precision range of Float16
917 // value if exponent returned by frexp routine strictly lie
918 // within the exponent range of normal min(0x1.0P-14) and
919 // normal max(0x1.ffcP+15) values.
920 // Thus we can safely compute the reciprocal of divisor without
921 // any concerns about the precision loss and transform the division
922 // into a multiplication operation.
923 float reciprocal = ((float)1.0) / f;
924
925 assert(frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2");
926
927 // return multiplication by the reciprocal
928 return (new MulHFNode(in(1), phase->makecon(TypeH::make(reciprocal))));
929 }
930
931 //=============================================================================
932 //------------------------------Value------------------------------------------
933 // An DivDNode divides its inputs. The third input is a Control input, used to
934 // prevent hoisting the divide above an unsafe test.
935 const Type* DivDNode::Value(PhaseGVN* phase) const {
936 // Either input is TOP ==> the result is TOP
937 const Type *t1 = phase->type( in(1) );
938 const Type *t2 = phase->type( in(2) );
939 if( t1 == Type::TOP ) return Type::TOP;
940 if( t2 == Type::TOP ) return Type::TOP;
941
942 // Either input is BOTTOM ==> the result is the local BOTTOM
943 const Type *bot = bottom_type();
944 if( (t1 == bot) || (t2 == bot) ||
945 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
946 return bot;
947
948 // x/x == 1, we ignore 0/0.
949 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
950 // Does not work for variables because of NaN's
951 if (in(1) == in(2) && t1->base() == Type::DoubleCon &&
952 !g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) { // could be negative ZERO or NaN
953 return TypeD::ONE;
954 }
955
956 if( t2 == TypeD::ONE )
957 return t1;
958
959 // If divisor is a constant and not zero, divide them numbers
960 if( t1->base() == Type::DoubleCon &&
961 t2->base() == Type::DoubleCon &&
962 t2->getd() != 0.0 ) // could be negative zero
963 return TypeD::make( t1->getd()/t2->getd() );
964
965 // If the dividend is a constant zero
966 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
967 // Test TypeF::ZERO is not sufficient as it could be negative zero
968 if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
969 return TypeD::ZERO;
970
971 // Otherwise we give up all hope
972 return Type::DOUBLE;
973 }
974
975
976 //------------------------------isA_Copy---------------------------------------
977 // Dividing by self is 1.
978 // If the divisor is 1, we are an identity on the dividend.
979 Node* DivDNode::Identity(PhaseGVN* phase) {
980 return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
981 }
982
983 //------------------------------Idealize---------------------------------------
984 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
985 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
986 // Don't bother trying to transform a dead node
987 if( in(0) && in(0)->is_top() ) return nullptr;
988
989 const Type *t2 = phase->type( in(2) );
990 if( t2 == TypeD::ONE ) // Identity?
991 return nullptr; // Skip it
992
993 const TypeD *td = t2->isa_double_constant();
994 if( !td ) return nullptr;
995 if( td->base() != Type::DoubleCon ) return nullptr;
996
997 // Check for out of range values
998 if( td->is_nan() || !td->is_finite() ) return nullptr;
999
1000 // Get the value
1001 double d = td->getd();
1002 int exp;
1003
1004 // Only for special case of dividing by a power of 2
1005 if( frexp(d, &exp) != 0.5 ) return nullptr;
1006
1007 // Limit the range of acceptable exponents
1008 if( exp < -1021 || exp > 1022 ) return nullptr;
1009
1010 // Compute the reciprocal
1011 double reciprocal = 1.0 / d;
1012
1013 assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
1014
1015 // return multiplication by the reciprocal
1016 return (new MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
1017 }
1018
1019 //=============================================================================
1020 //------------------------------Identity---------------------------------------
1021 // If the divisor is 1, we are an identity on the dividend.
1022 Node* UDivINode::Identity(PhaseGVN* phase) {
1023 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
1024 }
1025 //------------------------------Value------------------------------------------
1026 // A UDivINode divides its inputs. The third input is a Control input, used to
1027 // prevent hoisting the divide above an unsafe test.
1028 const Type* UDivINode::Value(PhaseGVN* phase) const {
1029 // Either input is TOP ==> the result is TOP
1030 const Type *t1 = phase->type( in(1) );
1031 const Type *t2 = phase->type( in(2) );
1032 if( t1 == Type::TOP ) return Type::TOP;
1033 if( t2 == Type::TOP ) return Type::TOP;
1034
1035 // x/x == 1 since we always generate the dynamic divisor check for 0.
1036 if (in(1) == in(2)) {
1037 return TypeInt::ONE;
1038 }
1039
1040 // Either input is BOTTOM ==> the result is the local BOTTOM
1041 const Type *bot = bottom_type();
1042 if( (t1 == bot) || (t2 == bot) ||
1043 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1044 return bot;
1045
1046 // Otherwise we give up all hope
1047 return TypeInt::INT;
1048 }
1049
1050 //------------------------------Idealize---------------------------------------
1051 Node *UDivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1052 return unsigned_div_ideal<TypeInt, juint>(phase, can_reshape, this);
1053 }
1054
1055 //=============================================================================
1056 //------------------------------Identity---------------------------------------
1057 // If the divisor is 1, we are an identity on the dividend.
1058 Node* UDivLNode::Identity(PhaseGVN* phase) {
1059 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
1060 }
1061 //------------------------------Value------------------------------------------
1062 // A UDivLNode divides its inputs. The third input is a Control input, used to
1063 // prevent hoisting the divide above an unsafe test.
1064 const Type* UDivLNode::Value(PhaseGVN* phase) const {
1065 // Either input is TOP ==> the result is TOP
1066 const Type *t1 = phase->type( in(1) );
1067 const Type *t2 = phase->type( in(2) );
1068 if( t1 == Type::TOP ) return Type::TOP;
1069 if( t2 == Type::TOP ) return Type::TOP;
1070
1071 // x/x == 1 since we always generate the dynamic divisor check for 0.
1072 if (in(1) == in(2)) {
1073 return TypeLong::ONE;
1074 }
1075
1076 // Either input is BOTTOM ==> the result is the local BOTTOM
1077 const Type *bot = bottom_type();
1078 if( (t1 == bot) || (t2 == bot) ||
1079 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1080 return bot;
1081
1082 // Otherwise we give up all hope
1083 return TypeLong::LONG;
1084 }
1085
1086 //------------------------------Idealize---------------------------------------
1087 Node *UDivLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1088 return unsigned_div_ideal<TypeLong, julong>(phase, can_reshape, this);
1089 }
1090
1091 //=============================================================================
1092 //------------------------------Idealize---------------------------------------
1093 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1094 // Check for dead control input
1095 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1096 // Don't bother trying to transform a dead node
1097 if( in(0) && in(0)->is_top() ) return nullptr;
1098
1099 // Get the modulus
1100 const Type *t = phase->type( in(2) );
1101 if( t == Type::TOP ) return nullptr;
1102 const TypeInt *ti = t->is_int();
1103
1104 // Check for useless control input
1105 // Check for excluding mod-zero case
1106 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
1107 set_req(0, nullptr); // Yank control input
1108 return this;
1109 }
1110
1111 // See if we are MOD'ing by 2^k or 2^k-1.
1112 if( !ti->is_con() ) return nullptr;
1113 jint con = ti->get_con();
1114
1115 Node *hook = new Node(1);
1116
1117 // First, special check for modulo 2^k-1
1118 if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
1119 uint k = exact_log2(con+1); // Extract k
1120
1121 // Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
1122 static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1123 int trip_count = 1;
1124 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1125
1126 // If the unroll factor is not too large, and if conditional moves are
1127 // ok, then use this case
1128 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1129 Node *x = in(1); // Value being mod'd
1130 Node *divisor = in(2); // Also is mask
1131
1132 hook->init_req(0, x); // Add a use to x to prevent him from dying
1133 // Generate code to reduce X rapidly to nearly 2^k-1.
1134 for( int i = 0; i < trip_count; i++ ) {
1135 Node *xl = phase->transform( new AndINode(x,divisor) );
1136 Node *xh = phase->transform( new RShiftINode(x,phase->intcon(k)) ); // Must be signed
1137 x = phase->transform( new AddINode(xh,xl) );
1138 hook->set_req(0, x);
1139 }
1140
1141 // Generate sign-fixup code. Was original value positive?
1142 // int hack_res = (i >= 0) ? divisor : 1;
1143 Node *cmp1 = phase->transform( new CmpINode( in(1), phase->intcon(0) ) );
1144 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1145 Node *cmov1= phase->transform( new CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
1146 // if( x >= hack_res ) x -= divisor;
1147 Node *sub = phase->transform( new SubINode( x, divisor ) );
1148 Node *cmp2 = phase->transform( new CmpINode( x, cmov1 ) );
1149 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1150 // Convention is to not transform the return value of an Ideal
1151 // since Ideal is expected to return a modified 'this' or a new node.
1152 Node *cmov2= new CMoveINode(bol2, x, sub, TypeInt::INT);
1153 // cmov2 is now the mod
1154
1155 // Now remove the bogus extra edges used to keep things alive
1156 hook->destruct(phase);
1157 return cmov2;
1158 }
1159 }
1160
1161 // Fell thru, the unroll case is not appropriate. Transform the modulo
1162 // into a long multiply/int multiply/subtract case
1163
1164 // Cannot handle mod 0, and min_jint isn't handled by the transform
1165 if( con == 0 || con == min_jint ) return nullptr;
1166
1167 // Get the absolute value of the constant; at this point, we can use this
1168 jint pos_con = (con >= 0) ? con : -con;
1169
1170 // integer Mod 1 is always 0
1171 if( pos_con == 1 ) return new ConINode(TypeInt::ZERO);
1172
1173 int log2_con = -1;
1174
1175 // If this is a power of two, they maybe we can mask it
1176 if (is_power_of_2(pos_con)) {
1177 log2_con = log2i_exact(pos_con);
1178
1179 const Type *dt = phase->type(in(1));
1180 const TypeInt *dti = dt->isa_int();
1181
1182 // See if this can be masked, if the dividend is non-negative
1183 if( dti && dti->_lo >= 0 )
1184 return ( new AndINode( in(1), phase->intcon( pos_con-1 ) ) );
1185 }
1186
1187 // Save in(1) so that it cannot be changed or deleted
1188 hook->init_req(0, in(1));
1189
1190 // Divide using the transform from DivI to MulL
1191 Node *result = transform_int_divide( phase, in(1), pos_con );
1192 if (result != nullptr) {
1193 Node *divide = phase->transform(result);
1194
1195 // Re-multiply, using a shift if this is a power of two
1196 Node *mult = nullptr;
1197
1198 if( log2_con >= 0 )
1199 mult = phase->transform( new LShiftINode( divide, phase->intcon( log2_con ) ) );
1200 else
1201 mult = phase->transform( new MulINode( divide, phase->intcon( pos_con ) ) );
1202
1203 // Finally, subtract the multiplied divided value from the original
1204 result = new SubINode( in(1), mult );
1205 }
1206
1207 // Now remove the bogus extra edges used to keep things alive
1208 hook->destruct(phase);
1209
1210 // return the value
1211 return result;
1212 }
1213
1214 //------------------------------Value------------------------------------------
1215 static const Type* mod_value(const PhaseGVN* phase, const Node* in1, const Node* in2, const BasicType bt) {
1216 assert(bt == T_INT || bt == T_LONG, "unexpected basic type");
1217 // Either input is TOP ==> the result is TOP
1218 const Type* t1 = phase->type(in1);
1219 const Type* t2 = phase->type(in2);
1220 if (t1 == Type::TOP) { return Type::TOP; }
1221 if (t2 == Type::TOP) { return Type::TOP; }
1222
1223 // Mod by zero? Throw exception at runtime!
1224 if (t2 == TypeInteger::zero(bt)) {
1225 return Type::TOP;
1226 }
1227
1228 // We always generate the dynamic check for 0.
1229 // 0 MOD X is 0
1230 if (t1 == TypeInteger::zero(bt)) { return t1; }
1231
1232 // X MOD X is 0
1233 if (in1 == in2) {
1234 return TypeInteger::zero(bt);
1235 }
1236
1237 const TypeInteger* i1 = t1->is_integer(bt);
1238 const TypeInteger* i2 = t2->is_integer(bt);
1239 if (i1->is_con() && i2->is_con()) {
1240 // We must be modulo'ing 2 int constants.
1241 // Special case: min_jlong % '-1' is UB, and e.g., x86 triggers a division error.
1242 // Any value % -1 is 0, so we can return 0 and avoid that scenario.
1243 if (i2->get_con_as_long(bt) == -1) {
1244 return TypeInteger::zero(bt);
1245 }
1246 return TypeInteger::make(i1->get_con_as_long(bt) % i2->get_con_as_long(bt), bt);
1247 }
1248 // We checked that t2 is not the zero constant. Hence, at least i2->_lo or i2->_hi must be non-zero,
1249 // and hence its absoute value is bigger than zero. Hence, the magnitude of the divisor (i.e. the
1250 // largest absolute value for any value in i2) must be in the range [1, 2^31] or [1, 2^63], depending
1251 // on the BasicType.
1252 julong divisor_magnitude = MAX2(g_uabs(i2->lo_as_long()), g_uabs(i2->hi_as_long()));
1253 // JVMS lrem bytecode: "the magnitude of the result is always less than the magnitude of the divisor"
1254 // "less than" means we can subtract 1 to get an inclusive upper bound in [0, 2^31-1] or [0, 2^63-1], respectively
1255 jlong hi = static_cast<jlong>(divisor_magnitude - 1);
1256 jlong lo = -hi;
1257 // JVMS lrem bytecode: "the result of the remainder operation can be negative only if the dividend
1258 // is negative and can be positive only if the dividend is positive"
1259 // Note that with a dividend with bounds e.g. lo == -4 and hi == -1 can still result in values
1260 // below lo; i.e., -3 % 3 == 0.
1261 // That means we cannot restrict the bound that is closer to zero beyond knowing its sign (or zero).
1262 if (i1->hi_as_long() <= 0) {
1263 // all dividends are not positive, so the result is not positive
1264 hi = 0;
1265 // if the dividend is known to be closer to zero, use that as a lower limit
1266 lo = MAX2(lo, i1->lo_as_long());
1267 } else if (i1->lo_as_long() >= 0) {
1268 // all dividends are not negative, so the result is not negative
1269 lo = 0;
1270 // if the dividend is known to be closer to zero, use that as an upper limit
1271 hi = MIN2(hi, i1->hi_as_long());
1272 } else {
1273 // Mixed signs, so we don't know the sign of the result, but the result is
1274 // either the dividend itself or a value closer to zero than the dividend,
1275 // and it is closer to zero than the divisor.
1276 // As we know i1->_lo < 0 and i1->_hi > 0, we can use these bounds directly.
1277 lo = MAX2(lo, i1->lo_as_long());
1278 hi = MIN2(hi, i1->hi_as_long());
1279 }
1280 return TypeInteger::make(lo, hi, MAX2(i1->_widen, i2->_widen), bt);
1281 }
1282
1283 const Type* ModINode::Value(PhaseGVN* phase) const {
1284 return mod_value(phase, in(1), in(2), T_INT);
1285 }
1286
1287 //=============================================================================
1288 //------------------------------Idealize---------------------------------------
1289
1290 template <typename TypeClass, typename Unsigned>
1291 static Node* unsigned_mod_ideal(PhaseGVN* phase, bool can_reshape, Node* mod) {
1292 // Check for dead control input
1293 if (mod->in(0) != nullptr && mod->remove_dead_region(phase, can_reshape)) {
1294 return mod;
1295 }
1296 // Don't bother trying to transform a dead node
1297 if (mod->in(0) != nullptr && mod->in(0)->is_top()) {
1298 return nullptr;
1299 }
1300
1301 // Get the modulus
1302 const Type* t = phase->type(mod->in(2));
1303 if (t == Type::TOP) {
1304 return nullptr;
1305 }
1306 const TypeClass* type_divisor = t->cast<TypeClass>();
1307
1308 // Check for useless control input
1309 // Check for excluding mod-zero case
1310 if (mod->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
1311 mod->set_req(0, nullptr); // Yank control input
1312 return mod;
1313 }
1314
1315 if (!type_divisor->is_con()) {
1316 return nullptr;
1317 }
1318 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1319
1320 if (divisor == 0) {
1321 return nullptr;
1322 }
1323
1324 if (is_power_of_2(divisor)) {
1325 return make_and<TypeClass>(mod->in(1), phase->makecon(TypeClass::make(divisor - 1)));
1326 }
1327
1328 return nullptr;
1329 }
1330
1331 template <typename TypeClass, typename Unsigned, typename Signed>
1332 static const Type* unsigned_mod_value(PhaseGVN* phase, const Node* mod) {
1333 const Type* t1 = phase->type(mod->in(1));
1334 const Type* t2 = phase->type(mod->in(2));
1335 if (t1 == Type::TOP) {
1336 return Type::TOP;
1337 }
1338 if (t2 == Type::TOP) {
1339 return Type::TOP;
1340 }
1341
1342 // 0 MOD X is 0
1343 if (t1 == TypeClass::ZERO) {
1344 return TypeClass::ZERO;
1345 }
1346 // X MOD X is 0
1347 if (mod->in(1) == mod->in(2)) {
1348 return TypeClass::ZERO;
1349 }
1350
1351 // Either input is BOTTOM ==> the result is the local BOTTOM
1352 const Type* bot = mod->bottom_type();
1353 if ((t1 == bot) || (t2 == bot) ||
1354 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
1355 return bot;
1356 }
1357
1358 const TypeClass* type_divisor = t2->cast<TypeClass>();
1359 if (type_divisor->is_con() && type_divisor->get_con() == 1) {
1360 return TypeClass::ZERO;
1361 }
1362
1363 // Mod by zero? Throw an exception at runtime!
1364 if (type_divisor->is_con() && type_divisor->get_con() == 0) {
1365 return TypeClass::POS;
1366 }
1367
1368 const TypeClass* type_dividend = t1->cast<TypeClass>();
1369 if (type_dividend->is_con() && type_divisor->is_con()) {
1370 Unsigned dividend = static_cast<Unsigned>(type_dividend->get_con());
1371 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1372 return TypeClass::make(static_cast<Signed>(dividend % divisor));
1373 }
1374
1375 return bot;
1376 }
1377
1378 Node* UModINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1379 return unsigned_mod_ideal<TypeInt, juint>(phase, can_reshape, this);
1380 }
1381
1382 const Type* UModINode::Value(PhaseGVN* phase) const {
1383 return unsigned_mod_value<TypeInt, juint, jint>(phase, this);
1384 }
1385
1386 //=============================================================================
1387 //------------------------------Idealize---------------------------------------
1388 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1389 // Check for dead control input
1390 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1391 // Don't bother trying to transform a dead node
1392 if( in(0) && in(0)->is_top() ) return nullptr;
1393
1394 // Get the modulus
1395 const Type *t = phase->type( in(2) );
1396 if( t == Type::TOP ) return nullptr;
1397 const TypeLong *tl = t->is_long();
1398
1399 // Check for useless control input
1400 // Check for excluding mod-zero case
1401 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
1402 set_req(0, nullptr); // Yank control input
1403 return this;
1404 }
1405
1406 // See if we are MOD'ing by 2^k or 2^k-1.
1407 if( !tl->is_con() ) return nullptr;
1408 jlong con = tl->get_con();
1409
1410 Node *hook = new Node(1);
1411
1412 // Expand mod
1413 if(con >= 0 && con < max_jlong && is_power_of_2(con + 1)) {
1414 uint k = log2i_exact(con + 1); // Extract k
1415
1416 // Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
1417 // Used to help a popular random number generator which does a long-mod
1418 // of 2^31-1 and shows up in SpecJBB and SciMark.
1419 static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1420 int trip_count = 1;
1421 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1422
1423 // If the unroll factor is not too large, and if conditional moves are
1424 // ok, then use this case
1425 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1426 Node *x = in(1); // Value being mod'd
1427 Node *divisor = in(2); // Also is mask
1428
1429 hook->init_req(0, x); // Add a use to x to prevent him from dying
1430 // Generate code to reduce X rapidly to nearly 2^k-1.
1431 for( int i = 0; i < trip_count; i++ ) {
1432 Node *xl = phase->transform( new AndLNode(x,divisor) );
1433 Node *xh = phase->transform( new RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1434 x = phase->transform( new AddLNode(xh,xl) );
1435 hook->set_req(0, x); // Add a use to x to prevent him from dying
1436 }
1437
1438 // Generate sign-fixup code. Was original value positive?
1439 // long hack_res = (i >= 0) ? divisor : CONST64(1);
1440 Node *cmp1 = phase->transform( new CmpLNode( in(1), phase->longcon(0) ) );
1441 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1442 Node *cmov1= phase->transform( new CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1443 // if( x >= hack_res ) x -= divisor;
1444 Node *sub = phase->transform( new SubLNode( x, divisor ) );
1445 Node *cmp2 = phase->transform( new CmpLNode( x, cmov1 ) );
1446 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1447 // Convention is to not transform the return value of an Ideal
1448 // since Ideal is expected to return a modified 'this' or a new node.
1449 Node *cmov2= new CMoveLNode(bol2, x, sub, TypeLong::LONG);
1450 // cmov2 is now the mod
1451
1452 // Now remove the bogus extra edges used to keep things alive
1453 hook->destruct(phase);
1454 return cmov2;
1455 }
1456 }
1457
1458 // Fell thru, the unroll case is not appropriate. Transform the modulo
1459 // into a long multiply/int multiply/subtract case
1460
1461 // Cannot handle mod 0, and min_jlong isn't handled by the transform
1462 if( con == 0 || con == min_jlong ) return nullptr;
1463
1464 // Get the absolute value of the constant; at this point, we can use this
1465 jlong pos_con = (con >= 0) ? con : -con;
1466
1467 // integer Mod 1 is always 0
1468 if( pos_con == 1 ) return new ConLNode(TypeLong::ZERO);
1469
1470 int log2_con = -1;
1471
1472 // If this is a power of two, then maybe we can mask it
1473 if (is_power_of_2(pos_con)) {
1474 log2_con = log2i_exact(pos_con);
1475
1476 const Type *dt = phase->type(in(1));
1477 const TypeLong *dtl = dt->isa_long();
1478
1479 // See if this can be masked, if the dividend is non-negative
1480 if( dtl && dtl->_lo >= 0 )
1481 return ( new AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1482 }
1483
1484 // Save in(1) so that it cannot be changed or deleted
1485 hook->init_req(0, in(1));
1486
1487 // Divide using the transform from DivL to MulL
1488 Node *result = transform_long_divide( phase, in(1), pos_con );
1489 if (result != nullptr) {
1490 Node *divide = phase->transform(result);
1491
1492 // Re-multiply, using a shift if this is a power of two
1493 Node *mult = nullptr;
1494
1495 if( log2_con >= 0 )
1496 mult = phase->transform( new LShiftLNode( divide, phase->intcon( log2_con ) ) );
1497 else
1498 mult = phase->transform( new MulLNode( divide, phase->longcon( pos_con ) ) );
1499
1500 // Finally, subtract the multiplied divided value from the original
1501 result = new SubLNode( in(1), mult );
1502 }
1503
1504 // Now remove the bogus extra edges used to keep things alive
1505 hook->destruct(phase);
1506
1507 // return the value
1508 return result;
1509 }
1510
1511 //------------------------------Value------------------------------------------
1512 const Type* ModLNode::Value(PhaseGVN* phase) const {
1513 return mod_value(phase, in(1), in(2), T_LONG);
1514 }
1515
1516 Node *UModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1517 return unsigned_mod_ideal<TypeLong, julong>(phase, can_reshape, this);
1518 }
1519
1520 const Type* UModLNode::Value(PhaseGVN* phase) const {
1521 return unsigned_mod_value<TypeLong, julong, jlong>(phase, this);
1522 }
1523
1524 const Type* ModFNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1525 // If either number is not a constant, we know nothing.
1526 if ((dividend->base() != Type::FloatCon) || (divisor->base() != Type::FloatCon)) {
1527 return nullptr; // note: x%x can be either NaN or 0
1528 }
1529
1530 float dividend_f = dividend->getf();
1531 float divisor_f = divisor->getf();
1532 jint dividend_i = jint_cast(dividend_f); // note: *(int*)&f1, not just (int)f1
1533 jint divisor_i = jint_cast(divisor_f);
1534
1535 // If either is a NaN, return an input NaN
1536 if (g_isnan(dividend_f)) {
1537 return dividend;
1538 }
1539 if (g_isnan(divisor_f)) {
1540 return divisor;
1541 }
1542
1543 // If an operand is infinity or the divisor is +/- zero, punt.
1544 if (!g_isfinite(dividend_f) || !g_isfinite(divisor_f) || divisor_i == 0 || divisor_i == min_jint) {
1545 return nullptr;
1546 }
1547
1548 // We must be modulo'ing 2 float constants.
1549 // Make sure that the sign of the fmod is equal to the sign of the dividend
1550 jint xr = jint_cast(fmod(dividend_f, divisor_f));
1551 if ((dividend_i ^ xr) < 0) {
1552 xr ^= min_jint;
1553 }
1554
1555 return TypeF::make(jfloat_cast(xr));
1556 }
1557
1558 const Type* ModDNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1559 // If either number is not a constant, we know nothing.
1560 if ((dividend->base() != Type::DoubleCon) || (divisor->base() != Type::DoubleCon)) {
1561 return nullptr; // note: x%x can be either NaN or 0
1562 }
1563
1564 double dividend_d = dividend->getd();
1565 double divisor_d = divisor->getd();
1566 jlong dividend_l = jlong_cast(dividend_d); // note: *(long*)&f1, not just (long)f1
1567 jlong divisor_l = jlong_cast(divisor_d);
1568
1569 // If either is a NaN, return an input NaN
1570 if (g_isnan(dividend_d)) {
1571 return dividend;
1572 }
1573 if (g_isnan(divisor_d)) {
1574 return divisor;
1575 }
1576
1577 // If an operand is infinity or the divisor is +/- zero, punt.
1578 if (!g_isfinite(dividend_d) || !g_isfinite(divisor_d) || divisor_l == 0 || divisor_l == min_jlong) {
1579 return nullptr;
1580 }
1581
1582 // We must be modulo'ing 2 double constants.
1583 // Make sure that the sign of the fmod is equal to the sign of the dividend
1584 jlong xr = jlong_cast(fmod(dividend_d, divisor_d));
1585 if ((dividend_l ^ xr) < 0) {
1586 xr ^= min_jlong;
1587 }
1588
1589 return TypeD::make(jdouble_cast(xr));
1590 }
1591
1592 Node* ModFloatingNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1593 if (can_reshape) {
1594 PhaseIterGVN* igvn = phase->is_IterGVN();
1595
1596 // Either input is TOP ==> the result is TOP
1597 const Type* dividend_type = phase->type(dividend());
1598 const Type* divisor_type = phase->type(divisor());
1599 if (dividend_type == Type::TOP || divisor_type == Type::TOP) {
1600 return phase->C->top();
1601 }
1602 const Type* constant_result = get_result_if_constant(dividend_type, divisor_type);
1603 if (constant_result != nullptr) {
1604 return make_tuple_of_input_state_and_constant_result(igvn, constant_result);
1605 }
1606 }
1607
1608 return CallLeafPureNode::Ideal(phase, can_reshape);
1609 }
1610
1611 /* Give a tuple node for ::Ideal to return, made of the input state (control to return addr)
1612 * and the given constant result. Idealization of projections will make sure to transparently
1613 * propagate the input state and replace the result by the said constant.
1614 */
1615 TupleNode* ModFloatingNode::make_tuple_of_input_state_and_constant_result(PhaseIterGVN* phase, const Type* con) const {
1616 Node* con_node = phase->makecon(con);
1617 TupleNode* tuple = TupleNode::make(
1618 tf()->range_cc(),
1619 in(TypeFunc::Control),
1620 in(TypeFunc::I_O),
1621 in(TypeFunc::Memory),
1622 in(TypeFunc::FramePtr),
1623 in(TypeFunc::ReturnAdr),
1624 con_node);
1625
1626 return tuple;
1627 }
1628
1629 //=============================================================================
1630
1631 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1632 init_req(0, c);
1633 init_req(1, dividend);
1634 init_req(2, divisor);
1635 }
1636
1637 DivModNode* DivModNode::make(Node* div_or_mod, BasicType bt, bool is_unsigned) {
1638 assert(bt == T_INT || bt == T_LONG, "only int or long input pattern accepted");
1639
1640 if (bt == T_INT) {
1641 if (is_unsigned) {
1642 return UDivModINode::make(div_or_mod);
1643 } else {
1644 return DivModINode::make(div_or_mod);
1645 }
1646 } else {
1647 if (is_unsigned) {
1648 return UDivModLNode::make(div_or_mod);
1649 } else {
1650 return DivModLNode::make(div_or_mod);
1651 }
1652 }
1653 }
1654
1655 //------------------------------make------------------------------------------
1656 DivModINode* DivModINode::make(Node* div_or_mod) {
1657 Node* n = div_or_mod;
1658 assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1659 "only div or mod input pattern accepted");
1660
1661 DivModINode* divmod = new DivModINode(n->in(0), n->in(1), n->in(2));
1662 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1663 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1664 return divmod;
1665 }
1666
1667 //------------------------------make------------------------------------------
1668 DivModLNode* DivModLNode::make(Node* div_or_mod) {
1669 Node* n = div_or_mod;
1670 assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1671 "only div or mod input pattern accepted");
1672
1673 DivModLNode* divmod = new DivModLNode(n->in(0), n->in(1), n->in(2));
1674 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1675 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1676 return divmod;
1677 }
1678
1679 //------------------------------match------------------------------------------
1680 // return result(s) along with their RegMask info
1681 Node *DivModINode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
1682 uint ideal_reg = proj->ideal_reg();
1683 RegMask rm;
1684 if (proj->_con == div_proj_num) {
1685 rm.assignFrom(match->divI_proj_mask());
1686 } else {
1687 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1688 rm.assignFrom(match->modI_proj_mask());
1689 }
1690 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1691 }
1692
1693
1694 //------------------------------match------------------------------------------
1695 // return result(s) along with their RegMask info
1696 Node *DivModLNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
1697 uint ideal_reg = proj->ideal_reg();
1698 RegMask rm;
1699 if (proj->_con == div_proj_num) {
1700 rm.assignFrom(match->divL_proj_mask());
1701 } else {
1702 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1703 rm.assignFrom(match->modL_proj_mask());
1704 }
1705 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1706 }
1707
1708 //------------------------------make------------------------------------------
1709 UDivModINode* UDivModINode::make(Node* div_or_mod) {
1710 Node* n = div_or_mod;
1711 assert(n->Opcode() == Op_UDivI || n->Opcode() == Op_UModI,
1712 "only div or mod input pattern accepted");
1713
1714 UDivModINode* divmod = new UDivModINode(n->in(0), n->in(1), n->in(2));
1715 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1716 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1717 return divmod;
1718 }
1719
1720 //------------------------------make------------------------------------------
1721 UDivModLNode* UDivModLNode::make(Node* div_or_mod) {
1722 Node* n = div_or_mod;
1723 assert(n->Opcode() == Op_UDivL || n->Opcode() == Op_UModL,
1724 "only div or mod input pattern accepted");
1725
1726 UDivModLNode* divmod = new UDivModLNode(n->in(0), n->in(1), n->in(2));
1727 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1728 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1729 return divmod;
1730 }
1731
1732 //------------------------------match------------------------------------------
1733 // return result(s) along with their RegMask info
1734 Node* UDivModINode::match(const ProjNode* proj, const Matcher* match, const RegMask* mask) {
1735 uint ideal_reg = proj->ideal_reg();
1736 RegMask rm;
1737 if (proj->_con == div_proj_num) {
1738 rm.assignFrom(match->divI_proj_mask());
1739 } else {
1740 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1741 rm.assignFrom(match->modI_proj_mask());
1742 }
1743 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1744 }
1745
1746
1747 //------------------------------match------------------------------------------
1748 // return result(s) along with their RegMask info
1749 Node* UDivModLNode::match( const ProjNode* proj, const Matcher* match, const RegMask* mask) {
1750 uint ideal_reg = proj->ideal_reg();
1751 RegMask rm;
1752 if (proj->_con == div_proj_num) {
1753 rm.assignFrom(match->divL_proj_mask());
1754 } else {
1755 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1756 rm.assignFrom(match->modL_proj_mask());
1757 }
1758 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1759 }