1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "memory/allocation.inline.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/connode.hpp"
28 #include "opto/convertnode.hpp"
29 #include "opto/divnode.hpp"
30 #include "opto/machnode.hpp"
31 #include "opto/matcher.hpp"
32 #include "opto/movenode.hpp"
33 #include "opto/mulnode.hpp"
34 #include "opto/phaseX.hpp"
35 #include "opto/runtime.hpp"
36 #include "opto/subnode.hpp"
37 #include "utilities/powerOfTwo.hpp"
38
39 // Portions of code courtesy of Clifford Click
40
41 // Optimization - Graph Style
42
43 #include <math.h>
44
45 ModFloatingNode::ModFloatingNode(Compile* C, const TypeFunc* tf, address addr, const char* name) : CallLeafPureNode(tf, addr, name, TypeRawPtr::BOTTOM) {
46 add_flag(Flag_is_macro);
47 C->add_macro_node(this);
48 }
49
50 ModDNode::ModDNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::drem), "drem") {
51 init_req(TypeFunc::Parms + 0, a);
52 init_req(TypeFunc::Parms + 1, C->top());
53 init_req(TypeFunc::Parms + 2, b);
54 init_req(TypeFunc::Parms + 3, C->top());
55 }
56
57 ModFNode::ModFNode(Compile* C, Node* a, Node* b) : ModFloatingNode(C, OptoRuntime::modf_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::frem), "frem") {
58 init_req(TypeFunc::Parms + 0, a);
59 init_req(TypeFunc::Parms + 1, b);
60 }
61
62 //----------------------magic_int_divide_constants-----------------------------
63 // Compute magic multiplier and shift constant for converting a 32 bit divide
64 // by constant into a multiply/shift/add series. Return false if calculations
65 // fail.
66 //
67 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
68 // minor type name and parameter changes.
69 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
70 int32_t p;
71 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
72 const uint32_t two31 = 0x80000000L; // 2**31.
73
74 ad = ABS(d);
75 if (d == 0 || d == 1) return false;
76 t = two31 + ((uint32_t)d >> 31);
77 anc = t - 1 - t%ad; // Absolute value of nc.
78 p = 31; // Init. p.
79 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
80 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
81 q2 = two31/ad; // Init. q2 = 2**p/|d|.
82 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
83 do {
84 p = p + 1;
85 q1 = 2*q1; // Update q1 = 2**p/|nc|.
86 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
87 if (r1 >= anc) { // (Must be an unsigned
88 q1 = q1 + 1; // comparison here).
89 r1 = r1 - anc;
90 }
91 q2 = 2*q2; // Update q2 = 2**p/|d|.
92 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
93 if (r2 >= ad) { // (Must be an unsigned
94 q2 = q2 + 1; // comparison here).
95 r2 = r2 - ad;
96 }
97 delta = ad - r2;
98 } while (q1 < delta || (q1 == delta && r1 == 0));
99
100 M = q2 + 1;
101 if (d < 0) M = -M; // Magic number and
102 s = p - 32; // shift amount to return.
103
104 return true;
105 }
106
107 //--------------------------transform_int_divide-------------------------------
108 // Convert a division by constant divisor into an alternate Ideal graph.
109 // Return null if no transformation occurs.
110 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
111
112 // Check for invalid divisors
113 assert( divisor != 0 && divisor != min_jint,
114 "bad divisor for transforming to long multiply" );
115
116 bool d_pos = divisor >= 0;
117 jint d = d_pos ? divisor : -divisor;
118 const int N = 32;
119
120 // Result
121 Node *q = nullptr;
122
123 if (d == 1) {
124 // division by +/- 1
125 if (!d_pos) {
126 // Just negate the value
127 q = new SubINode(phase->intcon(0), dividend);
128 }
129 } else if ( is_power_of_2(d) ) {
130 // division by +/- a power of 2
131
132 // See if we can simply do a shift without rounding
133 bool needs_rounding = true;
134 const Type *dt = phase->type(dividend);
135 const TypeInt *dti = dt->isa_int();
136 if (dti && dti->_lo >= 0) {
137 // we don't need to round a positive dividend
138 needs_rounding = false;
139 } else if( dividend->Opcode() == Op_AndI ) {
140 // An AND mask of sufficient size clears the low bits and
141 // I can avoid rounding.
142 const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
143 if( andconi_t && andconi_t->is_con() ) {
144 jint andconi = andconi_t->get_con();
145 if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
146 if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
147 dividend = dividend->in(1);
148 needs_rounding = false;
149 }
150 }
151 }
152
153 // Add rounding to the shift to handle the sign bit
154 int l = log2i_graceful(d - 1) + 1;
155 if (needs_rounding) {
156 // Divide-by-power-of-2 can be made into a shift, but you have to do
157 // more math for the rounding. You need to add 0 for positive
158 // numbers, and "i-1" for negative numbers. Example: i=4, so the
159 // shift is by 2. You need to add 3 to negative dividends and 0 to
160 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
161 // (-2+3)>>2 becomes 0, etc.
162
163 // Compute 0 or -1, based on sign bit
164 Node *sign = phase->transform(new RShiftINode(dividend, phase->intcon(N - 1)));
165 // Mask sign bit to the low sign bits
166 Node *round = phase->transform(new URShiftINode(sign, phase->intcon(N - l)));
167 // Round up before shifting
168 dividend = phase->transform(new AddINode(dividend, round));
169 }
170
171 // Shift for division
172 q = new RShiftINode(dividend, phase->intcon(l));
173
174 if (!d_pos) {
175 q = new SubINode(phase->intcon(0), phase->transform(q));
176 }
177 } else {
178 // Attempt the jint constant divide -> multiply transform found in
179 // "Division by Invariant Integers using Multiplication"
180 // by Granlund and Montgomery
181 // See also "Hacker's Delight", chapter 10 by Warren.
182
183 jint magic_const;
184 jint shift_const;
185 if (magic_int_divide_constants(d, magic_const, shift_const)) {
186 Node *magic = phase->longcon(magic_const);
187 Node *dividend_long = phase->transform(new ConvI2LNode(dividend));
188
189 // Compute the high half of the dividend x magic multiplication
190 Node *mul_hi = phase->transform(new MulLNode(dividend_long, magic));
191
192 if (magic_const < 0) {
193 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N)));
194 mul_hi = phase->transform(new ConvL2INode(mul_hi));
195
196 // The magic multiplier is too large for a 32 bit constant. We've adjusted
197 // it down by 2^32, but have to add 1 dividend back in after the multiplication.
198 // This handles the "overflow" case described by Granlund and Montgomery.
199 mul_hi = phase->transform(new AddINode(dividend, mul_hi));
200
201 // Shift over the (adjusted) mulhi
202 if (shift_const != 0) {
203 mul_hi = phase->transform(new RShiftINode(mul_hi, phase->intcon(shift_const)));
204 }
205 } else {
206 // No add is required, we can merge the shifts together.
207 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
208 mul_hi = phase->transform(new ConvL2INode(mul_hi));
209 }
210
211 // Get a 0 or -1 from the sign of the dividend.
212 Node *addend0 = mul_hi;
213 Node *addend1 = phase->transform(new RShiftINode(dividend, phase->intcon(N-1)));
214
215 // If the divisor is negative, swap the order of the input addends;
216 // this has the effect of negating the quotient.
217 if (!d_pos) {
218 Node *temp = addend0; addend0 = addend1; addend1 = temp;
219 }
220
221 // Adjust the final quotient by subtracting -1 (adding 1)
222 // from the mul_hi.
223 q = new SubINode(addend0, addend1);
224 }
225 }
226
227 return q;
228 }
229
230 //---------------------magic_long_divide_constants-----------------------------
231 // Compute magic multiplier and shift constant for converting a 64 bit divide
232 // by constant into a multiply/shift/add series. Return false if calculations
233 // fail.
234 //
235 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
236 // minor type name and parameter changes. Adjusted to 64 bit word width.
237 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
238 int64_t p;
239 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
240 const uint64_t two63 = UCONST64(0x8000000000000000); // 2**63.
241
242 ad = ABS(d);
243 if (d == 0 || d == 1) return false;
244 t = two63 + ((uint64_t)d >> 63);
245 anc = t - 1 - t%ad; // Absolute value of nc.
246 p = 63; // Init. p.
247 q1 = two63/anc; // Init. q1 = 2**p/|nc|.
248 r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
249 q2 = two63/ad; // Init. q2 = 2**p/|d|.
250 r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
251 do {
252 p = p + 1;
253 q1 = 2*q1; // Update q1 = 2**p/|nc|.
254 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
255 if (r1 >= anc) { // (Must be an unsigned
256 q1 = q1 + 1; // comparison here).
257 r1 = r1 - anc;
258 }
259 q2 = 2*q2; // Update q2 = 2**p/|d|.
260 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
261 if (r2 >= ad) { // (Must be an unsigned
262 q2 = q2 + 1; // comparison here).
263 r2 = r2 - ad;
264 }
265 delta = ad - r2;
266 } while (q1 < delta || (q1 == delta && r1 == 0));
267
268 M = q2 + 1;
269 if (d < 0) M = -M; // Magic number and
270 s = p - 64; // shift amount to return.
271
272 return true;
273 }
274
275 //---------------------long_by_long_mulhi--------------------------------------
276 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
277 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
278 // If the architecture supports a 64x64 mulhi, there is
279 // no need to synthesize it in ideal nodes.
280 if (Matcher::has_match_rule(Op_MulHiL)) {
281 Node* v = phase->longcon(magic_const);
282 return new MulHiLNode(dividend, v);
283 }
284
285 // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
286 //
287 // int mulhs(int u, int v) {
288 // unsigned u0, v0, w0;
289 // int u1, v1, w1, w2, t;
290 //
291 // u0 = u & 0xFFFF; u1 = u >> 16;
292 // v0 = v & 0xFFFF; v1 = v >> 16;
293 // w0 = u0*v0;
294 // t = u1*v0 + (w0 >> 16);
295 // w1 = t & 0xFFFF;
296 // w2 = t >> 16;
297 // w1 = u0*v1 + w1;
298 // return u1*v1 + w2 + (w1 >> 16);
299 // }
300 //
301 // Note: The version above is for 32x32 multiplications, while the
302 // following inline comments are adapted to 64x64.
303
304 const int N = 64;
305
306 // Dummy node to keep intermediate nodes alive during construction
307 Node* hook = new Node(4);
308
309 // u0 = u & 0xFFFFFFFF; u1 = u >> 32;
310 Node* u0 = phase->transform(new AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
311 Node* u1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N / 2)));
312 hook->init_req(0, u0);
313 hook->init_req(1, u1);
314
315 // v0 = v & 0xFFFFFFFF; v1 = v >> 32;
316 Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
317 Node* v1 = phase->longcon(magic_const >> (N / 2));
318
319 // w0 = u0*v0;
320 Node* w0 = phase->transform(new MulLNode(u0, v0));
321
322 // t = u1*v0 + (w0 >> 32);
323 Node* u1v0 = phase->transform(new MulLNode(u1, v0));
324 Node* temp = phase->transform(new URShiftLNode(w0, phase->intcon(N / 2)));
325 Node* t = phase->transform(new AddLNode(u1v0, temp));
326 hook->init_req(2, t);
327
328 // w1 = t & 0xFFFFFFFF;
329 Node* w1 = phase->transform(new AndLNode(t, phase->longcon(0xFFFFFFFF)));
330 hook->init_req(3, w1);
331
332 // w2 = t >> 32;
333 Node* w2 = phase->transform(new RShiftLNode(t, phase->intcon(N / 2)));
334
335 // w1 = u0*v1 + w1;
336 Node* u0v1 = phase->transform(new MulLNode(u0, v1));
337 w1 = phase->transform(new AddLNode(u0v1, w1));
338
339 // return u1*v1 + w2 + (w1 >> 32);
340 Node* u1v1 = phase->transform(new MulLNode(u1, v1));
341 Node* temp1 = phase->transform(new AddLNode(u1v1, w2));
342 Node* temp2 = phase->transform(new RShiftLNode(w1, phase->intcon(N / 2)));
343
344 // Remove the bogus extra edges used to keep things alive
345 hook->destruct(phase);
346
347 return new AddLNode(temp1, temp2);
348 }
349
350
351 //--------------------------transform_long_divide------------------------------
352 // Convert a division by constant divisor into an alternate Ideal graph.
353 // Return null if no transformation occurs.
354 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
355 // Check for invalid divisors
356 assert( divisor != 0L && divisor != min_jlong,
357 "bad divisor for transforming to long multiply" );
358
359 bool d_pos = divisor >= 0;
360 jlong d = d_pos ? divisor : -divisor;
361 const int N = 64;
362
363 // Result
364 Node *q = nullptr;
365
366 if (d == 1) {
367 // division by +/- 1
368 if (!d_pos) {
369 // Just negate the value
370 q = new SubLNode(phase->longcon(0), dividend);
371 }
372 } else if ( is_power_of_2(d) ) {
373
374 // division by +/- a power of 2
375
376 // See if we can simply do a shift without rounding
377 bool needs_rounding = true;
378 const Type *dt = phase->type(dividend);
379 const TypeLong *dtl = dt->isa_long();
380
381 if (dtl && dtl->_lo > 0) {
382 // we don't need to round a positive dividend
383 needs_rounding = false;
384 } else if( dividend->Opcode() == Op_AndL ) {
385 // An AND mask of sufficient size clears the low bits and
386 // I can avoid rounding.
387 const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
388 if( andconl_t && andconl_t->is_con() ) {
389 jlong andconl = andconl_t->get_con();
390 if( andconl < 0 && is_power_of_2(-andconl) && (-andconl) >= d ) {
391 if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
392 dividend = dividend->in(1);
393 needs_rounding = false;
394 }
395 }
396 }
397
398 // Add rounding to the shift to handle the sign bit
399 int l = log2i_graceful(d - 1) + 1;
400 if (needs_rounding) {
401 // Divide-by-power-of-2 can be made into a shift, but you have to do
402 // more math for the rounding. You need to add 0 for positive
403 // numbers, and "i-1" for negative numbers. Example: i=4, so the
404 // shift is by 2. You need to add 3 to negative dividends and 0 to
405 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
406 // (-2+3)>>2 becomes 0, etc.
407
408 // Compute 0 or -1, based on sign bit
409 Node *sign = phase->transform(new RShiftLNode(dividend, phase->intcon(N - 1)));
410 // Mask sign bit to the low sign bits
411 Node *round = phase->transform(new URShiftLNode(sign, phase->intcon(N - l)));
412 // Round up before shifting
413 dividend = phase->transform(new AddLNode(dividend, round));
414 }
415
416 // Shift for division
417 q = new RShiftLNode(dividend, phase->intcon(l));
418
419 if (!d_pos) {
420 q = new SubLNode(phase->longcon(0), phase->transform(q));
421 }
422 } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
423 // it is faster than code generated below.
424 // Attempt the jlong constant divide -> multiply transform found in
425 // "Division by Invariant Integers using Multiplication"
426 // by Granlund and Montgomery
427 // See also "Hacker's Delight", chapter 10 by Warren.
428
429 jlong magic_const;
430 jint shift_const;
431 if (magic_long_divide_constants(d, magic_const, shift_const)) {
432 // Compute the high half of the dividend x magic multiplication
433 Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
434
435 // The high half of the 128-bit multiply is computed.
436 if (magic_const < 0) {
437 // The magic multiplier is too large for a 64 bit constant. We've adjusted
438 // it down by 2^64, but have to add 1 dividend back in after the multiplication.
439 // This handles the "overflow" case described by Granlund and Montgomery.
440 mul_hi = phase->transform(new AddLNode(dividend, mul_hi));
441 }
442
443 // Shift over the (adjusted) mulhi
444 if (shift_const != 0) {
445 mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(shift_const)));
446 }
447
448 // Get a 0 or -1 from the sign of the dividend.
449 Node *addend0 = mul_hi;
450 Node *addend1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N-1)));
451
452 // If the divisor is negative, swap the order of the input addends;
453 // this has the effect of negating the quotient.
454 if (!d_pos) {
455 Node *temp = addend0; addend0 = addend1; addend1 = temp;
456 }
457
458 // Adjust the final quotient by subtracting -1 (adding 1)
459 // from the mul_hi.
460 q = new SubLNode(addend0, addend1);
461 }
462 }
463
464 return q;
465 }
466
467 template <typename TypeClass, typename Unsigned>
468 Node* unsigned_div_ideal(PhaseGVN* phase, bool can_reshape, Node* div) {
469 // Check for dead control input
470 if (div->in(0) != nullptr && div->remove_dead_region(phase, can_reshape)) {
471 return div;
472 }
473 // Don't bother trying to transform a dead node
474 if (div->in(0) != nullptr && div->in(0)->is_top()) {
475 return nullptr;
476 }
477
478 const Type* t = phase->type(div->in(2));
479 if (t == Type::TOP) {
480 return nullptr;
481 }
482 const TypeClass* type_divisor = t->cast<TypeClass>();
483
484 // Check for useless control input
485 // Check for excluding div-zero case
486 if (div->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
487 div->set_req(0, nullptr); // Yank control input
488 return div;
489 }
490
491 if (!type_divisor->is_con()) {
492 return nullptr;
493 }
494 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con()); // Get divisor
495
496 if (divisor == 0 || divisor == 1) {
497 return nullptr; // Dividing by zero constant does not idealize
498 }
499
500 if (is_power_of_2(divisor)) {
501 return make_urshift<TypeClass>(div->in(1), phase->intcon(log2i_graceful(divisor)));
502 }
503
504 return nullptr;
505 }
506
507
508 //=============================================================================
509 //------------------------------Identity---------------------------------------
510 // If the divisor is 1, we are an identity on the dividend.
511 Node* DivINode::Identity(PhaseGVN* phase) {
512 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
513 }
514
515 //------------------------------Idealize---------------------------------------
516 // Divides can be changed to multiplies and/or shifts
517 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
518 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
519 // Don't bother trying to transform a dead node
520 if( in(0) && in(0)->is_top() ) return nullptr;
521
522 const Type *t = phase->type( in(2) );
523 if( t == TypeInt::ONE ) // Identity?
524 return nullptr; // Skip it
525
526 const TypeInt *ti = t->isa_int();
527 if( !ti ) return nullptr;
528
529 // Check for useless control input
530 // Check for excluding div-zero case
531 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
532 set_req(0, nullptr); // Yank control input
533 return this;
534 }
535
536 if( !ti->is_con() ) return nullptr;
537 jint i = ti->get_con(); // Get divisor
538
539 if (i == 0) return nullptr; // Dividing by zero constant does not idealize
540
541 // Dividing by MININT does not optimize as a power-of-2 shift.
542 if( i == min_jint ) return nullptr;
543
544 return transform_int_divide( phase, in(1), i );
545 }
546
547 //------------------------------Value------------------------------------------
548 // A DivINode divides its inputs. The third input is a Control input, used to
549 // prevent hoisting the divide above an unsafe test.
550 const Type* DivINode::Value(PhaseGVN* phase) const {
551 // Either input is TOP ==> the result is TOP
552 const Type *t1 = phase->type( in(1) );
553 const Type *t2 = phase->type( in(2) );
554 if( t1 == Type::TOP ) return Type::TOP;
555 if( t2 == Type::TOP ) return Type::TOP;
556
557 // x/x == 1 since we always generate the dynamic divisor check for 0.
558 if (in(1) == in(2)) {
559 return TypeInt::ONE;
560 }
561
562 // Either input is BOTTOM ==> the result is the local BOTTOM
563 const Type *bot = bottom_type();
564 if( (t1 == bot) || (t2 == bot) ||
565 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
566 return bot;
567
568 // Divide the two numbers. We approximate.
569 // If divisor is a constant and not zero
570 const TypeInt *i1 = t1->is_int();
571 const TypeInt *i2 = t2->is_int();
572 int widen = MAX2(i1->_widen, i2->_widen);
573
574 if( i2->is_con() && i2->get_con() != 0 ) {
575 int32_t d = i2->get_con(); // Divisor
576 jint lo, hi;
577 if( d >= 0 ) {
578 lo = i1->_lo/d;
579 hi = i1->_hi/d;
580 } else {
581 if( d == -1 && i1->_lo == min_jint ) {
582 // 'min_jint/-1' throws arithmetic exception during compilation
583 lo = min_jint;
584 // do not support holes, 'hi' must go to either min_jint or max_jint:
585 // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
586 hi = i1->_hi == min_jint ? min_jint : max_jint;
587 } else {
588 lo = i1->_hi/d;
589 hi = i1->_lo/d;
590 }
591 }
592 return TypeInt::make(lo, hi, widen);
593 }
594
595 // If the dividend is a constant
596 if( i1->is_con() ) {
597 int32_t d = i1->get_con();
598 if( d < 0 ) {
599 if( d == min_jint ) {
600 // (-min_jint) == min_jint == (min_jint / -1)
601 return TypeInt::make(min_jint, max_jint/2 + 1, widen);
602 } else {
603 return TypeInt::make(d, -d, widen);
604 }
605 }
606 return TypeInt::make(-d, d, widen);
607 }
608
609 // Otherwise we give up all hope
610 return TypeInt::INT;
611 }
612
613
614 //=============================================================================
615 //------------------------------Identity---------------------------------------
616 // If the divisor is 1, we are an identity on the dividend.
617 Node* DivLNode::Identity(PhaseGVN* phase) {
618 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
619 }
620
621 //------------------------------Idealize---------------------------------------
622 // Dividing by a power of 2 is a shift.
623 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
624 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
625 // Don't bother trying to transform a dead node
626 if( in(0) && in(0)->is_top() ) return nullptr;
627
628 const Type *t = phase->type( in(2) );
629 if( t == TypeLong::ONE ) // Identity?
630 return nullptr; // Skip it
631
632 const TypeLong *tl = t->isa_long();
633 if( !tl ) return nullptr;
634
635 // Check for useless control input
636 // Check for excluding div-zero case
637 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
638 set_req(0, nullptr); // Yank control input
639 return this;
640 }
641
642 if( !tl->is_con() ) return nullptr;
643 jlong l = tl->get_con(); // Get divisor
644
645 if (l == 0) return nullptr; // Dividing by zero constant does not idealize
646
647 // Dividing by MINLONG does not optimize as a power-of-2 shift.
648 if( l == min_jlong ) return nullptr;
649
650 return transform_long_divide( phase, in(1), l );
651 }
652
653 //------------------------------Value------------------------------------------
654 // A DivLNode divides its inputs. The third input is a Control input, used to
655 // prevent hoisting the divide above an unsafe test.
656 const Type* DivLNode::Value(PhaseGVN* phase) const {
657 // Either input is TOP ==> the result is TOP
658 const Type *t1 = phase->type( in(1) );
659 const Type *t2 = phase->type( in(2) );
660 if( t1 == Type::TOP ) return Type::TOP;
661 if( t2 == Type::TOP ) return Type::TOP;
662
663 // x/x == 1 since we always generate the dynamic divisor check for 0.
664 if (in(1) == in(2)) {
665 return TypeLong::ONE;
666 }
667
668 // Either input is BOTTOM ==> the result is the local BOTTOM
669 const Type *bot = bottom_type();
670 if( (t1 == bot) || (t2 == bot) ||
671 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
672 return bot;
673
674 // Divide the two numbers. We approximate.
675 // If divisor is a constant and not zero
676 const TypeLong *i1 = t1->is_long();
677 const TypeLong *i2 = t2->is_long();
678 int widen = MAX2(i1->_widen, i2->_widen);
679
680 if( i2->is_con() && i2->get_con() != 0 ) {
681 jlong d = i2->get_con(); // Divisor
682 jlong lo, hi;
683 if( d >= 0 ) {
684 lo = i1->_lo/d;
685 hi = i1->_hi/d;
686 } else {
687 if( d == CONST64(-1) && i1->_lo == min_jlong ) {
688 // 'min_jlong/-1' throws arithmetic exception during compilation
689 lo = min_jlong;
690 // do not support holes, 'hi' must go to either min_jlong or max_jlong:
691 // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
692 hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
693 } else {
694 lo = i1->_hi/d;
695 hi = i1->_lo/d;
696 }
697 }
698 return TypeLong::make(lo, hi, widen);
699 }
700
701 // If the dividend is a constant
702 if( i1->is_con() ) {
703 jlong d = i1->get_con();
704 if( d < 0 ) {
705 if( d == min_jlong ) {
706 // (-min_jlong) == min_jlong == (min_jlong / -1)
707 return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
708 } else {
709 return TypeLong::make(d, -d, widen);
710 }
711 }
712 return TypeLong::make(-d, d, widen);
713 }
714
715 // Otherwise we give up all hope
716 return TypeLong::LONG;
717 }
718
719
720 //=============================================================================
721 //------------------------------Value------------------------------------------
722 // An DivFNode divides its inputs. The third input is a Control input, used to
723 // prevent hoisting the divide above an unsafe test.
724 const Type* DivFNode::Value(PhaseGVN* phase) const {
725 // Either input is TOP ==> the result is TOP
726 const Type *t1 = phase->type( in(1) );
727 const Type *t2 = phase->type( in(2) );
728 if( t1 == Type::TOP ) return Type::TOP;
729 if( t2 == Type::TOP ) return Type::TOP;
730
731 // Either input is BOTTOM ==> the result is the local BOTTOM
732 const Type *bot = bottom_type();
733 if( (t1 == bot) || (t2 == bot) ||
734 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
735 return bot;
736
737 // x/x == 1, we ignore 0/0.
738 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
739 // Does not work for variables because of NaN's
740 if (in(1) == in(2) && t1->base() == Type::FloatCon &&
741 !g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) { // could be negative ZERO or NaN
742 return TypeF::ONE;
743 }
744
745 if( t2 == TypeF::ONE )
746 return t1;
747
748 // If divisor is a constant and not zero, divide them numbers
749 if( t1->base() == Type::FloatCon &&
750 t2->base() == Type::FloatCon &&
751 t2->getf() != 0.0 ) // could be negative zero
752 return TypeF::make( t1->getf()/t2->getf() );
753
754 // If the dividend is a constant zero
755 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
756 // Test TypeF::ZERO is not sufficient as it could be negative zero
757
758 if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
759 return TypeF::ZERO;
760
761 // Otherwise we give up all hope
762 return Type::FLOAT;
763 }
764
765 //------------------------------isA_Copy---------------------------------------
766 // Dividing by self is 1.
767 // If the divisor is 1, we are an identity on the dividend.
768 Node* DivFNode::Identity(PhaseGVN* phase) {
769 return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
770 }
771
772
773 //------------------------------Idealize---------------------------------------
774 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
775 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
776 // Don't bother trying to transform a dead node
777 if( in(0) && in(0)->is_top() ) return nullptr;
778
779 const Type *t2 = phase->type( in(2) );
780 if( t2 == TypeF::ONE ) // Identity?
781 return nullptr; // Skip it
782
783 const TypeF *tf = t2->isa_float_constant();
784 if( !tf ) return nullptr;
785 if( tf->base() != Type::FloatCon ) return nullptr;
786
787 // Check for out of range values
788 if( tf->is_nan() || !tf->is_finite() ) return nullptr;
789
790 // Get the value
791 float f = tf->getf();
792 int exp;
793
794 // Only for special case of dividing by a power of 2
795 if( frexp((double)f, &exp) != 0.5 ) return nullptr;
796
797 // Limit the range of acceptable exponents
798 if( exp < -126 || exp > 126 ) return nullptr;
799
800 // Compute the reciprocal
801 float reciprocal = ((float)1.0) / f;
802
803 assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
804
805 // return multiplication by the reciprocal
806 return (new MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
807 }
808 //=============================================================================
809 //------------------------------Value------------------------------------------
810 // An DivHFNode divides its inputs. The third input is a Control input, used to
811 // prevent hoisting the divide above an unsafe test.
812 const Type* DivHFNode::Value(PhaseGVN* phase) const {
813 // Either input is TOP ==> the result is TOP
814 const Type* t1 = phase->type(in(1));
815 const Type* t2 = phase->type(in(2));
816 if(t1 == Type::TOP) { return Type::TOP; }
817 if(t2 == Type::TOP) { return Type::TOP; }
818
819 // Either input is BOTTOM ==> the result is the local BOTTOM
820 const Type* bot = bottom_type();
821 if((t1 == bot) || (t2 == bot) ||
822 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
823 return bot;
824 }
825
826 if (t1->base() == Type::HalfFloatCon &&
827 t2->base() == Type::HalfFloatCon) {
828 // IEEE 754 floating point comparison treats 0.0 and -0.0 as equals.
829
830 // Division of a zero by a zero results in NaN.
831 if (t1->getf() == 0.0f && t2->getf() == 0.0f) {
832 return TypeH::make(NAN);
833 }
834
835 // As per C++ standard section 7.6.5 (expr.mul), behavior is undefined only if
836 // the second operand is 0.0. In all other situations, we can expect a standard-compliant
837 // C++ compiler to generate code following IEEE 754 semantics.
838 if (t2->getf() == 0.0) {
839 // If either operand is NaN, the result is NaN
840 if (g_isnan(t1->getf())) {
841 return TypeH::make(NAN);
842 } else {
843 // Division of a nonzero finite value by a zero results in a signed infinity. Also,
844 // division of an infinity by a finite value results in a signed infinity.
845 bool res_sign_neg = (jint_cast(t1->getf()) < 0) ^ (jint_cast(t2->getf()) < 0);
846 const TypeF* res = res_sign_neg ? TypeF::NEG_INF : TypeF::POS_INF;
847 return TypeH::make(res->getf());
848 }
849 }
850
851 return TypeH::make(t1->getf() / t2->getf());
852 }
853
854 // Otherwise we give up all hope
855 return Type::HALF_FLOAT;
856 }
857
858 //-----------------------------------------------------------------------------
859 // Dividing by self is 1.
860 // IF the divisor is 1, we are an identity on the dividend.
861 Node* DivHFNode::Identity(PhaseGVN* phase) {
862 return (phase->type( in(2) ) == TypeH::ONE) ? in(1) : this;
863 }
864
865
866 //------------------------------Idealize---------------------------------------
867 Node* DivHFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
868 if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) return this;
869 // Don't bother trying to transform a dead node
870 if (in(0) != nullptr && in(0)->is_top()) { return nullptr; }
871
872 const Type* t2 = phase->type(in(2));
873 if (t2 == TypeH::ONE) { // Identity?
874 return nullptr; // Skip it
875 }
876 const TypeH* tf = t2->isa_half_float_constant();
877 if(tf == nullptr) { return nullptr; }
878 if(tf->base() != Type::HalfFloatCon) { return nullptr; }
879
880 // Check for out of range values
881 if(tf->is_nan() || !tf->is_finite()) { return nullptr; }
882
883 // Get the value
884 float f = tf->getf();
885 int exp;
886
887 // Consider the following geometric progression series of POT(power of two) numbers.
888 // 0.5 x 2^0 = 0.5, 0.5 x 2^1 = 1.0, 0.5 x 2^2 = 2.0, 0.5 x 2^3 = 4.0 ... 0.5 x 2^n,
889 // In all the above cases, normalized mantissa returned by frexp routine will
890 // be exactly equal to 0.5 while exponent will be 0,1,2,3...n
891 // Perform division to multiplication transform only if divisor is a POT value.
892 if(frexp((double)f, &exp) != 0.5) { return nullptr; }
893
894 // Limit the range of acceptable exponents
895 if(exp < -14 || exp > 15) { return nullptr; }
896
897 // Since divisor is a POT number, hence its reciprocal will never
898 // overflow 11 bits precision range of Float16
899 // value if exponent returned by frexp routine strictly lie
900 // within the exponent range of normal min(0x1.0P-14) and
901 // normal max(0x1.ffcP+15) values.
902 // Thus we can safely compute the reciprocal of divisor without
903 // any concerns about the precision loss and transform the division
904 // into a multiplication operation.
905 float reciprocal = ((float)1.0) / f;
906
907 assert(frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2");
908
909 // return multiplication by the reciprocal
910 return (new MulHFNode(in(1), phase->makecon(TypeH::make(reciprocal))));
911 }
912
913 //=============================================================================
914 //------------------------------Value------------------------------------------
915 // An DivDNode divides its inputs. The third input is a Control input, used to
916 // prevent hoisting the divide above an unsafe test.
917 const Type* DivDNode::Value(PhaseGVN* phase) const {
918 // Either input is TOP ==> the result is TOP
919 const Type *t1 = phase->type( in(1) );
920 const Type *t2 = phase->type( in(2) );
921 if( t1 == Type::TOP ) return Type::TOP;
922 if( t2 == Type::TOP ) return Type::TOP;
923
924 // Either input is BOTTOM ==> the result is the local BOTTOM
925 const Type *bot = bottom_type();
926 if( (t1 == bot) || (t2 == bot) ||
927 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
928 return bot;
929
930 // x/x == 1, we ignore 0/0.
931 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
932 // Does not work for variables because of NaN's
933 if (in(1) == in(2) && t1->base() == Type::DoubleCon &&
934 !g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) { // could be negative ZERO or NaN
935 return TypeD::ONE;
936 }
937
938 if( t2 == TypeD::ONE )
939 return t1;
940
941 // IA32 would only execute this for non-strict FP, which is never the
942 // case now.
943 #if ! defined(IA32)
944 // If divisor is a constant and not zero, divide them numbers
945 if( t1->base() == Type::DoubleCon &&
946 t2->base() == Type::DoubleCon &&
947 t2->getd() != 0.0 ) // could be negative zero
948 return TypeD::make( t1->getd()/t2->getd() );
949 #endif
950
951 // If the dividend is a constant zero
952 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
953 // Test TypeF::ZERO is not sufficient as it could be negative zero
954 if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
955 return TypeD::ZERO;
956
957 // Otherwise we give up all hope
958 return Type::DOUBLE;
959 }
960
961
962 //------------------------------isA_Copy---------------------------------------
963 // Dividing by self is 1.
964 // If the divisor is 1, we are an identity on the dividend.
965 Node* DivDNode::Identity(PhaseGVN* phase) {
966 return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
967 }
968
969 //------------------------------Idealize---------------------------------------
970 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
971 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
972 // Don't bother trying to transform a dead node
973 if( in(0) && in(0)->is_top() ) return nullptr;
974
975 const Type *t2 = phase->type( in(2) );
976 if( t2 == TypeD::ONE ) // Identity?
977 return nullptr; // Skip it
978
979 const TypeD *td = t2->isa_double_constant();
980 if( !td ) return nullptr;
981 if( td->base() != Type::DoubleCon ) return nullptr;
982
983 // Check for out of range values
984 if( td->is_nan() || !td->is_finite() ) return nullptr;
985
986 // Get the value
987 double d = td->getd();
988 int exp;
989
990 // Only for special case of dividing by a power of 2
991 if( frexp(d, &exp) != 0.5 ) return nullptr;
992
993 // Limit the range of acceptable exponents
994 if( exp < -1021 || exp > 1022 ) return nullptr;
995
996 // Compute the reciprocal
997 double reciprocal = 1.0 / d;
998
999 assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
1000
1001 // return multiplication by the reciprocal
1002 return (new MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
1003 }
1004
1005 //=============================================================================
1006 //------------------------------Identity---------------------------------------
1007 // If the divisor is 1, we are an identity on the dividend.
1008 Node* UDivINode::Identity(PhaseGVN* phase) {
1009 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
1010 }
1011 //------------------------------Value------------------------------------------
1012 // A UDivINode divides its inputs. The third input is a Control input, used to
1013 // prevent hoisting the divide above an unsafe test.
1014 const Type* UDivINode::Value(PhaseGVN* phase) const {
1015 // Either input is TOP ==> the result is TOP
1016 const Type *t1 = phase->type( in(1) );
1017 const Type *t2 = phase->type( in(2) );
1018 if( t1 == Type::TOP ) return Type::TOP;
1019 if( t2 == Type::TOP ) return Type::TOP;
1020
1021 // x/x == 1 since we always generate the dynamic divisor check for 0.
1022 if (in(1) == in(2)) {
1023 return TypeInt::ONE;
1024 }
1025
1026 // Either input is BOTTOM ==> the result is the local BOTTOM
1027 const Type *bot = bottom_type();
1028 if( (t1 == bot) || (t2 == bot) ||
1029 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1030 return bot;
1031
1032 // Otherwise we give up all hope
1033 return TypeInt::INT;
1034 }
1035
1036 //------------------------------Idealize---------------------------------------
1037 Node *UDivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1038 return unsigned_div_ideal<TypeInt, juint>(phase, can_reshape, this);
1039 }
1040
1041 //=============================================================================
1042 //------------------------------Identity---------------------------------------
1043 // If the divisor is 1, we are an identity on the dividend.
1044 Node* UDivLNode::Identity(PhaseGVN* phase) {
1045 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
1046 }
1047 //------------------------------Value------------------------------------------
1048 // A UDivLNode divides its inputs. The third input is a Control input, used to
1049 // prevent hoisting the divide above an unsafe test.
1050 const Type* UDivLNode::Value(PhaseGVN* phase) const {
1051 // Either input is TOP ==> the result is TOP
1052 const Type *t1 = phase->type( in(1) );
1053 const Type *t2 = phase->type( in(2) );
1054 if( t1 == Type::TOP ) return Type::TOP;
1055 if( t2 == Type::TOP ) return Type::TOP;
1056
1057 // x/x == 1 since we always generate the dynamic divisor check for 0.
1058 if (in(1) == in(2)) {
1059 return TypeLong::ONE;
1060 }
1061
1062 // Either input is BOTTOM ==> the result is the local BOTTOM
1063 const Type *bot = bottom_type();
1064 if( (t1 == bot) || (t2 == bot) ||
1065 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1066 return bot;
1067
1068 // Otherwise we give up all hope
1069 return TypeLong::LONG;
1070 }
1071
1072 //------------------------------Idealize---------------------------------------
1073 Node *UDivLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1074 return unsigned_div_ideal<TypeLong, julong>(phase, can_reshape, this);
1075 }
1076
1077 //=============================================================================
1078 //------------------------------Idealize---------------------------------------
1079 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1080 // Check for dead control input
1081 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1082 // Don't bother trying to transform a dead node
1083 if( in(0) && in(0)->is_top() ) return nullptr;
1084
1085 // Get the modulus
1086 const Type *t = phase->type( in(2) );
1087 if( t == Type::TOP ) return nullptr;
1088 const TypeInt *ti = t->is_int();
1089
1090 // Check for useless control input
1091 // Check for excluding mod-zero case
1092 if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
1093 set_req(0, nullptr); // Yank control input
1094 return this;
1095 }
1096
1097 // See if we are MOD'ing by 2^k or 2^k-1.
1098 if( !ti->is_con() ) return nullptr;
1099 jint con = ti->get_con();
1100
1101 Node *hook = new Node(1);
1102
1103 // First, special check for modulo 2^k-1
1104 if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
1105 uint k = exact_log2(con+1); // Extract k
1106
1107 // Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
1108 static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1109 int trip_count = 1;
1110 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1111
1112 // If the unroll factor is not too large, and if conditional moves are
1113 // ok, then use this case
1114 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1115 Node *x = in(1); // Value being mod'd
1116 Node *divisor = in(2); // Also is mask
1117
1118 hook->init_req(0, x); // Add a use to x to prevent him from dying
1119 // Generate code to reduce X rapidly to nearly 2^k-1.
1120 for( int i = 0; i < trip_count; i++ ) {
1121 Node *xl = phase->transform( new AndINode(x,divisor) );
1122 Node *xh = phase->transform( new RShiftINode(x,phase->intcon(k)) ); // Must be signed
1123 x = phase->transform( new AddINode(xh,xl) );
1124 hook->set_req(0, x);
1125 }
1126
1127 // Generate sign-fixup code. Was original value positive?
1128 // int hack_res = (i >= 0) ? divisor : 1;
1129 Node *cmp1 = phase->transform( new CmpINode( in(1), phase->intcon(0) ) );
1130 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1131 Node *cmov1= phase->transform( new CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
1132 // if( x >= hack_res ) x -= divisor;
1133 Node *sub = phase->transform( new SubINode( x, divisor ) );
1134 Node *cmp2 = phase->transform( new CmpINode( x, cmov1 ) );
1135 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1136 // Convention is to not transform the return value of an Ideal
1137 // since Ideal is expected to return a modified 'this' or a new node.
1138 Node *cmov2= new CMoveINode(bol2, x, sub, TypeInt::INT);
1139 // cmov2 is now the mod
1140
1141 // Now remove the bogus extra edges used to keep things alive
1142 hook->destruct(phase);
1143 return cmov2;
1144 }
1145 }
1146
1147 // Fell thru, the unroll case is not appropriate. Transform the modulo
1148 // into a long multiply/int multiply/subtract case
1149
1150 // Cannot handle mod 0, and min_jint isn't handled by the transform
1151 if( con == 0 || con == min_jint ) return nullptr;
1152
1153 // Get the absolute value of the constant; at this point, we can use this
1154 jint pos_con = (con >= 0) ? con : -con;
1155
1156 // integer Mod 1 is always 0
1157 if( pos_con == 1 ) return new ConINode(TypeInt::ZERO);
1158
1159 int log2_con = -1;
1160
1161 // If this is a power of two, they maybe we can mask it
1162 if (is_power_of_2(pos_con)) {
1163 log2_con = log2i_exact(pos_con);
1164
1165 const Type *dt = phase->type(in(1));
1166 const TypeInt *dti = dt->isa_int();
1167
1168 // See if this can be masked, if the dividend is non-negative
1169 if( dti && dti->_lo >= 0 )
1170 return ( new AndINode( in(1), phase->intcon( pos_con-1 ) ) );
1171 }
1172
1173 // Save in(1) so that it cannot be changed or deleted
1174 hook->init_req(0, in(1));
1175
1176 // Divide using the transform from DivI to MulL
1177 Node *result = transform_int_divide( phase, in(1), pos_con );
1178 if (result != nullptr) {
1179 Node *divide = phase->transform(result);
1180
1181 // Re-multiply, using a shift if this is a power of two
1182 Node *mult = nullptr;
1183
1184 if( log2_con >= 0 )
1185 mult = phase->transform( new LShiftINode( divide, phase->intcon( log2_con ) ) );
1186 else
1187 mult = phase->transform( new MulINode( divide, phase->intcon( pos_con ) ) );
1188
1189 // Finally, subtract the multiplied divided value from the original
1190 result = new SubINode( in(1), mult );
1191 }
1192
1193 // Now remove the bogus extra edges used to keep things alive
1194 hook->destruct(phase);
1195
1196 // return the value
1197 return result;
1198 }
1199
1200 //------------------------------Value------------------------------------------
1201 static const Type* mod_value(const PhaseGVN* phase, const Node* in1, const Node* in2, const BasicType bt) {
1202 assert(bt == T_INT || bt == T_LONG, "unexpected basic type");
1203 // Either input is TOP ==> the result is TOP
1204 const Type* t1 = phase->type(in1);
1205 const Type* t2 = phase->type(in2);
1206 if (t1 == Type::TOP) { return Type::TOP; }
1207 if (t2 == Type::TOP) { return Type::TOP; }
1208
1209 // Mod by zero? Throw exception at runtime!
1210 if (t2 == TypeInteger::zero(bt)) {
1211 return Type::TOP;
1212 }
1213
1214 // We always generate the dynamic check for 0.
1215 // 0 MOD X is 0
1216 if (t1 == TypeInteger::zero(bt)) { return t1; }
1217
1218 // X MOD X is 0
1219 if (in1 == in2) {
1220 return TypeInteger::zero(bt);
1221 }
1222
1223 const TypeInteger* i1 = t1->is_integer(bt);
1224 const TypeInteger* i2 = t2->is_integer(bt);
1225 if (i1->is_con() && i2->is_con()) {
1226 // We must be modulo'ing 2 int constants.
1227 // Special case: min_jlong % '-1' is UB, and e.g., x86 triggers a division error.
1228 // Any value % -1 is 0, so we can return 0 and avoid that scenario.
1229 if (i2->get_con_as_long(bt) == -1) {
1230 return TypeInteger::zero(bt);
1231 }
1232 return TypeInteger::make(i1->get_con_as_long(bt) % i2->get_con_as_long(bt), bt);
1233 }
1234 // We checked that t2 is not the zero constant. Hence, at least i2->_lo or i2->_hi must be non-zero,
1235 // and hence its absoute value is bigger than zero. Hence, the magnitude of the divisor (i.e. the
1236 // largest absolute value for any value in i2) must be in the range [1, 2^31] or [1, 2^63], depending
1237 // on the BasicType.
1238 julong divisor_magnitude = MAX2(g_uabs(i2->lo_as_long()), g_uabs(i2->hi_as_long()));
1239 // JVMS lrem bytecode: "the magnitude of the result is always less than the magnitude of the divisor"
1240 // "less than" means we can subtract 1 to get an inclusive upper bound in [0, 2^31-1] or [0, 2^63-1], respectively
1241 jlong hi = static_cast<jlong>(divisor_magnitude - 1);
1242 jlong lo = -hi;
1243 // JVMS lrem bytecode: "the result of the remainder operation can be negative only if the dividend
1244 // is negative and can be positive only if the dividend is positive"
1245 // Note that with a dividend with bounds e.g. lo == -4 and hi == -1 can still result in values
1246 // below lo; i.e., -3 % 3 == 0.
1247 // That means we cannot restrict the bound that is closer to zero beyond knowing its sign (or zero).
1248 if (i1->hi_as_long() <= 0) {
1249 // all dividends are not positive, so the result is not positive
1250 hi = 0;
1251 // if the dividend is known to be closer to zero, use that as a lower limit
1252 lo = MAX2(lo, i1->lo_as_long());
1253 } else if (i1->lo_as_long() >= 0) {
1254 // all dividends are not negative, so the result is not negative
1255 lo = 0;
1256 // if the dividend is known to be closer to zero, use that as an upper limit
1257 hi = MIN2(hi, i1->hi_as_long());
1258 } else {
1259 // Mixed signs, so we don't know the sign of the result, but the result is
1260 // either the dividend itself or a value closer to zero than the dividend,
1261 // and it is closer to zero than the divisor.
1262 // As we know i1->_lo < 0 and i1->_hi > 0, we can use these bounds directly.
1263 lo = MAX2(lo, i1->lo_as_long());
1264 hi = MIN2(hi, i1->hi_as_long());
1265 }
1266 return TypeInteger::make(lo, hi, MAX2(i1->_widen, i2->_widen), bt);
1267 }
1268
1269 const Type* ModINode::Value(PhaseGVN* phase) const {
1270 return mod_value(phase, in(1), in(2), T_INT);
1271 }
1272
1273 //=============================================================================
1274 //------------------------------Idealize---------------------------------------
1275
1276 template <typename TypeClass, typename Unsigned>
1277 static Node* unsigned_mod_ideal(PhaseGVN* phase, bool can_reshape, Node* mod) {
1278 // Check for dead control input
1279 if (mod->in(0) != nullptr && mod->remove_dead_region(phase, can_reshape)) {
1280 return mod;
1281 }
1282 // Don't bother trying to transform a dead node
1283 if (mod->in(0) != nullptr && mod->in(0)->is_top()) {
1284 return nullptr;
1285 }
1286
1287 // Get the modulus
1288 const Type* t = phase->type(mod->in(2));
1289 if (t == Type::TOP) {
1290 return nullptr;
1291 }
1292 const TypeClass* type_divisor = t->cast<TypeClass>();
1293
1294 // Check for useless control input
1295 // Check for excluding mod-zero case
1296 if (mod->in(0) != nullptr && (type_divisor->_hi < 0 || type_divisor->_lo > 0)) {
1297 mod->set_req(0, nullptr); // Yank control input
1298 return mod;
1299 }
1300
1301 if (!type_divisor->is_con()) {
1302 return nullptr;
1303 }
1304 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1305
1306 if (divisor == 0) {
1307 return nullptr;
1308 }
1309
1310 if (is_power_of_2(divisor)) {
1311 return make_and<TypeClass>(mod->in(1), phase->makecon(TypeClass::make(divisor - 1)));
1312 }
1313
1314 return nullptr;
1315 }
1316
1317 template <typename TypeClass, typename Unsigned, typename Signed>
1318 static const Type* unsigned_mod_value(PhaseGVN* phase, const Node* mod) {
1319 const Type* t1 = phase->type(mod->in(1));
1320 const Type* t2 = phase->type(mod->in(2));
1321 if (t1 == Type::TOP) {
1322 return Type::TOP;
1323 }
1324 if (t2 == Type::TOP) {
1325 return Type::TOP;
1326 }
1327
1328 // 0 MOD X is 0
1329 if (t1 == TypeClass::ZERO) {
1330 return TypeClass::ZERO;
1331 }
1332 // X MOD X is 0
1333 if (mod->in(1) == mod->in(2)) {
1334 return TypeClass::ZERO;
1335 }
1336
1337 // Either input is BOTTOM ==> the result is the local BOTTOM
1338 const Type* bot = mod->bottom_type();
1339 if ((t1 == bot) || (t2 == bot) ||
1340 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
1341 return bot;
1342 }
1343
1344 const TypeClass* type_divisor = t2->cast<TypeClass>();
1345 if (type_divisor->is_con() && type_divisor->get_con() == 1) {
1346 return TypeClass::ZERO;
1347 }
1348
1349 // Mod by zero? Throw an exception at runtime!
1350 if (type_divisor->is_con() && type_divisor->get_con() == 0) {
1351 return TypeClass::POS;
1352 }
1353
1354 const TypeClass* type_dividend = t1->cast<TypeClass>();
1355 if (type_dividend->is_con() && type_divisor->is_con()) {
1356 Unsigned dividend = static_cast<Unsigned>(type_dividend->get_con());
1357 Unsigned divisor = static_cast<Unsigned>(type_divisor->get_con());
1358 return TypeClass::make(static_cast<Signed>(dividend % divisor));
1359 }
1360
1361 return bot;
1362 }
1363
1364 Node* UModINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1365 return unsigned_mod_ideal<TypeInt, juint>(phase, can_reshape, this);
1366 }
1367
1368 const Type* UModINode::Value(PhaseGVN* phase) const {
1369 return unsigned_mod_value<TypeInt, juint, jint>(phase, this);
1370 }
1371
1372 //=============================================================================
1373 //------------------------------Idealize---------------------------------------
1374 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1375 // Check for dead control input
1376 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1377 // Don't bother trying to transform a dead node
1378 if( in(0) && in(0)->is_top() ) return nullptr;
1379
1380 // Get the modulus
1381 const Type *t = phase->type( in(2) );
1382 if( t == Type::TOP ) return nullptr;
1383 const TypeLong *tl = t->is_long();
1384
1385 // Check for useless control input
1386 // Check for excluding mod-zero case
1387 if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
1388 set_req(0, nullptr); // Yank control input
1389 return this;
1390 }
1391
1392 // See if we are MOD'ing by 2^k or 2^k-1.
1393 if( !tl->is_con() ) return nullptr;
1394 jlong con = tl->get_con();
1395
1396 Node *hook = new Node(1);
1397
1398 // Expand mod
1399 if(con >= 0 && con < max_jlong && is_power_of_2(con + 1)) {
1400 uint k = log2i_exact(con + 1); // Extract k
1401
1402 // Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
1403 // Used to help a popular random number generator which does a long-mod
1404 // of 2^31-1 and shows up in SpecJBB and SciMark.
1405 static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1406 int trip_count = 1;
1407 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1408
1409 // If the unroll factor is not too large, and if conditional moves are
1410 // ok, then use this case
1411 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1412 Node *x = in(1); // Value being mod'd
1413 Node *divisor = in(2); // Also is mask
1414
1415 hook->init_req(0, x); // Add a use to x to prevent him from dying
1416 // Generate code to reduce X rapidly to nearly 2^k-1.
1417 for( int i = 0; i < trip_count; i++ ) {
1418 Node *xl = phase->transform( new AndLNode(x,divisor) );
1419 Node *xh = phase->transform( new RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1420 x = phase->transform( new AddLNode(xh,xl) );
1421 hook->set_req(0, x); // Add a use to x to prevent him from dying
1422 }
1423
1424 // Generate sign-fixup code. Was original value positive?
1425 // long hack_res = (i >= 0) ? divisor : CONST64(1);
1426 Node *cmp1 = phase->transform( new CmpLNode( in(1), phase->longcon(0) ) );
1427 Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1428 Node *cmov1= phase->transform( new CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1429 // if( x >= hack_res ) x -= divisor;
1430 Node *sub = phase->transform( new SubLNode( x, divisor ) );
1431 Node *cmp2 = phase->transform( new CmpLNode( x, cmov1 ) );
1432 Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1433 // Convention is to not transform the return value of an Ideal
1434 // since Ideal is expected to return a modified 'this' or a new node.
1435 Node *cmov2= new CMoveLNode(bol2, x, sub, TypeLong::LONG);
1436 // cmov2 is now the mod
1437
1438 // Now remove the bogus extra edges used to keep things alive
1439 hook->destruct(phase);
1440 return cmov2;
1441 }
1442 }
1443
1444 // Fell thru, the unroll case is not appropriate. Transform the modulo
1445 // into a long multiply/int multiply/subtract case
1446
1447 // Cannot handle mod 0, and min_jlong isn't handled by the transform
1448 if( con == 0 || con == min_jlong ) return nullptr;
1449
1450 // Get the absolute value of the constant; at this point, we can use this
1451 jlong pos_con = (con >= 0) ? con : -con;
1452
1453 // integer Mod 1 is always 0
1454 if( pos_con == 1 ) return new ConLNode(TypeLong::ZERO);
1455
1456 int log2_con = -1;
1457
1458 // If this is a power of two, then maybe we can mask it
1459 if (is_power_of_2(pos_con)) {
1460 log2_con = log2i_exact(pos_con);
1461
1462 const Type *dt = phase->type(in(1));
1463 const TypeLong *dtl = dt->isa_long();
1464
1465 // See if this can be masked, if the dividend is non-negative
1466 if( dtl && dtl->_lo >= 0 )
1467 return ( new AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1468 }
1469
1470 // Save in(1) so that it cannot be changed or deleted
1471 hook->init_req(0, in(1));
1472
1473 // Divide using the transform from DivL to MulL
1474 Node *result = transform_long_divide( phase, in(1), pos_con );
1475 if (result != nullptr) {
1476 Node *divide = phase->transform(result);
1477
1478 // Re-multiply, using a shift if this is a power of two
1479 Node *mult = nullptr;
1480
1481 if( log2_con >= 0 )
1482 mult = phase->transform( new LShiftLNode( divide, phase->intcon( log2_con ) ) );
1483 else
1484 mult = phase->transform( new MulLNode( divide, phase->longcon( pos_con ) ) );
1485
1486 // Finally, subtract the multiplied divided value from the original
1487 result = new SubLNode( in(1), mult );
1488 }
1489
1490 // Now remove the bogus extra edges used to keep things alive
1491 hook->destruct(phase);
1492
1493 // return the value
1494 return result;
1495 }
1496
1497 //------------------------------Value------------------------------------------
1498 const Type* ModLNode::Value(PhaseGVN* phase) const {
1499 return mod_value(phase, in(1), in(2), T_LONG);
1500 }
1501
1502 Node *UModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1503 return unsigned_mod_ideal<TypeLong, julong>(phase, can_reshape, this);
1504 }
1505
1506 const Type* UModLNode::Value(PhaseGVN* phase) const {
1507 return unsigned_mod_value<TypeLong, julong, jlong>(phase, this);
1508 }
1509
1510 const Type* ModFNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1511 // If either number is not a constant, we know nothing.
1512 if ((dividend->base() != Type::FloatCon) || (divisor->base() != Type::FloatCon)) {
1513 return nullptr; // note: x%x can be either NaN or 0
1514 }
1515
1516 float dividend_f = dividend->getf();
1517 float divisor_f = divisor->getf();
1518 jint dividend_i = jint_cast(dividend_f); // note: *(int*)&f1, not just (int)f1
1519 jint divisor_i = jint_cast(divisor_f);
1520
1521 // If either is a NaN, return an input NaN
1522 if (g_isnan(dividend_f)) {
1523 return dividend;
1524 }
1525 if (g_isnan(divisor_f)) {
1526 return divisor;
1527 }
1528
1529 // If an operand is infinity or the divisor is +/- zero, punt.
1530 if (!g_isfinite(dividend_f) || !g_isfinite(divisor_f) || divisor_i == 0 || divisor_i == min_jint) {
1531 return nullptr;
1532 }
1533
1534 // We must be modulo'ing 2 float constants.
1535 // Make sure that the sign of the fmod is equal to the sign of the dividend
1536 jint xr = jint_cast(fmod(dividend_f, divisor_f));
1537 if ((dividend_i ^ xr) < 0) {
1538 xr ^= min_jint;
1539 }
1540
1541 return TypeF::make(jfloat_cast(xr));
1542 }
1543
1544 const Type* ModDNode::get_result_if_constant(const Type* dividend, const Type* divisor) const {
1545 // If either number is not a constant, we know nothing.
1546 if ((dividend->base() != Type::DoubleCon) || (divisor->base() != Type::DoubleCon)) {
1547 return nullptr; // note: x%x can be either NaN or 0
1548 }
1549
1550 double dividend_d = dividend->getd();
1551 double divisor_d = divisor->getd();
1552 jlong dividend_l = jlong_cast(dividend_d); // note: *(long*)&f1, not just (long)f1
1553 jlong divisor_l = jlong_cast(divisor_d);
1554
1555 // If either is a NaN, return an input NaN
1556 if (g_isnan(dividend_d)) {
1557 return dividend;
1558 }
1559 if (g_isnan(divisor_d)) {
1560 return divisor;
1561 }
1562
1563 // If an operand is infinity or the divisor is +/- zero, punt.
1564 if (!g_isfinite(dividend_d) || !g_isfinite(divisor_d) || divisor_l == 0 || divisor_l == min_jlong) {
1565 return nullptr;
1566 }
1567
1568 // We must be modulo'ing 2 double constants.
1569 // Make sure that the sign of the fmod is equal to the sign of the dividend
1570 jlong xr = jlong_cast(fmod(dividend_d, divisor_d));
1571 if ((dividend_l ^ xr) < 0) {
1572 xr ^= min_jlong;
1573 }
1574
1575 return TypeD::make(jdouble_cast(xr));
1576 }
1577
1578 Node* ModFloatingNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1579 if (can_reshape) {
1580 PhaseIterGVN* igvn = phase->is_IterGVN();
1581
1582 // Either input is TOP ==> the result is TOP
1583 const Type* dividend_type = phase->type(dividend());
1584 const Type* divisor_type = phase->type(divisor());
1585 if (dividend_type == Type::TOP || divisor_type == Type::TOP) {
1586 return phase->C->top();
1587 }
1588 const Type* constant_result = get_result_if_constant(dividend_type, divisor_type);
1589 if (constant_result != nullptr) {
1590 return make_tuple_of_input_state_and_constant_result(igvn, constant_result);
1591 }
1592 }
1593
1594 return CallLeafPureNode::Ideal(phase, can_reshape);
1595 }
1596
1597 /* Give a tuple node for ::Ideal to return, made of the input state (control to return addr)
1598 * and the given constant result. Idealization of projections will make sure to transparently
1599 * propagate the input state and replace the result by the said constant.
1600 */
1601 TupleNode* ModFloatingNode::make_tuple_of_input_state_and_constant_result(PhaseIterGVN* phase, const Type* con) const {
1602 Node* con_node = phase->makecon(con);
1603 TupleNode* tuple = TupleNode::make(
1604 tf()->range_cc(),
1605 in(TypeFunc::Control),
1606 in(TypeFunc::I_O),
1607 in(TypeFunc::Memory),
1608 in(TypeFunc::FramePtr),
1609 in(TypeFunc::ReturnAdr),
1610 con_node);
1611
1612 return tuple;
1613 }
1614
1615 //=============================================================================
1616
1617 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1618 init_req(0, c);
1619 init_req(1, dividend);
1620 init_req(2, divisor);
1621 }
1622
1623 DivModNode* DivModNode::make(Node* div_or_mod, BasicType bt, bool is_unsigned) {
1624 assert(bt == T_INT || bt == T_LONG, "only int or long input pattern accepted");
1625
1626 if (bt == T_INT) {
1627 if (is_unsigned) {
1628 return UDivModINode::make(div_or_mod);
1629 } else {
1630 return DivModINode::make(div_or_mod);
1631 }
1632 } else {
1633 if (is_unsigned) {
1634 return UDivModLNode::make(div_or_mod);
1635 } else {
1636 return DivModLNode::make(div_or_mod);
1637 }
1638 }
1639 }
1640
1641 //------------------------------make------------------------------------------
1642 DivModINode* DivModINode::make(Node* div_or_mod) {
1643 Node* n = div_or_mod;
1644 assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1645 "only div or mod input pattern accepted");
1646
1647 DivModINode* divmod = new DivModINode(n->in(0), n->in(1), n->in(2));
1648 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1649 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1650 return divmod;
1651 }
1652
1653 //------------------------------make------------------------------------------
1654 DivModLNode* DivModLNode::make(Node* div_or_mod) {
1655 Node* n = div_or_mod;
1656 assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1657 "only div or mod input pattern accepted");
1658
1659 DivModLNode* divmod = new DivModLNode(n->in(0), n->in(1), n->in(2));
1660 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1661 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1662 return divmod;
1663 }
1664
1665 //------------------------------match------------------------------------------
1666 // return result(s) along with their RegMask info
1667 Node *DivModINode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
1668 uint ideal_reg = proj->ideal_reg();
1669 RegMask rm;
1670 if (proj->_con == div_proj_num) {
1671 rm = match->divI_proj_mask();
1672 } else {
1673 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1674 rm = match->modI_proj_mask();
1675 }
1676 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1677 }
1678
1679
1680 //------------------------------match------------------------------------------
1681 // return result(s) along with their RegMask info
1682 Node *DivModLNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
1683 uint ideal_reg = proj->ideal_reg();
1684 RegMask rm;
1685 if (proj->_con == div_proj_num) {
1686 rm = match->divL_proj_mask();
1687 } else {
1688 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1689 rm = match->modL_proj_mask();
1690 }
1691 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1692 }
1693
1694 //------------------------------make------------------------------------------
1695 UDivModINode* UDivModINode::make(Node* div_or_mod) {
1696 Node* n = div_or_mod;
1697 assert(n->Opcode() == Op_UDivI || n->Opcode() == Op_UModI,
1698 "only div or mod input pattern accepted");
1699
1700 UDivModINode* divmod = new UDivModINode(n->in(0), n->in(1), n->in(2));
1701 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1702 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1703 return divmod;
1704 }
1705
1706 //------------------------------make------------------------------------------
1707 UDivModLNode* UDivModLNode::make(Node* div_or_mod) {
1708 Node* n = div_or_mod;
1709 assert(n->Opcode() == Op_UDivL || n->Opcode() == Op_UModL,
1710 "only div or mod input pattern accepted");
1711
1712 UDivModLNode* divmod = new UDivModLNode(n->in(0), n->in(1), n->in(2));
1713 Node* dproj = new ProjNode(divmod, DivModNode::div_proj_num);
1714 Node* mproj = new ProjNode(divmod, DivModNode::mod_proj_num);
1715 return divmod;
1716 }
1717
1718 //------------------------------match------------------------------------------
1719 // return result(s) along with their RegMask info
1720 Node* UDivModINode::match(const ProjNode* proj, const Matcher* match, const RegMask* mask) {
1721 uint ideal_reg = proj->ideal_reg();
1722 RegMask rm;
1723 if (proj->_con == div_proj_num) {
1724 rm = match->divI_proj_mask();
1725 } else {
1726 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1727 rm = match->modI_proj_mask();
1728 }
1729 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1730 }
1731
1732
1733 //------------------------------match------------------------------------------
1734 // return result(s) along with their RegMask info
1735 Node* UDivModLNode::match( const ProjNode* proj, const Matcher* match, const RegMask* mask) {
1736 uint ideal_reg = proj->ideal_reg();
1737 RegMask rm;
1738 if (proj->_con == div_proj_num) {
1739 rm = match->divL_proj_mask();
1740 } else {
1741 assert(proj->_con == mod_proj_num, "must be div or mod projection");
1742 rm = match->modL_proj_mask();
1743 }
1744 return new MachProjNode(this, proj->_con, rm, ideal_reg);
1745 }