1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciCallSite.hpp" 27 #include "ci/ciMethodHandle.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "interpreter/linkResolver.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/callGenerator.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/mulnode.hpp" 38 #include "opto/parse.hpp" 39 #include "opto/rootnode.hpp" 40 #include "opto/runtime.hpp" 41 #include "opto/subnode.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/macros.hpp" 45 #if INCLUDE_JFR 46 #include "jfr/jfr.hpp" 47 #endif 48 49 void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) { 50 if (TraceTypeProfile || C->print_inlining()) { 51 outputStream* out = tty; 52 if (!C->print_inlining()) { 53 if (!PrintOpto && !PrintCompilation) { 54 method->print_short_name(); 55 tty->cr(); 56 } 57 CompileTask::print_inlining_tty(prof_method, depth, bci); 58 } else { 59 out = C->print_inlining_stream(); 60 } 61 CompileTask::print_inline_indent(depth, out); 62 out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count); 63 stringStream ss; 64 prof_klass->name()->print_symbol_on(&ss); 65 out->print("%s", ss.freeze()); 66 out->cr(); 67 } 68 } 69 70 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch, 71 JVMState* jvms, bool allow_inline, 72 float prof_factor, ciKlass* speculative_receiver_type, 73 bool allow_intrinsics) { 74 assert(callee != nullptr, "failed method resolution"); 75 76 ciMethod* caller = jvms->method(); 77 int bci = jvms->bci(); 78 Bytecodes::Code bytecode = caller->java_code_at_bci(bci); 79 ciMethod* orig_callee = caller->get_method_at_bci(bci); 80 81 const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) || 82 (bytecode == Bytecodes::_invokeinterface) || 83 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) || 84 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface); 85 86 // Dtrace currently doesn't work unless all calls are vanilla 87 if (env()->dtrace_method_probes()) { 88 allow_inline = false; 89 } 90 91 // Note: When we get profiling during stage-1 compiles, we want to pull 92 // from more specific profile data which pertains to this inlining. 93 // Right now, ignore the information in jvms->caller(), and do method[bci]. 94 ciCallProfile profile = caller->call_profile_at_bci(bci); 95 96 // See how many times this site has been invoked. 97 int site_count = profile.count(); 98 int receiver_count = -1; 99 if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) { 100 // Receivers in the profile structure are ordered by call counts 101 // so that the most called (major) receiver is profile.receiver(0). 102 receiver_count = profile.receiver_count(0); 103 } 104 105 CompileLog* log = this->log(); 106 if (log != nullptr) { 107 int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; 108 int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1; 109 log->begin_elem("call method='%d' count='%d' prof_factor='%f'", 110 log->identify(callee), site_count, prof_factor); 111 if (call_does_dispatch) log->print(" virtual='1'"); 112 if (allow_inline) log->print(" inline='1'"); 113 if (receiver_count >= 0) { 114 log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); 115 if (profile.has_receiver(1)) { 116 log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); 117 } 118 } 119 if (callee->is_method_handle_intrinsic()) { 120 log->print(" method_handle_intrinsic='1'"); 121 } 122 log->end_elem(); 123 } 124 125 // Special case the handling of certain common, profitable library 126 // methods. If these methods are replaced with specialized code, 127 // then we return it as the inlined version of the call. 128 CallGenerator* cg_intrinsic = nullptr; 129 if (allow_inline && allow_intrinsics) { 130 CallGenerator* cg = find_intrinsic(callee, call_does_dispatch); 131 if (cg != nullptr) { 132 if (cg->is_predicated()) { 133 // Code without intrinsic but, hopefully, inlined. 134 CallGenerator* inline_cg = this->call_generator(callee, 135 vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false); 136 if (inline_cg != nullptr) { 137 cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg); 138 } 139 } 140 141 // If intrinsic does the virtual dispatch, we try to use the type profile 142 // first, and hopefully inline it as the regular virtual call below. 143 // We will retry the intrinsic if nothing had claimed it afterwards. 144 if (cg->does_virtual_dispatch()) { 145 cg_intrinsic = cg; 146 cg = nullptr; 147 } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) { 148 return CallGenerator::for_late_inline(callee, cg); 149 } else { 150 return cg; 151 } 152 } 153 } 154 155 // Do method handle calls. 156 // NOTE: This must happen before normal inlining logic below since 157 // MethodHandle.invoke* are native methods which obviously don't 158 // have bytecodes and so normal inlining fails. 159 if (callee->is_method_handle_intrinsic()) { 160 CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline); 161 return cg; 162 } 163 164 // Attempt to inline... 165 if (allow_inline) { 166 // The profile data is only partly attributable to this caller, 167 // scale back the call site information. 168 float past_uses = jvms->method()->scale_count(site_count, prof_factor); 169 // This is the number of times we expect the call code to be used. 170 float expected_uses = past_uses; 171 172 // Try inlining a bytecoded method: 173 if (!call_does_dispatch) { 174 InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); 175 bool should_delay = AlwaysIncrementalInline; 176 if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) { 177 CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses); 178 // For optimized virtual calls assert at runtime that receiver object 179 // is a subtype of the inlined method holder. CHA can report a method 180 // as a unique target under an abstract method, but receiver type 181 // sometimes has a broader type. Similar scenario is possible with 182 // default methods when type system loses information about implemented 183 // interfaces. 184 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 185 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 186 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 187 188 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 189 } 190 if (cg != nullptr) { 191 // Delay the inlining of this method to give us the 192 // opportunity to perform some high level optimizations 193 // first. 194 if (should_delay_string_inlining(callee, jvms)) { 195 return CallGenerator::for_string_late_inline(callee, cg); 196 } else if (should_delay_boxing_inlining(callee, jvms)) { 197 return CallGenerator::for_boxing_late_inline(callee, cg); 198 } else if (should_delay_vector_reboxing_inlining(callee, jvms)) { 199 return CallGenerator::for_vector_reboxing_late_inline(callee, cg); 200 } else if (should_delay) { 201 return CallGenerator::for_late_inline(callee, cg); 202 } else { 203 return cg; 204 } 205 } 206 } 207 } 208 209 // Try using the type profile. 210 if (call_does_dispatch && site_count > 0 && UseTypeProfile) { 211 // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. 212 bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); 213 ciMethod* receiver_method = nullptr; 214 215 int morphism = profile.morphism(); 216 if (speculative_receiver_type != nullptr) { 217 if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) { 218 // We have a speculative type, we should be able to resolve 219 // the call. We do that before looking at the profiling at 220 // this invoke because it may lead to bimorphic inlining which 221 // a speculative type should help us avoid. 222 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 223 speculative_receiver_type); 224 if (receiver_method == nullptr) { 225 speculative_receiver_type = nullptr; 226 } else { 227 morphism = 1; 228 } 229 } else { 230 // speculation failed before. Use profiling at the call 231 // (could allow bimorphic inlining for instance). 232 speculative_receiver_type = nullptr; 233 } 234 } 235 if (receiver_method == nullptr && 236 (have_major_receiver || morphism == 1 || 237 (morphism == 2 && UseBimorphicInlining))) { 238 // receiver_method = profile.method(); 239 // Profiles do not suggest methods now. Look it up in the major receiver. 240 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 241 profile.receiver(0)); 242 } 243 if (receiver_method != nullptr) { 244 // The single majority receiver sufficiently outweighs the minority. 245 CallGenerator* hit_cg = this->call_generator(receiver_method, 246 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 247 if (hit_cg != nullptr) { 248 // Look up second receiver. 249 CallGenerator* next_hit_cg = nullptr; 250 ciMethod* next_receiver_method = nullptr; 251 if (morphism == 2 && UseBimorphicInlining) { 252 next_receiver_method = callee->resolve_invoke(jvms->method()->holder(), 253 profile.receiver(1)); 254 if (next_receiver_method != nullptr) { 255 next_hit_cg = this->call_generator(next_receiver_method, 256 vtable_index, !call_does_dispatch, jvms, 257 allow_inline, prof_factor); 258 if (next_hit_cg != nullptr && !next_hit_cg->is_inline() && 259 have_major_receiver && UseOnlyInlinedBimorphic) { 260 // Skip if we can't inline second receiver's method 261 next_hit_cg = nullptr; 262 } 263 } 264 } 265 CallGenerator* miss_cg; 266 Deoptimization::DeoptReason reason = (morphism == 2 267 ? Deoptimization::Reason_bimorphic 268 : Deoptimization::reason_class_check(speculative_receiver_type != nullptr)); 269 if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) && 270 !too_many_traps_or_recompiles(caller, bci, reason) 271 ) { 272 // Generate uncommon trap for class check failure path 273 // in case of monomorphic or bimorphic virtual call site. 274 miss_cg = CallGenerator::for_uncommon_trap(callee, reason, 275 Deoptimization::Action_maybe_recompile); 276 } else { 277 // Generate virtual call for class check failure path 278 // in case of polymorphic virtual call site. 279 miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor) 280 : CallGenerator::for_virtual_call(callee, vtable_index)); 281 } 282 if (miss_cg != nullptr) { 283 if (next_hit_cg != nullptr) { 284 assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation"); 285 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)); 286 // We don't need to record dependency on a receiver here and below. 287 // Whenever we inline, the dependency is added by Parse::Parse(). 288 miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); 289 } 290 if (miss_cg != nullptr) { 291 ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0); 292 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, k, site_count, receiver_count); 293 float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0); 294 CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob); 295 if (cg != nullptr) return cg; 296 } 297 } 298 } 299 } 300 } 301 302 // If there is only one implementor of this interface then we 303 // may be able to bind this invoke directly to the implementing 304 // klass but we need both a dependence on the single interface 305 // and on the method we bind to. Additionally since all we know 306 // about the receiver type is that it's supposed to implement the 307 // interface we have to insert a check that it's the class we 308 // expect. Interface types are not checked by the verifier so 309 // they are roughly equivalent to Object. 310 // The number of implementors for declared_interface is less or 311 // equal to the number of implementors for target->holder() so 312 // if number of implementors of target->holder() == 1 then 313 // number of implementors for decl_interface is 0 or 1. If 314 // it's 0 then no class implements decl_interface and there's 315 // no point in inlining. 316 if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) { 317 ciInstanceKlass* declared_interface = 318 caller->get_declared_method_holder_at_bci(bci)->as_instance_klass(); 319 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 320 321 if (singleton != nullptr) { 322 assert(singleton != declared_interface, "not a unique implementor"); 323 324 ciMethod* cha_monomorphic_target = 325 callee->find_monomorphic_target(caller->holder(), declared_interface, singleton); 326 327 if (cha_monomorphic_target != nullptr && 328 cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless 329 ciKlass* holder = cha_monomorphic_target->holder(); 330 331 // Try to inline the method found by CHA. Inlined method is guarded by the type check. 332 CallGenerator* hit_cg = call_generator(cha_monomorphic_target, 333 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 334 335 // Deoptimize on type check fail. The interpreter will throw ICCE for us. 336 CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee, 337 Deoptimization::Reason_class_check, Deoptimization::Action_none); 338 339 ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts 340 CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg); 341 if (hit_cg != nullptr && cg != nullptr) { 342 dependencies()->assert_unique_implementor(declared_interface, singleton); 343 dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee); 344 return cg; 345 } 346 } 347 } 348 } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface 349 350 // Nothing claimed the intrinsic, we go with straight-forward inlining 351 // for already discovered intrinsic. 352 if (allow_intrinsics && cg_intrinsic != nullptr) { 353 assert(cg_intrinsic->does_virtual_dispatch(), "sanity"); 354 return cg_intrinsic; 355 } 356 } // allow_inline 357 358 // There was no special inlining tactic, or it bailed out. 359 // Use a more generic tactic, like a simple call. 360 if (call_does_dispatch) { 361 const char* msg = "virtual call"; 362 if (C->print_inlining()) { 363 print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg); 364 } 365 C->log_inline_failure(msg); 366 if (IncrementalInlineVirtual && allow_inline) { 367 return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later 368 } else { 369 return CallGenerator::for_virtual_call(callee, vtable_index); 370 } 371 } else { 372 // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call. 373 CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms)); 374 // For optimized virtual calls assert at runtime that receiver object 375 // is a subtype of the method holder. 376 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 377 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 378 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 379 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 380 } 381 return cg; 382 } 383 } 384 385 // Return true for methods that shouldn't be inlined early so that 386 // they are easier to analyze and optimize as intrinsics. 387 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) { 388 if (has_stringbuilder()) { 389 390 if ((call_method->holder() == C->env()->StringBuilder_klass() || 391 call_method->holder() == C->env()->StringBuffer_klass()) && 392 (jvms->method()->holder() == C->env()->StringBuilder_klass() || 393 jvms->method()->holder() == C->env()->StringBuffer_klass())) { 394 // Delay SB calls only when called from non-SB code 395 return false; 396 } 397 398 switch (call_method->intrinsic_id()) { 399 case vmIntrinsics::_StringBuilder_void: 400 case vmIntrinsics::_StringBuilder_int: 401 case vmIntrinsics::_StringBuilder_String: 402 case vmIntrinsics::_StringBuilder_append_char: 403 case vmIntrinsics::_StringBuilder_append_int: 404 case vmIntrinsics::_StringBuilder_append_String: 405 case vmIntrinsics::_StringBuilder_toString: 406 case vmIntrinsics::_StringBuffer_void: 407 case vmIntrinsics::_StringBuffer_int: 408 case vmIntrinsics::_StringBuffer_String: 409 case vmIntrinsics::_StringBuffer_append_char: 410 case vmIntrinsics::_StringBuffer_append_int: 411 case vmIntrinsics::_StringBuffer_append_String: 412 case vmIntrinsics::_StringBuffer_toString: 413 case vmIntrinsics::_Integer_toString: 414 return true; 415 416 case vmIntrinsics::_String_String: 417 { 418 Node* receiver = jvms->map()->in(jvms->argoff() + 1); 419 if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { 420 CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); 421 ciMethod* m = csj->method(); 422 if (m != nullptr && 423 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || 424 m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) 425 // Delay String.<init>(new SB()) 426 return true; 427 } 428 return false; 429 } 430 431 default: 432 return false; 433 } 434 } 435 return false; 436 } 437 438 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) { 439 if (eliminate_boxing() && call_method->is_boxing_method()) { 440 set_has_boxed_value(true); 441 return aggressive_unboxing(); 442 } 443 return false; 444 } 445 446 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) { 447 return EnableVectorSupport && call_method->is_vector_method(); 448 } 449 450 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) { 451 return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox); 452 } 453 454 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link 455 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { 456 // Additional inputs to consider... 457 // bc = bc() 458 // caller = method() 459 // iter().get_method_holder_index() 460 assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); 461 // Interface classes can be loaded & linked and never get around to 462 // being initialized. Uncommon-trap for not-initialized static or 463 // v-calls. Let interface calls happen. 464 ciInstanceKlass* holder_klass = dest_method->holder(); 465 if (!holder_klass->is_being_initialized() && 466 !holder_klass->is_initialized() && 467 !holder_klass->is_interface()) { 468 uncommon_trap(Deoptimization::Reason_uninitialized, 469 Deoptimization::Action_reinterpret, 470 holder_klass); 471 return true; 472 } 473 474 assert(dest_method->is_loaded(), "dest_method: typeflow responsibility"); 475 return false; 476 } 477 478 #ifdef ASSERT 479 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) { 480 ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci()); 481 ciMethod* resolved_method = cg->method(); 482 if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) { 483 tty->print_cr("JVMS:"); 484 jvms->dump(); 485 tty->print_cr("Bytecode info:"); 486 jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr(); 487 tty->print_cr("Resolved method:"); 488 cg->method()->print(); tty->cr(); 489 return false; 490 } 491 return true; 492 } 493 #endif // ASSERT 494 495 //------------------------------do_call---------------------------------------- 496 // Handle your basic call. Inline if we can & want to, else just setup call. 497 void Parse::do_call() { 498 // It's likely we are going to add debug info soon. 499 // Also, if we inline a guy who eventually needs debug info for this JVMS, 500 // our contribution to it is cleaned up right here. 501 kill_dead_locals(); 502 503 C->print_inlining_assert_ready(); 504 505 // Set frequently used booleans 506 const bool is_virtual = bc() == Bytecodes::_invokevirtual; 507 const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; 508 const bool has_receiver = Bytecodes::has_receiver(bc()); 509 510 // Find target being called 511 bool will_link; 512 ciSignature* declared_signature = nullptr; 513 ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode 514 ciInstanceKlass* holder_klass = orig_callee->holder(); 515 ciKlass* holder = iter().get_declared_method_holder(); 516 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 517 assert(declared_signature != nullptr, "cannot be null"); 518 JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);) 519 520 // Bump max node limit for JSR292 users 521 if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) { 522 C->set_max_node_limit(3*MaxNodeLimit); 523 } 524 525 // uncommon-trap when callee is unloaded, uninitialized or will not link 526 // bailout when too many arguments for register representation 527 if (!will_link || can_not_compile_call_site(orig_callee, klass)) { 528 if (PrintOpto && (Verbose || WizardMode)) { 529 method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); 530 orig_callee->print_name(); tty->cr(); 531 } 532 return; 533 } 534 assert(holder_klass->is_loaded(), ""); 535 //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw) 536 // Note: this takes into account invokeinterface of methods declared in java/lang/Object, 537 // which should be invokevirtuals but according to the VM spec may be invokeinterfaces 538 assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc"); 539 // Note: In the absence of miranda methods, an abstract class K can perform 540 // an invokevirtual directly on an interface method I.m if K implements I. 541 542 // orig_callee is the resolved callee which's signature includes the 543 // appendix argument. 544 const int nargs = orig_callee->arg_size(); 545 const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id()); 546 547 // Push appendix argument (MethodType, CallSite, etc.), if one. 548 if (iter().has_appendix()) { 549 ciObject* appendix_arg = iter().get_appendix(); 550 const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true); 551 Node* appendix_arg_node = _gvn.makecon(appendix_arg_type); 552 push(appendix_arg_node); 553 } 554 555 // --------------------- 556 // Does Class Hierarchy Analysis reveal only a single target of a v-call? 557 // Then we may inline or make a static call, but become dependent on there being only 1 target. 558 // Does the call-site type profile reveal only one receiver? 559 // Then we may introduce a run-time check and inline on the path where it succeeds. 560 // The other path may uncommon_trap, check for another receiver, or do a v-call. 561 562 // Try to get the most accurate receiver type 563 ciMethod* callee = orig_callee; 564 int vtable_index = Method::invalid_vtable_index; 565 bool call_does_dispatch = false; 566 567 // Speculative type of the receiver if any 568 ciKlass* speculative_receiver_type = nullptr; 569 if (is_virtual_or_interface) { 570 Node* receiver_node = stack(sp() - nargs); 571 const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); 572 // call_does_dispatch and vtable_index are out-parameters. They might be changed. 573 // For arrays, klass below is Object. When vtable calls are used, 574 // resolving the call with Object would allow an illegal call to 575 // finalize() on an array. We use holder instead: illegal calls to 576 // finalize() won't be compiled as vtable calls (IC call 577 // resolution will catch the illegal call) and the few legal calls 578 // on array types won't be either. 579 callee = C->optimize_virtual_call(method(), klass, holder, orig_callee, 580 receiver_type, is_virtual, 581 call_does_dispatch, vtable_index); // out-parameters 582 speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr; 583 } 584 585 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 586 ciKlass* receiver_constraint = nullptr; 587 if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) { 588 ciInstanceKlass* calling_klass = method()->holder(); 589 ciInstanceKlass* sender_klass = calling_klass; 590 if (sender_klass->is_interface()) { 591 receiver_constraint = sender_klass; 592 } 593 } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) { 594 assert(holder->is_interface(), "How did we get a non-interface method here!"); 595 receiver_constraint = holder; 596 } 597 598 if (receiver_constraint != nullptr) { 599 Node* receiver_node = stack(sp() - nargs); 600 Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces)); 601 Node* bad_type_ctrl = nullptr; 602 Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl); 603 if (bad_type_ctrl != nullptr) { 604 PreserveJVMState pjvms(this); 605 set_control(bad_type_ctrl); 606 uncommon_trap(Deoptimization::Reason_class_check, 607 Deoptimization::Action_none); 608 } 609 if (stopped()) { 610 return; // MUST uncommon-trap? 611 } 612 set_stack(sp() - nargs, casted_receiver); 613 } 614 615 // Note: It's OK to try to inline a virtual call. 616 // The call generator will not attempt to inline a polymorphic call 617 // unless it knows how to optimize the receiver dispatch. 618 bool try_inline = (C->do_inlining() || InlineAccessors); 619 620 // --------------------- 621 dec_sp(nargs); // Temporarily pop args for JVM state of call 622 JVMState* jvms = sync_jvms(); 623 624 // --------------------- 625 // Decide call tactic. 626 // This call checks with CHA, the interpreter profile, intrinsics table, etc. 627 // It decides whether inlining is desirable or not. 628 CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type); 629 630 // NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead. 631 orig_callee = callee = nullptr; 632 633 // --------------------- 634 // Round double arguments before call 635 round_double_arguments(cg->method()); 636 637 // Feed profiling data for arguments to the type system so it can 638 // propagate it as speculative types 639 record_profiled_arguments_for_speculation(cg->method(), bc()); 640 641 #ifndef PRODUCT 642 // bump global counters for calls 643 count_compiled_calls(/*at_method_entry*/ false, cg->is_inline()); 644 645 // Record first part of parsing work for this call 646 parse_histogram()->record_change(); 647 #endif // not PRODUCT 648 649 assert(jvms == this->jvms(), "still operating on the right JVMS"); 650 assert(jvms_in_sync(), "jvms must carry full info into CG"); 651 652 // save across call, for a subsequent cast_not_null. 653 Node* receiver = has_receiver ? argument(0) : nullptr; 654 655 // The extra CheckCastPPs for speculative types mess with PhaseStringOpts 656 if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) { 657 // Feed profiling data for a single receiver to the type system so 658 // it can propagate it as a speculative type 659 receiver = record_profiled_receiver_for_speculation(receiver); 660 } 661 662 JVMState* new_jvms = cg->generate(jvms); 663 if (new_jvms == nullptr) { 664 // When inlining attempt fails (e.g., too many arguments), 665 // it may contaminate the current compile state, making it 666 // impossible to pull back and try again. Once we call 667 // cg->generate(), we are committed. If it fails, the whole 668 // compilation task is compromised. 669 if (failing()) return; 670 671 // This can happen if a library intrinsic is available, but refuses 672 // the call site, perhaps because it did not match a pattern the 673 // intrinsic was expecting to optimize. Should always be possible to 674 // get a normal java call that may inline in that case 675 cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false); 676 new_jvms = cg->generate(jvms); 677 if (new_jvms == nullptr) { 678 guarantee(failing(), "call failed to generate: calls should work"); 679 return; 680 } 681 } 682 683 if (cg->is_inline()) { 684 // Accumulate has_loops estimate 685 C->env()->notice_inlined_method(cg->method()); 686 } 687 688 // Reset parser state from [new_]jvms, which now carries results of the call. 689 // Return value (if any) is already pushed on the stack by the cg. 690 add_exception_states_from(new_jvms); 691 if (new_jvms->map()->control() == top()) { 692 stop_and_kill_map(); 693 } else { 694 assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); 695 set_jvms(new_jvms); 696 } 697 698 assert(check_call_consistency(jvms, cg), "inconsistent info"); 699 700 if (!stopped()) { 701 // This was some sort of virtual call, which did a null check for us. 702 // Now we can assert receiver-not-null, on the normal return path. 703 if (receiver != nullptr && cg->is_virtual()) { 704 Node* cast = cast_not_null(receiver); 705 // %%% assert(receiver == cast, "should already have cast the receiver"); 706 } 707 708 ciType* rtype = cg->method()->return_type(); 709 ciType* ctype = declared_signature->return_type(); 710 711 if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) { 712 // Be careful here with return types. 713 if (ctype != rtype) { 714 BasicType rt = rtype->basic_type(); 715 BasicType ct = ctype->basic_type(); 716 if (ct == T_VOID) { 717 // It's OK for a method to return a value that is discarded. 718 // The discarding does not require any special action from the caller. 719 // The Java code knows this, at VerifyType.isNullConversion. 720 pop_node(rt); // whatever it was, pop it 721 } else if (rt == T_INT || is_subword_type(rt)) { 722 // Nothing. These cases are handled in lambda form bytecode. 723 assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct)); 724 } else if (is_reference_type(rt)) { 725 assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct)); 726 if (ctype->is_loaded()) { 727 const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass()); 728 const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass()); 729 if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) { 730 Node* retnode = pop(); 731 Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type)); 732 push(cast_obj); 733 } 734 } 735 } else { 736 assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct)); 737 // push a zero; it's better than getting an oop/int mismatch 738 pop_node(rt); 739 Node* retnode = zerocon(ct); 740 push_node(ct, retnode); 741 } 742 // Now that the value is well-behaved, continue with the call-site type. 743 rtype = ctype; 744 } 745 } else { 746 // Symbolic resolution enforces the types to be the same. 747 // NOTE: We must relax the assert for unloaded types because two 748 // different ciType instances of the same unloaded class type 749 // can appear to be "loaded" by different loaders (depending on 750 // the accessing class). 751 assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype, 752 "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name()); 753 } 754 755 // If the return type of the method is not loaded, assert that the 756 // value we got is a null. Otherwise, we need to recompile. 757 if (!rtype->is_loaded()) { 758 if (PrintOpto && (Verbose || WizardMode)) { 759 method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); 760 cg->method()->print_name(); tty->cr(); 761 } 762 if (C->log() != nullptr) { 763 C->log()->elem("assert_null reason='return' klass='%d'", 764 C->log()->identify(rtype)); 765 } 766 // If there is going to be a trap, put it at the next bytecode: 767 set_bci(iter().next_bci()); 768 null_assert(peek()); 769 set_bci(iter().cur_bci()); // put it back 770 } 771 BasicType ct = ctype->basic_type(); 772 if (is_reference_type(ct)) { 773 record_profiled_return_for_speculation(); 774 } 775 } 776 777 // Restart record of parsing work after possible inlining of call 778 #ifndef PRODUCT 779 parse_histogram()->set_initial_state(bc()); 780 #endif 781 } 782 783 //---------------------------catch_call_exceptions----------------------------- 784 // Put a Catch and CatchProj nodes behind a just-created call. 785 // Send their caught exceptions to the proper handler. 786 // This may be used after a call to the rethrow VM stub, 787 // when it is needed to process unloaded exception classes. 788 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { 789 // Exceptions are delivered through this channel: 790 Node* i_o = this->i_o(); 791 792 // Add a CatchNode. 793 Arena tmp_mem{mtCompiler}; 794 GrowableArray<int> bcis(&tmp_mem, 8, 0, -1); 795 GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr); 796 GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1); 797 798 bool default_handler = false; 799 for (; !handlers.is_done(); handlers.next()) { 800 ciExceptionHandler* h = handlers.handler(); 801 int h_bci = h->handler_bci(); 802 ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); 803 // Do not introduce unloaded exception types into the graph: 804 if (!h_klass->is_loaded()) { 805 if (saw_unloaded.contains(h_bci)) { 806 /* We've already seen an unloaded exception with h_bci, 807 so don't duplicate. Duplication will cause the CatchNode to be 808 unnecessarily large. See 4713716. */ 809 continue; 810 } else { 811 saw_unloaded.append(h_bci); 812 } 813 } 814 const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); 815 // (We use make_from_klass because it respects UseUniqueSubclasses.) 816 h_extype = h_extype->join(TypeInstPtr::NOTNULL); 817 assert(!h_extype->empty(), "sanity"); 818 // Note: It's OK if the BCIs repeat themselves. 819 bcis.append(h_bci); 820 extypes.append(h_extype); 821 if (h_bci == -1) { 822 default_handler = true; 823 } 824 } 825 826 if (!default_handler) { 827 bcis.append(-1); 828 const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 829 extype = extype->join(TypeInstPtr::NOTNULL); 830 extypes.append(extype); 831 } 832 833 int len = bcis.length(); 834 CatchNode *cn = new CatchNode(control(), i_o, len+1); 835 Node *catch_ = _gvn.transform(cn); 836 837 // now branch with the exception state to each of the (potential) 838 // handlers 839 for(int i=0; i < len; i++) { 840 // Setup JVM state to enter the handler. 841 PreserveJVMState pjvms(this); 842 // Locals are just copied from before the call. 843 // Get control from the CatchNode. 844 int handler_bci = bcis.at(i); 845 Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci)); 846 // This handler cannot happen? 847 if (ctrl == top()) continue; 848 set_control(ctrl); 849 850 // Create exception oop 851 const TypeInstPtr* extype = extypes.at(i)->is_instptr(); 852 Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o)); 853 854 // Handle unloaded exception classes. 855 if (saw_unloaded.contains(handler_bci)) { 856 // An unloaded exception type is coming here. Do an uncommon trap. 857 #ifndef PRODUCT 858 // We do not expect the same handler bci to take both cold unloaded 859 // and hot loaded exceptions. But, watch for it. 860 if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) { 861 tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci()); 862 method()->print_name(); tty->cr(); 863 } else if (PrintOpto && (Verbose || WizardMode)) { 864 tty->print("Bailing out on unloaded exception type "); 865 extype->instance_klass()->print_name(); 866 tty->print(" at bci:%d in ", bci()); 867 method()->print_name(); tty->cr(); 868 } 869 #endif 870 // Emit an uncommon trap instead of processing the block. 871 set_bci(handler_bci); 872 push_ex_oop(ex_oop); 873 uncommon_trap(Deoptimization::Reason_unloaded, 874 Deoptimization::Action_reinterpret, 875 extype->instance_klass(), "!loaded exception"); 876 set_bci(iter().cur_bci()); // put it back 877 continue; 878 } 879 880 // go to the exception handler 881 if (handler_bci < 0) { // merge with corresponding rethrow node 882 throw_to_exit(make_exception_state(ex_oop)); 883 } else { // Else jump to corresponding handle 884 push_ex_oop(ex_oop); // Clear stack and push just the oop. 885 merge_exception(handler_bci); 886 } 887 } 888 889 // The first CatchProj is for the normal return. 890 // (Note: If this is a call to rethrow_Java, this node goes dead.) 891 set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); 892 } 893 894 895 //----------------------------catch_inline_exceptions-------------------------- 896 // Handle all exceptions thrown by an inlined method or individual bytecode. 897 // Common case 1: we have no handler, so all exceptions merge right into 898 // the rethrow case. 899 // Case 2: we have some handlers, with loaded exception klasses that have 900 // no subklasses. We do a Deutsch-Schiffman style type-check on the incoming 901 // exception oop and branch to the handler directly. 902 // Case 3: We have some handlers with subklasses or are not loaded at 903 // compile-time. We have to call the runtime to resolve the exception. 904 // So we insert a RethrowCall and all the logic that goes with it. 905 void Parse::catch_inline_exceptions(SafePointNode* ex_map) { 906 // Caller is responsible for saving away the map for normal control flow! 907 assert(stopped(), "call set_map(nullptr) first"); 908 assert(method()->has_exception_handlers(), "don't come here w/o work to do"); 909 910 Node* ex_node = saved_ex_oop(ex_map); 911 if (ex_node == top()) { 912 // No action needed. 913 return; 914 } 915 const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); 916 NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr")); 917 if (ex_type == nullptr) 918 ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 919 920 // determine potential exception handlers 921 ciExceptionHandlerStream handlers(method(), bci(), 922 ex_type->instance_klass(), 923 ex_type->klass_is_exact()); 924 925 // Start executing from the given throw state. (Keep its stack, for now.) 926 // Get the exception oop as known at compile time. 927 ex_node = use_exception_state(ex_map); 928 929 // Get the exception oop klass from its header 930 Node* ex_klass_node = nullptr; 931 if (has_ex_handler() && !ex_type->klass_is_exact()) { 932 Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); 933 ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 934 935 // Compute the exception klass a little more cleverly. 936 // Obvious solution is to simple do a LoadKlass from the 'ex_node'. 937 // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for 938 // each arm of the Phi. If I know something clever about the exceptions 939 // I'm loading the class from, I can replace the LoadKlass with the 940 // klass constant for the exception oop. 941 if (ex_node->is_Phi()) { 942 ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT); 943 for (uint i = 1; i < ex_node->req(); i++) { 944 Node* ex_in = ex_node->in(i); 945 if (ex_in == top() || ex_in == nullptr) { 946 // This path was not taken. 947 ex_klass_node->init_req(i, top()); 948 continue; 949 } 950 Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes()); 951 Node* k = _gvn.transform( LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 952 ex_klass_node->init_req( i, k ); 953 } 954 ex_klass_node = _gvn.transform(ex_klass_node); 955 } 956 } 957 958 // Scan the exception table for applicable handlers. 959 // If none, we can call rethrow() and be done! 960 // If precise (loaded with no subklasses), insert a D.S. style 961 // pointer compare to the correct handler and loop back. 962 // If imprecise, switch to the Rethrow VM-call style handling. 963 964 int remaining = handlers.count_remaining(); 965 966 // iterate through all entries sequentially 967 for (;!handlers.is_done(); handlers.next()) { 968 ciExceptionHandler* handler = handlers.handler(); 969 970 if (handler->is_rethrow()) { 971 // If we fell off the end of the table without finding an imprecise 972 // exception klass (and without finding a generic handler) then we 973 // know this exception is not handled in this method. We just rethrow 974 // the exception into the caller. 975 throw_to_exit(make_exception_state(ex_node)); 976 return; 977 } 978 979 // exception handler bci range covers throw_bci => investigate further 980 int handler_bci = handler->handler_bci(); 981 982 if (remaining == 1) { 983 push_ex_oop(ex_node); // Push exception oop for handler 984 if (PrintOpto && WizardMode) { 985 tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); 986 } 987 merge_exception(handler_bci); // jump to handler 988 return; // No more handling to be done here! 989 } 990 991 // Get the handler's klass 992 ciInstanceKlass* klass = handler->catch_klass(); 993 994 if (!klass->is_loaded()) { // klass is not loaded? 995 // fall through into catch_call_exceptions which will emit a 996 // handler with an uncommon trap. 997 break; 998 } 999 1000 if (klass->is_interface()) // should not happen, but... 1001 break; // bail out 1002 1003 // Check the type of the exception against the catch type 1004 const TypeKlassPtr *tk = TypeKlassPtr::make(klass); 1005 Node* con = _gvn.makecon(tk); 1006 Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con); 1007 if (!stopped()) { 1008 PreserveJVMState pjvms(this); 1009 const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr(); 1010 assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness"); 1011 Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst)); 1012 push_ex_oop(ex_oop); // Push exception oop for handler 1013 if (PrintOpto && WizardMode) { 1014 tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); 1015 klass->print_name(); 1016 tty->cr(); 1017 } 1018 merge_exception(handler_bci); 1019 } 1020 set_control(not_subtype_ctrl); 1021 1022 // Come here if exception does not match handler. 1023 // Carry on with more handler checks. 1024 --remaining; 1025 } 1026 1027 assert(!stopped(), "you should return if you finish the chain"); 1028 1029 // Oops, need to call into the VM to resolve the klasses at runtime. 1030 // Note: This call must not deoptimize, since it is not a real at this bci! 1031 kill_dead_locals(); 1032 1033 make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, 1034 OptoRuntime::rethrow_Type(), 1035 OptoRuntime::rethrow_stub(), 1036 nullptr, nullptr, 1037 ex_node); 1038 1039 // Rethrow is a pure call, no side effects, only a result. 1040 // The result cannot be allocated, so we use I_O 1041 1042 // Catch exceptions from the rethrow 1043 catch_call_exceptions(handlers); 1044 } 1045 1046 1047 // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) 1048 1049 1050 #ifndef PRODUCT 1051 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { 1052 if( CountCompiledCalls ) { 1053 if( at_method_entry ) { 1054 // bump invocation counter if top method (for statistics) 1055 if (CountCompiledCalls && depth() == 1) { 1056 const TypePtr* addr_type = TypeMetadataPtr::make(method()); 1057 Node* adr1 = makecon(addr_type); 1058 Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset())); 1059 increment_counter(adr2); 1060 } 1061 } else if (is_inline) { 1062 switch (bc()) { 1063 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; 1064 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; 1065 case Bytecodes::_invokestatic: 1066 case Bytecodes::_invokedynamic: 1067 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; 1068 default: fatal("unexpected call bytecode"); 1069 } 1070 } else { 1071 switch (bc()) { 1072 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; 1073 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; 1074 case Bytecodes::_invokestatic: 1075 case Bytecodes::_invokedynamic: 1076 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; 1077 default: fatal("unexpected call bytecode"); 1078 } 1079 } 1080 } 1081 } 1082 #endif //PRODUCT 1083 1084 1085 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1086 ciKlass* holder, ciMethod* callee, 1087 const TypeOopPtr* receiver_type, bool is_virtual, 1088 bool& call_does_dispatch, int& vtable_index, 1089 bool check_access) { 1090 // Set default values for out-parameters. 1091 call_does_dispatch = true; 1092 vtable_index = Method::invalid_vtable_index; 1093 1094 // Choose call strategy. 1095 ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee, 1096 receiver_type, check_access); 1097 1098 // Have the call been sufficiently improved such that it is no longer a virtual? 1099 if (optimized_virtual_method != nullptr) { 1100 callee = optimized_virtual_method; 1101 call_does_dispatch = false; 1102 } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) { 1103 // We can make a vtable call at this site 1104 vtable_index = callee->resolve_vtable_index(caller->holder(), holder); 1105 } 1106 return callee; 1107 } 1108 1109 // Identify possible target method and inlining style 1110 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1111 ciMethod* callee, const TypeOopPtr* receiver_type, 1112 bool check_access) { 1113 // only use for virtual or interface calls 1114 1115 // If it is obviously final, do not bother to call find_monomorphic_target, 1116 // because the class hierarchy checks are not needed, and may fail due to 1117 // incompletely loaded classes. Since we do our own class loading checks 1118 // in this module, we may confidently bind to any method. 1119 if (callee->can_be_statically_bound()) { 1120 return callee; 1121 } 1122 1123 if (receiver_type == nullptr) { 1124 return nullptr; // no receiver type info 1125 } 1126 1127 // Attempt to improve the receiver 1128 bool actual_receiver_is_exact = false; 1129 ciInstanceKlass* actual_receiver = klass; 1130 // Array methods are all inherited from Object, and are monomorphic. 1131 // finalize() call on array is not allowed. 1132 if (receiver_type->isa_aryptr() && 1133 callee->holder() == env()->Object_klass() && 1134 callee->name() != ciSymbols::finalize_method_name()) { 1135 return callee; 1136 } 1137 1138 // All other interesting cases are instance klasses. 1139 if (!receiver_type->isa_instptr()) { 1140 return nullptr; 1141 } 1142 1143 ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass(); 1144 if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() && 1145 (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) { 1146 // ikl is a same or better type than the original actual_receiver, 1147 // e.g. static receiver from bytecodes. 1148 actual_receiver = receiver_klass; 1149 // Is the actual_receiver exact? 1150 actual_receiver_is_exact = receiver_type->klass_is_exact(); 1151 } 1152 1153 ciInstanceKlass* calling_klass = caller->holder(); 1154 ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access); 1155 1156 if (cha_monomorphic_target != nullptr) { 1157 // Hardwiring a virtual. 1158 assert(!callee->can_be_statically_bound(), "should have been handled earlier"); 1159 assert(!cha_monomorphic_target->is_abstract(), ""); 1160 if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) { 1161 // If we inlined because CHA revealed only a single target method, 1162 // then we are dependent on that target method not getting overridden 1163 // by dynamic class loading. Be sure to test the "static" receiver 1164 // dest_method here, as opposed to the actual receiver, which may 1165 // falsely lead us to believe that the receiver is final or private. 1166 dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee); 1167 } 1168 return cha_monomorphic_target; 1169 } 1170 1171 // If the type is exact, we can still bind the method w/o a vcall. 1172 // (This case comes after CHA so we can see how much extra work it does.) 1173 if (actual_receiver_is_exact) { 1174 // In case of evolution, there is a dependence on every inlined method, since each 1175 // such method can be changed when its class is redefined. 1176 ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver); 1177 if (exact_method != nullptr) { 1178 return exact_method; 1179 } 1180 } 1181 1182 return nullptr; 1183 }