1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciCallSite.hpp"
  26 #include "ci/ciMethodHandle.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "jvm_io.h"
  33 #include "logging/log.hpp"
  34 #include "logging/logLevel.hpp"
  35 #include "logging/logMessage.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/inlinetypenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "prims/methodHandles.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/macros.hpp"
  50 #if INCLUDE_JFR
  51 #include "jfr/jfr.hpp"
  52 #endif
  53 
  54 static void print_trace_type_profile(outputStream* out, int depth, ciKlass* prof_klass, int site_count, int receiver_count,
  55                                      bool with_deco) {
  56   if (with_deco) {
  57     CompileTask::print_inline_indent(depth, out);
  58   }
  59   out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  60   prof_klass->name()->print_symbol_on(out);
  61   if (with_deco) {
  62     out->cr();
  63   }
  64 }
  65 
  66 static void trace_type_profile(Compile* C, ciMethod* method, JVMState* jvms,
  67                                ciMethod* prof_method, ciKlass* prof_klass, int site_count, int receiver_count) {
  68   int depth = jvms->depth() - 1;
  69   int bci = jvms->bci();
  70   if (TraceTypeProfile || C->print_inlining()) {
  71     if (!C->print_inlining()) {
  72       if (!PrintOpto && !PrintCompilation) {
  73         method->print_short_name();
  74         tty->cr();
  75       }
  76       CompileTask::print_inlining_tty(prof_method, depth, bci, InliningResult::SUCCESS);
  77       print_trace_type_profile(tty, depth, prof_klass, site_count, receiver_count, true);
  78     } else {
  79       auto stream = C->inline_printer()->record(method, jvms, InliningResult::SUCCESS);
  80       print_trace_type_profile(stream, depth, prof_klass, site_count, receiver_count, false);
  81     }
  82   }
  83 
  84   LogTarget(Debug, jit, inlining) lt;
  85   if (lt.is_enabled()) {
  86     LogStream ls(lt);
  87     print_trace_type_profile(&ls, depth, prof_klass, site_count, receiver_count, true);
  88   }
  89 }
  90 
  91 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  92                                        JVMState* jvms, bool allow_inline,
  93                                        float prof_factor, ciKlass* speculative_receiver_type,
  94                                        bool allow_intrinsics) {
  95   assert(callee != nullptr, "failed method resolution");
  96 
  97   ciMethod*       caller      = jvms->method();
  98   int             bci         = jvms->bci();
  99   Bytecodes::Code bytecode    = caller->java_code_at_bci(bci);
 100   ciMethod*       orig_callee = caller->get_method_at_bci(bci);
 101 
 102   const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) ||
 103                                        (bytecode == Bytecodes::_invokeinterface) ||
 104                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) ||
 105                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface);
 106 
 107   // Dtrace currently doesn't work unless all calls are vanilla
 108   if (env()->dtrace_method_probes()) {
 109     allow_inline = false;
 110   }
 111 
 112   // Note: When we get profiling during stage-1 compiles, we want to pull
 113   // from more specific profile data which pertains to this inlining.
 114   // Right now, ignore the information in jvms->caller(), and do method[bci].
 115   ciCallProfile profile = caller->call_profile_at_bci(bci);
 116 
 117   // See how many times this site has been invoked.
 118   int site_count = profile.count();
 119   int receiver_count = -1;
 120   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
 121     // Receivers in the profile structure are ordered by call counts
 122     // so that the most called (major) receiver is profile.receiver(0).
 123     receiver_count = profile.receiver_count(0);
 124   }
 125 
 126   CompileLog* log = this->log();
 127   if (log != nullptr) {
 128     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
 129     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
 130     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
 131                     log->identify(callee), site_count, prof_factor);
 132     if (call_does_dispatch)  log->print(" virtual='1'");
 133     if (allow_inline)     log->print(" inline='1'");
 134     if (receiver_count >= 0) {
 135       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 136       if (profile.has_receiver(1)) {
 137         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 138       }
 139     }
 140     if (callee->is_method_handle_intrinsic()) {
 141       log->print(" method_handle_intrinsic='1'");
 142     }
 143     log->end_elem();
 144   }
 145 
 146   // Special case the handling of certain common, profitable library
 147   // methods.  If these methods are replaced with specialized code,
 148   // then we return it as the inlined version of the call.
 149   CallGenerator* cg_intrinsic = nullptr;
 150   if (callee->intrinsic_id() == vmIntrinsics::_makePrivateBuffer || callee->intrinsic_id() == vmIntrinsics::_finishPrivateBuffer) {
 151     // These methods must be inlined so that we don't have larval value objects crossing method
 152     // boundaries
 153     assert(!call_does_dispatch, "callee should not be virtual %s", callee->name()->as_utf8());
 154     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 155 
 156     if (cg == nullptr) {
 157       // This is probably because the intrinsics is disabled from the command line
 158       char reason[256];
 159       jio_snprintf(reason, sizeof(reason), "cannot find an intrinsics for %s", callee->name()->as_utf8());
 160       C->record_method_not_compilable(reason);
 161       return nullptr;
 162     }
 163     return cg;
 164   } else if (allow_inline && allow_intrinsics) {
 165     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 166     if (cg != nullptr) {
 167       if (cg->is_predicated()) {
 168         // Code without intrinsic but, hopefully, inlined.
 169         CallGenerator* inline_cg = this->call_generator(callee,
 170               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 171         if (inline_cg != nullptr) {
 172           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 173         }
 174       }
 175 
 176       // If intrinsic does the virtual dispatch, we try to use the type profile
 177       // first, and hopefully inline it as the regular virtual call below.
 178       // We will retry the intrinsic if nothing had claimed it afterwards.
 179       if (cg->does_virtual_dispatch()) {
 180         cg_intrinsic = cg;
 181         cg = nullptr;
 182       } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) {
 183         return CallGenerator::for_late_inline(callee, cg);
 184       } else {
 185         return cg;
 186       }
 187     }
 188   }
 189 
 190   // Do method handle calls.
 191   // NOTE: This must happen before normal inlining logic below since
 192   // MethodHandle.invoke* are native methods which obviously don't
 193   // have bytecodes and so normal inlining fails.
 194   if (callee->is_method_handle_intrinsic()) {
 195     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline);
 196     return cg;
 197   }
 198 
 199   // Attempt to inline...
 200   if (allow_inline) {
 201     // The profile data is only partly attributable to this caller,
 202     // scale back the call site information.
 203     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 204     // This is the number of times we expect the call code to be used.
 205     float expected_uses = past_uses;
 206 
 207     // Try inlining a bytecoded method:
 208     if (!call_does_dispatch) {
 209       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 210       bool should_delay = C->should_delay_inlining();
 211       if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) {
 212         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 213         // For optimized virtual calls assert at runtime that receiver object
 214         // is a subtype of the inlined method holder. CHA can report a method
 215         // as a unique target under an abstract method, but receiver type
 216         // sometimes has a broader type. Similar scenario is possible with
 217         // default methods when type system loses information about implemented
 218         // interfaces.
 219         if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 220           CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 221               Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 222 
 223           cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 224         }
 225         if (cg != nullptr) {
 226           // Delay the inlining of this method to give us the
 227           // opportunity to perform some high level optimizations
 228           // first.
 229           if (should_delay) {
 230             return CallGenerator::for_late_inline(callee, cg);
 231           } else if (should_delay_string_inlining(callee, jvms)) {
 232             return CallGenerator::for_string_late_inline(callee, cg);
 233           } else if (should_delay_boxing_inlining(callee, jvms)) {
 234             return CallGenerator::for_boxing_late_inline(callee, cg);
 235           } else if (should_delay_vector_reboxing_inlining(callee, jvms)) {
 236             return CallGenerator::for_vector_reboxing_late_inline(callee, cg);
 237           } else {
 238             return cg;
 239           }
 240         }
 241       }
 242     }
 243 
 244     // Try using the type profile.
 245     if (call_does_dispatch && site_count > 0 && UseTypeProfile) {
 246       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 247       bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 248       ciMethod* receiver_method = nullptr;
 249 
 250       int morphism = profile.morphism();
 251       if (speculative_receiver_type != nullptr) {
 252         if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) {
 253           // We have a speculative type, we should be able to resolve
 254           // the call. We do that before looking at the profiling at
 255           // this invoke because it may lead to bimorphic inlining which
 256           // a speculative type should help us avoid.
 257           receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 258                                                    speculative_receiver_type);
 259           if (receiver_method == nullptr) {
 260             speculative_receiver_type = nullptr;
 261           } else {
 262             morphism = 1;
 263           }
 264         } else {
 265           // speculation failed before. Use profiling at the call
 266           // (could allow bimorphic inlining for instance).
 267           speculative_receiver_type = nullptr;
 268         }
 269       }
 270       if (receiver_method == nullptr &&
 271           (have_major_receiver || morphism == 1 ||
 272            (morphism == 2 && UseBimorphicInlining))) {
 273         // receiver_method = profile.method();
 274         // Profiles do not suggest methods now.  Look it up in the major receiver.
 275         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 276                                                       profile.receiver(0));
 277       }
 278       if (receiver_method != nullptr) {
 279         // The single majority receiver sufficiently outweighs the minority.
 280         CallGenerator* hit_cg = this->call_generator(receiver_method,
 281               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 282         if (hit_cg != nullptr) {
 283           // Look up second receiver.
 284           CallGenerator* next_hit_cg = nullptr;
 285           ciMethod* next_receiver_method = nullptr;
 286           if (morphism == 2 && UseBimorphicInlining) {
 287             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 288                                                                profile.receiver(1));
 289             if (next_receiver_method != nullptr) {
 290               next_hit_cg = this->call_generator(next_receiver_method,
 291                                   vtable_index, !call_does_dispatch, jvms,
 292                                   allow_inline, prof_factor);
 293               if (next_hit_cg != nullptr && !next_hit_cg->is_inline() &&
 294                   have_major_receiver && UseOnlyInlinedBimorphic) {
 295                   // Skip if we can't inline second receiver's method
 296                   next_hit_cg = nullptr;
 297               }
 298             }
 299           }
 300           CallGenerator* miss_cg;
 301           Deoptimization::DeoptReason reason = (morphism == 2
 302                                                ? Deoptimization::Reason_bimorphic
 303                                                : Deoptimization::reason_class_check(speculative_receiver_type != nullptr));
 304           if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) &&
 305               !too_many_traps_or_recompiles(caller, bci, reason)
 306              ) {
 307             // Generate uncommon trap for class check failure path
 308             // in case of monomorphic or bimorphic virtual call site.
 309             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 310                         Deoptimization::Action_maybe_recompile);
 311           } else {
 312             // Generate virtual call for class check failure path
 313             // in case of polymorphic virtual call site.
 314             miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor)
 315                                                 : CallGenerator::for_virtual_call(callee, vtable_index));
 316           }
 317           if (miss_cg != nullptr) {
 318             if (next_hit_cg != nullptr) {
 319               assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation");
 320               trace_type_profile(C, jvms->method(), jvms, next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 321               // We don't need to record dependency on a receiver here and below.
 322               // Whenever we inline, the dependency is added by Parse::Parse().
 323               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 324             }
 325             if (miss_cg != nullptr) {
 326               ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0);
 327               trace_type_profile(C, jvms->method(), jvms, receiver_method, k, site_count, receiver_count);
 328               float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0);
 329               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 330               if (cg != nullptr) {
 331                 return cg;
 332               }
 333             }
 334           }
 335         }
 336       }
 337     }
 338 
 339     // If there is only one implementor of this interface then we
 340     // may be able to bind this invoke directly to the implementing
 341     // klass but we need both a dependence on the single interface
 342     // and on the method we bind to. Additionally since all we know
 343     // about the receiver type is that it's supposed to implement the
 344     // interface we have to insert a check that it's the class we
 345     // expect.  Interface types are not checked by the verifier so
 346     // they are roughly equivalent to Object.
 347     // The number of implementors for declared_interface is less or
 348     // equal to the number of implementors for target->holder() so
 349     // if number of implementors of target->holder() == 1 then
 350     // number of implementors for decl_interface is 0 or 1. If
 351     // it's 0 then no class implements decl_interface and there's
 352     // no point in inlining.
 353     if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) {
 354       ciInstanceKlass* declared_interface =
 355           caller->get_declared_method_holder_at_bci(bci)->as_instance_klass();
 356       ciInstanceKlass* singleton = declared_interface->unique_implementor();
 357 
 358       if (singleton != nullptr) {
 359         assert(singleton != declared_interface, "not a unique implementor");
 360 
 361         ciMethod* cha_monomorphic_target =
 362             callee->find_monomorphic_target(caller->holder(), declared_interface, singleton);
 363 
 364         if (cha_monomorphic_target != nullptr &&
 365             cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless
 366           ciKlass* holder = cha_monomorphic_target->holder();
 367 
 368           // Try to inline the method found by CHA. Inlined method is guarded by the type check.
 369           CallGenerator* hit_cg = call_generator(cha_monomorphic_target,
 370               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 371 
 372           // Deoptimize on type check fail. The interpreter will throw ICCE for us.
 373           CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee,
 374               Deoptimization::Reason_class_check, Deoptimization::Action_none);
 375 
 376           ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts
 377           CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg);
 378           if (hit_cg != nullptr && cg != nullptr) {
 379             dependencies()->assert_unique_implementor(declared_interface, singleton);
 380             dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee);
 381             return cg;
 382           }
 383         }
 384       }
 385     } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface
 386 
 387     // Nothing claimed the intrinsic, we go with straight-forward inlining
 388     // for already discovered intrinsic.
 389     if (allow_intrinsics && cg_intrinsic != nullptr) {
 390       assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 391       return cg_intrinsic;
 392     }
 393   } // allow_inline
 394 
 395   // There was no special inlining tactic, or it bailed out.
 396   // Use a more generic tactic, like a simple call.
 397   if (call_does_dispatch) {
 398     const char* msg = "virtual call";
 399     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 400     C->log_inline_failure(msg);
 401     if (IncrementalInlineVirtual && allow_inline) {
 402       return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later
 403     } else {
 404       return CallGenerator::for_virtual_call(callee, vtable_index);
 405     }
 406   } else {
 407     // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call.
 408     CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 409     // For optimized virtual calls assert at runtime that receiver object
 410     // is a subtype of the method holder.
 411     if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 412       CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 413           Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 414       cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 415     }
 416     return cg;
 417   }
 418 }
 419 
 420 // Return true for methods that shouldn't be inlined early so that
 421 // they are easier to analyze and optimize as intrinsics.
 422 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 423   if (has_stringbuilder()) {
 424 
 425     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 426          call_method->holder() == C->env()->StringBuffer_klass()) &&
 427         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 428          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 429       // Delay SB calls only when called from non-SB code
 430       return false;
 431     }
 432 
 433     switch (call_method->intrinsic_id()) {
 434       case vmIntrinsics::_StringBuilder_void:
 435       case vmIntrinsics::_StringBuilder_int:
 436       case vmIntrinsics::_StringBuilder_String:
 437       case vmIntrinsics::_StringBuilder_append_char:
 438       case vmIntrinsics::_StringBuilder_append_int:
 439       case vmIntrinsics::_StringBuilder_append_String:
 440       case vmIntrinsics::_StringBuilder_toString:
 441       case vmIntrinsics::_StringBuffer_void:
 442       case vmIntrinsics::_StringBuffer_int:
 443       case vmIntrinsics::_StringBuffer_String:
 444       case vmIntrinsics::_StringBuffer_append_char:
 445       case vmIntrinsics::_StringBuffer_append_int:
 446       case vmIntrinsics::_StringBuffer_append_String:
 447       case vmIntrinsics::_StringBuffer_toString:
 448       case vmIntrinsics::_Integer_toString:
 449         return true;
 450 
 451       case vmIntrinsics::_String_String:
 452         {
 453           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 454           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 455             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 456             ciMethod* m = csj->method();
 457             if (m != nullptr &&
 458                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 459                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 460               // Delay String.<init>(new SB())
 461               return true;
 462           }
 463           return false;
 464         }
 465 
 466       default:
 467         return false;
 468     }
 469   }
 470   return false;
 471 }
 472 
 473 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 474   if (eliminate_boxing() && call_method->is_boxing_method()) {
 475     set_has_boxed_value(true);
 476     return aggressive_unboxing();
 477   }
 478   return false;
 479 }
 480 
 481 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) {
 482   return EnableVectorSupport && call_method->is_vector_method();
 483 }
 484 
 485 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) {
 486   return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox);
 487 }
 488 
 489 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 490 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 491   // Additional inputs to consider...
 492   // bc      = bc()
 493   // caller  = method()
 494   // iter().get_method_holder_index()
 495   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 496   // Interface classes can be loaded & linked and never get around to
 497   // being initialized.  Uncommon-trap for not-initialized static or
 498   // v-calls.  Let interface calls happen.
 499   ciInstanceKlass* holder_klass = dest_method->holder();
 500   if (!holder_klass->is_being_initialized() &&
 501       !holder_klass->is_initialized() &&
 502       !holder_klass->is_interface()) {
 503     uncommon_trap(Deoptimization::Reason_uninitialized,
 504                   Deoptimization::Action_reinterpret,
 505                   holder_klass);
 506     return true;
 507   }
 508 
 509   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 510   return false;
 511 }
 512 
 513 #ifdef ASSERT
 514 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 515   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 516   ciMethod* resolved_method = cg->method();
 517   if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
 518     tty->print_cr("JVMS:");
 519     jvms->dump();
 520     tty->print_cr("Bytecode info:");
 521     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 522     tty->print_cr("Resolved method:");
 523     cg->method()->print(); tty->cr();
 524     return false;
 525   }
 526   return true;
 527 }
 528 #endif // ASSERT
 529 
 530 //------------------------------do_call----------------------------------------
 531 // Handle your basic call.  Inline if we can & want to, else just setup call.
 532 void Parse::do_call() {
 533   // It's likely we are going to add debug info soon.
 534   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 535   // our contribution to it is cleaned up right here.
 536   kill_dead_locals();
 537 
 538   // Set frequently used booleans
 539   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 540   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 541   const bool has_receiver = Bytecodes::has_receiver(bc());
 542 
 543   // Find target being called
 544   bool             will_link;
 545   ciSignature*     declared_signature = nullptr;
 546   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 547   ciInstanceKlass* holder_klass = orig_callee->holder();
 548   ciKlass*         holder       = iter().get_declared_method_holder();
 549   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 550   assert(declared_signature != nullptr, "cannot be null");
 551   JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);)
 552 
 553   // Bump max node limit for JSR292 users
 554   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 555     C->set_max_node_limit(3*MaxNodeLimit);
 556   }
 557 
 558   // uncommon-trap when callee is unloaded, uninitialized or will not link
 559   // bailout when too many arguments for register representation
 560   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 561     if (PrintOpto && (Verbose || WizardMode)) {
 562       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 563       orig_callee->print_name(); tty->cr();
 564     }
 565     return;
 566   }
 567   assert(holder_klass->is_loaded(), "");
 568   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 569   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 570   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 571   assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc");
 572   // Note:  In the absence of miranda methods, an abstract class K can perform
 573   // an invokevirtual directly on an interface method I.m if K implements I.
 574 
 575   // orig_callee is the resolved callee which's signature includes the
 576   // appendix argument.
 577   const int nargs = orig_callee->arg_size();
 578   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 579 
 580   // Push appendix argument (MethodType, CallSite, etc.), if one.
 581   if (iter().has_appendix()) {
 582     ciObject* appendix_arg = iter().get_appendix();
 583     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true);
 584     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 585     push(appendix_arg_node);
 586   }
 587 
 588   // ---------------------
 589   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 590   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 591   // Does the call-site type profile reveal only one receiver?
 592   // Then we may introduce a run-time check and inline on the path where it succeeds.
 593   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 594 
 595   // Try to get the most accurate receiver type
 596   ciMethod* callee             = orig_callee;
 597   int       vtable_index       = Method::invalid_vtable_index;
 598   bool      call_does_dispatch = false;
 599 
 600   // Speculative type of the receiver if any
 601   ciKlass* speculative_receiver_type = nullptr;
 602   if (is_virtual_or_interface) {
 603     Node* receiver_node             = stack(sp() - nargs);
 604     const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 605     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 606     // For arrays, klass below is Object. When vtable calls are used,
 607     // resolving the call with Object would allow an illegal call to
 608     // finalize() on an array. We use holder instead: illegal calls to
 609     // finalize() won't be compiled as vtable calls (IC call
 610     // resolution will catch the illegal call) and the few legal calls
 611     // on array types won't be either.
 612     callee = C->optimize_virtual_call(method(), klass, holder, orig_callee,
 613                                       receiver_type, is_virtual,
 614                                       call_does_dispatch, vtable_index);  // out-parameters
 615     speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr;
 616   }
 617 
 618   // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
 619   ciKlass* receiver_constraint = nullptr;
 620   if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_constructor()) {
 621     ciInstanceKlass* calling_klass = method()->holder();
 622     ciInstanceKlass* sender_klass = calling_klass;
 623     if (sender_klass->is_interface()) {
 624       receiver_constraint = sender_klass;
 625     }
 626   } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) {
 627     assert(holder->is_interface(), "How did we get a non-interface method here!");
 628     receiver_constraint = holder;
 629   }
 630 
 631   if (receiver_constraint != nullptr) {
 632     Node* receiver_node = stack(sp() - nargs);
 633     Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces));
 634     Node* bad_type_ctrl = nullptr;
 635     Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
 636     if (bad_type_ctrl != nullptr) {
 637       PreserveJVMState pjvms(this);
 638       set_control(bad_type_ctrl);
 639       uncommon_trap(Deoptimization::Reason_class_check,
 640                     Deoptimization::Action_none);
 641     }
 642     if (stopped()) {
 643       return; // MUST uncommon-trap?
 644     }
 645     set_stack(sp() - nargs, casted_receiver);
 646   }
 647 
 648   // Note:  It's OK to try to inline a virtual call.
 649   // The call generator will not attempt to inline a polymorphic call
 650   // unless it knows how to optimize the receiver dispatch.
 651   bool try_inline = (C->do_inlining() || InlineAccessors);
 652 
 653   // ---------------------
 654   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 655   JVMState* jvms = sync_jvms();
 656 
 657   // ---------------------
 658   // Decide call tactic.
 659   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 660   // It decides whether inlining is desirable or not.
 661   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 662   if (failing()) {
 663     return;
 664   }
 665   assert(cg != nullptr, "must find a CallGenerator for callee %s", callee->name()->as_utf8());
 666 
 667   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 668   orig_callee = callee = nullptr;
 669 
 670   // ---------------------
 671 
 672   // Feed profiling data for arguments to the type system so it can
 673   // propagate it as speculative types
 674   record_profiled_arguments_for_speculation(cg->method(), bc());
 675 
 676 #ifndef PRODUCT
 677   // bump global counters for calls
 678   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 679 
 680   // Record first part of parsing work for this call
 681   parse_histogram()->record_change();
 682 #endif // not PRODUCT
 683 
 684   assert(jvms == this->jvms(), "still operating on the right JVMS");
 685   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 686 
 687   // save across call, for a subsequent cast_not_null.
 688   Node* receiver = has_receiver ? argument(0) : nullptr;
 689 
 690   // The extra CheckCastPPs for speculative types mess with PhaseStringOpts
 691   if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) {
 692     // Feed profiling data for a single receiver to the type system so
 693     // it can propagate it as a speculative type
 694     receiver = record_profiled_receiver_for_speculation(receiver);
 695   }
 696 
 697   JVMState* new_jvms = cg->generate(jvms);
 698   if (new_jvms == nullptr) {
 699     // When inlining attempt fails (e.g., too many arguments),
 700     // it may contaminate the current compile state, making it
 701     // impossible to pull back and try again.  Once we call
 702     // cg->generate(), we are committed.  If it fails, the whole
 703     // compilation task is compromised.
 704     if (failing())  return;
 705 
 706     // This can happen if a library intrinsic is available, but refuses
 707     // the call site, perhaps because it did not match a pattern the
 708     // intrinsic was expecting to optimize. Should always be possible to
 709     // get a normal java call that may inline in that case
 710     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 711     new_jvms = cg->generate(jvms);
 712     if (new_jvms == nullptr) {
 713       guarantee(failing(), "call failed to generate:  calls should work");
 714       return;
 715     }
 716   }
 717 
 718   if (cg->is_inline()) {
 719     // Accumulate has_loops estimate
 720     C->env()->notice_inlined_method(cg->method());
 721   }
 722 
 723   // Reset parser state from [new_]jvms, which now carries results of the call.
 724   // Return value (if any) is already pushed on the stack by the cg.
 725   add_exception_states_from(new_jvms);
 726   if (new_jvms->map()->control() == top()) {
 727     stop_and_kill_map();
 728   } else {
 729     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 730     set_jvms(new_jvms);
 731   }
 732 
 733   assert(check_call_consistency(jvms, cg), "inconsistent info");
 734 
 735   if (!stopped()) {
 736     // This was some sort of virtual call, which did a null check for us.
 737     // Now we can assert receiver-not-null, on the normal return path.
 738     if (receiver != nullptr && cg->is_virtual()) {
 739       Node* cast = cast_not_null(receiver);
 740       // %%% assert(receiver == cast, "should already have cast the receiver");
 741     }
 742 
 743     ciType* rtype = cg->method()->return_type();
 744     ciType* ctype = declared_signature->return_type();
 745 
 746     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 747       // Be careful here with return types.
 748       if (ctype != rtype) {
 749         BasicType rt = rtype->basic_type();
 750         BasicType ct = ctype->basic_type();
 751         if (ct == T_VOID) {
 752           // It's OK for a method to return a value that is discarded.
 753           // The discarding does not require any special action from the caller.
 754           // The Java code knows this, at VerifyType.isNullConversion.
 755           pop_node(rt);  // whatever it was, pop it
 756         } else if (rt == T_INT || is_subword_type(rt)) {
 757           // Nothing.  These cases are handled in lambda form bytecode.
 758           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 759         } else if (is_reference_type(rt)) {
 760           assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct));
 761           if (ctype->is_loaded()) {
 762             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 763             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 764             if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) {
 765               Node* retnode = pop();
 766               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 767               push(cast_obj);
 768             }
 769           }
 770         } else {
 771           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 772           // push a zero; it's better than getting an oop/int mismatch
 773           pop_node(rt);
 774           Node* retnode = zerocon(ct);
 775           push_node(ct, retnode);
 776         }
 777         // Now that the value is well-behaved, continue with the call-site type.
 778         rtype = ctype;
 779       }
 780     } else {
 781       // Symbolic resolution enforces the types to be the same.
 782       // NOTE: We must relax the assert for unloaded types because two
 783       // different ciType instances of the same unloaded class type
 784       // can appear to be "loaded" by different loaders (depending on
 785       // the accessing class).
 786       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 787              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 788     }
 789 
 790     // If the return type of the method is not loaded, assert that the
 791     // value we got is a null.  Otherwise, we need to recompile.
 792     if (!rtype->is_loaded()) {
 793       if (PrintOpto && (Verbose || WizardMode)) {
 794         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 795         cg->method()->print_name(); tty->cr();
 796       }
 797       if (C->log() != nullptr) {
 798         C->log()->elem("assert_null reason='return' klass='%d'",
 799                        C->log()->identify(rtype));
 800       }
 801       // If there is going to be a trap, put it at the next bytecode:
 802       set_bci(iter().next_bci());
 803       null_assert(peek());
 804       set_bci(iter().cur_bci()); // put it back
 805     }
 806     BasicType ct = ctype->basic_type();
 807     if (is_reference_type(ct)) {
 808       record_profiled_return_for_speculation();
 809     }
 810     if (rtype->is_inlinetype() && !peek()->is_InlineType()) {
 811       Node* retnode = pop();
 812       retnode = InlineTypeNode::make_from_oop(this, retnode, rtype->as_inline_klass());
 813       push_node(T_OBJECT, retnode);
 814     }
 815 
 816     // Note that:
 817     // - The caller map is the state just before the call of the currently parsed method with all arguments
 818     //   on the stack. Therefore, we have caller_map->arg(0) == this.
 819     // - local(0) contains the updated receiver after calling an inline type constructor.
 820     // - Abstract value classes are not ciInlineKlass instances and thus abstract_value_klass->is_inlinetype() is false.
 821     //   We use the bottom type of the receiver node to determine if we have a value class or not.
 822     const bool is_current_method_inline_type_constructor =
 823         // Is current method a constructor (i.e <init>)?
 824         _method->is_object_constructor() &&
 825         // Is the holder of the current constructor method an inline type?
 826         _caller->map()->argument(_caller, 0)->bottom_type()->is_inlinetypeptr();
 827     assert(!is_current_method_inline_type_constructor || !cg->method()->is_object_constructor() || receiver != nullptr,
 828            "must have valid receiver after calling another constructor");
 829     if (is_current_method_inline_type_constructor &&
 830         // Is the just called method an inline type constructor?
 831         cg->method()->is_object_constructor() && receiver->bottom_type()->is_inlinetypeptr() &&
 832          // AND:
 833          // 1) ... invoked on the same receiver? Then it's another constructor on the same object doing the initialization.
 834         (receiver == _caller->map()->argument(_caller, 0) ||
 835          // 2) ... abstract? Then it's the call to the super constructor which eventually calls Object.<init> to
 836          //                    finish the initialization of this larval.
 837          cg->method()->holder()->is_abstract() ||
 838          // 3) ... Object.<init>? Then we know it's the final call to finish the larval initialization. Other
 839          //        Object.<init> calls would have a non-inline-type receiver which we already excluded in the check above.
 840          cg->method()->holder()->is_java_lang_Object())
 841         ) {
 842       assert(local(0)->is_InlineType() && receiver->bottom_type()->is_inlinetypeptr() && receiver->is_InlineType() &&
 843              _caller->map()->argument(_caller, 0)->bottom_type()->inline_klass() == receiver->bottom_type()->inline_klass(),
 844              "Unexpected receiver");
 845       InlineTypeNode* updated_receiver = local(0)->as_InlineType();
 846       InlineTypeNode* cloned_updated_receiver = updated_receiver->clone_if_required(&_gvn, _map);
 847       cloned_updated_receiver->set_is_larval(false);
 848       cloned_updated_receiver = _gvn.transform(cloned_updated_receiver)->as_InlineType();
 849       // Receiver updated by the just called constructor. We need to update the map to make the effect visible. After
 850       // the super() call, only the updated receiver in local(0) will be used from now on. Therefore, we do not need
 851       // to update the original receiver 'receiver' but only the 'updated_receiver'.
 852       replace_in_map(updated_receiver, cloned_updated_receiver);
 853 
 854       if (_caller->has_method()) {
 855         // If the current method is inlined, we also need to update the exit map to propagate the updated receiver
 856         // to the caller map.
 857         Node* receiver_in_caller = _caller->map()->argument(_caller, 0);
 858         assert(receiver_in_caller->bottom_type()->inline_klass() == receiver->bottom_type()->inline_klass(),
 859                "Receiver type mismatch");
 860         _exits.map()->replace_edge(receiver_in_caller, cloned_updated_receiver, &_gvn);
 861       }
 862     }
 863   }
 864 
 865   // Restart record of parsing work after possible inlining of call
 866 #ifndef PRODUCT
 867   parse_histogram()->set_initial_state(bc());
 868 #endif
 869 }
 870 
 871 //---------------------------catch_call_exceptions-----------------------------
 872 // Put a Catch and CatchProj nodes behind a just-created call.
 873 // Send their caught exceptions to the proper handler.
 874 // This may be used after a call to the rethrow VM stub,
 875 // when it is needed to process unloaded exception classes.
 876 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 877   // Exceptions are delivered through this channel:
 878   Node* i_o = this->i_o();
 879 
 880   // Add a CatchNode.
 881   Arena tmp_mem{mtCompiler};
 882   GrowableArray<int> bcis(&tmp_mem, 8, 0, -1);
 883   GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr);
 884   GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1);
 885 
 886   bool default_handler = false;
 887   for (; !handlers.is_done(); handlers.next()) {
 888     ciExceptionHandler* h       = handlers.handler();
 889     int                 h_bci   = h->handler_bci();
 890     ciInstanceKlass*    h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 891     // Do not introduce unloaded exception types into the graph:
 892     if (!h_klass->is_loaded()) {
 893       if (saw_unloaded.contains(h_bci)) {
 894         /* We've already seen an unloaded exception with h_bci,
 895            so don't duplicate. Duplication will cause the CatchNode to be
 896            unnecessarily large. See 4713716. */
 897         continue;
 898       } else {
 899         saw_unloaded.append(h_bci);
 900       }
 901     }
 902     const Type* h_extype = TypeOopPtr::make_from_klass(h_klass);
 903     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 904     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 905     assert(!h_extype->empty(), "sanity");
 906     // Note: It's OK if the BCIs repeat themselves.
 907     bcis.append(h_bci);
 908     extypes.append(h_extype);
 909     if (h_bci == -1) {
 910       default_handler = true;
 911     }
 912   }
 913 
 914   if (!default_handler) {
 915     bcis.append(-1);
 916     const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 917     extype = extype->join(TypeInstPtr::NOTNULL);
 918     extypes.append(extype);
 919   }
 920 
 921   int len = bcis.length();
 922   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 923   Node *catch_ = _gvn.transform(cn);
 924 
 925   // now branch with the exception state to each of the (potential)
 926   // handlers
 927   for(int i=0; i < len; i++) {
 928     // Setup JVM state to enter the handler.
 929     PreserveJVMState pjvms(this);
 930     // Locals are just copied from before the call.
 931     // Get control from the CatchNode.
 932     int handler_bci = bcis.at(i);
 933     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 934     // This handler cannot happen?
 935     if (ctrl == top())  continue;
 936     set_control(ctrl);
 937 
 938     // Create exception oop
 939     const TypeInstPtr* extype = extypes.at(i)->is_instptr();
 940     Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o));
 941 
 942     // Handle unloaded exception classes.
 943     if (saw_unloaded.contains(handler_bci)) {
 944       // An unloaded exception type is coming here.  Do an uncommon trap.
 945 #ifndef PRODUCT
 946       // We do not expect the same handler bci to take both cold unloaded
 947       // and hot loaded exceptions.  But, watch for it.
 948       if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) {
 949         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 950         method()->print_name(); tty->cr();
 951       } else if (PrintOpto && (Verbose || WizardMode)) {
 952         tty->print("Bailing out on unloaded exception type ");
 953         extype->instance_klass()->print_name();
 954         tty->print(" at bci:%d in ", bci());
 955         method()->print_name(); tty->cr();
 956       }
 957 #endif
 958       // Emit an uncommon trap instead of processing the block.
 959       set_bci(handler_bci);
 960       push_ex_oop(ex_oop);
 961       uncommon_trap(Deoptimization::Reason_unloaded,
 962                     Deoptimization::Action_reinterpret,
 963                     extype->instance_klass(), "!loaded exception");
 964       set_bci(iter().cur_bci()); // put it back
 965       continue;
 966     }
 967 
 968     // go to the exception handler
 969     if (handler_bci < 0) {     // merge with corresponding rethrow node
 970       throw_to_exit(make_exception_state(ex_oop));
 971     } else {                      // Else jump to corresponding handle
 972       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 973       merge_exception(handler_bci);
 974     }
 975   }
 976 
 977   // The first CatchProj is for the normal return.
 978   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 979   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 980 }
 981 
 982 
 983 //----------------------------catch_inline_exceptions--------------------------
 984 // Handle all exceptions thrown by an inlined method or individual bytecode.
 985 // Common case 1: we have no handler, so all exceptions merge right into
 986 // the rethrow case.
 987 // Case 2: we have some handlers, with loaded exception klasses that have
 988 // no subklasses.  We do a Deutsch-Schiffman style type-check on the incoming
 989 // exception oop and branch to the handler directly.
 990 // Case 3: We have some handlers with subklasses or are not loaded at
 991 // compile-time.  We have to call the runtime to resolve the exception.
 992 // So we insert a RethrowCall and all the logic that goes with it.
 993 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 994   // Caller is responsible for saving away the map for normal control flow!
 995   assert(stopped(), "call set_map(nullptr) first");
 996   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 997 
 998   Node* ex_node = saved_ex_oop(ex_map);
 999   if (ex_node == top()) {
1000     // No action needed.
1001     return;
1002   }
1003   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
1004   NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr"));
1005   if (ex_type == nullptr)
1006     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
1007 
1008   // determine potential exception handlers
1009   ciExceptionHandlerStream handlers(method(), bci(),
1010                                     ex_type->instance_klass(),
1011                                     ex_type->klass_is_exact());
1012 
1013   // Start executing from the given throw state.  (Keep its stack, for now.)
1014   // Get the exception oop as known at compile time.
1015   ex_node = use_exception_state(ex_map);
1016 
1017   // Get the exception oop klass from its header
1018   Node* ex_klass_node = nullptr;
1019   if (has_exception_handler() && !ex_type->klass_is_exact()) {
1020     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
1021     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1022 
1023     // Compute the exception klass a little more cleverly.
1024     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
1025     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
1026     // each arm of the Phi.  If I know something clever about the exceptions
1027     // I'm loading the class from, I can replace the LoadKlass with the
1028     // klass constant for the exception oop.
1029     if (ex_node->is_Phi()) {
1030       ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT);
1031       for (uint i = 1; i < ex_node->req(); i++) {
1032         Node* ex_in = ex_node->in(i);
1033         if (ex_in == top() || ex_in == nullptr) {
1034           // This path was not taken.
1035           ex_klass_node->init_req(i, top());
1036           continue;
1037         }
1038         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
1039         Node* k = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1040         ex_klass_node->init_req( i, k );
1041       }
1042       ex_klass_node = _gvn.transform(ex_klass_node);
1043     }
1044   }
1045 
1046   // Scan the exception table for applicable handlers.
1047   // If none, we can call rethrow() and be done!
1048   // If precise (loaded with no subklasses), insert a D.S. style
1049   // pointer compare to the correct handler and loop back.
1050   // If imprecise, switch to the Rethrow VM-call style handling.
1051 
1052   int remaining = handlers.count_remaining();
1053 
1054   // iterate through all entries sequentially
1055   for (;!handlers.is_done(); handlers.next()) {
1056     ciExceptionHandler* handler = handlers.handler();
1057 
1058     if (handler->is_rethrow()) {
1059       // If we fell off the end of the table without finding an imprecise
1060       // exception klass (and without finding a generic handler) then we
1061       // know this exception is not handled in this method.  We just rethrow
1062       // the exception into the caller.
1063       throw_to_exit(make_exception_state(ex_node));
1064       return;
1065     }
1066 
1067     // exception handler bci range covers throw_bci => investigate further
1068     int handler_bci = handler->handler_bci();
1069 
1070     if (remaining == 1) {
1071       push_ex_oop(ex_node);        // Push exception oop for handler
1072       if (PrintOpto && WizardMode) {
1073         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
1074       }
1075       // If this is a backwards branch in the bytecodes, add safepoint
1076       maybe_add_safepoint(handler_bci);
1077       merge_exception(handler_bci); // jump to handler
1078       return;                   // No more handling to be done here!
1079     }
1080 
1081     // Get the handler's klass
1082     ciInstanceKlass* klass = handler->catch_klass();
1083 
1084     if (!klass->is_loaded()) {  // klass is not loaded?
1085       // fall through into catch_call_exceptions which will emit a
1086       // handler with an uncommon trap.
1087       break;
1088     }
1089 
1090     if (klass->is_interface())  // should not happen, but...
1091       break;                    // bail out
1092 
1093     // Check the type of the exception against the catch type
1094     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
1095     Node* con = _gvn.makecon(tk);
1096     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
1097     if (!stopped()) {
1098       PreserveJVMState pjvms(this);
1099       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
1100       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
1101       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
1102       push_ex_oop(ex_oop);      // Push exception oop for handler
1103       if (PrintOpto && WizardMode) {
1104         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
1105         klass->print_name();
1106         tty->cr();
1107       }
1108       // If this is a backwards branch in the bytecodes, add safepoint
1109       maybe_add_safepoint(handler_bci);
1110       merge_exception(handler_bci);
1111     }
1112     set_control(not_subtype_ctrl);
1113 
1114     // Come here if exception does not match handler.
1115     // Carry on with more handler checks.
1116     --remaining;
1117   }
1118 
1119   assert(!stopped(), "you should return if you finish the chain");
1120 
1121   // Oops, need to call into the VM to resolve the klasses at runtime.
1122   // Note:  This call must not deoptimize, since it is not a real at this bci!
1123   kill_dead_locals();
1124 
1125   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
1126                     OptoRuntime::rethrow_Type(),
1127                     OptoRuntime::rethrow_stub(),
1128                     nullptr, nullptr,
1129                     ex_node);
1130 
1131   // Rethrow is a pure call, no side effects, only a result.
1132   // The result cannot be allocated, so we use I_O
1133 
1134   // Catch exceptions from the rethrow
1135   catch_call_exceptions(handlers);
1136 }
1137 
1138 
1139 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
1140 
1141 
1142 #ifndef PRODUCT
1143 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1144   if( CountCompiledCalls ) {
1145     if( at_method_entry ) {
1146       // bump invocation counter if top method (for statistics)
1147       if (CountCompiledCalls && depth() == 1) {
1148         const TypePtr* addr_type = TypeMetadataPtr::make(method());
1149         Node* adr1 = makecon(addr_type);
1150         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1151         increment_counter(adr2);
1152       }
1153     } else if (is_inline) {
1154       switch (bc()) {
1155       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1156       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1157       case Bytecodes::_invokestatic:
1158       case Bytecodes::_invokedynamic:
1159       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1160       default: fatal("unexpected call bytecode");
1161       }
1162     } else {
1163       switch (bc()) {
1164       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1165       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1166       case Bytecodes::_invokestatic:
1167       case Bytecodes::_invokedynamic:
1168       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1169       default: fatal("unexpected call bytecode");
1170       }
1171     }
1172   }
1173 }
1174 #endif //PRODUCT
1175 
1176 
1177 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1178                                          ciKlass* holder, ciMethod* callee,
1179                                          const TypeOopPtr* receiver_type, bool is_virtual,
1180                                          bool& call_does_dispatch, int& vtable_index,
1181                                          bool check_access) {
1182   // Set default values for out-parameters.
1183   call_does_dispatch = true;
1184   vtable_index       = Method::invalid_vtable_index;
1185 
1186   // Choose call strategy.
1187   ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee,
1188                                                          receiver_type, check_access);
1189 
1190   // Have the call been sufficiently improved such that it is no longer a virtual?
1191   if (optimized_virtual_method != nullptr) {
1192     callee             = optimized_virtual_method;
1193     call_does_dispatch = false;
1194   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1195     // We can make a vtable call at this site
1196     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1197   }
1198   return callee;
1199 }
1200 
1201 // Identify possible target method and inlining style
1202 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1203                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1204                                      bool check_access) {
1205   // only use for virtual or interface calls
1206 
1207   // If it is obviously final, do not bother to call find_monomorphic_target,
1208   // because the class hierarchy checks are not needed, and may fail due to
1209   // incompletely loaded classes.  Since we do our own class loading checks
1210   // in this module, we may confidently bind to any method.
1211   if (callee->can_be_statically_bound()) {
1212     return callee;
1213   }
1214 
1215   if (receiver_type == nullptr) {
1216     return nullptr; // no receiver type info
1217   }
1218 
1219   // Attempt to improve the receiver
1220   bool actual_receiver_is_exact = false;
1221   ciInstanceKlass* actual_receiver = klass;
1222   // Array methods are all inherited from Object, and are monomorphic.
1223   // finalize() call on array is not allowed.
1224   if (receiver_type->isa_aryptr() &&
1225       callee->holder() == env()->Object_klass() &&
1226       callee->name() != ciSymbols::finalize_method_name()) {
1227     return callee;
1228   }
1229 
1230   // All other interesting cases are instance klasses.
1231   if (!receiver_type->isa_instptr()) {
1232     return nullptr;
1233   }
1234 
1235   ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass();
1236   if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() &&
1237       (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) {
1238     // ikl is a same or better type than the original actual_receiver,
1239     // e.g. static receiver from bytecodes.
1240     actual_receiver = receiver_klass;
1241     // Is the actual_receiver exact?
1242     actual_receiver_is_exact = receiver_type->klass_is_exact();
1243   }
1244 
1245   ciInstanceKlass*   calling_klass = caller->holder();
1246   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1247 
1248   if (cha_monomorphic_target != nullptr) {
1249     // Hardwiring a virtual.
1250     assert(!callee->can_be_statically_bound(), "should have been handled earlier");
1251     assert(!cha_monomorphic_target->is_abstract(), "");
1252     if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) {
1253       // If we inlined because CHA revealed only a single target method,
1254       // then we are dependent on that target method not getting overridden
1255       // by dynamic class loading.  Be sure to test the "static" receiver
1256       // dest_method here, as opposed to the actual receiver, which may
1257       // falsely lead us to believe that the receiver is final or private.
1258       dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee);
1259     }
1260     return cha_monomorphic_target;
1261   }
1262 
1263   // If the type is exact, we can still bind the method w/o a vcall.
1264   // (This case comes after CHA so we can see how much extra work it does.)
1265   if (actual_receiver_is_exact) {
1266     // In case of evolution, there is a dependence on every inlined method, since each
1267     // such method can be changed when its class is redefined.
1268     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1269     if (exact_method != nullptr) {
1270       return exact_method;
1271     }
1272   }
1273 
1274   return nullptr;
1275 }