1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciCallSite.hpp" 27 #include "ci/ciMethodHandle.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "interpreter/linkResolver.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/callGenerator.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/inlinetypenode.hpp" 38 #include "opto/mulnode.hpp" 39 #include "opto/parse.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/subnode.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/macros.hpp" 46 #if INCLUDE_JFR 47 #include "jfr/jfr.hpp" 48 #endif 49 50 void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) { 51 if (TraceTypeProfile || C->print_inlining()) { 52 outputStream* out = tty; 53 if (!C->print_inlining()) { 54 if (!PrintOpto && !PrintCompilation) { 55 method->print_short_name(); 56 tty->cr(); 57 } 58 CompileTask::print_inlining_tty(prof_method, depth, bci); 59 } else { 60 out = C->print_inlining_stream(); 61 } 62 CompileTask::print_inline_indent(depth, out); 63 out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count); 64 stringStream ss; 65 prof_klass->name()->print_symbol_on(&ss); 66 out->print("%s", ss.freeze()); 67 out->cr(); 68 } 69 } 70 71 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch, 72 JVMState* jvms, bool allow_inline, 73 float prof_factor, ciKlass* speculative_receiver_type, 74 bool allow_intrinsics) { 75 assert(callee != NULL, "failed method resolution"); 76 77 ciMethod* caller = jvms->method(); 78 int bci = jvms->bci(); 79 Bytecodes::Code bytecode = caller->java_code_at_bci(bci); 80 ciMethod* orig_callee = caller->get_method_at_bci(bci); 81 82 const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) || 83 (bytecode == Bytecodes::_invokeinterface) || 84 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) || 85 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface); 86 87 // Dtrace currently doesn't work unless all calls are vanilla 88 if (env()->dtrace_method_probes()) { 89 allow_inline = false; 90 } 91 92 // Note: When we get profiling during stage-1 compiles, we want to pull 93 // from more specific profile data which pertains to this inlining. 94 // Right now, ignore the information in jvms->caller(), and do method[bci]. 95 ciCallProfile profile = caller->call_profile_at_bci(bci); 96 97 // See how many times this site has been invoked. 98 int site_count = profile.count(); 99 int receiver_count = -1; 100 if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) { 101 // Receivers in the profile structure are ordered by call counts 102 // so that the most called (major) receiver is profile.receiver(0). 103 receiver_count = profile.receiver_count(0); 104 } 105 106 CompileLog* log = this->log(); 107 if (log != NULL) { 108 int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; 109 int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1; 110 log->begin_elem("call method='%d' count='%d' prof_factor='%f'", 111 log->identify(callee), site_count, prof_factor); 112 if (call_does_dispatch) log->print(" virtual='1'"); 113 if (allow_inline) log->print(" inline='1'"); 114 if (receiver_count >= 0) { 115 log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); 116 if (profile.has_receiver(1)) { 117 log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); 118 } 119 } 120 if (callee->is_method_handle_intrinsic()) { 121 log->print(" method_handle_intrinsic='1'"); 122 } 123 log->end_elem(); 124 } 125 126 // Special case the handling of certain common, profitable library 127 // methods. If these methods are replaced with specialized code, 128 // then we return it as the inlined version of the call. 129 CallGenerator* cg_intrinsic = NULL; 130 if (allow_inline && allow_intrinsics) { 131 CallGenerator* cg = find_intrinsic(callee, call_does_dispatch); 132 if (cg != NULL) { 133 if (cg->is_predicated()) { 134 // Code without intrinsic but, hopefully, inlined. 135 CallGenerator* inline_cg = this->call_generator(callee, 136 vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false); 137 if (inline_cg != NULL) { 138 cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg); 139 } 140 } 141 142 // If intrinsic does the virtual dispatch, we try to use the type profile 143 // first, and hopefully inline it as the regular virtual call below. 144 // We will retry the intrinsic if nothing had claimed it afterwards. 145 if (cg->does_virtual_dispatch()) { 146 cg_intrinsic = cg; 147 cg = NULL; 148 } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) { 149 return CallGenerator::for_late_inline(callee, cg); 150 } else { 151 return cg; 152 } 153 } 154 } 155 156 // Do method handle calls. 157 // NOTE: This must happen before normal inlining logic below since 158 // MethodHandle.invoke* are native methods which obviously don't 159 // have bytecodes and so normal inlining fails. 160 if (callee->is_method_handle_intrinsic()) { 161 CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline); 162 return cg; 163 } 164 165 // Attempt to inline... 166 if (allow_inline) { 167 // The profile data is only partly attributable to this caller, 168 // scale back the call site information. 169 float past_uses = jvms->method()->scale_count(site_count, prof_factor); 170 // This is the number of times we expect the call code to be used. 171 float expected_uses = past_uses; 172 173 // Try inlining a bytecoded method: 174 if (!call_does_dispatch) { 175 InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); 176 bool should_delay = AlwaysIncrementalInline; 177 if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) { 178 CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses); 179 // For optimized virtual calls assert at runtime that receiver object 180 // is a subtype of the inlined method holder. CHA can report a method 181 // as a unique target under an abstract method, but receiver type 182 // sometimes has a broader type. Similar scenario is possible with 183 // default methods when type system loses information about implemented 184 // interfaces. 185 if (cg != NULL && is_virtual_or_interface && !callee->is_static()) { 186 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 187 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 188 189 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 190 } 191 if (cg != NULL) { 192 // Delay the inlining of this method to give us the 193 // opportunity to perform some high level optimizations 194 // first. 195 if (should_delay_string_inlining(callee, jvms)) { 196 return CallGenerator::for_string_late_inline(callee, cg); 197 } else if (should_delay_boxing_inlining(callee, jvms)) { 198 return CallGenerator::for_boxing_late_inline(callee, cg); 199 } else if (should_delay_vector_reboxing_inlining(callee, jvms)) { 200 return CallGenerator::for_vector_reboxing_late_inline(callee, cg); 201 } else if (should_delay) { 202 return CallGenerator::for_late_inline(callee, cg); 203 } else { 204 return cg; 205 } 206 } 207 } 208 } 209 210 // Try using the type profile. 211 if (call_does_dispatch && site_count > 0 && UseTypeProfile) { 212 // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. 213 bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); 214 ciMethod* receiver_method = NULL; 215 216 int morphism = profile.morphism(); 217 if (speculative_receiver_type != NULL) { 218 if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) { 219 // We have a speculative type, we should be able to resolve 220 // the call. We do that before looking at the profiling at 221 // this invoke because it may lead to bimorphic inlining which 222 // a speculative type should help us avoid. 223 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 224 speculative_receiver_type); 225 if (receiver_method == NULL) { 226 speculative_receiver_type = NULL; 227 } else { 228 morphism = 1; 229 } 230 } else { 231 // speculation failed before. Use profiling at the call 232 // (could allow bimorphic inlining for instance). 233 speculative_receiver_type = NULL; 234 } 235 } 236 if (receiver_method == NULL && 237 (have_major_receiver || morphism == 1 || 238 (morphism == 2 && UseBimorphicInlining))) { 239 // receiver_method = profile.method(); 240 // Profiles do not suggest methods now. Look it up in the major receiver. 241 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 242 profile.receiver(0)); 243 } 244 if (receiver_method != NULL) { 245 // The single majority receiver sufficiently outweighs the minority. 246 CallGenerator* hit_cg = this->call_generator(receiver_method, 247 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 248 if (hit_cg != NULL) { 249 // Look up second receiver. 250 CallGenerator* next_hit_cg = NULL; 251 ciMethod* next_receiver_method = NULL; 252 if (morphism == 2 && UseBimorphicInlining) { 253 next_receiver_method = callee->resolve_invoke(jvms->method()->holder(), 254 profile.receiver(1)); 255 if (next_receiver_method != NULL) { 256 next_hit_cg = this->call_generator(next_receiver_method, 257 vtable_index, !call_does_dispatch, jvms, 258 allow_inline, prof_factor); 259 if (next_hit_cg != NULL && !next_hit_cg->is_inline() && 260 have_major_receiver && UseOnlyInlinedBimorphic) { 261 // Skip if we can't inline second receiver's method 262 next_hit_cg = NULL; 263 } 264 } 265 } 266 CallGenerator* miss_cg; 267 Deoptimization::DeoptReason reason = (morphism == 2 268 ? Deoptimization::Reason_bimorphic 269 : Deoptimization::reason_class_check(speculative_receiver_type != NULL)); 270 if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) && 271 !too_many_traps_or_recompiles(caller, bci, reason) 272 ) { 273 // Generate uncommon trap for class check failure path 274 // in case of monomorphic or bimorphic virtual call site. 275 miss_cg = CallGenerator::for_uncommon_trap(callee, reason, 276 Deoptimization::Action_maybe_recompile); 277 } else { 278 // Generate virtual call for class check failure path 279 // in case of polymorphic virtual call site. 280 miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor) 281 : CallGenerator::for_virtual_call(callee, vtable_index)); 282 } 283 if (miss_cg != NULL) { 284 if (next_hit_cg != NULL) { 285 assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation"); 286 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)); 287 // We don't need to record dependency on a receiver here and below. 288 // Whenever we inline, the dependency is added by Parse::Parse(). 289 miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); 290 } 291 if (miss_cg != NULL) { 292 ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0); 293 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, k, site_count, receiver_count); 294 float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0); 295 CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob); 296 if (cg != NULL) return cg; 297 } 298 } 299 } 300 } 301 } 302 303 // If there is only one implementor of this interface then we 304 // may be able to bind this invoke directly to the implementing 305 // klass but we need both a dependence on the single interface 306 // and on the method we bind to. Additionally since all we know 307 // about the receiver type is that it's supposed to implement the 308 // interface we have to insert a check that it's the class we 309 // expect. Interface types are not checked by the verifier so 310 // they are roughly equivalent to Object. 311 // The number of implementors for declared_interface is less or 312 // equal to the number of implementors for target->holder() so 313 // if number of implementors of target->holder() == 1 then 314 // number of implementors for decl_interface is 0 or 1. If 315 // it's 0 then no class implements decl_interface and there's 316 // no point in inlining. 317 if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) { 318 ciInstanceKlass* declared_interface = 319 caller->get_declared_method_holder_at_bci(bci)->as_instance_klass(); 320 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 321 322 if (singleton != NULL) { 323 assert(singleton != declared_interface, "not a unique implementor"); 324 325 ciMethod* cha_monomorphic_target = 326 callee->find_monomorphic_target(caller->holder(), declared_interface, singleton); 327 328 if (cha_monomorphic_target != NULL && 329 cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless 330 ciKlass* holder = cha_monomorphic_target->holder(); 331 332 // Try to inline the method found by CHA. Inlined method is guarded by the type check. 333 CallGenerator* hit_cg = call_generator(cha_monomorphic_target, 334 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 335 336 // Deoptimize on type check fail. The interpreter will throw ICCE for us. 337 CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee, 338 Deoptimization::Reason_class_check, Deoptimization::Action_none); 339 340 ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts 341 CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg); 342 if (hit_cg != NULL && cg != NULL) { 343 dependencies()->assert_unique_implementor(declared_interface, singleton); 344 dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee); 345 return cg; 346 } 347 } 348 } 349 } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface 350 351 // Nothing claimed the intrinsic, we go with straight-forward inlining 352 // for already discovered intrinsic. 353 if (allow_intrinsics && cg_intrinsic != NULL) { 354 assert(cg_intrinsic->does_virtual_dispatch(), "sanity"); 355 return cg_intrinsic; 356 } 357 } // allow_inline 358 359 // There was no special inlining tactic, or it bailed out. 360 // Use a more generic tactic, like a simple call. 361 if (call_does_dispatch) { 362 const char* msg = "virtual call"; 363 if (C->print_inlining()) { 364 print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg); 365 } 366 C->log_inline_failure(msg); 367 if (IncrementalInlineVirtual && allow_inline) { 368 return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later 369 } else { 370 return CallGenerator::for_virtual_call(callee, vtable_index); 371 } 372 } else { 373 // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call. 374 CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms)); 375 // For optimized virtual calls assert at runtime that receiver object 376 // is a subtype of the method holder. 377 if (cg != NULL && is_virtual_or_interface && !callee->is_static()) { 378 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 379 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 380 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 381 } 382 return cg; 383 } 384 } 385 386 // Return true for methods that shouldn't be inlined early so that 387 // they are easier to analyze and optimize as intrinsics. 388 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) { 389 if (has_stringbuilder()) { 390 391 if ((call_method->holder() == C->env()->StringBuilder_klass() || 392 call_method->holder() == C->env()->StringBuffer_klass()) && 393 (jvms->method()->holder() == C->env()->StringBuilder_klass() || 394 jvms->method()->holder() == C->env()->StringBuffer_klass())) { 395 // Delay SB calls only when called from non-SB code 396 return false; 397 } 398 399 switch (call_method->intrinsic_id()) { 400 case vmIntrinsics::_StringBuilder_void: 401 case vmIntrinsics::_StringBuilder_int: 402 case vmIntrinsics::_StringBuilder_String: 403 case vmIntrinsics::_StringBuilder_append_char: 404 case vmIntrinsics::_StringBuilder_append_int: 405 case vmIntrinsics::_StringBuilder_append_String: 406 case vmIntrinsics::_StringBuilder_toString: 407 case vmIntrinsics::_StringBuffer_void: 408 case vmIntrinsics::_StringBuffer_int: 409 case vmIntrinsics::_StringBuffer_String: 410 case vmIntrinsics::_StringBuffer_append_char: 411 case vmIntrinsics::_StringBuffer_append_int: 412 case vmIntrinsics::_StringBuffer_append_String: 413 case vmIntrinsics::_StringBuffer_toString: 414 case vmIntrinsics::_Integer_toString: 415 return true; 416 417 case vmIntrinsics::_String_String: 418 { 419 Node* receiver = jvms->map()->in(jvms->argoff() + 1); 420 if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { 421 CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); 422 ciMethod* m = csj->method(); 423 if (m != NULL && 424 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || 425 m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) 426 // Delay String.<init>(new SB()) 427 return true; 428 } 429 return false; 430 } 431 432 default: 433 return false; 434 } 435 } 436 return false; 437 } 438 439 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) { 440 if (eliminate_boxing() && call_method->is_boxing_method()) { 441 set_has_boxed_value(true); 442 return aggressive_unboxing(); 443 } 444 return false; 445 } 446 447 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) { 448 return EnableVectorSupport && call_method->is_vector_method(); 449 } 450 451 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) { 452 return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox); 453 } 454 455 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link 456 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { 457 // Additional inputs to consider... 458 // bc = bc() 459 // caller = method() 460 // iter().get_method_holder_index() 461 assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); 462 // Interface classes can be loaded & linked and never get around to 463 // being initialized. Uncommon-trap for not-initialized static or 464 // v-calls. Let interface calls happen. 465 ciInstanceKlass* holder_klass = dest_method->holder(); 466 if (!holder_klass->is_being_initialized() && 467 !holder_klass->is_initialized() && 468 !holder_klass->is_interface()) { 469 uncommon_trap(Deoptimization::Reason_uninitialized, 470 Deoptimization::Action_reinterpret, 471 holder_klass); 472 return true; 473 } 474 475 assert(dest_method->is_loaded(), "dest_method: typeflow responsibility"); 476 return false; 477 } 478 479 #ifdef ASSERT 480 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) { 481 ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci()); 482 ciMethod* resolved_method = cg->method(); 483 if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) { 484 tty->print_cr("JVMS:"); 485 jvms->dump(); 486 tty->print_cr("Bytecode info:"); 487 jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr(); 488 tty->print_cr("Resolved method:"); 489 cg->method()->print(); tty->cr(); 490 return false; 491 } 492 return true; 493 } 494 #endif // ASSERT 495 496 //------------------------------do_call---------------------------------------- 497 // Handle your basic call. Inline if we can & want to, else just setup call. 498 void Parse::do_call() { 499 // It's likely we are going to add debug info soon. 500 // Also, if we inline a guy who eventually needs debug info for this JVMS, 501 // our contribution to it is cleaned up right here. 502 kill_dead_locals(); 503 504 C->print_inlining_assert_ready(); 505 506 // Set frequently used booleans 507 const bool is_virtual = bc() == Bytecodes::_invokevirtual; 508 const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; 509 const bool has_receiver = Bytecodes::has_receiver(bc()); 510 511 // Find target being called 512 bool will_link; 513 ciSignature* declared_signature = NULL; 514 ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode 515 ciInstanceKlass* holder_klass = orig_callee->holder(); 516 ciKlass* holder = iter().get_declared_method_holder(); 517 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 518 assert(declared_signature != NULL, "cannot be null"); 519 JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);) 520 521 // Bump max node limit for JSR292 users 522 if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) { 523 C->set_max_node_limit(3*MaxNodeLimit); 524 } 525 526 // uncommon-trap when callee is unloaded, uninitialized or will not link 527 // bailout when too many arguments for register representation 528 if (!will_link || can_not_compile_call_site(orig_callee, klass)) { 529 if (PrintOpto && (Verbose || WizardMode)) { 530 method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); 531 orig_callee->print_name(); tty->cr(); 532 } 533 return; 534 } 535 assert(holder_klass->is_loaded(), ""); 536 //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw) 537 // Note: this takes into account invokeinterface of methods declared in java/lang/Object, 538 // which should be invokevirtuals but according to the VM spec may be invokeinterfaces 539 assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc"); 540 // Note: In the absence of miranda methods, an abstract class K can perform 541 // an invokevirtual directly on an interface method I.m if K implements I. 542 543 // orig_callee is the resolved callee which's signature includes the 544 // appendix argument. 545 const int nargs = orig_callee->arg_size(); 546 const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id()); 547 548 // Push appendix argument (MethodType, CallSite, etc.), if one. 549 if (iter().has_appendix()) { 550 ciObject* appendix_arg = iter().get_appendix(); 551 const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true); 552 Node* appendix_arg_node = _gvn.makecon(appendix_arg_type); 553 push(appendix_arg_node); 554 } 555 556 // --------------------- 557 // Does Class Hierarchy Analysis reveal only a single target of a v-call? 558 // Then we may inline or make a static call, but become dependent on there being only 1 target. 559 // Does the call-site type profile reveal only one receiver? 560 // Then we may introduce a run-time check and inline on the path where it succeeds. 561 // The other path may uncommon_trap, check for another receiver, or do a v-call. 562 563 // Try to get the most accurate receiver type 564 ciMethod* callee = orig_callee; 565 int vtable_index = Method::invalid_vtable_index; 566 bool call_does_dispatch = false; 567 568 // Speculative type of the receiver if any 569 ciKlass* speculative_receiver_type = NULL; 570 if (is_virtual_or_interface) { 571 Node* receiver_node = stack(sp() - nargs); 572 const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); 573 // call_does_dispatch and vtable_index are out-parameters. They might be changed. 574 // For arrays, klass below is Object. When vtable calls are used, 575 // resolving the call with Object would allow an illegal call to 576 // finalize() on an array. We use holder instead: illegal calls to 577 // finalize() won't be compiled as vtable calls (IC call 578 // resolution will catch the illegal call) and the few legal calls 579 // on array types won't be either. 580 callee = C->optimize_virtual_call(method(), klass, holder, orig_callee, 581 receiver_type, is_virtual, 582 call_does_dispatch, vtable_index); // out-parameters 583 speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL; 584 } 585 586 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 587 ciKlass* receiver_constraint = NULL; 588 if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_constructor()) { 589 ciInstanceKlass* calling_klass = method()->holder(); 590 ciInstanceKlass* sender_klass = calling_klass; 591 if (sender_klass->is_interface()) { 592 receiver_constraint = sender_klass; 593 } 594 } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) { 595 assert(holder->is_interface(), "How did we get a non-interface method here!"); 596 receiver_constraint = holder; 597 } 598 599 if (receiver_constraint != NULL) { 600 Node* receiver_node = stack(sp() - nargs); 601 Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces)); 602 Node* bad_type_ctrl = NULL; 603 Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl); 604 if (bad_type_ctrl != NULL) { 605 PreserveJVMState pjvms(this); 606 set_control(bad_type_ctrl); 607 uncommon_trap(Deoptimization::Reason_class_check, 608 Deoptimization::Action_none); 609 } 610 if (stopped()) { 611 return; // MUST uncommon-trap? 612 } 613 set_stack(sp() - nargs, casted_receiver); 614 } 615 616 // Note: It's OK to try to inline a virtual call. 617 // The call generator will not attempt to inline a polymorphic call 618 // unless it knows how to optimize the receiver dispatch. 619 bool try_inline = (C->do_inlining() || InlineAccessors); 620 621 // --------------------- 622 dec_sp(nargs); // Temporarily pop args for JVM state of call 623 JVMState* jvms = sync_jvms(); 624 625 // --------------------- 626 // Decide call tactic. 627 // This call checks with CHA, the interpreter profile, intrinsics table, etc. 628 // It decides whether inlining is desirable or not. 629 CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type); 630 631 // NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead. 632 orig_callee = callee = NULL; 633 634 // --------------------- 635 // Round double arguments before call 636 round_double_arguments(cg->method()); 637 638 // Feed profiling data for arguments to the type system so it can 639 // propagate it as speculative types 640 record_profiled_arguments_for_speculation(cg->method(), bc()); 641 642 #ifndef PRODUCT 643 // bump global counters for calls 644 count_compiled_calls(/*at_method_entry*/ false, cg->is_inline()); 645 646 // Record first part of parsing work for this call 647 parse_histogram()->record_change(); 648 #endif // not PRODUCT 649 650 assert(jvms == this->jvms(), "still operating on the right JVMS"); 651 assert(jvms_in_sync(), "jvms must carry full info into CG"); 652 653 // save across call, for a subsequent cast_not_null. 654 Node* receiver = has_receiver ? argument(0) : NULL; 655 656 // The extra CheckCastPPs for speculative types mess with PhaseStringOpts 657 if (receiver != NULL && !call_does_dispatch && !cg->is_string_late_inline()) { 658 // Feed profiling data for a single receiver to the type system so 659 // it can propagate it as a speculative type 660 receiver = record_profiled_receiver_for_speculation(receiver); 661 } 662 663 JVMState* new_jvms = cg->generate(jvms); 664 if (new_jvms == NULL) { 665 // When inlining attempt fails (e.g., too many arguments), 666 // it may contaminate the current compile state, making it 667 // impossible to pull back and try again. Once we call 668 // cg->generate(), we are committed. If it fails, the whole 669 // compilation task is compromised. 670 if (failing()) return; 671 672 // This can happen if a library intrinsic is available, but refuses 673 // the call site, perhaps because it did not match a pattern the 674 // intrinsic was expecting to optimize. Should always be possible to 675 // get a normal java call that may inline in that case 676 cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false); 677 new_jvms = cg->generate(jvms); 678 if (new_jvms == NULL) { 679 guarantee(failing(), "call failed to generate: calls should work"); 680 return; 681 } 682 } 683 684 if (cg->is_inline()) { 685 // Accumulate has_loops estimate 686 C->env()->notice_inlined_method(cg->method()); 687 } 688 689 // Reset parser state from [new_]jvms, which now carries results of the call. 690 // Return value (if any) is already pushed on the stack by the cg. 691 add_exception_states_from(new_jvms); 692 if (new_jvms->map()->control() == top()) { 693 stop_and_kill_map(); 694 } else { 695 assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); 696 set_jvms(new_jvms); 697 } 698 699 assert(check_call_consistency(jvms, cg), "inconsistent info"); 700 701 if (!stopped()) { 702 // This was some sort of virtual call, which did a null check for us. 703 // Now we can assert receiver-not-null, on the normal return path. 704 if (receiver != NULL && cg->is_virtual()) { 705 Node* cast = cast_not_null(receiver); 706 // %%% assert(receiver == cast, "should already have cast the receiver"); 707 } 708 709 ciType* rtype = cg->method()->return_type(); 710 ciType* ctype = declared_signature->return_type(); 711 712 if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) { 713 // Be careful here with return types. 714 if (ctype != rtype) { 715 BasicType rt = rtype->basic_type(); 716 BasicType ct = ctype->basic_type(); 717 if (ct == T_VOID) { 718 // It's OK for a method to return a value that is discarded. 719 // The discarding does not require any special action from the caller. 720 // The Java code knows this, at VerifyType.isNullConversion. 721 pop_node(rt); // whatever it was, pop it 722 } else if (rt == T_INT || is_subword_type(rt)) { 723 // Nothing. These cases are handled in lambda form bytecode. 724 assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct)); 725 } else if (is_reference_type(rt)) { 726 assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct)); 727 if (ctype->is_loaded()) { 728 const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass()); 729 const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass()); 730 if (declared_signature->returns_null_free_inline_type()) { 731 sig_type = sig_type->join_speculative(TypePtr::NOTNULL); 732 } 733 if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { 734 Node* retnode = pop(); 735 Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type)); 736 push(cast_obj); 737 } 738 } 739 } else { 740 assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct)); 741 // push a zero; it's better than getting an oop/int mismatch 742 pop_node(rt); 743 Node* retnode = zerocon(ct); 744 push_node(ct, retnode); 745 } 746 // Now that the value is well-behaved, continue with the call-site type. 747 rtype = ctype; 748 } 749 } else { 750 // Symbolic resolution enforces the types to be the same. 751 // NOTE: We must relax the assert for unloaded types because two 752 // different ciType instances of the same unloaded class type 753 // can appear to be "loaded" by different loaders (depending on 754 // the accessing class). 755 assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype, 756 "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name()); 757 } 758 759 // If the return type of the method is not loaded, assert that the 760 // value we got is a null. Otherwise, we need to recompile. 761 if (!rtype->is_loaded()) { 762 if (PrintOpto && (Verbose || WizardMode)) { 763 method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); 764 cg->method()->print_name(); tty->cr(); 765 } 766 if (C->log() != NULL) { 767 C->log()->elem("assert_null reason='return' klass='%d'", 768 C->log()->identify(rtype)); 769 } 770 // If there is going to be a trap, put it at the next bytecode: 771 set_bci(iter().next_bci()); 772 null_assert(peek()); 773 set_bci(iter().cur_bci()); // put it back 774 } 775 BasicType ct = ctype->basic_type(); 776 if (is_reference_type(ct)) { 777 record_profiled_return_for_speculation(); 778 } 779 if (rtype->basic_type() == T_PRIMITIVE_OBJECT && !peek()->is_InlineType()) { 780 Node* retnode = pop(); 781 retnode = InlineTypeNode::make_from_oop(this, retnode, rtype->as_inline_klass(), !gvn().type(retnode)->maybe_null()); 782 push_node(T_PRIMITIVE_OBJECT, retnode); 783 } 784 } 785 786 // Restart record of parsing work after possible inlining of call 787 #ifndef PRODUCT 788 parse_histogram()->set_initial_state(bc()); 789 #endif 790 } 791 792 //---------------------------catch_call_exceptions----------------------------- 793 // Put a Catch and CatchProj nodes behind a just-created call. 794 // Send their caught exceptions to the proper handler. 795 // This may be used after a call to the rethrow VM stub, 796 // when it is needed to process unloaded exception classes. 797 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { 798 // Exceptions are delivered through this channel: 799 Node* i_o = this->i_o(); 800 801 // Add a CatchNode. 802 GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1); 803 GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL); 804 GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0); 805 806 bool default_handler = false; 807 for (; !handlers.is_done(); handlers.next()) { 808 ciExceptionHandler* h = handlers.handler(); 809 int h_bci = h->handler_bci(); 810 ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); 811 // Do not introduce unloaded exception types into the graph: 812 if (!h_klass->is_loaded()) { 813 if (saw_unloaded->contains(h_bci)) { 814 /* We've already seen an unloaded exception with h_bci, 815 so don't duplicate. Duplication will cause the CatchNode to be 816 unnecessarily large. See 4713716. */ 817 continue; 818 } else { 819 saw_unloaded->append(h_bci); 820 } 821 } 822 const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); 823 // (We use make_from_klass because it respects UseUniqueSubclasses.) 824 h_extype = h_extype->join(TypeInstPtr::NOTNULL); 825 assert(!h_extype->empty(), "sanity"); 826 // Note: It's OK if the BCIs repeat themselves. 827 bcis->append(h_bci); 828 extypes->append(h_extype); 829 if (h_bci == -1) { 830 default_handler = true; 831 } 832 } 833 834 if (!default_handler) { 835 bcis->append(-1); 836 extypes->append(TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr()); 837 } 838 839 int len = bcis->length(); 840 CatchNode *cn = new CatchNode(control(), i_o, len+1); 841 Node *catch_ = _gvn.transform(cn); 842 843 // now branch with the exception state to each of the (potential) 844 // handlers 845 for(int i=0; i < len; i++) { 846 // Setup JVM state to enter the handler. 847 PreserveJVMState pjvms(this); 848 // Locals are just copied from before the call. 849 // Get control from the CatchNode. 850 int handler_bci = bcis->at(i); 851 Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci)); 852 // This handler cannot happen? 853 if (ctrl == top()) continue; 854 set_control(ctrl); 855 856 // Create exception oop 857 const TypeInstPtr* extype = extypes->at(i)->is_instptr(); 858 Node *ex_oop = _gvn.transform(new CreateExNode(extypes->at(i), ctrl, i_o)); 859 860 // Handle unloaded exception classes. 861 if (saw_unloaded->contains(handler_bci)) { 862 // An unloaded exception type is coming here. Do an uncommon trap. 863 #ifndef PRODUCT 864 // We do not expect the same handler bci to take both cold unloaded 865 // and hot loaded exceptions. But, watch for it. 866 if ((Verbose || WizardMode) && extype->is_loaded()) { 867 tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci()); 868 method()->print_name(); tty->cr(); 869 } else if (PrintOpto && (Verbose || WizardMode)) { 870 tty->print("Bailing out on unloaded exception type "); 871 extype->instance_klass()->print_name(); 872 tty->print(" at bci:%d in ", bci()); 873 method()->print_name(); tty->cr(); 874 } 875 #endif 876 // Emit an uncommon trap instead of processing the block. 877 set_bci(handler_bci); 878 push_ex_oop(ex_oop); 879 uncommon_trap(Deoptimization::Reason_unloaded, 880 Deoptimization::Action_reinterpret, 881 extype->instance_klass(), "!loaded exception"); 882 set_bci(iter().cur_bci()); // put it back 883 continue; 884 } 885 886 // go to the exception handler 887 if (handler_bci < 0) { // merge with corresponding rethrow node 888 throw_to_exit(make_exception_state(ex_oop)); 889 } else { // Else jump to corresponding handle 890 push_ex_oop(ex_oop); // Clear stack and push just the oop. 891 merge_exception(handler_bci); 892 } 893 } 894 895 // The first CatchProj is for the normal return. 896 // (Note: If this is a call to rethrow_Java, this node goes dead.) 897 set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); 898 } 899 900 901 //----------------------------catch_inline_exceptions-------------------------- 902 // Handle all exceptions thrown by an inlined method or individual bytecode. 903 // Common case 1: we have no handler, so all exceptions merge right into 904 // the rethrow case. 905 // Case 2: we have some handlers, with loaded exception klasses that have 906 // no subklasses. We do a Deutsch-Schiffman style type-check on the incoming 907 // exception oop and branch to the handler directly. 908 // Case 3: We have some handlers with subklasses or are not loaded at 909 // compile-time. We have to call the runtime to resolve the exception. 910 // So we insert a RethrowCall and all the logic that goes with it. 911 void Parse::catch_inline_exceptions(SafePointNode* ex_map) { 912 // Caller is responsible for saving away the map for normal control flow! 913 assert(stopped(), "call set_map(NULL) first"); 914 assert(method()->has_exception_handlers(), "don't come here w/o work to do"); 915 916 Node* ex_node = saved_ex_oop(ex_map); 917 if (ex_node == top()) { 918 // No action needed. 919 return; 920 } 921 const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); 922 NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr")); 923 if (ex_type == NULL) 924 ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 925 926 // determine potential exception handlers 927 ciExceptionHandlerStream handlers(method(), bci(), 928 ex_type->instance_klass(), 929 ex_type->klass_is_exact()); 930 931 // Start executing from the given throw state. (Keep its stack, for now.) 932 // Get the exception oop as known at compile time. 933 ex_node = use_exception_state(ex_map); 934 935 // Get the exception oop klass from its header 936 Node* ex_klass_node = NULL; 937 if (has_ex_handler() && !ex_type->klass_is_exact()) { 938 Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); 939 ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 940 941 // Compute the exception klass a little more cleverly. 942 // Obvious solution is to simple do a LoadKlass from the 'ex_node'. 943 // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for 944 // each arm of the Phi. If I know something clever about the exceptions 945 // I'm loading the class from, I can replace the LoadKlass with the 946 // klass constant for the exception oop. 947 if (ex_node->is_Phi()) { 948 ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT); 949 for (uint i = 1; i < ex_node->req(); i++) { 950 Node* ex_in = ex_node->in(i); 951 if (ex_in == top() || ex_in == NULL) { 952 // This path was not taken. 953 ex_klass_node->init_req(i, top()); 954 continue; 955 } 956 Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes()); 957 Node* k = _gvn.transform( LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 958 ex_klass_node->init_req( i, k ); 959 } 960 _gvn.set_type(ex_klass_node, TypeInstKlassPtr::OBJECT); 961 962 } 963 } 964 965 // Scan the exception table for applicable handlers. 966 // If none, we can call rethrow() and be done! 967 // If precise (loaded with no subklasses), insert a D.S. style 968 // pointer compare to the correct handler and loop back. 969 // If imprecise, switch to the Rethrow VM-call style handling. 970 971 int remaining = handlers.count_remaining(); 972 973 // iterate through all entries sequentially 974 for (;!handlers.is_done(); handlers.next()) { 975 ciExceptionHandler* handler = handlers.handler(); 976 977 if (handler->is_rethrow()) { 978 // If we fell off the end of the table without finding an imprecise 979 // exception klass (and without finding a generic handler) then we 980 // know this exception is not handled in this method. We just rethrow 981 // the exception into the caller. 982 throw_to_exit(make_exception_state(ex_node)); 983 return; 984 } 985 986 // exception handler bci range covers throw_bci => investigate further 987 int handler_bci = handler->handler_bci(); 988 989 if (remaining == 1) { 990 push_ex_oop(ex_node); // Push exception oop for handler 991 if (PrintOpto && WizardMode) { 992 tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); 993 } 994 merge_exception(handler_bci); // jump to handler 995 return; // No more handling to be done here! 996 } 997 998 // Get the handler's klass 999 ciInstanceKlass* klass = handler->catch_klass(); 1000 1001 if (!klass->is_loaded()) { // klass is not loaded? 1002 // fall through into catch_call_exceptions which will emit a 1003 // handler with an uncommon trap. 1004 break; 1005 } 1006 1007 if (klass->is_interface()) // should not happen, but... 1008 break; // bail out 1009 1010 // Check the type of the exception against the catch type 1011 const TypeKlassPtr *tk = TypeKlassPtr::make(klass); 1012 Node* con = _gvn.makecon(tk); 1013 Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con); 1014 if (!stopped()) { 1015 PreserveJVMState pjvms(this); 1016 const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr(); 1017 assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness"); 1018 Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst)); 1019 push_ex_oop(ex_oop); // Push exception oop for handler 1020 if (PrintOpto && WizardMode) { 1021 tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); 1022 klass->print_name(); 1023 tty->cr(); 1024 } 1025 merge_exception(handler_bci); 1026 } 1027 set_control(not_subtype_ctrl); 1028 1029 // Come here if exception does not match handler. 1030 // Carry on with more handler checks. 1031 --remaining; 1032 } 1033 1034 assert(!stopped(), "you should return if you finish the chain"); 1035 1036 // Oops, need to call into the VM to resolve the klasses at runtime. 1037 // Note: This call must not deoptimize, since it is not a real at this bci! 1038 kill_dead_locals(); 1039 1040 make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, 1041 OptoRuntime::rethrow_Type(), 1042 OptoRuntime::rethrow_stub(), 1043 NULL, NULL, 1044 ex_node); 1045 1046 // Rethrow is a pure call, no side effects, only a result. 1047 // The result cannot be allocated, so we use I_O 1048 1049 // Catch exceptions from the rethrow 1050 catch_call_exceptions(handlers); 1051 } 1052 1053 1054 // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) 1055 1056 1057 #ifndef PRODUCT 1058 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { 1059 if( CountCompiledCalls ) { 1060 if( at_method_entry ) { 1061 // bump invocation counter if top method (for statistics) 1062 if (CountCompiledCalls && depth() == 1) { 1063 const TypePtr* addr_type = TypeMetadataPtr::make(method()); 1064 Node* adr1 = makecon(addr_type); 1065 Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset())); 1066 increment_counter(adr2); 1067 } 1068 } else if (is_inline) { 1069 switch (bc()) { 1070 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; 1071 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; 1072 case Bytecodes::_invokestatic: 1073 case Bytecodes::_invokedynamic: 1074 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; 1075 default: fatal("unexpected call bytecode"); 1076 } 1077 } else { 1078 switch (bc()) { 1079 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; 1080 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; 1081 case Bytecodes::_invokestatic: 1082 case Bytecodes::_invokedynamic: 1083 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; 1084 default: fatal("unexpected call bytecode"); 1085 } 1086 } 1087 } 1088 } 1089 #endif //PRODUCT 1090 1091 1092 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1093 ciKlass* holder, ciMethod* callee, 1094 const TypeOopPtr* receiver_type, bool is_virtual, 1095 bool& call_does_dispatch, int& vtable_index, 1096 bool check_access) { 1097 // Set default values for out-parameters. 1098 call_does_dispatch = true; 1099 vtable_index = Method::invalid_vtable_index; 1100 1101 // Choose call strategy. 1102 ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee, 1103 receiver_type, check_access); 1104 1105 // Have the call been sufficiently improved such that it is no longer a virtual? 1106 if (optimized_virtual_method != NULL) { 1107 callee = optimized_virtual_method; 1108 call_does_dispatch = false; 1109 } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) { 1110 // We can make a vtable call at this site 1111 vtable_index = callee->resolve_vtable_index(caller->holder(), holder); 1112 } 1113 return callee; 1114 } 1115 1116 // Identify possible target method and inlining style 1117 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1118 ciMethod* callee, const TypeOopPtr* receiver_type, 1119 bool check_access) { 1120 // only use for virtual or interface calls 1121 1122 // If it is obviously final, do not bother to call find_monomorphic_target, 1123 // because the class hierarchy checks are not needed, and may fail due to 1124 // incompletely loaded classes. Since we do our own class loading checks 1125 // in this module, we may confidently bind to any method. 1126 if (callee->can_be_statically_bound()) { 1127 return callee; 1128 } 1129 1130 if (receiver_type == NULL) { 1131 return NULL; // no receiver type info 1132 } 1133 1134 // Attempt to improve the receiver 1135 bool actual_receiver_is_exact = false; 1136 ciInstanceKlass* actual_receiver = klass; 1137 // Array methods are all inherited from Object, and are monomorphic. 1138 // finalize() call on array is not allowed. 1139 if (receiver_type->isa_aryptr() && 1140 callee->holder() == env()->Object_klass() && 1141 callee->name() != ciSymbols::finalize_method_name()) { 1142 return callee; 1143 } 1144 1145 // All other interesting cases are instance klasses. 1146 if (!receiver_type->isa_instptr()) { 1147 return NULL; 1148 } 1149 1150 ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass(); 1151 if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() && 1152 (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) { 1153 // ikl is a same or better type than the original actual_receiver, 1154 // e.g. static receiver from bytecodes. 1155 actual_receiver = receiver_klass; 1156 // Is the actual_receiver exact? 1157 actual_receiver_is_exact = receiver_type->klass_is_exact(); 1158 } 1159 1160 ciInstanceKlass* calling_klass = caller->holder(); 1161 ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access); 1162 1163 if (cha_monomorphic_target != NULL) { 1164 // Hardwiring a virtual. 1165 assert(!callee->can_be_statically_bound(), "should have been handled earlier"); 1166 assert(!cha_monomorphic_target->is_abstract(), ""); 1167 if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) { 1168 // If we inlined because CHA revealed only a single target method, 1169 // then we are dependent on that target method not getting overridden 1170 // by dynamic class loading. Be sure to test the "static" receiver 1171 // dest_method here, as opposed to the actual receiver, which may 1172 // falsely lead us to believe that the receiver is final or private. 1173 dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee); 1174 } 1175 return cha_monomorphic_target; 1176 } 1177 1178 // If the type is exact, we can still bind the method w/o a vcall. 1179 // (This case comes after CHA so we can see how much extra work it does.) 1180 if (actual_receiver_is_exact) { 1181 // In case of evolution, there is a dependence on every inlined method, since each 1182 // such method can be changed when its class is redefined. 1183 ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver); 1184 if (exact_method != NULL) { 1185 return exact_method; 1186 } 1187 } 1188 1189 return NULL; 1190 }