1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciCallSite.hpp" 27 #include "ci/ciMethodHandle.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "interpreter/linkResolver.hpp" 33 #include "logging/log.hpp" 34 #include "logging/logLevel.hpp" 35 #include "logging/logMessage.hpp" 36 #include "logging/logStream.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/callGenerator.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/inlinetypenode.hpp" 42 #include "opto/mulnode.hpp" 43 #include "opto/parse.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 #include "opto/subnode.hpp" 47 #include "prims/methodHandles.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/macros.hpp" 50 #if INCLUDE_JFR 51 #include "jfr/jfr.hpp" 52 #endif 53 54 void print_trace_type_profile(outputStream* out, int depth, ciKlass* prof_klass, int site_count, int receiver_count) { 55 CompileTask::print_inline_indent(depth, out); 56 out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count); 57 prof_klass->name()->print_symbol_on(out); 58 out->cr(); 59 } 60 61 void trace_type_profile(Compile* C, ciMethod* method, int depth, int bci, ciMethod* prof_method, 62 ciKlass* prof_klass, int site_count, int receiver_count) { 63 if (TraceTypeProfile || C->print_inlining()) { 64 outputStream* out = tty; 65 if (!C->print_inlining()) { 66 if (!PrintOpto && !PrintCompilation) { 67 method->print_short_name(); 68 tty->cr(); 69 } 70 CompileTask::print_inlining_tty(prof_method, depth, bci, InliningResult::SUCCESS); 71 } else { 72 out = C->print_inlining_stream(); 73 } 74 print_trace_type_profile(out, depth, prof_klass, site_count, receiver_count); 75 } 76 77 LogTarget(Debug, jit, inlining) lt; 78 if (lt.is_enabled()) { 79 LogStream ls(lt); 80 print_trace_type_profile(&ls, depth, prof_klass, site_count, receiver_count); 81 } 82 } 83 84 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch, 85 JVMState* jvms, bool allow_inline, 86 float prof_factor, ciKlass* speculative_receiver_type, 87 bool allow_intrinsics) { 88 assert(callee != nullptr, "failed method resolution"); 89 90 ciMethod* caller = jvms->method(); 91 int bci = jvms->bci(); 92 Bytecodes::Code bytecode = caller->java_code_at_bci(bci); 93 ciMethod* orig_callee = caller->get_method_at_bci(bci); 94 95 const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) || 96 (bytecode == Bytecodes::_invokeinterface) || 97 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) || 98 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface); 99 100 // Dtrace currently doesn't work unless all calls are vanilla 101 if (env()->dtrace_method_probes()) { 102 allow_inline = false; 103 } 104 105 // Note: When we get profiling during stage-1 compiles, we want to pull 106 // from more specific profile data which pertains to this inlining. 107 // Right now, ignore the information in jvms->caller(), and do method[bci]. 108 ciCallProfile profile = caller->call_profile_at_bci(bci); 109 110 // See how many times this site has been invoked. 111 int site_count = profile.count(); 112 int receiver_count = -1; 113 if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) { 114 // Receivers in the profile structure are ordered by call counts 115 // so that the most called (major) receiver is profile.receiver(0). 116 receiver_count = profile.receiver_count(0); 117 } 118 119 CompileLog* log = this->log(); 120 if (log != nullptr) { 121 int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; 122 int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1; 123 log->begin_elem("call method='%d' count='%d' prof_factor='%f'", 124 log->identify(callee), site_count, prof_factor); 125 if (call_does_dispatch) log->print(" virtual='1'"); 126 if (allow_inline) log->print(" inline='1'"); 127 if (receiver_count >= 0) { 128 log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); 129 if (profile.has_receiver(1)) { 130 log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); 131 } 132 } 133 if (callee->is_method_handle_intrinsic()) { 134 log->print(" method_handle_intrinsic='1'"); 135 } 136 log->end_elem(); 137 } 138 139 // Special case the handling of certain common, profitable library 140 // methods. If these methods are replaced with specialized code, 141 // then we return it as the inlined version of the call. 142 CallGenerator* cg_intrinsic = nullptr; 143 if (allow_inline && allow_intrinsics) { 144 CallGenerator* cg = find_intrinsic(callee, call_does_dispatch); 145 if (cg != nullptr) { 146 if (cg->is_predicated()) { 147 // Code without intrinsic but, hopefully, inlined. 148 CallGenerator* inline_cg = this->call_generator(callee, 149 vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false); 150 if (inline_cg != nullptr) { 151 cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg); 152 } 153 } 154 155 // If intrinsic does the virtual dispatch, we try to use the type profile 156 // first, and hopefully inline it as the regular virtual call below. 157 // We will retry the intrinsic if nothing had claimed it afterwards. 158 if (cg->does_virtual_dispatch()) { 159 cg_intrinsic = cg; 160 cg = nullptr; 161 } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) { 162 return CallGenerator::for_late_inline(callee, cg); 163 } else { 164 return cg; 165 } 166 } 167 } 168 169 // Do method handle calls. 170 // NOTE: This must happen before normal inlining logic below since 171 // MethodHandle.invoke* are native methods which obviously don't 172 // have bytecodes and so normal inlining fails. 173 if (callee->is_method_handle_intrinsic()) { 174 CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline); 175 return cg; 176 } 177 178 // Attempt to inline... 179 if (allow_inline) { 180 // The profile data is only partly attributable to this caller, 181 // scale back the call site information. 182 float past_uses = jvms->method()->scale_count(site_count, prof_factor); 183 // This is the number of times we expect the call code to be used. 184 float expected_uses = past_uses; 185 186 // Try inlining a bytecoded method: 187 if (!call_does_dispatch) { 188 InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); 189 bool should_delay = AlwaysIncrementalInline; 190 if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) { 191 CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses); 192 // For optimized virtual calls assert at runtime that receiver object 193 // is a subtype of the inlined method holder. CHA can report a method 194 // as a unique target under an abstract method, but receiver type 195 // sometimes has a broader type. Similar scenario is possible with 196 // default methods when type system loses information about implemented 197 // interfaces. 198 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 199 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 200 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 201 202 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 203 } 204 if (cg != nullptr) { 205 // Delay the inlining of this method to give us the 206 // opportunity to perform some high level optimizations 207 // first. 208 if (should_delay_string_inlining(callee, jvms)) { 209 return CallGenerator::for_string_late_inline(callee, cg); 210 } else if (should_delay_boxing_inlining(callee, jvms)) { 211 return CallGenerator::for_boxing_late_inline(callee, cg); 212 } else if (should_delay_vector_reboxing_inlining(callee, jvms)) { 213 return CallGenerator::for_vector_reboxing_late_inline(callee, cg); 214 } else if (should_delay) { 215 return CallGenerator::for_late_inline(callee, cg); 216 } else { 217 return cg; 218 } 219 } 220 } 221 } 222 223 // Try using the type profile. 224 if (call_does_dispatch && site_count > 0 && UseTypeProfile) { 225 // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. 226 bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); 227 ciMethod* receiver_method = nullptr; 228 229 int morphism = profile.morphism(); 230 if (speculative_receiver_type != nullptr) { 231 if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) { 232 // We have a speculative type, we should be able to resolve 233 // the call. We do that before looking at the profiling at 234 // this invoke because it may lead to bimorphic inlining which 235 // a speculative type should help us avoid. 236 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 237 speculative_receiver_type); 238 if (receiver_method == nullptr) { 239 speculative_receiver_type = nullptr; 240 } else { 241 morphism = 1; 242 } 243 } else { 244 // speculation failed before. Use profiling at the call 245 // (could allow bimorphic inlining for instance). 246 speculative_receiver_type = nullptr; 247 } 248 } 249 if (receiver_method == nullptr && 250 (have_major_receiver || morphism == 1 || 251 (morphism == 2 && UseBimorphicInlining))) { 252 // receiver_method = profile.method(); 253 // Profiles do not suggest methods now. Look it up in the major receiver. 254 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 255 profile.receiver(0)); 256 } 257 if (receiver_method != nullptr) { 258 // The single majority receiver sufficiently outweighs the minority. 259 CallGenerator* hit_cg = this->call_generator(receiver_method, 260 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 261 if (hit_cg != nullptr) { 262 // Look up second receiver. 263 CallGenerator* next_hit_cg = nullptr; 264 ciMethod* next_receiver_method = nullptr; 265 if (morphism == 2 && UseBimorphicInlining) { 266 next_receiver_method = callee->resolve_invoke(jvms->method()->holder(), 267 profile.receiver(1)); 268 if (next_receiver_method != nullptr) { 269 next_hit_cg = this->call_generator(next_receiver_method, 270 vtable_index, !call_does_dispatch, jvms, 271 allow_inline, prof_factor); 272 if (next_hit_cg != nullptr && !next_hit_cg->is_inline() && 273 have_major_receiver && UseOnlyInlinedBimorphic) { 274 // Skip if we can't inline second receiver's method 275 next_hit_cg = nullptr; 276 } 277 } 278 } 279 CallGenerator* miss_cg; 280 Deoptimization::DeoptReason reason = (morphism == 2 281 ? Deoptimization::Reason_bimorphic 282 : Deoptimization::reason_class_check(speculative_receiver_type != nullptr)); 283 if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) && 284 !too_many_traps_or_recompiles(caller, bci, reason) 285 ) { 286 // Generate uncommon trap for class check failure path 287 // in case of monomorphic or bimorphic virtual call site. 288 miss_cg = CallGenerator::for_uncommon_trap(callee, reason, 289 Deoptimization::Action_maybe_recompile); 290 } else { 291 // Generate virtual call for class check failure path 292 // in case of polymorphic virtual call site. 293 miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor) 294 : CallGenerator::for_virtual_call(callee, vtable_index)); 295 } 296 if (miss_cg != nullptr) { 297 if (next_hit_cg != nullptr) { 298 assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation"); 299 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)); 300 // We don't need to record dependency on a receiver here and below. 301 // Whenever we inline, the dependency is added by Parse::Parse(). 302 miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); 303 } 304 if (miss_cg != nullptr) { 305 ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0); 306 trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, k, site_count, receiver_count); 307 float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0); 308 CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob); 309 if (cg != nullptr) return cg; 310 } 311 } 312 } 313 } 314 } 315 316 // If there is only one implementor of this interface then we 317 // may be able to bind this invoke directly to the implementing 318 // klass but we need both a dependence on the single interface 319 // and on the method we bind to. Additionally since all we know 320 // about the receiver type is that it's supposed to implement the 321 // interface we have to insert a check that it's the class we 322 // expect. Interface types are not checked by the verifier so 323 // they are roughly equivalent to Object. 324 // The number of implementors for declared_interface is less or 325 // equal to the number of implementors for target->holder() so 326 // if number of implementors of target->holder() == 1 then 327 // number of implementors for decl_interface is 0 or 1. If 328 // it's 0 then no class implements decl_interface and there's 329 // no point in inlining. 330 if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) { 331 ciInstanceKlass* declared_interface = 332 caller->get_declared_method_holder_at_bci(bci)->as_instance_klass(); 333 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 334 335 if (singleton != nullptr) { 336 assert(singleton != declared_interface, "not a unique implementor"); 337 338 ciMethod* cha_monomorphic_target = 339 callee->find_monomorphic_target(caller->holder(), declared_interface, singleton); 340 341 if (cha_monomorphic_target != nullptr && 342 cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless 343 ciKlass* holder = cha_monomorphic_target->holder(); 344 345 // Try to inline the method found by CHA. Inlined method is guarded by the type check. 346 CallGenerator* hit_cg = call_generator(cha_monomorphic_target, 347 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 348 349 // Deoptimize on type check fail. The interpreter will throw ICCE for us. 350 CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee, 351 Deoptimization::Reason_class_check, Deoptimization::Action_none); 352 353 ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts 354 CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg); 355 if (hit_cg != nullptr && cg != nullptr) { 356 dependencies()->assert_unique_implementor(declared_interface, singleton); 357 dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee); 358 return cg; 359 } 360 } 361 } 362 } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface 363 364 // Nothing claimed the intrinsic, we go with straight-forward inlining 365 // for already discovered intrinsic. 366 if (allow_intrinsics && cg_intrinsic != nullptr) { 367 assert(cg_intrinsic->does_virtual_dispatch(), "sanity"); 368 return cg_intrinsic; 369 } 370 } // allow_inline 371 372 // There was no special inlining tactic, or it bailed out. 373 // Use a more generic tactic, like a simple call. 374 if (call_does_dispatch) { 375 const char* msg = "virtual call"; 376 if (C->print_inlining()) { 377 print_inlining(callee, jvms->depth() - 1, jvms->bci(), InliningResult::FAILURE, msg); 378 } 379 C->log_inline_failure(msg); 380 if (IncrementalInlineVirtual && allow_inline) { 381 return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later 382 } else { 383 return CallGenerator::for_virtual_call(callee, vtable_index); 384 } 385 } else { 386 // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call. 387 CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms)); 388 // For optimized virtual calls assert at runtime that receiver object 389 // is a subtype of the method holder. 390 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 391 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 392 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 393 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 394 } 395 return cg; 396 } 397 } 398 399 // Return true for methods that shouldn't be inlined early so that 400 // they are easier to analyze and optimize as intrinsics. 401 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) { 402 if (has_stringbuilder()) { 403 404 if ((call_method->holder() == C->env()->StringBuilder_klass() || 405 call_method->holder() == C->env()->StringBuffer_klass()) && 406 (jvms->method()->holder() == C->env()->StringBuilder_klass() || 407 jvms->method()->holder() == C->env()->StringBuffer_klass())) { 408 // Delay SB calls only when called from non-SB code 409 return false; 410 } 411 412 switch (call_method->intrinsic_id()) { 413 case vmIntrinsics::_StringBuilder_void: 414 case vmIntrinsics::_StringBuilder_int: 415 case vmIntrinsics::_StringBuilder_String: 416 case vmIntrinsics::_StringBuilder_append_char: 417 case vmIntrinsics::_StringBuilder_append_int: 418 case vmIntrinsics::_StringBuilder_append_String: 419 case vmIntrinsics::_StringBuilder_toString: 420 case vmIntrinsics::_StringBuffer_void: 421 case vmIntrinsics::_StringBuffer_int: 422 case vmIntrinsics::_StringBuffer_String: 423 case vmIntrinsics::_StringBuffer_append_char: 424 case vmIntrinsics::_StringBuffer_append_int: 425 case vmIntrinsics::_StringBuffer_append_String: 426 case vmIntrinsics::_StringBuffer_toString: 427 case vmIntrinsics::_Integer_toString: 428 return true; 429 430 case vmIntrinsics::_String_String: 431 { 432 Node* receiver = jvms->map()->in(jvms->argoff() + 1); 433 if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { 434 CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); 435 ciMethod* m = csj->method(); 436 if (m != nullptr && 437 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || 438 m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) 439 // Delay String.<init>(new SB()) 440 return true; 441 } 442 return false; 443 } 444 445 default: 446 return false; 447 } 448 } 449 return false; 450 } 451 452 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) { 453 if (eliminate_boxing() && call_method->is_boxing_method()) { 454 set_has_boxed_value(true); 455 return aggressive_unboxing(); 456 } 457 return false; 458 } 459 460 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) { 461 return EnableVectorSupport && call_method->is_vector_method(); 462 } 463 464 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) { 465 return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox); 466 } 467 468 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link 469 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { 470 // Additional inputs to consider... 471 // bc = bc() 472 // caller = method() 473 // iter().get_method_holder_index() 474 assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); 475 // Interface classes can be loaded & linked and never get around to 476 // being initialized. Uncommon-trap for not-initialized static or 477 // v-calls. Let interface calls happen. 478 ciInstanceKlass* holder_klass = dest_method->holder(); 479 if (!holder_klass->is_being_initialized() && 480 !holder_klass->is_initialized() && 481 !holder_klass->is_interface()) { 482 uncommon_trap(Deoptimization::Reason_uninitialized, 483 Deoptimization::Action_reinterpret, 484 holder_klass); 485 return true; 486 } 487 488 assert(dest_method->is_loaded(), "dest_method: typeflow responsibility"); 489 return false; 490 } 491 492 #ifdef ASSERT 493 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) { 494 ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci()); 495 ciMethod* resolved_method = cg->method(); 496 if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) { 497 tty->print_cr("JVMS:"); 498 jvms->dump(); 499 tty->print_cr("Bytecode info:"); 500 jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr(); 501 tty->print_cr("Resolved method:"); 502 cg->method()->print(); tty->cr(); 503 return false; 504 } 505 return true; 506 } 507 #endif // ASSERT 508 509 //------------------------------do_call---------------------------------------- 510 // Handle your basic call. Inline if we can & want to, else just setup call. 511 void Parse::do_call() { 512 // It's likely we are going to add debug info soon. 513 // Also, if we inline a guy who eventually needs debug info for this JVMS, 514 // our contribution to it is cleaned up right here. 515 kill_dead_locals(); 516 517 C->print_inlining_assert_ready(); 518 519 // Set frequently used booleans 520 const bool is_virtual = bc() == Bytecodes::_invokevirtual; 521 const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; 522 const bool has_receiver = Bytecodes::has_receiver(bc()); 523 524 // Find target being called 525 bool will_link; 526 ciSignature* declared_signature = nullptr; 527 ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode 528 ciInstanceKlass* holder_klass = orig_callee->holder(); 529 ciKlass* holder = iter().get_declared_method_holder(); 530 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 531 assert(declared_signature != nullptr, "cannot be null"); 532 JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);) 533 534 // Bump max node limit for JSR292 users 535 if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) { 536 C->set_max_node_limit(3*MaxNodeLimit); 537 } 538 539 // uncommon-trap when callee is unloaded, uninitialized or will not link 540 // bailout when too many arguments for register representation 541 if (!will_link || can_not_compile_call_site(orig_callee, klass)) { 542 if (PrintOpto && (Verbose || WizardMode)) { 543 method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); 544 orig_callee->print_name(); tty->cr(); 545 } 546 return; 547 } 548 assert(holder_klass->is_loaded(), ""); 549 //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw) 550 // Note: this takes into account invokeinterface of methods declared in java/lang/Object, 551 // which should be invokevirtuals but according to the VM spec may be invokeinterfaces 552 assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc"); 553 // Note: In the absence of miranda methods, an abstract class K can perform 554 // an invokevirtual directly on an interface method I.m if K implements I. 555 556 // orig_callee is the resolved callee which's signature includes the 557 // appendix argument. 558 const int nargs = orig_callee->arg_size(); 559 const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id()); 560 561 // Push appendix argument (MethodType, CallSite, etc.), if one. 562 if (iter().has_appendix()) { 563 ciObject* appendix_arg = iter().get_appendix(); 564 const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true); 565 Node* appendix_arg_node = _gvn.makecon(appendix_arg_type); 566 push(appendix_arg_node); 567 } 568 569 // --------------------- 570 // Does Class Hierarchy Analysis reveal only a single target of a v-call? 571 // Then we may inline or make a static call, but become dependent on there being only 1 target. 572 // Does the call-site type profile reveal only one receiver? 573 // Then we may introduce a run-time check and inline on the path where it succeeds. 574 // The other path may uncommon_trap, check for another receiver, or do a v-call. 575 576 // Try to get the most accurate receiver type 577 ciMethod* callee = orig_callee; 578 int vtable_index = Method::invalid_vtable_index; 579 bool call_does_dispatch = false; 580 581 // Speculative type of the receiver if any 582 ciKlass* speculative_receiver_type = nullptr; 583 if (is_virtual_or_interface) { 584 Node* receiver_node = stack(sp() - nargs); 585 const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); 586 // call_does_dispatch and vtable_index are out-parameters. They might be changed. 587 // For arrays, klass below is Object. When vtable calls are used, 588 // resolving the call with Object would allow an illegal call to 589 // finalize() on an array. We use holder instead: illegal calls to 590 // finalize() won't be compiled as vtable calls (IC call 591 // resolution will catch the illegal call) and the few legal calls 592 // on array types won't be either. 593 callee = C->optimize_virtual_call(method(), klass, holder, orig_callee, 594 receiver_type, is_virtual, 595 call_does_dispatch, vtable_index); // out-parameters 596 speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr; 597 } 598 599 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 600 ciKlass* receiver_constraint = nullptr; 601 if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_constructor()) { 602 ciInstanceKlass* calling_klass = method()->holder(); 603 ciInstanceKlass* sender_klass = calling_klass; 604 if (sender_klass->is_interface()) { 605 receiver_constraint = sender_klass; 606 } 607 } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) { 608 assert(holder->is_interface(), "How did we get a non-interface method here!"); 609 receiver_constraint = holder; 610 } 611 612 if (receiver_constraint != nullptr) { 613 Node* receiver_node = stack(sp() - nargs); 614 Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces)); 615 Node* bad_type_ctrl = nullptr; 616 Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl); 617 if (bad_type_ctrl != nullptr) { 618 PreserveJVMState pjvms(this); 619 set_control(bad_type_ctrl); 620 uncommon_trap(Deoptimization::Reason_class_check, 621 Deoptimization::Action_none); 622 } 623 if (stopped()) { 624 return; // MUST uncommon-trap? 625 } 626 set_stack(sp() - nargs, casted_receiver); 627 } 628 629 // Note: It's OK to try to inline a virtual call. 630 // The call generator will not attempt to inline a polymorphic call 631 // unless it knows how to optimize the receiver dispatch. 632 bool try_inline = (C->do_inlining() || InlineAccessors); 633 634 // --------------------- 635 dec_sp(nargs); // Temporarily pop args for JVM state of call 636 JVMState* jvms = sync_jvms(); 637 638 // --------------------- 639 // Decide call tactic. 640 // This call checks with CHA, the interpreter profile, intrinsics table, etc. 641 // It decides whether inlining is desirable or not. 642 CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type); 643 644 // NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead. 645 orig_callee = callee = nullptr; 646 647 // --------------------- 648 // Round double arguments before call 649 round_double_arguments(cg->method()); 650 651 // Feed profiling data for arguments to the type system so it can 652 // propagate it as speculative types 653 record_profiled_arguments_for_speculation(cg->method(), bc()); 654 655 #ifndef PRODUCT 656 // bump global counters for calls 657 count_compiled_calls(/*at_method_entry*/ false, cg->is_inline()); 658 659 // Record first part of parsing work for this call 660 parse_histogram()->record_change(); 661 #endif // not PRODUCT 662 663 assert(jvms == this->jvms(), "still operating on the right JVMS"); 664 assert(jvms_in_sync(), "jvms must carry full info into CG"); 665 666 // save across call, for a subsequent cast_not_null. 667 Node* receiver = has_receiver ? argument(0) : nullptr; 668 669 // The extra CheckCastPPs for speculative types mess with PhaseStringOpts 670 if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) { 671 // Feed profiling data for a single receiver to the type system so 672 // it can propagate it as a speculative type 673 receiver = record_profiled_receiver_for_speculation(receiver); 674 } 675 676 JVMState* new_jvms = cg->generate(jvms); 677 if (new_jvms == nullptr) { 678 // When inlining attempt fails (e.g., too many arguments), 679 // it may contaminate the current compile state, making it 680 // impossible to pull back and try again. Once we call 681 // cg->generate(), we are committed. If it fails, the whole 682 // compilation task is compromised. 683 if (failing()) return; 684 685 // This can happen if a library intrinsic is available, but refuses 686 // the call site, perhaps because it did not match a pattern the 687 // intrinsic was expecting to optimize. Should always be possible to 688 // get a normal java call that may inline in that case 689 cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false); 690 new_jvms = cg->generate(jvms); 691 if (new_jvms == nullptr) { 692 guarantee(failing(), "call failed to generate: calls should work"); 693 return; 694 } 695 } 696 697 if (cg->is_inline()) { 698 // Accumulate has_loops estimate 699 C->env()->notice_inlined_method(cg->method()); 700 } 701 702 // Reset parser state from [new_]jvms, which now carries results of the call. 703 // Return value (if any) is already pushed on the stack by the cg. 704 add_exception_states_from(new_jvms); 705 if (new_jvms->map()->control() == top()) { 706 stop_and_kill_map(); 707 } else { 708 assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); 709 set_jvms(new_jvms); 710 } 711 712 assert(check_call_consistency(jvms, cg), "inconsistent info"); 713 714 if (!stopped()) { 715 // This was some sort of virtual call, which did a null check for us. 716 // Now we can assert receiver-not-null, on the normal return path. 717 if (receiver != nullptr && cg->is_virtual()) { 718 Node* cast = cast_not_null(receiver); 719 // %%% assert(receiver == cast, "should already have cast the receiver"); 720 } 721 722 ciType* rtype = cg->method()->return_type(); 723 ciType* ctype = declared_signature->return_type(); 724 725 if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) { 726 // Be careful here with return types. 727 if (ctype != rtype) { 728 BasicType rt = rtype->basic_type(); 729 BasicType ct = ctype->basic_type(); 730 if (ct == T_VOID) { 731 // It's OK for a method to return a value that is discarded. 732 // The discarding does not require any special action from the caller. 733 // The Java code knows this, at VerifyType.isNullConversion. 734 pop_node(rt); // whatever it was, pop it 735 } else if (rt == T_INT || is_subword_type(rt)) { 736 // Nothing. These cases are handled in lambda form bytecode. 737 assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct)); 738 } else if (is_reference_type(rt)) { 739 assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct)); 740 if (ctype->is_loaded()) { 741 const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass()); 742 const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass()); 743 if (declared_signature->returns_null_free_inline_type()) { 744 sig_type = sig_type->join_speculative(TypePtr::NOTNULL); 745 } 746 if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) { 747 Node* retnode = pop(); 748 Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type)); 749 push(cast_obj); 750 } 751 } 752 } else { 753 assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct)); 754 // push a zero; it's better than getting an oop/int mismatch 755 pop_node(rt); 756 Node* retnode = zerocon(ct); 757 push_node(ct, retnode); 758 } 759 // Now that the value is well-behaved, continue with the call-site type. 760 rtype = ctype; 761 } 762 } else { 763 // Symbolic resolution enforces the types to be the same. 764 // NOTE: We must relax the assert for unloaded types because two 765 // different ciType instances of the same unloaded class type 766 // can appear to be "loaded" by different loaders (depending on 767 // the accessing class). 768 assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype, 769 "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name()); 770 } 771 772 // If the return type of the method is not loaded, assert that the 773 // value we got is a null. Otherwise, we need to recompile. 774 if (!rtype->is_loaded()) { 775 if (PrintOpto && (Verbose || WizardMode)) { 776 method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); 777 cg->method()->print_name(); tty->cr(); 778 } 779 if (C->log() != nullptr) { 780 C->log()->elem("assert_null reason='return' klass='%d'", 781 C->log()->identify(rtype)); 782 } 783 // If there is going to be a trap, put it at the next bytecode: 784 set_bci(iter().next_bci()); 785 null_assert(peek()); 786 set_bci(iter().cur_bci()); // put it back 787 } 788 BasicType ct = ctype->basic_type(); 789 if (is_reference_type(ct)) { 790 record_profiled_return_for_speculation(); 791 } 792 if (rtype->is_inlinetype() && !peek()->is_InlineType()) { 793 Node* retnode = pop(); 794 retnode = InlineTypeNode::make_from_oop(this, retnode, rtype->as_inline_klass(), !gvn().type(retnode)->maybe_null()); 795 push_node(T_OBJECT, retnode); 796 } 797 } 798 799 // Restart record of parsing work after possible inlining of call 800 #ifndef PRODUCT 801 parse_histogram()->set_initial_state(bc()); 802 #endif 803 } 804 805 //---------------------------catch_call_exceptions----------------------------- 806 // Put a Catch and CatchProj nodes behind a just-created call. 807 // Send their caught exceptions to the proper handler. 808 // This may be used after a call to the rethrow VM stub, 809 // when it is needed to process unloaded exception classes. 810 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { 811 // Exceptions are delivered through this channel: 812 Node* i_o = this->i_o(); 813 814 // Add a CatchNode. 815 Arena tmp_mem{mtCompiler}; 816 GrowableArray<int> bcis(&tmp_mem, 8, 0, -1); 817 GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr); 818 GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1); 819 820 bool default_handler = false; 821 for (; !handlers.is_done(); handlers.next()) { 822 ciExceptionHandler* h = handlers.handler(); 823 int h_bci = h->handler_bci(); 824 ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); 825 // Do not introduce unloaded exception types into the graph: 826 if (!h_klass->is_loaded()) { 827 if (saw_unloaded.contains(h_bci)) { 828 /* We've already seen an unloaded exception with h_bci, 829 so don't duplicate. Duplication will cause the CatchNode to be 830 unnecessarily large. See 4713716. */ 831 continue; 832 } else { 833 saw_unloaded.append(h_bci); 834 } 835 } 836 const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); 837 // (We use make_from_klass because it respects UseUniqueSubclasses.) 838 h_extype = h_extype->join(TypeInstPtr::NOTNULL); 839 assert(!h_extype->empty(), "sanity"); 840 // Note: It's OK if the BCIs repeat themselves. 841 bcis.append(h_bci); 842 extypes.append(h_extype); 843 if (h_bci == -1) { 844 default_handler = true; 845 } 846 } 847 848 if (!default_handler) { 849 bcis.append(-1); 850 const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 851 extype = extype->join(TypeInstPtr::NOTNULL); 852 extypes.append(extype); 853 } 854 855 int len = bcis.length(); 856 CatchNode *cn = new CatchNode(control(), i_o, len+1); 857 Node *catch_ = _gvn.transform(cn); 858 859 // now branch with the exception state to each of the (potential) 860 // handlers 861 for(int i=0; i < len; i++) { 862 // Setup JVM state to enter the handler. 863 PreserveJVMState pjvms(this); 864 // Locals are just copied from before the call. 865 // Get control from the CatchNode. 866 int handler_bci = bcis.at(i); 867 Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci)); 868 // This handler cannot happen? 869 if (ctrl == top()) continue; 870 set_control(ctrl); 871 872 // Create exception oop 873 const TypeInstPtr* extype = extypes.at(i)->is_instptr(); 874 Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o)); 875 876 // Handle unloaded exception classes. 877 if (saw_unloaded.contains(handler_bci)) { 878 // An unloaded exception type is coming here. Do an uncommon trap. 879 #ifndef PRODUCT 880 // We do not expect the same handler bci to take both cold unloaded 881 // and hot loaded exceptions. But, watch for it. 882 if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) { 883 tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci()); 884 method()->print_name(); tty->cr(); 885 } else if (PrintOpto && (Verbose || WizardMode)) { 886 tty->print("Bailing out on unloaded exception type "); 887 extype->instance_klass()->print_name(); 888 tty->print(" at bci:%d in ", bci()); 889 method()->print_name(); tty->cr(); 890 } 891 #endif 892 // Emit an uncommon trap instead of processing the block. 893 set_bci(handler_bci); 894 push_ex_oop(ex_oop); 895 uncommon_trap(Deoptimization::Reason_unloaded, 896 Deoptimization::Action_reinterpret, 897 extype->instance_klass(), "!loaded exception"); 898 set_bci(iter().cur_bci()); // put it back 899 continue; 900 } 901 902 // go to the exception handler 903 if (handler_bci < 0) { // merge with corresponding rethrow node 904 throw_to_exit(make_exception_state(ex_oop)); 905 } else { // Else jump to corresponding handle 906 push_ex_oop(ex_oop); // Clear stack and push just the oop. 907 merge_exception(handler_bci); 908 } 909 } 910 911 // The first CatchProj is for the normal return. 912 // (Note: If this is a call to rethrow_Java, this node goes dead.) 913 set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); 914 } 915 916 917 //----------------------------catch_inline_exceptions-------------------------- 918 // Handle all exceptions thrown by an inlined method or individual bytecode. 919 // Common case 1: we have no handler, so all exceptions merge right into 920 // the rethrow case. 921 // Case 2: we have some handlers, with loaded exception klasses that have 922 // no subklasses. We do a Deutsch-Schiffman style type-check on the incoming 923 // exception oop and branch to the handler directly. 924 // Case 3: We have some handlers with subklasses or are not loaded at 925 // compile-time. We have to call the runtime to resolve the exception. 926 // So we insert a RethrowCall and all the logic that goes with it. 927 void Parse::catch_inline_exceptions(SafePointNode* ex_map) { 928 // Caller is responsible for saving away the map for normal control flow! 929 assert(stopped(), "call set_map(nullptr) first"); 930 assert(method()->has_exception_handlers(), "don't come here w/o work to do"); 931 932 Node* ex_node = saved_ex_oop(ex_map); 933 if (ex_node == top()) { 934 // No action needed. 935 return; 936 } 937 const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); 938 NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr")); 939 if (ex_type == nullptr) 940 ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 941 942 // determine potential exception handlers 943 ciExceptionHandlerStream handlers(method(), bci(), 944 ex_type->instance_klass(), 945 ex_type->klass_is_exact()); 946 947 // Start executing from the given throw state. (Keep its stack, for now.) 948 // Get the exception oop as known at compile time. 949 ex_node = use_exception_state(ex_map); 950 951 // Get the exception oop klass from its header 952 Node* ex_klass_node = nullptr; 953 if (has_ex_handler() && !ex_type->klass_is_exact()) { 954 Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); 955 ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 956 957 // Compute the exception klass a little more cleverly. 958 // Obvious solution is to simple do a LoadKlass from the 'ex_node'. 959 // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for 960 // each arm of the Phi. If I know something clever about the exceptions 961 // I'm loading the class from, I can replace the LoadKlass with the 962 // klass constant for the exception oop. 963 if (ex_node->is_Phi()) { 964 ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT); 965 for (uint i = 1; i < ex_node->req(); i++) { 966 Node* ex_in = ex_node->in(i); 967 if (ex_in == top() || ex_in == nullptr) { 968 // This path was not taken. 969 ex_klass_node->init_req(i, top()); 970 continue; 971 } 972 Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes()); 973 Node* k = _gvn.transform( LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 974 ex_klass_node->init_req( i, k ); 975 } 976 ex_klass_node = _gvn.transform(ex_klass_node); 977 } 978 } 979 980 // Scan the exception table for applicable handlers. 981 // If none, we can call rethrow() and be done! 982 // If precise (loaded with no subklasses), insert a D.S. style 983 // pointer compare to the correct handler and loop back. 984 // If imprecise, switch to the Rethrow VM-call style handling. 985 986 int remaining = handlers.count_remaining(); 987 988 // iterate through all entries sequentially 989 for (;!handlers.is_done(); handlers.next()) { 990 ciExceptionHandler* handler = handlers.handler(); 991 992 if (handler->is_rethrow()) { 993 // If we fell off the end of the table without finding an imprecise 994 // exception klass (and without finding a generic handler) then we 995 // know this exception is not handled in this method. We just rethrow 996 // the exception into the caller. 997 throw_to_exit(make_exception_state(ex_node)); 998 return; 999 } 1000 1001 // exception handler bci range covers throw_bci => investigate further 1002 int handler_bci = handler->handler_bci(); 1003 1004 if (remaining == 1) { 1005 push_ex_oop(ex_node); // Push exception oop for handler 1006 if (PrintOpto && WizardMode) { 1007 tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); 1008 } 1009 // If this is a backwards branch in the bytecodes, add safepoint 1010 maybe_add_safepoint(handler_bci); 1011 merge_exception(handler_bci); // jump to handler 1012 return; // No more handling to be done here! 1013 } 1014 1015 // Get the handler's klass 1016 ciInstanceKlass* klass = handler->catch_klass(); 1017 1018 if (!klass->is_loaded()) { // klass is not loaded? 1019 // fall through into catch_call_exceptions which will emit a 1020 // handler with an uncommon trap. 1021 break; 1022 } 1023 1024 if (klass->is_interface()) // should not happen, but... 1025 break; // bail out 1026 1027 // Check the type of the exception against the catch type 1028 const TypeKlassPtr *tk = TypeKlassPtr::make(klass); 1029 Node* con = _gvn.makecon(tk); 1030 Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con); 1031 if (!stopped()) { 1032 PreserveJVMState pjvms(this); 1033 const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr(); 1034 assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness"); 1035 Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst)); 1036 push_ex_oop(ex_oop); // Push exception oop for handler 1037 if (PrintOpto && WizardMode) { 1038 tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); 1039 klass->print_name(); 1040 tty->cr(); 1041 } 1042 // If this is a backwards branch in the bytecodes, add safepoint 1043 maybe_add_safepoint(handler_bci); 1044 merge_exception(handler_bci); 1045 } 1046 set_control(not_subtype_ctrl); 1047 1048 // Come here if exception does not match handler. 1049 // Carry on with more handler checks. 1050 --remaining; 1051 } 1052 1053 assert(!stopped(), "you should return if you finish the chain"); 1054 1055 // Oops, need to call into the VM to resolve the klasses at runtime. 1056 // Note: This call must not deoptimize, since it is not a real at this bci! 1057 kill_dead_locals(); 1058 1059 make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, 1060 OptoRuntime::rethrow_Type(), 1061 OptoRuntime::rethrow_stub(), 1062 nullptr, nullptr, 1063 ex_node); 1064 1065 // Rethrow is a pure call, no side effects, only a result. 1066 // The result cannot be allocated, so we use I_O 1067 1068 // Catch exceptions from the rethrow 1069 catch_call_exceptions(handlers); 1070 } 1071 1072 1073 // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) 1074 1075 1076 #ifndef PRODUCT 1077 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { 1078 if( CountCompiledCalls ) { 1079 if( at_method_entry ) { 1080 // bump invocation counter if top method (for statistics) 1081 if (CountCompiledCalls && depth() == 1) { 1082 const TypePtr* addr_type = TypeMetadataPtr::make(method()); 1083 Node* adr1 = makecon(addr_type); 1084 Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset())); 1085 increment_counter(adr2); 1086 } 1087 } else if (is_inline) { 1088 switch (bc()) { 1089 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; 1090 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; 1091 case Bytecodes::_invokestatic: 1092 case Bytecodes::_invokedynamic: 1093 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; 1094 default: fatal("unexpected call bytecode"); 1095 } 1096 } else { 1097 switch (bc()) { 1098 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; 1099 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; 1100 case Bytecodes::_invokestatic: 1101 case Bytecodes::_invokedynamic: 1102 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; 1103 default: fatal("unexpected call bytecode"); 1104 } 1105 } 1106 } 1107 } 1108 #endif //PRODUCT 1109 1110 1111 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1112 ciKlass* holder, ciMethod* callee, 1113 const TypeOopPtr* receiver_type, bool is_virtual, 1114 bool& call_does_dispatch, int& vtable_index, 1115 bool check_access) { 1116 // Set default values for out-parameters. 1117 call_does_dispatch = true; 1118 vtable_index = Method::invalid_vtable_index; 1119 1120 // Choose call strategy. 1121 ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee, 1122 receiver_type, check_access); 1123 1124 // Have the call been sufficiently improved such that it is no longer a virtual? 1125 if (optimized_virtual_method != nullptr) { 1126 callee = optimized_virtual_method; 1127 call_does_dispatch = false; 1128 } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) { 1129 // We can make a vtable call at this site 1130 vtable_index = callee->resolve_vtable_index(caller->holder(), holder); 1131 } 1132 return callee; 1133 } 1134 1135 // Identify possible target method and inlining style 1136 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1137 ciMethod* callee, const TypeOopPtr* receiver_type, 1138 bool check_access) { 1139 // only use for virtual or interface calls 1140 1141 // If it is obviously final, do not bother to call find_monomorphic_target, 1142 // because the class hierarchy checks are not needed, and may fail due to 1143 // incompletely loaded classes. Since we do our own class loading checks 1144 // in this module, we may confidently bind to any method. 1145 if (callee->can_be_statically_bound()) { 1146 return callee; 1147 } 1148 1149 if (receiver_type == nullptr) { 1150 return nullptr; // no receiver type info 1151 } 1152 1153 // Attempt to improve the receiver 1154 bool actual_receiver_is_exact = false; 1155 ciInstanceKlass* actual_receiver = klass; 1156 // Array methods are all inherited from Object, and are monomorphic. 1157 // finalize() call on array is not allowed. 1158 if (receiver_type->isa_aryptr() && 1159 callee->holder() == env()->Object_klass() && 1160 callee->name() != ciSymbols::finalize_method_name()) { 1161 return callee; 1162 } 1163 1164 // All other interesting cases are instance klasses. 1165 if (!receiver_type->isa_instptr()) { 1166 return nullptr; 1167 } 1168 1169 ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass(); 1170 if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() && 1171 (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) { 1172 // ikl is a same or better type than the original actual_receiver, 1173 // e.g. static receiver from bytecodes. 1174 actual_receiver = receiver_klass; 1175 // Is the actual_receiver exact? 1176 actual_receiver_is_exact = receiver_type->klass_is_exact(); 1177 } 1178 1179 ciInstanceKlass* calling_klass = caller->holder(); 1180 ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access); 1181 1182 if (cha_monomorphic_target != nullptr) { 1183 // Hardwiring a virtual. 1184 assert(!callee->can_be_statically_bound(), "should have been handled earlier"); 1185 assert(!cha_monomorphic_target->is_abstract(), ""); 1186 if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) { 1187 // If we inlined because CHA revealed only a single target method, 1188 // then we are dependent on that target method not getting overridden 1189 // by dynamic class loading. Be sure to test the "static" receiver 1190 // dest_method here, as opposed to the actual receiver, which may 1191 // falsely lead us to believe that the receiver is final or private. 1192 dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee); 1193 } 1194 return cha_monomorphic_target; 1195 } 1196 1197 // If the type is exact, we can still bind the method w/o a vcall. 1198 // (This case comes after CHA so we can see how much extra work it does.) 1199 if (actual_receiver_is_exact) { 1200 // In case of evolution, there is a dependence on every inlined method, since each 1201 // such method can be changed when its class is redefined. 1202 ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver); 1203 if (exact_method != nullptr) { 1204 return exact_method; 1205 } 1206 } 1207 1208 return nullptr; 1209 }