1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/macro.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  49   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  50   // split_unique_types and that will create additional nodes that need to be
  51   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  52   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  53   // the array will be reallocated.
  54   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  55   _in_worklist(C->comp_arena()),
  56   _next_pidx(0),
  57   _collecting(true),
  58   _verify(false),
  59   _compile(C),
  60   _igvn(igvn),
  61   _invocation(invocation),
  62   _build_iterations(0),
  63   _build_time(0.),
  64   _node_map(C->comp_arena()) {
  65   // Add unknown java object.
  66   add_java_object(C->top(), PointsToNode::GlobalEscape);
  67   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  68   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  69   // Add ConP and ConN null oop nodes
  70   Node* oop_null = igvn->zerocon(T_OBJECT);
  71   assert(oop_null->_idx < nodes_size(), "should be created already");
  72   add_java_object(oop_null, PointsToNode::NoEscape);
  73   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  74   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  75   if (UseCompressedOops) {
  76     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  77     assert(noop_null->_idx < nodes_size(), "should be created already");
  78     map_ideal_node(noop_null, null_obj);
  79   }
  80 }
  81 
  82 bool ConnectionGraph::has_candidates(Compile *C) {
  83   // EA brings benefits only when the code has allocations and/or locks which
  84   // are represented by ideal Macro nodes.
  85   int cnt = C->macro_count();
  86   for (int i = 0; i < cnt; i++) {
  87     Node *n = C->macro_node(i);
  88     if (n->is_Allocate()) {
  89       return true;
  90     }
  91     if (n->is_Lock()) {
  92       Node* obj = n->as_Lock()->obj_node()->uncast();
  93       if (!(obj->is_Parm() || obj->is_Con())) {
  94         return true;
  95       }
  96     }
  97     if (n->is_CallStaticJava() &&
  98         n->as_CallStaticJava()->is_boxing_method()) {
  99       return true;
 100     }
 101   }
 102   return false;
 103 }
 104 
 105 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 106   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
 107   ResourceMark rm;
 108 
 109   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 110   // to create space for them in ConnectionGraph::_nodes[].
 111   Node* oop_null = igvn->zerocon(T_OBJECT);
 112   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 113   int invocation = 0;
 114   if (C->congraph() != nullptr) {
 115     invocation = C->congraph()->_invocation + 1;
 116   }
 117   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 118   // Perform escape analysis
 119   if (congraph->compute_escape()) {
 120     // There are non escaping objects.
 121     C->set_congraph(congraph);
 122   }
 123   // Cleanup.
 124   if (oop_null->outcnt() == 0) {
 125     igvn->hash_delete(oop_null);
 126   }
 127   if (noop_null->outcnt() == 0) {
 128     igvn->hash_delete(noop_null);
 129   }
 130 }
 131 
 132 bool ConnectionGraph::compute_escape() {
 133   Compile* C = _compile;
 134   PhaseGVN* igvn = _igvn;
 135 
 136   // Worklists used by EA.
 137   Unique_Node_List delayed_worklist;
 138   Unique_Node_List reducible_merges;
 139   GrowableArray<Node*> alloc_worklist;
 140   GrowableArray<Node*> ptr_cmp_worklist;
 141   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 142   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 143   GrowableArray<PointsToNode*>   ptnodes_worklist;
 144   GrowableArray<JavaObjectNode*> java_objects_worklist;
 145   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 146   GrowableArray<FieldNode*>      oop_fields_worklist;
 147   GrowableArray<SafePointNode*>  sfn_worklist;
 148   GrowableArray<MergeMemNode*>   mergemem_worklist;
 149   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 150 
 151   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 152 
 153   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 154   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 155   // Initialize worklist
 156   if (C->root() != nullptr) {
 157     ideal_nodes.push(C->root());
 158   }
 159   // Processed ideal nodes are unique on ideal_nodes list
 160   // but several ideal nodes are mapped to the phantom_obj.
 161   // To avoid duplicated entries on the following worklists
 162   // add the phantom_obj only once to them.
 163   ptnodes_worklist.append(phantom_obj);
 164   java_objects_worklist.append(phantom_obj);
 165   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 166     Node* n = ideal_nodes.at(next);
 167     // Create PointsTo nodes and add them to Connection Graph. Called
 168     // only once per ideal node since ideal_nodes is Unique_Node list.
 169     add_node_to_connection_graph(n, &delayed_worklist);
 170     PointsToNode* ptn = ptnode_adr(n->_idx);
 171     if (ptn != nullptr && ptn != phantom_obj) {
 172       ptnodes_worklist.append(ptn);
 173       if (ptn->is_JavaObject()) {
 174         java_objects_worklist.append(ptn->as_JavaObject());
 175         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 176             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 177           // Only allocations and java static calls results are interesting.
 178           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 179         }
 180       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 181         oop_fields_worklist.append(ptn->as_Field());
 182       }
 183     }
 184     // Collect some interesting nodes for further use.
 185     switch (n->Opcode()) {
 186       case Op_MergeMem:
 187         // Collect all MergeMem nodes to add memory slices for
 188         // scalar replaceable objects in split_unique_types().
 189         mergemem_worklist.append(n->as_MergeMem());
 190         break;
 191       case Op_CmpP:
 192       case Op_CmpN:
 193         // Collect compare pointers nodes.
 194         if (OptimizePtrCompare) {
 195           ptr_cmp_worklist.append(n);
 196         }
 197         break;
 198       case Op_MemBarStoreStore:
 199         // Collect all MemBarStoreStore nodes so that depending on the
 200         // escape status of the associated Allocate node some of them
 201         // may be eliminated.
 202         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 203           storestore_worklist.append(n->as_MemBarStoreStore());
 204         }
 205         break;
 206       case Op_MemBarRelease:
 207         if (n->req() > MemBarNode::Precedent) {
 208           record_for_optimizer(n);
 209         }
 210         break;
 211 #ifdef ASSERT
 212       case Op_AddP:
 213         // Collect address nodes for graph verification.
 214         addp_worklist.append(n);
 215         break;
 216 #endif
 217       case Op_ArrayCopy:
 218         // Keep a list of ArrayCopy nodes so if one of its input is non
 219         // escaping, we can record a unique type
 220         arraycopy_worklist.append(n->as_ArrayCopy());
 221         break;
 222       default:
 223         // not interested now, ignore...
 224         break;
 225     }
 226     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 227       Node* m = n->fast_out(i);   // Get user
 228       ideal_nodes.push(m);
 229     }
 230     if (n->is_SafePoint()) {
 231       sfn_worklist.append(n->as_SafePoint());
 232     }
 233   }
 234 
 235 #ifndef PRODUCT
 236   if (_compile->directive()->TraceEscapeAnalysisOption) {
 237     tty->print("+++++ Initial worklist for ");
 238     _compile->method()->print_name();
 239     tty->print_cr(" (ea_inv=%d)", _invocation);
 240     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 241       PointsToNode* ptn = ptnodes_worklist.at(i);
 242       ptn->dump();
 243     }
 244     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 245   }
 246 #endif
 247 
 248   if (non_escaped_allocs_worklist.length() == 0) {
 249     _collecting = false;
 250     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 251     return false; // Nothing to do.
 252   }
 253   // Add final simple edges to graph.
 254   while(delayed_worklist.size() > 0) {
 255     Node* n = delayed_worklist.pop();
 256     add_final_edges(n);
 257   }
 258 
 259 #ifdef ASSERT
 260   if (VerifyConnectionGraph) {
 261     // Verify that no new simple edges could be created and all
 262     // local vars has edges.
 263     _verify = true;
 264     int ptnodes_length = ptnodes_worklist.length();
 265     for (int next = 0; next < ptnodes_length; ++next) {
 266       PointsToNode* ptn = ptnodes_worklist.at(next);
 267       add_final_edges(ptn->ideal_node());
 268       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 269         ptn->dump();
 270         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 271       }
 272     }
 273     _verify = false;
 274   }
 275 #endif
 276   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 277   // processing, calls to CI to resolve symbols (types, fields, methods)
 278   // referenced in bytecode. During symbol resolution VM may throw
 279   // an exception which CI cleans and converts to compilation failure.
 280   if (C->failing()) {
 281     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 282     return false;
 283   }
 284 
 285   // 2. Finish Graph construction by propagating references to all
 286   //    java objects through graph.
 287   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 288                                  java_objects_worklist, oop_fields_worklist)) {
 289     // All objects escaped or hit time or iterations limits.
 290     _collecting = false;
 291     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 292     return false;
 293   }
 294 
 295   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 296   //    scalar replaceable allocations on alloc_worklist for processing
 297   //    in split_unique_types().
 298   GrowableArray<JavaObjectNode*> jobj_worklist;
 299   int non_escaped_length = non_escaped_allocs_worklist.length();
 300   bool found_nsr_alloc = false;
 301   for (int next = 0; next < non_escaped_length; next++) {
 302     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 303     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 304     Node* n = ptn->ideal_node();
 305     if (n->is_Allocate()) {
 306       n->as_Allocate()->_is_non_escaping = noescape;
 307     }
 308     if (noescape && ptn->scalar_replaceable()) {
 309       adjust_scalar_replaceable_state(ptn, reducible_merges);
 310       if (ptn->scalar_replaceable()) {
 311         jobj_worklist.push(ptn);
 312       } else {
 313         found_nsr_alloc = true;
 314       }
 315     }
 316   }
 317 
 318   // Propagate NSR (Not Scalar Replaceable) state.
 319   if (found_nsr_alloc) {
 320     find_scalar_replaceable_allocs(jobj_worklist);
 321   }
 322 
 323   // alloc_worklist will be processed in reverse push order.
 324   // Therefore the reducible Phis will be processed for last and that's what we
 325   // want because by then the scalarizable inputs of the merge will already have
 326   // an unique instance type.
 327   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 328     Node* n = reducible_merges.at(i);
 329     alloc_worklist.append(n);
 330   }
 331 
 332   for (int next = 0; next < jobj_worklist.length(); ++next) {
 333     JavaObjectNode* jobj = jobj_worklist.at(next);
 334     if (jobj->scalar_replaceable()) {
 335       alloc_worklist.append(jobj->ideal_node());
 336     }
 337   }
 338 
 339 #ifdef ASSERT
 340   if (VerifyConnectionGraph) {
 341     // Verify that graph is complete - no new edges could be added or needed.
 342     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 343                             java_objects_worklist, addp_worklist);
 344   }
 345   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 346   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 347          null_obj->edge_count() == 0 &&
 348          !null_obj->arraycopy_src() &&
 349          !null_obj->arraycopy_dst(), "sanity");
 350 #endif
 351 
 352   _collecting = false;
 353 
 354   } // TracePhase t3("connectionGraph")
 355 
 356   // 4. Optimize ideal graph based on EA information.
 357   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 358   if (has_non_escaping_obj) {
 359     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 360   }
 361 
 362 #ifndef PRODUCT
 363   if (PrintEscapeAnalysis) {
 364     dump(ptnodes_worklist); // Dump ConnectionGraph
 365   }
 366 #endif
 367 
 368 #ifdef ASSERT
 369   if (VerifyConnectionGraph) {
 370     int alloc_length = alloc_worklist.length();
 371     for (int next = 0; next < alloc_length; ++next) {
 372       Node* n = alloc_worklist.at(next);
 373       PointsToNode* ptn = ptnode_adr(n->_idx);
 374       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 375     }
 376   }
 377 
 378   if (VerifyReduceAllocationMerges) {
 379     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 380       Node* n = reducible_merges.at(i);
 381       if (!can_reduce_phi(n->as_Phi())) {
 382         TraceReduceAllocationMerges = true;
 383         n->dump(2);
 384         n->dump(-2);
 385         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 386       }
 387     }
 388   }
 389 #endif
 390 
 391   // 5. Separate memory graph for scalar replaceable allcations.
 392   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 393   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 394     assert(C->do_aliasing(), "Aliasing should be enabled");
 395     // Now use the escape information to create unique types for
 396     // scalar replaceable objects.
 397     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 398     if (C->failing()) {
 399       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 400       return false;
 401     }
 402     C->print_method(PHASE_AFTER_EA, 2);
 403 
 404 #ifdef ASSERT
 405   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 406     tty->print("=== No allocations eliminated for ");
 407     C->method()->print_short_name();
 408     if (!EliminateAllocations) {
 409       tty->print(" since EliminateAllocations is off ===");
 410     } else if(!has_scalar_replaceable_candidates) {
 411       tty->print(" since there are no scalar replaceable candidates ===");
 412     }
 413     tty->cr();
 414 #endif
 415   }
 416 
 417   // 6. Reduce allocation merges used as debug information. This is done after
 418   // split_unique_types because the methods used to create SafePointScalarObject
 419   // need to traverse the memory graph to find values for object fields. We also
 420   // set to null the scalarized inputs of reducible Phis so that the Allocate
 421   // that they point can be later scalar replaced.
 422   bool delay = _igvn->delay_transform();
 423   _igvn->set_delay_transform(true);
 424   for (uint i = 0; i < reducible_merges.size(); i++) {
 425     Node* n = reducible_merges.at(i);
 426     if (n->outcnt() > 0) {
 427       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 428         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 429         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 430         return false;
 431       }
 432 
 433       // Now we set the scalar replaceable inputs of ophi to null, which is
 434       // the last piece that would prevent it from being scalar replaceable.
 435       reset_scalar_replaceable_entries(n->as_Phi());
 436     }
 437   }
 438   _igvn->set_delay_transform(delay);
 439 
 440   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 441   // java calls if they pass ArgEscape objects as parameters.
 442   if (has_non_escaping_obj &&
 443       (C->env()->should_retain_local_variables() ||
 444        C->env()->jvmti_can_get_owned_monitor_info() ||
 445        C->env()->jvmti_can_walk_any_space() ||
 446        DeoptimizeObjectsALot)) {
 447     int sfn_length = sfn_worklist.length();
 448     for (int next = 0; next < sfn_length; next++) {
 449       SafePointNode* sfn = sfn_worklist.at(next);
 450       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 451       if (sfn->is_CallJava()) {
 452         CallJavaNode* call = sfn->as_CallJava();
 453         call->set_arg_escape(has_arg_escape(call));
 454       }
 455     }
 456   }
 457 
 458   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 459   return has_non_escaping_obj;
 460 }
 461 
 462 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 463 // if at least one scalar replaceable allocation participates in the merge.
 464 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 465   bool found_sr_allocate = false;
 466 
 467   for (uint i = 1; i < ophi->req(); i++) {
 468     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 469     if (ptn != nullptr && ptn->scalar_replaceable()) {
 470       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 471 
 472       // Don't handle arrays.
 473       if (alloc->Opcode() != Op_Allocate) {
 474         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 475         continue;
 476       }
 477 
 478       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 479         found_sr_allocate = true;
 480       } else {
 481         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 482         ptn->set_scalar_replaceable(false);
 483       }
 484     }
 485   }
 486 
 487   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 488   return found_sr_allocate;
 489 }
 490 
 491 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 492 // I require the 'other' input to be a constant so that I can move the Cmp
 493 // around safely.
 494 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 495   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 496   Node* left = cmp->in(1);
 497   Node* right = cmp->in(2);
 498 
 499   return (left == n || right == n) &&
 500          (left->is_Con() || right->is_Con()) &&
 501          cmp->outcnt() == 1;
 502 }
 503 
 504 // We are going to check if any of the SafePointScalarMerge entries
 505 // in the SafePoint reference the Phi that we are checking.
 506 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 507   JVMState *jvms = sfpt->jvms();
 508 
 509   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 510     Node* sfpt_in = sfpt->in(i);
 511     if (sfpt_in->is_SafePointScalarMerge()) {
 512       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 513       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 514       if (nsr_ptr == n) {
 515         return true;
 516       }
 517     }
 518   }
 519 
 520   return false;
 521 }
 522 
 523 // Check if we are able to untangle the merge. The following patterns are
 524 // supported:
 525 //  - Phi -> SafePoints
 526 //  - Phi -> CmpP/N
 527 //  - Phi -> AddP -> Load
 528 //  - Phi -> CastPP -> SafePoints
 529 //  - Phi -> CastPP -> AddP -> Load
 530 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 531   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 532     Node* use = n->fast_out(i);
 533 
 534     if (use->is_SafePoint()) {
 535       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 536         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 537         return false;
 538       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 539         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 540         return false;
 541       }
 542     } else if (use->is_AddP()) {
 543       Node* addp = use;
 544       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 545         Node* use_use = addp->fast_out(j);
 546         const Type* load_type = _igvn->type(use_use);
 547 
 548         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 549           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 550           return false;
 551         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 552           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 553           return false;
 554         }
 555       }
 556     } else if (nesting > 0) {
 557       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 558       return false;
 559     } else if (use->is_CastPP()) {
 560       const Type* cast_t = _igvn->type(use);
 561       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 562 #ifndef PRODUCT
 563         if (TraceReduceAllocationMerges) {
 564           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 565           use->dump();
 566         }
 567 #endif
 568         return false;
 569       }
 570 
 571       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 572       if (!is_trivial_control) {
 573         // If it's not a trivial control then we check if we can reduce the
 574         // CmpP/N used by the If controlling the cast.
 575         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 576           Node* iff = use->in(0)->in(0);
 577           // We may have Opaque4 node between If and Bool nodes.
 578           // Bail out in such case - we need to preserve Opaque4 for correct
 579           // processing predicates after loop opts.
 580           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 581           if (can_reduce) {
 582             Node* iff_cmp = iff->in(1)->in(1);
 583             int opc = iff_cmp->Opcode();
 584             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 585           }
 586           if (!can_reduce) {
 587 #ifndef PRODUCT
 588             if (TraceReduceAllocationMerges) {
 589               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 590               n->dump(5);
 591             }
 592 #endif
 593             return false;
 594           }
 595         }
 596       }
 597 
 598       if (!can_reduce_check_users(use, nesting+1)) {
 599         return false;
 600       }
 601     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 602       if (!can_reduce_cmp(n, use)) {
 603         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 604         return false;
 605       }
 606     } else {
 607       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 608       return false;
 609     }
 610   }
 611 
 612   return true;
 613 }
 614 
 615 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 616 // only used in some certain code shapes. Check comments in
 617 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 618 // details.
 619 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 620   // If there was an error attempting to reduce allocation merges for this
 621   // method we might have disabled the compilation and be retrying with RAM
 622   // disabled.
 623   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 624     return false;
 625   }
 626 
 627   const Type* phi_t = _igvn->type(ophi);
 628   if (phi_t == nullptr ||
 629       phi_t->make_ptr() == nullptr ||
 630       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 631     return false;
 632   }
 633 
 634   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 635     return false;
 636   }
 637 
 638   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 639   return true;
 640 }
 641 
 642 // This method will return a CmpP/N that we need to use on the If controlling a
 643 // CastPP after it was split. This method is only called on bases that are
 644 // nullable therefore we always need a controlling if for the splitted CastPP.
 645 //
 646 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 647 // If the CastPP currently doesn't have a control then the CmpP/N will be
 648 // against the NULL constant, otherwise it will be against the constant input of
 649 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 650 // case because we have constraints on it and because the CastPP has a control
 651 // input.
 652 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 653   const Type* t = base->bottom_type();
 654   Node* con = nullptr;
 655 
 656   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 657     con = _igvn->zerocon(t->basic_type());
 658   } else {
 659     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 660     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 661     Node* bol = curr_ctrl->in(0)->in(1);
 662     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 663     Node* curr_cmp = bol->in(1);
 664     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 665     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 666   }
 667 
 668   return CmpNode::make(base, con, t->basic_type());
 669 }
 670 
 671 // This method 'specializes' the CastPP passed as parameter to the base passed
 672 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 673 // means that the CastPP now will be specific for a given base instead of a Phi.
 674 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 675 // of the CastPP is a copy of the current one (if there is one) or a check
 676 // against NULL.
 677 //
 678 // Before:
 679 //
 680 //    C1     C2  ... Cn
 681 //     \      |      /
 682 //      \     |     /
 683 //       \    |    /
 684 //        \   |   /
 685 //         \  |  /
 686 //          \ | /
 687 //           \|/
 688 //          Region     B1      B2  ... Bn
 689 //            |          \      |      /
 690 //            |           \     |     /
 691 //            |            \    |    /
 692 //            |             \   |   /
 693 //            |              \  |  /
 694 //            |               \ | /
 695 //            ---------------> Phi
 696 //                              |
 697 //                      X       |
 698 //                      |       |
 699 //                      |       |
 700 //                      ------> CastPP
 701 //
 702 // After (only partial illustration; base = B2, current_control = C2):
 703 //
 704 //                      C2
 705 //                      |
 706 //                      If
 707 //                     / \
 708 //                    /   \
 709 //                   T     F
 710 //                  /\     /
 711 //                 /  \   /
 712 //                /    \ /
 713 //      C1    CastPP   Reg        Cn
 714 //       |              |          |
 715 //       |              |          |
 716 //       |              |          |
 717 //       -------------- | ----------
 718 //                    | | |
 719 //                    Region
 720 //
 721 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 722   Node* control_successor  = current_control->unique_ctrl_out();
 723   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 724   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 725   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 726   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 727   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 728   Node* end_region         = _igvn->transform(new RegionNode(3));
 729 
 730   // Insert the new if-else-region block into the graph
 731   end_region->set_req(1, not_eq_control);
 732   end_region->set_req(2, yes_eq_control);
 733   control_successor->replace_edge(current_control, end_region, _igvn);
 734 
 735   _igvn->_worklist.push(current_control);
 736   _igvn->_worklist.push(control_successor);
 737 
 738   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr));
 739 }
 740 
 741 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 742   const Type* load_type = _igvn->type(curr_load);
 743   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 744   Node* memory = curr_load->in(MemNode::Memory);
 745 
 746   // The data_phi merging the loads needs to be nullable if
 747   // we are loading pointers.
 748   if (load_type->make_ptr() != nullptr) {
 749     if (load_type->isa_narrowoop()) {
 750       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 751     } else if (load_type->isa_ptr()) {
 752       load_type = load_type->meet(TypePtr::NULL_PTR);
 753     } else {
 754       assert(false, "Unexpected load ptr type.");
 755     }
 756   }
 757 
 758   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 759 
 760   for (int i = 1; i < bases_for_loads->length(); i++) {
 761     Node* base = bases_for_loads->at(i);
 762     Node* cmp_region = nullptr;
 763     if (base != nullptr) {
 764       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 765         cmp_region = base->unique_ctrl_out_or_null();
 766         assert(cmp_region != nullptr, "There should be.");
 767         base = base->find_out_with(Op_CastPP);
 768       }
 769 
 770       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 771       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 772       Node* load = curr_load->clone();
 773       load->set_req(0, nullptr);
 774       load->set_req(1, mem);
 775       load->set_req(2, addr);
 776 
 777       if (cmp_region != nullptr) { // see comment on previous if
 778         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 779         intermediate_phi->set_req(1, _igvn->transform(load));
 780         load = intermediate_phi;
 781       }
 782 
 783       data_phi->set_req(i, _igvn->transform(load));
 784     } else {
 785       // Just use the default, which is already in phi
 786     }
 787   }
 788 
 789   // Takes care of updating CG and split_unique_types worklists due
 790   // to cloned AddP->Load.
 791   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 792 
 793   return _igvn->transform(data_phi);
 794 }
 795 
 796 // This method only reduces CastPP fields loads; SafePoints are handled
 797 // separately. The idea here is basically to clone the CastPP and place copies
 798 // on each input of the Phi, including non-scalar replaceable inputs.
 799 // Experimentation shows that the resulting IR graph is simpler that way than if
 800 // we just split the cast through scalar-replaceable inputs.
 801 //
 802 // The reduction process requires that CastPP's control be one of:
 803 //  1) no control,
 804 //  2) the same region as Ophi, or
 805 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 806 //
 807 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 808 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 809 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 810 // juse use a CmpP/N against the NULL constant.
 811 //
 812 // The If-Then-Else-Region isn't always needed. For instance, if input to
 813 // splitted cast was not nullable (or if it was the NULL constant) then we don't
 814 // need (shouldn't) use a CastPP at all.
 815 //
 816 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 817 // connect them to the just split CastPPs.
 818 //
 819 // Before (CastPP control is same as Phi):
 820 //
 821 //          Region     Allocate   Null    Call
 822 //            |             \      |      /
 823 //            |              \     |     /
 824 //            |               \    |    /
 825 //            |                \   |   /
 826 //            |                 \  |  /
 827 //            |                  \ | /
 828 //            ------------------> Phi            # Oop Phi
 829 //            |                    |
 830 //            |                    |
 831 //            |                    |
 832 //            |                    |
 833 //            ----------------> CastPP
 834 //                                 |
 835 //                               AddP
 836 //                                 |
 837 //                               Load
 838 //
 839 // After (Very much simplified):
 840 //
 841 //                         Call  NULL
 842 //                            \  /
 843 //                            CmpP
 844 //                             |
 845 //                           Bool#NE
 846 //                             |
 847 //                             If
 848 //                            / \
 849 //                           T   F
 850 //                          / \ /
 851 //                         /   R
 852 //                     CastPP  |
 853 //                       |     |
 854 //                     AddP    |
 855 //                       |     |
 856 //                     Load    |
 857 //                         \   |   0
 858 //            Allocate      \  |  /
 859 //                \          \ | /
 860 //               AddP         Phi
 861 //                  \         /
 862 //                 Load      /
 863 //                    \  0  /
 864 //                     \ | /
 865 //                      \|/
 866 //                      Phi        # "Field" Phi
 867 //
 868 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
 869   Node* ophi = curr_castpp->in(1);
 870   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 871 
 872   // Identify which base should be used for AddP->Load later when spliting the
 873   // CastPP->Loads through ophi. Three kind of values may be stored in this
 874   // array, depending on the nullability status of the corresponding input in
 875   // ophi.
 876   //
 877   //  - nullptr:    Meaning that the base is actually the NULL constant and therefore
 878   //                we won't try to load from it.
 879   //
 880   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 881   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 882   //                that will 'activate' the CastPp only when the input is not Null.
 883   //
 884   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 885   //                to load directly from it.
 886   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 887 
 888   for (uint i = 1; i < ophi->req(); i++) {
 889     Node* base = ophi->in(i);
 890     const Type* base_t = _igvn->type(base);
 891 
 892     if (base_t->maybe_null()) {
 893       if (base->is_Con()) {
 894         // Nothing todo as bases_for_loads[i] is already nullptr
 895       } else {
 896         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 897         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 898       }
 899     } else {
 900       bases_for_loads.at_put(i, base);
 901     }
 902   }
 903 
 904   // Now let's split the CastPP->Loads through the Phi
 905   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 906     Node* use = curr_castpp->raw_out(i);
 907     if (use->is_AddP()) {
 908       for (int j = use->outcnt()-1; j >= 0;) {
 909         Node* use_use = use->raw_out(j);
 910         assert(use_use->is_Load(), "Expected this to be a Load node.");
 911 
 912         // We can't make an unconditional load from a nullable input. The
 913         // 'split_castpp_load_through_phi` method will add an
 914         // 'If-Then-Else-Region` around nullable bases and only load from them
 915         // when the input is not null.
 916         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 917         _igvn->replace_node(use_use, phi);
 918 
 919         --j;
 920         j = MIN2(j, (int)use->outcnt()-1);
 921       }
 922 
 923       _igvn->remove_dead_node(use);
 924     }
 925     --i;
 926     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 927   }
 928 }
 929 
 930 // This method split a given CmpP/N through the Phi used in one of its inputs.
 931 // As a result we convert a comparison with a pointer to a comparison with an
 932 // integer.
 933 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 934 // while the other must be a constant.
 935 // The splitting process is basically just cloning the CmpP/N above the input
 936 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 937 // can prove at compile time the result of the comparison.
 938 //
 939 // Before:
 940 //
 941 //             in1    in2 ... inN
 942 //              \      |      /
 943 //               \     |     /
 944 //                \    |    /
 945 //                 \   |   /
 946 //                  \  |  /
 947 //                   \ | /
 948 //                    Phi
 949 //                     |   Other
 950 //                     |    /
 951 //                     |   /
 952 //                     |  /
 953 //                    CmpP/N
 954 //
 955 // After:
 956 //
 957 //        in1  Other   in2 Other  inN  Other
 958 //         |    |      |   |      |    |
 959 //         \    |      |   |      |    |
 960 //          \  /       |   /      |    /
 961 //          CmpP/N    CmpP/N     CmpP/N
 962 //          Bool      Bool       Bool
 963 //            \        |        /
 964 //             \       |       /
 965 //              \      |      /
 966 //               \     |     /
 967 //                \    |    /
 968 //                 \   |   /
 969 //                  \  |  /
 970 //                   \ | /
 971 //                    Phi
 972 //                     |
 973 //                     |   Zero
 974 //                     |    /
 975 //                     |   /
 976 //                     |  /
 977 //                     CmpI
 978 //
 979 //
 980 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 981   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 982   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 983 
 984   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 985   Node* zero = _igvn->intcon(0);
 986   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
 987 
 988   // This Phi will merge the result of the Cmps split through the Phi
 989   Node* res_phi  = _igvn->transform(PhiNode::make(ophi->in(0), zero, TypeInt::INT));
 990 
 991   for (uint i=1; i<ophi->req(); i++) {
 992     Node* ophi_input = ophi->in(i);
 993     Node* res_phi_input = nullptr;
 994 
 995     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
 996     if (tcmp->singleton()) {
 997       res_phi_input = _igvn->makecon(tcmp);
 998     } else {
 999       Node* ncmp = _igvn->transform(cmp->clone());
1000       ncmp->set_req(1, ophi_input);
1001       ncmp->set_req(2, other);
1002       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1003       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1004     }
1005 
1006     res_phi->set_req(i, res_phi_input);
1007   }
1008 
1009   Node* new_cmp = _igvn->transform(new CmpINode(res_phi, zero));
1010   _igvn->replace_node(cmp, new_cmp);
1011 }
1012 
1013 // Push the newly created AddP on alloc_worklist and patch
1014 // the connection graph. Note that the changes in the CG below
1015 // won't affect the ES of objects since the new nodes have the
1016 // same status as the old ones.
1017 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1018   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1019   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1020   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1021 
1022   if (data_phi == nullptr || !data_phi->is_Phi()) {
1023     // Make this a retry?
1024     return ;
1025   }
1026 
1027   Node* previous_addp = previous_load->in(MemNode::Address);
1028   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1029   for (uint i = 1; i < data_phi->req(); i++) {
1030     Node* new_load = data_phi->in(i);
1031 
1032     if (new_load->is_Phi()) {
1033       // new_load is currently the "intermediate_phi" from an specialized
1034       // CastPP.
1035       new_load = new_load->in(1);
1036     }
1037 
1038     // "new_load" might actually be a constant, parameter, etc.
1039     if (new_load->is_Load()) {
1040       Node* new_addp = new_load->in(MemNode::Address);
1041       Node* base = get_addp_base(new_addp);
1042 
1043       // The base might not be something that we can create an unique
1044       // type for. If that's the case we are done with that input.
1045       PointsToNode* jobj_ptn = unique_java_object(base);
1046       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1047         continue;
1048       }
1049 
1050       // Push to alloc_worklist since the base has an unique_type
1051       alloc_worklist.append_if_missing(new_addp);
1052 
1053       // Now let's add the node to the connection graph
1054       _nodes.at_grow(new_addp->_idx, nullptr);
1055       add_field(new_addp, fn->escape_state(), fn->offset());
1056       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1057 
1058       // If the load doesn't load an object then it won't be
1059       // part of the connection graph
1060       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1061       if (curr_load_ptn != nullptr) {
1062         _nodes.at_grow(new_load->_idx, nullptr);
1063         add_local_var(new_load, curr_load_ptn->escape_state());
1064         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1065       }
1066     }
1067   }
1068 }
1069 
1070 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1071   // We'll pass this to 'split_through_phi' so that it'll do the split even
1072   // though the load doesn't have an unique instance type.
1073   bool ignore_missing_instance_id = true;
1074 
1075   // All AddPs are present in the connection graph
1076   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1077 
1078   // Iterate over AddP looking for a Load
1079   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1080     Node* previous_load = previous_addp->raw_out(k);
1081     if (previous_load->is_Load()) {
1082       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1083 
1084       // Takes care of updating CG and split_unique_types worklists due to cloned
1085       // AddP->Load.
1086       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1087 
1088       _igvn->replace_node(previous_load, data_phi);
1089     }
1090     --k;
1091     k = MIN2(k, (int)previous_addp->outcnt()-1);
1092   }
1093 
1094   // Remove the old AddP from the processing list because it's dead now
1095   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1096   alloc_worklist.remove_if_existing(previous_addp);
1097 }
1098 
1099 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1100 // selector is:
1101 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1102 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1103 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1104 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1105   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1106   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1107   uint number_of_sr_objects = 0;
1108   for (uint i = 1; i < ophi->req(); i++) {
1109     Node* base = ophi->in(i);
1110     JavaObjectNode* ptn = unique_java_object(base);
1111 
1112     if (ptn != nullptr && ptn->scalar_replaceable()) {
1113       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1114       selector->set_req(i, sr_obj_idx);
1115       number_of_sr_objects++;
1116     }
1117   }
1118 
1119   return selector->as_Phi();
1120 }
1121 
1122 // Returns true if the AddP node 'n' has at least one base that is a reducible
1123 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1124 // checked instead.
1125 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1126   PointsToNode* ptn = ptnode_adr(n->_idx);
1127   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1128     return false;
1129   }
1130 
1131   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1132     Node* base = i.get()->ideal_node();
1133 
1134     if (reducible_merges.member(base)) {
1135       return true;
1136     }
1137 
1138     if (base->is_CastPP() || base->is_CheckCastPP()) {
1139       base = base->in(1);
1140       if (reducible_merges.member(base)) {
1141         return true;
1142       }
1143     }
1144   }
1145 
1146   return false;
1147 }
1148 
1149 // This method will call its helper method to reduce SafePoint nodes that use
1150 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1151 // "version" of Phi use the same debug information (regarding the Phi).
1152 // Therefore, I collect all safepoints and patch them all at once.
1153 //
1154 // The safepoints using the Phi node have to be processed before safepoints of
1155 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1156 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1157 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1158 // algorithm that process Phi's safepoints will think that the added Phi
1159 // reference is a regular reference.
1160 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1161   PhiNode* selector = create_selector(ophi);
1162   Unique_Node_List safepoints;
1163   Unique_Node_List casts;
1164 
1165   // Just collect the users of the Phis for later processing
1166   // in the needed order.
1167   for (uint i = 0; i < ophi->outcnt(); i++) {
1168     Node* use = ophi->raw_out(i);
1169     if (use->is_SafePoint()) {
1170       safepoints.push(use);
1171     } else if (use->is_CastPP()) {
1172       casts.push(use);
1173     } else {
1174       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1175     }
1176   }
1177 
1178   // Need to process safepoints using the Phi first
1179   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1180     return false;
1181   }
1182 
1183   // Now process CastPP->safepoints
1184   for (uint i = 0; i < casts.size(); i++) {
1185     Node* cast = casts.at(i);
1186     Unique_Node_List cast_sfpts;
1187 
1188     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1189       Node* use_use = cast->fast_out(j);
1190       if (use_use->is_SafePoint()) {
1191         cast_sfpts.push(use_use);
1192       } else {
1193         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1194       }
1195     }
1196 
1197     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1198       return false;
1199     }
1200   }
1201 
1202   return true;
1203 }
1204 
1205 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1206 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1207 // SafePointScalarObjectNode for each scalar replaceable input. Each
1208 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1209 // check detailed description in SafePointScalarMergeNode class header.
1210 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1211   PhaseMacroExpand mexp(*_igvn);
1212   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1213   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1214 
1215   Node* nsr_merge_pointer = ophi;
1216   if (cast != nullptr) {
1217     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1218     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr));
1219   }
1220 
1221   for (uint spi = 0; spi < safepoints.size(); spi++) {
1222     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1223     JVMState *jvms      = sfpt->jvms();
1224     uint merge_idx      = (sfpt->req() - jvms->scloff());
1225     int debug_start     = jvms->debug_start();
1226 
1227     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1228     smerge->init_req(0, _compile->root());
1229     _igvn->register_new_node_with_optimizer(smerge);
1230 
1231     // The next two inputs are:
1232     //  (1) A copy of the original pointer to NSR objects.
1233     //  (2) A selector, used to decide if we need to rematerialize an object
1234     //      or use the pointer to a NSR object.
1235     // See more details of these fields in the declaration of SafePointScalarMergeNode
1236     sfpt->add_req(nsr_merge_pointer);
1237     sfpt->add_req(selector);
1238 
1239     for (uint i = 1; i < ophi->req(); i++) {
1240       Node* base = ophi->in(i);
1241       JavaObjectNode* ptn = unique_java_object(base);
1242 
1243       // If the base is not scalar replaceable we don't need to register information about
1244       // it at this time.
1245       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1246         continue;
1247       }
1248 
1249       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1250       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);
1251       if (sobj == nullptr) {
1252         return false;
1253       }
1254 
1255       // Now make a pass over the debug information replacing any references
1256       // to the allocated object with "sobj"
1257       Node* ccpp = alloc->result_cast();
1258       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1259 
1260       // Register the scalarized object as a candidate for reallocation
1261       smerge->add_req(sobj);
1262     }
1263 
1264     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1265     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1266 
1267     // The call to 'replace_edges_in_range' above might have removed the
1268     // reference to ophi that we need at _merge_pointer_idx. The line below make
1269     // sure the reference is maintained.
1270     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1271     _igvn->_worklist.push(sfpt);
1272   }
1273 
1274   return true;
1275 }
1276 
1277 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1278   bool delay = _igvn->delay_transform();
1279   _igvn->set_delay_transform(true);
1280   _igvn->hash_delete(ophi);
1281 
1282   // Copying all users first because some will be removed and others won't.
1283   // Ophi also may acquire some new users as part of Cast reduction.
1284   // CastPPs also need to be processed before CmpPs.
1285   Unique_Node_List castpps;
1286   Unique_Node_List others;
1287   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1288     Node* use = ophi->fast_out(i);
1289 
1290     if (use->is_CastPP()) {
1291       castpps.push(use);
1292     } else if (use->is_AddP() || use->is_Cmp()) {
1293       others.push(use);
1294     } else if (use->is_SafePoint()) {
1295       // processed later
1296     } else {
1297       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1298     }
1299   }
1300 
1301   // CastPPs need to be processed before Cmps because during the process of
1302   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1303   // by the If controlling the CastPP.
1304   for (uint i = 0; i < castpps.size(); i++) {
1305     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist, memnode_worklist);
1306   }
1307 
1308   for (uint i = 0; i < others.size(); i++) {
1309     Node* use = others.at(i);
1310 
1311     if (use->is_AddP()) {
1312       reduce_phi_on_field_access(use, alloc_worklist);
1313     } else if(use->is_Cmp()) {
1314       reduce_phi_on_cmp(use);
1315     }
1316   }
1317 
1318   _igvn->set_delay_transform(delay);
1319 }
1320 
1321 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1322   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1323   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1324   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1325   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1326 
1327   for (uint i = 1; i < ophi->req(); i++) {
1328     Node* base          = ophi->in(i);
1329     JavaObjectNode* ptn = unique_java_object(base);
1330 
1331     if (ptn != nullptr && ptn->scalar_replaceable()) {
1332       new_phi->set_req(i, null_ptr);
1333     } else {
1334       new_phi->set_req(i, ophi->in(i));
1335     }
1336   }
1337 
1338   for (int i = ophi->outcnt()-1; i >= 0;) {
1339     Node* out = ophi->raw_out(i);
1340 
1341     if (out->is_ConstraintCast()) {
1342       const Type* out_t = _igvn->type(out)->make_ptr();
1343       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1344       bool change = out_new_t != out_t;
1345 
1346       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1347         Node* out2 = out->raw_out(j);
1348         if (!out2->is_SafePoint()) {
1349           change = false;
1350           break;
1351         }
1352       }
1353 
1354       if (change) {
1355         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr);
1356         _igvn->replace_node(out, new_cast);
1357         _igvn->register_new_node_with_optimizer(new_cast);
1358       }
1359     }
1360 
1361     --i;
1362     i = MIN2(i, (int)ophi->outcnt()-1);
1363   }
1364 
1365   _igvn->replace_node(ophi, new_phi);
1366 }
1367 
1368 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1369   if (!C->do_reduce_allocation_merges()) return;
1370 
1371   Unique_Node_List ideal_nodes;
1372   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1373   ideal_nodes.push(root);
1374 
1375   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1376     Node* n = ideal_nodes.at(next);
1377 
1378     if (n->is_SafePointScalarMerge()) {
1379       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1380 
1381       // Validate inputs of merge
1382       for (uint i = 1; i < merge->req(); i++) {
1383         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1384           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1385           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1386         }
1387       }
1388 
1389       // Validate users of merge
1390       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1391         Node* sfpt = merge->fast_out(i);
1392         if (sfpt->is_SafePoint()) {
1393           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1394 
1395           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1396             assert(false, "SafePointScalarMerge nodes can't be nested.");
1397             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1398           }
1399         } else {
1400           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1401           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1402         }
1403       }
1404     }
1405 
1406     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1407       Node* m = n->fast_out(i);
1408       ideal_nodes.push(m);
1409     }
1410   }
1411 }
1412 
1413 // Returns true if there is an object in the scope of sfn that does not escape globally.
1414 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1415   Compile* C = _compile;
1416   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1417     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1418         DeoptimizeObjectsALot) {
1419       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1420       int num_locs = jvms->loc_size();
1421       for (int idx = 0; idx < num_locs; idx++) {
1422         Node* l = sfn->local(jvms, idx);
1423         if (not_global_escape(l)) {
1424           return true;
1425         }
1426       }
1427     }
1428     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1429         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1430       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1431       int num_mon = jvms->nof_monitors();
1432       for (int idx = 0; idx < num_mon; idx++) {
1433         Node* m = sfn->monitor_obj(jvms, idx);
1434         if (m != nullptr && not_global_escape(m)) {
1435           return true;
1436         }
1437       }
1438     }
1439   }
1440   return false;
1441 }
1442 
1443 // Returns true if at least one of the arguments to the call is an object
1444 // that does not escape globally.
1445 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1446   if (call->method() != nullptr) {
1447     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1448     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1449       Node* p = call->in(idx);
1450       if (not_global_escape(p)) {
1451         return true;
1452       }
1453     }
1454   } else {
1455     const char* name = call->as_CallStaticJava()->_name;
1456     assert(name != nullptr, "no name");
1457     // no arg escapes through uncommon traps
1458     if (strcmp(name, "uncommon_trap") != 0) {
1459       // process_call_arguments() assumes that all arguments escape globally
1460       const TypeTuple* d = call->tf()->domain();
1461       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1462         const Type* at = d->field_at(i);
1463         if (at->isa_oopptr() != nullptr) {
1464           return true;
1465         }
1466       }
1467     }
1468   }
1469   return false;
1470 }
1471 
1472 
1473 
1474 // Utility function for nodes that load an object
1475 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1476   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1477   // ThreadLocal has RawPtr type.
1478   const Type* t = _igvn->type(n);
1479   if (t->make_ptr() != nullptr) {
1480     Node* adr = n->in(MemNode::Address);
1481 #ifdef ASSERT
1482     if (!adr->is_AddP()) {
1483       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1484     } else {
1485       assert((ptnode_adr(adr->_idx) == nullptr ||
1486               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1487     }
1488 #endif
1489     add_local_var_and_edge(n, PointsToNode::NoEscape,
1490                            adr, delayed_worklist);
1491   }
1492 }
1493 
1494 // Populate Connection Graph with PointsTo nodes and create simple
1495 // connection graph edges.
1496 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1497   assert(!_verify, "this method should not be called for verification");
1498   PhaseGVN* igvn = _igvn;
1499   uint n_idx = n->_idx;
1500   PointsToNode* n_ptn = ptnode_adr(n_idx);
1501   if (n_ptn != nullptr) {
1502     return; // No need to redefine PointsTo node during first iteration.
1503   }
1504   int opcode = n->Opcode();
1505   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
1506   if (gc_handled) {
1507     return; // Ignore node if already handled by GC.
1508   }
1509 
1510   if (n->is_Call()) {
1511     // Arguments to allocation and locking don't escape.
1512     if (n->is_AbstractLock()) {
1513       // Put Lock and Unlock nodes on IGVN worklist to process them during
1514       // first IGVN optimization when escape information is still available.
1515       record_for_optimizer(n);
1516     } else if (n->is_Allocate()) {
1517       add_call_node(n->as_Call());
1518       record_for_optimizer(n);
1519     } else {
1520       if (n->is_CallStaticJava()) {
1521         const char* name = n->as_CallStaticJava()->_name;
1522         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1523           return; // Skip uncommon traps
1524         }
1525       }
1526       // Don't mark as processed since call's arguments have to be processed.
1527       delayed_worklist->push(n);
1528       // Check if a call returns an object.
1529       if ((n->as_Call()->returns_pointer() &&
1530            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1531           (n->is_CallStaticJava() &&
1532            n->as_CallStaticJava()->is_boxing_method())) {
1533         add_call_node(n->as_Call());
1534       }
1535     }
1536     return;
1537   }
1538   // Put this check here to process call arguments since some call nodes
1539   // point to phantom_obj.
1540   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1541     return; // Skip predefined nodes.
1542   }
1543   switch (opcode) {
1544     case Op_AddP: {
1545       Node* base = get_addp_base(n);
1546       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1547       // Field nodes are created for all field types. They are used in
1548       // adjust_scalar_replaceable_state() and split_unique_types().
1549       // Note, non-oop fields will have only base edges in Connection
1550       // Graph because such fields are not used for oop loads and stores.
1551       int offset = address_offset(n, igvn);
1552       add_field(n, PointsToNode::NoEscape, offset);
1553       if (ptn_base == nullptr) {
1554         delayed_worklist->push(n); // Process it later.
1555       } else {
1556         n_ptn = ptnode_adr(n_idx);
1557         add_base(n_ptn->as_Field(), ptn_base);
1558       }
1559       break;
1560     }
1561     case Op_CastX2P: {
1562       map_ideal_node(n, phantom_obj);
1563       break;
1564     }
1565     case Op_CastPP:
1566     case Op_CheckCastPP:
1567     case Op_EncodeP:
1568     case Op_DecodeN:
1569     case Op_EncodePKlass:
1570     case Op_DecodeNKlass: {
1571       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1572       break;
1573     }
1574     case Op_CMoveP: {
1575       add_local_var(n, PointsToNode::NoEscape);
1576       // Do not add edges during first iteration because some could be
1577       // not defined yet.
1578       delayed_worklist->push(n);
1579       break;
1580     }
1581     case Op_ConP:
1582     case Op_ConN:
1583     case Op_ConNKlass: {
1584       // assume all oop constants globally escape except for null
1585       PointsToNode::EscapeState es;
1586       const Type* t = igvn->type(n);
1587       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1588         es = PointsToNode::NoEscape;
1589       } else {
1590         es = PointsToNode::GlobalEscape;
1591       }
1592       PointsToNode* ptn_con = add_java_object(n, es);
1593       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1594       break;
1595     }
1596     case Op_CreateEx: {
1597       // assume that all exception objects globally escape
1598       map_ideal_node(n, phantom_obj);
1599       break;
1600     }
1601     case Op_LoadKlass:
1602     case Op_LoadNKlass: {
1603       // Unknown class is loaded
1604       map_ideal_node(n, phantom_obj);
1605       break;
1606     }
1607     case Op_LoadP:
1608     case Op_LoadN: {
1609       add_objload_to_connection_graph(n, delayed_worklist);
1610       break;
1611     }
1612     case Op_Parm: {
1613       map_ideal_node(n, phantom_obj);
1614       break;
1615     }
1616     case Op_PartialSubtypeCheck: {
1617       // Produces Null or notNull and is used in only in CmpP so
1618       // phantom_obj could be used.
1619       map_ideal_node(n, phantom_obj); // Result is unknown
1620       break;
1621     }
1622     case Op_Phi: {
1623       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1624       // ThreadLocal has RawPtr type.
1625       const Type* t = n->as_Phi()->type();
1626       if (t->make_ptr() != nullptr) {
1627         add_local_var(n, PointsToNode::NoEscape);
1628         // Do not add edges during first iteration because some could be
1629         // not defined yet.
1630         delayed_worklist->push(n);
1631       }
1632       break;
1633     }
1634     case Op_Proj: {
1635       // we are only interested in the oop result projection from a call
1636       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1637           n->in(0)->as_Call()->returns_pointer()) {
1638         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1639       }
1640       break;
1641     }
1642     case Op_Rethrow: // Exception object escapes
1643     case Op_Return: {
1644       if (n->req() > TypeFunc::Parms &&
1645           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1646         // Treat Return value as LocalVar with GlobalEscape escape state.
1647         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1648       }
1649       break;
1650     }
1651     case Op_CompareAndExchangeP:
1652     case Op_CompareAndExchangeN:
1653     case Op_GetAndSetP:
1654     case Op_GetAndSetN: {
1655       add_objload_to_connection_graph(n, delayed_worklist);
1656       // fall-through
1657     }
1658     case Op_StoreP:
1659     case Op_StoreN:
1660     case Op_StoreNKlass:
1661     case Op_WeakCompareAndSwapP:
1662     case Op_WeakCompareAndSwapN:
1663     case Op_CompareAndSwapP:
1664     case Op_CompareAndSwapN: {
1665       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1666       break;
1667     }
1668     case Op_AryEq:
1669     case Op_CountPositives:
1670     case Op_StrComp:
1671     case Op_StrEquals:
1672     case Op_StrIndexOf:
1673     case Op_StrIndexOfChar:
1674     case Op_StrInflatedCopy:
1675     case Op_StrCompressedCopy:
1676     case Op_VectorizedHashCode:
1677     case Op_EncodeISOArray: {
1678       add_local_var(n, PointsToNode::ArgEscape);
1679       delayed_worklist->push(n); // Process it later.
1680       break;
1681     }
1682     case Op_ThreadLocal: {
1683       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1684       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1685       break;
1686     }
1687     case Op_Blackhole: {
1688       // All blackhole pointer arguments are globally escaping.
1689       // Only do this if there is at least one pointer argument.
1690       // Do not add edges during first iteration because some could be
1691       // not defined yet, defer to final step.
1692       for (uint i = 0; i < n->req(); i++) {
1693         Node* in = n->in(i);
1694         if (in != nullptr) {
1695           const Type* at = _igvn->type(in);
1696           if (!at->isa_ptr()) continue;
1697 
1698           add_local_var(n, PointsToNode::GlobalEscape);
1699           delayed_worklist->push(n);
1700           break;
1701         }
1702       }
1703       break;
1704     }
1705     default:
1706       ; // Do nothing for nodes not related to EA.
1707   }
1708   return;
1709 }
1710 
1711 // Add final simple edges to graph.
1712 void ConnectionGraph::add_final_edges(Node *n) {
1713   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1714 #ifdef ASSERT
1715   if (_verify && n_ptn->is_JavaObject())
1716     return; // This method does not change graph for JavaObject.
1717 #endif
1718 
1719   if (n->is_Call()) {
1720     process_call_arguments(n->as_Call());
1721     return;
1722   }
1723   assert(n->is_Store() || n->is_LoadStore() ||
1724          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1725          "node should be registered already");
1726   int opcode = n->Opcode();
1727   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1728   if (gc_handled) {
1729     return; // Ignore node if already handled by GC.
1730   }
1731   switch (opcode) {
1732     case Op_AddP: {
1733       Node* base = get_addp_base(n);
1734       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1735       assert(ptn_base != nullptr, "field's base should be registered");
1736       add_base(n_ptn->as_Field(), ptn_base);
1737       break;
1738     }
1739     case Op_CastPP:
1740     case Op_CheckCastPP:
1741     case Op_EncodeP:
1742     case Op_DecodeN:
1743     case Op_EncodePKlass:
1744     case Op_DecodeNKlass: {
1745       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1746       break;
1747     }
1748     case Op_CMoveP: {
1749       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1750         Node* in = n->in(i);
1751         if (in == nullptr) {
1752           continue;  // ignore null
1753         }
1754         Node* uncast_in = in->uncast();
1755         if (uncast_in->is_top() || uncast_in == n) {
1756           continue;  // ignore top or inputs which go back this node
1757         }
1758         PointsToNode* ptn = ptnode_adr(in->_idx);
1759         assert(ptn != nullptr, "node should be registered");
1760         add_edge(n_ptn, ptn);
1761       }
1762       break;
1763     }
1764     case Op_LoadP:
1765     case Op_LoadN: {
1766       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1767       // ThreadLocal has RawPtr type.
1768       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1769       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1770       break;
1771     }
1772     case Op_Phi: {
1773       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1774       // ThreadLocal has RawPtr type.
1775       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1776       for (uint i = 1; i < n->req(); i++) {
1777         Node* in = n->in(i);
1778         if (in == nullptr) {
1779           continue;  // ignore null
1780         }
1781         Node* uncast_in = in->uncast();
1782         if (uncast_in->is_top() || uncast_in == n) {
1783           continue;  // ignore top or inputs which go back this node
1784         }
1785         PointsToNode* ptn = ptnode_adr(in->_idx);
1786         assert(ptn != nullptr, "node should be registered");
1787         add_edge(n_ptn, ptn);
1788       }
1789       break;
1790     }
1791     case Op_Proj: {
1792       // we are only interested in the oop result projection from a call
1793       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1794              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1795       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1796       break;
1797     }
1798     case Op_Rethrow: // Exception object escapes
1799     case Op_Return: {
1800       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1801              "Unexpected node type");
1802       // Treat Return value as LocalVar with GlobalEscape escape state.
1803       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1804       break;
1805     }
1806     case Op_CompareAndExchangeP:
1807     case Op_CompareAndExchangeN:
1808     case Op_GetAndSetP:
1809     case Op_GetAndSetN:{
1810       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1811       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1812       // fall-through
1813     }
1814     case Op_CompareAndSwapP:
1815     case Op_CompareAndSwapN:
1816     case Op_WeakCompareAndSwapP:
1817     case Op_WeakCompareAndSwapN:
1818     case Op_StoreP:
1819     case Op_StoreN:
1820     case Op_StoreNKlass:{
1821       add_final_edges_unsafe_access(n, opcode);
1822       break;
1823     }
1824     case Op_VectorizedHashCode:
1825     case Op_AryEq:
1826     case Op_CountPositives:
1827     case Op_StrComp:
1828     case Op_StrEquals:
1829     case Op_StrIndexOf:
1830     case Op_StrIndexOfChar:
1831     case Op_StrInflatedCopy:
1832     case Op_StrCompressedCopy:
1833     case Op_EncodeISOArray: {
1834       // char[]/byte[] arrays passed to string intrinsic do not escape but
1835       // they are not scalar replaceable. Adjust escape state for them.
1836       // Start from in(2) edge since in(1) is memory edge.
1837       for (uint i = 2; i < n->req(); i++) {
1838         Node* adr = n->in(i);
1839         const Type* at = _igvn->type(adr);
1840         if (!adr->is_top() && at->isa_ptr()) {
1841           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1842                  at->isa_ptr() != nullptr, "expecting a pointer");
1843           if (adr->is_AddP()) {
1844             adr = get_addp_base(adr);
1845           }
1846           PointsToNode* ptn = ptnode_adr(adr->_idx);
1847           assert(ptn != nullptr, "node should be registered");
1848           add_edge(n_ptn, ptn);
1849         }
1850       }
1851       break;
1852     }
1853     case Op_Blackhole: {
1854       // All blackhole pointer arguments are globally escaping.
1855       for (uint i = 0; i < n->req(); i++) {
1856         Node* in = n->in(i);
1857         if (in != nullptr) {
1858           const Type* at = _igvn->type(in);
1859           if (!at->isa_ptr()) continue;
1860 
1861           if (in->is_AddP()) {
1862             in = get_addp_base(in);
1863           }
1864 
1865           PointsToNode* ptn = ptnode_adr(in->_idx);
1866           assert(ptn != nullptr, "should be defined already");
1867           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1868           add_edge(n_ptn, ptn);
1869         }
1870       }
1871       break;
1872     }
1873     default: {
1874       // This method should be called only for EA specific nodes which may
1875       // miss some edges when they were created.
1876 #ifdef ASSERT
1877       n->dump(1);
1878 #endif
1879       guarantee(false, "unknown node");
1880     }
1881   }
1882   return;
1883 }
1884 
1885 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1886   Node* adr = n->in(MemNode::Address);
1887   const Type* adr_type = _igvn->type(adr);
1888   adr_type = adr_type->make_ptr();
1889   if (adr_type == nullptr) {
1890     return; // skip dead nodes
1891   }
1892   if (adr_type->isa_oopptr()
1893       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1894           && adr_type == TypeRawPtr::NOTNULL
1895           && is_captured_store_address(adr))) {
1896     delayed_worklist->push(n); // Process it later.
1897 #ifdef ASSERT
1898     assert (adr->is_AddP(), "expecting an AddP");
1899     if (adr_type == TypeRawPtr::NOTNULL) {
1900       // Verify a raw address for a store captured by Initialize node.
1901       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1902       assert(offs != Type::OffsetBot, "offset must be a constant");
1903     }
1904 #endif
1905   } else {
1906     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1907     if (adr->is_BoxLock()) {
1908       return;
1909     }
1910     // Stored value escapes in unsafe access.
1911     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1912       delayed_worklist->push(n); // Process unsafe access later.
1913       return;
1914     }
1915 #ifdef ASSERT
1916     n->dump(1);
1917     assert(false, "not unsafe");
1918 #endif
1919   }
1920 }
1921 
1922 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1923   Node* adr = n->in(MemNode::Address);
1924   const Type *adr_type = _igvn->type(adr);
1925   adr_type = adr_type->make_ptr();
1926 #ifdef ASSERT
1927   if (adr_type == nullptr) {
1928     n->dump(1);
1929     assert(adr_type != nullptr, "dead node should not be on list");
1930     return true;
1931   }
1932 #endif
1933 
1934   if (adr_type->isa_oopptr()
1935       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1936            && adr_type == TypeRawPtr::NOTNULL
1937            && is_captured_store_address(adr))) {
1938     // Point Address to Value
1939     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1940     assert(adr_ptn != nullptr &&
1941            adr_ptn->as_Field()->is_oop(), "node should be registered");
1942     Node* val = n->in(MemNode::ValueIn);
1943     PointsToNode* ptn = ptnode_adr(val->_idx);
1944     assert(ptn != nullptr, "node should be registered");
1945     add_edge(adr_ptn, ptn);
1946     return true;
1947   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1948     // Stored value escapes in unsafe access.
1949     Node* val = n->in(MemNode::ValueIn);
1950     PointsToNode* ptn = ptnode_adr(val->_idx);
1951     assert(ptn != nullptr, "node should be registered");
1952     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1953     // Add edge to object for unsafe access with offset.
1954     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1955     assert(adr_ptn != nullptr, "node should be registered");
1956     if (adr_ptn->is_Field()) {
1957       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1958       add_edge(adr_ptn, ptn);
1959     }
1960     return true;
1961   }
1962 #ifdef ASSERT
1963   n->dump(1);
1964   assert(false, "not unsafe");
1965 #endif
1966   return false;
1967 }
1968 
1969 void ConnectionGraph::add_call_node(CallNode* call) {
1970   assert(call->returns_pointer(), "only for call which returns pointer");
1971   uint call_idx = call->_idx;
1972   if (call->is_Allocate()) {
1973     Node* k = call->in(AllocateNode::KlassNode);
1974     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1975     assert(kt != nullptr, "TypeKlassPtr  required.");
1976     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1977     bool scalar_replaceable = true;
1978     NOT_PRODUCT(const char* nsr_reason = "");
1979     if (call->is_AllocateArray()) {
1980       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1981         es = PointsToNode::GlobalEscape;
1982       } else {
1983         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1984         if (length < 0) {
1985           // Not scalar replaceable if the length is not constant.
1986           scalar_replaceable = false;
1987           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1988         } else if (length > EliminateAllocationArraySizeLimit) {
1989           // Not scalar replaceable if the length is too big.
1990           scalar_replaceable = false;
1991           NOT_PRODUCT(nsr_reason = "has a length that is too big");
1992         }
1993       }
1994     } else {  // Allocate instance
1995       if (!kt->isa_instklassptr()) { // StressReflectiveCode
1996         es = PointsToNode::GlobalEscape;
1997       } else {
1998         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
1999         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
2000         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
2001             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
2002             !ik->can_be_instantiated() ||
2003             ik->has_finalizer()) {
2004           es = PointsToNode::GlobalEscape;
2005         } else {
2006           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2007           if (nfields > EliminateAllocationFieldsLimit) {
2008             // Not scalar replaceable if there are too many fields.
2009             scalar_replaceable = false;
2010             NOT_PRODUCT(nsr_reason = "has too many fields");
2011           }
2012         }
2013       }
2014     }
2015     add_java_object(call, es);
2016     PointsToNode* ptn = ptnode_adr(call_idx);
2017     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2018       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2019     }
2020   } else if (call->is_CallStaticJava()) {
2021     // Call nodes could be different types:
2022     //
2023     // 1. CallDynamicJavaNode (what happened during call is unknown):
2024     //
2025     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2026     //
2027     //    - all oop arguments are escaping globally;
2028     //
2029     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2030     //
2031     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2032     //
2033     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2034     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2035     //      during call is returned;
2036     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2037     //      which are returned and does not escape during call;
2038     //
2039     //    - oop arguments escaping status is defined by bytecode analysis;
2040     //
2041     // For a static call, we know exactly what method is being called.
2042     // Use bytecode estimator to record whether the call's return value escapes.
2043     ciMethod* meth = call->as_CallJava()->method();
2044     if (meth == nullptr) {
2045       const char* name = call->as_CallStaticJava()->_name;
2046       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
2047       // Returns a newly allocated non-escaped object.
2048       add_java_object(call, PointsToNode::NoEscape);
2049       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2050     } else if (meth->is_boxing_method()) {
2051       // Returns boxing object
2052       PointsToNode::EscapeState es;
2053       vmIntrinsics::ID intr = meth->intrinsic_id();
2054       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2055         // It does not escape if object is always allocated.
2056         es = PointsToNode::NoEscape;
2057       } else {
2058         // It escapes globally if object could be loaded from cache.
2059         es = PointsToNode::GlobalEscape;
2060       }
2061       add_java_object(call, es);
2062       if (es == PointsToNode::GlobalEscape) {
2063         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2064       }
2065     } else {
2066       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2067       call_analyzer->copy_dependencies(_compile->dependencies());
2068       if (call_analyzer->is_return_allocated()) {
2069         // Returns a newly allocated non-escaped object, simply
2070         // update dependency information.
2071         // Mark it as NoEscape so that objects referenced by
2072         // it's fields will be marked as NoEscape at least.
2073         add_java_object(call, PointsToNode::NoEscape);
2074         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2075       } else {
2076         // Determine whether any arguments are returned.
2077         const TypeTuple* d = call->tf()->domain();
2078         bool ret_arg = false;
2079         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2080           if (d->field_at(i)->isa_ptr() != nullptr &&
2081               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2082             ret_arg = true;
2083             break;
2084           }
2085         }
2086         if (ret_arg) {
2087           add_local_var(call, PointsToNode::ArgEscape);
2088         } else {
2089           // Returns unknown object.
2090           map_ideal_node(call, phantom_obj);
2091         }
2092       }
2093     }
2094   } else {
2095     // An other type of call, assume the worst case:
2096     // returned value is unknown and globally escapes.
2097     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2098     map_ideal_node(call, phantom_obj);
2099   }
2100 }
2101 
2102 void ConnectionGraph::process_call_arguments(CallNode *call) {
2103     bool is_arraycopy = false;
2104     switch (call->Opcode()) {
2105 #ifdef ASSERT
2106     case Op_Allocate:
2107     case Op_AllocateArray:
2108     case Op_Lock:
2109     case Op_Unlock:
2110       assert(false, "should be done already");
2111       break;
2112 #endif
2113     case Op_ArrayCopy:
2114     case Op_CallLeafNoFP:
2115       // Most array copies are ArrayCopy nodes at this point but there
2116       // are still a few direct calls to the copy subroutines (See
2117       // PhaseStringOpts::copy_string())
2118       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2119         call->as_CallLeaf()->is_call_to_arraycopystub();
2120       // fall through
2121     case Op_CallLeafVector:
2122     case Op_CallLeaf: {
2123       // Stub calls, objects do not escape but they are not scale replaceable.
2124       // Adjust escape state for outgoing arguments.
2125       const TypeTuple * d = call->tf()->domain();
2126       bool src_has_oops = false;
2127       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2128         const Type* at = d->field_at(i);
2129         Node *arg = call->in(i);
2130         if (arg == nullptr) {
2131           continue;
2132         }
2133         const Type *aat = _igvn->type(arg);
2134         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2135           continue;
2136         }
2137         if (arg->is_AddP()) {
2138           //
2139           // The inline_native_clone() case when the arraycopy stub is called
2140           // after the allocation before Initialize and CheckCastPP nodes.
2141           // Or normal arraycopy for object arrays case.
2142           //
2143           // Set AddP's base (Allocate) as not scalar replaceable since
2144           // pointer to the base (with offset) is passed as argument.
2145           //
2146           arg = get_addp_base(arg);
2147         }
2148         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2149         assert(arg_ptn != nullptr, "should be registered");
2150         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2151         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2152           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2153                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2154           bool arg_has_oops = aat->isa_oopptr() &&
2155                               (aat->isa_instptr() ||
2156                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));
2157           if (i == TypeFunc::Parms) {
2158             src_has_oops = arg_has_oops;
2159           }
2160           //
2161           // src or dst could be j.l.Object when other is basic type array:
2162           //
2163           //   arraycopy(char[],0,Object*,0,size);
2164           //   arraycopy(Object*,0,char[],0,size);
2165           //
2166           // Don't add edges in such cases.
2167           //
2168           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2169                                        arg_has_oops && (i > TypeFunc::Parms);
2170 #ifdef ASSERT
2171           if (!(is_arraycopy ||
2172                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2173                 (call->as_CallLeaf()->_name != nullptr &&
2174                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2175                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2176                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2177                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2178                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2179                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2180                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2181                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2182                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2183                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2184                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2185                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2186                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2187                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2188                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2189                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2190                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2191                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2192                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2193                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2194                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2195                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2196                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2197                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2198                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2199                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2200                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2201                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2202                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2203                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2204                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2205                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2215                  ))) {
2216             call->dump();
2217             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2218           }
2219 #endif
2220           // Always process arraycopy's destination object since
2221           // we need to add all possible edges to references in
2222           // source object.
2223           if (arg_esc >= PointsToNode::ArgEscape &&
2224               !arg_is_arraycopy_dest) {
2225             continue;
2226           }
2227           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2228           if (call->is_ArrayCopy()) {
2229             ArrayCopyNode* ac = call->as_ArrayCopy();
2230             if (ac->is_clonebasic() ||
2231                 ac->is_arraycopy_validated() ||
2232                 ac->is_copyof_validated() ||
2233                 ac->is_copyofrange_validated()) {
2234               es = PointsToNode::NoEscape;
2235             }
2236           }
2237           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2238           if (arg_is_arraycopy_dest) {
2239             Node* src = call->in(TypeFunc::Parms);
2240             if (src->is_AddP()) {
2241               src = get_addp_base(src);
2242             }
2243             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2244             assert(src_ptn != nullptr, "should be registered");
2245             if (arg_ptn != src_ptn) {
2246               // Special arraycopy edge:
2247               // A destination object's field can't have the source object
2248               // as base since objects escape states are not related.
2249               // Only escape state of destination object's fields affects
2250               // escape state of fields in source object.
2251               add_arraycopy(call, es, src_ptn, arg_ptn);
2252             }
2253           }
2254         }
2255       }
2256       break;
2257     }
2258     case Op_CallStaticJava: {
2259       // For a static call, we know exactly what method is being called.
2260       // Use bytecode estimator to record the call's escape affects
2261 #ifdef ASSERT
2262       const char* name = call->as_CallStaticJava()->_name;
2263       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2264 #endif
2265       ciMethod* meth = call->as_CallJava()->method();
2266       if ((meth != nullptr) && meth->is_boxing_method()) {
2267         break; // Boxing methods do not modify any oops.
2268       }
2269       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2270       // fall-through if not a Java method or no analyzer information
2271       if (call_analyzer != nullptr) {
2272         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2273         const TypeTuple* d = call->tf()->domain();
2274         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2275           const Type* at = d->field_at(i);
2276           int k = i - TypeFunc::Parms;
2277           Node* arg = call->in(i);
2278           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2279           if (at->isa_ptr() != nullptr &&
2280               call_analyzer->is_arg_returned(k)) {
2281             // The call returns arguments.
2282             if (call_ptn != nullptr) { // Is call's result used?
2283               assert(call_ptn->is_LocalVar(), "node should be registered");
2284               assert(arg_ptn != nullptr, "node should be registered");
2285               add_edge(call_ptn, arg_ptn);
2286             }
2287           }
2288           if (at->isa_oopptr() != nullptr &&
2289               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2290             if (!call_analyzer->is_arg_stack(k)) {
2291               // The argument global escapes
2292               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2293             } else {
2294               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2295               if (!call_analyzer->is_arg_local(k)) {
2296                 // The argument itself doesn't escape, but any fields might
2297                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2298               }
2299             }
2300           }
2301         }
2302         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2303           // The call returns arguments.
2304           assert(call_ptn->edge_count() > 0, "sanity");
2305           if (!call_analyzer->is_return_local()) {
2306             // Returns also unknown object.
2307             add_edge(call_ptn, phantom_obj);
2308           }
2309         }
2310         break;
2311       }
2312     }
2313     default: {
2314       // Fall-through here if not a Java method or no analyzer information
2315       // or some other type of call, assume the worst case: all arguments
2316       // globally escape.
2317       const TypeTuple* d = call->tf()->domain();
2318       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2319         const Type* at = d->field_at(i);
2320         if (at->isa_oopptr() != nullptr) {
2321           Node* arg = call->in(i);
2322           if (arg->is_AddP()) {
2323             arg = get_addp_base(arg);
2324           }
2325           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2326           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2327         }
2328       }
2329     }
2330   }
2331 }
2332 
2333 
2334 // Finish Graph construction.
2335 bool ConnectionGraph::complete_connection_graph(
2336                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2337                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2338                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2339                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2340   // Normally only 1-3 passes needed to build Connection Graph depending
2341   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2342   // Set limit to 20 to catch situation when something did go wrong and
2343   // bailout Escape Analysis.
2344   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2345 #define GRAPH_BUILD_ITER_LIMIT 20
2346 
2347   // Propagate GlobalEscape and ArgEscape escape states and check that
2348   // we still have non-escaping objects. The method pushs on _worklist
2349   // Field nodes which reference phantom_object.
2350   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2351     return false; // Nothing to do.
2352   }
2353   // Now propagate references to all JavaObject nodes.
2354   int java_objects_length = java_objects_worklist.length();
2355   elapsedTimer build_time;
2356   build_time.start();
2357   elapsedTimer time;
2358   bool timeout = false;
2359   int new_edges = 1;
2360   int iterations = 0;
2361   do {
2362     while ((new_edges > 0) &&
2363            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2364       double start_time = time.seconds();
2365       time.start();
2366       new_edges = 0;
2367       // Propagate references to phantom_object for nodes pushed on _worklist
2368       // by find_non_escaped_objects() and find_field_value().
2369       new_edges += add_java_object_edges(phantom_obj, false);
2370       for (int next = 0; next < java_objects_length; ++next) {
2371         JavaObjectNode* ptn = java_objects_worklist.at(next);
2372         new_edges += add_java_object_edges(ptn, true);
2373 
2374 #define SAMPLE_SIZE 4
2375         if ((next % SAMPLE_SIZE) == 0) {
2376           // Each 4 iterations calculate how much time it will take
2377           // to complete graph construction.
2378           time.stop();
2379           // Poll for requests from shutdown mechanism to quiesce compiler
2380           // because Connection graph construction may take long time.
2381           CompileBroker::maybe_block();
2382           double stop_time = time.seconds();
2383           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2384           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2385           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2386             timeout = true;
2387             break; // Timeout
2388           }
2389           start_time = stop_time;
2390           time.start();
2391         }
2392 #undef SAMPLE_SIZE
2393 
2394       }
2395       if (timeout) break;
2396       if (new_edges > 0) {
2397         // Update escape states on each iteration if graph was updated.
2398         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2399           return false; // Nothing to do.
2400         }
2401       }
2402       time.stop();
2403       if (time.seconds() >= EscapeAnalysisTimeout) {
2404         timeout = true;
2405         break;
2406       }
2407     }
2408     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2409       time.start();
2410       // Find fields which have unknown value.
2411       int fields_length = oop_fields_worklist.length();
2412       for (int next = 0; next < fields_length; next++) {
2413         FieldNode* field = oop_fields_worklist.at(next);
2414         if (field->edge_count() == 0) {
2415           new_edges += find_field_value(field);
2416           // This code may added new edges to phantom_object.
2417           // Need an other cycle to propagate references to phantom_object.
2418         }
2419       }
2420       time.stop();
2421       if (time.seconds() >= EscapeAnalysisTimeout) {
2422         timeout = true;
2423         break;
2424       }
2425     } else {
2426       new_edges = 0; // Bailout
2427     }
2428   } while (new_edges > 0);
2429 
2430   build_time.stop();
2431   _build_time = build_time.seconds();
2432   _build_iterations = iterations;
2433 
2434   // Bailout if passed limits.
2435   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2436     Compile* C = _compile;
2437     if (C->log() != nullptr) {
2438       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2439       C->log()->text("%s", timeout ? "time" : "iterations");
2440       C->log()->end_elem(" limit'");
2441     }
2442     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2443            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2444     // Possible infinite build_connection_graph loop,
2445     // bailout (no changes to ideal graph were made).
2446     return false;
2447   }
2448 
2449 #undef GRAPH_BUILD_ITER_LIMIT
2450 
2451   // Find fields initialized by null for non-escaping Allocations.
2452   int non_escaped_length = non_escaped_allocs_worklist.length();
2453   for (int next = 0; next < non_escaped_length; next++) {
2454     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2455     PointsToNode::EscapeState es = ptn->escape_state();
2456     assert(es <= PointsToNode::ArgEscape, "sanity");
2457     if (es == PointsToNode::NoEscape) {
2458       if (find_init_values_null(ptn, _igvn) > 0) {
2459         // Adding references to null object does not change escape states
2460         // since it does not escape. Also no fields are added to null object.
2461         add_java_object_edges(null_obj, false);
2462       }
2463     }
2464     Node* n = ptn->ideal_node();
2465     if (n->is_Allocate()) {
2466       // The object allocated by this Allocate node will never be
2467       // seen by an other thread. Mark it so that when it is
2468       // expanded no MemBarStoreStore is added.
2469       InitializeNode* ini = n->as_Allocate()->initialization();
2470       if (ini != nullptr)
2471         ini->set_does_not_escape();
2472     }
2473   }
2474   return true; // Finished graph construction.
2475 }
2476 
2477 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2478 // and check that we still have non-escaping java objects.
2479 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2480                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist) {
2481   GrowableArray<PointsToNode*> escape_worklist;
2482   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2483   int ptnodes_length = ptnodes_worklist.length();
2484   for (int next = 0; next < ptnodes_length; ++next) {
2485     PointsToNode* ptn = ptnodes_worklist.at(next);
2486     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2487         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2488       escape_worklist.push(ptn);
2489     }
2490   }
2491   // Set escape states to referenced nodes (edges list).
2492   while (escape_worklist.length() > 0) {
2493     PointsToNode* ptn = escape_worklist.pop();
2494     PointsToNode::EscapeState es  = ptn->escape_state();
2495     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2496     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2497         es >= PointsToNode::ArgEscape) {
2498       // GlobalEscape or ArgEscape state of field means it has unknown value.
2499       if (add_edge(ptn, phantom_obj)) {
2500         // New edge was added
2501         add_field_uses_to_worklist(ptn->as_Field());
2502       }
2503     }
2504     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2505       PointsToNode* e = i.get();
2506       if (e->is_Arraycopy()) {
2507         assert(ptn->arraycopy_dst(), "sanity");
2508         // Propagate only fields escape state through arraycopy edge.
2509         if (e->fields_escape_state() < field_es) {
2510           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2511           escape_worklist.push(e);
2512         }
2513       } else if (es >= field_es) {
2514         // fields_escape_state is also set to 'es' if it is less than 'es'.
2515         if (e->escape_state() < es) {
2516           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2517           escape_worklist.push(e);
2518         }
2519       } else {
2520         // Propagate field escape state.
2521         bool es_changed = false;
2522         if (e->fields_escape_state() < field_es) {
2523           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2524           es_changed = true;
2525         }
2526         if ((e->escape_state() < field_es) &&
2527             e->is_Field() && ptn->is_JavaObject() &&
2528             e->as_Field()->is_oop()) {
2529           // Change escape state of referenced fields.
2530           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2531           es_changed = true;
2532         } else if (e->escape_state() < es) {
2533           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2534           es_changed = true;
2535         }
2536         if (es_changed) {
2537           escape_worklist.push(e);
2538         }
2539       }
2540     }
2541   }
2542   // Remove escaped objects from non_escaped list.
2543   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2544     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2545     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2546       non_escaped_allocs_worklist.delete_at(next);
2547     }
2548     if (ptn->escape_state() == PointsToNode::NoEscape) {
2549       // Find fields in non-escaped allocations which have unknown value.
2550       find_init_values_phantom(ptn);
2551     }
2552   }
2553   return (non_escaped_allocs_worklist.length() > 0);
2554 }
2555 
2556 // Add all references to JavaObject node by walking over all uses.
2557 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2558   int new_edges = 0;
2559   if (populate_worklist) {
2560     // Populate _worklist by uses of jobj's uses.
2561     for (UseIterator i(jobj); i.has_next(); i.next()) {
2562       PointsToNode* use = i.get();
2563       if (use->is_Arraycopy()) {
2564         continue;
2565       }
2566       add_uses_to_worklist(use);
2567       if (use->is_Field() && use->as_Field()->is_oop()) {
2568         // Put on worklist all field's uses (loads) and
2569         // related field nodes (same base and offset).
2570         add_field_uses_to_worklist(use->as_Field());
2571       }
2572     }
2573   }
2574   for (int l = 0; l < _worklist.length(); l++) {
2575     PointsToNode* use = _worklist.at(l);
2576     if (PointsToNode::is_base_use(use)) {
2577       // Add reference from jobj to field and from field to jobj (field's base).
2578       use = PointsToNode::get_use_node(use)->as_Field();
2579       if (add_base(use->as_Field(), jobj)) {
2580         new_edges++;
2581       }
2582       continue;
2583     }
2584     assert(!use->is_JavaObject(), "sanity");
2585     if (use->is_Arraycopy()) {
2586       if (jobj == null_obj) { // null object does not have field edges
2587         continue;
2588       }
2589       // Added edge from Arraycopy node to arraycopy's source java object
2590       if (add_edge(use, jobj)) {
2591         jobj->set_arraycopy_src();
2592         new_edges++;
2593       }
2594       // and stop here.
2595       continue;
2596     }
2597     if (!add_edge(use, jobj)) {
2598       continue; // No new edge added, there was such edge already.
2599     }
2600     new_edges++;
2601     if (use->is_LocalVar()) {
2602       add_uses_to_worklist(use);
2603       if (use->arraycopy_dst()) {
2604         for (EdgeIterator i(use); i.has_next(); i.next()) {
2605           PointsToNode* e = i.get();
2606           if (e->is_Arraycopy()) {
2607             if (jobj == null_obj) { // null object does not have field edges
2608               continue;
2609             }
2610             // Add edge from arraycopy's destination java object to Arraycopy node.
2611             if (add_edge(jobj, e)) {
2612               new_edges++;
2613               jobj->set_arraycopy_dst();
2614             }
2615           }
2616         }
2617       }
2618     } else {
2619       // Added new edge to stored in field values.
2620       // Put on worklist all field's uses (loads) and
2621       // related field nodes (same base and offset).
2622       add_field_uses_to_worklist(use->as_Field());
2623     }
2624   }
2625   _worklist.clear();
2626   _in_worklist.reset();
2627   return new_edges;
2628 }
2629 
2630 // Put on worklist all related field nodes.
2631 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2632   assert(field->is_oop(), "sanity");
2633   int offset = field->offset();
2634   add_uses_to_worklist(field);
2635   // Loop over all bases of this field and push on worklist Field nodes
2636   // with the same offset and base (since they may reference the same field).
2637   for (BaseIterator i(field); i.has_next(); i.next()) {
2638     PointsToNode* base = i.get();
2639     add_fields_to_worklist(field, base);
2640     // Check if the base was source object of arraycopy and go over arraycopy's
2641     // destination objects since values stored to a field of source object are
2642     // accessible by uses (loads) of fields of destination objects.
2643     if (base->arraycopy_src()) {
2644       for (UseIterator j(base); j.has_next(); j.next()) {
2645         PointsToNode* arycp = j.get();
2646         if (arycp->is_Arraycopy()) {
2647           for (UseIterator k(arycp); k.has_next(); k.next()) {
2648             PointsToNode* abase = k.get();
2649             if (abase->arraycopy_dst() && abase != base) {
2650               // Look for the same arraycopy reference.
2651               add_fields_to_worklist(field, abase);
2652             }
2653           }
2654         }
2655       }
2656     }
2657   }
2658 }
2659 
2660 // Put on worklist all related field nodes.
2661 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2662   int offset = field->offset();
2663   if (base->is_LocalVar()) {
2664     for (UseIterator j(base); j.has_next(); j.next()) {
2665       PointsToNode* f = j.get();
2666       if (PointsToNode::is_base_use(f)) { // Field
2667         f = PointsToNode::get_use_node(f);
2668         if (f == field || !f->as_Field()->is_oop()) {
2669           continue;
2670         }
2671         int offs = f->as_Field()->offset();
2672         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2673           add_to_worklist(f);
2674         }
2675       }
2676     }
2677   } else {
2678     assert(base->is_JavaObject(), "sanity");
2679     if (// Skip phantom_object since it is only used to indicate that
2680         // this field's content globally escapes.
2681         (base != phantom_obj) &&
2682         // null object node does not have fields.
2683         (base != null_obj)) {
2684       for (EdgeIterator i(base); i.has_next(); i.next()) {
2685         PointsToNode* f = i.get();
2686         // Skip arraycopy edge since store to destination object field
2687         // does not update value in source object field.
2688         if (f->is_Arraycopy()) {
2689           assert(base->arraycopy_dst(), "sanity");
2690           continue;
2691         }
2692         if (f == field || !f->as_Field()->is_oop()) {
2693           continue;
2694         }
2695         int offs = f->as_Field()->offset();
2696         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2697           add_to_worklist(f);
2698         }
2699       }
2700     }
2701   }
2702 }
2703 
2704 // Find fields which have unknown value.
2705 int ConnectionGraph::find_field_value(FieldNode* field) {
2706   // Escaped fields should have init value already.
2707   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2708   int new_edges = 0;
2709   for (BaseIterator i(field); i.has_next(); i.next()) {
2710     PointsToNode* base = i.get();
2711     if (base->is_JavaObject()) {
2712       // Skip Allocate's fields which will be processed later.
2713       if (base->ideal_node()->is_Allocate()) {
2714         return 0;
2715       }
2716       assert(base == null_obj, "only null ptr base expected here");
2717     }
2718   }
2719   if (add_edge(field, phantom_obj)) {
2720     // New edge was added
2721     new_edges++;
2722     add_field_uses_to_worklist(field);
2723   }
2724   return new_edges;
2725 }
2726 
2727 // Find fields initializing values for allocations.
2728 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2729   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2730   Node* alloc = pta->ideal_node();
2731 
2732   // Do nothing for Allocate nodes since its fields values are
2733   // "known" unless they are initialized by arraycopy/clone.
2734   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2735     return 0;
2736   }
2737   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
2738 #ifdef ASSERT
2739   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2740     const char* name = alloc->as_CallStaticJava()->_name;
2741     assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
2742   }
2743 #endif
2744   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2745   int new_edges = 0;
2746   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2747     PointsToNode* field = i.get();
2748     if (field->is_Field() && field->as_Field()->is_oop()) {
2749       if (add_edge(field, phantom_obj)) {
2750         // New edge was added
2751         new_edges++;
2752         add_field_uses_to_worklist(field->as_Field());
2753       }
2754     }
2755   }
2756   return new_edges;
2757 }
2758 
2759 // Find fields initializing values for allocations.
2760 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2761   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2762   Node* alloc = pta->ideal_node();
2763   // Do nothing for Call nodes since its fields values are unknown.
2764   if (!alloc->is_Allocate()) {
2765     return 0;
2766   }
2767   InitializeNode* ini = alloc->as_Allocate()->initialization();
2768   bool visited_bottom_offset = false;
2769   GrowableArray<int> offsets_worklist;
2770   int new_edges = 0;
2771 
2772   // Check if an oop field's initializing value is recorded and add
2773   // a corresponding null if field's value if it is not recorded.
2774   // Connection Graph does not record a default initialization by null
2775   // captured by Initialize node.
2776   //
2777   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2778     PointsToNode* field = i.get(); // Field (AddP)
2779     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2780       continue; // Not oop field
2781     }
2782     int offset = field->as_Field()->offset();
2783     if (offset == Type::OffsetBot) {
2784       if (!visited_bottom_offset) {
2785         // OffsetBot is used to reference array's element,
2786         // always add reference to null to all Field nodes since we don't
2787         // known which element is referenced.
2788         if (add_edge(field, null_obj)) {
2789           // New edge was added
2790           new_edges++;
2791           add_field_uses_to_worklist(field->as_Field());
2792           visited_bottom_offset = true;
2793         }
2794       }
2795     } else {
2796       // Check only oop fields.
2797       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2798       if (adr_type->isa_rawptr()) {
2799 #ifdef ASSERT
2800         // Raw pointers are used for initializing stores so skip it
2801         // since it should be recorded already
2802         Node* base = get_addp_base(field->ideal_node());
2803         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2804 #endif
2805         continue;
2806       }
2807       if (!offsets_worklist.contains(offset)) {
2808         offsets_worklist.append(offset);
2809         Node* value = nullptr;
2810         if (ini != nullptr) {
2811           // StoreP::memory_type() == T_ADDRESS
2812           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2813           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2814           // Make sure initializing store has the same type as this AddP.
2815           // This AddP may reference non existing field because it is on a
2816           // dead branch of bimorphic call which is not eliminated yet.
2817           if (store != nullptr && store->is_Store() &&
2818               store->as_Store()->memory_type() == ft) {
2819             value = store->in(MemNode::ValueIn);
2820 #ifdef ASSERT
2821             if (VerifyConnectionGraph) {
2822               // Verify that AddP already points to all objects the value points to.
2823               PointsToNode* val = ptnode_adr(value->_idx);
2824               assert((val != nullptr), "should be processed already");
2825               PointsToNode* missed_obj = nullptr;
2826               if (val->is_JavaObject()) {
2827                 if (!field->points_to(val->as_JavaObject())) {
2828                   missed_obj = val;
2829                 }
2830               } else {
2831                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2832                   tty->print_cr("----------init store has invalid value -----");
2833                   store->dump();
2834                   val->dump();
2835                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2836                 }
2837                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2838                   PointsToNode* obj = j.get();
2839                   if (obj->is_JavaObject()) {
2840                     if (!field->points_to(obj->as_JavaObject())) {
2841                       missed_obj = obj;
2842                       break;
2843                     }
2844                   }
2845                 }
2846               }
2847               if (missed_obj != nullptr) {
2848                 tty->print_cr("----------field---------------------------------");
2849                 field->dump();
2850                 tty->print_cr("----------missed referernce to object-----------");
2851                 missed_obj->dump();
2852                 tty->print_cr("----------object referernced by init store -----");
2853                 store->dump();
2854                 val->dump();
2855                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2856               }
2857             }
2858 #endif
2859           } else {
2860             // There could be initializing stores which follow allocation.
2861             // For example, a volatile field store is not collected
2862             // by Initialize node.
2863             //
2864             // Need to check for dependent loads to separate such stores from
2865             // stores which follow loads. For now, add initial value null so
2866             // that compare pointers optimization works correctly.
2867           }
2868         }
2869         if (value == nullptr) {
2870           // A field's initializing value was not recorded. Add null.
2871           if (add_edge(field, null_obj)) {
2872             // New edge was added
2873             new_edges++;
2874             add_field_uses_to_worklist(field->as_Field());
2875           }
2876         }
2877       }
2878     }
2879   }
2880   return new_edges;
2881 }
2882 
2883 // Adjust scalar_replaceable state after Connection Graph is built.
2884 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2885   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2886   // returns true. If one of the constraints in this method set 'jobj' to NSR
2887   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2888   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2889   // that other object and the Phi will become a reducible Phi.
2890   // There could be multiple merges involving the same jobj.
2891   Unique_Node_List candidates;
2892 
2893   // Search for non-escaping objects which are not scalar replaceable
2894   // and mark them to propagate the state to referenced objects.
2895 
2896   for (UseIterator i(jobj); i.has_next(); i.next()) {
2897     PointsToNode* use = i.get();
2898     if (use->is_Arraycopy()) {
2899       continue;
2900     }
2901     if (use->is_Field()) {
2902       FieldNode* field = use->as_Field();
2903       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2904       // 1. An object is not scalar replaceable if the field into which it is
2905       // stored has unknown offset (stored into unknown element of an array).
2906       if (field->offset() == Type::OffsetBot) {
2907         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2908         return;
2909       }
2910       for (BaseIterator i(field); i.has_next(); i.next()) {
2911         PointsToNode* base = i.get();
2912         // 2. An object is not scalar replaceable if the field into which it is
2913         // stored has multiple bases one of which is null.
2914         if ((base == null_obj) && (field->base_count() > 1)) {
2915           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2916           return;
2917         }
2918         // 2.5. An object is not scalar replaceable if the field into which it is
2919         // stored has NSR base.
2920         if (!base->scalar_replaceable()) {
2921           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2922           return;
2923         }
2924       }
2925     }
2926     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2927     // 3. An object is not scalar replaceable if it is merged with other objects
2928     // and we can't remove the merge
2929     for (EdgeIterator j(use); j.has_next(); j.next()) {
2930       PointsToNode* ptn = j.get();
2931       if (ptn->is_JavaObject() && ptn != jobj) {
2932         Node* use_n = use->ideal_node();
2933 
2934         // These other local vars may point to multiple objects through a Phi
2935         // In this case we skip them and see if we can reduce the Phi.
2936         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
2937           use_n = use_n->in(1);
2938         }
2939 
2940         // If it's already a candidate or confirmed reducible merge we can skip verification
2941         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
2942           continue;
2943         }
2944 
2945         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
2946           candidates.push(use_n);
2947         } else {
2948           // Mark all objects as NSR if we can't remove the merge
2949           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
2950           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
2951         }
2952       }
2953     }
2954     if (!jobj->scalar_replaceable()) {
2955       return;
2956     }
2957   }
2958 
2959   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
2960     if (j.get()->is_Arraycopy()) {
2961       continue;
2962     }
2963 
2964     // Non-escaping object node should point only to field nodes.
2965     FieldNode* field = j.get()->as_Field();
2966     int offset = field->as_Field()->offset();
2967 
2968     // 4. An object is not scalar replaceable if it has a field with unknown
2969     // offset (array's element is accessed in loop).
2970     if (offset == Type::OffsetBot) {
2971       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
2972       return;
2973     }
2974     // 5. Currently an object is not scalar replaceable if a LoadStore node
2975     // access its field since the field value is unknown after it.
2976     //
2977     Node* n = field->ideal_node();
2978 
2979     // Test for an unsafe access that was parsed as maybe off heap
2980     // (with a CheckCastPP to raw memory).
2981     assert(n->is_AddP(), "expect an address computation");
2982     if (n->in(AddPNode::Base)->is_top() &&
2983         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
2984       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
2985       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
2986       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
2987       return;
2988     }
2989 
2990     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2991       Node* u = n->fast_out(i);
2992       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
2993         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
2994         return;
2995       }
2996     }
2997 
2998     // 6. Or the address may point to more then one object. This may produce
2999     // the false positive result (set not scalar replaceable)
3000     // since the flow-insensitive escape analysis can't separate
3001     // the case when stores overwrite the field's value from the case
3002     // when stores happened on different control branches.
3003     //
3004     // Note: it will disable scalar replacement in some cases:
3005     //
3006     //    Point p[] = new Point[1];
3007     //    p[0] = new Point(); // Will be not scalar replaced
3008     //
3009     // but it will save us from incorrect optimizations in next cases:
3010     //
3011     //    Point p[] = new Point[1];
3012     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3013     //
3014     if (field->base_count() > 1 && candidates.size() == 0) {
3015       if (has_non_reducible_merge(field, reducible_merges)) {
3016         for (BaseIterator i(field); i.has_next(); i.next()) {
3017           PointsToNode* base = i.get();
3018           // Don't take into account LocalVar nodes which
3019           // may point to only one object which should be also
3020           // this field's base by now.
3021           if (base->is_JavaObject() && base != jobj) {
3022             // Mark all bases.
3023             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3024             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3025           }
3026         }
3027 
3028         if (!jobj->scalar_replaceable()) {
3029           return;
3030         }
3031       }
3032     }
3033   }
3034 
3035   // The candidate is truly a reducible merge only if none of the other
3036   // constraints ruled it as NSR. There could be multiple merges involving the
3037   // same jobj.
3038   assert(jobj->scalar_replaceable(), "sanity");
3039   for (uint i = 0; i < candidates.size(); i++ ) {
3040     Node* candidate = candidates.at(i);
3041     reducible_merges.push(candidate);
3042   }
3043 }
3044 
3045 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3046   for (BaseIterator i(field); i.has_next(); i.next()) {
3047     Node* base = i.get()->ideal_node();
3048     if (base->is_Phi() && !reducible_merges.member(base)) {
3049       return true;
3050     }
3051   }
3052   return false;
3053 }
3054 
3055 // Propagate NSR (Not scalar replaceable) state.
3056 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist) {
3057   int jobj_length = jobj_worklist.length();
3058   bool found_nsr_alloc = true;
3059   while (found_nsr_alloc) {
3060     found_nsr_alloc = false;
3061     for (int next = 0; next < jobj_length; ++next) {
3062       JavaObjectNode* jobj = jobj_worklist.at(next);
3063       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3064         PointsToNode* use = i.get();
3065         if (use->is_Field()) {
3066           FieldNode* field = use->as_Field();
3067           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3068           assert(field->offset() != Type::OffsetBot, "sanity");
3069           for (BaseIterator i(field); i.has_next(); i.next()) {
3070             PointsToNode* base = i.get();
3071             // An object is not scalar replaceable if the field into which
3072             // it is stored has NSR base.
3073             if ((base != null_obj) && !base->scalar_replaceable()) {
3074               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3075               found_nsr_alloc = true;
3076               break;
3077             }
3078           }
3079         }
3080       }
3081     }
3082   }
3083 }
3084 
3085 #ifdef ASSERT
3086 void ConnectionGraph::verify_connection_graph(
3087                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3088                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3089                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3090                          GrowableArray<Node*>& addp_worklist) {
3091   // Verify that graph is complete - no new edges could be added.
3092   int java_objects_length = java_objects_worklist.length();
3093   int non_escaped_length  = non_escaped_allocs_worklist.length();
3094   int new_edges = 0;
3095   for (int next = 0; next < java_objects_length; ++next) {
3096     JavaObjectNode* ptn = java_objects_worklist.at(next);
3097     new_edges += add_java_object_edges(ptn, true);
3098   }
3099   assert(new_edges == 0, "graph was not complete");
3100   // Verify that escape state is final.
3101   int length = non_escaped_allocs_worklist.length();
3102   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist);
3103   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3104          (non_escaped_length == length) &&
3105          (_worklist.length() == 0), "escape state was not final");
3106 
3107   // Verify fields information.
3108   int addp_length = addp_worklist.length();
3109   for (int next = 0; next < addp_length; ++next ) {
3110     Node* n = addp_worklist.at(next);
3111     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3112     if (field->is_oop()) {
3113       // Verify that field has all bases
3114       Node* base = get_addp_base(n);
3115       PointsToNode* ptn = ptnode_adr(base->_idx);
3116       if (ptn->is_JavaObject()) {
3117         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3118       } else {
3119         assert(ptn->is_LocalVar(), "sanity");
3120         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3121           PointsToNode* e = i.get();
3122           if (e->is_JavaObject()) {
3123             assert(field->has_base(e->as_JavaObject()), "sanity");
3124           }
3125         }
3126       }
3127       // Verify that all fields have initializing values.
3128       if (field->edge_count() == 0) {
3129         tty->print_cr("----------field does not have references----------");
3130         field->dump();
3131         for (BaseIterator i(field); i.has_next(); i.next()) {
3132           PointsToNode* base = i.get();
3133           tty->print_cr("----------field has next base---------------------");
3134           base->dump();
3135           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3136             tty->print_cr("----------base has fields-------------------------");
3137             for (EdgeIterator j(base); j.has_next(); j.next()) {
3138               j.get()->dump();
3139             }
3140             tty->print_cr("----------base has references---------------------");
3141             for (UseIterator j(base); j.has_next(); j.next()) {
3142               j.get()->dump();
3143             }
3144           }
3145         }
3146         for (UseIterator i(field); i.has_next(); i.next()) {
3147           i.get()->dump();
3148         }
3149         assert(field->edge_count() > 0, "sanity");
3150       }
3151     }
3152   }
3153 }
3154 #endif
3155 
3156 // Optimize ideal graph.
3157 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3158                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3159   Compile* C = _compile;
3160   PhaseIterGVN* igvn = _igvn;
3161   if (EliminateLocks) {
3162     // Mark locks before changing ideal graph.
3163     int cnt = C->macro_count();
3164     for (int i = 0; i < cnt; i++) {
3165       Node *n = C->macro_node(i);
3166       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3167         AbstractLockNode* alock = n->as_AbstractLock();
3168         if (!alock->is_non_esc_obj()) {
3169           if (can_eliminate_lock(alock)) {
3170             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3171             // The lock could be marked eliminated by lock coarsening
3172             // code during first IGVN before EA. Replace coarsened flag
3173             // to eliminate all associated locks/unlocks.
3174 #ifdef ASSERT
3175             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3176 #endif
3177             alock->set_non_esc_obj();
3178           }
3179         }
3180       }
3181     }
3182   }
3183 
3184   if (OptimizePtrCompare) {
3185     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3186       Node *n = ptr_cmp_worklist.at(i);
3187       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3188       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3189       if (tcmp->singleton()) {
3190         Node* cmp = igvn->makecon(tcmp);
3191 #ifndef PRODUCT
3192         if (PrintOptimizePtrCompare) {
3193           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3194           if (Verbose) {
3195             n->dump(1);
3196           }
3197         }
3198 #endif
3199         igvn->replace_node(n, cmp);
3200       }
3201     }
3202   }
3203 
3204   // For MemBarStoreStore nodes added in library_call.cpp, check
3205   // escape status of associated AllocateNode and optimize out
3206   // MemBarStoreStore node if the allocated object never escapes.
3207   for (int i = 0; i < storestore_worklist.length(); i++) {
3208     Node* storestore = storestore_worklist.at(i);
3209     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3210     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3211       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3212       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3213       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3214       igvn->register_new_node_with_optimizer(mb);
3215       igvn->replace_node(storestore, mb);
3216     }
3217   }
3218 }
3219 
3220 // Optimize objects compare.
3221 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3222   assert(OptimizePtrCompare, "sanity");
3223   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3224   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3225   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3226 
3227   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3228   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3229   JavaObjectNode* jobj1 = unique_java_object(left);
3230   JavaObjectNode* jobj2 = unique_java_object(right);
3231 
3232   // The use of this method during allocation merge reduction may cause 'left'
3233   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3234   // that doesn't reference an unique java object.
3235   if (ptn1 == nullptr || ptn2 == nullptr ||
3236       jobj1 == nullptr || jobj2 == nullptr) {
3237     return UNKNOWN;
3238   }
3239 
3240   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3241   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3242 
3243   // Check simple cases first.
3244   if (jobj1 != nullptr) {
3245     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3246       if (jobj1 == jobj2) {
3247         // Comparing the same not escaping object.
3248         return EQ;
3249       }
3250       Node* obj = jobj1->ideal_node();
3251       // Comparing not escaping allocation.
3252       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3253           !ptn2->points_to(jobj1)) {
3254         return NE; // This includes nullness check.
3255       }
3256     }
3257   }
3258   if (jobj2 != nullptr) {
3259     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3260       Node* obj = jobj2->ideal_node();
3261       // Comparing not escaping allocation.
3262       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3263           !ptn1->points_to(jobj2)) {
3264         return NE; // This includes nullness check.
3265       }
3266     }
3267   }
3268   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3269       jobj2 != nullptr && jobj2 != phantom_obj &&
3270       jobj1->ideal_node()->is_Con() &&
3271       jobj2->ideal_node()->is_Con()) {
3272     // Klass or String constants compare. Need to be careful with
3273     // compressed pointers - compare types of ConN and ConP instead of nodes.
3274     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3275     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3276     if (t1->make_ptr() == t2->make_ptr()) {
3277       return EQ;
3278     } else {
3279       return NE;
3280     }
3281   }
3282   if (ptn1->meet(ptn2)) {
3283     return UNKNOWN; // Sets are not disjoint
3284   }
3285 
3286   // Sets are disjoint.
3287   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3288   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3289   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3290   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3291   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3292       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3293     // Check nullness of unknown object.
3294     return UNKNOWN;
3295   }
3296 
3297   // Disjointness by itself is not sufficient since
3298   // alias analysis is not complete for escaped objects.
3299   // Disjoint sets are definitely unrelated only when
3300   // at least one set has only not escaping allocations.
3301   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3302     if (ptn1->non_escaping_allocation()) {
3303       return NE;
3304     }
3305   }
3306   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3307     if (ptn2->non_escaping_allocation()) {
3308       return NE;
3309     }
3310   }
3311   return UNKNOWN;
3312 }
3313 
3314 // Connection Graph construction functions.
3315 
3316 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3317   PointsToNode* ptadr = _nodes.at(n->_idx);
3318   if (ptadr != nullptr) {
3319     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3320     return;
3321   }
3322   Compile* C = _compile;
3323   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3324   map_ideal_node(n, ptadr);
3325 }
3326 
3327 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3328   PointsToNode* ptadr = _nodes.at(n->_idx);
3329   if (ptadr != nullptr) {
3330     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3331     return ptadr;
3332   }
3333   Compile* C = _compile;
3334   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3335   map_ideal_node(n, ptadr);
3336   return ptadr;
3337 }
3338 
3339 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3340   PointsToNode* ptadr = _nodes.at(n->_idx);
3341   if (ptadr != nullptr) {
3342     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3343     return;
3344   }
3345   bool unsafe = false;
3346   bool is_oop = is_oop_field(n, offset, &unsafe);
3347   if (unsafe) {
3348     es = PointsToNode::GlobalEscape;
3349   }
3350   Compile* C = _compile;
3351   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3352   map_ideal_node(n, field);
3353 }
3354 
3355 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3356                                     PointsToNode* src, PointsToNode* dst) {
3357   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3358   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3359   PointsToNode* ptadr = _nodes.at(n->_idx);
3360   if (ptadr != nullptr) {
3361     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3362     return;
3363   }
3364   Compile* C = _compile;
3365   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3366   map_ideal_node(n, ptadr);
3367   // Add edge from arraycopy node to source object.
3368   (void)add_edge(ptadr, src);
3369   src->set_arraycopy_src();
3370   // Add edge from destination object to arraycopy node.
3371   (void)add_edge(dst, ptadr);
3372   dst->set_arraycopy_dst();
3373 }
3374 
3375 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3376   const Type* adr_type = n->as_AddP()->bottom_type();
3377   BasicType bt = T_INT;
3378   if (offset == Type::OffsetBot) {
3379     // Check only oop fields.
3380     if (!adr_type->isa_aryptr() ||
3381         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3382         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3383       // OffsetBot is used to reference array's element. Ignore first AddP.
3384       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3385         bt = T_OBJECT;
3386       }
3387     }
3388   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3389     if (adr_type->isa_instptr()) {
3390       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3391       if (field != nullptr) {
3392         bt = field->layout_type();
3393       } else {
3394         // Check for unsafe oop field access
3395         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3396             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3397             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3398             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3399           bt = T_OBJECT;
3400           (*unsafe) = true;
3401         }
3402       }
3403     } else if (adr_type->isa_aryptr()) {
3404       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3405         // Ignore array length load.
3406       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3407         // Ignore first AddP.
3408       } else {
3409         const Type* elemtype = adr_type->isa_aryptr()->elem();
3410         bt = elemtype->array_element_basic_type();
3411       }
3412     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3413       // Allocation initialization, ThreadLocal field access, unsafe access
3414       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3415           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3416           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3417           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3418         bt = T_OBJECT;
3419       }
3420     }
3421   }
3422   // Note: T_NARROWOOP is not classed as a real reference type
3423   return (is_reference_type(bt) || bt == T_NARROWOOP);
3424 }
3425 
3426 // Returns unique pointed java object or null.
3427 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3428   // If the node was created after the escape computation we can't answer.
3429   uint idx = n->_idx;
3430   if (idx >= nodes_size()) {
3431     return nullptr;
3432   }
3433   PointsToNode* ptn = ptnode_adr(idx);
3434   if (ptn == nullptr) {
3435     return nullptr;
3436   }
3437   if (ptn->is_JavaObject()) {
3438     return ptn->as_JavaObject();
3439   }
3440   assert(ptn->is_LocalVar(), "sanity");
3441   // Check all java objects it points to.
3442   JavaObjectNode* jobj = nullptr;
3443   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3444     PointsToNode* e = i.get();
3445     if (e->is_JavaObject()) {
3446       if (jobj == nullptr) {
3447         jobj = e->as_JavaObject();
3448       } else if (jobj != e) {
3449         return nullptr;
3450       }
3451     }
3452   }
3453   return jobj;
3454 }
3455 
3456 // Return true if this node points only to non-escaping allocations.
3457 bool PointsToNode::non_escaping_allocation() {
3458   if (is_JavaObject()) {
3459     Node* n = ideal_node();
3460     if (n->is_Allocate() || n->is_CallStaticJava()) {
3461       return (escape_state() == PointsToNode::NoEscape);
3462     } else {
3463       return false;
3464     }
3465   }
3466   assert(is_LocalVar(), "sanity");
3467   // Check all java objects it points to.
3468   for (EdgeIterator i(this); i.has_next(); i.next()) {
3469     PointsToNode* e = i.get();
3470     if (e->is_JavaObject()) {
3471       Node* n = e->ideal_node();
3472       if ((e->escape_state() != PointsToNode::NoEscape) ||
3473           !(n->is_Allocate() || n->is_CallStaticJava())) {
3474         return false;
3475       }
3476     }
3477   }
3478   return true;
3479 }
3480 
3481 // Return true if we know the node does not escape globally.
3482 bool ConnectionGraph::not_global_escape(Node *n) {
3483   assert(!_collecting, "should not call during graph construction");
3484   // If the node was created after the escape computation we can't answer.
3485   uint idx = n->_idx;
3486   if (idx >= nodes_size()) {
3487     return false;
3488   }
3489   PointsToNode* ptn = ptnode_adr(idx);
3490   if (ptn == nullptr) {
3491     return false; // not in congraph (e.g. ConI)
3492   }
3493   PointsToNode::EscapeState es = ptn->escape_state();
3494   // If we have already computed a value, return it.
3495   if (es >= PointsToNode::GlobalEscape) {
3496     return false;
3497   }
3498   if (ptn->is_JavaObject()) {
3499     return true; // (es < PointsToNode::GlobalEscape);
3500   }
3501   assert(ptn->is_LocalVar(), "sanity");
3502   // Check all java objects it points to.
3503   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3504     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3505       return false;
3506     }
3507   }
3508   return true;
3509 }
3510 
3511 // Return true if locked object does not escape globally
3512 // and locked code region (identified by BoxLockNode) is balanced:
3513 // all compiled code paths have corresponding Lock/Unlock pairs.
3514 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3515   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3516     if (EliminateNestedLocks) {
3517       // We can mark whole locking region as Local only when only
3518       // one object is used for locking.
3519       alock->box_node()->as_BoxLock()->set_local();
3520     }
3521     return true;
3522   }
3523   return false;
3524 }
3525 
3526 // Helper functions
3527 
3528 // Return true if this node points to specified node or nodes it points to.
3529 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3530   if (is_JavaObject()) {
3531     return (this == ptn);
3532   }
3533   assert(is_LocalVar() || is_Field(), "sanity");
3534   for (EdgeIterator i(this); i.has_next(); i.next()) {
3535     if (i.get() == ptn) {
3536       return true;
3537     }
3538   }
3539   return false;
3540 }
3541 
3542 // Return true if one node points to an other.
3543 bool PointsToNode::meet(PointsToNode* ptn) {
3544   if (this == ptn) {
3545     return true;
3546   } else if (ptn->is_JavaObject()) {
3547     return this->points_to(ptn->as_JavaObject());
3548   } else if (this->is_JavaObject()) {
3549     return ptn->points_to(this->as_JavaObject());
3550   }
3551   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3552   int ptn_count =  ptn->edge_count();
3553   for (EdgeIterator i(this); i.has_next(); i.next()) {
3554     PointsToNode* this_e = i.get();
3555     for (int j = 0; j < ptn_count; j++) {
3556       if (this_e == ptn->edge(j)) {
3557         return true;
3558       }
3559     }
3560   }
3561   return false;
3562 }
3563 
3564 #ifdef ASSERT
3565 // Return true if bases point to this java object.
3566 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3567   for (BaseIterator i(this); i.has_next(); i.next()) {
3568     if (i.get() == jobj) {
3569       return true;
3570     }
3571   }
3572   return false;
3573 }
3574 #endif
3575 
3576 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3577   // Handle simple case first.
3578   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3579   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3580     return true;
3581   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3582     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3583       Node* addp_use = addp->fast_out(i);
3584       if (addp_use->is_Store()) {
3585         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3586           if (addp_use->fast_out(j)->is_Initialize()) {
3587             return true;
3588           }
3589         }
3590       }
3591     }
3592   }
3593   return false;
3594 }
3595 
3596 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3597   const Type *adr_type = phase->type(adr);
3598   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3599     // We are computing a raw address for a store captured by an Initialize
3600     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3601     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3602     assert(offs != Type::OffsetBot ||
3603            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3604            "offset must be a constant or it is initialization of array");
3605     return offs;
3606   }
3607   const TypePtr *t_ptr = adr_type->isa_ptr();
3608   assert(t_ptr != nullptr, "must be a pointer type");
3609   return t_ptr->offset();
3610 }
3611 
3612 Node* ConnectionGraph::get_addp_base(Node *addp) {
3613   assert(addp->is_AddP(), "must be AddP");
3614   //
3615   // AddP cases for Base and Address inputs:
3616   // case #1. Direct object's field reference:
3617   //     Allocate
3618   //       |
3619   //     Proj #5 ( oop result )
3620   //       |
3621   //     CheckCastPP (cast to instance type)
3622   //      | |
3623   //     AddP  ( base == address )
3624   //
3625   // case #2. Indirect object's field reference:
3626   //      Phi
3627   //       |
3628   //     CastPP (cast to instance type)
3629   //      | |
3630   //     AddP  ( base == address )
3631   //
3632   // case #3. Raw object's field reference for Initialize node:
3633   //      Allocate
3634   //        |
3635   //      Proj #5 ( oop result )
3636   //  top   |
3637   //     \  |
3638   //     AddP  ( base == top )
3639   //
3640   // case #4. Array's element reference:
3641   //   {CheckCastPP | CastPP}
3642   //     |  | |
3643   //     |  AddP ( array's element offset )
3644   //     |  |
3645   //     AddP ( array's offset )
3646   //
3647   // case #5. Raw object's field reference for arraycopy stub call:
3648   //          The inline_native_clone() case when the arraycopy stub is called
3649   //          after the allocation before Initialize and CheckCastPP nodes.
3650   //      Allocate
3651   //        |
3652   //      Proj #5 ( oop result )
3653   //       | |
3654   //       AddP  ( base == address )
3655   //
3656   // case #6. Constant Pool, ThreadLocal, CastX2P or
3657   //          Raw object's field reference:
3658   //      {ConP, ThreadLocal, CastX2P, raw Load}
3659   //  top   |
3660   //     \  |
3661   //     AddP  ( base == top )
3662   //
3663   // case #7. Klass's field reference.
3664   //      LoadKlass
3665   //       | |
3666   //       AddP  ( base == address )
3667   //
3668   // case #8. narrow Klass's field reference.
3669   //      LoadNKlass
3670   //       |
3671   //      DecodeN
3672   //       | |
3673   //       AddP  ( base == address )
3674   //
3675   // case #9. Mixed unsafe access
3676   //    {instance}
3677   //        |
3678   //      CheckCastPP (raw)
3679   //  top   |
3680   //     \  |
3681   //     AddP  ( base == top )
3682   //
3683   Node *base = addp->in(AddPNode::Base);
3684   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3685     base = addp->in(AddPNode::Address);
3686     while (base->is_AddP()) {
3687       // Case #6 (unsafe access) may have several chained AddP nodes.
3688       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3689       base = base->in(AddPNode::Address);
3690     }
3691     if (base->Opcode() == Op_CheckCastPP &&
3692         base->bottom_type()->isa_rawptr() &&
3693         _igvn->type(base->in(1))->isa_oopptr()) {
3694       base = base->in(1); // Case #9
3695     } else {
3696       Node* uncast_base = base->uncast();
3697       int opcode = uncast_base->Opcode();
3698       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3699              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3700              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3701              is_captured_store_address(addp), "sanity");
3702     }
3703   }
3704   return base;
3705 }
3706 
3707 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3708   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3709   Node* addp2 = addp->raw_out(0);
3710   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3711       addp2->in(AddPNode::Base) == n &&
3712       addp2->in(AddPNode::Address) == addp) {
3713     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3714     //
3715     // Find array's offset to push it on worklist first and
3716     // as result process an array's element offset first (pushed second)
3717     // to avoid CastPP for the array's offset.
3718     // Otherwise the inserted CastPP (LocalVar) will point to what
3719     // the AddP (Field) points to. Which would be wrong since
3720     // the algorithm expects the CastPP has the same point as
3721     // as AddP's base CheckCastPP (LocalVar).
3722     //
3723     //    ArrayAllocation
3724     //     |
3725     //    CheckCastPP
3726     //     |
3727     //    memProj (from ArrayAllocation CheckCastPP)
3728     //     |  ||
3729     //     |  ||   Int (element index)
3730     //     |  ||    |   ConI (log(element size))
3731     //     |  ||    |   /
3732     //     |  ||   LShift
3733     //     |  ||  /
3734     //     |  AddP (array's element offset)
3735     //     |  |
3736     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3737     //     | / /
3738     //     AddP (array's offset)
3739     //      |
3740     //     Load/Store (memory operation on array's element)
3741     //
3742     return addp2;
3743   }
3744   return nullptr;
3745 }
3746 
3747 //
3748 // Adjust the type and inputs of an AddP which computes the
3749 // address of a field of an instance
3750 //
3751 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3752   PhaseGVN* igvn = _igvn;
3753   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3754   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3755   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3756   if (t == nullptr) {
3757     // We are computing a raw address for a store captured by an Initialize
3758     // compute an appropriate address type (cases #3 and #5).
3759     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3760     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3761     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3762     assert(offs != Type::OffsetBot, "offset must be a constant");
3763     t = base_t->add_offset(offs)->is_oopptr();
3764   }
3765   int inst_id =  base_t->instance_id();
3766   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3767                              "old type must be non-instance or match new type");
3768 
3769   // The type 't' could be subclass of 'base_t'.
3770   // As result t->offset() could be large then base_t's size and it will
3771   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3772   // constructor verifies correctness of the offset.
3773   //
3774   // It could happened on subclass's branch (from the type profiling
3775   // inlining) which was not eliminated during parsing since the exactness
3776   // of the allocation type was not propagated to the subclass type check.
3777   //
3778   // Or the type 't' could be not related to 'base_t' at all.
3779   // It could happened when CHA type is different from MDO type on a dead path
3780   // (for example, from instanceof check) which is not collapsed during parsing.
3781   //
3782   // Do nothing for such AddP node and don't process its users since
3783   // this code branch will go away.
3784   //
3785   if (!t->is_known_instance() &&
3786       !base_t->maybe_java_subtype_of(t)) {
3787      return false; // bail out
3788   }
3789   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
3790   // Do NOT remove the next line: ensure a new alias index is allocated
3791   // for the instance type. Note: C++ will not remove it since the call
3792   // has side effect.
3793   int alias_idx = _compile->get_alias_index(tinst);
3794   igvn->set_type(addp, tinst);
3795   // record the allocation in the node map
3796   set_map(addp, get_map(base->_idx));
3797   // Set addp's Base and Address to 'base'.
3798   Node *abase = addp->in(AddPNode::Base);
3799   Node *adr   = addp->in(AddPNode::Address);
3800   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3801       adr->in(0)->_idx == (uint)inst_id) {
3802     // Skip AddP cases #3 and #5.
3803   } else {
3804     assert(!abase->is_top(), "sanity"); // AddP case #3
3805     if (abase != base) {
3806       igvn->hash_delete(addp);
3807       addp->set_req(AddPNode::Base, base);
3808       if (abase == adr) {
3809         addp->set_req(AddPNode::Address, base);
3810       } else {
3811         // AddP case #4 (adr is array's element offset AddP node)
3812 #ifdef ASSERT
3813         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3814         assert(adr->is_AddP() && atype != nullptr &&
3815                atype->instance_id() == inst_id, "array's element offset should be processed first");
3816 #endif
3817       }
3818       igvn->hash_insert(addp);
3819     }
3820   }
3821   // Put on IGVN worklist since at least addp's type was changed above.
3822   record_for_optimizer(addp);
3823   return true;
3824 }
3825 
3826 //
3827 // Create a new version of orig_phi if necessary. Returns either the newly
3828 // created phi or an existing phi.  Sets create_new to indicate whether a new
3829 // phi was created.  Cache the last newly created phi in the node map.
3830 //
3831 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3832   Compile *C = _compile;
3833   PhaseGVN* igvn = _igvn;
3834   new_created = false;
3835   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3836   // nothing to do if orig_phi is bottom memory or matches alias_idx
3837   if (phi_alias_idx == alias_idx) {
3838     return orig_phi;
3839   }
3840   // Have we recently created a Phi for this alias index?
3841   PhiNode *result = get_map_phi(orig_phi->_idx);
3842   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3843     return result;
3844   }
3845   // Previous check may fail when the same wide memory Phi was split into Phis
3846   // for different memory slices. Search all Phis for this region.
3847   if (result != nullptr) {
3848     Node* region = orig_phi->in(0);
3849     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3850       Node* phi = region->fast_out(i);
3851       if (phi->is_Phi() &&
3852           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3853         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3854         return phi->as_Phi();
3855       }
3856     }
3857   }
3858   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3859     if (C->do_escape_analysis() == true && !C->failing()) {
3860       // Retry compilation without escape analysis.
3861       // If this is the first failure, the sentinel string will "stick"
3862       // to the Compile object, and the C2Compiler will see it and retry.
3863       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3864     }
3865     return nullptr;
3866   }
3867   orig_phi_worklist.append_if_missing(orig_phi);
3868   const TypePtr *atype = C->get_adr_type(alias_idx);
3869   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3870   C->copy_node_notes_to(result, orig_phi);
3871   igvn->set_type(result, result->bottom_type());
3872   record_for_optimizer(result);
3873   set_map(orig_phi, result);
3874   new_created = true;
3875   return result;
3876 }
3877 
3878 //
3879 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3880 // specified alias index.
3881 //
3882 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
3883   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
3884   Compile *C = _compile;
3885   PhaseGVN* igvn = _igvn;
3886   bool new_phi_created;
3887   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
3888   if (!new_phi_created) {
3889     return result;
3890   }
3891   GrowableArray<PhiNode *>  phi_list;
3892   GrowableArray<uint>  cur_input;
3893   PhiNode *phi = orig_phi;
3894   uint idx = 1;
3895   bool finished = false;
3896   while(!finished) {
3897     while (idx < phi->req()) {
3898       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
3899       if (mem != nullptr && mem->is_Phi()) {
3900         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
3901         if (new_phi_created) {
3902           // found an phi for which we created a new split, push current one on worklist and begin
3903           // processing new one
3904           phi_list.push(phi);
3905           cur_input.push(idx);
3906           phi = mem->as_Phi();
3907           result = newphi;
3908           idx = 1;
3909           continue;
3910         } else {
3911           mem = newphi;
3912         }
3913       }
3914       if (C->failing()) {
3915         return nullptr;
3916       }
3917       result->set_req(idx++, mem);
3918     }
3919 #ifdef ASSERT
3920     // verify that the new Phi has an input for each input of the original
3921     assert( phi->req() == result->req(), "must have same number of inputs.");
3922     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
3923 #endif
3924     // Check if all new phi's inputs have specified alias index.
3925     // Otherwise use old phi.
3926     for (uint i = 1; i < phi->req(); i++) {
3927       Node* in = result->in(i);
3928       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
3929     }
3930     // we have finished processing a Phi, see if there are any more to do
3931     finished = (phi_list.length() == 0 );
3932     if (!finished) {
3933       phi = phi_list.pop();
3934       idx = cur_input.pop();
3935       PhiNode *prev_result = get_map_phi(phi->_idx);
3936       prev_result->set_req(idx++, result);
3937       result = prev_result;
3938     }
3939   }
3940   return result;
3941 }
3942 
3943 //
3944 // The next methods are derived from methods in MemNode.
3945 //
3946 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
3947   Node *mem = mmem;
3948   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
3949   // means an array I have not precisely typed yet.  Do not do any
3950   // alias stuff with it any time soon.
3951   if (toop->base() != Type::AnyPtr &&
3952       !(toop->isa_instptr() &&
3953         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
3954         toop->offset() == Type::OffsetBot)) {
3955     mem = mmem->memory_at(alias_idx);
3956     // Update input if it is progress over what we have now
3957   }
3958   return mem;
3959 }
3960 
3961 //
3962 // Move memory users to their memory slices.
3963 //
3964 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
3965   Compile* C = _compile;
3966   PhaseGVN* igvn = _igvn;
3967   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
3968   assert(tp != nullptr, "ptr type");
3969   int alias_idx = C->get_alias_index(tp);
3970   int general_idx = C->get_general_index(alias_idx);
3971 
3972   // Move users first
3973   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3974     Node* use = n->fast_out(i);
3975     if (use->is_MergeMem()) {
3976       MergeMemNode* mmem = use->as_MergeMem();
3977       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
3978       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
3979         continue; // Nothing to do
3980       }
3981       // Replace previous general reference to mem node.
3982       uint orig_uniq = C->unique();
3983       Node* m = find_inst_mem(n, general_idx, orig_phis);
3984       assert(orig_uniq == C->unique(), "no new nodes");
3985       mmem->set_memory_at(general_idx, m);
3986       --imax;
3987       --i;
3988     } else if (use->is_MemBar()) {
3989       assert(!use->is_Initialize(), "initializing stores should not be moved");
3990       if (use->req() > MemBarNode::Precedent &&
3991           use->in(MemBarNode::Precedent) == n) {
3992         // Don't move related membars.
3993         record_for_optimizer(use);
3994         continue;
3995       }
3996       tp = use->as_MemBar()->adr_type()->isa_ptr();
3997       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
3998           alias_idx == general_idx) {
3999         continue; // Nothing to do
4000       }
4001       // Move to general memory slice.
4002       uint orig_uniq = C->unique();
4003       Node* m = find_inst_mem(n, general_idx, orig_phis);
4004       assert(orig_uniq == C->unique(), "no new nodes");
4005       igvn->hash_delete(use);
4006       imax -= use->replace_edge(n, m, igvn);
4007       igvn->hash_insert(use);
4008       record_for_optimizer(use);
4009       --i;
4010 #ifdef ASSERT
4011     } else if (use->is_Mem()) {
4012       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
4013         // Don't move related cardmark.
4014         continue;
4015       }
4016       // Memory nodes should have new memory input.
4017       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4018       assert(tp != nullptr, "ptr type");
4019       int idx = C->get_alias_index(tp);
4020       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4021              "Following memory nodes should have new memory input or be on the same memory slice");
4022     } else if (use->is_Phi()) {
4023       // Phi nodes should be split and moved already.
4024       tp = use->as_Phi()->adr_type()->isa_ptr();
4025       assert(tp != nullptr, "ptr type");
4026       int idx = C->get_alias_index(tp);
4027       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4028     } else {
4029       use->dump();
4030       assert(false, "should not be here");
4031 #endif
4032     }
4033   }
4034 }
4035 
4036 //
4037 // Search memory chain of "mem" to find a MemNode whose address
4038 // is the specified alias index.
4039 //
4040 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4041 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4042   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4043     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4044     return nullptr;
4045   }
4046   if (orig_mem == nullptr) {
4047     return orig_mem;
4048   }
4049   Compile* C = _compile;
4050   PhaseGVN* igvn = _igvn;
4051   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4052   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4053   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4054   Node *prev = nullptr;
4055   Node *result = orig_mem;
4056   while (prev != result) {
4057     prev = result;
4058     if (result == start_mem) {
4059       break;  // hit one of our sentinels
4060     }
4061     if (result->is_Mem()) {
4062       const Type *at = igvn->type(result->in(MemNode::Address));
4063       if (at == Type::TOP) {
4064         break; // Dead
4065       }
4066       assert (at->isa_ptr() != nullptr, "pointer type required.");
4067       int idx = C->get_alias_index(at->is_ptr());
4068       if (idx == alias_idx) {
4069         break; // Found
4070       }
4071       if (!is_instance && (at->isa_oopptr() == nullptr ||
4072                            !at->is_oopptr()->is_known_instance())) {
4073         break; // Do not skip store to general memory slice.
4074       }
4075       result = result->in(MemNode::Memory);
4076     }
4077     if (!is_instance) {
4078       continue;  // don't search further for non-instance types
4079     }
4080     // skip over a call which does not affect this memory slice
4081     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4082       Node *proj_in = result->in(0);
4083       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4084         break;  // hit one of our sentinels
4085       } else if (proj_in->is_Call()) {
4086         // ArrayCopy node processed here as well
4087         CallNode *call = proj_in->as_Call();
4088         if (!call->may_modify(toop, igvn)) {
4089           result = call->in(TypeFunc::Memory);
4090         }
4091       } else if (proj_in->is_Initialize()) {
4092         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4093         // Stop if this is the initialization for the object instance which
4094         // which contains this memory slice, otherwise skip over it.
4095         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4096           result = proj_in->in(TypeFunc::Memory);
4097         }
4098       } else if (proj_in->is_MemBar()) {
4099         // Check if there is an array copy for a clone
4100         // Step over GC barrier when ReduceInitialCardMarks is disabled
4101         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4102         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
4103 
4104         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4105           // Stop if it is a clone
4106           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4107           if (ac->may_modify(toop, igvn)) {
4108             break;
4109           }
4110         }
4111         result = proj_in->in(TypeFunc::Memory);
4112       }
4113     } else if (result->is_MergeMem()) {
4114       MergeMemNode *mmem = result->as_MergeMem();
4115       result = step_through_mergemem(mmem, alias_idx, toop);
4116       if (result == mmem->base_memory()) {
4117         // Didn't find instance memory, search through general slice recursively.
4118         result = mmem->memory_at(C->get_general_index(alias_idx));
4119         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4120         if (C->failing()) {
4121           return nullptr;
4122         }
4123         mmem->set_memory_at(alias_idx, result);
4124       }
4125     } else if (result->is_Phi() &&
4126                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4127       Node *un = result->as_Phi()->unique_input(igvn);
4128       if (un != nullptr) {
4129         orig_phis.append_if_missing(result->as_Phi());
4130         result = un;
4131       } else {
4132         break;
4133       }
4134     } else if (result->is_ClearArray()) {
4135       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4136         // Can not bypass initialization of the instance
4137         // we are looking for.
4138         break;
4139       }
4140       // Otherwise skip it (the call updated 'result' value).
4141     } else if (result->Opcode() == Op_SCMemProj) {
4142       Node* mem = result->in(0);
4143       Node* adr = nullptr;
4144       if (mem->is_LoadStore()) {
4145         adr = mem->in(MemNode::Address);
4146       } else {
4147         assert(mem->Opcode() == Op_EncodeISOArray ||
4148                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4149         adr = mem->in(3); // Memory edge corresponds to destination array
4150       }
4151       const Type *at = igvn->type(adr);
4152       if (at != Type::TOP) {
4153         assert(at->isa_ptr() != nullptr, "pointer type required.");
4154         int idx = C->get_alias_index(at->is_ptr());
4155         if (idx == alias_idx) {
4156           // Assert in debug mode
4157           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4158           break; // In product mode return SCMemProj node
4159         }
4160       }
4161       result = mem->in(MemNode::Memory);
4162     } else if (result->Opcode() == Op_StrInflatedCopy) {
4163       Node* adr = result->in(3); // Memory edge corresponds to destination array
4164       const Type *at = igvn->type(adr);
4165       if (at != Type::TOP) {
4166         assert(at->isa_ptr() != nullptr, "pointer type required.");
4167         int idx = C->get_alias_index(at->is_ptr());
4168         if (idx == alias_idx) {
4169           // Assert in debug mode
4170           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4171           break; // In product mode return SCMemProj node
4172         }
4173       }
4174       result = result->in(MemNode::Memory);
4175     }
4176   }
4177   if (result->is_Phi()) {
4178     PhiNode *mphi = result->as_Phi();
4179     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4180     const TypePtr *t = mphi->adr_type();
4181     if (!is_instance) {
4182       // Push all non-instance Phis on the orig_phis worklist to update inputs
4183       // during Phase 4 if needed.
4184       orig_phis.append_if_missing(mphi);
4185     } else if (C->get_alias_index(t) != alias_idx) {
4186       // Create a new Phi with the specified alias index type.
4187       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4188     }
4189   }
4190   // the result is either MemNode, PhiNode, InitializeNode.
4191   return result;
4192 }
4193 
4194 //
4195 //  Convert the types of non-escaped object to instance types where possible,
4196 //  propagate the new type information through the graph, and update memory
4197 //  edges and MergeMem inputs to reflect the new type.
4198 //
4199 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4200 //  The processing is done in 4 phases:
4201 //
4202 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4203 //            types for the CheckCastPP for allocations where possible.
4204 //            Propagate the new types through users as follows:
4205 //               casts and Phi:  push users on alloc_worklist
4206 //               AddP:  cast Base and Address inputs to the instance type
4207 //                      push any AddP users on alloc_worklist and push any memnode
4208 //                      users onto memnode_worklist.
4209 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4210 //            search the Memory chain for a store with the appropriate type
4211 //            address type.  If a Phi is found, create a new version with
4212 //            the appropriate memory slices from each of the Phi inputs.
4213 //            For stores, process the users as follows:
4214 //               MemNode:  push on memnode_worklist
4215 //               MergeMem: push on mergemem_worklist
4216 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4217 //            moving the first node encountered of each  instance type to the
4218 //            the input corresponding to its alias index.
4219 //            appropriate memory slice.
4220 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4221 //
4222 // In the following example, the CheckCastPP nodes are the cast of allocation
4223 // results and the allocation of node 29 is non-escaped and eligible to be an
4224 // instance type.
4225 //
4226 // We start with:
4227 //
4228 //     7 Parm #memory
4229 //    10  ConI  "12"
4230 //    19  CheckCastPP   "Foo"
4231 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4232 //    29  CheckCastPP   "Foo"
4233 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4234 //
4235 //    40  StoreP  25   7  20   ... alias_index=4
4236 //    50  StoreP  35  40  30   ... alias_index=4
4237 //    60  StoreP  45  50  20   ... alias_index=4
4238 //    70  LoadP    _  60  30   ... alias_index=4
4239 //    80  Phi     75  50  60   Memory alias_index=4
4240 //    90  LoadP    _  80  30   ... alias_index=4
4241 //   100  LoadP    _  80  20   ... alias_index=4
4242 //
4243 //
4244 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4245 // and creating a new alias index for node 30.  This gives:
4246 //
4247 //     7 Parm #memory
4248 //    10  ConI  "12"
4249 //    19  CheckCastPP   "Foo"
4250 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4251 //    29  CheckCastPP   "Foo"  iid=24
4252 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4253 //
4254 //    40  StoreP  25   7  20   ... alias_index=4
4255 //    50  StoreP  35  40  30   ... alias_index=6
4256 //    60  StoreP  45  50  20   ... alias_index=4
4257 //    70  LoadP    _  60  30   ... alias_index=6
4258 //    80  Phi     75  50  60   Memory alias_index=4
4259 //    90  LoadP    _  80  30   ... alias_index=6
4260 //   100  LoadP    _  80  20   ... alias_index=4
4261 //
4262 // In phase 2, new memory inputs are computed for the loads and stores,
4263 // And a new version of the phi is created.  In phase 4, the inputs to
4264 // node 80 are updated and then the memory nodes are updated with the
4265 // values computed in phase 2.  This results in:
4266 //
4267 //     7 Parm #memory
4268 //    10  ConI  "12"
4269 //    19  CheckCastPP   "Foo"
4270 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4271 //    29  CheckCastPP   "Foo"  iid=24
4272 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4273 //
4274 //    40  StoreP  25  7   20   ... alias_index=4
4275 //    50  StoreP  35  7   30   ... alias_index=6
4276 //    60  StoreP  45  40  20   ... alias_index=4
4277 //    70  LoadP    _  50  30   ... alias_index=6
4278 //    80  Phi     75  40  60   Memory alias_index=4
4279 //   120  Phi     75  50  50   Memory alias_index=6
4280 //    90  LoadP    _ 120  30   ... alias_index=6
4281 //   100  LoadP    _  80  20   ... alias_index=4
4282 //
4283 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4284                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4285                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4286                                          Unique_Node_List &reducible_merges) {
4287   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4288   GrowableArray<Node *>  memnode_worklist;
4289   GrowableArray<PhiNode *>  orig_phis;
4290   PhaseIterGVN  *igvn = _igvn;
4291   uint new_index_start = (uint) _compile->num_alias_types();
4292   VectorSet visited;
4293   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4294   uint unique_old = _compile->unique();
4295 
4296   //  Phase 1:  Process possible allocations from alloc_worklist.
4297   //  Create instance types for the CheckCastPP for allocations where possible.
4298   //
4299   // (Note: don't forget to change the order of the second AddP node on
4300   //  the alloc_worklist if the order of the worklist processing is changed,
4301   //  see the comment in find_second_addp().)
4302   //
4303   while (alloc_worklist.length() != 0) {
4304     Node *n = alloc_worklist.pop();
4305     uint ni = n->_idx;
4306     if (n->is_Call()) {
4307       CallNode *alloc = n->as_Call();
4308       // copy escape information to call node
4309       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4310       PointsToNode::EscapeState es = ptn->escape_state();
4311       // We have an allocation or call which returns a Java object,
4312       // see if it is non-escaped.
4313       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4314         continue;
4315       }
4316       // Find CheckCastPP for the allocate or for the return value of a call
4317       n = alloc->result_cast();
4318       if (n == nullptr) {            // No uses except Initialize node
4319         if (alloc->is_Allocate()) {
4320           // Set the scalar_replaceable flag for allocation
4321           // so it could be eliminated if it has no uses.
4322           alloc->as_Allocate()->_is_scalar_replaceable = true;
4323         }
4324         continue;
4325       }
4326       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4327         // we could reach here for allocate case if one init is associated with many allocs.
4328         if (alloc->is_Allocate()) {
4329           alloc->as_Allocate()->_is_scalar_replaceable = false;
4330         }
4331         continue;
4332       }
4333 
4334       // The inline code for Object.clone() casts the allocation result to
4335       // java.lang.Object and then to the actual type of the allocated
4336       // object. Detect this case and use the second cast.
4337       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4338       // the allocation result is cast to java.lang.Object and then
4339       // to the actual Array type.
4340       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4341           && (alloc->is_AllocateArray() ||
4342               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4343         Node *cast2 = nullptr;
4344         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4345           Node *use = n->fast_out(i);
4346           if (use->is_CheckCastPP()) {
4347             cast2 = use;
4348             break;
4349           }
4350         }
4351         if (cast2 != nullptr) {
4352           n = cast2;
4353         } else {
4354           // Non-scalar replaceable if the allocation type is unknown statically
4355           // (reflection allocation), the object can't be restored during
4356           // deoptimization without precise type.
4357           continue;
4358         }
4359       }
4360 
4361       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4362       if (t == nullptr) {
4363         continue;  // not a TypeOopPtr
4364       }
4365       if (!t->klass_is_exact()) {
4366         continue; // not an unique type
4367       }
4368       if (alloc->is_Allocate()) {
4369         // Set the scalar_replaceable flag for allocation
4370         // so it could be eliminated.
4371         alloc->as_Allocate()->_is_scalar_replaceable = true;
4372       }
4373       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4374       // in order for an object to be scalar-replaceable, it must be:
4375       //   - a direct allocation (not a call returning an object)
4376       //   - non-escaping
4377       //   - eligible to be a unique type
4378       //   - not determined to be ineligible by escape analysis
4379       set_map(alloc, n);
4380       set_map(n, alloc);
4381       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4382       igvn->hash_delete(n);
4383       igvn->set_type(n,  tinst);
4384       n->raise_bottom_type(tinst);
4385       igvn->hash_insert(n);
4386       record_for_optimizer(n);
4387       // Allocate an alias index for the header fields. Accesses to
4388       // the header emitted during macro expansion wouldn't have
4389       // correct memory state otherwise.
4390       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4391       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4392       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4393 
4394         // First, put on the worklist all Field edges from Connection Graph
4395         // which is more accurate than putting immediate users from Ideal Graph.
4396         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4397           PointsToNode* tgt = e.get();
4398           if (tgt->is_Arraycopy()) {
4399             continue;
4400           }
4401           Node* use = tgt->ideal_node();
4402           assert(tgt->is_Field() && use->is_AddP(),
4403                  "only AddP nodes are Field edges in CG");
4404           if (use->outcnt() > 0) { // Don't process dead nodes
4405             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4406             if (addp2 != nullptr) {
4407               assert(alloc->is_AllocateArray(),"array allocation was expected");
4408               alloc_worklist.append_if_missing(addp2);
4409             }
4410             alloc_worklist.append_if_missing(use);
4411           }
4412         }
4413 
4414         // An allocation may have an Initialize which has raw stores. Scan
4415         // the users of the raw allocation result and push AddP users
4416         // on alloc_worklist.
4417         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4418         assert (raw_result != nullptr, "must have an allocation result");
4419         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4420           Node *use = raw_result->fast_out(i);
4421           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4422             Node* addp2 = find_second_addp(use, raw_result);
4423             if (addp2 != nullptr) {
4424               assert(alloc->is_AllocateArray(),"array allocation was expected");
4425               alloc_worklist.append_if_missing(addp2);
4426             }
4427             alloc_worklist.append_if_missing(use);
4428           } else if (use->is_MemBar()) {
4429             memnode_worklist.append_if_missing(use);
4430           }
4431         }
4432       }
4433     } else if (n->is_AddP()) {
4434       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4435         // This AddP will go away when we reduce the the Phi
4436         continue;
4437       }
4438       Node* addp_base = get_addp_base(n);
4439       JavaObjectNode* jobj = unique_java_object(addp_base);
4440       if (jobj == nullptr || jobj == phantom_obj) {
4441 #ifdef ASSERT
4442         ptnode_adr(get_addp_base(n)->_idx)->dump();
4443         ptnode_adr(n->_idx)->dump();
4444         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4445 #endif
4446         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4447         return;
4448       }
4449       Node *base = get_map(jobj->idx());  // CheckCastPP node
4450       if (!split_AddP(n, base)) continue; // wrong type from dead path
4451     } else if (n->is_Phi() ||
4452                n->is_CheckCastPP() ||
4453                n->is_EncodeP() ||
4454                n->is_DecodeN() ||
4455                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4456       if (visited.test_set(n->_idx)) {
4457         assert(n->is_Phi(), "loops only through Phi's");
4458         continue;  // already processed
4459       }
4460       // Reducible Phi's will be removed from the graph after split_unique_types
4461       // finishes. For now we just try to split out the SR inputs of the merge.
4462       Node* parent = n->in(1);
4463       if (reducible_merges.member(n)) {
4464         reduce_phi(n->as_Phi(), alloc_worklist, memnode_worklist);
4465 #ifdef ASSERT
4466         if (VerifyReduceAllocationMerges) {
4467           reduced_merges.push(n);
4468         }
4469 #endif
4470         continue;
4471       } else if (reducible_merges.member(parent)) {
4472         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4473         // part of reduce_merge.
4474         continue;
4475       }
4476       JavaObjectNode* jobj = unique_java_object(n);
4477       if (jobj == nullptr || jobj == phantom_obj) {
4478 #ifdef ASSERT
4479         ptnode_adr(n->_idx)->dump();
4480         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4481 #endif
4482         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4483         return;
4484       } else {
4485         Node *val = get_map(jobj->idx());   // CheckCastPP node
4486         TypeNode *tn = n->as_Type();
4487         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4488         assert(tinst != nullptr && tinst->is_known_instance() &&
4489                tinst->instance_id() == jobj->idx() , "instance type expected.");
4490 
4491         const Type *tn_type = igvn->type(tn);
4492         const TypeOopPtr *tn_t;
4493         if (tn_type->isa_narrowoop()) {
4494           tn_t = tn_type->make_ptr()->isa_oopptr();
4495         } else {
4496           tn_t = tn_type->isa_oopptr();
4497         }
4498         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4499           if (tn_type->isa_narrowoop()) {
4500             tn_type = tinst->make_narrowoop();
4501           } else {
4502             tn_type = tinst;
4503           }
4504           igvn->hash_delete(tn);
4505           igvn->set_type(tn, tn_type);
4506           tn->set_type(tn_type);
4507           igvn->hash_insert(tn);
4508           record_for_optimizer(n);
4509         } else {
4510           assert(tn_type == TypePtr::NULL_PTR ||
4511                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4512                  "unexpected type");
4513           continue; // Skip dead path with different type
4514         }
4515       }
4516     } else {
4517       debug_only(n->dump();)
4518       assert(false, "EA: unexpected node");
4519       continue;
4520     }
4521     // push allocation's users on appropriate worklist
4522     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4523       Node *use = n->fast_out(i);
4524       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4525         // Load/store to instance's field
4526         memnode_worklist.append_if_missing(use);
4527       } else if (use->is_MemBar()) {
4528         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4529           memnode_worklist.append_if_missing(use);
4530         }
4531       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4532         Node* addp2 = find_second_addp(use, n);
4533         if (addp2 != nullptr) {
4534           alloc_worklist.append_if_missing(addp2);
4535         }
4536         alloc_worklist.append_if_missing(use);
4537       } else if (use->is_Phi() ||
4538                  use->is_CheckCastPP() ||
4539                  use->is_EncodeNarrowPtr() ||
4540                  use->is_DecodeNarrowPtr() ||
4541                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4542         alloc_worklist.append_if_missing(use);
4543 #ifdef ASSERT
4544       } else if (use->is_Mem()) {
4545         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4546       } else if (use->is_MergeMem()) {
4547         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4548       } else if (use->is_SafePoint()) {
4549         // Look for MergeMem nodes for calls which reference unique allocation
4550         // (through CheckCastPP nodes) even for debug info.
4551         Node* m = use->in(TypeFunc::Memory);
4552         if (m->is_MergeMem()) {
4553           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4554         }
4555       } else if (use->Opcode() == Op_EncodeISOArray) {
4556         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4557           // EncodeISOArray overwrites destination array
4558           memnode_worklist.append_if_missing(use);
4559         }
4560       } else {
4561         uint op = use->Opcode();
4562         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4563             (use->in(MemNode::Memory) == n)) {
4564           // They overwrite memory edge corresponding to destination array,
4565           memnode_worklist.append_if_missing(use);
4566         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4567               op == Op_CastP2X || op == Op_StoreCM ||
4568               op == Op_FastLock || op == Op_AryEq ||
4569               op == Op_StrComp || op == Op_CountPositives ||
4570               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4571               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4572               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4573               op == Op_SubTypeCheck ||
4574               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4575           n->dump();
4576           use->dump();
4577           assert(false, "EA: missing allocation reference path");
4578         }
4579 #endif
4580       }
4581     }
4582 
4583   }
4584 
4585 #ifdef ASSERT
4586   if (VerifyReduceAllocationMerges) {
4587     for (uint i = 0; i < reducible_merges.size(); i++) {
4588       Node* phi = reducible_merges.at(i);
4589 
4590       if (!reduced_merges.member(phi)) {
4591         phi->dump(2);
4592         phi->dump(-2);
4593         assert(false, "This reducible merge wasn't reduced.");
4594       }
4595 
4596       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4597       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4598         Node* use = phi->fast_out(j);
4599         if (!use->is_SafePoint() && !use->is_CastPP()) {
4600           phi->dump(2);
4601           phi->dump(-2);
4602           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4603         }
4604       }
4605     }
4606   }
4607 #endif
4608 
4609   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4610   // type, record it in the ArrayCopy node so we know what memory this
4611   // node uses/modified.
4612   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4613     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4614     Node* dest = ac->in(ArrayCopyNode::Dest);
4615     if (dest->is_AddP()) {
4616       dest = get_addp_base(dest);
4617     }
4618     JavaObjectNode* jobj = unique_java_object(dest);
4619     if (jobj != nullptr) {
4620       Node *base = get_map(jobj->idx());
4621       if (base != nullptr) {
4622         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4623         ac->_dest_type = base_t;
4624       }
4625     }
4626     Node* src = ac->in(ArrayCopyNode::Src);
4627     if (src->is_AddP()) {
4628       src = get_addp_base(src);
4629     }
4630     jobj = unique_java_object(src);
4631     if (jobj != nullptr) {
4632       Node* base = get_map(jobj->idx());
4633       if (base != nullptr) {
4634         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4635         ac->_src_type = base_t;
4636       }
4637     }
4638   }
4639 
4640   // New alias types were created in split_AddP().
4641   uint new_index_end = (uint) _compile->num_alias_types();
4642 
4643   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4644   //            compute new values for Memory inputs  (the Memory inputs are not
4645   //            actually updated until phase 4.)
4646   if (memnode_worklist.length() == 0)
4647     return;  // nothing to do
4648   while (memnode_worklist.length() != 0) {
4649     Node *n = memnode_worklist.pop();
4650     if (visited.test_set(n->_idx)) {
4651       continue;
4652     }
4653     if (n->is_Phi() || n->is_ClearArray()) {
4654       // we don't need to do anything, but the users must be pushed
4655     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
4656       // we don't need to do anything, but the users must be pushed
4657       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4658       if (n == nullptr) {
4659         continue;
4660       }
4661     } else if (n->is_CallLeaf()) {
4662       // Runtime calls with narrow memory input (no MergeMem node)
4663       // get the memory projection
4664       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4665       if (n == nullptr) {
4666         continue;
4667       }
4668     } else if (n->Opcode() == Op_StrCompressedCopy ||
4669                n->Opcode() == Op_EncodeISOArray) {
4670       // get the memory projection
4671       n = n->find_out_with(Op_SCMemProj);
4672       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4673     } else {
4674       assert(n->is_Mem(), "memory node required.");
4675       Node *addr = n->in(MemNode::Address);
4676       const Type *addr_t = igvn->type(addr);
4677       if (addr_t == Type::TOP) {
4678         continue;
4679       }
4680       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4681       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4682       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4683       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4684       if (_compile->failing()) {
4685         return;
4686       }
4687       if (mem != n->in(MemNode::Memory)) {
4688         // We delay the memory edge update since we need old one in
4689         // MergeMem code below when instances memory slices are separated.
4690         set_map(n, mem);
4691       }
4692       if (n->is_Load()) {
4693         continue;  // don't push users
4694       } else if (n->is_LoadStore()) {
4695         // get the memory projection
4696         n = n->find_out_with(Op_SCMemProj);
4697         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4698       }
4699     }
4700     // push user on appropriate worklist
4701     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4702       Node *use = n->fast_out(i);
4703       if (use->is_Phi() || use->is_ClearArray()) {
4704         memnode_worklist.append_if_missing(use);
4705       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4706         if (use->Opcode() == Op_StoreCM) { // Ignore cardmark stores
4707           continue;
4708         }
4709         memnode_worklist.append_if_missing(use);
4710       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4711         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4712           memnode_worklist.append_if_missing(use);
4713         }
4714 #ifdef ASSERT
4715       } else if(use->is_Mem()) {
4716         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4717       } else if (use->is_MergeMem()) {
4718         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4719       } else if (use->Opcode() == Op_EncodeISOArray) {
4720         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4721           // EncodeISOArray overwrites destination array
4722           memnode_worklist.append_if_missing(use);
4723         }
4724       } else {
4725         uint op = use->Opcode();
4726         if ((use->in(MemNode::Memory) == n) &&
4727             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4728           // They overwrite memory edge corresponding to destination array,
4729           memnode_worklist.append_if_missing(use);
4730         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4731               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4732               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4733               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4734           n->dump();
4735           use->dump();
4736           assert(false, "EA: missing memory path");
4737         }
4738 #endif
4739       }
4740     }
4741   }
4742 
4743   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4744   //            Walk each memory slice moving the first node encountered of each
4745   //            instance type to the input corresponding to its alias index.
4746   uint length = mergemem_worklist.length();
4747   for( uint next = 0; next < length; ++next ) {
4748     MergeMemNode* nmm = mergemem_worklist.at(next);
4749     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4750     // Note: we don't want to use MergeMemStream here because we only want to
4751     // scan inputs which exist at the start, not ones we add during processing.
4752     // Note 2: MergeMem may already contains instance memory slices added
4753     // during find_inst_mem() call when memory nodes were processed above.
4754     igvn->hash_delete(nmm);
4755     uint nslices = MIN2(nmm->req(), new_index_start);
4756     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4757       Node* mem = nmm->in(i);
4758       Node* cur = nullptr;
4759       if (mem == nullptr || mem->is_top()) {
4760         continue;
4761       }
4762       // First, update mergemem by moving memory nodes to corresponding slices
4763       // if their type became more precise since this mergemem was created.
4764       while (mem->is_Mem()) {
4765         const Type *at = igvn->type(mem->in(MemNode::Address));
4766         if (at != Type::TOP) {
4767           assert (at->isa_ptr() != nullptr, "pointer type required.");
4768           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4769           if (idx == i) {
4770             if (cur == nullptr) {
4771               cur = mem;
4772             }
4773           } else {
4774             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4775               nmm->set_memory_at(idx, mem);
4776             }
4777           }
4778         }
4779         mem = mem->in(MemNode::Memory);
4780       }
4781       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4782       // Find any instance of the current type if we haven't encountered
4783       // already a memory slice of the instance along the memory chain.
4784       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4785         if((uint)_compile->get_general_index(ni) == i) {
4786           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4787           if (nmm->is_empty_memory(m)) {
4788             Node* result = find_inst_mem(mem, ni, orig_phis);
4789             if (_compile->failing()) {
4790               return;
4791             }
4792             nmm->set_memory_at(ni, result);
4793           }
4794         }
4795       }
4796     }
4797     // Find the rest of instances values
4798     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4799       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4800       Node* result = step_through_mergemem(nmm, ni, tinst);
4801       if (result == nmm->base_memory()) {
4802         // Didn't find instance memory, search through general slice recursively.
4803         result = nmm->memory_at(_compile->get_general_index(ni));
4804         result = find_inst_mem(result, ni, orig_phis);
4805         if (_compile->failing()) {
4806           return;
4807         }
4808         nmm->set_memory_at(ni, result);
4809       }
4810     }
4811 
4812     // If we have crossed the 3/4 point of max node limit it's too risky
4813     // to continue with EA/SR because we might hit the max node limit.
4814     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4815       if (_compile->do_reduce_allocation_merges()) {
4816         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4817       } else if (_invocation > 0) {
4818         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4819       } else {
4820         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4821       }
4822       return;
4823     }
4824 
4825     igvn->hash_insert(nmm);
4826     record_for_optimizer(nmm);
4827   }
4828 
4829   //  Phase 4:  Update the inputs of non-instance memory Phis and
4830   //            the Memory input of memnodes
4831   // First update the inputs of any non-instance Phi's from
4832   // which we split out an instance Phi.  Note we don't have
4833   // to recursively process Phi's encountered on the input memory
4834   // chains as is done in split_memory_phi() since they  will
4835   // also be processed here.
4836   for (int j = 0; j < orig_phis.length(); j++) {
4837     PhiNode *phi = orig_phis.at(j);
4838     int alias_idx = _compile->get_alias_index(phi->adr_type());
4839     igvn->hash_delete(phi);
4840     for (uint i = 1; i < phi->req(); i++) {
4841       Node *mem = phi->in(i);
4842       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4843       if (_compile->failing()) {
4844         return;
4845       }
4846       if (mem != new_mem) {
4847         phi->set_req(i, new_mem);
4848       }
4849     }
4850     igvn->hash_insert(phi);
4851     record_for_optimizer(phi);
4852   }
4853 
4854   // Update the memory inputs of MemNodes with the value we computed
4855   // in Phase 2 and move stores memory users to corresponding memory slices.
4856   // Disable memory split verification code until the fix for 6984348.
4857   // Currently it produces false negative results since it does not cover all cases.
4858 #if 0 // ifdef ASSERT
4859   visited.Reset();
4860   Node_Stack old_mems(arena, _compile->unique() >> 2);
4861 #endif
4862   for (uint i = 0; i < ideal_nodes.size(); i++) {
4863     Node*    n = ideal_nodes.at(i);
4864     Node* nmem = get_map(n->_idx);
4865     assert(nmem != nullptr, "sanity");
4866     if (n->is_Mem()) {
4867 #if 0 // ifdef ASSERT
4868       Node* old_mem = n->in(MemNode::Memory);
4869       if (!visited.test_set(old_mem->_idx)) {
4870         old_mems.push(old_mem, old_mem->outcnt());
4871       }
4872 #endif
4873       assert(n->in(MemNode::Memory) != nmem, "sanity");
4874       if (!n->is_Load()) {
4875         // Move memory users of a store first.
4876         move_inst_mem(n, orig_phis);
4877       }
4878       // Now update memory input
4879       igvn->hash_delete(n);
4880       n->set_req(MemNode::Memory, nmem);
4881       igvn->hash_insert(n);
4882       record_for_optimizer(n);
4883     } else {
4884       assert(n->is_Allocate() || n->is_CheckCastPP() ||
4885              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
4886     }
4887   }
4888 #if 0 // ifdef ASSERT
4889   // Verify that memory was split correctly
4890   while (old_mems.is_nonempty()) {
4891     Node* old_mem = old_mems.node();
4892     uint  old_cnt = old_mems.index();
4893     old_mems.pop();
4894     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
4895   }
4896 #endif
4897 }
4898 
4899 #ifndef PRODUCT
4900 int ConnectionGraph::_no_escape_counter = 0;
4901 int ConnectionGraph::_arg_escape_counter = 0;
4902 int ConnectionGraph::_global_escape_counter = 0;
4903 
4904 static const char *node_type_names[] = {
4905   "UnknownType",
4906   "JavaObject",
4907   "LocalVar",
4908   "Field",
4909   "Arraycopy"
4910 };
4911 
4912 static const char *esc_names[] = {
4913   "UnknownEscape",
4914   "NoEscape",
4915   "ArgEscape",
4916   "GlobalEscape"
4917 };
4918 
4919 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
4920   NodeType nt = node_type();
4921   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
4922   if (print_state) {
4923     EscapeState es = escape_state();
4924     EscapeState fields_es = fields_escape_state();
4925     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
4926     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
4927       out->print("NSR ");
4928     }
4929   }
4930 }
4931 
4932 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
4933   dump_header(print_state, out);
4934   if (is_Field()) {
4935     FieldNode* f = (FieldNode*)this;
4936     if (f->is_oop()) {
4937       out->print("oop ");
4938     }
4939     if (f->offset() > 0) {
4940       out->print("+%d ", f->offset());
4941     }
4942     out->print("(");
4943     for (BaseIterator i(f); i.has_next(); i.next()) {
4944       PointsToNode* b = i.get();
4945       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
4946     }
4947     out->print(" )");
4948   }
4949   out->print("[");
4950   for (EdgeIterator i(this); i.has_next(); i.next()) {
4951     PointsToNode* e = i.get();
4952     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
4953   }
4954   out->print(" [");
4955   for (UseIterator i(this); i.has_next(); i.next()) {
4956     PointsToNode* u = i.get();
4957     bool is_base = false;
4958     if (PointsToNode::is_base_use(u)) {
4959       is_base = true;
4960       u = PointsToNode::get_use_node(u)->as_Field();
4961     }
4962     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
4963   }
4964   out->print(" ]]  ");
4965   if (_node == nullptr) {
4966     out->print("<null>%s", newline ? "\n" : "");
4967   } else {
4968     _node->dump(newline ? "\n" : "", false, out);
4969   }
4970 }
4971 
4972 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
4973   bool first = true;
4974   int ptnodes_length = ptnodes_worklist.length();
4975   for (int i = 0; i < ptnodes_length; i++) {
4976     PointsToNode *ptn = ptnodes_worklist.at(i);
4977     if (ptn == nullptr || !ptn->is_JavaObject()) {
4978       continue;
4979     }
4980     PointsToNode::EscapeState es = ptn->escape_state();
4981     if ((es != PointsToNode::NoEscape) && !Verbose) {
4982       continue;
4983     }
4984     Node* n = ptn->ideal_node();
4985     if (n->is_Allocate() || (n->is_CallStaticJava() &&
4986                              n->as_CallStaticJava()->is_boxing_method())) {
4987       if (first) {
4988         tty->cr();
4989         tty->print("======== Connection graph for ");
4990         _compile->method()->print_short_name();
4991         tty->cr();
4992         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
4993                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
4994         tty->cr();
4995         first = false;
4996       }
4997       ptn->dump();
4998       // Print all locals and fields which reference this allocation
4999       for (UseIterator j(ptn); j.has_next(); j.next()) {
5000         PointsToNode* use = j.get();
5001         if (use->is_LocalVar()) {
5002           use->dump(Verbose);
5003         } else if (Verbose) {
5004           use->dump();
5005         }
5006       }
5007       tty->cr();
5008     }
5009   }
5010 }
5011 
5012 void ConnectionGraph::print_statistics() {
5013   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", Atomic::load(&_no_escape_counter), Atomic::load(&_arg_escape_counter), Atomic::load(&_global_escape_counter));
5014 }
5015 
5016 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5017   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5018     return;
5019   }
5020   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5021     JavaObjectNode* ptn = java_objects_worklist.at(next);
5022     if (ptn->ideal_node()->is_Allocate()) {
5023       if (ptn->escape_state() == PointsToNode::NoEscape) {
5024         Atomic::inc(&ConnectionGraph::_no_escape_counter);
5025       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5026         Atomic::inc(&ConnectionGraph::_arg_escape_counter);
5027       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5028         Atomic::inc(&ConnectionGraph::_global_escape_counter);
5029       } else {
5030         assert(false, "Unexpected Escape State");
5031       }
5032     }
5033   }
5034 }
5035 
5036 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5037   if (_compile->directive()->TraceEscapeAnalysisOption) {
5038     assert(ptn != nullptr, "should not be null");
5039     assert(reason != nullptr, "should not be null");
5040     ptn->dump_header(true);
5041     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5042     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5043     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5044   }
5045 }
5046 
5047 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5048   if (_compile->directive()->TraceEscapeAnalysisOption) {
5049     stringStream ss;
5050     ss.print("propagated from: ");
5051     from->dump(true, &ss, false);
5052     return ss.as_string();
5053   } else {
5054     return nullptr;
5055   }
5056 }
5057 
5058 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5059   if (_compile->directive()->TraceEscapeAnalysisOption) {
5060     stringStream ss;
5061     ss.print("escapes as arg to:");
5062     call->dump("", false, &ss);
5063     return ss.as_string();
5064   } else {
5065     return nullptr;
5066   }
5067 }
5068 
5069 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5070   if (_compile->directive()->TraceEscapeAnalysisOption) {
5071     stringStream ss;
5072     ss.print("is merged with other object: ");
5073     other->dump_header(true, &ss);
5074     return ss.as_string();
5075   } else {
5076     return nullptr;
5077   }
5078 }
5079 
5080 #endif
5081 
5082 void ConnectionGraph::record_for_optimizer(Node *n) {
5083   _igvn->_worklist.push(n);
5084   _igvn->add_users_to_worklist(n);
5085 }