1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/bcEscapeAnalyzer.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/allocation.hpp" 31 #include "memory/metaspace.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/c2compiler.hpp" 34 #include "opto/arraycopynode.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/inlinetypenode.hpp" 40 #include "opto/macro.hpp" 41 #include "opto/locknode.hpp" 42 #include "opto/phaseX.hpp" 43 #include "opto/movenode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/castnode.hpp" 46 #include "opto/rootnode.hpp" 47 #include "utilities/macros.hpp" 48 49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) : 50 // If ReduceAllocationMerges is enabled we might call split_through_phi during 51 // split_unique_types and that will create additional nodes that need to be 52 // pushed to the ConnectionGraph. The code below bumps the initial capacity of 53 // _nodes by 10% to account for these additional nodes. If capacity is exceeded 54 // the array will be reallocated. 55 _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr), 56 _in_worklist(C->comp_arena()), 57 _next_pidx(0), 58 _collecting(true), 59 _verify(false), 60 _compile(C), 61 _igvn(igvn), 62 _invocation(invocation), 63 _build_iterations(0), 64 _build_time(0.), 65 _node_map(C->comp_arena()) { 66 // Add unknown java object. 67 add_java_object(C->top(), PointsToNode::GlobalEscape); 68 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 69 set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object")); 70 // Add ConP and ConN null oop nodes 71 Node* oop_null = igvn->zerocon(T_OBJECT); 72 assert(oop_null->_idx < nodes_size(), "should be created already"); 73 add_java_object(oop_null, PointsToNode::NoEscape); 74 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 75 set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object")); 76 if (UseCompressedOops) { 77 Node* noop_null = igvn->zerocon(T_NARROWOOP); 78 assert(noop_null->_idx < nodes_size(), "should be created already"); 79 map_ideal_node(noop_null, null_obj); 80 } 81 } 82 83 bool ConnectionGraph::has_candidates(Compile *C) { 84 // EA brings benefits only when the code has allocations and/or locks which 85 // are represented by ideal Macro nodes. 86 int cnt = C->macro_count(); 87 for (int i = 0; i < cnt; i++) { 88 Node *n = C->macro_node(i); 89 if (n->is_Allocate()) { 90 return true; 91 } 92 if (n->is_Lock()) { 93 Node* obj = n->as_Lock()->obj_node()->uncast(); 94 if (!(obj->is_Parm() || obj->is_Con())) { 95 return true; 96 } 97 } 98 if (n->is_CallStaticJava() && 99 n->as_CallStaticJava()->is_boxing_method()) { 100 return true; 101 } 102 } 103 return false; 104 } 105 106 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 107 Compile::TracePhase tp(Phase::_t_escapeAnalysis); 108 ResourceMark rm; 109 110 // Add ConP and ConN null oop nodes before ConnectionGraph construction 111 // to create space for them in ConnectionGraph::_nodes[]. 112 Node* oop_null = igvn->zerocon(T_OBJECT); 113 Node* noop_null = igvn->zerocon(T_NARROWOOP); 114 int invocation = 0; 115 if (C->congraph() != nullptr) { 116 invocation = C->congraph()->_invocation + 1; 117 } 118 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation); 119 // Perform escape analysis 120 if (congraph->compute_escape()) { 121 // There are non escaping objects. 122 C->set_congraph(congraph); 123 } 124 // Cleanup. 125 if (oop_null->outcnt() == 0) { 126 igvn->hash_delete(oop_null); 127 } 128 if (noop_null->outcnt() == 0) { 129 igvn->hash_delete(noop_null); 130 } 131 } 132 133 bool ConnectionGraph::compute_escape() { 134 Compile* C = _compile; 135 PhaseGVN* igvn = _igvn; 136 137 // Worklists used by EA. 138 Unique_Node_List delayed_worklist; 139 Unique_Node_List reducible_merges; 140 GrowableArray<Node*> alloc_worklist; 141 GrowableArray<Node*> ptr_cmp_worklist; 142 GrowableArray<MemBarStoreStoreNode*> storestore_worklist; 143 GrowableArray<ArrayCopyNode*> arraycopy_worklist; 144 GrowableArray<PointsToNode*> ptnodes_worklist; 145 GrowableArray<JavaObjectNode*> java_objects_worklist; 146 GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist; 147 GrowableArray<FieldNode*> oop_fields_worklist; 148 GrowableArray<SafePointNode*> sfn_worklist; 149 GrowableArray<MergeMemNode*> mergemem_worklist; 150 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 151 152 { Compile::TracePhase tp(Phase::_t_connectionGraph); 153 154 // 1. Populate Connection Graph (CG) with PointsTo nodes. 155 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 156 // Initialize worklist 157 if (C->root() != nullptr) { 158 ideal_nodes.push(C->root()); 159 } 160 // Processed ideal nodes are unique on ideal_nodes list 161 // but several ideal nodes are mapped to the phantom_obj. 162 // To avoid duplicated entries on the following worklists 163 // add the phantom_obj only once to them. 164 ptnodes_worklist.append(phantom_obj); 165 java_objects_worklist.append(phantom_obj); 166 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 167 Node* n = ideal_nodes.at(next); 168 if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) && 169 !n->in(MemNode::Address)->is_AddP() && 170 _igvn->type(n->in(MemNode::Address))->isa_oopptr()) { 171 // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA 172 Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0)); 173 _igvn->register_new_node_with_optimizer(addp); 174 _igvn->replace_input_of(n, MemNode::Address, addp); 175 ideal_nodes.push(addp); 176 _nodes.at_put_grow(addp->_idx, nullptr, nullptr); 177 } 178 // Create PointsTo nodes and add them to Connection Graph. Called 179 // only once per ideal node since ideal_nodes is Unique_Node list. 180 add_node_to_connection_graph(n, &delayed_worklist); 181 PointsToNode* ptn = ptnode_adr(n->_idx); 182 if (ptn != nullptr && ptn != phantom_obj) { 183 ptnodes_worklist.append(ptn); 184 if (ptn->is_JavaObject()) { 185 java_objects_worklist.append(ptn->as_JavaObject()); 186 if ((n->is_Allocate() || n->is_CallStaticJava()) && 187 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 188 // Only allocations and java static calls results are interesting. 189 non_escaped_allocs_worklist.append(ptn->as_JavaObject()); 190 } 191 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 192 oop_fields_worklist.append(ptn->as_Field()); 193 } 194 } 195 // Collect some interesting nodes for further use. 196 switch (n->Opcode()) { 197 case Op_MergeMem: 198 // Collect all MergeMem nodes to add memory slices for 199 // scalar replaceable objects in split_unique_types(). 200 mergemem_worklist.append(n->as_MergeMem()); 201 break; 202 case Op_CmpP: 203 case Op_CmpN: 204 // Collect compare pointers nodes. 205 if (OptimizePtrCompare) { 206 ptr_cmp_worklist.append(n); 207 } 208 break; 209 case Op_MemBarStoreStore: 210 // Collect all MemBarStoreStore nodes so that depending on the 211 // escape status of the associated Allocate node some of them 212 // may be eliminated. 213 if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) { 214 storestore_worklist.append(n->as_MemBarStoreStore()); 215 } 216 break; 217 case Op_MemBarRelease: 218 if (n->req() > MemBarNode::Precedent) { 219 record_for_optimizer(n); 220 } 221 break; 222 #ifdef ASSERT 223 case Op_AddP: 224 // Collect address nodes for graph verification. 225 addp_worklist.append(n); 226 break; 227 #endif 228 case Op_ArrayCopy: 229 // Keep a list of ArrayCopy nodes so if one of its input is non 230 // escaping, we can record a unique type 231 arraycopy_worklist.append(n->as_ArrayCopy()); 232 break; 233 default: 234 // not interested now, ignore... 235 break; 236 } 237 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 238 Node* m = n->fast_out(i); // Get user 239 ideal_nodes.push(m); 240 } 241 if (n->is_SafePoint()) { 242 sfn_worklist.append(n->as_SafePoint()); 243 } 244 } 245 246 #ifndef PRODUCT 247 if (_compile->directive()->TraceEscapeAnalysisOption) { 248 tty->print("+++++ Initial worklist for "); 249 _compile->method()->print_name(); 250 tty->print_cr(" (ea_inv=%d)", _invocation); 251 for (int i = 0; i < ptnodes_worklist.length(); i++) { 252 PointsToNode* ptn = ptnodes_worklist.at(i); 253 ptn->dump(); 254 } 255 tty->print_cr("+++++ Calculating escape states and scalar replaceability"); 256 } 257 #endif 258 259 if (non_escaped_allocs_worklist.length() == 0) { 260 _collecting = false; 261 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 262 return false; // Nothing to do. 263 } 264 // Add final simple edges to graph. 265 while(delayed_worklist.size() > 0) { 266 Node* n = delayed_worklist.pop(); 267 add_final_edges(n); 268 } 269 270 #ifdef ASSERT 271 if (VerifyConnectionGraph) { 272 // Verify that no new simple edges could be created and all 273 // local vars has edges. 274 _verify = true; 275 int ptnodes_length = ptnodes_worklist.length(); 276 for (int next = 0; next < ptnodes_length; ++next) { 277 PointsToNode* ptn = ptnodes_worklist.at(next); 278 add_final_edges(ptn->ideal_node()); 279 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 280 ptn->dump(); 281 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 282 } 283 } 284 _verify = false; 285 } 286 #endif 287 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 288 // processing, calls to CI to resolve symbols (types, fields, methods) 289 // referenced in bytecode. During symbol resolution VM may throw 290 // an exception which CI cleans and converts to compilation failure. 291 if (C->failing()) { 292 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 293 return false; 294 } 295 296 // 2. Finish Graph construction by propagating references to all 297 // java objects through graph. 298 if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 299 java_objects_worklist, oop_fields_worklist)) { 300 // All objects escaped or hit time or iterations limits. 301 _collecting = false; 302 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 303 return false; 304 } 305 306 // 3. Adjust scalar_replaceable state of nonescaping objects and push 307 // scalar replaceable allocations on alloc_worklist for processing 308 // in split_unique_types(). 309 GrowableArray<JavaObjectNode*> jobj_worklist; 310 int non_escaped_length = non_escaped_allocs_worklist.length(); 311 bool found_nsr_alloc = false; 312 for (int next = 0; next < non_escaped_length; next++) { 313 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 314 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 315 Node* n = ptn->ideal_node(); 316 if (n->is_Allocate()) { 317 n->as_Allocate()->_is_non_escaping = noescape; 318 } 319 if (noescape && ptn->scalar_replaceable()) { 320 adjust_scalar_replaceable_state(ptn, reducible_merges); 321 if (ptn->scalar_replaceable()) { 322 jobj_worklist.push(ptn); 323 } else { 324 found_nsr_alloc = true; 325 } 326 } 327 } 328 329 // Propagate NSR (Not Scalar Replaceable) state. 330 if (found_nsr_alloc) { 331 find_scalar_replaceable_allocs(jobj_worklist, reducible_merges); 332 } 333 334 // alloc_worklist will be processed in reverse push order. 335 // Therefore the reducible Phis will be processed for last and that's what we 336 // want because by then the scalarizable inputs of the merge will already have 337 // an unique instance type. 338 for (uint i = 0; i < reducible_merges.size(); i++ ) { 339 Node* n = reducible_merges.at(i); 340 alloc_worklist.append(n); 341 } 342 343 for (int next = 0; next < jobj_worklist.length(); ++next) { 344 JavaObjectNode* jobj = jobj_worklist.at(next); 345 if (jobj->scalar_replaceable()) { 346 alloc_worklist.append(jobj->ideal_node()); 347 } 348 } 349 350 #ifdef ASSERT 351 if (VerifyConnectionGraph) { 352 // Verify that graph is complete - no new edges could be added or needed. 353 verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 354 java_objects_worklist, addp_worklist); 355 } 356 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 357 assert(null_obj->escape_state() == PointsToNode::NoEscape && 358 null_obj->edge_count() == 0 && 359 !null_obj->arraycopy_src() && 360 !null_obj->arraycopy_dst(), "sanity"); 361 #endif 362 363 _collecting = false; 364 365 } // TracePhase t3("connectionGraph") 366 367 // 4. Optimize ideal graph based on EA information. 368 bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0); 369 if (has_non_escaping_obj) { 370 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 371 } 372 373 #ifndef PRODUCT 374 if (PrintEscapeAnalysis) { 375 dump(ptnodes_worklist); // Dump ConnectionGraph 376 } 377 #endif 378 379 #ifdef ASSERT 380 if (VerifyConnectionGraph) { 381 int alloc_length = alloc_worklist.length(); 382 for (int next = 0; next < alloc_length; ++next) { 383 Node* n = alloc_worklist.at(next); 384 PointsToNode* ptn = ptnode_adr(n->_idx); 385 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 386 } 387 } 388 389 if (VerifyReduceAllocationMerges) { 390 for (uint i = 0; i < reducible_merges.size(); i++ ) { 391 Node* n = reducible_merges.at(i); 392 if (!can_reduce_phi(n->as_Phi())) { 393 TraceReduceAllocationMerges = true; 394 n->dump(2); 395 n->dump(-2); 396 assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT."); 397 } 398 } 399 } 400 #endif 401 402 // 5. Separate memory graph for scalar replaceable allcations. 403 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 404 if (has_scalar_replaceable_candidates && EliminateAllocations) { 405 assert(C->do_aliasing(), "Aliasing should be enabled"); 406 // Now use the escape information to create unique types for 407 // scalar replaceable objects. 408 split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges); 409 if (C->failing()) { 410 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 411 return false; 412 } 413 C->print_method(PHASE_AFTER_EA, 2); 414 415 #ifdef ASSERT 416 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 417 tty->print("=== No allocations eliminated for "); 418 C->method()->print_short_name(); 419 if (!EliminateAllocations) { 420 tty->print(" since EliminateAllocations is off ==="); 421 } else if(!has_scalar_replaceable_candidates) { 422 tty->print(" since there are no scalar replaceable candidates ==="); 423 } 424 tty->cr(); 425 #endif 426 } 427 428 // 6. Reduce allocation merges used as debug information. This is done after 429 // split_unique_types because the methods used to create SafePointScalarObject 430 // need to traverse the memory graph to find values for object fields. We also 431 // set to null the scalarized inputs of reducible Phis so that the Allocate 432 // that they point can be later scalar replaced. 433 bool delay = _igvn->delay_transform(); 434 _igvn->set_delay_transform(true); 435 for (uint i = 0; i < reducible_merges.size(); i++) { 436 Node* n = reducible_merges.at(i); 437 if (n->outcnt() > 0) { 438 if (!reduce_phi_on_safepoints(n->as_Phi())) { 439 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 440 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 441 return false; 442 } 443 444 // Now we set the scalar replaceable inputs of ophi to null, which is 445 // the last piece that would prevent it from being scalar replaceable. 446 reset_scalar_replaceable_entries(n->as_Phi()); 447 } 448 } 449 _igvn->set_delay_transform(delay); 450 451 // Annotate at safepoints if they have <= ArgEscape objects in their scope and at 452 // java calls if they pass ArgEscape objects as parameters. 453 if (has_non_escaping_obj && 454 (C->env()->should_retain_local_variables() || 455 C->env()->jvmti_can_get_owned_monitor_info() || 456 C->env()->jvmti_can_walk_any_space() || 457 DeoptimizeObjectsALot)) { 458 int sfn_length = sfn_worklist.length(); 459 for (int next = 0; next < sfn_length; next++) { 460 SafePointNode* sfn = sfn_worklist.at(next); 461 sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn)); 462 if (sfn->is_CallJava()) { 463 CallJavaNode* call = sfn->as_CallJava(); 464 call->set_arg_escape(has_arg_escape(call)); 465 } 466 } 467 } 468 469 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 470 return has_non_escaping_obj; 471 } 472 473 // Check if it's profitable to reduce the Phi passed as parameter. Returns true 474 // if at least one scalar replaceable allocation participates in the merge. 475 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const { 476 bool found_sr_allocate = false; 477 478 for (uint i = 1; i < ophi->req(); i++) { 479 JavaObjectNode* ptn = unique_java_object(ophi->in(i)); 480 if (ptn != nullptr && ptn->scalar_replaceable()) { 481 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 482 483 // Don't handle arrays. 484 if (alloc->Opcode() != Op_Allocate) { 485 assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation."); 486 continue; 487 } 488 489 if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) { 490 found_sr_allocate = true; 491 } else { 492 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);) 493 ptn->set_scalar_replaceable(false); 494 } 495 } 496 } 497 498 NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);) 499 return found_sr_allocate; 500 } 501 502 // We can reduce the Cmp if it's a comparison between the Phi and a constant. 503 // I require the 'other' input to be a constant so that I can move the Cmp 504 // around safely. 505 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const { 506 assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name()); 507 Node* left = cmp->in(1); 508 Node* right = cmp->in(2); 509 510 return (left == n || right == n) && 511 (left->is_Con() || right->is_Con()) && 512 cmp->outcnt() == 1; 513 } 514 515 // We are going to check if any of the SafePointScalarMerge entries 516 // in the SafePoint reference the Phi that we are checking. 517 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const { 518 JVMState *jvms = sfpt->jvms(); 519 520 for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) { 521 Node* sfpt_in = sfpt->in(i); 522 if (sfpt_in->is_SafePointScalarMerge()) { 523 SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge(); 524 Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms)); 525 if (nsr_ptr == n) { 526 return true; 527 } 528 } 529 } 530 531 return false; 532 } 533 534 // Check if we are able to untangle the merge. The following patterns are 535 // supported: 536 // - Phi -> SafePoints 537 // - Phi -> CmpP/N 538 // - Phi -> AddP -> Load 539 // - Phi -> CastPP -> SafePoints 540 // - Phi -> CastPP -> AddP -> Load 541 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const { 542 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 543 Node* use = n->fast_out(i); 544 545 if (use->is_SafePoint()) { 546 if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) { 547 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);) 548 return false; 549 } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) { 550 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);) 551 return false; 552 } 553 } else if (use->is_AddP()) { 554 Node* addp = use; 555 for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) { 556 Node* use_use = addp->fast_out(j); 557 const Type* load_type = _igvn->type(use_use); 558 559 if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) { 560 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());) 561 return false; 562 } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) { 563 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());) 564 return false; 565 } 566 } 567 } else if (nesting > 0) { 568 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);) 569 return false; 570 } else if (use->is_CastPP()) { 571 const Type* cast_t = _igvn->type(use); 572 if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) { 573 #ifndef PRODUCT 574 if (TraceReduceAllocationMerges) { 575 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation); 576 use->dump(); 577 } 578 #endif 579 return false; 580 } 581 582 bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0); 583 if (!is_trivial_control) { 584 // If it's not a trivial control then we check if we can reduce the 585 // CmpP/N used by the If controlling the cast. 586 if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) { 587 Node* iff = use->in(0)->in(0); 588 // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode, 589 // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases. 590 bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp(); 591 if (can_reduce) { 592 Node* iff_cmp = iff->in(1)->in(1); 593 int opc = iff_cmp->Opcode(); 594 can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp); 595 } 596 if (!can_reduce) { 597 #ifndef PRODUCT 598 if (TraceReduceAllocationMerges) { 599 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx); 600 n->dump(5); 601 } 602 #endif 603 return false; 604 } 605 } 606 } 607 608 if (!can_reduce_check_users(use, nesting+1)) { 609 return false; 610 } 611 } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) { 612 if (!can_reduce_cmp(n, use)) { 613 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);) 614 return false; 615 } 616 } else { 617 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());) 618 return false; 619 } 620 } 621 622 return true; 623 } 624 625 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is 626 // only used in some certain code shapes. Check comments in 627 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more 628 // details. 629 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const { 630 // If there was an error attempting to reduce allocation merges for this 631 // method we might have disabled the compilation and be retrying with RAM 632 // disabled. 633 if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) { 634 return false; 635 } 636 637 const Type* phi_t = _igvn->type(ophi); 638 if (phi_t == nullptr || 639 phi_t->make_ptr() == nullptr || 640 phi_t->make_ptr()->isa_aryptr() != nullptr) { 641 return false; 642 } 643 644 if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) { 645 return false; 646 } 647 648 NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); }) 649 return true; 650 } 651 652 // This method will return a CmpP/N that we need to use on the If controlling a 653 // CastPP after it was split. This method is only called on bases that are 654 // nullable therefore we always need a controlling if for the splitted CastPP. 655 // 656 // 'curr_ctrl' is the control of the CastPP that we want to split through phi. 657 // If the CastPP currently doesn't have a control then the CmpP/N will be 658 // against the null constant, otherwise it will be against the constant input of 659 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later 660 // case because we have constraints on it and because the CastPP has a control 661 // input. 662 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) { 663 const Type* t = base->bottom_type(); 664 Node* con = nullptr; 665 666 if (curr_ctrl == nullptr || curr_ctrl->is_Region()) { 667 con = _igvn->zerocon(t->basic_type()); 668 } else { 669 // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp 670 assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name()); 671 Node* bol = curr_ctrl->in(0)->in(1); 672 assert(bol->is_Bool(), "unexpected node %s", bol->Name()); 673 Node* curr_cmp = bol->in(1); 674 assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name()); 675 con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2); 676 } 677 678 return CmpNode::make(base, con, t->basic_type()); 679 } 680 681 // This method 'specializes' the CastPP passed as parameter to the base passed 682 // as parameter. Note that the existing CastPP input is a Phi. "Specialize" 683 // means that the CastPP now will be specific for a given base instead of a Phi. 684 // An If-Then-Else-Region block is inserted to control the CastPP. The control 685 // of the CastPP is a copy of the current one (if there is one) or a check 686 // against null. 687 // 688 // Before: 689 // 690 // C1 C2 ... Cn 691 // \ | / 692 // \ | / 693 // \ | / 694 // \ | / 695 // \ | / 696 // \ | / 697 // \|/ 698 // Region B1 B2 ... Bn 699 // | \ | / 700 // | \ | / 701 // | \ | / 702 // | \ | / 703 // | \ | / 704 // | \ | / 705 // ---------------> Phi 706 // | 707 // X | 708 // | | 709 // | | 710 // ------> CastPP 711 // 712 // After (only partial illustration; base = B2, current_control = C2): 713 // 714 // C2 715 // | 716 // If 717 // / \ 718 // / \ 719 // T F 720 // /\ / 721 // / \ / 722 // / \ / 723 // C1 CastPP Reg Cn 724 // | | | 725 // | | | 726 // | | | 727 // -------------- | ---------- 728 // | | | 729 // Region 730 // 731 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) { 732 Node* control_successor = current_control->unique_ctrl_out(); 733 Node* cmp = _igvn->transform(specialize_cmp(base, castpp->in(0))); 734 Node* bol = _igvn->transform(new BoolNode(cmp, BoolTest::ne)); 735 IfNode* if_ne = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If(); 736 Node* not_eq_control = _igvn->transform(new IfTrueNode(if_ne)); 737 Node* yes_eq_control = _igvn->transform(new IfFalseNode(if_ne)); 738 Node* end_region = _igvn->transform(new RegionNode(3)); 739 740 // Insert the new if-else-region block into the graph 741 end_region->set_req(1, not_eq_control); 742 end_region->set_req(2, yes_eq_control); 743 control_successor->replace_edge(current_control, end_region, _igvn); 744 745 _igvn->_worklist.push(current_control); 746 _igvn->_worklist.push(control_successor); 747 748 return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr)); 749 } 750 751 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *> &alloc_worklist) { 752 const Type* load_type = _igvn->type(curr_load); 753 Node* nsr_value = _igvn->zerocon(load_type->basic_type()); 754 Node* memory = curr_load->in(MemNode::Memory); 755 756 // The data_phi merging the loads needs to be nullable if 757 // we are loading pointers. 758 if (load_type->make_ptr() != nullptr) { 759 if (load_type->isa_narrowoop()) { 760 load_type = load_type->meet(TypeNarrowOop::NULL_PTR); 761 } else if (load_type->isa_ptr()) { 762 load_type = load_type->meet(TypePtr::NULL_PTR); 763 } else { 764 assert(false, "Unexpected load ptr type."); 765 } 766 } 767 768 Node* data_phi = PhiNode::make(region, nsr_value, load_type); 769 770 for (int i = 1; i < bases_for_loads->length(); i++) { 771 Node* base = bases_for_loads->at(i); 772 Node* cmp_region = nullptr; 773 if (base != nullptr) { 774 if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node 775 cmp_region = base->unique_ctrl_out_or_null(); 776 assert(cmp_region != nullptr, "There should be."); 777 base = base->find_out_with(Op_CastPP); 778 } 779 780 Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset))); 781 Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory; 782 Node* load = curr_load->clone(); 783 load->set_req(0, nullptr); 784 load->set_req(1, mem); 785 load->set_req(2, addr); 786 787 if (cmp_region != nullptr) { // see comment on previous if 788 Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type); 789 intermediate_phi->set_req(1, _igvn->transform(load)); 790 load = intermediate_phi; 791 } 792 793 data_phi->set_req(i, _igvn->transform(load)); 794 } else { 795 // Just use the default, which is already in phi 796 } 797 } 798 799 // Takes care of updating CG and split_unique_types worklists due 800 // to cloned AddP->Load. 801 updates_after_load_split(data_phi, curr_load, alloc_worklist); 802 803 return _igvn->transform(data_phi); 804 } 805 806 // This method only reduces CastPP fields loads; SafePoints are handled 807 // separately. The idea here is basically to clone the CastPP and place copies 808 // on each input of the Phi, including non-scalar replaceable inputs. 809 // Experimentation shows that the resulting IR graph is simpler that way than if 810 // we just split the cast through scalar-replaceable inputs. 811 // 812 // The reduction process requires that CastPP's control be one of: 813 // 1) no control, 814 // 2) the same region as Ophi, or 815 // 3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant. 816 // 817 // After splitting the CastPP we'll put it under an If-Then-Else-Region control 818 // flow. If the CastPP originally had an IfTrue/False control input then we'll 819 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll 820 // juse use a CmpP/N against the null constant. 821 // 822 // The If-Then-Else-Region isn't always needed. For instance, if input to 823 // splitted cast was not nullable (or if it was the null constant) then we don't 824 // need (shouldn't) use a CastPP at all. 825 // 826 // After the casts are splitted we'll split the AddP->Loads through the Phi and 827 // connect them to the just split CastPPs. 828 // 829 // Before (CastPP control is same as Phi): 830 // 831 // Region Allocate Null Call 832 // | \ | / 833 // | \ | / 834 // | \ | / 835 // | \ | / 836 // | \ | / 837 // | \ | / 838 // ------------------> Phi # Oop Phi 839 // | | 840 // | | 841 // | | 842 // | | 843 // ----------------> CastPP 844 // | 845 // AddP 846 // | 847 // Load 848 // 849 // After (Very much simplified): 850 // 851 // Call Null 852 // \ / 853 // CmpP 854 // | 855 // Bool#NE 856 // | 857 // If 858 // / \ 859 // T F 860 // / \ / 861 // / R 862 // CastPP | 863 // | | 864 // AddP | 865 // | | 866 // Load | 867 // \ | 0 868 // Allocate \ | / 869 // \ \ | / 870 // AddP Phi 871 // \ / 872 // Load / 873 // \ 0 / 874 // \ | / 875 // \|/ 876 // Phi # "Field" Phi 877 // 878 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) { 879 Node* ophi = curr_castpp->in(1); 880 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 881 882 // Identify which base should be used for AddP->Load later when spliting the 883 // CastPP->Loads through ophi. Three kind of values may be stored in this 884 // array, depending on the nullability status of the corresponding input in 885 // ophi. 886 // 887 // - nullptr: Meaning that the base is actually the null constant and therefore 888 // we won't try to load from it. 889 // 890 // - CFG Node: Meaning that the base is a CastPP that was specialized for 891 // this input of Ophi. I.e., we added an If->Then->Else-Region 892 // that will 'activate' the CastPp only when the input is not Null. 893 // 894 // - Other Node: Meaning that the base is not nullable and therefore we'll try 895 // to load directly from it. 896 GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr); 897 898 for (uint i = 1; i < ophi->req(); i++) { 899 Node* base = ophi->in(i); 900 const Type* base_t = _igvn->type(base); 901 902 if (base_t->maybe_null()) { 903 if (base->is_Con()) { 904 // Nothing todo as bases_for_loads[i] is already null 905 } else { 906 Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i)); 907 bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag 908 } 909 } else { 910 bases_for_loads.at_put(i, base); 911 } 912 } 913 914 // Now let's split the CastPP->Loads through the Phi 915 for (int i = curr_castpp->outcnt()-1; i >= 0;) { 916 Node* use = curr_castpp->raw_out(i); 917 if (use->is_AddP()) { 918 for (int j = use->outcnt()-1; j >= 0;) { 919 Node* use_use = use->raw_out(j); 920 assert(use_use->is_Load(), "Expected this to be a Load node."); 921 922 // We can't make an unconditional load from a nullable input. The 923 // 'split_castpp_load_through_phi` method will add an 924 // 'If-Then-Else-Region` around nullable bases and only load from them 925 // when the input is not null. 926 Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist); 927 _igvn->replace_node(use_use, phi); 928 929 --j; 930 j = MIN2(j, (int)use->outcnt()-1); 931 } 932 933 _igvn->remove_dead_node(use); 934 } 935 --i; 936 i = MIN2(i, (int)curr_castpp->outcnt()-1); 937 } 938 } 939 940 // This method split a given CmpP/N through the Phi used in one of its inputs. 941 // As a result we convert a comparison with a pointer to a comparison with an 942 // integer. 943 // The only requirement is that one of the inputs of the CmpP/N must be a Phi 944 // while the other must be a constant. 945 // The splitting process is basically just cloning the CmpP/N above the input 946 // Phi. However, some (most) of the cloned CmpP/Ns won't be requred because we 947 // can prove at compile time the result of the comparison. 948 // 949 // Before: 950 // 951 // in1 in2 ... inN 952 // \ | / 953 // \ | / 954 // \ | / 955 // \ | / 956 // \ | / 957 // \ | / 958 // Phi 959 // | Other 960 // | / 961 // | / 962 // | / 963 // CmpP/N 964 // 965 // After: 966 // 967 // in1 Other in2 Other inN Other 968 // | | | | | | 969 // \ | | | | | 970 // \ / | / | / 971 // CmpP/N CmpP/N CmpP/N 972 // Bool Bool Bool 973 // \ | / 974 // \ | / 975 // \ | / 976 // \ | / 977 // \ | / 978 // \ | / 979 // \ | / 980 // \ | / 981 // Phi 982 // | 983 // | Zero 984 // | / 985 // | / 986 // | / 987 // CmpI 988 // 989 // 990 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) { 991 Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1); 992 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 993 994 Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2); 995 Node* zero = _igvn->intcon(0); 996 Node* one = _igvn->intcon(1); 997 BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test; 998 999 // This Phi will merge the result of the Cmps split through the Phi 1000 Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT); 1001 1002 for (uint i=1; i<ophi->req(); i++) { 1003 Node* ophi_input = ophi->in(i); 1004 Node* res_phi_input = nullptr; 1005 1006 const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other); 1007 if (tcmp->singleton()) { 1008 if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) || 1009 (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) { 1010 res_phi_input = one; 1011 } else { 1012 res_phi_input = zero; 1013 } 1014 } else { 1015 Node* ncmp = _igvn->transform(cmp->clone()); 1016 ncmp->set_req(1, ophi_input); 1017 ncmp->set_req(2, other); 1018 Node* bol = _igvn->transform(new BoolNode(ncmp, mask)); 1019 res_phi_input = bol->as_Bool()->as_int_value(_igvn); 1020 } 1021 1022 res_phi->set_req(i, res_phi_input); 1023 } 1024 1025 // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask". 1026 Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero)); 1027 _igvn->replace_node(cmp, new_cmp); 1028 } 1029 1030 // Push the newly created AddP on alloc_worklist and patch 1031 // the connection graph. Note that the changes in the CG below 1032 // won't affect the ES of objects since the new nodes have the 1033 // same status as the old ones. 1034 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *> &alloc_worklist) { 1035 assert(data_phi != nullptr, "Output of split_through_phi is null."); 1036 assert(data_phi != previous_load, "Output of split_through_phi is same as input."); 1037 assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi."); 1038 1039 if (data_phi == nullptr || !data_phi->is_Phi()) { 1040 // Make this a retry? 1041 return ; 1042 } 1043 1044 Node* previous_addp = previous_load->in(MemNode::Address); 1045 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1046 for (uint i = 1; i < data_phi->req(); i++) { 1047 Node* new_load = data_phi->in(i); 1048 1049 if (new_load->is_Phi()) { 1050 // new_load is currently the "intermediate_phi" from an specialized 1051 // CastPP. 1052 new_load = new_load->in(1); 1053 } 1054 1055 // "new_load" might actually be a constant, parameter, etc. 1056 if (new_load->is_Load()) { 1057 Node* new_addp = new_load->in(MemNode::Address); 1058 Node* base = get_addp_base(new_addp); 1059 1060 // The base might not be something that we can create an unique 1061 // type for. If that's the case we are done with that input. 1062 PointsToNode* jobj_ptn = unique_java_object(base); 1063 if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) { 1064 continue; 1065 } 1066 1067 // Push to alloc_worklist since the base has an unique_type 1068 alloc_worklist.append_if_missing(new_addp); 1069 1070 // Now let's add the node to the connection graph 1071 _nodes.at_grow(new_addp->_idx, nullptr); 1072 add_field(new_addp, fn->escape_state(), fn->offset()); 1073 add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx)); 1074 1075 // If the load doesn't load an object then it won't be 1076 // part of the connection graph 1077 PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx); 1078 if (curr_load_ptn != nullptr) { 1079 _nodes.at_grow(new_load->_idx, nullptr); 1080 add_local_var(new_load, curr_load_ptn->escape_state()); 1081 add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field()); 1082 } 1083 } 1084 } 1085 } 1086 1087 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *> &alloc_worklist) { 1088 // We'll pass this to 'split_through_phi' so that it'll do the split even 1089 // though the load doesn't have an unique instance type. 1090 bool ignore_missing_instance_id = true; 1091 1092 // All AddPs are present in the connection graph 1093 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1094 1095 // Iterate over AddP looking for a Load 1096 for (int k = previous_addp->outcnt()-1; k >= 0;) { 1097 Node* previous_load = previous_addp->raw_out(k); 1098 if (previous_load->is_Load()) { 1099 Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id); 1100 1101 // Takes care of updating CG and split_unique_types worklists due to cloned 1102 // AddP->Load. 1103 updates_after_load_split(data_phi, previous_load, alloc_worklist); 1104 1105 _igvn->replace_node(previous_load, data_phi); 1106 } 1107 --k; 1108 k = MIN2(k, (int)previous_addp->outcnt()-1); 1109 } 1110 1111 // Remove the old AddP from the processing list because it's dead now 1112 assert(previous_addp->outcnt() == 0, "AddP should be dead now."); 1113 alloc_worklist.remove_if_existing(previous_addp); 1114 } 1115 1116 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the 1117 // selector is: 1118 // -> a '-1' constant, the i'th input of the original Phi is NSR. 1119 // -> a 'x' constant >=0, the i'th input of of original Phi will be SR and 1120 // the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects 1121 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const { 1122 Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1)); 1123 Node* selector = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT)); 1124 uint number_of_sr_objects = 0; 1125 for (uint i = 1; i < ophi->req(); i++) { 1126 Node* base = ophi->in(i); 1127 JavaObjectNode* ptn = unique_java_object(base); 1128 1129 if (ptn != nullptr && ptn->scalar_replaceable()) { 1130 Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects)); 1131 selector->set_req(i, sr_obj_idx); 1132 number_of_sr_objects++; 1133 } 1134 } 1135 1136 return selector->as_Phi(); 1137 } 1138 1139 // Returns true if the AddP node 'n' has at least one base that is a reducible 1140 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is 1141 // checked instead. 1142 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) { 1143 PointsToNode* ptn = ptnode_adr(n->_idx); 1144 if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) { 1145 return false; 1146 } 1147 1148 for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) { 1149 Node* base = i.get()->ideal_node(); 1150 1151 if (reducible_merges.member(base)) { 1152 return true; 1153 } 1154 1155 if (base->is_CastPP() || base->is_CheckCastPP()) { 1156 base = base->in(1); 1157 if (reducible_merges.member(base)) { 1158 return true; 1159 } 1160 } 1161 } 1162 1163 return false; 1164 } 1165 1166 // This method will call its helper method to reduce SafePoint nodes that use 1167 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same 1168 // "version" of Phi use the same debug information (regarding the Phi). 1169 // Therefore, I collect all safepoints and patch them all at once. 1170 // 1171 // The safepoints using the Phi node have to be processed before safepoints of 1172 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the 1173 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the 1174 // safepoint. If we process CastPP's safepoints before Phi's safepoints the 1175 // algorithm that process Phi's safepoints will think that the added Phi 1176 // reference is a regular reference. 1177 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) { 1178 PhiNode* selector = create_selector(ophi); 1179 Unique_Node_List safepoints; 1180 Unique_Node_List casts; 1181 1182 // Just collect the users of the Phis for later processing 1183 // in the needed order. 1184 for (uint i = 0; i < ophi->outcnt(); i++) { 1185 Node* use = ophi->raw_out(i); 1186 if (use->is_SafePoint()) { 1187 safepoints.push(use); 1188 } else if (use->is_CastPP()) { 1189 casts.push(use); 1190 } else { 1191 assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left."); 1192 } 1193 } 1194 1195 // Need to process safepoints using the Phi first 1196 if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) { 1197 return false; 1198 } 1199 1200 // Now process CastPP->safepoints 1201 for (uint i = 0; i < casts.size(); i++) { 1202 Node* cast = casts.at(i); 1203 Unique_Node_List cast_sfpts; 1204 1205 for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) { 1206 Node* use_use = cast->fast_out(j); 1207 if (use_use->is_SafePoint()) { 1208 cast_sfpts.push(use_use); 1209 } else { 1210 assert(use_use->outcnt() == 0, "Only SafePoint users should be left."); 1211 } 1212 } 1213 1214 if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) { 1215 return false; 1216 } 1217 } 1218 1219 return true; 1220 } 1221 1222 // This method will create a SafePointScalarMERGEnode for each SafePoint in 1223 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a 1224 // SafePointScalarObjectNode for each scalar replaceable input. Each 1225 // SafePointScalarMergeNode may describe multiple scalar replaced objects - 1226 // check detailed description in SafePointScalarMergeNode class header. 1227 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) { 1228 PhaseMacroExpand mexp(*_igvn); 1229 Node* original_sfpt_parent = cast != nullptr ? cast : ophi; 1230 const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr(); 1231 1232 Node* nsr_merge_pointer = ophi; 1233 if (cast != nullptr) { 1234 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1235 nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr)); 1236 } 1237 1238 for (uint spi = 0; spi < safepoints.size(); spi++) { 1239 SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint(); 1240 JVMState *jvms = sfpt->jvms(); 1241 uint merge_idx = (sfpt->req() - jvms->scloff()); 1242 int debug_start = jvms->debug_start(); 1243 1244 SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx); 1245 smerge->init_req(0, _compile->root()); 1246 _igvn->register_new_node_with_optimizer(smerge); 1247 1248 // The next two inputs are: 1249 // (1) A copy of the original pointer to NSR objects. 1250 // (2) A selector, used to decide if we need to rematerialize an object 1251 // or use the pointer to a NSR object. 1252 // See more details of these fields in the declaration of SafePointScalarMergeNode 1253 sfpt->add_req(nsr_merge_pointer); 1254 sfpt->add_req(selector); 1255 1256 for (uint i = 1; i < ophi->req(); i++) { 1257 Node* base = ophi->in(i); 1258 JavaObjectNode* ptn = unique_java_object(base); 1259 1260 // If the base is not scalar replaceable we don't need to register information about 1261 // it at this time. 1262 if (ptn == nullptr || !ptn->scalar_replaceable()) { 1263 continue; 1264 } 1265 1266 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 1267 Unique_Node_List value_worklist; 1268 #ifdef ASSERT 1269 const Type* res_type = alloc->result_cast()->bottom_type(); 1270 if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) { 1271 PhiNode* phi = ophi->as_Phi(); 1272 assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity"); 1273 } 1274 #endif 1275 SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist); 1276 if (sobj == nullptr) { 1277 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1278 return false; 1279 } 1280 1281 // Now make a pass over the debug information replacing any references 1282 // to the allocated object with "sobj" 1283 Node* ccpp = alloc->result_cast(); 1284 sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn); 1285 1286 // Register the scalarized object as a candidate for reallocation 1287 smerge->add_req(sobj); 1288 1289 // Scalarize inline types that were added to the safepoint. 1290 // Don't allow linking a constant oop (if available) for flat array elements 1291 // because Deoptimization::reassign_flat_array_elements needs field values. 1292 const bool allow_oop = !merge_t->is_flat(); 1293 for (uint j = 0; j < value_worklist.size(); ++j) { 1294 InlineTypeNode* vt = value_worklist.at(j)->as_InlineType(); 1295 vt->make_scalar_in_safepoints(_igvn, allow_oop); 1296 } 1297 } 1298 1299 // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge" 1300 sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn); 1301 1302 // The call to 'replace_edges_in_range' above might have removed the 1303 // reference to ophi that we need at _merge_pointer_idx. The line below make 1304 // sure the reference is maintained. 1305 sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer); 1306 _igvn->_worklist.push(sfpt); 1307 } 1308 1309 return true; 1310 } 1311 1312 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) { 1313 bool delay = _igvn->delay_transform(); 1314 _igvn->set_delay_transform(true); 1315 _igvn->hash_delete(ophi); 1316 1317 // Copying all users first because some will be removed and others won't. 1318 // Ophi also may acquire some new users as part of Cast reduction. 1319 // CastPPs also need to be processed before CmpPs. 1320 Unique_Node_List castpps; 1321 Unique_Node_List others; 1322 for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) { 1323 Node* use = ophi->fast_out(i); 1324 1325 if (use->is_CastPP()) { 1326 castpps.push(use); 1327 } else if (use->is_AddP() || use->is_Cmp()) { 1328 others.push(use); 1329 } else if (use->is_SafePoint()) { 1330 // processed later 1331 } else { 1332 assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt()); 1333 } 1334 } 1335 1336 // CastPPs need to be processed before Cmps because during the process of 1337 // splitting CastPPs we make reference to the inputs of the Cmp that is used 1338 // by the If controlling the CastPP. 1339 for (uint i = 0; i < castpps.size(); i++) { 1340 reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist, memnode_worklist); 1341 } 1342 1343 for (uint i = 0; i < others.size(); i++) { 1344 Node* use = others.at(i); 1345 1346 if (use->is_AddP()) { 1347 reduce_phi_on_field_access(use, alloc_worklist); 1348 } else if(use->is_Cmp()) { 1349 reduce_phi_on_cmp(use); 1350 } 1351 } 1352 1353 _igvn->set_delay_transform(delay); 1354 } 1355 1356 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) { 1357 Node* null_ptr = _igvn->makecon(TypePtr::NULL_PTR); 1358 const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr(); 1359 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1360 Node* new_phi = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t)); 1361 1362 for (uint i = 1; i < ophi->req(); i++) { 1363 Node* base = ophi->in(i); 1364 JavaObjectNode* ptn = unique_java_object(base); 1365 1366 if (ptn != nullptr && ptn->scalar_replaceable()) { 1367 new_phi->set_req(i, null_ptr); 1368 } else { 1369 new_phi->set_req(i, ophi->in(i)); 1370 } 1371 } 1372 1373 for (int i = ophi->outcnt()-1; i >= 0;) { 1374 Node* out = ophi->raw_out(i); 1375 1376 if (out->is_ConstraintCast()) { 1377 const Type* out_t = _igvn->type(out)->make_ptr(); 1378 const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR); 1379 bool change = out_new_t != out_t; 1380 1381 for (int j = out->outcnt()-1; change && j >= 0; --j) { 1382 Node* out2 = out->raw_out(j); 1383 if (!out2->is_SafePoint()) { 1384 change = false; 1385 break; 1386 } 1387 } 1388 1389 if (change) { 1390 Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr); 1391 _igvn->replace_node(out, new_cast); 1392 _igvn->register_new_node_with_optimizer(new_cast); 1393 } 1394 } 1395 1396 --i; 1397 i = MIN2(i, (int)ophi->outcnt()-1); 1398 } 1399 1400 _igvn->replace_node(ophi, new_phi); 1401 } 1402 1403 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) { 1404 if (!C->do_reduce_allocation_merges()) return; 1405 1406 Unique_Node_List ideal_nodes; 1407 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 1408 ideal_nodes.push(root); 1409 1410 for (uint next = 0; next < ideal_nodes.size(); ++next) { 1411 Node* n = ideal_nodes.at(next); 1412 1413 if (n->is_SafePointScalarMerge()) { 1414 SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge(); 1415 1416 // Validate inputs of merge 1417 for (uint i = 1; i < merge->req(); i++) { 1418 if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) { 1419 assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject."); 1420 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1421 } 1422 } 1423 1424 // Validate users of merge 1425 for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) { 1426 Node* sfpt = merge->fast_out(i); 1427 if (sfpt->is_SafePoint()) { 1428 int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms()); 1429 1430 if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) { 1431 assert(false, "SafePointScalarMerge nodes can't be nested."); 1432 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1433 } 1434 } else { 1435 assert(false, "Only safepoints can use SafePointScalarMerge nodes."); 1436 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1437 } 1438 } 1439 } 1440 1441 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1442 Node* m = n->fast_out(i); 1443 ideal_nodes.push(m); 1444 } 1445 } 1446 } 1447 1448 // Returns true if there is an object in the scope of sfn that does not escape globally. 1449 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) { 1450 Compile* C = _compile; 1451 for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1452 if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() || 1453 DeoptimizeObjectsALot) { 1454 // Jvmti agents can access locals. Must provide info about local objects at runtime. 1455 int num_locs = jvms->loc_size(); 1456 for (int idx = 0; idx < num_locs; idx++) { 1457 Node* l = sfn->local(jvms, idx); 1458 if (not_global_escape(l)) { 1459 return true; 1460 } 1461 } 1462 } 1463 if (C->env()->jvmti_can_get_owned_monitor_info() || 1464 C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) { 1465 // Jvmti agents can read monitors. Must provide info about locked objects at runtime. 1466 int num_mon = jvms->nof_monitors(); 1467 for (int idx = 0; idx < num_mon; idx++) { 1468 Node* m = sfn->monitor_obj(jvms, idx); 1469 if (m != nullptr && not_global_escape(m)) { 1470 return true; 1471 } 1472 } 1473 } 1474 } 1475 return false; 1476 } 1477 1478 // Returns true if at least one of the arguments to the call is an object 1479 // that does not escape globally. 1480 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) { 1481 if (call->method() != nullptr) { 1482 uint max_idx = TypeFunc::Parms + call->method()->arg_size(); 1483 for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) { 1484 Node* p = call->in(idx); 1485 if (not_global_escape(p)) { 1486 return true; 1487 } 1488 } 1489 } else { 1490 const char* name = call->as_CallStaticJava()->_name; 1491 assert(name != nullptr, "no name"); 1492 // no arg escapes through uncommon traps 1493 if (strcmp(name, "uncommon_trap") != 0) { 1494 // process_call_arguments() assumes that all arguments escape globally 1495 const TypeTuple* d = call->tf()->domain_sig(); 1496 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1497 const Type* at = d->field_at(i); 1498 if (at->isa_oopptr() != nullptr) { 1499 return true; 1500 } 1501 } 1502 } 1503 } 1504 return false; 1505 } 1506 1507 1508 1509 // Utility function for nodes that load an object 1510 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1511 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1512 // ThreadLocal has RawPtr type. 1513 const Type* t = _igvn->type(n); 1514 if (t->make_ptr() != nullptr) { 1515 Node* adr = n->in(MemNode::Address); 1516 #ifdef ASSERT 1517 if (!adr->is_AddP()) { 1518 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 1519 } else { 1520 assert((ptnode_adr(adr->_idx) == nullptr || 1521 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 1522 } 1523 #endif 1524 add_local_var_and_edge(n, PointsToNode::NoEscape, 1525 adr, delayed_worklist); 1526 } 1527 } 1528 1529 // Populate Connection Graph with PointsTo nodes and create simple 1530 // connection graph edges. 1531 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1532 assert(!_verify, "this method should not be called for verification"); 1533 PhaseGVN* igvn = _igvn; 1534 uint n_idx = n->_idx; 1535 PointsToNode* n_ptn = ptnode_adr(n_idx); 1536 if (n_ptn != nullptr) { 1537 return; // No need to redefine PointsTo node during first iteration. 1538 } 1539 int opcode = n->Opcode(); 1540 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode); 1541 if (gc_handled) { 1542 return; // Ignore node if already handled by GC. 1543 } 1544 1545 if (n->is_Call()) { 1546 // Arguments to allocation and locking don't escape. 1547 if (n->is_AbstractLock()) { 1548 // Put Lock and Unlock nodes on IGVN worklist to process them during 1549 // first IGVN optimization when escape information is still available. 1550 record_for_optimizer(n); 1551 } else if (n->is_Allocate()) { 1552 add_call_node(n->as_Call()); 1553 record_for_optimizer(n); 1554 } else { 1555 if (n->is_CallStaticJava()) { 1556 const char* name = n->as_CallStaticJava()->_name; 1557 if (name != nullptr && strcmp(name, "uncommon_trap") == 0) { 1558 return; // Skip uncommon traps 1559 } 1560 } 1561 // Don't mark as processed since call's arguments have to be processed. 1562 delayed_worklist->push(n); 1563 // Check if a call returns an object. 1564 if ((n->as_Call()->returns_pointer() && 1565 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) || 1566 (n->is_CallStaticJava() && 1567 n->as_CallStaticJava()->is_boxing_method())) { 1568 add_call_node(n->as_Call()); 1569 } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) { 1570 bool returns_oop = false; 1571 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) { 1572 ProjNode* pn = n->fast_out(i)->as_Proj(); 1573 if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) { 1574 returns_oop = true; 1575 } 1576 } 1577 if (returns_oop) { 1578 add_call_node(n->as_Call()); 1579 } 1580 } 1581 } 1582 return; 1583 } 1584 // Put this check here to process call arguments since some call nodes 1585 // point to phantom_obj. 1586 if (n_ptn == phantom_obj || n_ptn == null_obj) { 1587 return; // Skip predefined nodes. 1588 } 1589 switch (opcode) { 1590 case Op_AddP: { 1591 Node* base = get_addp_base(n); 1592 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1593 // Field nodes are created for all field types. They are used in 1594 // adjust_scalar_replaceable_state() and split_unique_types(). 1595 // Note, non-oop fields will have only base edges in Connection 1596 // Graph because such fields are not used for oop loads and stores. 1597 int offset = address_offset(n, igvn); 1598 add_field(n, PointsToNode::NoEscape, offset); 1599 if (ptn_base == nullptr) { 1600 delayed_worklist->push(n); // Process it later. 1601 } else { 1602 n_ptn = ptnode_adr(n_idx); 1603 add_base(n_ptn->as_Field(), ptn_base); 1604 } 1605 break; 1606 } 1607 case Op_CastX2P: 1608 case Op_CastI2N: { 1609 map_ideal_node(n, phantom_obj); 1610 break; 1611 } 1612 case Op_InlineType: 1613 case Op_CastPP: 1614 case Op_CheckCastPP: 1615 case Op_EncodeP: 1616 case Op_DecodeN: 1617 case Op_EncodePKlass: 1618 case Op_DecodeNKlass: { 1619 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1620 break; 1621 } 1622 case Op_CMoveP: { 1623 add_local_var(n, PointsToNode::NoEscape); 1624 // Do not add edges during first iteration because some could be 1625 // not defined yet. 1626 delayed_worklist->push(n); 1627 break; 1628 } 1629 case Op_ConP: 1630 case Op_ConN: 1631 case Op_ConNKlass: { 1632 // assume all oop constants globally escape except for null 1633 PointsToNode::EscapeState es; 1634 const Type* t = igvn->type(n); 1635 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 1636 es = PointsToNode::NoEscape; 1637 } else { 1638 es = PointsToNode::GlobalEscape; 1639 } 1640 PointsToNode* ptn_con = add_java_object(n, es); 1641 set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer")); 1642 break; 1643 } 1644 case Op_CreateEx: { 1645 // assume that all exception objects globally escape 1646 map_ideal_node(n, phantom_obj); 1647 break; 1648 } 1649 case Op_LoadKlass: 1650 case Op_LoadNKlass: { 1651 // Unknown class is loaded 1652 map_ideal_node(n, phantom_obj); 1653 break; 1654 } 1655 case Op_LoadP: 1656 case Op_LoadN: { 1657 add_objload_to_connection_graph(n, delayed_worklist); 1658 break; 1659 } 1660 case Op_Parm: { 1661 map_ideal_node(n, phantom_obj); 1662 break; 1663 } 1664 case Op_PartialSubtypeCheck: { 1665 // Produces Null or notNull and is used in only in CmpP so 1666 // phantom_obj could be used. 1667 map_ideal_node(n, phantom_obj); // Result is unknown 1668 break; 1669 } 1670 case Op_Phi: { 1671 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1672 // ThreadLocal has RawPtr type. 1673 const Type* t = n->as_Phi()->type(); 1674 if (t->make_ptr() != nullptr) { 1675 add_local_var(n, PointsToNode::NoEscape); 1676 // Do not add edges during first iteration because some could be 1677 // not defined yet. 1678 delayed_worklist->push(n); 1679 } 1680 break; 1681 } 1682 case Op_Proj: { 1683 // we are only interested in the oop result projection from a call 1684 if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() && 1685 (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) { 1686 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1687 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1688 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist); 1689 } 1690 break; 1691 } 1692 case Op_Rethrow: // Exception object escapes 1693 case Op_Return: { 1694 if (n->req() > TypeFunc::Parms && 1695 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 1696 // Treat Return value as LocalVar with GlobalEscape escape state. 1697 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist); 1698 } 1699 break; 1700 } 1701 case Op_CompareAndExchangeP: 1702 case Op_CompareAndExchangeN: 1703 case Op_GetAndSetP: 1704 case Op_GetAndSetN: { 1705 add_objload_to_connection_graph(n, delayed_worklist); 1706 // fall-through 1707 } 1708 case Op_StoreP: 1709 case Op_StoreN: 1710 case Op_StoreNKlass: 1711 case Op_WeakCompareAndSwapP: 1712 case Op_WeakCompareAndSwapN: 1713 case Op_CompareAndSwapP: 1714 case Op_CompareAndSwapN: { 1715 add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1716 break; 1717 } 1718 case Op_AryEq: 1719 case Op_CountPositives: 1720 case Op_StrComp: 1721 case Op_StrEquals: 1722 case Op_StrIndexOf: 1723 case Op_StrIndexOfChar: 1724 case Op_StrInflatedCopy: 1725 case Op_StrCompressedCopy: 1726 case Op_VectorizedHashCode: 1727 case Op_EncodeISOArray: { 1728 add_local_var(n, PointsToNode::ArgEscape); 1729 delayed_worklist->push(n); // Process it later. 1730 break; 1731 } 1732 case Op_ThreadLocal: { 1733 PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape); 1734 set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer")); 1735 break; 1736 } 1737 case Op_Blackhole: { 1738 // All blackhole pointer arguments are globally escaping. 1739 // Only do this if there is at least one pointer argument. 1740 // Do not add edges during first iteration because some could be 1741 // not defined yet, defer to final step. 1742 for (uint i = 0; i < n->req(); i++) { 1743 Node* in = n->in(i); 1744 if (in != nullptr) { 1745 const Type* at = _igvn->type(in); 1746 if (!at->isa_ptr()) continue; 1747 1748 add_local_var(n, PointsToNode::GlobalEscape); 1749 delayed_worklist->push(n); 1750 break; 1751 } 1752 } 1753 break; 1754 } 1755 default: 1756 ; // Do nothing for nodes not related to EA. 1757 } 1758 return; 1759 } 1760 1761 // Add final simple edges to graph. 1762 void ConnectionGraph::add_final_edges(Node *n) { 1763 PointsToNode* n_ptn = ptnode_adr(n->_idx); 1764 #ifdef ASSERT 1765 if (_verify && n_ptn->is_JavaObject()) 1766 return; // This method does not change graph for JavaObject. 1767 #endif 1768 1769 if (n->is_Call()) { 1770 process_call_arguments(n->as_Call()); 1771 return; 1772 } 1773 assert(n->is_Store() || n->is_LoadStore() || 1774 ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)), 1775 "node should be registered already"); 1776 int opcode = n->Opcode(); 1777 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode); 1778 if (gc_handled) { 1779 return; // Ignore node if already handled by GC. 1780 } 1781 switch (opcode) { 1782 case Op_AddP: { 1783 Node* base = get_addp_base(n); 1784 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1785 assert(ptn_base != nullptr, "field's base should be registered"); 1786 add_base(n_ptn->as_Field(), ptn_base); 1787 break; 1788 } 1789 case Op_InlineType: 1790 case Op_CastPP: 1791 case Op_CheckCastPP: 1792 case Op_EncodeP: 1793 case Op_DecodeN: 1794 case Op_EncodePKlass: 1795 case Op_DecodeNKlass: { 1796 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr); 1797 break; 1798 } 1799 case Op_CMoveP: { 1800 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 1801 Node* in = n->in(i); 1802 if (in == nullptr) { 1803 continue; // ignore null 1804 } 1805 Node* uncast_in = in->uncast(); 1806 if (uncast_in->is_top() || uncast_in == n) { 1807 continue; // ignore top or inputs which go back this node 1808 } 1809 PointsToNode* ptn = ptnode_adr(in->_idx); 1810 assert(ptn != nullptr, "node should be registered"); 1811 add_edge(n_ptn, ptn); 1812 } 1813 break; 1814 } 1815 case Op_LoadP: 1816 case Op_LoadN: { 1817 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1818 // ThreadLocal has RawPtr type. 1819 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1820 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1821 break; 1822 } 1823 case Op_Phi: { 1824 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1825 // ThreadLocal has RawPtr type. 1826 assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type"); 1827 for (uint i = 1; i < n->req(); i++) { 1828 Node* in = n->in(i); 1829 if (in == nullptr) { 1830 continue; // ignore null 1831 } 1832 Node* uncast_in = in->uncast(); 1833 if (uncast_in->is_top() || uncast_in == n) { 1834 continue; // ignore top or inputs which go back this node 1835 } 1836 PointsToNode* ptn = ptnode_adr(in->_idx); 1837 assert(ptn != nullptr, "node should be registered"); 1838 add_edge(n_ptn, ptn); 1839 } 1840 break; 1841 } 1842 case Op_Proj: { 1843 // we are only interested in the oop result projection from a call 1844 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1845 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1846 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr); 1847 break; 1848 } 1849 case Op_Rethrow: // Exception object escapes 1850 case Op_Return: { 1851 assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(), 1852 "Unexpected node type"); 1853 // Treat Return value as LocalVar with GlobalEscape escape state. 1854 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr); 1855 break; 1856 } 1857 case Op_CompareAndExchangeP: 1858 case Op_CompareAndExchangeN: 1859 case Op_GetAndSetP: 1860 case Op_GetAndSetN:{ 1861 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1862 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1863 // fall-through 1864 } 1865 case Op_CompareAndSwapP: 1866 case Op_CompareAndSwapN: 1867 case Op_WeakCompareAndSwapP: 1868 case Op_WeakCompareAndSwapN: 1869 case Op_StoreP: 1870 case Op_StoreN: 1871 case Op_StoreNKlass:{ 1872 add_final_edges_unsafe_access(n, opcode); 1873 break; 1874 } 1875 case Op_VectorizedHashCode: 1876 case Op_AryEq: 1877 case Op_CountPositives: 1878 case Op_StrComp: 1879 case Op_StrEquals: 1880 case Op_StrIndexOf: 1881 case Op_StrIndexOfChar: 1882 case Op_StrInflatedCopy: 1883 case Op_StrCompressedCopy: 1884 case Op_EncodeISOArray: { 1885 // char[]/byte[] arrays passed to string intrinsic do not escape but 1886 // they are not scalar replaceable. Adjust escape state for them. 1887 // Start from in(2) edge since in(1) is memory edge. 1888 for (uint i = 2; i < n->req(); i++) { 1889 Node* adr = n->in(i); 1890 const Type* at = _igvn->type(adr); 1891 if (!adr->is_top() && at->isa_ptr()) { 1892 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 1893 at->isa_ptr() != nullptr, "expecting a pointer"); 1894 if (adr->is_AddP()) { 1895 adr = get_addp_base(adr); 1896 } 1897 PointsToNode* ptn = ptnode_adr(adr->_idx); 1898 assert(ptn != nullptr, "node should be registered"); 1899 add_edge(n_ptn, ptn); 1900 } 1901 } 1902 break; 1903 } 1904 case Op_Blackhole: { 1905 // All blackhole pointer arguments are globally escaping. 1906 for (uint i = 0; i < n->req(); i++) { 1907 Node* in = n->in(i); 1908 if (in != nullptr) { 1909 const Type* at = _igvn->type(in); 1910 if (!at->isa_ptr()) continue; 1911 1912 if (in->is_AddP()) { 1913 in = get_addp_base(in); 1914 } 1915 1916 PointsToNode* ptn = ptnode_adr(in->_idx); 1917 assert(ptn != nullptr, "should be defined already"); 1918 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole")); 1919 add_edge(n_ptn, ptn); 1920 } 1921 } 1922 break; 1923 } 1924 default: { 1925 // This method should be called only for EA specific nodes which may 1926 // miss some edges when they were created. 1927 #ifdef ASSERT 1928 n->dump(1); 1929 #endif 1930 guarantee(false, "unknown node"); 1931 } 1932 } 1933 return; 1934 } 1935 1936 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) { 1937 Node* adr = n->in(MemNode::Address); 1938 const Type* adr_type = _igvn->type(adr); 1939 adr_type = adr_type->make_ptr(); 1940 if (adr_type == nullptr) { 1941 return; // skip dead nodes 1942 } 1943 if (adr_type->isa_oopptr() 1944 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 1945 && adr_type == TypeRawPtr::NOTNULL 1946 && is_captured_store_address(adr))) { 1947 delayed_worklist->push(n); // Process it later. 1948 #ifdef ASSERT 1949 assert (adr->is_AddP(), "expecting an AddP"); 1950 if (adr_type == TypeRawPtr::NOTNULL) { 1951 // Verify a raw address for a store captured by Initialize node. 1952 int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1953 assert(offs != Type::OffsetBot, "offset must be a constant"); 1954 } 1955 #endif 1956 } else { 1957 // Ignore copy the displaced header to the BoxNode (OSR compilation). 1958 if (adr->is_BoxLock()) { 1959 return; 1960 } 1961 // Stored value escapes in unsafe access. 1962 if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 1963 delayed_worklist->push(n); // Process unsafe access later. 1964 return; 1965 } 1966 #ifdef ASSERT 1967 n->dump(1); 1968 assert(false, "not unsafe"); 1969 #endif 1970 } 1971 } 1972 1973 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) { 1974 Node* adr = n->in(MemNode::Address); 1975 const Type *adr_type = _igvn->type(adr); 1976 adr_type = adr_type->make_ptr(); 1977 #ifdef ASSERT 1978 if (adr_type == nullptr) { 1979 n->dump(1); 1980 assert(adr_type != nullptr, "dead node should not be on list"); 1981 return true; 1982 } 1983 #endif 1984 1985 if (adr_type->isa_oopptr() 1986 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 1987 && adr_type == TypeRawPtr::NOTNULL 1988 && is_captured_store_address(adr))) { 1989 // Point Address to Value 1990 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 1991 assert(adr_ptn != nullptr && 1992 adr_ptn->as_Field()->is_oop(), "node should be registered"); 1993 Node* val = n->in(MemNode::ValueIn); 1994 PointsToNode* ptn = ptnode_adr(val->_idx); 1995 assert(ptn != nullptr, "node should be registered"); 1996 add_edge(adr_ptn, ptn); 1997 return true; 1998 } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 1999 // Stored value escapes in unsafe access. 2000 Node* val = n->in(MemNode::ValueIn); 2001 PointsToNode* ptn = ptnode_adr(val->_idx); 2002 assert(ptn != nullptr, "node should be registered"); 2003 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address")); 2004 // Add edge to object for unsafe access with offset. 2005 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 2006 assert(adr_ptn != nullptr, "node should be registered"); 2007 if (adr_ptn->is_Field()) { 2008 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 2009 add_edge(adr_ptn, ptn); 2010 } 2011 return true; 2012 } 2013 #ifdef ASSERT 2014 n->dump(1); 2015 assert(false, "not unsafe"); 2016 #endif 2017 return false; 2018 } 2019 2020 void ConnectionGraph::add_call_node(CallNode* call) { 2021 assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer"); 2022 uint call_idx = call->_idx; 2023 if (call->is_Allocate()) { 2024 Node* k = call->in(AllocateNode::KlassNode); 2025 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 2026 assert(kt != nullptr, "TypeKlassPtr required."); 2027 PointsToNode::EscapeState es = PointsToNode::NoEscape; 2028 bool scalar_replaceable = true; 2029 NOT_PRODUCT(const char* nsr_reason = ""); 2030 if (call->is_AllocateArray()) { 2031 if (!kt->isa_aryklassptr()) { // StressReflectiveCode 2032 es = PointsToNode::GlobalEscape; 2033 } else { 2034 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 2035 if (length < 0) { 2036 // Not scalar replaceable if the length is not constant. 2037 scalar_replaceable = false; 2038 NOT_PRODUCT(nsr_reason = "has a non-constant length"); 2039 } else if (length > EliminateAllocationArraySizeLimit) { 2040 // Not scalar replaceable if the length is too big. 2041 scalar_replaceable = false; 2042 NOT_PRODUCT(nsr_reason = "has a length that is too big"); 2043 } 2044 } 2045 } else { // Allocate instance 2046 if (!kt->isa_instklassptr()) { // StressReflectiveCode 2047 es = PointsToNode::GlobalEscape; 2048 } else { 2049 const TypeInstKlassPtr* ikt = kt->is_instklassptr(); 2050 ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass(); 2051 if (ik->is_subclass_of(_compile->env()->Thread_klass()) || 2052 ik->is_subclass_of(_compile->env()->Reference_klass()) || 2053 !ik->can_be_instantiated() || 2054 ik->has_finalizer()) { 2055 es = PointsToNode::GlobalEscape; 2056 } else { 2057 int nfields = ik->as_instance_klass()->nof_nonstatic_fields(); 2058 if (nfields > EliminateAllocationFieldsLimit) { 2059 // Not scalar replaceable if there are too many fields. 2060 scalar_replaceable = false; 2061 NOT_PRODUCT(nsr_reason = "has too many fields"); 2062 } 2063 } 2064 } 2065 } 2066 add_java_object(call, es); 2067 PointsToNode* ptn = ptnode_adr(call_idx); 2068 if (!scalar_replaceable && ptn->scalar_replaceable()) { 2069 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason)); 2070 } 2071 } else if (call->is_CallStaticJava()) { 2072 // Call nodes could be different types: 2073 // 2074 // 1. CallDynamicJavaNode (what happened during call is unknown): 2075 // 2076 // - mapped to GlobalEscape JavaObject node if oop is returned; 2077 // 2078 // - all oop arguments are escaping globally; 2079 // 2080 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 2081 // 2082 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 2083 // 2084 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 2085 // - mapped to NoEscape JavaObject node if non-escaping object allocated 2086 // during call is returned; 2087 // - mapped to ArgEscape LocalVar node pointed to object arguments 2088 // which are returned and does not escape during call; 2089 // 2090 // - oop arguments escaping status is defined by bytecode analysis; 2091 // 2092 // For a static call, we know exactly what method is being called. 2093 // Use bytecode estimator to record whether the call's return value escapes. 2094 ciMethod* meth = call->as_CallJava()->method(); 2095 if (meth == nullptr) { 2096 const char* name = call->as_CallStaticJava()->_name; 2097 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2098 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "TODO: add failed case check"); 2099 // Returns a newly allocated non-escaped object. 2100 add_java_object(call, PointsToNode::NoEscape); 2101 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray")); 2102 } else if (meth->is_boxing_method()) { 2103 // Returns boxing object 2104 PointsToNode::EscapeState es; 2105 vmIntrinsics::ID intr = meth->intrinsic_id(); 2106 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 2107 // It does not escape if object is always allocated. 2108 es = PointsToNode::NoEscape; 2109 } else { 2110 // It escapes globally if object could be loaded from cache. 2111 es = PointsToNode::GlobalEscape; 2112 } 2113 add_java_object(call, es); 2114 if (es == PointsToNode::GlobalEscape) { 2115 set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache")); 2116 } 2117 } else { 2118 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 2119 call_analyzer->copy_dependencies(_compile->dependencies()); 2120 if (call_analyzer->is_return_allocated()) { 2121 // Returns a newly allocated non-escaped object, simply 2122 // update dependency information. 2123 // Mark it as NoEscape so that objects referenced by 2124 // it's fields will be marked as NoEscape at least. 2125 add_java_object(call, PointsToNode::NoEscape); 2126 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call")); 2127 } else { 2128 // Determine whether any arguments are returned. 2129 const TypeTuple* d = call->tf()->domain_cc(); 2130 bool ret_arg = false; 2131 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2132 if (d->field_at(i)->isa_ptr() != nullptr && 2133 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 2134 ret_arg = true; 2135 break; 2136 } 2137 } 2138 if (ret_arg) { 2139 add_local_var(call, PointsToNode::ArgEscape); 2140 } else { 2141 // Returns unknown object. 2142 map_ideal_node(call, phantom_obj); 2143 } 2144 } 2145 } 2146 } else { 2147 // An other type of call, assume the worst case: 2148 // returned value is unknown and globally escapes. 2149 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 2150 map_ideal_node(call, phantom_obj); 2151 } 2152 } 2153 2154 void ConnectionGraph::process_call_arguments(CallNode *call) { 2155 bool is_arraycopy = false; 2156 switch (call->Opcode()) { 2157 #ifdef ASSERT 2158 case Op_Allocate: 2159 case Op_AllocateArray: 2160 case Op_Lock: 2161 case Op_Unlock: 2162 assert(false, "should be done already"); 2163 break; 2164 #endif 2165 case Op_ArrayCopy: 2166 case Op_CallLeafNoFP: 2167 // Most array copies are ArrayCopy nodes at this point but there 2168 // are still a few direct calls to the copy subroutines (See 2169 // PhaseStringOpts::copy_string()) 2170 is_arraycopy = (call->Opcode() == Op_ArrayCopy) || 2171 call->as_CallLeaf()->is_call_to_arraycopystub(); 2172 // fall through 2173 case Op_CallLeafVector: 2174 case Op_CallLeaf: { 2175 // Stub calls, objects do not escape but they are not scale replaceable. 2176 // Adjust escape state for outgoing arguments. 2177 const TypeTuple * d = call->tf()->domain_sig(); 2178 bool src_has_oops = false; 2179 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2180 const Type* at = d->field_at(i); 2181 Node *arg = call->in(i); 2182 if (arg == nullptr) { 2183 continue; 2184 } 2185 const Type *aat = _igvn->type(arg); 2186 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) { 2187 continue; 2188 } 2189 if (arg->is_AddP()) { 2190 // 2191 // The inline_native_clone() case when the arraycopy stub is called 2192 // after the allocation before Initialize and CheckCastPP nodes. 2193 // Or normal arraycopy for object arrays case. 2194 // 2195 // Set AddP's base (Allocate) as not scalar replaceable since 2196 // pointer to the base (with offset) is passed as argument. 2197 // 2198 arg = get_addp_base(arg); 2199 } 2200 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2201 assert(arg_ptn != nullptr, "should be registered"); 2202 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 2203 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 2204 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 2205 aat->isa_ptr() != nullptr, "expecting an Ptr"); 2206 bool arg_has_oops = aat->isa_oopptr() && 2207 (aat->isa_instptr() || 2208 (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) || 2209 (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr && 2210 aat->isa_aryptr()->is_flat() && 2211 aat->isa_aryptr()->elem()->inline_klass()->contains_oops())); 2212 if (i == TypeFunc::Parms) { 2213 src_has_oops = arg_has_oops; 2214 } 2215 // 2216 // src or dst could be j.l.Object when other is basic type array: 2217 // 2218 // arraycopy(char[],0,Object*,0,size); 2219 // arraycopy(Object*,0,char[],0,size); 2220 // 2221 // Don't add edges in such cases. 2222 // 2223 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 2224 arg_has_oops && (i > TypeFunc::Parms); 2225 #ifdef ASSERT 2226 if (!(is_arraycopy || 2227 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) || 2228 (call->as_CallLeaf()->_name != nullptr && 2229 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 2230 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 || 2231 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 || 2232 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 2233 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 2234 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 2235 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 2236 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 || 2237 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 || 2238 strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 || 2239 strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 || 2240 strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 || 2241 strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 || 2242 strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 || 2243 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 2244 strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 || 2245 strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 || 2246 strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 || 2247 strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 || 2248 strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 || 2249 strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 || 2250 strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 || 2251 strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 || 2252 strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 || 2253 strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 || 2254 strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 || 2255 strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 || 2256 strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 || 2257 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 || 2258 strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 || 2259 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 || 2260 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 || 2261 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 2262 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 2263 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 2264 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 2265 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 2266 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 2267 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 || 2268 strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 || 2269 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 || 2270 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 2271 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 2272 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 2273 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 2274 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 || 2275 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2276 strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 || 2277 strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 || 2278 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 || 2279 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 || 2280 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2281 strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 || 2282 strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 || 2283 strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 || 2284 strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 || 2285 strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0) 2286 ))) { 2287 call->dump(); 2288 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name); 2289 } 2290 #endif 2291 // Always process arraycopy's destination object since 2292 // we need to add all possible edges to references in 2293 // source object. 2294 if (arg_esc >= PointsToNode::ArgEscape && 2295 !arg_is_arraycopy_dest) { 2296 continue; 2297 } 2298 PointsToNode::EscapeState es = PointsToNode::ArgEscape; 2299 if (call->is_ArrayCopy()) { 2300 ArrayCopyNode* ac = call->as_ArrayCopy(); 2301 if (ac->is_clonebasic() || 2302 ac->is_arraycopy_validated() || 2303 ac->is_copyof_validated() || 2304 ac->is_copyofrange_validated()) { 2305 es = PointsToNode::NoEscape; 2306 } 2307 } 2308 set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2309 if (arg_is_arraycopy_dest) { 2310 Node* src = call->in(TypeFunc::Parms); 2311 if (src->is_AddP()) { 2312 src = get_addp_base(src); 2313 } 2314 PointsToNode* src_ptn = ptnode_adr(src->_idx); 2315 assert(src_ptn != nullptr, "should be registered"); 2316 // Special arraycopy edge: 2317 // Only escape state of destination object's fields affects 2318 // escape state of fields in source object. 2319 add_arraycopy(call, es, src_ptn, arg_ptn); 2320 } 2321 } 2322 } 2323 break; 2324 } 2325 case Op_CallStaticJava: { 2326 // For a static call, we know exactly what method is being called. 2327 // Use bytecode estimator to record the call's escape affects 2328 #ifdef ASSERT 2329 const char* name = call->as_CallStaticJava()->_name; 2330 assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 2331 #endif 2332 ciMethod* meth = call->as_CallJava()->method(); 2333 if ((meth != nullptr) && meth->is_boxing_method()) { 2334 break; // Boxing methods do not modify any oops. 2335 } 2336 BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr; 2337 // fall-through if not a Java method or no analyzer information 2338 if (call_analyzer != nullptr) { 2339 PointsToNode* call_ptn = ptnode_adr(call->_idx); 2340 const TypeTuple* d = call->tf()->domain_cc(); 2341 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2342 const Type* at = d->field_at(i); 2343 int k = i - TypeFunc::Parms; 2344 Node* arg = call->in(i); 2345 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2346 if (at->isa_ptr() != nullptr && 2347 call_analyzer->is_arg_returned(k)) { 2348 // The call returns arguments. 2349 if (call_ptn != nullptr) { // Is call's result used? 2350 assert(call_ptn->is_LocalVar(), "node should be registered"); 2351 assert(arg_ptn != nullptr, "node should be registered"); 2352 add_edge(call_ptn, arg_ptn); 2353 } 2354 } 2355 if (at->isa_oopptr() != nullptr && 2356 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 2357 if (!call_analyzer->is_arg_stack(k)) { 2358 // The argument global escapes 2359 set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2360 } else { 2361 set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2362 if (!call_analyzer->is_arg_local(k)) { 2363 // The argument itself doesn't escape, but any fields might 2364 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2365 } 2366 } 2367 } 2368 } 2369 if (call_ptn != nullptr && call_ptn->is_LocalVar()) { 2370 // The call returns arguments. 2371 assert(call_ptn->edge_count() > 0, "sanity"); 2372 if (!call_analyzer->is_return_local()) { 2373 // Returns also unknown object. 2374 add_edge(call_ptn, phantom_obj); 2375 } 2376 } 2377 break; 2378 } 2379 } 2380 default: { 2381 // Fall-through here if not a Java method or no analyzer information 2382 // or some other type of call, assume the worst case: all arguments 2383 // globally escape. 2384 const TypeTuple* d = call->tf()->domain_cc(); 2385 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2386 const Type* at = d->field_at(i); 2387 if (at->isa_oopptr() != nullptr) { 2388 Node* arg = call->in(i); 2389 if (arg->is_AddP()) { 2390 arg = get_addp_base(arg); 2391 } 2392 assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already"); 2393 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2394 } 2395 } 2396 } 2397 } 2398 } 2399 2400 2401 // Finish Graph construction. 2402 bool ConnectionGraph::complete_connection_graph( 2403 GrowableArray<PointsToNode*>& ptnodes_worklist, 2404 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 2405 GrowableArray<JavaObjectNode*>& java_objects_worklist, 2406 GrowableArray<FieldNode*>& oop_fields_worklist) { 2407 // Normally only 1-3 passes needed to build Connection Graph depending 2408 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 2409 // Set limit to 20 to catch situation when something did go wrong and 2410 // bailout Escape Analysis. 2411 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 2412 #define GRAPH_BUILD_ITER_LIMIT 20 2413 2414 // Propagate GlobalEscape and ArgEscape escape states and check that 2415 // we still have non-escaping objects. The method pushs on _worklist 2416 // Field nodes which reference phantom_object. 2417 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2418 return false; // Nothing to do. 2419 } 2420 // Now propagate references to all JavaObject nodes. 2421 int java_objects_length = java_objects_worklist.length(); 2422 elapsedTimer build_time; 2423 build_time.start(); 2424 elapsedTimer time; 2425 bool timeout = false; 2426 int new_edges = 1; 2427 int iterations = 0; 2428 do { 2429 while ((new_edges > 0) && 2430 (iterations++ < GRAPH_BUILD_ITER_LIMIT)) { 2431 double start_time = time.seconds(); 2432 time.start(); 2433 new_edges = 0; 2434 // Propagate references to phantom_object for nodes pushed on _worklist 2435 // by find_non_escaped_objects() and find_field_value(). 2436 new_edges += add_java_object_edges(phantom_obj, false); 2437 for (int next = 0; next < java_objects_length; ++next) { 2438 JavaObjectNode* ptn = java_objects_worklist.at(next); 2439 new_edges += add_java_object_edges(ptn, true); 2440 2441 #define SAMPLE_SIZE 4 2442 if ((next % SAMPLE_SIZE) == 0) { 2443 // Each 4 iterations calculate how much time it will take 2444 // to complete graph construction. 2445 time.stop(); 2446 // Poll for requests from shutdown mechanism to quiesce compiler 2447 // because Connection graph construction may take long time. 2448 CompileBroker::maybe_block(); 2449 double stop_time = time.seconds(); 2450 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 2451 double time_until_end = time_per_iter * (double)(java_objects_length - next); 2452 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 2453 timeout = true; 2454 break; // Timeout 2455 } 2456 start_time = stop_time; 2457 time.start(); 2458 } 2459 #undef SAMPLE_SIZE 2460 2461 } 2462 if (timeout) break; 2463 if (new_edges > 0) { 2464 // Update escape states on each iteration if graph was updated. 2465 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2466 return false; // Nothing to do. 2467 } 2468 } 2469 time.stop(); 2470 if (time.seconds() >= EscapeAnalysisTimeout) { 2471 timeout = true; 2472 break; 2473 } 2474 } 2475 if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) { 2476 time.start(); 2477 // Find fields which have unknown value. 2478 int fields_length = oop_fields_worklist.length(); 2479 for (int next = 0; next < fields_length; next++) { 2480 FieldNode* field = oop_fields_worklist.at(next); 2481 if (field->edge_count() == 0) { 2482 new_edges += find_field_value(field); 2483 // This code may added new edges to phantom_object. 2484 // Need an other cycle to propagate references to phantom_object. 2485 } 2486 } 2487 time.stop(); 2488 if (time.seconds() >= EscapeAnalysisTimeout) { 2489 timeout = true; 2490 break; 2491 } 2492 } else { 2493 new_edges = 0; // Bailout 2494 } 2495 } while (new_edges > 0); 2496 2497 build_time.stop(); 2498 _build_time = build_time.seconds(); 2499 _build_iterations = iterations; 2500 2501 // Bailout if passed limits. 2502 if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) { 2503 Compile* C = _compile; 2504 if (C->log() != nullptr) { 2505 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 2506 C->log()->text("%s", timeout ? "time" : "iterations"); 2507 C->log()->end_elem(" limit'"); 2508 } 2509 assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d", 2510 _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length()); 2511 // Possible infinite build_connection_graph loop, 2512 // bailout (no changes to ideal graph were made). 2513 return false; 2514 } 2515 2516 #undef GRAPH_BUILD_ITER_LIMIT 2517 2518 // Find fields initialized by null for non-escaping Allocations. 2519 int non_escaped_length = non_escaped_allocs_worklist.length(); 2520 for (int next = 0; next < non_escaped_length; next++) { 2521 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2522 PointsToNode::EscapeState es = ptn->escape_state(); 2523 assert(es <= PointsToNode::ArgEscape, "sanity"); 2524 if (es == PointsToNode::NoEscape) { 2525 if (find_init_values_null(ptn, _igvn) > 0) { 2526 // Adding references to null object does not change escape states 2527 // since it does not escape. Also no fields are added to null object. 2528 add_java_object_edges(null_obj, false); 2529 } 2530 } 2531 Node* n = ptn->ideal_node(); 2532 if (n->is_Allocate()) { 2533 // The object allocated by this Allocate node will never be 2534 // seen by an other thread. Mark it so that when it is 2535 // expanded no MemBarStoreStore is added. 2536 InitializeNode* ini = n->as_Allocate()->initialization(); 2537 if (ini != nullptr) 2538 ini->set_does_not_escape(); 2539 } 2540 } 2541 return true; // Finished graph construction. 2542 } 2543 2544 // Propagate GlobalEscape and ArgEscape escape states to all nodes 2545 // and check that we still have non-escaping java objects. 2546 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 2547 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist) { 2548 GrowableArray<PointsToNode*> escape_worklist; 2549 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 2550 int ptnodes_length = ptnodes_worklist.length(); 2551 for (int next = 0; next < ptnodes_length; ++next) { 2552 PointsToNode* ptn = ptnodes_worklist.at(next); 2553 if (ptn->escape_state() >= PointsToNode::ArgEscape || 2554 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 2555 escape_worklist.push(ptn); 2556 } 2557 } 2558 // Set escape states to referenced nodes (edges list). 2559 while (escape_worklist.length() > 0) { 2560 PointsToNode* ptn = escape_worklist.pop(); 2561 PointsToNode::EscapeState es = ptn->escape_state(); 2562 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 2563 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 2564 es >= PointsToNode::ArgEscape) { 2565 // GlobalEscape or ArgEscape state of field means it has unknown value. 2566 if (add_edge(ptn, phantom_obj)) { 2567 // New edge was added 2568 add_field_uses_to_worklist(ptn->as_Field()); 2569 } 2570 } 2571 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2572 PointsToNode* e = i.get(); 2573 if (e->is_Arraycopy()) { 2574 assert(ptn->arraycopy_dst(), "sanity"); 2575 // Propagate only fields escape state through arraycopy edge. 2576 if (e->fields_escape_state() < field_es) { 2577 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2578 escape_worklist.push(e); 2579 } 2580 } else if (es >= field_es) { 2581 // fields_escape_state is also set to 'es' if it is less than 'es'. 2582 if (e->escape_state() < es) { 2583 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2584 escape_worklist.push(e); 2585 } 2586 } else { 2587 // Propagate field escape state. 2588 bool es_changed = false; 2589 if (e->fields_escape_state() < field_es) { 2590 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2591 es_changed = true; 2592 } 2593 if ((e->escape_state() < field_es) && 2594 e->is_Field() && ptn->is_JavaObject() && 2595 e->as_Field()->is_oop()) { 2596 // Change escape state of referenced fields. 2597 set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2598 es_changed = true; 2599 } else if (e->escape_state() < es) { 2600 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2601 es_changed = true; 2602 } 2603 if (es_changed) { 2604 escape_worklist.push(e); 2605 } 2606 } 2607 } 2608 } 2609 // Remove escaped objects from non_escaped list. 2610 for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) { 2611 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2612 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 2613 non_escaped_allocs_worklist.delete_at(next); 2614 } 2615 if (ptn->escape_state() == PointsToNode::NoEscape) { 2616 // Find fields in non-escaped allocations which have unknown value. 2617 find_init_values_phantom(ptn); 2618 } 2619 } 2620 return (non_escaped_allocs_worklist.length() > 0); 2621 } 2622 2623 // Add all references to JavaObject node by walking over all uses. 2624 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 2625 int new_edges = 0; 2626 if (populate_worklist) { 2627 // Populate _worklist by uses of jobj's uses. 2628 for (UseIterator i(jobj); i.has_next(); i.next()) { 2629 PointsToNode* use = i.get(); 2630 if (use->is_Arraycopy()) { 2631 continue; 2632 } 2633 add_uses_to_worklist(use); 2634 if (use->is_Field() && use->as_Field()->is_oop()) { 2635 // Put on worklist all field's uses (loads) and 2636 // related field nodes (same base and offset). 2637 add_field_uses_to_worklist(use->as_Field()); 2638 } 2639 } 2640 } 2641 for (int l = 0; l < _worklist.length(); l++) { 2642 PointsToNode* use = _worklist.at(l); 2643 if (PointsToNode::is_base_use(use)) { 2644 // Add reference from jobj to field and from field to jobj (field's base). 2645 use = PointsToNode::get_use_node(use)->as_Field(); 2646 if (add_base(use->as_Field(), jobj)) { 2647 new_edges++; 2648 } 2649 continue; 2650 } 2651 assert(!use->is_JavaObject(), "sanity"); 2652 if (use->is_Arraycopy()) { 2653 if (jobj == null_obj) { // null object does not have field edges 2654 continue; 2655 } 2656 // Added edge from Arraycopy node to arraycopy's source java object 2657 if (add_edge(use, jobj)) { 2658 jobj->set_arraycopy_src(); 2659 new_edges++; 2660 } 2661 // and stop here. 2662 continue; 2663 } 2664 if (!add_edge(use, jobj)) { 2665 continue; // No new edge added, there was such edge already. 2666 } 2667 new_edges++; 2668 if (use->is_LocalVar()) { 2669 add_uses_to_worklist(use); 2670 if (use->arraycopy_dst()) { 2671 for (EdgeIterator i(use); i.has_next(); i.next()) { 2672 PointsToNode* e = i.get(); 2673 if (e->is_Arraycopy()) { 2674 if (jobj == null_obj) { // null object does not have field edges 2675 continue; 2676 } 2677 // Add edge from arraycopy's destination java object to Arraycopy node. 2678 if (add_edge(jobj, e)) { 2679 new_edges++; 2680 jobj->set_arraycopy_dst(); 2681 } 2682 } 2683 } 2684 } 2685 } else { 2686 // Added new edge to stored in field values. 2687 // Put on worklist all field's uses (loads) and 2688 // related field nodes (same base and offset). 2689 add_field_uses_to_worklist(use->as_Field()); 2690 } 2691 } 2692 _worklist.clear(); 2693 _in_worklist.reset(); 2694 return new_edges; 2695 } 2696 2697 // Put on worklist all related field nodes. 2698 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 2699 assert(field->is_oop(), "sanity"); 2700 int offset = field->offset(); 2701 add_uses_to_worklist(field); 2702 // Loop over all bases of this field and push on worklist Field nodes 2703 // with the same offset and base (since they may reference the same field). 2704 for (BaseIterator i(field); i.has_next(); i.next()) { 2705 PointsToNode* base = i.get(); 2706 add_fields_to_worklist(field, base); 2707 // Check if the base was source object of arraycopy and go over arraycopy's 2708 // destination objects since values stored to a field of source object are 2709 // accessible by uses (loads) of fields of destination objects. 2710 if (base->arraycopy_src()) { 2711 for (UseIterator j(base); j.has_next(); j.next()) { 2712 PointsToNode* arycp = j.get(); 2713 if (arycp->is_Arraycopy()) { 2714 for (UseIterator k(arycp); k.has_next(); k.next()) { 2715 PointsToNode* abase = k.get(); 2716 if (abase->arraycopy_dst() && abase != base) { 2717 // Look for the same arraycopy reference. 2718 add_fields_to_worklist(field, abase); 2719 } 2720 } 2721 } 2722 } 2723 } 2724 } 2725 } 2726 2727 // Put on worklist all related field nodes. 2728 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 2729 int offset = field->offset(); 2730 if (base->is_LocalVar()) { 2731 for (UseIterator j(base); j.has_next(); j.next()) { 2732 PointsToNode* f = j.get(); 2733 if (PointsToNode::is_base_use(f)) { // Field 2734 f = PointsToNode::get_use_node(f); 2735 if (f == field || !f->as_Field()->is_oop()) { 2736 continue; 2737 } 2738 int offs = f->as_Field()->offset(); 2739 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2740 add_to_worklist(f); 2741 } 2742 } 2743 } 2744 } else { 2745 assert(base->is_JavaObject(), "sanity"); 2746 if (// Skip phantom_object since it is only used to indicate that 2747 // this field's content globally escapes. 2748 (base != phantom_obj) && 2749 // null object node does not have fields. 2750 (base != null_obj)) { 2751 for (EdgeIterator i(base); i.has_next(); i.next()) { 2752 PointsToNode* f = i.get(); 2753 // Skip arraycopy edge since store to destination object field 2754 // does not update value in source object field. 2755 if (f->is_Arraycopy()) { 2756 assert(base->arraycopy_dst(), "sanity"); 2757 continue; 2758 } 2759 if (f == field || !f->as_Field()->is_oop()) { 2760 continue; 2761 } 2762 int offs = f->as_Field()->offset(); 2763 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2764 add_to_worklist(f); 2765 } 2766 } 2767 } 2768 } 2769 } 2770 2771 // Find fields which have unknown value. 2772 int ConnectionGraph::find_field_value(FieldNode* field) { 2773 // Escaped fields should have init value already. 2774 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 2775 int new_edges = 0; 2776 for (BaseIterator i(field); i.has_next(); i.next()) { 2777 PointsToNode* base = i.get(); 2778 if (base->is_JavaObject()) { 2779 // Skip Allocate's fields which will be processed later. 2780 if (base->ideal_node()->is_Allocate()) { 2781 return 0; 2782 } 2783 assert(base == null_obj, "only null ptr base expected here"); 2784 } 2785 } 2786 if (add_edge(field, phantom_obj)) { 2787 // New edge was added 2788 new_edges++; 2789 add_field_uses_to_worklist(field); 2790 } 2791 return new_edges; 2792 } 2793 2794 // Find fields initializing values for allocations. 2795 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) { 2796 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2797 PointsToNode* init_val = phantom_obj; 2798 Node* alloc = pta->ideal_node(); 2799 2800 // Do nothing for Allocate nodes since its fields values are 2801 // "known" unless they are initialized by arraycopy/clone. 2802 if (alloc->is_Allocate() && !pta->arraycopy_dst()) { 2803 if (alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) { 2804 // Null-free inline type arrays are initialized with an init value instead of null 2805 init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::InitValue)->_idx); 2806 assert(init_val != nullptr, "init value should be registered"); 2807 } else { 2808 return 0; 2809 } 2810 } 2811 // Non-escaped allocation returned from Java or runtime call has unknown values in fields. 2812 assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity"); 2813 #ifdef ASSERT 2814 if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) { 2815 const char* name = alloc->as_CallStaticJava()->_name; 2816 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2817 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "sanity"); 2818 } 2819 #endif 2820 // Non-escaped allocation returned from Java or runtime call have unknown values in fields. 2821 int new_edges = 0; 2822 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2823 PointsToNode* field = i.get(); 2824 if (field->is_Field() && field->as_Field()->is_oop()) { 2825 if (add_edge(field, init_val)) { 2826 // New edge was added 2827 new_edges++; 2828 add_field_uses_to_worklist(field->as_Field()); 2829 } 2830 } 2831 } 2832 return new_edges; 2833 } 2834 2835 // Find fields initializing values for allocations. 2836 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) { 2837 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2838 Node* alloc = pta->ideal_node(); 2839 // Do nothing for Call nodes since its fields values are unknown. 2840 if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) { 2841 return 0; 2842 } 2843 InitializeNode* ini = alloc->as_Allocate()->initialization(); 2844 bool visited_bottom_offset = false; 2845 GrowableArray<int> offsets_worklist; 2846 int new_edges = 0; 2847 2848 // Check if an oop field's initializing value is recorded and add 2849 // a corresponding null if field's value if it is not recorded. 2850 // Connection Graph does not record a default initialization by null 2851 // captured by Initialize node. 2852 // 2853 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2854 PointsToNode* field = i.get(); // Field (AddP) 2855 if (!field->is_Field() || !field->as_Field()->is_oop()) { 2856 continue; // Not oop field 2857 } 2858 int offset = field->as_Field()->offset(); 2859 if (offset == Type::OffsetBot) { 2860 if (!visited_bottom_offset) { 2861 // OffsetBot is used to reference array's element, 2862 // always add reference to null to all Field nodes since we don't 2863 // known which element is referenced. 2864 if (add_edge(field, null_obj)) { 2865 // New edge was added 2866 new_edges++; 2867 add_field_uses_to_worklist(field->as_Field()); 2868 visited_bottom_offset = true; 2869 } 2870 } 2871 } else { 2872 // Check only oop fields. 2873 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 2874 if (adr_type->isa_rawptr()) { 2875 #ifdef ASSERT 2876 // Raw pointers are used for initializing stores so skip it 2877 // since it should be recorded already 2878 Node* base = get_addp_base(field->ideal_node()); 2879 assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type"); 2880 #endif 2881 continue; 2882 } 2883 if (!offsets_worklist.contains(offset)) { 2884 offsets_worklist.append(offset); 2885 Node* value = nullptr; 2886 if (ini != nullptr) { 2887 // StoreP::value_basic_type() == T_ADDRESS 2888 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 2889 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 2890 // Make sure initializing store has the same type as this AddP. 2891 // This AddP may reference non existing field because it is on a 2892 // dead branch of bimorphic call which is not eliminated yet. 2893 if (store != nullptr && store->is_Store() && 2894 store->as_Store()->value_basic_type() == ft) { 2895 value = store->in(MemNode::ValueIn); 2896 #ifdef ASSERT 2897 if (VerifyConnectionGraph) { 2898 // Verify that AddP already points to all objects the value points to. 2899 PointsToNode* val = ptnode_adr(value->_idx); 2900 assert((val != nullptr), "should be processed already"); 2901 PointsToNode* missed_obj = nullptr; 2902 if (val->is_JavaObject()) { 2903 if (!field->points_to(val->as_JavaObject())) { 2904 missed_obj = val; 2905 } 2906 } else { 2907 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 2908 tty->print_cr("----------init store has invalid value -----"); 2909 store->dump(); 2910 val->dump(); 2911 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 2912 } 2913 for (EdgeIterator j(val); j.has_next(); j.next()) { 2914 PointsToNode* obj = j.get(); 2915 if (obj->is_JavaObject()) { 2916 if (!field->points_to(obj->as_JavaObject())) { 2917 missed_obj = obj; 2918 break; 2919 } 2920 } 2921 } 2922 } 2923 if (missed_obj != nullptr) { 2924 tty->print_cr("----------field---------------------------------"); 2925 field->dump(); 2926 tty->print_cr("----------missed reference to object------------"); 2927 missed_obj->dump(); 2928 tty->print_cr("----------object referenced by init store-------"); 2929 store->dump(); 2930 val->dump(); 2931 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 2932 } 2933 } 2934 #endif 2935 } else { 2936 // There could be initializing stores which follow allocation. 2937 // For example, a volatile field store is not collected 2938 // by Initialize node. 2939 // 2940 // Need to check for dependent loads to separate such stores from 2941 // stores which follow loads. For now, add initial value null so 2942 // that compare pointers optimization works correctly. 2943 } 2944 } 2945 if (value == nullptr) { 2946 // A field's initializing value was not recorded. Add null. 2947 if (add_edge(field, null_obj)) { 2948 // New edge was added 2949 new_edges++; 2950 add_field_uses_to_worklist(field->as_Field()); 2951 } 2952 } 2953 } 2954 } 2955 } 2956 return new_edges; 2957 } 2958 2959 // Adjust scalar_replaceable state after Connection Graph is built. 2960 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) { 2961 // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)' 2962 // returns true. If one of the constraints in this method set 'jobj' to NSR 2963 // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as 2964 // input, 'adjust_scalar_replaceable_state' will eventually be called with 2965 // that other object and the Phi will become a reducible Phi. 2966 // There could be multiple merges involving the same jobj. 2967 Unique_Node_List candidates; 2968 2969 // Search for non-escaping objects which are not scalar replaceable 2970 // and mark them to propagate the state to referenced objects. 2971 2972 for (UseIterator i(jobj); i.has_next(); i.next()) { 2973 PointsToNode* use = i.get(); 2974 if (use->is_Arraycopy()) { 2975 continue; 2976 } 2977 if (use->is_Field()) { 2978 FieldNode* field = use->as_Field(); 2979 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 2980 // 1. An object is not scalar replaceable if the field into which it is 2981 // stored has unknown offset (stored into unknown element of an array). 2982 if (field->offset() == Type::OffsetBot) { 2983 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset")); 2984 return; 2985 } 2986 for (BaseIterator i(field); i.has_next(); i.next()) { 2987 PointsToNode* base = i.get(); 2988 // 2. An object is not scalar replaceable if the field into which it is 2989 // stored has multiple bases one of which is null. 2990 if ((base == null_obj) && (field->base_count() > 1)) { 2991 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base")); 2992 return; 2993 } 2994 // 2.5. An object is not scalar replaceable if the field into which it is 2995 // stored has NSR base. 2996 if (!base->scalar_replaceable()) { 2997 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 2998 return; 2999 } 3000 } 3001 } 3002 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 3003 // 3. An object is not scalar replaceable if it is merged with other objects 3004 // and we can't remove the merge 3005 for (EdgeIterator j(use); j.has_next(); j.next()) { 3006 PointsToNode* ptn = j.get(); 3007 if (ptn->is_JavaObject() && ptn != jobj) { 3008 Node* use_n = use->ideal_node(); 3009 3010 // These other local vars may point to multiple objects through a Phi 3011 // In this case we skip them and see if we can reduce the Phi. 3012 if (use_n->is_CastPP() || use_n->is_CheckCastPP()) { 3013 use_n = use_n->in(1); 3014 } 3015 3016 // If it's already a candidate or confirmed reducible merge we can skip verification 3017 if (candidates.member(use_n) || reducible_merges.member(use_n)) { 3018 continue; 3019 } 3020 3021 if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) { 3022 candidates.push(use_n); 3023 } else { 3024 // Mark all objects as NSR if we can't remove the merge 3025 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn))); 3026 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj))); 3027 } 3028 } 3029 } 3030 if (!jobj->scalar_replaceable()) { 3031 return; 3032 } 3033 } 3034 3035 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 3036 if (j.get()->is_Arraycopy()) { 3037 continue; 3038 } 3039 3040 // Non-escaping object node should point only to field nodes. 3041 FieldNode* field = j.get()->as_Field(); 3042 int offset = field->as_Field()->offset(); 3043 3044 // 4. An object is not scalar replaceable if it has a field with unknown 3045 // offset (array's element is accessed in loop). 3046 if (offset == Type::OffsetBot) { 3047 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset")); 3048 return; 3049 } 3050 // 5. Currently an object is not scalar replaceable if a LoadStore node 3051 // access its field since the field value is unknown after it. 3052 // 3053 Node* n = field->ideal_node(); 3054 3055 // Test for an unsafe access that was parsed as maybe off heap 3056 // (with a CheckCastPP to raw memory). 3057 assert(n->is_AddP(), "expect an address computation"); 3058 if (n->in(AddPNode::Base)->is_top() && 3059 n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) { 3060 assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected"); 3061 assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected"); 3062 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access")); 3063 return; 3064 } 3065 3066 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3067 Node* u = n->fast_out(i); 3068 if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) { 3069 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access")); 3070 return; 3071 } 3072 } 3073 3074 // 6. Or the address may point to more then one object. This may produce 3075 // the false positive result (set not scalar replaceable) 3076 // since the flow-insensitive escape analysis can't separate 3077 // the case when stores overwrite the field's value from the case 3078 // when stores happened on different control branches. 3079 // 3080 // Note: it will disable scalar replacement in some cases: 3081 // 3082 // Point p[] = new Point[1]; 3083 // p[0] = new Point(); // Will be not scalar replaced 3084 // 3085 // but it will save us from incorrect optimizations in next cases: 3086 // 3087 // Point p[] = new Point[1]; 3088 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 3089 // 3090 if (field->base_count() > 1 && candidates.size() == 0) { 3091 if (has_non_reducible_merge(field, reducible_merges)) { 3092 for (BaseIterator i(field); i.has_next(); i.next()) { 3093 PointsToNode* base = i.get(); 3094 // Don't take into account LocalVar nodes which 3095 // may point to only one object which should be also 3096 // this field's base by now. 3097 if (base->is_JavaObject() && base != jobj) { 3098 // Mark all bases. 3099 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object")); 3100 set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object")); 3101 } 3102 } 3103 3104 if (!jobj->scalar_replaceable()) { 3105 return; 3106 } 3107 } 3108 } 3109 } 3110 3111 // The candidate is truly a reducible merge only if none of the other 3112 // constraints ruled it as NSR. There could be multiple merges involving the 3113 // same jobj. 3114 assert(jobj->scalar_replaceable(), "sanity"); 3115 for (uint i = 0; i < candidates.size(); i++ ) { 3116 Node* candidate = candidates.at(i); 3117 reducible_merges.push(candidate); 3118 } 3119 } 3120 3121 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) { 3122 for (BaseIterator i(field); i.has_next(); i.next()) { 3123 Node* base = i.get()->ideal_node(); 3124 if (base->is_Phi() && !reducible_merges.member(base)) { 3125 return true; 3126 } 3127 } 3128 return false; 3129 } 3130 3131 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) { 3132 assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function."); 3133 3134 // Look for 'phis' that refer to 'jobj' as the last 3135 // remaining scalar replaceable input. 3136 uint reducible_merges_cnt = reducible_merges.size(); 3137 for (uint i = 0; i < reducible_merges_cnt; i++) { 3138 Node* phi = reducible_merges.at(i); 3139 3140 // This 'Phi' will be a 'good' if it still points to 3141 // at least one scalar replaceable object. Note that 'obj' 3142 // was/should be marked as NSR before calling this function. 3143 bool good_phi = false; 3144 3145 for (uint j = 1; j < phi->req(); j++) { 3146 JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j)); 3147 if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) { 3148 good_phi = true; 3149 break; 3150 } 3151 } 3152 3153 if (!good_phi) { 3154 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);) 3155 reducible_merges.remove(i); 3156 3157 // Decrement the index because the 'remove' call above actually 3158 // moves the last entry of the list to position 'i'. 3159 i--; 3160 3161 reducible_merges_cnt--; 3162 } 3163 } 3164 } 3165 3166 // Propagate NSR (Not scalar replaceable) state. 3167 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) { 3168 int jobj_length = jobj_worklist.length(); 3169 bool found_nsr_alloc = true; 3170 while (found_nsr_alloc) { 3171 found_nsr_alloc = false; 3172 for (int next = 0; next < jobj_length; ++next) { 3173 JavaObjectNode* jobj = jobj_worklist.at(next); 3174 for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) { 3175 PointsToNode* use = i.get(); 3176 if (use->is_Field()) { 3177 FieldNode* field = use->as_Field(); 3178 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 3179 assert(field->offset() != Type::OffsetBot, "sanity"); 3180 for (BaseIterator i(field); i.has_next(); i.next()) { 3181 PointsToNode* base = i.get(); 3182 // An object is not scalar replaceable if the field into which 3183 // it is stored has NSR base. 3184 if ((base != null_obj) && !base->scalar_replaceable()) { 3185 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 3186 // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible, 3187 // because there is no point in reducing a Phi that won't improve the number of SR 3188 // objects. 3189 revisit_reducible_phi_status(jobj, reducible_merges); 3190 found_nsr_alloc = true; 3191 break; 3192 } 3193 } 3194 } 3195 } 3196 } 3197 } 3198 } 3199 3200 #ifdef ASSERT 3201 void ConnectionGraph::verify_connection_graph( 3202 GrowableArray<PointsToNode*>& ptnodes_worklist, 3203 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 3204 GrowableArray<JavaObjectNode*>& java_objects_worklist, 3205 GrowableArray<Node*>& addp_worklist) { 3206 // Verify that graph is complete - no new edges could be added. 3207 int java_objects_length = java_objects_worklist.length(); 3208 int non_escaped_length = non_escaped_allocs_worklist.length(); 3209 int new_edges = 0; 3210 for (int next = 0; next < java_objects_length; ++next) { 3211 JavaObjectNode* ptn = java_objects_worklist.at(next); 3212 new_edges += add_java_object_edges(ptn, true); 3213 } 3214 assert(new_edges == 0, "graph was not complete"); 3215 // Verify that escape state is final. 3216 int length = non_escaped_allocs_worklist.length(); 3217 find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist); 3218 assert((non_escaped_length == non_escaped_allocs_worklist.length()) && 3219 (non_escaped_length == length) && 3220 (_worklist.length() == 0), "escape state was not final"); 3221 3222 // Verify fields information. 3223 int addp_length = addp_worklist.length(); 3224 for (int next = 0; next < addp_length; ++next ) { 3225 Node* n = addp_worklist.at(next); 3226 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 3227 if (field->is_oop()) { 3228 // Verify that field has all bases 3229 Node* base = get_addp_base(n); 3230 PointsToNode* ptn = ptnode_adr(base->_idx); 3231 if (ptn->is_JavaObject()) { 3232 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 3233 } else { 3234 assert(ptn->is_LocalVar(), "sanity"); 3235 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3236 PointsToNode* e = i.get(); 3237 if (e->is_JavaObject()) { 3238 assert(field->has_base(e->as_JavaObject()), "sanity"); 3239 } 3240 } 3241 } 3242 // Verify that all fields have initializing values. 3243 if (field->edge_count() == 0) { 3244 tty->print_cr("----------field does not have references----------"); 3245 field->dump(); 3246 for (BaseIterator i(field); i.has_next(); i.next()) { 3247 PointsToNode* base = i.get(); 3248 tty->print_cr("----------field has next base---------------------"); 3249 base->dump(); 3250 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 3251 tty->print_cr("----------base has fields-------------------------"); 3252 for (EdgeIterator j(base); j.has_next(); j.next()) { 3253 j.get()->dump(); 3254 } 3255 tty->print_cr("----------base has references---------------------"); 3256 for (UseIterator j(base); j.has_next(); j.next()) { 3257 j.get()->dump(); 3258 } 3259 } 3260 } 3261 for (UseIterator i(field); i.has_next(); i.next()) { 3262 i.get()->dump(); 3263 } 3264 assert(field->edge_count() > 0, "sanity"); 3265 } 3266 } 3267 } 3268 } 3269 #endif 3270 3271 // Optimize ideal graph. 3272 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 3273 GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) { 3274 Compile* C = _compile; 3275 PhaseIterGVN* igvn = _igvn; 3276 if (EliminateLocks) { 3277 // Mark locks before changing ideal graph. 3278 int cnt = C->macro_count(); 3279 for (int i = 0; i < cnt; i++) { 3280 Node *n = C->macro_node(i); 3281 if (n->is_AbstractLock()) { // Lock and Unlock nodes 3282 AbstractLockNode* alock = n->as_AbstractLock(); 3283 if (!alock->is_non_esc_obj()) { 3284 const Type* obj_type = igvn->type(alock->obj_node()); 3285 if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) { 3286 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 3287 // The lock could be marked eliminated by lock coarsening 3288 // code during first IGVN before EA. Replace coarsened flag 3289 // to eliminate all associated locks/unlocks. 3290 #ifdef ASSERT 3291 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 3292 #endif 3293 alock->set_non_esc_obj(); 3294 } 3295 } 3296 } 3297 } 3298 } 3299 3300 if (OptimizePtrCompare) { 3301 for (int i = 0; i < ptr_cmp_worklist.length(); i++) { 3302 Node *n = ptr_cmp_worklist.at(i); 3303 assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be"); 3304 const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2)); 3305 if (tcmp->singleton()) { 3306 Node* cmp = igvn->makecon(tcmp); 3307 #ifndef PRODUCT 3308 if (PrintOptimizePtrCompare) { 3309 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ")); 3310 if (Verbose) { 3311 n->dump(1); 3312 } 3313 } 3314 #endif 3315 igvn->replace_node(n, cmp); 3316 } 3317 } 3318 } 3319 3320 // For MemBarStoreStore nodes added in library_call.cpp, check 3321 // escape status of associated AllocateNode and optimize out 3322 // MemBarStoreStore node if the allocated object never escapes. 3323 for (int i = 0; i < storestore_worklist.length(); i++) { 3324 Node* storestore = storestore_worklist.at(i); 3325 Node* alloc = storestore->in(MemBarNode::Precedent)->in(0); 3326 if (alloc->is_Allocate() && not_global_escape(alloc)) { 3327 if (alloc->in(AllocateNode::InlineType) != nullptr) { 3328 // Non-escaping inline type buffer allocations don't require a membar 3329 storestore->as_MemBar()->remove(_igvn); 3330 } else { 3331 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 3332 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 3333 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 3334 igvn->register_new_node_with_optimizer(mb); 3335 igvn->replace_node(storestore, mb); 3336 } 3337 } 3338 } 3339 } 3340 3341 // Optimize objects compare. 3342 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) { 3343 assert(OptimizePtrCompare, "sanity"); 3344 const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO 3345 const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE 3346 const TypeInt* UNKNOWN = TypeInt::CC; // [-1, 0,1] 3347 3348 PointsToNode* ptn1 = ptnode_adr(left->_idx); 3349 PointsToNode* ptn2 = ptnode_adr(right->_idx); 3350 JavaObjectNode* jobj1 = unique_java_object(left); 3351 JavaObjectNode* jobj2 = unique_java_object(right); 3352 3353 // The use of this method during allocation merge reduction may cause 'left' 3354 // or 'right' be something (e.g., a Phi) that isn't in the connection graph or 3355 // that doesn't reference an unique java object. 3356 if (ptn1 == nullptr || ptn2 == nullptr || 3357 jobj1 == nullptr || jobj2 == nullptr) { 3358 return UNKNOWN; 3359 } 3360 3361 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 3362 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 3363 3364 // Check simple cases first. 3365 if (jobj1 != nullptr) { 3366 if (jobj1->escape_state() == PointsToNode::NoEscape) { 3367 if (jobj1 == jobj2) { 3368 // Comparing the same not escaping object. 3369 return EQ; 3370 } 3371 Node* obj = jobj1->ideal_node(); 3372 // Comparing not escaping allocation. 3373 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3374 !ptn2->points_to(jobj1)) { 3375 return NE; // This includes nullness check. 3376 } 3377 } 3378 } 3379 if (jobj2 != nullptr) { 3380 if (jobj2->escape_state() == PointsToNode::NoEscape) { 3381 Node* obj = jobj2->ideal_node(); 3382 // Comparing not escaping allocation. 3383 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3384 !ptn1->points_to(jobj2)) { 3385 return NE; // This includes nullness check. 3386 } 3387 } 3388 } 3389 if (jobj1 != nullptr && jobj1 != phantom_obj && 3390 jobj2 != nullptr && jobj2 != phantom_obj && 3391 jobj1->ideal_node()->is_Con() && 3392 jobj2->ideal_node()->is_Con()) { 3393 // Klass or String constants compare. Need to be careful with 3394 // compressed pointers - compare types of ConN and ConP instead of nodes. 3395 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 3396 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 3397 if (t1->make_ptr() == t2->make_ptr()) { 3398 return EQ; 3399 } else { 3400 return NE; 3401 } 3402 } 3403 if (ptn1->meet(ptn2)) { 3404 return UNKNOWN; // Sets are not disjoint 3405 } 3406 3407 // Sets are disjoint. 3408 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 3409 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 3410 bool set1_has_null_ptr = ptn1->points_to(null_obj); 3411 bool set2_has_null_ptr = ptn2->points_to(null_obj); 3412 if ((set1_has_unknown_ptr && set2_has_null_ptr) || 3413 (set2_has_unknown_ptr && set1_has_null_ptr)) { 3414 // Check nullness of unknown object. 3415 return UNKNOWN; 3416 } 3417 3418 // Disjointness by itself is not sufficient since 3419 // alias analysis is not complete for escaped objects. 3420 // Disjoint sets are definitely unrelated only when 3421 // at least one set has only not escaping allocations. 3422 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 3423 if (ptn1->non_escaping_allocation()) { 3424 return NE; 3425 } 3426 } 3427 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 3428 if (ptn2->non_escaping_allocation()) { 3429 return NE; 3430 } 3431 } 3432 return UNKNOWN; 3433 } 3434 3435 // Connection Graph construction functions. 3436 3437 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 3438 PointsToNode* ptadr = _nodes.at(n->_idx); 3439 if (ptadr != nullptr) { 3440 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 3441 return; 3442 } 3443 Compile* C = _compile; 3444 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 3445 map_ideal_node(n, ptadr); 3446 } 3447 3448 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 3449 PointsToNode* ptadr = _nodes.at(n->_idx); 3450 if (ptadr != nullptr) { 3451 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 3452 return ptadr; 3453 } 3454 Compile* C = _compile; 3455 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 3456 map_ideal_node(n, ptadr); 3457 return ptadr; 3458 } 3459 3460 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 3461 PointsToNode* ptadr = _nodes.at(n->_idx); 3462 if (ptadr != nullptr) { 3463 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 3464 return; 3465 } 3466 bool unsafe = false; 3467 bool is_oop = is_oop_field(n, offset, &unsafe); 3468 if (unsafe) { 3469 es = PointsToNode::GlobalEscape; 3470 } 3471 Compile* C = _compile; 3472 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 3473 map_ideal_node(n, field); 3474 } 3475 3476 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 3477 PointsToNode* src, PointsToNode* dst) { 3478 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 3479 assert((src != null_obj) && (dst != null_obj), "not for ConP null"); 3480 PointsToNode* ptadr = _nodes.at(n->_idx); 3481 if (ptadr != nullptr) { 3482 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 3483 return; 3484 } 3485 Compile* C = _compile; 3486 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 3487 map_ideal_node(n, ptadr); 3488 // Add edge from arraycopy node to source object. 3489 (void)add_edge(ptadr, src); 3490 src->set_arraycopy_src(); 3491 // Add edge from destination object to arraycopy node. 3492 (void)add_edge(dst, ptadr); 3493 dst->set_arraycopy_dst(); 3494 } 3495 3496 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 3497 const Type* adr_type = n->as_AddP()->bottom_type(); 3498 int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot; 3499 BasicType bt = T_INT; 3500 if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) { 3501 // Check only oop fields. 3502 if (!adr_type->isa_aryptr() || 3503 adr_type->isa_aryptr()->elem() == Type::BOTTOM || 3504 adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) { 3505 // OffsetBot is used to reference array's element. Ignore first AddP. 3506 if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) { 3507 bt = T_OBJECT; 3508 } 3509 } 3510 } else if (offset != oopDesc::klass_offset_in_bytes()) { 3511 if (adr_type->isa_instptr()) { 3512 ciField* field = _compile->alias_type(adr_type->is_ptr())->field(); 3513 if (field != nullptr) { 3514 bt = field->layout_type(); 3515 } else { 3516 // Check for unsafe oop field access 3517 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3518 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3519 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3520 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3521 bt = T_OBJECT; 3522 (*unsafe) = true; 3523 } 3524 } 3525 } else if (adr_type->isa_aryptr()) { 3526 if (offset == arrayOopDesc::length_offset_in_bytes()) { 3527 // Ignore array length load. 3528 } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) { 3529 // Ignore first AddP. 3530 } else { 3531 const Type* elemtype = adr_type->is_aryptr()->elem(); 3532 if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) { 3533 ciInlineKlass* vk = elemtype->inline_klass(); 3534 field_offset += vk->payload_offset(); 3535 ciField* field = vk->get_field_by_offset(field_offset, false); 3536 if (field != nullptr) { 3537 bt = field->layout_type(); 3538 } else { 3539 assert(field_offset == vk->payload_offset() + vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), field_offset); 3540 bt = T_BOOLEAN; 3541 } 3542 } else { 3543 bt = elemtype->array_element_basic_type(); 3544 } 3545 } 3546 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 3547 // Allocation initialization, ThreadLocal field access, unsafe access 3548 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3549 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3550 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3551 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3552 bt = T_OBJECT; 3553 } 3554 } 3555 } 3556 // Note: T_NARROWOOP is not classed as a real reference type 3557 return (is_reference_type(bt) || bt == T_NARROWOOP); 3558 } 3559 3560 // Returns unique pointed java object or null. 3561 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const { 3562 // If the node was created after the escape computation we can't answer. 3563 uint idx = n->_idx; 3564 if (idx >= nodes_size()) { 3565 return nullptr; 3566 } 3567 PointsToNode* ptn = ptnode_adr(idx); 3568 if (ptn == nullptr) { 3569 return nullptr; 3570 } 3571 if (ptn->is_JavaObject()) { 3572 return ptn->as_JavaObject(); 3573 } 3574 assert(ptn->is_LocalVar(), "sanity"); 3575 // Check all java objects it points to. 3576 JavaObjectNode* jobj = nullptr; 3577 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3578 PointsToNode* e = i.get(); 3579 if (e->is_JavaObject()) { 3580 if (jobj == nullptr) { 3581 jobj = e->as_JavaObject(); 3582 } else if (jobj != e) { 3583 return nullptr; 3584 } 3585 } 3586 } 3587 return jobj; 3588 } 3589 3590 // Return true if this node points only to non-escaping allocations. 3591 bool PointsToNode::non_escaping_allocation() { 3592 if (is_JavaObject()) { 3593 Node* n = ideal_node(); 3594 if (n->is_Allocate() || n->is_CallStaticJava()) { 3595 return (escape_state() == PointsToNode::NoEscape); 3596 } else { 3597 return false; 3598 } 3599 } 3600 assert(is_LocalVar(), "sanity"); 3601 // Check all java objects it points to. 3602 for (EdgeIterator i(this); i.has_next(); i.next()) { 3603 PointsToNode* e = i.get(); 3604 if (e->is_JavaObject()) { 3605 Node* n = e->ideal_node(); 3606 if ((e->escape_state() != PointsToNode::NoEscape) || 3607 !(n->is_Allocate() || n->is_CallStaticJava())) { 3608 return false; 3609 } 3610 } 3611 } 3612 return true; 3613 } 3614 3615 // Return true if we know the node does not escape globally. 3616 bool ConnectionGraph::not_global_escape(Node *n) { 3617 assert(!_collecting, "should not call during graph construction"); 3618 // If the node was created after the escape computation we can't answer. 3619 uint idx = n->_idx; 3620 if (idx >= nodes_size()) { 3621 return false; 3622 } 3623 PointsToNode* ptn = ptnode_adr(idx); 3624 if (ptn == nullptr) { 3625 return false; // not in congraph (e.g. ConI) 3626 } 3627 PointsToNode::EscapeState es = ptn->escape_state(); 3628 // If we have already computed a value, return it. 3629 if (es >= PointsToNode::GlobalEscape) { 3630 return false; 3631 } 3632 if (ptn->is_JavaObject()) { 3633 return true; // (es < PointsToNode::GlobalEscape); 3634 } 3635 assert(ptn->is_LocalVar(), "sanity"); 3636 // Check all java objects it points to. 3637 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3638 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) { 3639 return false; 3640 } 3641 } 3642 return true; 3643 } 3644 3645 // Return true if locked object does not escape globally 3646 // and locked code region (identified by BoxLockNode) is balanced: 3647 // all compiled code paths have corresponding Lock/Unlock pairs. 3648 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) { 3649 if (alock->is_balanced() && not_global_escape(alock->obj_node())) { 3650 if (EliminateNestedLocks) { 3651 // We can mark whole locking region as Local only when only 3652 // one object is used for locking. 3653 alock->box_node()->as_BoxLock()->set_local(); 3654 } 3655 return true; 3656 } 3657 return false; 3658 } 3659 3660 // Helper functions 3661 3662 // Return true if this node points to specified node or nodes it points to. 3663 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 3664 if (is_JavaObject()) { 3665 return (this == ptn); 3666 } 3667 assert(is_LocalVar() || is_Field(), "sanity"); 3668 for (EdgeIterator i(this); i.has_next(); i.next()) { 3669 if (i.get() == ptn) { 3670 return true; 3671 } 3672 } 3673 return false; 3674 } 3675 3676 // Return true if one node points to an other. 3677 bool PointsToNode::meet(PointsToNode* ptn) { 3678 if (this == ptn) { 3679 return true; 3680 } else if (ptn->is_JavaObject()) { 3681 return this->points_to(ptn->as_JavaObject()); 3682 } else if (this->is_JavaObject()) { 3683 return ptn->points_to(this->as_JavaObject()); 3684 } 3685 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 3686 int ptn_count = ptn->edge_count(); 3687 for (EdgeIterator i(this); i.has_next(); i.next()) { 3688 PointsToNode* this_e = i.get(); 3689 for (int j = 0; j < ptn_count; j++) { 3690 if (this_e == ptn->edge(j)) { 3691 return true; 3692 } 3693 } 3694 } 3695 return false; 3696 } 3697 3698 #ifdef ASSERT 3699 // Return true if bases point to this java object. 3700 bool FieldNode::has_base(JavaObjectNode* jobj) const { 3701 for (BaseIterator i(this); i.has_next(); i.next()) { 3702 if (i.get() == jobj) { 3703 return true; 3704 } 3705 } 3706 return false; 3707 } 3708 #endif 3709 3710 bool ConnectionGraph::is_captured_store_address(Node* addp) { 3711 // Handle simple case first. 3712 assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access"); 3713 if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) { 3714 return true; 3715 } else if (addp->in(AddPNode::Address)->is_Phi()) { 3716 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 3717 Node* addp_use = addp->fast_out(i); 3718 if (addp_use->is_Store()) { 3719 for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) { 3720 if (addp_use->fast_out(j)->is_Initialize()) { 3721 return true; 3722 } 3723 } 3724 } 3725 } 3726 } 3727 return false; 3728 } 3729 3730 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) { 3731 const Type *adr_type = phase->type(adr); 3732 if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) { 3733 // We are computing a raw address for a store captured by an Initialize 3734 // compute an appropriate address type. AddP cases #3 and #5 (see below). 3735 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 3736 assert(offs != Type::OffsetBot || 3737 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 3738 "offset must be a constant or it is initialization of array"); 3739 return offs; 3740 } 3741 return adr_type->is_ptr()->flat_offset(); 3742 } 3743 3744 Node* ConnectionGraph::get_addp_base(Node *addp) { 3745 assert(addp->is_AddP(), "must be AddP"); 3746 // 3747 // AddP cases for Base and Address inputs: 3748 // case #1. Direct object's field reference: 3749 // Allocate 3750 // | 3751 // Proj #5 ( oop result ) 3752 // | 3753 // CheckCastPP (cast to instance type) 3754 // | | 3755 // AddP ( base == address ) 3756 // 3757 // case #2. Indirect object's field reference: 3758 // Phi 3759 // | 3760 // CastPP (cast to instance type) 3761 // | | 3762 // AddP ( base == address ) 3763 // 3764 // case #3. Raw object's field reference for Initialize node: 3765 // Allocate 3766 // | 3767 // Proj #5 ( oop result ) 3768 // top | 3769 // \ | 3770 // AddP ( base == top ) 3771 // 3772 // case #4. Array's element reference: 3773 // {CheckCastPP | CastPP} 3774 // | | | 3775 // | AddP ( array's element offset ) 3776 // | | 3777 // AddP ( array's offset ) 3778 // 3779 // case #5. Raw object's field reference for arraycopy stub call: 3780 // The inline_native_clone() case when the arraycopy stub is called 3781 // after the allocation before Initialize and CheckCastPP nodes. 3782 // Allocate 3783 // | 3784 // Proj #5 ( oop result ) 3785 // | | 3786 // AddP ( base == address ) 3787 // 3788 // case #6. Constant Pool, ThreadLocal, CastX2P or 3789 // Raw object's field reference: 3790 // {ConP, ThreadLocal, CastX2P, raw Load} 3791 // top | 3792 // \ | 3793 // AddP ( base == top ) 3794 // 3795 // case #7. Klass's field reference. 3796 // LoadKlass 3797 // | | 3798 // AddP ( base == address ) 3799 // 3800 // case #8. narrow Klass's field reference. 3801 // LoadNKlass 3802 // | 3803 // DecodeN 3804 // | | 3805 // AddP ( base == address ) 3806 // 3807 // case #9. Mixed unsafe access 3808 // {instance} 3809 // | 3810 // CheckCastPP (raw) 3811 // top | 3812 // \ | 3813 // AddP ( base == top ) 3814 // 3815 Node *base = addp->in(AddPNode::Base); 3816 if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9. 3817 base = addp->in(AddPNode::Address); 3818 while (base->is_AddP()) { 3819 // Case #6 (unsafe access) may have several chained AddP nodes. 3820 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 3821 base = base->in(AddPNode::Address); 3822 } 3823 if (base->Opcode() == Op_CheckCastPP && 3824 base->bottom_type()->isa_rawptr() && 3825 _igvn->type(base->in(1))->isa_oopptr()) { 3826 base = base->in(1); // Case #9 3827 } else { 3828 Node* uncast_base = base->uncast(); 3829 int opcode = uncast_base->Opcode(); 3830 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 3831 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 3832 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) || 3833 is_captured_store_address(addp), "sanity"); 3834 } 3835 } 3836 return base; 3837 } 3838 3839 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 3840 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 3841 Node* addp2 = addp->raw_out(0); 3842 if (addp->outcnt() == 1 && addp2->is_AddP() && 3843 addp2->in(AddPNode::Base) == n && 3844 addp2->in(AddPNode::Address) == addp) { 3845 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 3846 // 3847 // Find array's offset to push it on worklist first and 3848 // as result process an array's element offset first (pushed second) 3849 // to avoid CastPP for the array's offset. 3850 // Otherwise the inserted CastPP (LocalVar) will point to what 3851 // the AddP (Field) points to. Which would be wrong since 3852 // the algorithm expects the CastPP has the same point as 3853 // as AddP's base CheckCastPP (LocalVar). 3854 // 3855 // ArrayAllocation 3856 // | 3857 // CheckCastPP 3858 // | 3859 // memProj (from ArrayAllocation CheckCastPP) 3860 // | || 3861 // | || Int (element index) 3862 // | || | ConI (log(element size)) 3863 // | || | / 3864 // | || LShift 3865 // | || / 3866 // | AddP (array's element offset) 3867 // | | 3868 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 3869 // | / / 3870 // AddP (array's offset) 3871 // | 3872 // Load/Store (memory operation on array's element) 3873 // 3874 return addp2; 3875 } 3876 return nullptr; 3877 } 3878 3879 // 3880 // Adjust the type and inputs of an AddP which computes the 3881 // address of a field of an instance 3882 // 3883 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 3884 PhaseGVN* igvn = _igvn; 3885 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 3886 assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr"); 3887 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 3888 if (t == nullptr) { 3889 // We are computing a raw address for a store captured by an Initialize 3890 // compute an appropriate address type (cases #3 and #5). 3891 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 3892 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 3893 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 3894 assert(offs != Type::OffsetBot, "offset must be a constant"); 3895 if (base_t->isa_aryptr() != nullptr) { 3896 // In the case of a flat inline type array, each field has its 3897 // own slice so we need to extract the field being accessed from 3898 // the address computation 3899 t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr(); 3900 } else { 3901 t = base_t->add_offset(offs)->is_oopptr(); 3902 } 3903 } 3904 int inst_id = base_t->instance_id(); 3905 assert(!t->is_known_instance() || t->instance_id() == inst_id, 3906 "old type must be non-instance or match new type"); 3907 3908 // The type 't' could be subclass of 'base_t'. 3909 // As result t->offset() could be large then base_t's size and it will 3910 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 3911 // constructor verifies correctness of the offset. 3912 // 3913 // It could happened on subclass's branch (from the type profiling 3914 // inlining) which was not eliminated during parsing since the exactness 3915 // of the allocation type was not propagated to the subclass type check. 3916 // 3917 // Or the type 't' could be not related to 'base_t' at all. 3918 // It could happen when CHA type is different from MDO type on a dead path 3919 // (for example, from instanceof check) which is not collapsed during parsing. 3920 // 3921 // Do nothing for such AddP node and don't process its users since 3922 // this code branch will go away. 3923 // 3924 if (!t->is_known_instance() && 3925 !base_t->maybe_java_subtype_of(t)) { 3926 return false; // bail out 3927 } 3928 const TypePtr* tinst = base_t->add_offset(t->offset()); 3929 if (tinst->isa_aryptr() && t->isa_aryptr()) { 3930 // In the case of a flat inline type array, each field has its 3931 // own slice so we need to keep track of the field being accessed. 3932 tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get()); 3933 // Keep array properties (not flat/null-free) 3934 tinst = tinst->is_aryptr()->update_properties(t->is_aryptr()); 3935 if (tinst == nullptr) { 3936 return false; // Skip dead path with inconsistent properties 3937 } 3938 } 3939 3940 // Do NOT remove the next line: ensure a new alias index is allocated 3941 // for the instance type. Note: C++ will not remove it since the call 3942 // has side effect. 3943 int alias_idx = _compile->get_alias_index(tinst); 3944 igvn->set_type(addp, tinst); 3945 // record the allocation in the node map 3946 set_map(addp, get_map(base->_idx)); 3947 // Set addp's Base and Address to 'base'. 3948 Node *abase = addp->in(AddPNode::Base); 3949 Node *adr = addp->in(AddPNode::Address); 3950 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 3951 adr->in(0)->_idx == (uint)inst_id) { 3952 // Skip AddP cases #3 and #5. 3953 } else { 3954 assert(!abase->is_top(), "sanity"); // AddP case #3 3955 if (abase != base) { 3956 igvn->hash_delete(addp); 3957 addp->set_req(AddPNode::Base, base); 3958 if (abase == adr) { 3959 addp->set_req(AddPNode::Address, base); 3960 } else { 3961 // AddP case #4 (adr is array's element offset AddP node) 3962 #ifdef ASSERT 3963 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 3964 assert(adr->is_AddP() && atype != nullptr && 3965 atype->instance_id() == inst_id, "array's element offset should be processed first"); 3966 #endif 3967 } 3968 igvn->hash_insert(addp); 3969 } 3970 } 3971 // Put on IGVN worklist since at least addp's type was changed above. 3972 record_for_optimizer(addp); 3973 return true; 3974 } 3975 3976 // 3977 // Create a new version of orig_phi if necessary. Returns either the newly 3978 // created phi or an existing phi. Sets create_new to indicate whether a new 3979 // phi was created. Cache the last newly created phi in the node map. 3980 // 3981 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 3982 Compile *C = _compile; 3983 PhaseGVN* igvn = _igvn; 3984 new_created = false; 3985 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 3986 // nothing to do if orig_phi is bottom memory or matches alias_idx 3987 if (phi_alias_idx == alias_idx) { 3988 return orig_phi; 3989 } 3990 // Have we recently created a Phi for this alias index? 3991 PhiNode *result = get_map_phi(orig_phi->_idx); 3992 if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) { 3993 return result; 3994 } 3995 // Previous check may fail when the same wide memory Phi was split into Phis 3996 // for different memory slices. Search all Phis for this region. 3997 if (result != nullptr) { 3998 Node* region = orig_phi->in(0); 3999 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 4000 Node* phi = region->fast_out(i); 4001 if (phi->is_Phi() && 4002 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 4003 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 4004 return phi->as_Phi(); 4005 } 4006 } 4007 } 4008 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 4009 if (C->do_escape_analysis() == true && !C->failing()) { 4010 // Retry compilation without escape analysis. 4011 // If this is the first failure, the sentinel string will "stick" 4012 // to the Compile object, and the C2Compiler will see it and retry. 4013 C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4014 } 4015 return nullptr; 4016 } 4017 orig_phi_worklist.append_if_missing(orig_phi); 4018 const TypePtr *atype = C->get_adr_type(alias_idx); 4019 result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype); 4020 C->copy_node_notes_to(result, orig_phi); 4021 igvn->set_type(result, result->bottom_type()); 4022 record_for_optimizer(result); 4023 set_map(orig_phi, result); 4024 new_created = true; 4025 return result; 4026 } 4027 4028 // 4029 // Return a new version of Memory Phi "orig_phi" with the inputs having the 4030 // specified alias index. 4031 // 4032 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) { 4033 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 4034 Compile *C = _compile; 4035 PhaseGVN* igvn = _igvn; 4036 bool new_phi_created; 4037 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 4038 if (!new_phi_created) { 4039 return result; 4040 } 4041 GrowableArray<PhiNode *> phi_list; 4042 GrowableArray<uint> cur_input; 4043 PhiNode *phi = orig_phi; 4044 uint idx = 1; 4045 bool finished = false; 4046 while(!finished) { 4047 while (idx < phi->req()) { 4048 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1); 4049 if (mem != nullptr && mem->is_Phi()) { 4050 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 4051 if (new_phi_created) { 4052 // found an phi for which we created a new split, push current one on worklist and begin 4053 // processing new one 4054 phi_list.push(phi); 4055 cur_input.push(idx); 4056 phi = mem->as_Phi(); 4057 result = newphi; 4058 idx = 1; 4059 continue; 4060 } else { 4061 mem = newphi; 4062 } 4063 } 4064 if (C->failing()) { 4065 return nullptr; 4066 } 4067 result->set_req(idx++, mem); 4068 } 4069 #ifdef ASSERT 4070 // verify that the new Phi has an input for each input of the original 4071 assert( phi->req() == result->req(), "must have same number of inputs."); 4072 assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match"); 4073 #endif 4074 // Check if all new phi's inputs have specified alias index. 4075 // Otherwise use old phi. 4076 for (uint i = 1; i < phi->req(); i++) { 4077 Node* in = result->in(i); 4078 assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond."); 4079 } 4080 // we have finished processing a Phi, see if there are any more to do 4081 finished = (phi_list.length() == 0 ); 4082 if (!finished) { 4083 phi = phi_list.pop(); 4084 idx = cur_input.pop(); 4085 PhiNode *prev_result = get_map_phi(phi->_idx); 4086 prev_result->set_req(idx++, result); 4087 result = prev_result; 4088 } 4089 } 4090 return result; 4091 } 4092 4093 // 4094 // The next methods are derived from methods in MemNode. 4095 // 4096 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 4097 Node *mem = mmem; 4098 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 4099 // means an array I have not precisely typed yet. Do not do any 4100 // alias stuff with it any time soon. 4101 if (toop->base() != Type::AnyPtr && 4102 !(toop->isa_instptr() && 4103 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 4104 toop->offset() == Type::OffsetBot)) { 4105 mem = mmem->memory_at(alias_idx); 4106 // Update input if it is progress over what we have now 4107 } 4108 return mem; 4109 } 4110 4111 // 4112 // Move memory users to their memory slices. 4113 // 4114 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 4115 Compile* C = _compile; 4116 PhaseGVN* igvn = _igvn; 4117 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 4118 assert(tp != nullptr, "ptr type"); 4119 int alias_idx = C->get_alias_index(tp); 4120 int general_idx = C->get_general_index(alias_idx); 4121 4122 // Move users first 4123 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4124 Node* use = n->fast_out(i); 4125 if (use->is_MergeMem()) { 4126 MergeMemNode* mmem = use->as_MergeMem(); 4127 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 4128 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 4129 continue; // Nothing to do 4130 } 4131 // Replace previous general reference to mem node. 4132 uint orig_uniq = C->unique(); 4133 Node* m = find_inst_mem(n, general_idx, orig_phis); 4134 assert(orig_uniq == C->unique(), "no new nodes"); 4135 mmem->set_memory_at(general_idx, m); 4136 --imax; 4137 --i; 4138 } else if (use->is_MemBar()) { 4139 assert(!use->is_Initialize(), "initializing stores should not be moved"); 4140 if (use->req() > MemBarNode::Precedent && 4141 use->in(MemBarNode::Precedent) == n) { 4142 // Don't move related membars. 4143 record_for_optimizer(use); 4144 continue; 4145 } 4146 tp = use->as_MemBar()->adr_type()->isa_ptr(); 4147 if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) || 4148 alias_idx == general_idx) { 4149 continue; // Nothing to do 4150 } 4151 // Move to general memory slice. 4152 uint orig_uniq = C->unique(); 4153 Node* m = find_inst_mem(n, general_idx, orig_phis); 4154 assert(orig_uniq == C->unique(), "no new nodes"); 4155 igvn->hash_delete(use); 4156 imax -= use->replace_edge(n, m, igvn); 4157 igvn->hash_insert(use); 4158 record_for_optimizer(use); 4159 --i; 4160 #ifdef ASSERT 4161 } else if (use->is_Mem()) { 4162 // Memory nodes should have new memory input. 4163 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 4164 assert(tp != nullptr, "ptr type"); 4165 int idx = C->get_alias_index(tp); 4166 assert(get_map(use->_idx) != nullptr || idx == alias_idx, 4167 "Following memory nodes should have new memory input or be on the same memory slice"); 4168 } else if (use->is_Phi()) { 4169 // Phi nodes should be split and moved already. 4170 tp = use->as_Phi()->adr_type()->isa_ptr(); 4171 assert(tp != nullptr, "ptr type"); 4172 int idx = C->get_alias_index(tp); 4173 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 4174 } else { 4175 use->dump(); 4176 assert(false, "should not be here"); 4177 #endif 4178 } 4179 } 4180 } 4181 4182 // 4183 // Search memory chain of "mem" to find a MemNode whose address 4184 // is the specified alias index. 4185 // 4186 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000 4187 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, uint rec_depth) { 4188 if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) { 4189 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4190 return nullptr; 4191 } 4192 if (orig_mem == nullptr) { 4193 return orig_mem; 4194 } 4195 Compile* C = _compile; 4196 PhaseGVN* igvn = _igvn; 4197 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 4198 bool is_instance = (toop != nullptr) && toop->is_known_instance(); 4199 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 4200 Node *prev = nullptr; 4201 Node *result = orig_mem; 4202 while (prev != result) { 4203 prev = result; 4204 if (result == start_mem) { 4205 break; // hit one of our sentinels 4206 } 4207 if (result->is_Mem()) { 4208 const Type *at = igvn->type(result->in(MemNode::Address)); 4209 if (at == Type::TOP) { 4210 break; // Dead 4211 } 4212 assert (at->isa_ptr() != nullptr, "pointer type required."); 4213 int idx = C->get_alias_index(at->is_ptr()); 4214 if (idx == alias_idx) { 4215 break; // Found 4216 } 4217 if (!is_instance && (at->isa_oopptr() == nullptr || 4218 !at->is_oopptr()->is_known_instance())) { 4219 break; // Do not skip store to general memory slice. 4220 } 4221 result = result->in(MemNode::Memory); 4222 } 4223 if (!is_instance) { 4224 continue; // don't search further for non-instance types 4225 } 4226 // skip over a call which does not affect this memory slice 4227 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 4228 Node *proj_in = result->in(0); 4229 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 4230 break; // hit one of our sentinels 4231 } else if (proj_in->is_Call()) { 4232 // ArrayCopy node processed here as well 4233 CallNode *call = proj_in->as_Call(); 4234 if (!call->may_modify(toop, igvn)) { 4235 result = call->in(TypeFunc::Memory); 4236 } 4237 } else if (proj_in->is_Initialize()) { 4238 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 4239 // Stop if this is the initialization for the object instance which 4240 // which contains this memory slice, otherwise skip over it. 4241 if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) { 4242 result = proj_in->in(TypeFunc::Memory); 4243 } 4244 } else if (proj_in->is_MemBar()) { 4245 // Check if there is an array copy for a clone 4246 // Step over GC barrier when ReduceInitialCardMarks is disabled 4247 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4248 Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0)); 4249 4250 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 4251 // Stop if it is a clone 4252 ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy(); 4253 if (ac->may_modify(toop, igvn)) { 4254 break; 4255 } 4256 } 4257 result = proj_in->in(TypeFunc::Memory); 4258 } 4259 } else if (result->is_MergeMem()) { 4260 MergeMemNode *mmem = result->as_MergeMem(); 4261 result = step_through_mergemem(mmem, alias_idx, toop); 4262 if (result == mmem->base_memory()) { 4263 // Didn't find instance memory, search through general slice recursively. 4264 result = mmem->memory_at(C->get_general_index(alias_idx)); 4265 result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1); 4266 if (C->failing()) { 4267 return nullptr; 4268 } 4269 mmem->set_memory_at(alias_idx, result); 4270 } 4271 } else if (result->is_Phi() && 4272 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 4273 Node *un = result->as_Phi()->unique_input(igvn); 4274 if (un != nullptr) { 4275 orig_phis.append_if_missing(result->as_Phi()); 4276 result = un; 4277 } else { 4278 break; 4279 } 4280 } else if (result->is_ClearArray()) { 4281 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 4282 // Can not bypass initialization of the instance 4283 // we are looking for. 4284 break; 4285 } 4286 // Otherwise skip it (the call updated 'result' value). 4287 } else if (result->Opcode() == Op_SCMemProj) { 4288 Node* mem = result->in(0); 4289 Node* adr = nullptr; 4290 if (mem->is_LoadStore()) { 4291 adr = mem->in(MemNode::Address); 4292 } else { 4293 assert(mem->Opcode() == Op_EncodeISOArray || 4294 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 4295 adr = mem->in(3); // Memory edge corresponds to destination array 4296 } 4297 const Type *at = igvn->type(adr); 4298 if (at != Type::TOP) { 4299 assert(at->isa_ptr() != nullptr, "pointer type required."); 4300 int idx = C->get_alias_index(at->is_ptr()); 4301 if (idx == alias_idx) { 4302 // Assert in debug mode 4303 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 4304 break; // In product mode return SCMemProj node 4305 } 4306 } 4307 result = mem->in(MemNode::Memory); 4308 } else if (result->Opcode() == Op_StrInflatedCopy) { 4309 Node* adr = result->in(3); // Memory edge corresponds to destination array 4310 const Type *at = igvn->type(adr); 4311 if (at != Type::TOP) { 4312 assert(at->isa_ptr() != nullptr, "pointer type required."); 4313 int idx = C->get_alias_index(at->is_ptr()); 4314 if (idx == alias_idx) { 4315 // Assert in debug mode 4316 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 4317 break; // In product mode return SCMemProj node 4318 } 4319 } 4320 result = result->in(MemNode::Memory); 4321 } 4322 } 4323 if (result->is_Phi()) { 4324 PhiNode *mphi = result->as_Phi(); 4325 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 4326 const TypePtr *t = mphi->adr_type(); 4327 if (!is_instance) { 4328 // Push all non-instance Phis on the orig_phis worklist to update inputs 4329 // during Phase 4 if needed. 4330 orig_phis.append_if_missing(mphi); 4331 } else if (C->get_alias_index(t) != alias_idx) { 4332 // Create a new Phi with the specified alias index type. 4333 result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1); 4334 } 4335 } 4336 // the result is either MemNode, PhiNode, InitializeNode. 4337 return result; 4338 } 4339 4340 // 4341 // Convert the types of non-escaped object to instance types where possible, 4342 // propagate the new type information through the graph, and update memory 4343 // edges and MergeMem inputs to reflect the new type. 4344 // 4345 // We start with allocations (and calls which may be allocations) on alloc_worklist. 4346 // The processing is done in 4 phases: 4347 // 4348 // Phase 1: Process possible allocations from alloc_worklist. Create instance 4349 // types for the CheckCastPP for allocations where possible. 4350 // Propagate the new types through users as follows: 4351 // casts and Phi: push users on alloc_worklist 4352 // AddP: cast Base and Address inputs to the instance type 4353 // push any AddP users on alloc_worklist and push any memnode 4354 // users onto memnode_worklist. 4355 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4356 // search the Memory chain for a store with the appropriate type 4357 // address type. If a Phi is found, create a new version with 4358 // the appropriate memory slices from each of the Phi inputs. 4359 // For stores, process the users as follows: 4360 // MemNode: push on memnode_worklist 4361 // MergeMem: push on mergemem_worklist 4362 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 4363 // moving the first node encountered of each instance type to the 4364 // the input corresponding to its alias index. 4365 // appropriate memory slice. 4366 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 4367 // 4368 // In the following example, the CheckCastPP nodes are the cast of allocation 4369 // results and the allocation of node 29 is non-escaped and eligible to be an 4370 // instance type. 4371 // 4372 // We start with: 4373 // 4374 // 7 Parm #memory 4375 // 10 ConI "12" 4376 // 19 CheckCastPP "Foo" 4377 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4378 // 29 CheckCastPP "Foo" 4379 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 4380 // 4381 // 40 StoreP 25 7 20 ... alias_index=4 4382 // 50 StoreP 35 40 30 ... alias_index=4 4383 // 60 StoreP 45 50 20 ... alias_index=4 4384 // 70 LoadP _ 60 30 ... alias_index=4 4385 // 80 Phi 75 50 60 Memory alias_index=4 4386 // 90 LoadP _ 80 30 ... alias_index=4 4387 // 100 LoadP _ 80 20 ... alias_index=4 4388 // 4389 // 4390 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 4391 // and creating a new alias index for node 30. This gives: 4392 // 4393 // 7 Parm #memory 4394 // 10 ConI "12" 4395 // 19 CheckCastPP "Foo" 4396 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4397 // 29 CheckCastPP "Foo" iid=24 4398 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4399 // 4400 // 40 StoreP 25 7 20 ... alias_index=4 4401 // 50 StoreP 35 40 30 ... alias_index=6 4402 // 60 StoreP 45 50 20 ... alias_index=4 4403 // 70 LoadP _ 60 30 ... alias_index=6 4404 // 80 Phi 75 50 60 Memory alias_index=4 4405 // 90 LoadP _ 80 30 ... alias_index=6 4406 // 100 LoadP _ 80 20 ... alias_index=4 4407 // 4408 // In phase 2, new memory inputs are computed for the loads and stores, 4409 // And a new version of the phi is created. In phase 4, the inputs to 4410 // node 80 are updated and then the memory nodes are updated with the 4411 // values computed in phase 2. This results in: 4412 // 4413 // 7 Parm #memory 4414 // 10 ConI "12" 4415 // 19 CheckCastPP "Foo" 4416 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4417 // 29 CheckCastPP "Foo" iid=24 4418 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4419 // 4420 // 40 StoreP 25 7 20 ... alias_index=4 4421 // 50 StoreP 35 7 30 ... alias_index=6 4422 // 60 StoreP 45 40 20 ... alias_index=4 4423 // 70 LoadP _ 50 30 ... alias_index=6 4424 // 80 Phi 75 40 60 Memory alias_index=4 4425 // 120 Phi 75 50 50 Memory alias_index=6 4426 // 90 LoadP _ 120 30 ... alias_index=6 4427 // 100 LoadP _ 80 20 ... alias_index=4 4428 // 4429 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, 4430 GrowableArray<ArrayCopyNode*> &arraycopy_worklist, 4431 GrowableArray<MergeMemNode*> &mergemem_worklist, 4432 Unique_Node_List &reducible_merges) { 4433 DEBUG_ONLY(Unique_Node_List reduced_merges;) 4434 GrowableArray<Node *> memnode_worklist; 4435 GrowableArray<PhiNode *> orig_phis; 4436 PhaseIterGVN *igvn = _igvn; 4437 uint new_index_start = (uint) _compile->num_alias_types(); 4438 VectorSet visited; 4439 ideal_nodes.clear(); // Reset for use with set_map/get_map. 4440 uint unique_old = _compile->unique(); 4441 4442 // Phase 1: Process possible allocations from alloc_worklist. 4443 // Create instance types for the CheckCastPP for allocations where possible. 4444 // 4445 // (Note: don't forget to change the order of the second AddP node on 4446 // the alloc_worklist if the order of the worklist processing is changed, 4447 // see the comment in find_second_addp().) 4448 // 4449 while (alloc_worklist.length() != 0) { 4450 Node *n = alloc_worklist.pop(); 4451 uint ni = n->_idx; 4452 if (n->is_Call()) { 4453 CallNode *alloc = n->as_Call(); 4454 // copy escape information to call node 4455 PointsToNode* ptn = ptnode_adr(alloc->_idx); 4456 PointsToNode::EscapeState es = ptn->escape_state(); 4457 // We have an allocation or call which returns a Java object, 4458 // see if it is non-escaped. 4459 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) { 4460 continue; 4461 } 4462 // Find CheckCastPP for the allocate or for the return value of a call 4463 n = alloc->result_cast(); 4464 if (n == nullptr) { // No uses except Initialize node 4465 if (alloc->is_Allocate()) { 4466 // Set the scalar_replaceable flag for allocation 4467 // so it could be eliminated if it has no uses. 4468 alloc->as_Allocate()->_is_scalar_replaceable = true; 4469 } 4470 continue; 4471 } 4472 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 4473 // we could reach here for allocate case if one init is associated with many allocs. 4474 if (alloc->is_Allocate()) { 4475 alloc->as_Allocate()->_is_scalar_replaceable = false; 4476 } 4477 continue; 4478 } 4479 4480 // The inline code for Object.clone() casts the allocation result to 4481 // java.lang.Object and then to the actual type of the allocated 4482 // object. Detect this case and use the second cast. 4483 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 4484 // the allocation result is cast to java.lang.Object and then 4485 // to the actual Array type. 4486 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 4487 && (alloc->is_AllocateArray() || 4488 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) { 4489 Node *cast2 = nullptr; 4490 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4491 Node *use = n->fast_out(i); 4492 if (use->is_CheckCastPP()) { 4493 cast2 = use; 4494 break; 4495 } 4496 } 4497 if (cast2 != nullptr) { 4498 n = cast2; 4499 } else { 4500 // Non-scalar replaceable if the allocation type is unknown statically 4501 // (reflection allocation), the object can't be restored during 4502 // deoptimization without precise type. 4503 continue; 4504 } 4505 } 4506 4507 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 4508 if (t == nullptr) { 4509 continue; // not a TypeOopPtr 4510 } 4511 if (!t->klass_is_exact()) { 4512 continue; // not an unique type 4513 } 4514 if (alloc->is_Allocate()) { 4515 // Set the scalar_replaceable flag for allocation 4516 // so it could be eliminated. 4517 alloc->as_Allocate()->_is_scalar_replaceable = true; 4518 } 4519 set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state 4520 // in order for an object to be scalar-replaceable, it must be: 4521 // - a direct allocation (not a call returning an object) 4522 // - non-escaping 4523 // - eligible to be a unique type 4524 // - not determined to be ineligible by escape analysis 4525 set_map(alloc, n); 4526 set_map(n, alloc); 4527 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 4528 igvn->hash_delete(n); 4529 igvn->set_type(n, tinst); 4530 n->raise_bottom_type(tinst); 4531 igvn->hash_insert(n); 4532 record_for_optimizer(n); 4533 // Allocate an alias index for the header fields. Accesses to 4534 // the header emitted during macro expansion wouldn't have 4535 // correct memory state otherwise. 4536 _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes())); 4537 _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes())); 4538 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 4539 4540 // First, put on the worklist all Field edges from Connection Graph 4541 // which is more accurate than putting immediate users from Ideal Graph. 4542 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 4543 PointsToNode* tgt = e.get(); 4544 if (tgt->is_Arraycopy()) { 4545 continue; 4546 } 4547 Node* use = tgt->ideal_node(); 4548 assert(tgt->is_Field() && use->is_AddP(), 4549 "only AddP nodes are Field edges in CG"); 4550 if (use->outcnt() > 0) { // Don't process dead nodes 4551 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 4552 if (addp2 != nullptr) { 4553 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4554 alloc_worklist.append_if_missing(addp2); 4555 } 4556 alloc_worklist.append_if_missing(use); 4557 } 4558 } 4559 4560 // An allocation may have an Initialize which has raw stores. Scan 4561 // the users of the raw allocation result and push AddP users 4562 // on alloc_worklist. 4563 Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms); 4564 assert (raw_result != nullptr, "must have an allocation result"); 4565 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 4566 Node *use = raw_result->fast_out(i); 4567 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 4568 Node* addp2 = find_second_addp(use, raw_result); 4569 if (addp2 != nullptr) { 4570 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4571 alloc_worklist.append_if_missing(addp2); 4572 } 4573 alloc_worklist.append_if_missing(use); 4574 } else if (use->is_MemBar()) { 4575 memnode_worklist.append_if_missing(use); 4576 } 4577 } 4578 } 4579 } else if (n->is_AddP()) { 4580 if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) { 4581 // This AddP will go away when we reduce the Phi 4582 continue; 4583 } 4584 Node* addp_base = get_addp_base(n); 4585 JavaObjectNode* jobj = unique_java_object(addp_base); 4586 if (jobj == nullptr || jobj == phantom_obj) { 4587 #ifdef ASSERT 4588 ptnode_adr(get_addp_base(n)->_idx)->dump(); 4589 ptnode_adr(n->_idx)->dump(); 4590 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4591 #endif 4592 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4593 return; 4594 } 4595 Node *base = get_map(jobj->idx()); // CheckCastPP node 4596 if (!split_AddP(n, base)) continue; // wrong type from dead path 4597 } else if (n->is_Phi() || 4598 n->is_CheckCastPP() || 4599 n->is_EncodeP() || 4600 n->is_DecodeN() || 4601 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 4602 if (visited.test_set(n->_idx)) { 4603 assert(n->is_Phi(), "loops only through Phi's"); 4604 continue; // already processed 4605 } 4606 // Reducible Phi's will be removed from the graph after split_unique_types 4607 // finishes. For now we just try to split out the SR inputs of the merge. 4608 Node* parent = n->in(1); 4609 if (reducible_merges.member(n)) { 4610 reduce_phi(n->as_Phi(), alloc_worklist, memnode_worklist); 4611 #ifdef ASSERT 4612 if (VerifyReduceAllocationMerges) { 4613 reduced_merges.push(n); 4614 } 4615 #endif 4616 continue; 4617 } else if (reducible_merges.member(parent)) { 4618 // 'n' is an user of a reducible merge (a Phi). It will be simplified as 4619 // part of reduce_merge. 4620 continue; 4621 } 4622 JavaObjectNode* jobj = unique_java_object(n); 4623 if (jobj == nullptr || jobj == phantom_obj) { 4624 #ifdef ASSERT 4625 ptnode_adr(n->_idx)->dump(); 4626 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4627 #endif 4628 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4629 return; 4630 } else { 4631 Node *val = get_map(jobj->idx()); // CheckCastPP node 4632 TypeNode *tn = n->as_Type(); 4633 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 4634 assert(tinst != nullptr && tinst->is_known_instance() && 4635 tinst->instance_id() == jobj->idx() , "instance type expected."); 4636 4637 const Type *tn_type = igvn->type(tn); 4638 const TypeOopPtr *tn_t; 4639 if (tn_type->isa_narrowoop()) { 4640 tn_t = tn_type->make_ptr()->isa_oopptr(); 4641 } else { 4642 tn_t = tn_type->isa_oopptr(); 4643 } 4644 if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) { 4645 if (tn_t->isa_aryptr()) { 4646 // Keep array properties (not flat/null-free) 4647 tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr()); 4648 if (tinst == nullptr) { 4649 continue; // Skip dead path with inconsistent properties 4650 } 4651 } 4652 if (tn_type->isa_narrowoop()) { 4653 tn_type = tinst->make_narrowoop(); 4654 } else { 4655 tn_type = tinst; 4656 } 4657 igvn->hash_delete(tn); 4658 igvn->set_type(tn, tn_type); 4659 tn->set_type(tn_type); 4660 igvn->hash_insert(tn); 4661 record_for_optimizer(n); 4662 } else { 4663 assert(tn_type == TypePtr::NULL_PTR || 4664 (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)), 4665 "unexpected type"); 4666 continue; // Skip dead path with different type 4667 } 4668 } 4669 } else { 4670 DEBUG_ONLY(n->dump();) 4671 assert(false, "EA: unexpected node"); 4672 continue; 4673 } 4674 // push allocation's users on appropriate worklist 4675 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4676 Node *use = n->fast_out(i); 4677 if (use->is_Mem() && use->in(MemNode::Address) == n) { 4678 // Load/store to instance's field 4679 memnode_worklist.append_if_missing(use); 4680 } else if (use->is_MemBar()) { 4681 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 4682 memnode_worklist.append_if_missing(use); 4683 } 4684 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 4685 Node* addp2 = find_second_addp(use, n); 4686 if (addp2 != nullptr) { 4687 alloc_worklist.append_if_missing(addp2); 4688 } 4689 alloc_worklist.append_if_missing(use); 4690 } else if (use->is_Phi() || 4691 use->is_CheckCastPP() || 4692 use->is_EncodeNarrowPtr() || 4693 use->is_DecodeNarrowPtr() || 4694 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 4695 alloc_worklist.append_if_missing(use); 4696 #ifdef ASSERT 4697 } else if (use->is_Mem()) { 4698 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 4699 } else if (use->is_MergeMem()) { 4700 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4701 } else if (use->is_SafePoint()) { 4702 // Look for MergeMem nodes for calls which reference unique allocation 4703 // (through CheckCastPP nodes) even for debug info. 4704 Node* m = use->in(TypeFunc::Memory); 4705 if (m->is_MergeMem()) { 4706 assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4707 } 4708 } else if (use->Opcode() == Op_EncodeISOArray) { 4709 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 4710 // EncodeISOArray overwrites destination array 4711 memnode_worklist.append_if_missing(use); 4712 } 4713 } else if (use->Opcode() == Op_Return) { 4714 // Allocation is referenced by field of returned inline type 4715 assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode"); 4716 } else { 4717 uint op = use->Opcode(); 4718 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) && 4719 (use->in(MemNode::Memory) == n)) { 4720 // They overwrite memory edge corresponding to destination array, 4721 memnode_worklist.append_if_missing(use); 4722 } else if (!(op == Op_CmpP || op == Op_Conv2B || 4723 op == Op_CastP2X || 4724 op == Op_FastLock || op == Op_AryEq || 4725 op == Op_StrComp || op == Op_CountPositives || 4726 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 4727 op == Op_StrEquals || op == Op_VectorizedHashCode || 4728 op == Op_StrIndexOf || op == Op_StrIndexOfChar || 4729 op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck || 4730 op == Op_ReinterpretS2HF || 4731 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) { 4732 n->dump(); 4733 use->dump(); 4734 assert(false, "EA: missing allocation reference path"); 4735 } 4736 #endif 4737 } 4738 } 4739 4740 } 4741 4742 #ifdef ASSERT 4743 if (VerifyReduceAllocationMerges) { 4744 for (uint i = 0; i < reducible_merges.size(); i++) { 4745 Node* phi = reducible_merges.at(i); 4746 4747 if (!reduced_merges.member(phi)) { 4748 phi->dump(2); 4749 phi->dump(-2); 4750 assert(false, "This reducible merge wasn't reduced."); 4751 } 4752 4753 // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts. 4754 for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) { 4755 Node* use = phi->fast_out(j); 4756 if (!use->is_SafePoint() && !use->is_CastPP()) { 4757 phi->dump(2); 4758 phi->dump(-2); 4759 assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt()); 4760 } 4761 } 4762 } 4763 } 4764 #endif 4765 4766 // Go over all ArrayCopy nodes and if one of the inputs has a unique 4767 // type, record it in the ArrayCopy node so we know what memory this 4768 // node uses/modified. 4769 for (int next = 0; next < arraycopy_worklist.length(); next++) { 4770 ArrayCopyNode* ac = arraycopy_worklist.at(next); 4771 Node* dest = ac->in(ArrayCopyNode::Dest); 4772 if (dest->is_AddP()) { 4773 dest = get_addp_base(dest); 4774 } 4775 JavaObjectNode* jobj = unique_java_object(dest); 4776 if (jobj != nullptr) { 4777 Node *base = get_map(jobj->idx()); 4778 if (base != nullptr) { 4779 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4780 ac->_dest_type = base_t; 4781 } 4782 } 4783 Node* src = ac->in(ArrayCopyNode::Src); 4784 if (src->is_AddP()) { 4785 src = get_addp_base(src); 4786 } 4787 jobj = unique_java_object(src); 4788 if (jobj != nullptr) { 4789 Node* base = get_map(jobj->idx()); 4790 if (base != nullptr) { 4791 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4792 ac->_src_type = base_t; 4793 } 4794 } 4795 } 4796 4797 // New alias types were created in split_AddP(). 4798 uint new_index_end = (uint) _compile->num_alias_types(); 4799 4800 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4801 // compute new values for Memory inputs (the Memory inputs are not 4802 // actually updated until phase 4.) 4803 if (memnode_worklist.length() == 0) 4804 return; // nothing to do 4805 while (memnode_worklist.length() != 0) { 4806 Node *n = memnode_worklist.pop(); 4807 if (visited.test_set(n->_idx)) { 4808 continue; 4809 } 4810 if (n->is_Phi() || n->is_ClearArray()) { 4811 // we don't need to do anything, but the users must be pushed 4812 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 4813 // we don't need to do anything, but the users must be pushed 4814 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory); 4815 if (n == nullptr) { 4816 continue; 4817 } 4818 } else if (n->is_CallLeaf()) { 4819 // Runtime calls with narrow memory input (no MergeMem node) 4820 // get the memory projection 4821 n = n->as_Call()->proj_out_or_null(TypeFunc::Memory); 4822 if (n == nullptr) { 4823 continue; 4824 } 4825 } else if (n->Opcode() == Op_StrInflatedCopy) { 4826 // Check direct uses of StrInflatedCopy. 4827 // It is memory type Node - no special SCMemProj node. 4828 } else if (n->Opcode() == Op_StrCompressedCopy || 4829 n->Opcode() == Op_EncodeISOArray) { 4830 // get the memory projection 4831 n = n->find_out_with(Op_SCMemProj); 4832 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 4833 } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr && 4834 strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 4835 n = n->as_CallLeaf()->proj_out(TypeFunc::Memory); 4836 } else { 4837 #ifdef ASSERT 4838 if (!n->is_Mem()) { 4839 n->dump(); 4840 } 4841 assert(n->is_Mem(), "memory node required."); 4842 #endif 4843 Node *addr = n->in(MemNode::Address); 4844 const Type *addr_t = igvn->type(addr); 4845 if (addr_t == Type::TOP) { 4846 continue; 4847 } 4848 assert (addr_t->isa_ptr() != nullptr, "pointer type required."); 4849 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 4850 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 4851 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 4852 if (_compile->failing()) { 4853 return; 4854 } 4855 if (mem != n->in(MemNode::Memory)) { 4856 // We delay the memory edge update since we need old one in 4857 // MergeMem code below when instances memory slices are separated. 4858 set_map(n, mem); 4859 } 4860 if (n->is_Load()) { 4861 continue; // don't push users 4862 } else if (n->is_LoadStore()) { 4863 // get the memory projection 4864 n = n->find_out_with(Op_SCMemProj); 4865 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 4866 } 4867 } 4868 // push user on appropriate worklist 4869 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4870 Node *use = n->fast_out(i); 4871 if (use->is_Phi() || use->is_ClearArray()) { 4872 memnode_worklist.append_if_missing(use); 4873 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 4874 memnode_worklist.append_if_missing(use); 4875 } else if (use->is_MemBar() || use->is_CallLeaf()) { 4876 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 4877 memnode_worklist.append_if_missing(use); 4878 } 4879 #ifdef ASSERT 4880 } else if (use->is_Mem()) { 4881 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 4882 } else if (use->is_MergeMem()) { 4883 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4884 } else if (use->Opcode() == Op_EncodeISOArray) { 4885 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 4886 // EncodeISOArray overwrites destination array 4887 memnode_worklist.append_if_missing(use); 4888 } 4889 } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr && 4890 strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 4891 // store_unknown_inline overwrites destination array 4892 memnode_worklist.append_if_missing(use); 4893 } else { 4894 uint op = use->Opcode(); 4895 if ((use->in(MemNode::Memory) == n) && 4896 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) { 4897 // They overwrite memory edge corresponding to destination array, 4898 memnode_worklist.append_if_missing(use); 4899 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) || 4900 op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives || 4901 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode || 4902 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) { 4903 n->dump(); 4904 use->dump(); 4905 assert(false, "EA: missing memory path"); 4906 } 4907 #endif 4908 } 4909 } 4910 } 4911 4912 // Phase 3: Process MergeMem nodes from mergemem_worklist. 4913 // Walk each memory slice moving the first node encountered of each 4914 // instance type to the input corresponding to its alias index. 4915 uint length = mergemem_worklist.length(); 4916 for( uint next = 0; next < length; ++next ) { 4917 MergeMemNode* nmm = mergemem_worklist.at(next); 4918 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 4919 // Note: we don't want to use MergeMemStream here because we only want to 4920 // scan inputs which exist at the start, not ones we add during processing. 4921 // Note 2: MergeMem may already contains instance memory slices added 4922 // during find_inst_mem() call when memory nodes were processed above. 4923 igvn->hash_delete(nmm); 4924 uint nslices = MIN2(nmm->req(), new_index_start); 4925 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 4926 Node* mem = nmm->in(i); 4927 Node* cur = nullptr; 4928 if (mem == nullptr || mem->is_top()) { 4929 continue; 4930 } 4931 // First, update mergemem by moving memory nodes to corresponding slices 4932 // if their type became more precise since this mergemem was created. 4933 while (mem->is_Mem()) { 4934 const Type *at = igvn->type(mem->in(MemNode::Address)); 4935 if (at != Type::TOP) { 4936 assert (at->isa_ptr() != nullptr, "pointer type required."); 4937 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 4938 if (idx == i) { 4939 if (cur == nullptr) { 4940 cur = mem; 4941 } 4942 } else { 4943 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 4944 nmm->set_memory_at(idx, mem); 4945 } 4946 } 4947 } 4948 mem = mem->in(MemNode::Memory); 4949 } 4950 nmm->set_memory_at(i, (cur != nullptr) ? cur : mem); 4951 // Find any instance of the current type if we haven't encountered 4952 // already a memory slice of the instance along the memory chain. 4953 for (uint ni = new_index_start; ni < new_index_end; ni++) { 4954 if((uint)_compile->get_general_index(ni) == i) { 4955 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 4956 if (nmm->is_empty_memory(m)) { 4957 Node* result = find_inst_mem(mem, ni, orig_phis); 4958 if (_compile->failing()) { 4959 return; 4960 } 4961 nmm->set_memory_at(ni, result); 4962 } 4963 } 4964 } 4965 } 4966 // Find the rest of instances values 4967 for (uint ni = new_index_start; ni < new_index_end; ni++) { 4968 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 4969 Node* result = step_through_mergemem(nmm, ni, tinst); 4970 if (result == nmm->base_memory()) { 4971 // Didn't find instance memory, search through general slice recursively. 4972 result = nmm->memory_at(_compile->get_general_index(ni)); 4973 result = find_inst_mem(result, ni, orig_phis); 4974 if (_compile->failing()) { 4975 return; 4976 } 4977 nmm->set_memory_at(ni, result); 4978 } 4979 } 4980 4981 // If we have crossed the 3/4 point of max node limit it's too risky 4982 // to continue with EA/SR because we might hit the max node limit. 4983 if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) { 4984 if (_compile->do_reduce_allocation_merges()) { 4985 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 4986 } else if (_invocation > 0) { 4987 _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis()); 4988 } else { 4989 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 4990 } 4991 return; 4992 } 4993 4994 igvn->hash_insert(nmm); 4995 record_for_optimizer(nmm); 4996 } 4997 4998 // Phase 4: Update the inputs of non-instance memory Phis and 4999 // the Memory input of memnodes 5000 // First update the inputs of any non-instance Phi's from 5001 // which we split out an instance Phi. Note we don't have 5002 // to recursively process Phi's encountered on the input memory 5003 // chains as is done in split_memory_phi() since they will 5004 // also be processed here. 5005 for (int j = 0; j < orig_phis.length(); j++) { 5006 PhiNode *phi = orig_phis.at(j); 5007 int alias_idx = _compile->get_alias_index(phi->adr_type()); 5008 igvn->hash_delete(phi); 5009 for (uint i = 1; i < phi->req(); i++) { 5010 Node *mem = phi->in(i); 5011 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 5012 if (_compile->failing()) { 5013 return; 5014 } 5015 if (mem != new_mem) { 5016 phi->set_req(i, new_mem); 5017 } 5018 } 5019 igvn->hash_insert(phi); 5020 record_for_optimizer(phi); 5021 } 5022 5023 // Update the memory inputs of MemNodes with the value we computed 5024 // in Phase 2 and move stores memory users to corresponding memory slices. 5025 // Disable memory split verification code until the fix for 6984348. 5026 // Currently it produces false negative results since it does not cover all cases. 5027 #if 0 // ifdef ASSERT 5028 visited.Reset(); 5029 Node_Stack old_mems(arena, _compile->unique() >> 2); 5030 #endif 5031 for (uint i = 0; i < ideal_nodes.size(); i++) { 5032 Node* n = ideal_nodes.at(i); 5033 Node* nmem = get_map(n->_idx); 5034 assert(nmem != nullptr, "sanity"); 5035 if (n->is_Mem()) { 5036 #if 0 // ifdef ASSERT 5037 Node* old_mem = n->in(MemNode::Memory); 5038 if (!visited.test_set(old_mem->_idx)) { 5039 old_mems.push(old_mem, old_mem->outcnt()); 5040 } 5041 #endif 5042 assert(n->in(MemNode::Memory) != nmem, "sanity"); 5043 if (!n->is_Load()) { 5044 // Move memory users of a store first. 5045 move_inst_mem(n, orig_phis); 5046 } 5047 // Now update memory input 5048 igvn->hash_delete(n); 5049 n->set_req(MemNode::Memory, nmem); 5050 igvn->hash_insert(n); 5051 record_for_optimizer(n); 5052 } else { 5053 assert(n->is_Allocate() || n->is_CheckCastPP() || 5054 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 5055 } 5056 } 5057 #if 0 // ifdef ASSERT 5058 // Verify that memory was split correctly 5059 while (old_mems.is_nonempty()) { 5060 Node* old_mem = old_mems.node(); 5061 uint old_cnt = old_mems.index(); 5062 old_mems.pop(); 5063 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 5064 } 5065 #endif 5066 } 5067 5068 #ifndef PRODUCT 5069 int ConnectionGraph::_no_escape_counter = 0; 5070 int ConnectionGraph::_arg_escape_counter = 0; 5071 int ConnectionGraph::_global_escape_counter = 0; 5072 5073 static const char *node_type_names[] = { 5074 "UnknownType", 5075 "JavaObject", 5076 "LocalVar", 5077 "Field", 5078 "Arraycopy" 5079 }; 5080 5081 static const char *esc_names[] = { 5082 "UnknownEscape", 5083 "NoEscape", 5084 "ArgEscape", 5085 "GlobalEscape" 5086 }; 5087 5088 void PointsToNode::dump_header(bool print_state, outputStream* out) const { 5089 NodeType nt = node_type(); 5090 out->print("%s(%d) ", node_type_names[(int) nt], _pidx); 5091 if (print_state) { 5092 EscapeState es = escape_state(); 5093 EscapeState fields_es = fields_escape_state(); 5094 out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 5095 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) { 5096 out->print("NSR "); 5097 } 5098 } 5099 } 5100 5101 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const { 5102 dump_header(print_state, out); 5103 if (is_Field()) { 5104 FieldNode* f = (FieldNode*)this; 5105 if (f->is_oop()) { 5106 out->print("oop "); 5107 } 5108 if (f->offset() > 0) { 5109 out->print("+%d ", f->offset()); 5110 } 5111 out->print("("); 5112 for (BaseIterator i(f); i.has_next(); i.next()) { 5113 PointsToNode* b = i.get(); 5114 out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 5115 } 5116 out->print(" )"); 5117 } 5118 out->print("["); 5119 for (EdgeIterator i(this); i.has_next(); i.next()) { 5120 PointsToNode* e = i.get(); 5121 out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 5122 } 5123 out->print(" ["); 5124 for (UseIterator i(this); i.has_next(); i.next()) { 5125 PointsToNode* u = i.get(); 5126 bool is_base = false; 5127 if (PointsToNode::is_base_use(u)) { 5128 is_base = true; 5129 u = PointsToNode::get_use_node(u)->as_Field(); 5130 } 5131 out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 5132 } 5133 out->print(" ]] "); 5134 if (_node == nullptr) { 5135 out->print("<null>%s", newline ? "\n" : ""); 5136 } else { 5137 _node->dump(newline ? "\n" : "", false, out); 5138 } 5139 } 5140 5141 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 5142 bool first = true; 5143 int ptnodes_length = ptnodes_worklist.length(); 5144 for (int i = 0; i < ptnodes_length; i++) { 5145 PointsToNode *ptn = ptnodes_worklist.at(i); 5146 if (ptn == nullptr || !ptn->is_JavaObject()) { 5147 continue; 5148 } 5149 PointsToNode::EscapeState es = ptn->escape_state(); 5150 if ((es != PointsToNode::NoEscape) && !Verbose) { 5151 continue; 5152 } 5153 Node* n = ptn->ideal_node(); 5154 if (n->is_Allocate() || (n->is_CallStaticJava() && 5155 n->as_CallStaticJava()->is_boxing_method())) { 5156 if (first) { 5157 tty->cr(); 5158 tty->print("======== Connection graph for "); 5159 _compile->method()->print_short_name(); 5160 tty->cr(); 5161 tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d", 5162 _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length()); 5163 tty->cr(); 5164 first = false; 5165 } 5166 ptn->dump(); 5167 // Print all locals and fields which reference this allocation 5168 for (UseIterator j(ptn); j.has_next(); j.next()) { 5169 PointsToNode* use = j.get(); 5170 if (use->is_LocalVar()) { 5171 use->dump(Verbose); 5172 } else if (Verbose) { 5173 use->dump(); 5174 } 5175 } 5176 tty->cr(); 5177 } 5178 } 5179 } 5180 5181 void ConnectionGraph::print_statistics() { 5182 tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", Atomic::load(&_no_escape_counter), Atomic::load(&_arg_escape_counter), Atomic::load(&_global_escape_counter)); 5183 } 5184 5185 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) { 5186 if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation 5187 return; 5188 } 5189 for (int next = 0; next < java_objects_worklist.length(); ++next) { 5190 JavaObjectNode* ptn = java_objects_worklist.at(next); 5191 if (ptn->ideal_node()->is_Allocate()) { 5192 if (ptn->escape_state() == PointsToNode::NoEscape) { 5193 Atomic::inc(&ConnectionGraph::_no_escape_counter); 5194 } else if (ptn->escape_state() == PointsToNode::ArgEscape) { 5195 Atomic::inc(&ConnectionGraph::_arg_escape_counter); 5196 } else if (ptn->escape_state() == PointsToNode::GlobalEscape) { 5197 Atomic::inc(&ConnectionGraph::_global_escape_counter); 5198 } else { 5199 assert(false, "Unexpected Escape State"); 5200 } 5201 } 5202 } 5203 } 5204 5205 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const { 5206 if (_compile->directive()->TraceEscapeAnalysisOption) { 5207 assert(ptn != nullptr, "should not be null"); 5208 assert(reason != nullptr, "should not be null"); 5209 ptn->dump_header(true); 5210 PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es; 5211 PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state(); 5212 tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason); 5213 } 5214 } 5215 5216 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const { 5217 if (_compile->directive()->TraceEscapeAnalysisOption) { 5218 stringStream ss; 5219 ss.print("propagated from: "); 5220 from->dump(true, &ss, false); 5221 return ss.as_string(); 5222 } else { 5223 return nullptr; 5224 } 5225 } 5226 5227 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const { 5228 if (_compile->directive()->TraceEscapeAnalysisOption) { 5229 stringStream ss; 5230 ss.print("escapes as arg to:"); 5231 call->dump("", false, &ss); 5232 return ss.as_string(); 5233 } else { 5234 return nullptr; 5235 } 5236 } 5237 5238 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const { 5239 if (_compile->directive()->TraceEscapeAnalysisOption) { 5240 stringStream ss; 5241 ss.print("is merged with other object: "); 5242 other->dump_header(true, &ss); 5243 return ss.as_string(); 5244 } else { 5245 return nullptr; 5246 } 5247 } 5248 5249 #endif 5250 5251 void ConnectionGraph::record_for_optimizer(Node *n) { 5252 _igvn->_worklist.push(n); 5253 _igvn->add_users_to_worklist(n); 5254 }