1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/metaspace.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/inlinetypenode.hpp"
  41 #include "opto/macro.hpp"
  42 #include "opto/locknode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/castnode.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  51   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  52   // split_unique_types and that will create additional nodes that need to be
  53   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  54   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  55   // the array will be reallocated.
  56   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  57   _in_worklist(C->comp_arena()),
  58   _next_pidx(0),
  59   _collecting(true),
  60   _verify(false),
  61   _compile(C),
  62   _igvn(igvn),
  63   _invocation(invocation),
  64   _build_iterations(0),
  65   _build_time(0.),
  66   _node_map(C->comp_arena()) {
  67   // Add unknown java object.
  68   add_java_object(C->top(), PointsToNode::GlobalEscape);
  69   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  70   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  71   // Add ConP and ConN null oop nodes
  72   Node* oop_null = igvn->zerocon(T_OBJECT);
  73   assert(oop_null->_idx < nodes_size(), "should be created already");
  74   add_java_object(oop_null, PointsToNode::NoEscape);
  75   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  76   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  77   if (UseCompressedOops) {
  78     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  79     assert(noop_null->_idx < nodes_size(), "should be created already");
  80     map_ideal_node(noop_null, null_obj);
  81   }
  82 }
  83 
  84 bool ConnectionGraph::has_candidates(Compile *C) {
  85   // EA brings benefits only when the code has allocations and/or locks which
  86   // are represented by ideal Macro nodes.
  87   int cnt = C->macro_count();
  88   for (int i = 0; i < cnt; i++) {
  89     Node *n = C->macro_node(i);
  90     if (n->is_Allocate()) {
  91       return true;
  92     }
  93     if (n->is_Lock()) {
  94       Node* obj = n->as_Lock()->obj_node()->uncast();
  95       if (!(obj->is_Parm() || obj->is_Con())) {
  96         return true;
  97       }
  98     }
  99     if (n->is_CallStaticJava() &&
 100         n->as_CallStaticJava()->is_boxing_method()) {
 101       return true;
 102     }
 103   }
 104   return false;
 105 }
 106 
 107 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 108   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
 109   ResourceMark rm;
 110 
 111   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 112   // to create space for them in ConnectionGraph::_nodes[].
 113   Node* oop_null = igvn->zerocon(T_OBJECT);
 114   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 115   int invocation = 0;
 116   if (C->congraph() != nullptr) {
 117     invocation = C->congraph()->_invocation + 1;
 118   }
 119   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 120   // Perform escape analysis
 121   if (congraph->compute_escape()) {
 122     // There are non escaping objects.
 123     C->set_congraph(congraph);
 124   }
 125   // Cleanup.
 126   if (oop_null->outcnt() == 0) {
 127     igvn->hash_delete(oop_null);
 128   }
 129   if (noop_null->outcnt() == 0) {
 130     igvn->hash_delete(noop_null);
 131   }
 132 }
 133 
 134 bool ConnectionGraph::compute_escape() {
 135   Compile* C = _compile;
 136   PhaseGVN* igvn = _igvn;
 137 
 138   // Worklists used by EA.
 139   Unique_Node_List delayed_worklist;
 140   Unique_Node_List reducible_merges;
 141   GrowableArray<Node*> alloc_worklist;
 142   GrowableArray<Node*> ptr_cmp_worklist;
 143   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 144   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 145   GrowableArray<PointsToNode*>   ptnodes_worklist;
 146   GrowableArray<JavaObjectNode*> java_objects_worklist;
 147   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 148   GrowableArray<FieldNode*>      oop_fields_worklist;
 149   GrowableArray<SafePointNode*>  sfn_worklist;
 150   GrowableArray<MergeMemNode*>   mergemem_worklist;
 151   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 152 
 153   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 154 
 155   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 156   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 157   // Initialize worklist
 158   if (C->root() != nullptr) {
 159     ideal_nodes.push(C->root());
 160   }
 161   // Processed ideal nodes are unique on ideal_nodes list
 162   // but several ideal nodes are mapped to the phantom_obj.
 163   // To avoid duplicated entries on the following worklists
 164   // add the phantom_obj only once to them.
 165   ptnodes_worklist.append(phantom_obj);
 166   java_objects_worklist.append(phantom_obj);
 167   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 168     Node* n = ideal_nodes.at(next);
 169     if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) &&
 170         !n->in(MemNode::Address)->is_AddP() &&
 171         _igvn->type(n->in(MemNode::Address))->isa_oopptr()) {
 172       // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA
 173       Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0));
 174       _igvn->register_new_node_with_optimizer(addp);
 175       _igvn->replace_input_of(n, MemNode::Address, addp);
 176       ideal_nodes.push(addp);
 177       _nodes.at_put_grow(addp->_idx, nullptr, nullptr);
 178     }
 179     // Create PointsTo nodes and add them to Connection Graph. Called
 180     // only once per ideal node since ideal_nodes is Unique_Node list.
 181     add_node_to_connection_graph(n, &delayed_worklist);
 182     PointsToNode* ptn = ptnode_adr(n->_idx);
 183     if (ptn != nullptr && ptn != phantom_obj) {
 184       ptnodes_worklist.append(ptn);
 185       if (ptn->is_JavaObject()) {
 186         java_objects_worklist.append(ptn->as_JavaObject());
 187         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 188             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 189           // Only allocations and java static calls results are interesting.
 190           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 191         }
 192       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 193         oop_fields_worklist.append(ptn->as_Field());
 194       }
 195     }
 196     // Collect some interesting nodes for further use.
 197     switch (n->Opcode()) {
 198       case Op_MergeMem:
 199         // Collect all MergeMem nodes to add memory slices for
 200         // scalar replaceable objects in split_unique_types().
 201         mergemem_worklist.append(n->as_MergeMem());
 202         break;
 203       case Op_CmpP:
 204       case Op_CmpN:
 205         // Collect compare pointers nodes.
 206         if (OptimizePtrCompare) {
 207           ptr_cmp_worklist.append(n);
 208         }
 209         break;
 210       case Op_MemBarStoreStore:
 211         // Collect all MemBarStoreStore nodes so that depending on the
 212         // escape status of the associated Allocate node some of them
 213         // may be eliminated.
 214         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 215           storestore_worklist.append(n->as_MemBarStoreStore());
 216         }
 217         break;
 218       case Op_MemBarRelease:
 219         if (n->req() > MemBarNode::Precedent) {
 220           record_for_optimizer(n);
 221         }
 222         break;
 223 #ifdef ASSERT
 224       case Op_AddP:
 225         // Collect address nodes for graph verification.
 226         addp_worklist.append(n);
 227         break;
 228 #endif
 229       case Op_ArrayCopy:
 230         // Keep a list of ArrayCopy nodes so if one of its input is non
 231         // escaping, we can record a unique type
 232         arraycopy_worklist.append(n->as_ArrayCopy());
 233         break;
 234       default:
 235         // not interested now, ignore...
 236         break;
 237     }
 238     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 239       Node* m = n->fast_out(i);   // Get user
 240       ideal_nodes.push(m);
 241     }
 242     if (n->is_SafePoint()) {
 243       sfn_worklist.append(n->as_SafePoint());
 244     }
 245   }
 246 
 247 #ifndef PRODUCT
 248   if (_compile->directive()->TraceEscapeAnalysisOption) {
 249     tty->print("+++++ Initial worklist for ");
 250     _compile->method()->print_name();
 251     tty->print_cr(" (ea_inv=%d)", _invocation);
 252     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 253       PointsToNode* ptn = ptnodes_worklist.at(i);
 254       ptn->dump();
 255     }
 256     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 257   }
 258 #endif
 259 
 260   if (non_escaped_allocs_worklist.length() == 0) {
 261     _collecting = false;
 262     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 263     return false; // Nothing to do.
 264   }
 265   // Add final simple edges to graph.
 266   while(delayed_worklist.size() > 0) {
 267     Node* n = delayed_worklist.pop();
 268     add_final_edges(n);
 269   }
 270 
 271 #ifdef ASSERT
 272   if (VerifyConnectionGraph) {
 273     // Verify that no new simple edges could be created and all
 274     // local vars has edges.
 275     _verify = true;
 276     int ptnodes_length = ptnodes_worklist.length();
 277     for (int next = 0; next < ptnodes_length; ++next) {
 278       PointsToNode* ptn = ptnodes_worklist.at(next);
 279       add_final_edges(ptn->ideal_node());
 280       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 281         ptn->dump();
 282         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 283       }
 284     }
 285     _verify = false;
 286   }
 287 #endif
 288   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 289   // processing, calls to CI to resolve symbols (types, fields, methods)
 290   // referenced in bytecode. During symbol resolution VM may throw
 291   // an exception which CI cleans and converts to compilation failure.
 292   if (C->failing()) {
 293     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 294     return false;
 295   }
 296 
 297   // 2. Finish Graph construction by propagating references to all
 298   //    java objects through graph.
 299   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 300                                  java_objects_worklist, oop_fields_worklist)) {
 301     // All objects escaped or hit time or iterations limits.
 302     _collecting = false;
 303     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 304     return false;
 305   }
 306 
 307   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 308   //    scalar replaceable allocations on alloc_worklist for processing
 309   //    in split_unique_types().
 310   GrowableArray<JavaObjectNode*> jobj_worklist;
 311   int non_escaped_length = non_escaped_allocs_worklist.length();
 312   bool found_nsr_alloc = false;
 313   for (int next = 0; next < non_escaped_length; next++) {
 314     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 315     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 316     Node* n = ptn->ideal_node();
 317     if (n->is_Allocate()) {
 318       n->as_Allocate()->_is_non_escaping = noescape;
 319     }
 320     if (noescape && ptn->scalar_replaceable()) {
 321       adjust_scalar_replaceable_state(ptn, reducible_merges);
 322       if (ptn->scalar_replaceable()) {
 323         jobj_worklist.push(ptn);
 324       } else {
 325         found_nsr_alloc = true;
 326       }
 327     }
 328   }
 329 
 330   // Propagate NSR (Not Scalar Replaceable) state.
 331   if (found_nsr_alloc) {
 332     find_scalar_replaceable_allocs(jobj_worklist);
 333   }
 334 
 335   // alloc_worklist will be processed in reverse push order.
 336   // Therefore the reducible Phis will be processed for last and that's what we
 337   // want because by then the scalarizable inputs of the merge will already have
 338   // an unique instance type.
 339   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 340     Node* n = reducible_merges.at(i);
 341     alloc_worklist.append(n);
 342   }
 343 
 344   for (int next = 0; next < jobj_worklist.length(); ++next) {
 345     JavaObjectNode* jobj = jobj_worklist.at(next);
 346     if (jobj->scalar_replaceable()) {
 347       alloc_worklist.append(jobj->ideal_node());
 348     }
 349   }
 350 
 351 #ifdef ASSERT
 352   if (VerifyConnectionGraph) {
 353     // Verify that graph is complete - no new edges could be added or needed.
 354     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 355                             java_objects_worklist, addp_worklist);
 356   }
 357   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 358   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 359          null_obj->edge_count() == 0 &&
 360          !null_obj->arraycopy_src() &&
 361          !null_obj->arraycopy_dst(), "sanity");
 362 #endif
 363 
 364   _collecting = false;
 365 
 366   } // TracePhase t3("connectionGraph")
 367 
 368   // 4. Optimize ideal graph based on EA information.
 369   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 370   if (has_non_escaping_obj) {
 371     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 372   }
 373 
 374 #ifndef PRODUCT
 375   if (PrintEscapeAnalysis) {
 376     dump(ptnodes_worklist); // Dump ConnectionGraph
 377   }
 378 #endif
 379 
 380 #ifdef ASSERT
 381   if (VerifyConnectionGraph) {
 382     int alloc_length = alloc_worklist.length();
 383     for (int next = 0; next < alloc_length; ++next) {
 384       Node* n = alloc_worklist.at(next);
 385       PointsToNode* ptn = ptnode_adr(n->_idx);
 386       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 387     }
 388   }
 389 
 390   if (VerifyReduceAllocationMerges) {
 391     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 392       Node* n = reducible_merges.at(i);
 393       if (!can_reduce_phi(n->as_Phi())) {
 394         TraceReduceAllocationMerges = true;
 395         n->dump(2);
 396         n->dump(-2);
 397         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 398       }
 399     }
 400   }
 401 #endif
 402 
 403   // 5. Separate memory graph for scalar replaceable allcations.
 404   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 405   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 406     assert(C->do_aliasing(), "Aliasing should be enabled");
 407     // Now use the escape information to create unique types for
 408     // scalar replaceable objects.
 409     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 410     if (C->failing()) {
 411       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 412       return false;
 413     }
 414     C->print_method(PHASE_AFTER_EA, 2);
 415 
 416 #ifdef ASSERT
 417   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 418     tty->print("=== No allocations eliminated for ");
 419     C->method()->print_short_name();
 420     if (!EliminateAllocations) {
 421       tty->print(" since EliminateAllocations is off ===");
 422     } else if(!has_scalar_replaceable_candidates) {
 423       tty->print(" since there are no scalar replaceable candidates ===");
 424     }
 425     tty->cr();
 426 #endif
 427   }
 428 
 429   // 6. Reduce allocation merges used as debug information. This is done after
 430   // split_unique_types because the methods used to create SafePointScalarObject
 431   // need to traverse the memory graph to find values for object fields. We also
 432   // set to null the scalarized inputs of reducible Phis so that the Allocate
 433   // that they point can be later scalar replaced.
 434   bool delay = _igvn->delay_transform();
 435   _igvn->set_delay_transform(true);
 436   for (uint i = 0; i < reducible_merges.size(); i++) {
 437     Node* n = reducible_merges.at(i);
 438     if (n->outcnt() > 0) {
 439       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 440         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 441         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 442         return false;
 443       }
 444 
 445       // Now we set the scalar replaceable inputs of ophi to null, which is
 446       // the last piece that would prevent it from being scalar replaceable.
 447       reset_scalar_replaceable_entries(n->as_Phi());
 448     }
 449   }
 450   _igvn->set_delay_transform(delay);
 451 
 452   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 453   // java calls if they pass ArgEscape objects as parameters.
 454   if (has_non_escaping_obj &&
 455       (C->env()->should_retain_local_variables() ||
 456        C->env()->jvmti_can_get_owned_monitor_info() ||
 457        C->env()->jvmti_can_walk_any_space() ||
 458        DeoptimizeObjectsALot)) {
 459     int sfn_length = sfn_worklist.length();
 460     for (int next = 0; next < sfn_length; next++) {
 461       SafePointNode* sfn = sfn_worklist.at(next);
 462       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 463       if (sfn->is_CallJava()) {
 464         CallJavaNode* call = sfn->as_CallJava();
 465         call->set_arg_escape(has_arg_escape(call));
 466       }
 467     }
 468   }
 469 
 470   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 471   return has_non_escaping_obj;
 472 }
 473 
 474 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 475 // if at least one scalar replaceable allocation participates in the merge.
 476 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 477   bool found_sr_allocate = false;
 478 
 479   for (uint i = 1; i < ophi->req(); i++) {
 480     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 481     if (ptn != nullptr && ptn->scalar_replaceable()) {
 482       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 483 
 484       // Don't handle arrays.
 485       if (alloc->Opcode() != Op_Allocate) {
 486         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 487         continue;
 488       }
 489 
 490       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 491         found_sr_allocate = true;
 492       } else {
 493         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 494         ptn->set_scalar_replaceable(false);
 495       }
 496     }
 497   }
 498 
 499   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 500   return found_sr_allocate;
 501 }
 502 
 503 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 504 // I require the 'other' input to be a constant so that I can move the Cmp
 505 // around safely.
 506 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 507   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 508   Node* left = cmp->in(1);
 509   Node* right = cmp->in(2);
 510 
 511   return (left == n || right == n) &&
 512          (left->is_Con() || right->is_Con()) &&
 513          cmp->outcnt() == 1;
 514 }
 515 
 516 // We are going to check if any of the SafePointScalarMerge entries
 517 // in the SafePoint reference the Phi that we are checking.
 518 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 519   JVMState *jvms = sfpt->jvms();
 520 
 521   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 522     Node* sfpt_in = sfpt->in(i);
 523     if (sfpt_in->is_SafePointScalarMerge()) {
 524       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 525       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 526       if (nsr_ptr == n) {
 527         return true;
 528       }
 529     }
 530   }
 531 
 532   return false;
 533 }
 534 
 535 // Check if we are able to untangle the merge. The following patterns are
 536 // supported:
 537 //  - Phi -> SafePoints
 538 //  - Phi -> CmpP/N
 539 //  - Phi -> AddP -> Load
 540 //  - Phi -> CastPP -> SafePoints
 541 //  - Phi -> CastPP -> AddP -> Load
 542 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 543   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 544     Node* use = n->fast_out(i);
 545 
 546     if (use->is_SafePoint()) {
 547       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 548         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 549         return false;
 550       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 551         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 552         return false;
 553       }
 554     } else if (use->is_AddP()) {
 555       Node* addp = use;
 556       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 557         Node* use_use = addp->fast_out(j);
 558         const Type* load_type = _igvn->type(use_use);
 559 
 560         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 561           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 562           return false;
 563         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 564           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 565           return false;
 566         }
 567       }
 568     } else if (nesting > 0) {
 569       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 570       return false;
 571     } else if (use->is_CastPP()) {
 572       const Type* cast_t = _igvn->type(use);
 573       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 574 #ifndef PRODUCT
 575         if (TraceReduceAllocationMerges) {
 576           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 577           use->dump();
 578         }
 579 #endif
 580         return false;
 581       }
 582 
 583       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 584       if (!is_trivial_control) {
 585         // If it's not a trivial control then we check if we can reduce the
 586         // CmpP/N used by the If controlling the cast.
 587         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 588           Node* iff = use->in(0)->in(0);
 589           // We may have Opaque4 node between If and Bool nodes.
 590           // Bail out in such case - we need to preserve Opaque4 for correct
 591           // processing predicates after loop opts.
 592           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 593           if (can_reduce) {
 594             Node* iff_cmp = iff->in(1)->in(1);
 595             int opc = iff_cmp->Opcode();
 596             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 597           }
 598           if (!can_reduce) {
 599 #ifndef PRODUCT
 600             if (TraceReduceAllocationMerges) {
 601               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 602               n->dump(5);
 603             }
 604 #endif
 605             return false;
 606           }
 607         }
 608       }
 609 
 610       if (!can_reduce_check_users(use, nesting+1)) {
 611         return false;
 612       }
 613     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 614       if (!can_reduce_cmp(n, use)) {
 615         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 616         return false;
 617       }
 618     } else {
 619       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 620       return false;
 621     }
 622   }
 623 
 624   return true;
 625 }
 626 
 627 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 628 // only used in some certain code shapes. Check comments in
 629 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 630 // details.
 631 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 632   // If there was an error attempting to reduce allocation merges for this
 633   // method we might have disabled the compilation and be retrying with RAM
 634   // disabled.
 635   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 636     return false;
 637   }
 638 
 639   const Type* phi_t = _igvn->type(ophi);
 640   if (phi_t == nullptr ||
 641       phi_t->make_ptr() == nullptr ||
 642       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 643     return false;
 644   }
 645 
 646   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 647     return false;
 648   }
 649 
 650   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 651   return true;
 652 }
 653 
 654 // This method will return a CmpP/N that we need to use on the If controlling a
 655 // CastPP after it was split. This method is only called on bases that are
 656 // nullable therefore we always need a controlling if for the splitted CastPP.
 657 //
 658 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 659 // If the CastPP currently doesn't have a control then the CmpP/N will be
 660 // against the NULL constant, otherwise it will be against the constant input of
 661 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 662 // case because we have constraints on it and because the CastPP has a control
 663 // input.
 664 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 665   const Type* t = base->bottom_type();
 666   Node* con = nullptr;
 667 
 668   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 669     con = _igvn->zerocon(t->basic_type());
 670   } else {
 671     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 672     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 673     Node* bol = curr_ctrl->in(0)->in(1);
 674     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 675     Node* curr_cmp = bol->in(1);
 676     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 677     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 678   }
 679 
 680   return CmpNode::make(base, con, t->basic_type());
 681 }
 682 
 683 // This method 'specializes' the CastPP passed as parameter to the base passed
 684 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 685 // means that the CastPP now will be specific for a given base instead of a Phi.
 686 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 687 // of the CastPP is a copy of the current one (if there is one) or a check
 688 // against NULL.
 689 //
 690 // Before:
 691 //
 692 //    C1     C2  ... Cn
 693 //     \      |      /
 694 //      \     |     /
 695 //       \    |    /
 696 //        \   |   /
 697 //         \  |  /
 698 //          \ | /
 699 //           \|/
 700 //          Region     B1      B2  ... Bn
 701 //            |          \      |      /
 702 //            |           \     |     /
 703 //            |            \    |    /
 704 //            |             \   |   /
 705 //            |              \  |  /
 706 //            |               \ | /
 707 //            ---------------> Phi
 708 //                              |
 709 //                      X       |
 710 //                      |       |
 711 //                      |       |
 712 //                      ------> CastPP
 713 //
 714 // After (only partial illustration; base = B2, current_control = C2):
 715 //
 716 //                      C2
 717 //                      |
 718 //                      If
 719 //                     / \
 720 //                    /   \
 721 //                   T     F
 722 //                  /\     /
 723 //                 /  \   /
 724 //                /    \ /
 725 //      C1    CastPP   Reg        Cn
 726 //       |              |          |
 727 //       |              |          |
 728 //       |              |          |
 729 //       -------------- | ----------
 730 //                    | | |
 731 //                    Region
 732 //
 733 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 734   Node* control_successor  = current_control->unique_ctrl_out();
 735   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 736   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 737   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 738   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 739   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 740   Node* end_region         = _igvn->transform(new RegionNode(3));
 741 
 742   // Insert the new if-else-region block into the graph
 743   end_region->set_req(1, not_eq_control);
 744   end_region->set_req(2, yes_eq_control);
 745   control_successor->replace_edge(current_control, end_region, _igvn);
 746 
 747   _igvn->_worklist.push(current_control);
 748   _igvn->_worklist.push(control_successor);
 749 
 750   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr));
 751 }
 752 
 753 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 754   const Type* load_type = _igvn->type(curr_load);
 755   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 756   Node* memory = curr_load->in(MemNode::Memory);
 757 
 758   // The data_phi merging the loads needs to be nullable if
 759   // we are loading pointers.
 760   if (load_type->make_ptr() != nullptr) {
 761     if (load_type->isa_narrowoop()) {
 762       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 763     } else if (load_type->isa_ptr()) {
 764       load_type = load_type->meet(TypePtr::NULL_PTR);
 765     } else {
 766       assert(false, "Unexpected load ptr type.");
 767     }
 768   }
 769 
 770   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 771 
 772   for (int i = 1; i < bases_for_loads->length(); i++) {
 773     Node* base = bases_for_loads->at(i);
 774     Node* cmp_region = nullptr;
 775     if (base != nullptr) {
 776       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 777         cmp_region = base->unique_ctrl_out_or_null();
 778         assert(cmp_region != nullptr, "There should be.");
 779         base = base->find_out_with(Op_CastPP);
 780       }
 781 
 782       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 783       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 784       Node* load = curr_load->clone();
 785       load->set_req(0, nullptr);
 786       load->set_req(1, mem);
 787       load->set_req(2, addr);
 788 
 789       if (cmp_region != nullptr) { // see comment on previous if
 790         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 791         intermediate_phi->set_req(1, _igvn->transform(load));
 792         load = intermediate_phi;
 793       }
 794 
 795       data_phi->set_req(i, _igvn->transform(load));
 796     } else {
 797       // Just use the default, which is already in phi
 798     }
 799   }
 800 
 801   // Takes care of updating CG and split_unique_types worklists due
 802   // to cloned AddP->Load.
 803   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 804 
 805   return _igvn->transform(data_phi);
 806 }
 807 
 808 // This method only reduces CastPP fields loads; SafePoints are handled
 809 // separately. The idea here is basically to clone the CastPP and place copies
 810 // on each input of the Phi, including non-scalar replaceable inputs.
 811 // Experimentation shows that the resulting IR graph is simpler that way than if
 812 // we just split the cast through scalar-replaceable inputs.
 813 //
 814 // The reduction process requires that CastPP's control be one of:
 815 //  1) no control,
 816 //  2) the same region as Ophi, or
 817 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 818 //
 819 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 820 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 821 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 822 // juse use a CmpP/N against the NULL constant.
 823 //
 824 // The If-Then-Else-Region isn't always needed. For instance, if input to
 825 // splitted cast was not nullable (or if it was the NULL constant) then we don't
 826 // need (shouldn't) use a CastPP at all.
 827 //
 828 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 829 // connect them to the just split CastPPs.
 830 //
 831 // Before (CastPP control is same as Phi):
 832 //
 833 //          Region     Allocate   Null    Call
 834 //            |             \      |      /
 835 //            |              \     |     /
 836 //            |               \    |    /
 837 //            |                \   |   /
 838 //            |                 \  |  /
 839 //            |                  \ | /
 840 //            ------------------> Phi            # Oop Phi
 841 //            |                    |
 842 //            |                    |
 843 //            |                    |
 844 //            |                    |
 845 //            ----------------> CastPP
 846 //                                 |
 847 //                               AddP
 848 //                                 |
 849 //                               Load
 850 //
 851 // After (Very much simplified):
 852 //
 853 //                         Call  NULL
 854 //                            \  /
 855 //                            CmpP
 856 //                             |
 857 //                           Bool#NE
 858 //                             |
 859 //                             If
 860 //                            / \
 861 //                           T   F
 862 //                          / \ /
 863 //                         /   R
 864 //                     CastPP  |
 865 //                       |     |
 866 //                     AddP    |
 867 //                       |     |
 868 //                     Load    |
 869 //                         \   |   0
 870 //            Allocate      \  |  /
 871 //                \          \ | /
 872 //               AddP         Phi
 873 //                  \         /
 874 //                 Load      /
 875 //                    \  0  /
 876 //                     \ | /
 877 //                      \|/
 878 //                      Phi        # "Field" Phi
 879 //
 880 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
 881   Node* ophi = curr_castpp->in(1);
 882   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 883 
 884   // Identify which base should be used for AddP->Load later when spliting the
 885   // CastPP->Loads through ophi. Three kind of values may be stored in this
 886   // array, depending on the nullability status of the corresponding input in
 887   // ophi.
 888   //
 889   //  - nullptr:    Meaning that the base is actually the NULL constant and therefore
 890   //                we won't try to load from it.
 891   //
 892   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 893   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 894   //                that will 'activate' the CastPp only when the input is not Null.
 895   //
 896   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 897   //                to load directly from it.
 898   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 899 
 900   for (uint i = 1; i < ophi->req(); i++) {
 901     Node* base = ophi->in(i);
 902     const Type* base_t = _igvn->type(base);
 903 
 904     if (base_t->maybe_null()) {
 905       if (base->is_Con()) {
 906         // Nothing todo as bases_for_loads[i] is already nullptr
 907       } else {
 908         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 909         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 910       }
 911     } else {
 912       bases_for_loads.at_put(i, base);
 913     }
 914   }
 915 
 916   // Now let's split the CastPP->Loads through the Phi
 917   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 918     Node* use = curr_castpp->raw_out(i);
 919     if (use->is_AddP()) {
 920       for (int j = use->outcnt()-1; j >= 0;) {
 921         Node* use_use = use->raw_out(j);
 922         assert(use_use->is_Load(), "Expected this to be a Load node.");
 923 
 924         // We can't make an unconditional load from a nullable input. The
 925         // 'split_castpp_load_through_phi` method will add an
 926         // 'If-Then-Else-Region` around nullable bases and only load from them
 927         // when the input is not null.
 928         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 929         _igvn->replace_node(use_use, phi);
 930 
 931         --j;
 932         j = MIN2(j, (int)use->outcnt()-1);
 933       }
 934 
 935       _igvn->remove_dead_node(use);
 936     }
 937     --i;
 938     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 939   }
 940 }
 941 
 942 // This method split a given CmpP/N through the Phi used in one of its inputs.
 943 // As a result we convert a comparison with a pointer to a comparison with an
 944 // integer.
 945 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 946 // while the other must be a constant.
 947 // The splitting process is basically just cloning the CmpP/N above the input
 948 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 949 // can prove at compile time the result of the comparison.
 950 //
 951 // Before:
 952 //
 953 //             in1    in2 ... inN
 954 //              \      |      /
 955 //               \     |     /
 956 //                \    |    /
 957 //                 \   |   /
 958 //                  \  |  /
 959 //                   \ | /
 960 //                    Phi
 961 //                     |   Other
 962 //                     |    /
 963 //                     |   /
 964 //                     |  /
 965 //                    CmpP/N
 966 //
 967 // After:
 968 //
 969 //        in1  Other   in2 Other  inN  Other
 970 //         |    |      |   |      |    |
 971 //         \    |      |   |      |    |
 972 //          \  /       |   /      |    /
 973 //          CmpP/N    CmpP/N     CmpP/N
 974 //          Bool      Bool       Bool
 975 //            \        |        /
 976 //             \       |       /
 977 //              \      |      /
 978 //               \     |     /
 979 //                \    |    /
 980 //                 \   |   /
 981 //                  \  |  /
 982 //                   \ | /
 983 //                    Phi
 984 //                     |
 985 //                     |   Zero
 986 //                     |    /
 987 //                     |   /
 988 //                     |  /
 989 //                     CmpI
 990 //
 991 //
 992 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 993   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 994   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 995 
 996   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 997   Node* zero = _igvn->intcon(0);
 998   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
 999 
1000   // This Phi will merge the result of the Cmps split through the Phi
1001   Node* res_phi  = _igvn->transform(PhiNode::make(ophi->in(0), zero, TypeInt::INT));
1002 
1003   for (uint i=1; i<ophi->req(); i++) {
1004     Node* ophi_input = ophi->in(i);
1005     Node* res_phi_input = nullptr;
1006 
1007     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
1008     if (tcmp->singleton()) {
1009       res_phi_input = _igvn->makecon(tcmp);
1010     } else {
1011       Node* ncmp = _igvn->transform(cmp->clone());
1012       ncmp->set_req(1, ophi_input);
1013       ncmp->set_req(2, other);
1014       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1015       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1016     }
1017 
1018     res_phi->set_req(i, res_phi_input);
1019   }
1020 
1021   Node* new_cmp = _igvn->transform(new CmpINode(res_phi, zero));
1022   _igvn->replace_node(cmp, new_cmp);
1023 }
1024 
1025 // Push the newly created AddP on alloc_worklist and patch
1026 // the connection graph. Note that the changes in the CG below
1027 // won't affect the ES of objects since the new nodes have the
1028 // same status as the old ones.
1029 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1030   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1031   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1032   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1033 
1034   if (data_phi == nullptr || !data_phi->is_Phi()) {
1035     // Make this a retry?
1036     return ;
1037   }
1038 
1039   Node* previous_addp = previous_load->in(MemNode::Address);
1040   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1041   for (uint i = 1; i < data_phi->req(); i++) {
1042     Node* new_load = data_phi->in(i);
1043 
1044     if (new_load->is_Phi()) {
1045       // new_load is currently the "intermediate_phi" from an specialized
1046       // CastPP.
1047       new_load = new_load->in(1);
1048     }
1049 
1050     // "new_load" might actually be a constant, parameter, etc.
1051     if (new_load->is_Load()) {
1052       Node* new_addp = new_load->in(MemNode::Address);
1053       Node* base = get_addp_base(new_addp);
1054 
1055       // The base might not be something that we can create an unique
1056       // type for. If that's the case we are done with that input.
1057       PointsToNode* jobj_ptn = unique_java_object(base);
1058       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1059         continue;
1060       }
1061 
1062       // Push to alloc_worklist since the base has an unique_type
1063       alloc_worklist.append_if_missing(new_addp);
1064 
1065       // Now let's add the node to the connection graph
1066       _nodes.at_grow(new_addp->_idx, nullptr);
1067       add_field(new_addp, fn->escape_state(), fn->offset());
1068       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1069 
1070       // If the load doesn't load an object then it won't be
1071       // part of the connection graph
1072       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1073       if (curr_load_ptn != nullptr) {
1074         _nodes.at_grow(new_load->_idx, nullptr);
1075         add_local_var(new_load, curr_load_ptn->escape_state());
1076         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1077       }
1078     }
1079   }
1080 }
1081 
1082 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1083   // We'll pass this to 'split_through_phi' so that it'll do the split even
1084   // though the load doesn't have an unique instance type.
1085   bool ignore_missing_instance_id = true;
1086 
1087   // All AddPs are present in the connection graph
1088   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1089 
1090   // Iterate over AddP looking for a Load
1091   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1092     Node* previous_load = previous_addp->raw_out(k);
1093     if (previous_load->is_Load()) {
1094       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1095 
1096       // Takes care of updating CG and split_unique_types worklists due to cloned
1097       // AddP->Load.
1098       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1099 
1100       _igvn->replace_node(previous_load, data_phi);
1101     }
1102     --k;
1103     k = MIN2(k, (int)previous_addp->outcnt()-1);
1104   }
1105 
1106   // Remove the old AddP from the processing list because it's dead now
1107   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1108   alloc_worklist.remove_if_existing(previous_addp);
1109 }
1110 
1111 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1112 // selector is:
1113 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1114 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1115 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1116 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1117   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1118   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1119   uint number_of_sr_objects = 0;
1120   for (uint i = 1; i < ophi->req(); i++) {
1121     Node* base = ophi->in(i);
1122     JavaObjectNode* ptn = unique_java_object(base);
1123 
1124     if (ptn != nullptr && ptn->scalar_replaceable()) {
1125       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1126       selector->set_req(i, sr_obj_idx);
1127       number_of_sr_objects++;
1128     }
1129   }
1130 
1131   return selector->as_Phi();
1132 }
1133 
1134 // Returns true if the AddP node 'n' has at least one base that is a reducible
1135 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1136 // checked instead.
1137 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1138   PointsToNode* ptn = ptnode_adr(n->_idx);
1139   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1140     return false;
1141   }
1142 
1143   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1144     Node* base = i.get()->ideal_node();
1145 
1146     if (reducible_merges.member(base)) {
1147       return true;
1148     }
1149 
1150     if (base->is_CastPP() || base->is_CheckCastPP()) {
1151       base = base->in(1);
1152       if (reducible_merges.member(base)) {
1153         return true;
1154       }
1155     }
1156   }
1157 
1158   return false;
1159 }
1160 
1161 // This method will call its helper method to reduce SafePoint nodes that use
1162 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1163 // "version" of Phi use the same debug information (regarding the Phi).
1164 // Therefore, I collect all safepoints and patch them all at once.
1165 //
1166 // The safepoints using the Phi node have to be processed before safepoints of
1167 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1168 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1169 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1170 // algorithm that process Phi's safepoints will think that the added Phi
1171 // reference is a regular reference.
1172 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1173   PhiNode* selector = create_selector(ophi);
1174   Unique_Node_List safepoints;
1175   Unique_Node_List casts;
1176 
1177   // Just collect the users of the Phis for later processing
1178   // in the needed order.
1179   for (uint i = 0; i < ophi->outcnt(); i++) {
1180     Node* use = ophi->raw_out(i);
1181     if (use->is_SafePoint()) {
1182       safepoints.push(use);
1183     } else if (use->is_CastPP()) {
1184       casts.push(use);
1185     } else {
1186       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1187     }
1188   }
1189 
1190   // Need to process safepoints using the Phi first
1191   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1192     return false;
1193   }
1194 
1195   // Now process CastPP->safepoints
1196   for (uint i = 0; i < casts.size(); i++) {
1197     Node* cast = casts.at(i);
1198     Unique_Node_List cast_sfpts;
1199 
1200     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1201       Node* use_use = cast->fast_out(j);
1202       if (use_use->is_SafePoint()) {
1203         cast_sfpts.push(use_use);
1204       } else {
1205         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1206       }
1207     }
1208 
1209     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1210       return false;
1211     }
1212   }
1213 
1214   return true;
1215 }
1216 
1217 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1218 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1219 // SafePointScalarObjectNode for each scalar replaceable input. Each
1220 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1221 // check detailed description in SafePointScalarMergeNode class header.
1222 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1223   PhaseMacroExpand mexp(*_igvn);
1224   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1225   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1226 
1227   Node* nsr_merge_pointer = ophi;
1228   if (cast != nullptr) {
1229     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1230     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr));
1231   }
1232 
1233   for (uint spi = 0; spi < safepoints.size(); spi++) {
1234     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1235     JVMState *jvms      = sfpt->jvms();
1236     uint merge_idx      = (sfpt->req() - jvms->scloff());
1237     int debug_start     = jvms->debug_start();
1238 
1239     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1240     smerge->init_req(0, _compile->root());
1241     _igvn->register_new_node_with_optimizer(smerge);
1242 
1243     // The next two inputs are:
1244     //  (1) A copy of the original pointer to NSR objects.
1245     //  (2) A selector, used to decide if we need to rematerialize an object
1246     //      or use the pointer to a NSR object.
1247     // See more details of these fields in the declaration of SafePointScalarMergeNode
1248     sfpt->add_req(nsr_merge_pointer);
1249     sfpt->add_req(selector);
1250 
1251     for (uint i = 1; i < ophi->req(); i++) {
1252       Node* base = ophi->in(i);
1253       JavaObjectNode* ptn = unique_java_object(base);
1254 
1255       // If the base is not scalar replaceable we don't need to register information about
1256       // it at this time.
1257       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1258         continue;
1259       }
1260 
1261       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1262       Unique_Node_List value_worklist;
1263 #ifdef ASSERT
1264       const Type* res_type = alloc->result_cast()->bottom_type();
1265       if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) {
1266         PhiNode* phi = ophi->as_Phi();
1267         assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity");
1268       }
1269 #endif
1270       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist);
1271       if (sobj == nullptr) {
1272         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1273         return false;
1274       }
1275 
1276       // Now make a pass over the debug information replacing any references
1277       // to the allocated object with "sobj"
1278       Node* ccpp = alloc->result_cast();
1279       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1280 
1281       // Register the scalarized object as a candidate for reallocation
1282       smerge->add_req(sobj);
1283 
1284       // Scalarize inline types that were added to the safepoint.
1285       // Don't allow linking a constant oop (if available) for flat array elements
1286       // because Deoptimization::reassign_flat_array_elements needs field values.
1287       const bool allow_oop = !merge_t->is_flat();
1288       for (uint j = 0; j < value_worklist.size(); ++j) {
1289         InlineTypeNode* vt = value_worklist.at(j)->as_InlineType();
1290         vt->make_scalar_in_safepoints(_igvn, allow_oop);
1291       }
1292     }
1293 
1294     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1295     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1296 
1297     // The call to 'replace_edges_in_range' above might have removed the
1298     // reference to ophi that we need at _merge_pointer_idx. The line below make
1299     // sure the reference is maintained.
1300     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1301     _igvn->_worklist.push(sfpt);
1302   }
1303 
1304   return true;
1305 }
1306 
1307 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1308   bool delay = _igvn->delay_transform();
1309   _igvn->set_delay_transform(true);
1310   _igvn->hash_delete(ophi);
1311 
1312   // Copying all users first because some will be removed and others won't.
1313   // Ophi also may acquire some new users as part of Cast reduction.
1314   // CastPPs also need to be processed before CmpPs.
1315   Unique_Node_List castpps;
1316   Unique_Node_List others;
1317   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1318     Node* use = ophi->fast_out(i);
1319 
1320     if (use->is_CastPP()) {
1321       castpps.push(use);
1322     } else if (use->is_AddP() || use->is_Cmp()) {
1323       others.push(use);
1324     } else if (use->is_SafePoint()) {
1325       // processed later
1326     } else {
1327       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1328     }
1329   }
1330 
1331   // CastPPs need to be processed before Cmps because during the process of
1332   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1333   // by the If controlling the CastPP.
1334   for (uint i = 0; i < castpps.size(); i++) {
1335     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist, memnode_worklist);
1336   }
1337 
1338   for (uint i = 0; i < others.size(); i++) {
1339     Node* use = others.at(i);
1340 
1341     if (use->is_AddP()) {
1342       reduce_phi_on_field_access(use, alloc_worklist);
1343     } else if(use->is_Cmp()) {
1344       reduce_phi_on_cmp(use);
1345     }
1346   }
1347 
1348   _igvn->set_delay_transform(delay);
1349 }
1350 
1351 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1352   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1353   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1354   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1355   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1356 
1357   for (uint i = 1; i < ophi->req(); i++) {
1358     Node* base          = ophi->in(i);
1359     JavaObjectNode* ptn = unique_java_object(base);
1360 
1361     if (ptn != nullptr && ptn->scalar_replaceable()) {
1362       new_phi->set_req(i, null_ptr);
1363     } else {
1364       new_phi->set_req(i, ophi->in(i));
1365     }
1366   }
1367 
1368   for (int i = ophi->outcnt()-1; i >= 0;) {
1369     Node* out = ophi->raw_out(i);
1370 
1371     if (out->is_ConstraintCast()) {
1372       const Type* out_t = _igvn->type(out)->make_ptr();
1373       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1374       bool change = out_new_t != out_t;
1375 
1376       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1377         Node* out2 = out->raw_out(j);
1378         if (!out2->is_SafePoint()) {
1379           change = false;
1380           break;
1381         }
1382       }
1383 
1384       if (change) {
1385         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr);
1386         _igvn->replace_node(out, new_cast);
1387         _igvn->register_new_node_with_optimizer(new_cast);
1388       }
1389     }
1390 
1391     --i;
1392     i = MIN2(i, (int)ophi->outcnt()-1);
1393   }
1394 
1395   _igvn->replace_node(ophi, new_phi);
1396 }
1397 
1398 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1399   if (!C->do_reduce_allocation_merges()) return;
1400 
1401   Unique_Node_List ideal_nodes;
1402   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1403   ideal_nodes.push(root);
1404 
1405   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1406     Node* n = ideal_nodes.at(next);
1407 
1408     if (n->is_SafePointScalarMerge()) {
1409       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1410 
1411       // Validate inputs of merge
1412       for (uint i = 1; i < merge->req(); i++) {
1413         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1414           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1415           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1416         }
1417       }
1418 
1419       // Validate users of merge
1420       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1421         Node* sfpt = merge->fast_out(i);
1422         if (sfpt->is_SafePoint()) {
1423           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1424 
1425           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1426             assert(false, "SafePointScalarMerge nodes can't be nested.");
1427             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1428           }
1429         } else {
1430           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1431           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1432         }
1433       }
1434     }
1435 
1436     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1437       Node* m = n->fast_out(i);
1438       ideal_nodes.push(m);
1439     }
1440   }
1441 }
1442 
1443 // Returns true if there is an object in the scope of sfn that does not escape globally.
1444 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1445   Compile* C = _compile;
1446   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1447     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1448         DeoptimizeObjectsALot) {
1449       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1450       int num_locs = jvms->loc_size();
1451       for (int idx = 0; idx < num_locs; idx++) {
1452         Node* l = sfn->local(jvms, idx);
1453         if (not_global_escape(l)) {
1454           return true;
1455         }
1456       }
1457     }
1458     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1459         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1460       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1461       int num_mon = jvms->nof_monitors();
1462       for (int idx = 0; idx < num_mon; idx++) {
1463         Node* m = sfn->monitor_obj(jvms, idx);
1464         if (m != nullptr && not_global_escape(m)) {
1465           return true;
1466         }
1467       }
1468     }
1469   }
1470   return false;
1471 }
1472 
1473 // Returns true if at least one of the arguments to the call is an object
1474 // that does not escape globally.
1475 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1476   if (call->method() != nullptr) {
1477     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1478     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1479       Node* p = call->in(idx);
1480       if (not_global_escape(p)) {
1481         return true;
1482       }
1483     }
1484   } else {
1485     const char* name = call->as_CallStaticJava()->_name;
1486     assert(name != nullptr, "no name");
1487     // no arg escapes through uncommon traps
1488     if (strcmp(name, "uncommon_trap") != 0) {
1489       // process_call_arguments() assumes that all arguments escape globally
1490       const TypeTuple* d = call->tf()->domain_sig();
1491       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1492         const Type* at = d->field_at(i);
1493         if (at->isa_oopptr() != nullptr) {
1494           return true;
1495         }
1496       }
1497     }
1498   }
1499   return false;
1500 }
1501 
1502 
1503 
1504 // Utility function for nodes that load an object
1505 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1506   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1507   // ThreadLocal has RawPtr type.
1508   const Type* t = _igvn->type(n);
1509   if (t->make_ptr() != nullptr) {
1510     Node* adr = n->in(MemNode::Address);
1511 #ifdef ASSERT
1512     if (!adr->is_AddP()) {
1513       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1514     } else {
1515       assert((ptnode_adr(adr->_idx) == nullptr ||
1516               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1517     }
1518 #endif
1519     add_local_var_and_edge(n, PointsToNode::NoEscape,
1520                            adr, delayed_worklist);
1521   }
1522 }
1523 
1524 // Populate Connection Graph with PointsTo nodes and create simple
1525 // connection graph edges.
1526 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1527   assert(!_verify, "this method should not be called for verification");
1528   PhaseGVN* igvn = _igvn;
1529   uint n_idx = n->_idx;
1530   PointsToNode* n_ptn = ptnode_adr(n_idx);
1531   if (n_ptn != nullptr) {
1532     return; // No need to redefine PointsTo node during first iteration.
1533   }
1534   int opcode = n->Opcode();
1535   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
1536   if (gc_handled) {
1537     return; // Ignore node if already handled by GC.
1538   }
1539 
1540   if (n->is_Call()) {
1541     // Arguments to allocation and locking don't escape.
1542     if (n->is_AbstractLock()) {
1543       // Put Lock and Unlock nodes on IGVN worklist to process them during
1544       // first IGVN optimization when escape information is still available.
1545       record_for_optimizer(n);
1546     } else if (n->is_Allocate()) {
1547       add_call_node(n->as_Call());
1548       record_for_optimizer(n);
1549     } else {
1550       if (n->is_CallStaticJava()) {
1551         const char* name = n->as_CallStaticJava()->_name;
1552         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1553           return; // Skip uncommon traps
1554         }
1555       }
1556       // Don't mark as processed since call's arguments have to be processed.
1557       delayed_worklist->push(n);
1558       // Check if a call returns an object.
1559       if ((n->as_Call()->returns_pointer() &&
1560            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1561           (n->is_CallStaticJava() &&
1562            n->as_CallStaticJava()->is_boxing_method())) {
1563         add_call_node(n->as_Call());
1564       } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) {
1565         bool returns_oop = false;
1566         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
1567           ProjNode* pn = n->fast_out(i)->as_Proj();
1568           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
1569             returns_oop = true;
1570           }
1571         }
1572         if (returns_oop) {
1573           add_call_node(n->as_Call());
1574         }
1575       }
1576     }
1577     return;
1578   }
1579   // Put this check here to process call arguments since some call nodes
1580   // point to phantom_obj.
1581   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1582     return; // Skip predefined nodes.
1583   }
1584   switch (opcode) {
1585     case Op_AddP: {
1586       Node* base = get_addp_base(n);
1587       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1588       // Field nodes are created for all field types. They are used in
1589       // adjust_scalar_replaceable_state() and split_unique_types().
1590       // Note, non-oop fields will have only base edges in Connection
1591       // Graph because such fields are not used for oop loads and stores.
1592       int offset = address_offset(n, igvn);
1593       add_field(n, PointsToNode::NoEscape, offset);
1594       if (ptn_base == nullptr) {
1595         delayed_worklist->push(n); // Process it later.
1596       } else {
1597         n_ptn = ptnode_adr(n_idx);
1598         add_base(n_ptn->as_Field(), ptn_base);
1599       }
1600       break;
1601     }
1602     case Op_CastX2P: {
1603       map_ideal_node(n, phantom_obj);
1604       break;
1605     }
1606     case Op_InlineType:
1607     case Op_CastPP:
1608     case Op_CheckCastPP:
1609     case Op_EncodeP:
1610     case Op_DecodeN:
1611     case Op_EncodePKlass:
1612     case Op_DecodeNKlass: {
1613       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1614       break;
1615     }
1616     case Op_CMoveP: {
1617       add_local_var(n, PointsToNode::NoEscape);
1618       // Do not add edges during first iteration because some could be
1619       // not defined yet.
1620       delayed_worklist->push(n);
1621       break;
1622     }
1623     case Op_ConP:
1624     case Op_ConN:
1625     case Op_ConNKlass: {
1626       // assume all oop constants globally escape except for null
1627       PointsToNode::EscapeState es;
1628       const Type* t = igvn->type(n);
1629       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1630         es = PointsToNode::NoEscape;
1631       } else {
1632         es = PointsToNode::GlobalEscape;
1633       }
1634       PointsToNode* ptn_con = add_java_object(n, es);
1635       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1636       break;
1637     }
1638     case Op_CreateEx: {
1639       // assume that all exception objects globally escape
1640       map_ideal_node(n, phantom_obj);
1641       break;
1642     }
1643     case Op_LoadKlass:
1644     case Op_LoadNKlass: {
1645       // Unknown class is loaded
1646       map_ideal_node(n, phantom_obj);
1647       break;
1648     }
1649     case Op_LoadP:
1650     case Op_LoadN: {
1651       add_objload_to_connection_graph(n, delayed_worklist);
1652       break;
1653     }
1654     case Op_Parm: {
1655       map_ideal_node(n, phantom_obj);
1656       break;
1657     }
1658     case Op_PartialSubtypeCheck: {
1659       // Produces Null or notNull and is used in only in CmpP so
1660       // phantom_obj could be used.
1661       map_ideal_node(n, phantom_obj); // Result is unknown
1662       break;
1663     }
1664     case Op_Phi: {
1665       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1666       // ThreadLocal has RawPtr type.
1667       const Type* t = n->as_Phi()->type();
1668       if (t->make_ptr() != nullptr) {
1669         add_local_var(n, PointsToNode::NoEscape);
1670         // Do not add edges during first iteration because some could be
1671         // not defined yet.
1672         delayed_worklist->push(n);
1673       }
1674       break;
1675     }
1676     case Op_Proj: {
1677       // we are only interested in the oop result projection from a call
1678       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
1679           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
1680         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1681                n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1682         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1683       }
1684       break;
1685     }
1686     case Op_Rethrow: // Exception object escapes
1687     case Op_Return: {
1688       if (n->req() > TypeFunc::Parms &&
1689           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1690         // Treat Return value as LocalVar with GlobalEscape escape state.
1691         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1692       }
1693       break;
1694     }
1695     case Op_CompareAndExchangeP:
1696     case Op_CompareAndExchangeN:
1697     case Op_GetAndSetP:
1698     case Op_GetAndSetN: {
1699       add_objload_to_connection_graph(n, delayed_worklist);
1700       // fall-through
1701     }
1702     case Op_StoreP:
1703     case Op_StoreN:
1704     case Op_StoreNKlass:
1705     case Op_WeakCompareAndSwapP:
1706     case Op_WeakCompareAndSwapN:
1707     case Op_CompareAndSwapP:
1708     case Op_CompareAndSwapN: {
1709       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1710       break;
1711     }
1712     case Op_AryEq:
1713     case Op_CountPositives:
1714     case Op_StrComp:
1715     case Op_StrEquals:
1716     case Op_StrIndexOf:
1717     case Op_StrIndexOfChar:
1718     case Op_StrInflatedCopy:
1719     case Op_StrCompressedCopy:
1720     case Op_VectorizedHashCode:
1721     case Op_EncodeISOArray: {
1722       add_local_var(n, PointsToNode::ArgEscape);
1723       delayed_worklist->push(n); // Process it later.
1724       break;
1725     }
1726     case Op_ThreadLocal: {
1727       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1728       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1729       break;
1730     }
1731     case Op_Blackhole: {
1732       // All blackhole pointer arguments are globally escaping.
1733       // Only do this if there is at least one pointer argument.
1734       // Do not add edges during first iteration because some could be
1735       // not defined yet, defer to final step.
1736       for (uint i = 0; i < n->req(); i++) {
1737         Node* in = n->in(i);
1738         if (in != nullptr) {
1739           const Type* at = _igvn->type(in);
1740           if (!at->isa_ptr()) continue;
1741 
1742           add_local_var(n, PointsToNode::GlobalEscape);
1743           delayed_worklist->push(n);
1744           break;
1745         }
1746       }
1747       break;
1748     }
1749     default:
1750       ; // Do nothing for nodes not related to EA.
1751   }
1752   return;
1753 }
1754 
1755 // Add final simple edges to graph.
1756 void ConnectionGraph::add_final_edges(Node *n) {
1757   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1758 #ifdef ASSERT
1759   if (_verify && n_ptn->is_JavaObject())
1760     return; // This method does not change graph for JavaObject.
1761 #endif
1762 
1763   if (n->is_Call()) {
1764     process_call_arguments(n->as_Call());
1765     return;
1766   }
1767   assert(n->is_Store() || n->is_LoadStore() ||
1768          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1769          "node should be registered already");
1770   int opcode = n->Opcode();
1771   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1772   if (gc_handled) {
1773     return; // Ignore node if already handled by GC.
1774   }
1775   switch (opcode) {
1776     case Op_AddP: {
1777       Node* base = get_addp_base(n);
1778       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1779       assert(ptn_base != nullptr, "field's base should be registered");
1780       add_base(n_ptn->as_Field(), ptn_base);
1781       break;
1782     }
1783     case Op_InlineType:
1784     case Op_CastPP:
1785     case Op_CheckCastPP:
1786     case Op_EncodeP:
1787     case Op_DecodeN:
1788     case Op_EncodePKlass:
1789     case Op_DecodeNKlass: {
1790       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1791       break;
1792     }
1793     case Op_CMoveP: {
1794       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1795         Node* in = n->in(i);
1796         if (in == nullptr) {
1797           continue;  // ignore null
1798         }
1799         Node* uncast_in = in->uncast();
1800         if (uncast_in->is_top() || uncast_in == n) {
1801           continue;  // ignore top or inputs which go back this node
1802         }
1803         PointsToNode* ptn = ptnode_adr(in->_idx);
1804         assert(ptn != nullptr, "node should be registered");
1805         add_edge(n_ptn, ptn);
1806       }
1807       break;
1808     }
1809     case Op_LoadP:
1810     case Op_LoadN: {
1811       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1812       // ThreadLocal has RawPtr type.
1813       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1814       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1815       break;
1816     }
1817     case Op_Phi: {
1818       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1819       // ThreadLocal has RawPtr type.
1820       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1821       for (uint i = 1; i < n->req(); i++) {
1822         Node* in = n->in(i);
1823         if (in == nullptr) {
1824           continue;  // ignore null
1825         }
1826         Node* uncast_in = in->uncast();
1827         if (uncast_in->is_top() || uncast_in == n) {
1828           continue;  // ignore top or inputs which go back this node
1829         }
1830         PointsToNode* ptn = ptnode_adr(in->_idx);
1831         assert(ptn != nullptr, "node should be registered");
1832         add_edge(n_ptn, ptn);
1833       }
1834       break;
1835     }
1836     case Op_Proj: {
1837       // we are only interested in the oop result projection from a call
1838       assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1839              n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1840       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1841       break;
1842     }
1843     case Op_Rethrow: // Exception object escapes
1844     case Op_Return: {
1845       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1846              "Unexpected node type");
1847       // Treat Return value as LocalVar with GlobalEscape escape state.
1848       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1849       break;
1850     }
1851     case Op_CompareAndExchangeP:
1852     case Op_CompareAndExchangeN:
1853     case Op_GetAndSetP:
1854     case Op_GetAndSetN:{
1855       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1856       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1857       // fall-through
1858     }
1859     case Op_CompareAndSwapP:
1860     case Op_CompareAndSwapN:
1861     case Op_WeakCompareAndSwapP:
1862     case Op_WeakCompareAndSwapN:
1863     case Op_StoreP:
1864     case Op_StoreN:
1865     case Op_StoreNKlass:{
1866       add_final_edges_unsafe_access(n, opcode);
1867       break;
1868     }
1869     case Op_VectorizedHashCode:
1870     case Op_AryEq:
1871     case Op_CountPositives:
1872     case Op_StrComp:
1873     case Op_StrEquals:
1874     case Op_StrIndexOf:
1875     case Op_StrIndexOfChar:
1876     case Op_StrInflatedCopy:
1877     case Op_StrCompressedCopy:
1878     case Op_EncodeISOArray: {
1879       // char[]/byte[] arrays passed to string intrinsic do not escape but
1880       // they are not scalar replaceable. Adjust escape state for them.
1881       // Start from in(2) edge since in(1) is memory edge.
1882       for (uint i = 2; i < n->req(); i++) {
1883         Node* adr = n->in(i);
1884         const Type* at = _igvn->type(adr);
1885         if (!adr->is_top() && at->isa_ptr()) {
1886           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1887                  at->isa_ptr() != nullptr, "expecting a pointer");
1888           if (adr->is_AddP()) {
1889             adr = get_addp_base(adr);
1890           }
1891           PointsToNode* ptn = ptnode_adr(adr->_idx);
1892           assert(ptn != nullptr, "node should be registered");
1893           add_edge(n_ptn, ptn);
1894         }
1895       }
1896       break;
1897     }
1898     case Op_Blackhole: {
1899       // All blackhole pointer arguments are globally escaping.
1900       for (uint i = 0; i < n->req(); i++) {
1901         Node* in = n->in(i);
1902         if (in != nullptr) {
1903           const Type* at = _igvn->type(in);
1904           if (!at->isa_ptr()) continue;
1905 
1906           if (in->is_AddP()) {
1907             in = get_addp_base(in);
1908           }
1909 
1910           PointsToNode* ptn = ptnode_adr(in->_idx);
1911           assert(ptn != nullptr, "should be defined already");
1912           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1913           add_edge(n_ptn, ptn);
1914         }
1915       }
1916       break;
1917     }
1918     default: {
1919       // This method should be called only for EA specific nodes which may
1920       // miss some edges when they were created.
1921 #ifdef ASSERT
1922       n->dump(1);
1923 #endif
1924       guarantee(false, "unknown node");
1925     }
1926   }
1927   return;
1928 }
1929 
1930 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1931   Node* adr = n->in(MemNode::Address);
1932   const Type* adr_type = _igvn->type(adr);
1933   adr_type = adr_type->make_ptr();
1934   if (adr_type == nullptr) {
1935     return; // skip dead nodes
1936   }
1937   if (adr_type->isa_oopptr()
1938       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1939           && adr_type == TypeRawPtr::NOTNULL
1940           && is_captured_store_address(adr))) {
1941     delayed_worklist->push(n); // Process it later.
1942 #ifdef ASSERT
1943     assert (adr->is_AddP(), "expecting an AddP");
1944     if (adr_type == TypeRawPtr::NOTNULL) {
1945       // Verify a raw address for a store captured by Initialize node.
1946       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1947       assert(offs != Type::OffsetBot, "offset must be a constant");
1948     }
1949 #endif
1950   } else {
1951     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1952     if (adr->is_BoxLock()) {
1953       return;
1954     }
1955     // Stored value escapes in unsafe access.
1956     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1957       delayed_worklist->push(n); // Process unsafe access later.
1958       return;
1959     }
1960 #ifdef ASSERT
1961     n->dump(1);
1962     assert(false, "not unsafe");
1963 #endif
1964   }
1965 }
1966 
1967 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1968   Node* adr = n->in(MemNode::Address);
1969   const Type *adr_type = _igvn->type(adr);
1970   adr_type = adr_type->make_ptr();
1971 #ifdef ASSERT
1972   if (adr_type == nullptr) {
1973     n->dump(1);
1974     assert(adr_type != nullptr, "dead node should not be on list");
1975     return true;
1976   }
1977 #endif
1978 
1979   if (adr_type->isa_oopptr()
1980       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1981            && adr_type == TypeRawPtr::NOTNULL
1982            && is_captured_store_address(adr))) {
1983     // Point Address to Value
1984     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1985     assert(adr_ptn != nullptr &&
1986            adr_ptn->as_Field()->is_oop(), "node should be registered");
1987     Node* val = n->in(MemNode::ValueIn);
1988     PointsToNode* ptn = ptnode_adr(val->_idx);
1989     assert(ptn != nullptr, "node should be registered");
1990     add_edge(adr_ptn, ptn);
1991     return true;
1992   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1993     // Stored value escapes in unsafe access.
1994     Node* val = n->in(MemNode::ValueIn);
1995     PointsToNode* ptn = ptnode_adr(val->_idx);
1996     assert(ptn != nullptr, "node should be registered");
1997     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1998     // Add edge to object for unsafe access with offset.
1999     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
2000     assert(adr_ptn != nullptr, "node should be registered");
2001     if (adr_ptn->is_Field()) {
2002       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
2003       add_edge(adr_ptn, ptn);
2004     }
2005     return true;
2006   }
2007 #ifdef ASSERT
2008   n->dump(1);
2009   assert(false, "not unsafe");
2010 #endif
2011   return false;
2012 }
2013 
2014 void ConnectionGraph::add_call_node(CallNode* call) {
2015   assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer");
2016   uint call_idx = call->_idx;
2017   if (call->is_Allocate()) {
2018     Node* k = call->in(AllocateNode::KlassNode);
2019     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2020     assert(kt != nullptr, "TypeKlassPtr  required.");
2021     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2022     bool scalar_replaceable = true;
2023     NOT_PRODUCT(const char* nsr_reason = "");
2024     if (call->is_AllocateArray()) {
2025       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2026         es = PointsToNode::GlobalEscape;
2027       } else {
2028         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2029         if (length < 0) {
2030           // Not scalar replaceable if the length is not constant.
2031           scalar_replaceable = false;
2032           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2033         } else if (length > EliminateAllocationArraySizeLimit) {
2034           // Not scalar replaceable if the length is too big.
2035           scalar_replaceable = false;
2036           NOT_PRODUCT(nsr_reason = "has a length that is too big");
2037         }
2038       }
2039     } else {  // Allocate instance
2040       if (!kt->isa_instklassptr()) { // StressReflectiveCode
2041         es = PointsToNode::GlobalEscape;
2042       } else {
2043         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
2044         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
2045         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
2046             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
2047             !ik->can_be_instantiated() ||
2048             ik->has_finalizer()) {
2049           es = PointsToNode::GlobalEscape;
2050         } else {
2051           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2052           if (nfields > EliminateAllocationFieldsLimit) {
2053             // Not scalar replaceable if there are too many fields.
2054             scalar_replaceable = false;
2055             NOT_PRODUCT(nsr_reason = "has too many fields");
2056           }
2057         }
2058       }
2059     }
2060     add_java_object(call, es);
2061     PointsToNode* ptn = ptnode_adr(call_idx);
2062     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2063       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2064     }
2065   } else if (call->is_CallStaticJava()) {
2066     // Call nodes could be different types:
2067     //
2068     // 1. CallDynamicJavaNode (what happened during call is unknown):
2069     //
2070     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2071     //
2072     //    - all oop arguments are escaping globally;
2073     //
2074     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2075     //
2076     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2077     //
2078     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2079     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2080     //      during call is returned;
2081     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2082     //      which are returned and does not escape during call;
2083     //
2084     //    - oop arguments escaping status is defined by bytecode analysis;
2085     //
2086     // For a static call, we know exactly what method is being called.
2087     // Use bytecode estimator to record whether the call's return value escapes.
2088     ciMethod* meth = call->as_CallJava()->method();
2089     if (meth == nullptr) {
2090       const char* name = call->as_CallStaticJava()->_name;
2091       assert(strncmp(name, "_multianewarray", 15) == 0 ||
2092              strncmp(name, "_load_unknown_inline", 20) == 0, "TODO: add failed case check");
2093       // Returns a newly allocated non-escaped object.
2094       add_java_object(call, PointsToNode::NoEscape);
2095       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2096     } else if (meth->is_boxing_method()) {
2097       // Returns boxing object
2098       PointsToNode::EscapeState es;
2099       vmIntrinsics::ID intr = meth->intrinsic_id();
2100       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2101         // It does not escape if object is always allocated.
2102         es = PointsToNode::NoEscape;
2103       } else {
2104         // It escapes globally if object could be loaded from cache.
2105         es = PointsToNode::GlobalEscape;
2106       }
2107       add_java_object(call, es);
2108       if (es == PointsToNode::GlobalEscape) {
2109         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2110       }
2111     } else {
2112       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2113       call_analyzer->copy_dependencies(_compile->dependencies());
2114       if (call_analyzer->is_return_allocated()) {
2115         // Returns a newly allocated non-escaped object, simply
2116         // update dependency information.
2117         // Mark it as NoEscape so that objects referenced by
2118         // it's fields will be marked as NoEscape at least.
2119         add_java_object(call, PointsToNode::NoEscape);
2120         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2121       } else {
2122         // Determine whether any arguments are returned.
2123         const TypeTuple* d = call->tf()->domain_cc();
2124         bool ret_arg = false;
2125         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2126           if (d->field_at(i)->isa_ptr() != nullptr &&
2127               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2128             ret_arg = true;
2129             break;
2130           }
2131         }
2132         if (ret_arg) {
2133           add_local_var(call, PointsToNode::ArgEscape);
2134         } else {
2135           // Returns unknown object.
2136           map_ideal_node(call, phantom_obj);
2137         }
2138       }
2139     }
2140   } else {
2141     // An other type of call, assume the worst case:
2142     // returned value is unknown and globally escapes.
2143     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2144     map_ideal_node(call, phantom_obj);
2145   }
2146 }
2147 
2148 void ConnectionGraph::process_call_arguments(CallNode *call) {
2149     bool is_arraycopy = false;
2150     switch (call->Opcode()) {
2151 #ifdef ASSERT
2152     case Op_Allocate:
2153     case Op_AllocateArray:
2154     case Op_Lock:
2155     case Op_Unlock:
2156       assert(false, "should be done already");
2157       break;
2158 #endif
2159     case Op_ArrayCopy:
2160     case Op_CallLeafNoFP:
2161       // Most array copies are ArrayCopy nodes at this point but there
2162       // are still a few direct calls to the copy subroutines (See
2163       // PhaseStringOpts::copy_string())
2164       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2165         call->as_CallLeaf()->is_call_to_arraycopystub();
2166       // fall through
2167     case Op_CallLeafVector:
2168     case Op_CallLeaf: {
2169       // Stub calls, objects do not escape but they are not scale replaceable.
2170       // Adjust escape state for outgoing arguments.
2171       const TypeTuple * d = call->tf()->domain_sig();
2172       bool src_has_oops = false;
2173       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2174         const Type* at = d->field_at(i);
2175         Node *arg = call->in(i);
2176         if (arg == nullptr) {
2177           continue;
2178         }
2179         const Type *aat = _igvn->type(arg);
2180         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2181           continue;
2182         }
2183         if (arg->is_AddP()) {
2184           //
2185           // The inline_native_clone() case when the arraycopy stub is called
2186           // after the allocation before Initialize and CheckCastPP nodes.
2187           // Or normal arraycopy for object arrays case.
2188           //
2189           // Set AddP's base (Allocate) as not scalar replaceable since
2190           // pointer to the base (with offset) is passed as argument.
2191           //
2192           arg = get_addp_base(arg);
2193         }
2194         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2195         assert(arg_ptn != nullptr, "should be registered");
2196         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2197         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2198           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2199                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2200           bool arg_has_oops = aat->isa_oopptr() &&
2201                               (aat->isa_instptr() ||
2202                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) ||
2203                                (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr &&
2204                                                                aat->isa_aryptr()->is_flat() &&
2205                                                                aat->isa_aryptr()->elem()->inline_klass()->contains_oops()));
2206           if (i == TypeFunc::Parms) {
2207             src_has_oops = arg_has_oops;
2208           }
2209           //
2210           // src or dst could be j.l.Object when other is basic type array:
2211           //
2212           //   arraycopy(char[],0,Object*,0,size);
2213           //   arraycopy(Object*,0,char[],0,size);
2214           //
2215           // Don't add edges in such cases.
2216           //
2217           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2218                                        arg_has_oops && (i > TypeFunc::Parms);
2219 #ifdef ASSERT
2220           if (!(is_arraycopy ||
2221                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2222                 (call->as_CallLeaf()->_name != nullptr &&
2223                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2224                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2225                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2226                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2227                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2228                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2229                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2232                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2233                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2234                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2235                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2236                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2237                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2238                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2239                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2240                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2241                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2242                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2243                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2244                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2245                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2246                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2247                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2248                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2249                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2250                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2251                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2252                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2253                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2254                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2255                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2256                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2257                   strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 ||
2258                   strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 ||
2259                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2260                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2261                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2262                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2263                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2264                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2265                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2266                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2267                  ))) {
2268             call->dump();
2269             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2270           }
2271 #endif
2272           // Always process arraycopy's destination object since
2273           // we need to add all possible edges to references in
2274           // source object.
2275           if (arg_esc >= PointsToNode::ArgEscape &&
2276               !arg_is_arraycopy_dest) {
2277             continue;
2278           }
2279           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2280           if (call->is_ArrayCopy()) {
2281             ArrayCopyNode* ac = call->as_ArrayCopy();
2282             if (ac->is_clonebasic() ||
2283                 ac->is_arraycopy_validated() ||
2284                 ac->is_copyof_validated() ||
2285                 ac->is_copyofrange_validated()) {
2286               es = PointsToNode::NoEscape;
2287             }
2288           }
2289           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2290           if (arg_is_arraycopy_dest) {
2291             Node* src = call->in(TypeFunc::Parms);
2292             if (src->is_AddP()) {
2293               src = get_addp_base(src);
2294             }
2295             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2296             assert(src_ptn != nullptr, "should be registered");
2297             if (arg_ptn != src_ptn) {
2298               // Special arraycopy edge:
2299               // A destination object's field can't have the source object
2300               // as base since objects escape states are not related.
2301               // Only escape state of destination object's fields affects
2302               // escape state of fields in source object.
2303               add_arraycopy(call, es, src_ptn, arg_ptn);
2304             }
2305           }
2306         }
2307       }
2308       break;
2309     }
2310     case Op_CallStaticJava: {
2311       // For a static call, we know exactly what method is being called.
2312       // Use bytecode estimator to record the call's escape affects
2313 #ifdef ASSERT
2314       const char* name = call->as_CallStaticJava()->_name;
2315       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2316 #endif
2317       ciMethod* meth = call->as_CallJava()->method();
2318       if ((meth != nullptr) && meth->is_boxing_method()) {
2319         break; // Boxing methods do not modify any oops.
2320       }
2321       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2322       // fall-through if not a Java method or no analyzer information
2323       if (call_analyzer != nullptr) {
2324         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2325         const TypeTuple* d = call->tf()->domain_cc();
2326         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2327           const Type* at = d->field_at(i);
2328           int k = i - TypeFunc::Parms;
2329           Node* arg = call->in(i);
2330           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2331           if (at->isa_ptr() != nullptr &&
2332               call_analyzer->is_arg_returned(k)) {
2333             // The call returns arguments.
2334             if (call_ptn != nullptr) { // Is call's result used?
2335               assert(call_ptn->is_LocalVar(), "node should be registered");
2336               assert(arg_ptn != nullptr, "node should be registered");
2337               add_edge(call_ptn, arg_ptn);
2338             }
2339           }
2340           if (at->isa_oopptr() != nullptr &&
2341               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2342             if (!call_analyzer->is_arg_stack(k)) {
2343               // The argument global escapes
2344               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2345             } else {
2346               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2347               if (!call_analyzer->is_arg_local(k)) {
2348                 // The argument itself doesn't escape, but any fields might
2349                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2350               }
2351             }
2352           }
2353         }
2354         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2355           // The call returns arguments.
2356           assert(call_ptn->edge_count() > 0, "sanity");
2357           if (!call_analyzer->is_return_local()) {
2358             // Returns also unknown object.
2359             add_edge(call_ptn, phantom_obj);
2360           }
2361         }
2362         break;
2363       }
2364     }
2365     default: {
2366       // Fall-through here if not a Java method or no analyzer information
2367       // or some other type of call, assume the worst case: all arguments
2368       // globally escape.
2369       const TypeTuple* d = call->tf()->domain_cc();
2370       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2371         const Type* at = d->field_at(i);
2372         if (at->isa_oopptr() != nullptr) {
2373           Node* arg = call->in(i);
2374           if (arg->is_AddP()) {
2375             arg = get_addp_base(arg);
2376           }
2377           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2378           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2379         }
2380       }
2381     }
2382   }
2383 }
2384 
2385 
2386 // Finish Graph construction.
2387 bool ConnectionGraph::complete_connection_graph(
2388                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2389                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2390                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2391                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2392   // Normally only 1-3 passes needed to build Connection Graph depending
2393   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2394   // Set limit to 20 to catch situation when something did go wrong and
2395   // bailout Escape Analysis.
2396   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2397 #define GRAPH_BUILD_ITER_LIMIT 20
2398 
2399   // Propagate GlobalEscape and ArgEscape escape states and check that
2400   // we still have non-escaping objects. The method pushs on _worklist
2401   // Field nodes which reference phantom_object.
2402   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2403     return false; // Nothing to do.
2404   }
2405   // Now propagate references to all JavaObject nodes.
2406   int java_objects_length = java_objects_worklist.length();
2407   elapsedTimer build_time;
2408   build_time.start();
2409   elapsedTimer time;
2410   bool timeout = false;
2411   int new_edges = 1;
2412   int iterations = 0;
2413   do {
2414     while ((new_edges > 0) &&
2415            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2416       double start_time = time.seconds();
2417       time.start();
2418       new_edges = 0;
2419       // Propagate references to phantom_object for nodes pushed on _worklist
2420       // by find_non_escaped_objects() and find_field_value().
2421       new_edges += add_java_object_edges(phantom_obj, false);
2422       for (int next = 0; next < java_objects_length; ++next) {
2423         JavaObjectNode* ptn = java_objects_worklist.at(next);
2424         new_edges += add_java_object_edges(ptn, true);
2425 
2426 #define SAMPLE_SIZE 4
2427         if ((next % SAMPLE_SIZE) == 0) {
2428           // Each 4 iterations calculate how much time it will take
2429           // to complete graph construction.
2430           time.stop();
2431           // Poll for requests from shutdown mechanism to quiesce compiler
2432           // because Connection graph construction may take long time.
2433           CompileBroker::maybe_block();
2434           double stop_time = time.seconds();
2435           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2436           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2437           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2438             timeout = true;
2439             break; // Timeout
2440           }
2441           start_time = stop_time;
2442           time.start();
2443         }
2444 #undef SAMPLE_SIZE
2445 
2446       }
2447       if (timeout) break;
2448       if (new_edges > 0) {
2449         // Update escape states on each iteration if graph was updated.
2450         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2451           return false; // Nothing to do.
2452         }
2453       }
2454       time.stop();
2455       if (time.seconds() >= EscapeAnalysisTimeout) {
2456         timeout = true;
2457         break;
2458       }
2459     }
2460     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2461       time.start();
2462       // Find fields which have unknown value.
2463       int fields_length = oop_fields_worklist.length();
2464       for (int next = 0; next < fields_length; next++) {
2465         FieldNode* field = oop_fields_worklist.at(next);
2466         if (field->edge_count() == 0) {
2467           new_edges += find_field_value(field);
2468           // This code may added new edges to phantom_object.
2469           // Need an other cycle to propagate references to phantom_object.
2470         }
2471       }
2472       time.stop();
2473       if (time.seconds() >= EscapeAnalysisTimeout) {
2474         timeout = true;
2475         break;
2476       }
2477     } else {
2478       new_edges = 0; // Bailout
2479     }
2480   } while (new_edges > 0);
2481 
2482   build_time.stop();
2483   _build_time = build_time.seconds();
2484   _build_iterations = iterations;
2485 
2486   // Bailout if passed limits.
2487   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2488     Compile* C = _compile;
2489     if (C->log() != nullptr) {
2490       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2491       C->log()->text("%s", timeout ? "time" : "iterations");
2492       C->log()->end_elem(" limit'");
2493     }
2494     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2495            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2496     // Possible infinite build_connection_graph loop,
2497     // bailout (no changes to ideal graph were made).
2498     return false;
2499   }
2500 
2501 #undef GRAPH_BUILD_ITER_LIMIT
2502 
2503   // Find fields initialized by null for non-escaping Allocations.
2504   int non_escaped_length = non_escaped_allocs_worklist.length();
2505   for (int next = 0; next < non_escaped_length; next++) {
2506     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2507     PointsToNode::EscapeState es = ptn->escape_state();
2508     assert(es <= PointsToNode::ArgEscape, "sanity");
2509     if (es == PointsToNode::NoEscape) {
2510       if (find_init_values_null(ptn, _igvn) > 0) {
2511         // Adding references to null object does not change escape states
2512         // since it does not escape. Also no fields are added to null object.
2513         add_java_object_edges(null_obj, false);
2514       }
2515     }
2516     Node* n = ptn->ideal_node();
2517     if (n->is_Allocate()) {
2518       // The object allocated by this Allocate node will never be
2519       // seen by an other thread. Mark it so that when it is
2520       // expanded no MemBarStoreStore is added.
2521       InitializeNode* ini = n->as_Allocate()->initialization();
2522       if (ini != nullptr)
2523         ini->set_does_not_escape();
2524     }
2525   }
2526   return true; // Finished graph construction.
2527 }
2528 
2529 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2530 // and check that we still have non-escaping java objects.
2531 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2532                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist) {
2533   GrowableArray<PointsToNode*> escape_worklist;
2534   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2535   int ptnodes_length = ptnodes_worklist.length();
2536   for (int next = 0; next < ptnodes_length; ++next) {
2537     PointsToNode* ptn = ptnodes_worklist.at(next);
2538     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2539         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2540       escape_worklist.push(ptn);
2541     }
2542   }
2543   // Set escape states to referenced nodes (edges list).
2544   while (escape_worklist.length() > 0) {
2545     PointsToNode* ptn = escape_worklist.pop();
2546     PointsToNode::EscapeState es  = ptn->escape_state();
2547     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2548     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2549         es >= PointsToNode::ArgEscape) {
2550       // GlobalEscape or ArgEscape state of field means it has unknown value.
2551       if (add_edge(ptn, phantom_obj)) {
2552         // New edge was added
2553         add_field_uses_to_worklist(ptn->as_Field());
2554       }
2555     }
2556     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2557       PointsToNode* e = i.get();
2558       if (e->is_Arraycopy()) {
2559         assert(ptn->arraycopy_dst(), "sanity");
2560         // Propagate only fields escape state through arraycopy edge.
2561         if (e->fields_escape_state() < field_es) {
2562           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2563           escape_worklist.push(e);
2564         }
2565       } else if (es >= field_es) {
2566         // fields_escape_state is also set to 'es' if it is less than 'es'.
2567         if (e->escape_state() < es) {
2568           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2569           escape_worklist.push(e);
2570         }
2571       } else {
2572         // Propagate field escape state.
2573         bool es_changed = false;
2574         if (e->fields_escape_state() < field_es) {
2575           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2576           es_changed = true;
2577         }
2578         if ((e->escape_state() < field_es) &&
2579             e->is_Field() && ptn->is_JavaObject() &&
2580             e->as_Field()->is_oop()) {
2581           // Change escape state of referenced fields.
2582           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2583           es_changed = true;
2584         } else if (e->escape_state() < es) {
2585           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2586           es_changed = true;
2587         }
2588         if (es_changed) {
2589           escape_worklist.push(e);
2590         }
2591       }
2592     }
2593   }
2594   // Remove escaped objects from non_escaped list.
2595   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2596     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2597     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2598       non_escaped_allocs_worklist.delete_at(next);
2599     }
2600     if (ptn->escape_state() == PointsToNode::NoEscape) {
2601       // Find fields in non-escaped allocations which have unknown value.
2602       find_init_values_phantom(ptn);
2603     }
2604   }
2605   return (non_escaped_allocs_worklist.length() > 0);
2606 }
2607 
2608 // Add all references to JavaObject node by walking over all uses.
2609 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2610   int new_edges = 0;
2611   if (populate_worklist) {
2612     // Populate _worklist by uses of jobj's uses.
2613     for (UseIterator i(jobj); i.has_next(); i.next()) {
2614       PointsToNode* use = i.get();
2615       if (use->is_Arraycopy()) {
2616         continue;
2617       }
2618       add_uses_to_worklist(use);
2619       if (use->is_Field() && use->as_Field()->is_oop()) {
2620         // Put on worklist all field's uses (loads) and
2621         // related field nodes (same base and offset).
2622         add_field_uses_to_worklist(use->as_Field());
2623       }
2624     }
2625   }
2626   for (int l = 0; l < _worklist.length(); l++) {
2627     PointsToNode* use = _worklist.at(l);
2628     if (PointsToNode::is_base_use(use)) {
2629       // Add reference from jobj to field and from field to jobj (field's base).
2630       use = PointsToNode::get_use_node(use)->as_Field();
2631       if (add_base(use->as_Field(), jobj)) {
2632         new_edges++;
2633       }
2634       continue;
2635     }
2636     assert(!use->is_JavaObject(), "sanity");
2637     if (use->is_Arraycopy()) {
2638       if (jobj == null_obj) { // null object does not have field edges
2639         continue;
2640       }
2641       // Added edge from Arraycopy node to arraycopy's source java object
2642       if (add_edge(use, jobj)) {
2643         jobj->set_arraycopy_src();
2644         new_edges++;
2645       }
2646       // and stop here.
2647       continue;
2648     }
2649     if (!add_edge(use, jobj)) {
2650       continue; // No new edge added, there was such edge already.
2651     }
2652     new_edges++;
2653     if (use->is_LocalVar()) {
2654       add_uses_to_worklist(use);
2655       if (use->arraycopy_dst()) {
2656         for (EdgeIterator i(use); i.has_next(); i.next()) {
2657           PointsToNode* e = i.get();
2658           if (e->is_Arraycopy()) {
2659             if (jobj == null_obj) { // null object does not have field edges
2660               continue;
2661             }
2662             // Add edge from arraycopy's destination java object to Arraycopy node.
2663             if (add_edge(jobj, e)) {
2664               new_edges++;
2665               jobj->set_arraycopy_dst();
2666             }
2667           }
2668         }
2669       }
2670     } else {
2671       // Added new edge to stored in field values.
2672       // Put on worklist all field's uses (loads) and
2673       // related field nodes (same base and offset).
2674       add_field_uses_to_worklist(use->as_Field());
2675     }
2676   }
2677   _worklist.clear();
2678   _in_worklist.reset();
2679   return new_edges;
2680 }
2681 
2682 // Put on worklist all related field nodes.
2683 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2684   assert(field->is_oop(), "sanity");
2685   int offset = field->offset();
2686   add_uses_to_worklist(field);
2687   // Loop over all bases of this field and push on worklist Field nodes
2688   // with the same offset and base (since they may reference the same field).
2689   for (BaseIterator i(field); i.has_next(); i.next()) {
2690     PointsToNode* base = i.get();
2691     add_fields_to_worklist(field, base);
2692     // Check if the base was source object of arraycopy and go over arraycopy's
2693     // destination objects since values stored to a field of source object are
2694     // accessible by uses (loads) of fields of destination objects.
2695     if (base->arraycopy_src()) {
2696       for (UseIterator j(base); j.has_next(); j.next()) {
2697         PointsToNode* arycp = j.get();
2698         if (arycp->is_Arraycopy()) {
2699           for (UseIterator k(arycp); k.has_next(); k.next()) {
2700             PointsToNode* abase = k.get();
2701             if (abase->arraycopy_dst() && abase != base) {
2702               // Look for the same arraycopy reference.
2703               add_fields_to_worklist(field, abase);
2704             }
2705           }
2706         }
2707       }
2708     }
2709   }
2710 }
2711 
2712 // Put on worklist all related field nodes.
2713 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2714   int offset = field->offset();
2715   if (base->is_LocalVar()) {
2716     for (UseIterator j(base); j.has_next(); j.next()) {
2717       PointsToNode* f = j.get();
2718       if (PointsToNode::is_base_use(f)) { // Field
2719         f = PointsToNode::get_use_node(f);
2720         if (f == field || !f->as_Field()->is_oop()) {
2721           continue;
2722         }
2723         int offs = f->as_Field()->offset();
2724         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2725           add_to_worklist(f);
2726         }
2727       }
2728     }
2729   } else {
2730     assert(base->is_JavaObject(), "sanity");
2731     if (// Skip phantom_object since it is only used to indicate that
2732         // this field's content globally escapes.
2733         (base != phantom_obj) &&
2734         // null object node does not have fields.
2735         (base != null_obj)) {
2736       for (EdgeIterator i(base); i.has_next(); i.next()) {
2737         PointsToNode* f = i.get();
2738         // Skip arraycopy edge since store to destination object field
2739         // does not update value in source object field.
2740         if (f->is_Arraycopy()) {
2741           assert(base->arraycopy_dst(), "sanity");
2742           continue;
2743         }
2744         if (f == field || !f->as_Field()->is_oop()) {
2745           continue;
2746         }
2747         int offs = f->as_Field()->offset();
2748         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2749           add_to_worklist(f);
2750         }
2751       }
2752     }
2753   }
2754 }
2755 
2756 // Find fields which have unknown value.
2757 int ConnectionGraph::find_field_value(FieldNode* field) {
2758   // Escaped fields should have init value already.
2759   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2760   int new_edges = 0;
2761   for (BaseIterator i(field); i.has_next(); i.next()) {
2762     PointsToNode* base = i.get();
2763     if (base->is_JavaObject()) {
2764       // Skip Allocate's fields which will be processed later.
2765       if (base->ideal_node()->is_Allocate()) {
2766         return 0;
2767       }
2768       assert(base == null_obj, "only null ptr base expected here");
2769     }
2770   }
2771   if (add_edge(field, phantom_obj)) {
2772     // New edge was added
2773     new_edges++;
2774     add_field_uses_to_worklist(field);
2775   }
2776   return new_edges;
2777 }
2778 
2779 // Find fields initializing values for allocations.
2780 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2781   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2782   PointsToNode* init_val = phantom_obj;
2783   Node* alloc = pta->ideal_node();
2784 
2785   // Do nothing for Allocate nodes since its fields values are
2786   // "known" unless they are initialized by arraycopy/clone.
2787   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2788     if (alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) {
2789       // Non-flat inline type arrays are initialized with
2790       // the default value instead of null. Handle them here.
2791       init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::DefaultValue)->_idx);
2792       assert(init_val != nullptr, "default value should be registered");
2793     } else {
2794       return 0;
2795     }
2796   }
2797   // Non-escaped allocation returned from Java or runtime call has unknown values in fields.
2798   assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity");
2799 #ifdef ASSERT
2800   if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) {
2801     const char* name = alloc->as_CallStaticJava()->_name;
2802     assert(strncmp(name, "_multianewarray", 15) == 0 ||
2803            strncmp(name, "_load_unknown_inline", 20) == 0, "sanity");
2804   }
2805 #endif
2806   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2807   int new_edges = 0;
2808   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2809     PointsToNode* field = i.get();
2810     if (field->is_Field() && field->as_Field()->is_oop()) {
2811       if (add_edge(field, init_val)) {
2812         // New edge was added
2813         new_edges++;
2814         add_field_uses_to_worklist(field->as_Field());
2815       }
2816     }
2817   }
2818   return new_edges;
2819 }
2820 
2821 // Find fields initializing values for allocations.
2822 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2823   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2824   Node* alloc = pta->ideal_node();
2825   // Do nothing for Call nodes since its fields values are unknown.
2826   if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) {
2827     return 0;
2828   }
2829   InitializeNode* ini = alloc->as_Allocate()->initialization();
2830   bool visited_bottom_offset = false;
2831   GrowableArray<int> offsets_worklist;
2832   int new_edges = 0;
2833 
2834   // Check if an oop field's initializing value is recorded and add
2835   // a corresponding null if field's value if it is not recorded.
2836   // Connection Graph does not record a default initialization by null
2837   // captured by Initialize node.
2838   //
2839   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2840     PointsToNode* field = i.get(); // Field (AddP)
2841     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2842       continue; // Not oop field
2843     }
2844     int offset = field->as_Field()->offset();
2845     if (offset == Type::OffsetBot) {
2846       if (!visited_bottom_offset) {
2847         // OffsetBot is used to reference array's element,
2848         // always add reference to null to all Field nodes since we don't
2849         // known which element is referenced.
2850         if (add_edge(field, null_obj)) {
2851           // New edge was added
2852           new_edges++;
2853           add_field_uses_to_worklist(field->as_Field());
2854           visited_bottom_offset = true;
2855         }
2856       }
2857     } else {
2858       // Check only oop fields.
2859       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2860       if (adr_type->isa_rawptr()) {
2861 #ifdef ASSERT
2862         // Raw pointers are used for initializing stores so skip it
2863         // since it should be recorded already
2864         Node* base = get_addp_base(field->ideal_node());
2865         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2866 #endif
2867         continue;
2868       }
2869       if (!offsets_worklist.contains(offset)) {
2870         offsets_worklist.append(offset);
2871         Node* value = nullptr;
2872         if (ini != nullptr) {
2873           // StoreP::memory_type() == T_ADDRESS
2874           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2875           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2876           // Make sure initializing store has the same type as this AddP.
2877           // This AddP may reference non existing field because it is on a
2878           // dead branch of bimorphic call which is not eliminated yet.
2879           if (store != nullptr && store->is_Store() &&
2880               store->as_Store()->memory_type() == ft) {
2881             value = store->in(MemNode::ValueIn);
2882 #ifdef ASSERT
2883             if (VerifyConnectionGraph) {
2884               // Verify that AddP already points to all objects the value points to.
2885               PointsToNode* val = ptnode_adr(value->_idx);
2886               assert((val != nullptr), "should be processed already");
2887               PointsToNode* missed_obj = nullptr;
2888               if (val->is_JavaObject()) {
2889                 if (!field->points_to(val->as_JavaObject())) {
2890                   missed_obj = val;
2891                 }
2892               } else {
2893                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2894                   tty->print_cr("----------init store has invalid value -----");
2895                   store->dump();
2896                   val->dump();
2897                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2898                 }
2899                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2900                   PointsToNode* obj = j.get();
2901                   if (obj->is_JavaObject()) {
2902                     if (!field->points_to(obj->as_JavaObject())) {
2903                       missed_obj = obj;
2904                       break;
2905                     }
2906                   }
2907                 }
2908               }
2909               if (missed_obj != nullptr) {
2910                 tty->print_cr("----------field---------------------------------");
2911                 field->dump();
2912                 tty->print_cr("----------missed reference to object------------");
2913                 missed_obj->dump();
2914                 tty->print_cr("----------object referenced by init store-------");
2915                 store->dump();
2916                 val->dump();
2917                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2918               }
2919             }
2920 #endif
2921           } else {
2922             // There could be initializing stores which follow allocation.
2923             // For example, a volatile field store is not collected
2924             // by Initialize node.
2925             //
2926             // Need to check for dependent loads to separate such stores from
2927             // stores which follow loads. For now, add initial value null so
2928             // that compare pointers optimization works correctly.
2929           }
2930         }
2931         if (value == nullptr) {
2932           // A field's initializing value was not recorded. Add null.
2933           if (add_edge(field, null_obj)) {
2934             // New edge was added
2935             new_edges++;
2936             add_field_uses_to_worklist(field->as_Field());
2937           }
2938         }
2939       }
2940     }
2941   }
2942   return new_edges;
2943 }
2944 
2945 // Adjust scalar_replaceable state after Connection Graph is built.
2946 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2947   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2948   // returns true. If one of the constraints in this method set 'jobj' to NSR
2949   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2950   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2951   // that other object and the Phi will become a reducible Phi.
2952   // There could be multiple merges involving the same jobj.
2953   Unique_Node_List candidates;
2954 
2955   // Search for non-escaping objects which are not scalar replaceable
2956   // and mark them to propagate the state to referenced objects.
2957 
2958   for (UseIterator i(jobj); i.has_next(); i.next()) {
2959     PointsToNode* use = i.get();
2960     if (use->is_Arraycopy()) {
2961       continue;
2962     }
2963     if (use->is_Field()) {
2964       FieldNode* field = use->as_Field();
2965       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2966       // 1. An object is not scalar replaceable if the field into which it is
2967       // stored has unknown offset (stored into unknown element of an array).
2968       if (field->offset() == Type::OffsetBot) {
2969         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2970         return;
2971       }
2972       for (BaseIterator i(field); i.has_next(); i.next()) {
2973         PointsToNode* base = i.get();
2974         // 2. An object is not scalar replaceable if the field into which it is
2975         // stored has multiple bases one of which is null.
2976         if ((base == null_obj) && (field->base_count() > 1)) {
2977           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2978           return;
2979         }
2980         // 2.5. An object is not scalar replaceable if the field into which it is
2981         // stored has NSR base.
2982         if (!base->scalar_replaceable()) {
2983           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2984           return;
2985         }
2986       }
2987     }
2988     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2989     // 3. An object is not scalar replaceable if it is merged with other objects
2990     // and we can't remove the merge
2991     for (EdgeIterator j(use); j.has_next(); j.next()) {
2992       PointsToNode* ptn = j.get();
2993       if (ptn->is_JavaObject() && ptn != jobj) {
2994         Node* use_n = use->ideal_node();
2995 
2996         // These other local vars may point to multiple objects through a Phi
2997         // In this case we skip them and see if we can reduce the Phi.
2998         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
2999           use_n = use_n->in(1);
3000         }
3001 
3002         // If it's already a candidate or confirmed reducible merge we can skip verification
3003         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
3004           continue;
3005         }
3006 
3007         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
3008           candidates.push(use_n);
3009         } else {
3010           // Mark all objects as NSR if we can't remove the merge
3011           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
3012           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
3013         }
3014       }
3015     }
3016     if (!jobj->scalar_replaceable()) {
3017       return;
3018     }
3019   }
3020 
3021   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
3022     if (j.get()->is_Arraycopy()) {
3023       continue;
3024     }
3025 
3026     // Non-escaping object node should point only to field nodes.
3027     FieldNode* field = j.get()->as_Field();
3028     int offset = field->as_Field()->offset();
3029 
3030     // 4. An object is not scalar replaceable if it has a field with unknown
3031     // offset (array's element is accessed in loop).
3032     if (offset == Type::OffsetBot) {
3033       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
3034       return;
3035     }
3036     // 5. Currently an object is not scalar replaceable if a LoadStore node
3037     // access its field since the field value is unknown after it.
3038     //
3039     Node* n = field->ideal_node();
3040 
3041     // Test for an unsafe access that was parsed as maybe off heap
3042     // (with a CheckCastPP to raw memory).
3043     assert(n->is_AddP(), "expect an address computation");
3044     if (n->in(AddPNode::Base)->is_top() &&
3045         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
3046       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
3047       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
3048       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
3049       return;
3050     }
3051 
3052     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3053       Node* u = n->fast_out(i);
3054       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
3055         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
3056         return;
3057       }
3058     }
3059 
3060     // 6. Or the address may point to more then one object. This may produce
3061     // the false positive result (set not scalar replaceable)
3062     // since the flow-insensitive escape analysis can't separate
3063     // the case when stores overwrite the field's value from the case
3064     // when stores happened on different control branches.
3065     //
3066     // Note: it will disable scalar replacement in some cases:
3067     //
3068     //    Point p[] = new Point[1];
3069     //    p[0] = new Point(); // Will be not scalar replaced
3070     //
3071     // but it will save us from incorrect optimizations in next cases:
3072     //
3073     //    Point p[] = new Point[1];
3074     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3075     //
3076     if (field->base_count() > 1 && candidates.size() == 0) {
3077       if (has_non_reducible_merge(field, reducible_merges)) {
3078         for (BaseIterator i(field); i.has_next(); i.next()) {
3079           PointsToNode* base = i.get();
3080           // Don't take into account LocalVar nodes which
3081           // may point to only one object which should be also
3082           // this field's base by now.
3083           if (base->is_JavaObject() && base != jobj) {
3084             // Mark all bases.
3085             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3086             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3087           }
3088         }
3089 
3090         if (!jobj->scalar_replaceable()) {
3091           return;
3092         }
3093       }
3094     }
3095   }
3096 
3097   // The candidate is truly a reducible merge only if none of the other
3098   // constraints ruled it as NSR. There could be multiple merges involving the
3099   // same jobj.
3100   assert(jobj->scalar_replaceable(), "sanity");
3101   for (uint i = 0; i < candidates.size(); i++ ) {
3102     Node* candidate = candidates.at(i);
3103     reducible_merges.push(candidate);
3104   }
3105 }
3106 
3107 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3108   for (BaseIterator i(field); i.has_next(); i.next()) {
3109     Node* base = i.get()->ideal_node();
3110     if (base->is_Phi() && !reducible_merges.member(base)) {
3111       return true;
3112     }
3113   }
3114   return false;
3115 }
3116 
3117 // Propagate NSR (Not scalar replaceable) state.
3118 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist) {
3119   int jobj_length = jobj_worklist.length();
3120   bool found_nsr_alloc = true;
3121   while (found_nsr_alloc) {
3122     found_nsr_alloc = false;
3123     for (int next = 0; next < jobj_length; ++next) {
3124       JavaObjectNode* jobj = jobj_worklist.at(next);
3125       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3126         PointsToNode* use = i.get();
3127         if (use->is_Field()) {
3128           FieldNode* field = use->as_Field();
3129           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3130           assert(field->offset() != Type::OffsetBot, "sanity");
3131           for (BaseIterator i(field); i.has_next(); i.next()) {
3132             PointsToNode* base = i.get();
3133             // An object is not scalar replaceable if the field into which
3134             // it is stored has NSR base.
3135             if ((base != null_obj) && !base->scalar_replaceable()) {
3136               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3137               found_nsr_alloc = true;
3138               break;
3139             }
3140           }
3141         }
3142       }
3143     }
3144   }
3145 }
3146 
3147 #ifdef ASSERT
3148 void ConnectionGraph::verify_connection_graph(
3149                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3150                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3151                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3152                          GrowableArray<Node*>& addp_worklist) {
3153   // Verify that graph is complete - no new edges could be added.
3154   int java_objects_length = java_objects_worklist.length();
3155   int non_escaped_length  = non_escaped_allocs_worklist.length();
3156   int new_edges = 0;
3157   for (int next = 0; next < java_objects_length; ++next) {
3158     JavaObjectNode* ptn = java_objects_worklist.at(next);
3159     new_edges += add_java_object_edges(ptn, true);
3160   }
3161   assert(new_edges == 0, "graph was not complete");
3162   // Verify that escape state is final.
3163   int length = non_escaped_allocs_worklist.length();
3164   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist);
3165   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3166          (non_escaped_length == length) &&
3167          (_worklist.length() == 0), "escape state was not final");
3168 
3169   // Verify fields information.
3170   int addp_length = addp_worklist.length();
3171   for (int next = 0; next < addp_length; ++next ) {
3172     Node* n = addp_worklist.at(next);
3173     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3174     if (field->is_oop()) {
3175       // Verify that field has all bases
3176       Node* base = get_addp_base(n);
3177       PointsToNode* ptn = ptnode_adr(base->_idx);
3178       if (ptn->is_JavaObject()) {
3179         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3180       } else {
3181         assert(ptn->is_LocalVar(), "sanity");
3182         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3183           PointsToNode* e = i.get();
3184           if (e->is_JavaObject()) {
3185             assert(field->has_base(e->as_JavaObject()), "sanity");
3186           }
3187         }
3188       }
3189       // Verify that all fields have initializing values.
3190       if (field->edge_count() == 0) {
3191         tty->print_cr("----------field does not have references----------");
3192         field->dump();
3193         for (BaseIterator i(field); i.has_next(); i.next()) {
3194           PointsToNode* base = i.get();
3195           tty->print_cr("----------field has next base---------------------");
3196           base->dump();
3197           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3198             tty->print_cr("----------base has fields-------------------------");
3199             for (EdgeIterator j(base); j.has_next(); j.next()) {
3200               j.get()->dump();
3201             }
3202             tty->print_cr("----------base has references---------------------");
3203             for (UseIterator j(base); j.has_next(); j.next()) {
3204               j.get()->dump();
3205             }
3206           }
3207         }
3208         for (UseIterator i(field); i.has_next(); i.next()) {
3209           i.get()->dump();
3210         }
3211         assert(field->edge_count() > 0, "sanity");
3212       }
3213     }
3214   }
3215 }
3216 #endif
3217 
3218 // Optimize ideal graph.
3219 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3220                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3221   Compile* C = _compile;
3222   PhaseIterGVN* igvn = _igvn;
3223   if (EliminateLocks) {
3224     // Mark locks before changing ideal graph.
3225     int cnt = C->macro_count();
3226     for (int i = 0; i < cnt; i++) {
3227       Node *n = C->macro_node(i);
3228       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3229         AbstractLockNode* alock = n->as_AbstractLock();
3230         if (!alock->is_non_esc_obj()) {
3231           const Type* obj_type = igvn->type(alock->obj_node());
3232           if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) {
3233             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3234             // The lock could be marked eliminated by lock coarsening
3235             // code during first IGVN before EA. Replace coarsened flag
3236             // to eliminate all associated locks/unlocks.
3237 #ifdef ASSERT
3238             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3239 #endif
3240             alock->set_non_esc_obj();
3241           }
3242         }
3243       }
3244     }
3245   }
3246 
3247   if (OptimizePtrCompare) {
3248     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3249       Node *n = ptr_cmp_worklist.at(i);
3250       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3251       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3252       if (tcmp->singleton()) {
3253         Node* cmp = igvn->makecon(tcmp);
3254 #ifndef PRODUCT
3255         if (PrintOptimizePtrCompare) {
3256           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3257           if (Verbose) {
3258             n->dump(1);
3259           }
3260         }
3261 #endif
3262         igvn->replace_node(n, cmp);
3263       }
3264     }
3265   }
3266 
3267   // For MemBarStoreStore nodes added in library_call.cpp, check
3268   // escape status of associated AllocateNode and optimize out
3269   // MemBarStoreStore node if the allocated object never escapes.
3270   for (int i = 0; i < storestore_worklist.length(); i++) {
3271     Node* storestore = storestore_worklist.at(i);
3272     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3273     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3274       if (alloc->in(AllocateNode::InlineType) != nullptr) {
3275         // Non-escaping inline type buffer allocations don't require a membar
3276         storestore->as_MemBar()->remove(_igvn);
3277       } else {
3278         MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3279         mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3280         mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3281         igvn->register_new_node_with_optimizer(mb);
3282         igvn->replace_node(storestore, mb);
3283       }
3284     }
3285   }
3286 }
3287 
3288 // Optimize objects compare.
3289 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3290   assert(OptimizePtrCompare, "sanity");
3291   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3292   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3293   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3294 
3295   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3296   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3297   JavaObjectNode* jobj1 = unique_java_object(left);
3298   JavaObjectNode* jobj2 = unique_java_object(right);
3299 
3300   // The use of this method during allocation merge reduction may cause 'left'
3301   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3302   // that doesn't reference an unique java object.
3303   if (ptn1 == nullptr || ptn2 == nullptr ||
3304       jobj1 == nullptr || jobj2 == nullptr) {
3305     return UNKNOWN;
3306   }
3307 
3308   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3309   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3310 
3311   // Check simple cases first.
3312   if (jobj1 != nullptr) {
3313     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3314       if (jobj1 == jobj2) {
3315         // Comparing the same not escaping object.
3316         return EQ;
3317       }
3318       Node* obj = jobj1->ideal_node();
3319       // Comparing not escaping allocation.
3320       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3321           !ptn2->points_to(jobj1)) {
3322         return NE; // This includes nullness check.
3323       }
3324     }
3325   }
3326   if (jobj2 != nullptr) {
3327     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3328       Node* obj = jobj2->ideal_node();
3329       // Comparing not escaping allocation.
3330       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3331           !ptn1->points_to(jobj2)) {
3332         return NE; // This includes nullness check.
3333       }
3334     }
3335   }
3336   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3337       jobj2 != nullptr && jobj2 != phantom_obj &&
3338       jobj1->ideal_node()->is_Con() &&
3339       jobj2->ideal_node()->is_Con()) {
3340     // Klass or String constants compare. Need to be careful with
3341     // compressed pointers - compare types of ConN and ConP instead of nodes.
3342     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3343     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3344     if (t1->make_ptr() == t2->make_ptr()) {
3345       return EQ;
3346     } else {
3347       return NE;
3348     }
3349   }
3350   if (ptn1->meet(ptn2)) {
3351     return UNKNOWN; // Sets are not disjoint
3352   }
3353 
3354   // Sets are disjoint.
3355   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3356   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3357   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3358   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3359   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3360       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3361     // Check nullness of unknown object.
3362     return UNKNOWN;
3363   }
3364 
3365   // Disjointness by itself is not sufficient since
3366   // alias analysis is not complete for escaped objects.
3367   // Disjoint sets are definitely unrelated only when
3368   // at least one set has only not escaping allocations.
3369   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3370     if (ptn1->non_escaping_allocation()) {
3371       return NE;
3372     }
3373   }
3374   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3375     if (ptn2->non_escaping_allocation()) {
3376       return NE;
3377     }
3378   }
3379   return UNKNOWN;
3380 }
3381 
3382 // Connection Graph construction functions.
3383 
3384 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3385   PointsToNode* ptadr = _nodes.at(n->_idx);
3386   if (ptadr != nullptr) {
3387     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3388     return;
3389   }
3390   Compile* C = _compile;
3391   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3392   map_ideal_node(n, ptadr);
3393 }
3394 
3395 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3396   PointsToNode* ptadr = _nodes.at(n->_idx);
3397   if (ptadr != nullptr) {
3398     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3399     return ptadr;
3400   }
3401   Compile* C = _compile;
3402   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3403   map_ideal_node(n, ptadr);
3404   return ptadr;
3405 }
3406 
3407 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3408   PointsToNode* ptadr = _nodes.at(n->_idx);
3409   if (ptadr != nullptr) {
3410     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3411     return;
3412   }
3413   bool unsafe = false;
3414   bool is_oop = is_oop_field(n, offset, &unsafe);
3415   if (unsafe) {
3416     es = PointsToNode::GlobalEscape;
3417   }
3418   Compile* C = _compile;
3419   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3420   map_ideal_node(n, field);
3421 }
3422 
3423 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3424                                     PointsToNode* src, PointsToNode* dst) {
3425   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3426   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3427   PointsToNode* ptadr = _nodes.at(n->_idx);
3428   if (ptadr != nullptr) {
3429     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3430     return;
3431   }
3432   Compile* C = _compile;
3433   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3434   map_ideal_node(n, ptadr);
3435   // Add edge from arraycopy node to source object.
3436   (void)add_edge(ptadr, src);
3437   src->set_arraycopy_src();
3438   // Add edge from destination object to arraycopy node.
3439   (void)add_edge(dst, ptadr);
3440   dst->set_arraycopy_dst();
3441 }
3442 
3443 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3444   const Type* adr_type = n->as_AddP()->bottom_type();
3445   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
3446   BasicType bt = T_INT;
3447   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
3448     // Check only oop fields.
3449     if (!adr_type->isa_aryptr() ||
3450         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3451         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3452       // OffsetBot is used to reference array's element. Ignore first AddP.
3453       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3454         bt = T_OBJECT;
3455       }
3456     }
3457   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3458     if (adr_type->isa_instptr()) {
3459       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
3460       if (field != nullptr) {
3461         bt = field->layout_type();
3462       } else {
3463         // Check for unsafe oop field access
3464         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3465             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3466             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3467             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3468           bt = T_OBJECT;
3469           (*unsafe) = true;
3470         }
3471       }
3472     } else if (adr_type->isa_aryptr()) {
3473       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3474         // Ignore array length load.
3475       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3476         // Ignore first AddP.
3477       } else {
3478         const Type* elemtype = adr_type->is_aryptr()->elem();
3479         if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) {
3480           ciInlineKlass* vk = elemtype->inline_klass();
3481           field_offset += vk->first_field_offset();
3482           bt = vk->get_field_by_offset(field_offset, false)->layout_type();
3483         } else {
3484           bt = elemtype->array_element_basic_type();
3485         }
3486       }
3487     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3488       // Allocation initialization, ThreadLocal field access, unsafe access
3489       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3490           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3491           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3492           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3493         bt = T_OBJECT;
3494       }
3495     }
3496   }
3497   // Note: T_NARROWOOP is not classed as a real reference type
3498   return (is_reference_type(bt) || bt == T_NARROWOOP);
3499 }
3500 
3501 // Returns unique pointed java object or null.
3502 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3503   // If the node was created after the escape computation we can't answer.
3504   uint idx = n->_idx;
3505   if (idx >= nodes_size()) {
3506     return nullptr;
3507   }
3508   PointsToNode* ptn = ptnode_adr(idx);
3509   if (ptn == nullptr) {
3510     return nullptr;
3511   }
3512   if (ptn->is_JavaObject()) {
3513     return ptn->as_JavaObject();
3514   }
3515   assert(ptn->is_LocalVar(), "sanity");
3516   // Check all java objects it points to.
3517   JavaObjectNode* jobj = nullptr;
3518   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3519     PointsToNode* e = i.get();
3520     if (e->is_JavaObject()) {
3521       if (jobj == nullptr) {
3522         jobj = e->as_JavaObject();
3523       } else if (jobj != e) {
3524         return nullptr;
3525       }
3526     }
3527   }
3528   return jobj;
3529 }
3530 
3531 // Return true if this node points only to non-escaping allocations.
3532 bool PointsToNode::non_escaping_allocation() {
3533   if (is_JavaObject()) {
3534     Node* n = ideal_node();
3535     if (n->is_Allocate() || n->is_CallStaticJava()) {
3536       return (escape_state() == PointsToNode::NoEscape);
3537     } else {
3538       return false;
3539     }
3540   }
3541   assert(is_LocalVar(), "sanity");
3542   // Check all java objects it points to.
3543   for (EdgeIterator i(this); i.has_next(); i.next()) {
3544     PointsToNode* e = i.get();
3545     if (e->is_JavaObject()) {
3546       Node* n = e->ideal_node();
3547       if ((e->escape_state() != PointsToNode::NoEscape) ||
3548           !(n->is_Allocate() || n->is_CallStaticJava())) {
3549         return false;
3550       }
3551     }
3552   }
3553   return true;
3554 }
3555 
3556 // Return true if we know the node does not escape globally.
3557 bool ConnectionGraph::not_global_escape(Node *n) {
3558   assert(!_collecting, "should not call during graph construction");
3559   // If the node was created after the escape computation we can't answer.
3560   uint idx = n->_idx;
3561   if (idx >= nodes_size()) {
3562     return false;
3563   }
3564   PointsToNode* ptn = ptnode_adr(idx);
3565   if (ptn == nullptr) {
3566     return false; // not in congraph (e.g. ConI)
3567   }
3568   PointsToNode::EscapeState es = ptn->escape_state();
3569   // If we have already computed a value, return it.
3570   if (es >= PointsToNode::GlobalEscape) {
3571     return false;
3572   }
3573   if (ptn->is_JavaObject()) {
3574     return true; // (es < PointsToNode::GlobalEscape);
3575   }
3576   assert(ptn->is_LocalVar(), "sanity");
3577   // Check all java objects it points to.
3578   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3579     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3580       return false;
3581     }
3582   }
3583   return true;
3584 }
3585 
3586 // Return true if locked object does not escape globally
3587 // and locked code region (identified by BoxLockNode) is balanced:
3588 // all compiled code paths have corresponding Lock/Unlock pairs.
3589 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3590   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3591     if (EliminateNestedLocks) {
3592       // We can mark whole locking region as Local only when only
3593       // one object is used for locking.
3594       alock->box_node()->as_BoxLock()->set_local();
3595     }
3596     return true;
3597   }
3598   return false;
3599 }
3600 
3601 // Helper functions
3602 
3603 // Return true if this node points to specified node or nodes it points to.
3604 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3605   if (is_JavaObject()) {
3606     return (this == ptn);
3607   }
3608   assert(is_LocalVar() || is_Field(), "sanity");
3609   for (EdgeIterator i(this); i.has_next(); i.next()) {
3610     if (i.get() == ptn) {
3611       return true;
3612     }
3613   }
3614   return false;
3615 }
3616 
3617 // Return true if one node points to an other.
3618 bool PointsToNode::meet(PointsToNode* ptn) {
3619   if (this == ptn) {
3620     return true;
3621   } else if (ptn->is_JavaObject()) {
3622     return this->points_to(ptn->as_JavaObject());
3623   } else if (this->is_JavaObject()) {
3624     return ptn->points_to(this->as_JavaObject());
3625   }
3626   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3627   int ptn_count =  ptn->edge_count();
3628   for (EdgeIterator i(this); i.has_next(); i.next()) {
3629     PointsToNode* this_e = i.get();
3630     for (int j = 0; j < ptn_count; j++) {
3631       if (this_e == ptn->edge(j)) {
3632         return true;
3633       }
3634     }
3635   }
3636   return false;
3637 }
3638 
3639 #ifdef ASSERT
3640 // Return true if bases point to this java object.
3641 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3642   for (BaseIterator i(this); i.has_next(); i.next()) {
3643     if (i.get() == jobj) {
3644       return true;
3645     }
3646   }
3647   return false;
3648 }
3649 #endif
3650 
3651 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3652   // Handle simple case first.
3653   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3654   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3655     return true;
3656   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3657     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3658       Node* addp_use = addp->fast_out(i);
3659       if (addp_use->is_Store()) {
3660         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3661           if (addp_use->fast_out(j)->is_Initialize()) {
3662             return true;
3663           }
3664         }
3665       }
3666     }
3667   }
3668   return false;
3669 }
3670 
3671 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3672   const Type *adr_type = phase->type(adr);
3673   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3674     // We are computing a raw address for a store captured by an Initialize
3675     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3676     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3677     assert(offs != Type::OffsetBot ||
3678            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3679            "offset must be a constant or it is initialization of array");
3680     return offs;
3681   }
3682   return adr_type->is_ptr()->flat_offset();
3683 }
3684 
3685 Node* ConnectionGraph::get_addp_base(Node *addp) {
3686   assert(addp->is_AddP(), "must be AddP");
3687   //
3688   // AddP cases for Base and Address inputs:
3689   // case #1. Direct object's field reference:
3690   //     Allocate
3691   //       |
3692   //     Proj #5 ( oop result )
3693   //       |
3694   //     CheckCastPP (cast to instance type)
3695   //      | |
3696   //     AddP  ( base == address )
3697   //
3698   // case #2. Indirect object's field reference:
3699   //      Phi
3700   //       |
3701   //     CastPP (cast to instance type)
3702   //      | |
3703   //     AddP  ( base == address )
3704   //
3705   // case #3. Raw object's field reference for Initialize node:
3706   //      Allocate
3707   //        |
3708   //      Proj #5 ( oop result )
3709   //  top   |
3710   //     \  |
3711   //     AddP  ( base == top )
3712   //
3713   // case #4. Array's element reference:
3714   //   {CheckCastPP | CastPP}
3715   //     |  | |
3716   //     |  AddP ( array's element offset )
3717   //     |  |
3718   //     AddP ( array's offset )
3719   //
3720   // case #5. Raw object's field reference for arraycopy stub call:
3721   //          The inline_native_clone() case when the arraycopy stub is called
3722   //          after the allocation before Initialize and CheckCastPP nodes.
3723   //      Allocate
3724   //        |
3725   //      Proj #5 ( oop result )
3726   //       | |
3727   //       AddP  ( base == address )
3728   //
3729   // case #6. Constant Pool, ThreadLocal, CastX2P or
3730   //          Raw object's field reference:
3731   //      {ConP, ThreadLocal, CastX2P, raw Load}
3732   //  top   |
3733   //     \  |
3734   //     AddP  ( base == top )
3735   //
3736   // case #7. Klass's field reference.
3737   //      LoadKlass
3738   //       | |
3739   //       AddP  ( base == address )
3740   //
3741   // case #8. narrow Klass's field reference.
3742   //      LoadNKlass
3743   //       |
3744   //      DecodeN
3745   //       | |
3746   //       AddP  ( base == address )
3747   //
3748   // case #9. Mixed unsafe access
3749   //    {instance}
3750   //        |
3751   //      CheckCastPP (raw)
3752   //  top   |
3753   //     \  |
3754   //     AddP  ( base == top )
3755   //
3756   Node *base = addp->in(AddPNode::Base);
3757   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3758     base = addp->in(AddPNode::Address);
3759     while (base->is_AddP()) {
3760       // Case #6 (unsafe access) may have several chained AddP nodes.
3761       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3762       base = base->in(AddPNode::Address);
3763     }
3764     if (base->Opcode() == Op_CheckCastPP &&
3765         base->bottom_type()->isa_rawptr() &&
3766         _igvn->type(base->in(1))->isa_oopptr()) {
3767       base = base->in(1); // Case #9
3768     } else {
3769       Node* uncast_base = base->uncast();
3770       int opcode = uncast_base->Opcode();
3771       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3772              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3773              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3774              is_captured_store_address(addp), "sanity");
3775     }
3776   }
3777   return base;
3778 }
3779 
3780 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3781   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3782   Node* addp2 = addp->raw_out(0);
3783   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3784       addp2->in(AddPNode::Base) == n &&
3785       addp2->in(AddPNode::Address) == addp) {
3786     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3787     //
3788     // Find array's offset to push it on worklist first and
3789     // as result process an array's element offset first (pushed second)
3790     // to avoid CastPP for the array's offset.
3791     // Otherwise the inserted CastPP (LocalVar) will point to what
3792     // the AddP (Field) points to. Which would be wrong since
3793     // the algorithm expects the CastPP has the same point as
3794     // as AddP's base CheckCastPP (LocalVar).
3795     //
3796     //    ArrayAllocation
3797     //     |
3798     //    CheckCastPP
3799     //     |
3800     //    memProj (from ArrayAllocation CheckCastPP)
3801     //     |  ||
3802     //     |  ||   Int (element index)
3803     //     |  ||    |   ConI (log(element size))
3804     //     |  ||    |   /
3805     //     |  ||   LShift
3806     //     |  ||  /
3807     //     |  AddP (array's element offset)
3808     //     |  |
3809     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3810     //     | / /
3811     //     AddP (array's offset)
3812     //      |
3813     //     Load/Store (memory operation on array's element)
3814     //
3815     return addp2;
3816   }
3817   return nullptr;
3818 }
3819 
3820 //
3821 // Adjust the type and inputs of an AddP which computes the
3822 // address of a field of an instance
3823 //
3824 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3825   PhaseGVN* igvn = _igvn;
3826   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3827   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3828   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3829   if (t == nullptr) {
3830     // We are computing a raw address for a store captured by an Initialize
3831     // compute an appropriate address type (cases #3 and #5).
3832     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3833     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3834     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3835     assert(offs != Type::OffsetBot, "offset must be a constant");
3836     if (base_t->isa_aryptr() != nullptr) {
3837       // In the case of a flat inline type array, each field has its
3838       // own slice so we need to extract the field being accessed from
3839       // the address computation
3840       t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
3841     } else {
3842       t = base_t->add_offset(offs)->is_oopptr();
3843     }
3844   }
3845   int inst_id = base_t->instance_id();
3846   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3847                              "old type must be non-instance or match new type");
3848 
3849   // The type 't' could be subclass of 'base_t'.
3850   // As result t->offset() could be large then base_t's size and it will
3851   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3852   // constructor verifies correctness of the offset.
3853   //
3854   // It could happened on subclass's branch (from the type profiling
3855   // inlining) which was not eliminated during parsing since the exactness
3856   // of the allocation type was not propagated to the subclass type check.
3857   //
3858   // Or the type 't' could be not related to 'base_t' at all.
3859   // It could happen when CHA type is different from MDO type on a dead path
3860   // (for example, from instanceof check) which is not collapsed during parsing.
3861   //
3862   // Do nothing for such AddP node and don't process its users since
3863   // this code branch will go away.
3864   //
3865   if (!t->is_known_instance() &&
3866       !base_t->maybe_java_subtype_of(t)) {
3867      return false; // bail out
3868   }
3869   const TypePtr* tinst = base_t->add_offset(t->offset());
3870   if (tinst->isa_aryptr() && t->isa_aryptr()) {
3871     // In the case of a flat inline type array, each field has its
3872     // own slice so we need to keep track of the field being accessed.
3873     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
3874     // Keep array properties (not flat/null-free)
3875     tinst = tinst->is_aryptr()->update_properties(t->is_aryptr());
3876     if (tinst == nullptr) {
3877       return false; // Skip dead path with inconsistent properties
3878     }
3879   }
3880 
3881   // Do NOT remove the next line: ensure a new alias index is allocated
3882   // for the instance type. Note: C++ will not remove it since the call
3883   // has side effect.
3884   int alias_idx = _compile->get_alias_index(tinst);
3885   igvn->set_type(addp, tinst);
3886   // record the allocation in the node map
3887   set_map(addp, get_map(base->_idx));
3888   // Set addp's Base and Address to 'base'.
3889   Node *abase = addp->in(AddPNode::Base);
3890   Node *adr   = addp->in(AddPNode::Address);
3891   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3892       adr->in(0)->_idx == (uint)inst_id) {
3893     // Skip AddP cases #3 and #5.
3894   } else {
3895     assert(!abase->is_top(), "sanity"); // AddP case #3
3896     if (abase != base) {
3897       igvn->hash_delete(addp);
3898       addp->set_req(AddPNode::Base, base);
3899       if (abase == adr) {
3900         addp->set_req(AddPNode::Address, base);
3901       } else {
3902         // AddP case #4 (adr is array's element offset AddP node)
3903 #ifdef ASSERT
3904         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3905         assert(adr->is_AddP() && atype != nullptr &&
3906                atype->instance_id() == inst_id, "array's element offset should be processed first");
3907 #endif
3908       }
3909       igvn->hash_insert(addp);
3910     }
3911   }
3912   // Put on IGVN worklist since at least addp's type was changed above.
3913   record_for_optimizer(addp);
3914   return true;
3915 }
3916 
3917 //
3918 // Create a new version of orig_phi if necessary. Returns either the newly
3919 // created phi or an existing phi.  Sets create_new to indicate whether a new
3920 // phi was created.  Cache the last newly created phi in the node map.
3921 //
3922 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3923   Compile *C = _compile;
3924   PhaseGVN* igvn = _igvn;
3925   new_created = false;
3926   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3927   // nothing to do if orig_phi is bottom memory or matches alias_idx
3928   if (phi_alias_idx == alias_idx) {
3929     return orig_phi;
3930   }
3931   // Have we recently created a Phi for this alias index?
3932   PhiNode *result = get_map_phi(orig_phi->_idx);
3933   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3934     return result;
3935   }
3936   // Previous check may fail when the same wide memory Phi was split into Phis
3937   // for different memory slices. Search all Phis for this region.
3938   if (result != nullptr) {
3939     Node* region = orig_phi->in(0);
3940     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3941       Node* phi = region->fast_out(i);
3942       if (phi->is_Phi() &&
3943           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3944         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3945         return phi->as_Phi();
3946       }
3947     }
3948   }
3949   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3950     if (C->do_escape_analysis() == true && !C->failing()) {
3951       // Retry compilation without escape analysis.
3952       // If this is the first failure, the sentinel string will "stick"
3953       // to the Compile object, and the C2Compiler will see it and retry.
3954       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3955     }
3956     return nullptr;
3957   }
3958   orig_phi_worklist.append_if_missing(orig_phi);
3959   const TypePtr *atype = C->get_adr_type(alias_idx);
3960   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3961   C->copy_node_notes_to(result, orig_phi);
3962   igvn->set_type(result, result->bottom_type());
3963   record_for_optimizer(result);
3964   set_map(orig_phi, result);
3965   new_created = true;
3966   return result;
3967 }
3968 
3969 //
3970 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3971 // specified alias index.
3972 //
3973 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
3974   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
3975   Compile *C = _compile;
3976   PhaseGVN* igvn = _igvn;
3977   bool new_phi_created;
3978   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
3979   if (!new_phi_created) {
3980     return result;
3981   }
3982   GrowableArray<PhiNode *>  phi_list;
3983   GrowableArray<uint>  cur_input;
3984   PhiNode *phi = orig_phi;
3985   uint idx = 1;
3986   bool finished = false;
3987   while(!finished) {
3988     while (idx < phi->req()) {
3989       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
3990       if (mem != nullptr && mem->is_Phi()) {
3991         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
3992         if (new_phi_created) {
3993           // found an phi for which we created a new split, push current one on worklist and begin
3994           // processing new one
3995           phi_list.push(phi);
3996           cur_input.push(idx);
3997           phi = mem->as_Phi();
3998           result = newphi;
3999           idx = 1;
4000           continue;
4001         } else {
4002           mem = newphi;
4003         }
4004       }
4005       if (C->failing()) {
4006         return nullptr;
4007       }
4008       result->set_req(idx++, mem);
4009     }
4010 #ifdef ASSERT
4011     // verify that the new Phi has an input for each input of the original
4012     assert( phi->req() == result->req(), "must have same number of inputs.");
4013     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
4014 #endif
4015     // Check if all new phi's inputs have specified alias index.
4016     // Otherwise use old phi.
4017     for (uint i = 1; i < phi->req(); i++) {
4018       Node* in = result->in(i);
4019       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
4020     }
4021     // we have finished processing a Phi, see if there are any more to do
4022     finished = (phi_list.length() == 0 );
4023     if (!finished) {
4024       phi = phi_list.pop();
4025       idx = cur_input.pop();
4026       PhiNode *prev_result = get_map_phi(phi->_idx);
4027       prev_result->set_req(idx++, result);
4028       result = prev_result;
4029     }
4030   }
4031   return result;
4032 }
4033 
4034 //
4035 // The next methods are derived from methods in MemNode.
4036 //
4037 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
4038   Node *mem = mmem;
4039   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
4040   // means an array I have not precisely typed yet.  Do not do any
4041   // alias stuff with it any time soon.
4042   if (toop->base() != Type::AnyPtr &&
4043       !(toop->isa_instptr() &&
4044         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
4045         toop->offset() == Type::OffsetBot)) {
4046     mem = mmem->memory_at(alias_idx);
4047     // Update input if it is progress over what we have now
4048   }
4049   return mem;
4050 }
4051 
4052 //
4053 // Move memory users to their memory slices.
4054 //
4055 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
4056   Compile* C = _compile;
4057   PhaseGVN* igvn = _igvn;
4058   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
4059   assert(tp != nullptr, "ptr type");
4060   int alias_idx = C->get_alias_index(tp);
4061   int general_idx = C->get_general_index(alias_idx);
4062 
4063   // Move users first
4064   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4065     Node* use = n->fast_out(i);
4066     if (use->is_MergeMem()) {
4067       MergeMemNode* mmem = use->as_MergeMem();
4068       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
4069       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
4070         continue; // Nothing to do
4071       }
4072       // Replace previous general reference to mem node.
4073       uint orig_uniq = C->unique();
4074       Node* m = find_inst_mem(n, general_idx, orig_phis);
4075       assert(orig_uniq == C->unique(), "no new nodes");
4076       mmem->set_memory_at(general_idx, m);
4077       --imax;
4078       --i;
4079     } else if (use->is_MemBar()) {
4080       assert(!use->is_Initialize(), "initializing stores should not be moved");
4081       if (use->req() > MemBarNode::Precedent &&
4082           use->in(MemBarNode::Precedent) == n) {
4083         // Don't move related membars.
4084         record_for_optimizer(use);
4085         continue;
4086       }
4087       tp = use->as_MemBar()->adr_type()->isa_ptr();
4088       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
4089           alias_idx == general_idx) {
4090         continue; // Nothing to do
4091       }
4092       // Move to general memory slice.
4093       uint orig_uniq = C->unique();
4094       Node* m = find_inst_mem(n, general_idx, orig_phis);
4095       assert(orig_uniq == C->unique(), "no new nodes");
4096       igvn->hash_delete(use);
4097       imax -= use->replace_edge(n, m, igvn);
4098       igvn->hash_insert(use);
4099       record_for_optimizer(use);
4100       --i;
4101 #ifdef ASSERT
4102     } else if (use->is_Mem()) {
4103       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
4104         // Don't move related cardmark.
4105         continue;
4106       }
4107       // Memory nodes should have new memory input.
4108       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4109       assert(tp != nullptr, "ptr type");
4110       int idx = C->get_alias_index(tp);
4111       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4112              "Following memory nodes should have new memory input or be on the same memory slice");
4113     } else if (use->is_Phi()) {
4114       // Phi nodes should be split and moved already.
4115       tp = use->as_Phi()->adr_type()->isa_ptr();
4116       assert(tp != nullptr, "ptr type");
4117       int idx = C->get_alias_index(tp);
4118       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4119     } else {
4120       use->dump();
4121       assert(false, "should not be here");
4122 #endif
4123     }
4124   }
4125 }
4126 
4127 //
4128 // Search memory chain of "mem" to find a MemNode whose address
4129 // is the specified alias index.
4130 //
4131 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4132 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4133   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4134     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4135     return nullptr;
4136   }
4137   if (orig_mem == nullptr) {
4138     return orig_mem;
4139   }
4140   Compile* C = _compile;
4141   PhaseGVN* igvn = _igvn;
4142   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4143   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4144   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4145   Node *prev = nullptr;
4146   Node *result = orig_mem;
4147   while (prev != result) {
4148     prev = result;
4149     if (result == start_mem) {
4150       break;  // hit one of our sentinels
4151     }
4152     if (result->is_Mem()) {
4153       const Type *at = igvn->type(result->in(MemNode::Address));
4154       if (at == Type::TOP) {
4155         break; // Dead
4156       }
4157       assert (at->isa_ptr() != nullptr, "pointer type required.");
4158       int idx = C->get_alias_index(at->is_ptr());
4159       if (idx == alias_idx) {
4160         break; // Found
4161       }
4162       if (!is_instance && (at->isa_oopptr() == nullptr ||
4163                            !at->is_oopptr()->is_known_instance())) {
4164         break; // Do not skip store to general memory slice.
4165       }
4166       result = result->in(MemNode::Memory);
4167     }
4168     if (!is_instance) {
4169       continue;  // don't search further for non-instance types
4170     }
4171     // skip over a call which does not affect this memory slice
4172     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4173       Node *proj_in = result->in(0);
4174       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4175         break;  // hit one of our sentinels
4176       } else if (proj_in->is_Call()) {
4177         // ArrayCopy node processed here as well
4178         CallNode *call = proj_in->as_Call();
4179         if (!call->may_modify(toop, igvn)) {
4180           result = call->in(TypeFunc::Memory);
4181         }
4182       } else if (proj_in->is_Initialize()) {
4183         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4184         // Stop if this is the initialization for the object instance which
4185         // which contains this memory slice, otherwise skip over it.
4186         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4187           result = proj_in->in(TypeFunc::Memory);
4188         }
4189       } else if (proj_in->is_MemBar()) {
4190         // Check if there is an array copy for a clone
4191         // Step over GC barrier when ReduceInitialCardMarks is disabled
4192         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4193         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
4194 
4195         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4196           // Stop if it is a clone
4197           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4198           if (ac->may_modify(toop, igvn)) {
4199             break;
4200           }
4201         }
4202         result = proj_in->in(TypeFunc::Memory);
4203       }
4204     } else if (result->is_MergeMem()) {
4205       MergeMemNode *mmem = result->as_MergeMem();
4206       result = step_through_mergemem(mmem, alias_idx, toop);
4207       if (result == mmem->base_memory()) {
4208         // Didn't find instance memory, search through general slice recursively.
4209         result = mmem->memory_at(C->get_general_index(alias_idx));
4210         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4211         if (C->failing()) {
4212           return nullptr;
4213         }
4214         mmem->set_memory_at(alias_idx, result);
4215       }
4216     } else if (result->is_Phi() &&
4217                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4218       Node *un = result->as_Phi()->unique_input(igvn);
4219       if (un != nullptr) {
4220         orig_phis.append_if_missing(result->as_Phi());
4221         result = un;
4222       } else {
4223         break;
4224       }
4225     } else if (result->is_ClearArray()) {
4226       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4227         // Can not bypass initialization of the instance
4228         // we are looking for.
4229         break;
4230       }
4231       // Otherwise skip it (the call updated 'result' value).
4232     } else if (result->Opcode() == Op_SCMemProj) {
4233       Node* mem = result->in(0);
4234       Node* adr = nullptr;
4235       if (mem->is_LoadStore()) {
4236         adr = mem->in(MemNode::Address);
4237       } else {
4238         assert(mem->Opcode() == Op_EncodeISOArray ||
4239                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4240         adr = mem->in(3); // Memory edge corresponds to destination array
4241       }
4242       const Type *at = igvn->type(adr);
4243       if (at != Type::TOP) {
4244         assert(at->isa_ptr() != nullptr, "pointer type required.");
4245         int idx = C->get_alias_index(at->is_ptr());
4246         if (idx == alias_idx) {
4247           // Assert in debug mode
4248           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4249           break; // In product mode return SCMemProj node
4250         }
4251       }
4252       result = mem->in(MemNode::Memory);
4253     } else if (result->Opcode() == Op_StrInflatedCopy) {
4254       Node* adr = result->in(3); // Memory edge corresponds to destination array
4255       const Type *at = igvn->type(adr);
4256       if (at != Type::TOP) {
4257         assert(at->isa_ptr() != nullptr, "pointer type required.");
4258         int idx = C->get_alias_index(at->is_ptr());
4259         if (idx == alias_idx) {
4260           // Assert in debug mode
4261           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4262           break; // In product mode return SCMemProj node
4263         }
4264       }
4265       result = result->in(MemNode::Memory);
4266     }
4267   }
4268   if (result->is_Phi()) {
4269     PhiNode *mphi = result->as_Phi();
4270     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4271     const TypePtr *t = mphi->adr_type();
4272     if (!is_instance) {
4273       // Push all non-instance Phis on the orig_phis worklist to update inputs
4274       // during Phase 4 if needed.
4275       orig_phis.append_if_missing(mphi);
4276     } else if (C->get_alias_index(t) != alias_idx) {
4277       // Create a new Phi with the specified alias index type.
4278       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4279     }
4280   }
4281   // the result is either MemNode, PhiNode, InitializeNode.
4282   return result;
4283 }
4284 
4285 //
4286 //  Convert the types of non-escaped object to instance types where possible,
4287 //  propagate the new type information through the graph, and update memory
4288 //  edges and MergeMem inputs to reflect the new type.
4289 //
4290 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4291 //  The processing is done in 4 phases:
4292 //
4293 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4294 //            types for the CheckCastPP for allocations where possible.
4295 //            Propagate the new types through users as follows:
4296 //               casts and Phi:  push users on alloc_worklist
4297 //               AddP:  cast Base and Address inputs to the instance type
4298 //                      push any AddP users on alloc_worklist and push any memnode
4299 //                      users onto memnode_worklist.
4300 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4301 //            search the Memory chain for a store with the appropriate type
4302 //            address type.  If a Phi is found, create a new version with
4303 //            the appropriate memory slices from each of the Phi inputs.
4304 //            For stores, process the users as follows:
4305 //               MemNode:  push on memnode_worklist
4306 //               MergeMem: push on mergemem_worklist
4307 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4308 //            moving the first node encountered of each  instance type to the
4309 //            the input corresponding to its alias index.
4310 //            appropriate memory slice.
4311 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4312 //
4313 // In the following example, the CheckCastPP nodes are the cast of allocation
4314 // results and the allocation of node 29 is non-escaped and eligible to be an
4315 // instance type.
4316 //
4317 // We start with:
4318 //
4319 //     7 Parm #memory
4320 //    10  ConI  "12"
4321 //    19  CheckCastPP   "Foo"
4322 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4323 //    29  CheckCastPP   "Foo"
4324 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4325 //
4326 //    40  StoreP  25   7  20   ... alias_index=4
4327 //    50  StoreP  35  40  30   ... alias_index=4
4328 //    60  StoreP  45  50  20   ... alias_index=4
4329 //    70  LoadP    _  60  30   ... alias_index=4
4330 //    80  Phi     75  50  60   Memory alias_index=4
4331 //    90  LoadP    _  80  30   ... alias_index=4
4332 //   100  LoadP    _  80  20   ... alias_index=4
4333 //
4334 //
4335 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4336 // and creating a new alias index for node 30.  This gives:
4337 //
4338 //     7 Parm #memory
4339 //    10  ConI  "12"
4340 //    19  CheckCastPP   "Foo"
4341 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4342 //    29  CheckCastPP   "Foo"  iid=24
4343 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4344 //
4345 //    40  StoreP  25   7  20   ... alias_index=4
4346 //    50  StoreP  35  40  30   ... alias_index=6
4347 //    60  StoreP  45  50  20   ... alias_index=4
4348 //    70  LoadP    _  60  30   ... alias_index=6
4349 //    80  Phi     75  50  60   Memory alias_index=4
4350 //    90  LoadP    _  80  30   ... alias_index=6
4351 //   100  LoadP    _  80  20   ... alias_index=4
4352 //
4353 // In phase 2, new memory inputs are computed for the loads and stores,
4354 // And a new version of the phi is created.  In phase 4, the inputs to
4355 // node 80 are updated and then the memory nodes are updated with the
4356 // values computed in phase 2.  This results in:
4357 //
4358 //     7 Parm #memory
4359 //    10  ConI  "12"
4360 //    19  CheckCastPP   "Foo"
4361 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4362 //    29  CheckCastPP   "Foo"  iid=24
4363 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4364 //
4365 //    40  StoreP  25  7   20   ... alias_index=4
4366 //    50  StoreP  35  7   30   ... alias_index=6
4367 //    60  StoreP  45  40  20   ... alias_index=4
4368 //    70  LoadP    _  50  30   ... alias_index=6
4369 //    80  Phi     75  40  60   Memory alias_index=4
4370 //   120  Phi     75  50  50   Memory alias_index=6
4371 //    90  LoadP    _ 120  30   ... alias_index=6
4372 //   100  LoadP    _  80  20   ... alias_index=4
4373 //
4374 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4375                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4376                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4377                                          Unique_Node_List &reducible_merges) {
4378   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4379   GrowableArray<Node *>  memnode_worklist;
4380   GrowableArray<PhiNode *>  orig_phis;
4381   PhaseIterGVN  *igvn = _igvn;
4382   uint new_index_start = (uint) _compile->num_alias_types();
4383   VectorSet visited;
4384   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4385   uint unique_old = _compile->unique();
4386 
4387   //  Phase 1:  Process possible allocations from alloc_worklist.
4388   //  Create instance types for the CheckCastPP for allocations where possible.
4389   //
4390   // (Note: don't forget to change the order of the second AddP node on
4391   //  the alloc_worklist if the order of the worklist processing is changed,
4392   //  see the comment in find_second_addp().)
4393   //
4394   while (alloc_worklist.length() != 0) {
4395     Node *n = alloc_worklist.pop();
4396     uint ni = n->_idx;
4397     if (n->is_Call()) {
4398       CallNode *alloc = n->as_Call();
4399       // copy escape information to call node
4400       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4401       PointsToNode::EscapeState es = ptn->escape_state();
4402       // We have an allocation or call which returns a Java object,
4403       // see if it is non-escaped.
4404       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4405         continue;
4406       }
4407       // Find CheckCastPP for the allocate or for the return value of a call
4408       n = alloc->result_cast();
4409       if (n == nullptr) {            // No uses except Initialize node
4410         if (alloc->is_Allocate()) {
4411           // Set the scalar_replaceable flag for allocation
4412           // so it could be eliminated if it has no uses.
4413           alloc->as_Allocate()->_is_scalar_replaceable = true;
4414         }
4415         continue;
4416       }
4417       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4418         // we could reach here for allocate case if one init is associated with many allocs.
4419         if (alloc->is_Allocate()) {
4420           alloc->as_Allocate()->_is_scalar_replaceable = false;
4421         }
4422         continue;
4423       }
4424 
4425       // The inline code for Object.clone() casts the allocation result to
4426       // java.lang.Object and then to the actual type of the allocated
4427       // object. Detect this case and use the second cast.
4428       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4429       // the allocation result is cast to java.lang.Object and then
4430       // to the actual Array type.
4431       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4432           && (alloc->is_AllocateArray() ||
4433               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4434         Node *cast2 = nullptr;
4435         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4436           Node *use = n->fast_out(i);
4437           if (use->is_CheckCastPP()) {
4438             cast2 = use;
4439             break;
4440           }
4441         }
4442         if (cast2 != nullptr) {
4443           n = cast2;
4444         } else {
4445           // Non-scalar replaceable if the allocation type is unknown statically
4446           // (reflection allocation), the object can't be restored during
4447           // deoptimization without precise type.
4448           continue;
4449         }
4450       }
4451 
4452       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4453       if (t == nullptr) {
4454         continue;  // not a TypeOopPtr
4455       }
4456       if (!t->klass_is_exact()) {
4457         continue; // not an unique type
4458       }
4459       if (alloc->is_Allocate()) {
4460         // Set the scalar_replaceable flag for allocation
4461         // so it could be eliminated.
4462         alloc->as_Allocate()->_is_scalar_replaceable = true;
4463       }
4464       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4465       // in order for an object to be scalar-replaceable, it must be:
4466       //   - a direct allocation (not a call returning an object)
4467       //   - non-escaping
4468       //   - eligible to be a unique type
4469       //   - not determined to be ineligible by escape analysis
4470       set_map(alloc, n);
4471       set_map(n, alloc);
4472       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4473       igvn->hash_delete(n);
4474       igvn->set_type(n,  tinst);
4475       n->raise_bottom_type(tinst);
4476       igvn->hash_insert(n);
4477       record_for_optimizer(n);
4478       // Allocate an alias index for the header fields. Accesses to
4479       // the header emitted during macro expansion wouldn't have
4480       // correct memory state otherwise.
4481       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4482       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4483       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4484 
4485         // First, put on the worklist all Field edges from Connection Graph
4486         // which is more accurate than putting immediate users from Ideal Graph.
4487         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4488           PointsToNode* tgt = e.get();
4489           if (tgt->is_Arraycopy()) {
4490             continue;
4491           }
4492           Node* use = tgt->ideal_node();
4493           assert(tgt->is_Field() && use->is_AddP(),
4494                  "only AddP nodes are Field edges in CG");
4495           if (use->outcnt() > 0) { // Don't process dead nodes
4496             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4497             if (addp2 != nullptr) {
4498               assert(alloc->is_AllocateArray(),"array allocation was expected");
4499               alloc_worklist.append_if_missing(addp2);
4500             }
4501             alloc_worklist.append_if_missing(use);
4502           }
4503         }
4504 
4505         // An allocation may have an Initialize which has raw stores. Scan
4506         // the users of the raw allocation result and push AddP users
4507         // on alloc_worklist.
4508         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4509         assert (raw_result != nullptr, "must have an allocation result");
4510         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4511           Node *use = raw_result->fast_out(i);
4512           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4513             Node* addp2 = find_second_addp(use, raw_result);
4514             if (addp2 != nullptr) {
4515               assert(alloc->is_AllocateArray(),"array allocation was expected");
4516               alloc_worklist.append_if_missing(addp2);
4517             }
4518             alloc_worklist.append_if_missing(use);
4519           } else if (use->is_MemBar()) {
4520             memnode_worklist.append_if_missing(use);
4521           }
4522         }
4523       }
4524     } else if (n->is_AddP()) {
4525       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4526         // This AddP will go away when we reduce the the Phi
4527         continue;
4528       }
4529       Node* addp_base = get_addp_base(n);
4530       JavaObjectNode* jobj = unique_java_object(addp_base);
4531       if (jobj == nullptr || jobj == phantom_obj) {
4532 #ifdef ASSERT
4533         ptnode_adr(get_addp_base(n)->_idx)->dump();
4534         ptnode_adr(n->_idx)->dump();
4535         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4536 #endif
4537         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4538         return;
4539       }
4540       Node *base = get_map(jobj->idx());  // CheckCastPP node
4541       if (!split_AddP(n, base)) continue; // wrong type from dead path
4542     } else if (n->is_Phi() ||
4543                n->is_CheckCastPP() ||
4544                n->is_EncodeP() ||
4545                n->is_DecodeN() ||
4546                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4547       if (visited.test_set(n->_idx)) {
4548         assert(n->is_Phi(), "loops only through Phi's");
4549         continue;  // already processed
4550       }
4551       // Reducible Phi's will be removed from the graph after split_unique_types
4552       // finishes. For now we just try to split out the SR inputs of the merge.
4553       Node* parent = n->in(1);
4554       if (reducible_merges.member(n)) {
4555         reduce_phi(n->as_Phi(), alloc_worklist, memnode_worklist);
4556 #ifdef ASSERT
4557         if (VerifyReduceAllocationMerges) {
4558           reduced_merges.push(n);
4559         }
4560 #endif
4561         continue;
4562       } else if (reducible_merges.member(parent)) {
4563         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4564         // part of reduce_merge.
4565         continue;
4566       }
4567       JavaObjectNode* jobj = unique_java_object(n);
4568       if (jobj == nullptr || jobj == phantom_obj) {
4569 #ifdef ASSERT
4570         ptnode_adr(n->_idx)->dump();
4571         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4572 #endif
4573         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4574         return;
4575       } else {
4576         Node *val = get_map(jobj->idx());   // CheckCastPP node
4577         TypeNode *tn = n->as_Type();
4578         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4579         assert(tinst != nullptr && tinst->is_known_instance() &&
4580                tinst->instance_id() == jobj->idx() , "instance type expected.");
4581 
4582         const Type *tn_type = igvn->type(tn);
4583         const TypeOopPtr *tn_t;
4584         if (tn_type->isa_narrowoop()) {
4585           tn_t = tn_type->make_ptr()->isa_oopptr();
4586         } else {
4587           tn_t = tn_type->isa_oopptr();
4588         }
4589         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4590           if (tn_t->isa_aryptr()) {
4591             // Keep array properties (not flat/null-free)
4592             tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr());
4593             if (tinst == nullptr) {
4594               continue; // Skip dead path with inconsistent properties
4595             }
4596           }
4597           if (tn_type->isa_narrowoop()) {
4598             tn_type = tinst->make_narrowoop();
4599           } else {
4600             tn_type = tinst;
4601           }
4602           igvn->hash_delete(tn);
4603           igvn->set_type(tn, tn_type);
4604           tn->set_type(tn_type);
4605           igvn->hash_insert(tn);
4606           record_for_optimizer(n);
4607         } else {
4608           assert(tn_type == TypePtr::NULL_PTR ||
4609                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4610                  "unexpected type");
4611           continue; // Skip dead path with different type
4612         }
4613       }
4614     } else {
4615       debug_only(n->dump();)
4616       assert(false, "EA: unexpected node");
4617       continue;
4618     }
4619     // push allocation's users on appropriate worklist
4620     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4621       Node *use = n->fast_out(i);
4622       if (use->is_Mem() && use->in(MemNode::Address) == n) {
4623         // Load/store to instance's field
4624         memnode_worklist.append_if_missing(use);
4625       } else if (use->is_MemBar()) {
4626         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4627           memnode_worklist.append_if_missing(use);
4628         }
4629       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4630         Node* addp2 = find_second_addp(use, n);
4631         if (addp2 != nullptr) {
4632           alloc_worklist.append_if_missing(addp2);
4633         }
4634         alloc_worklist.append_if_missing(use);
4635       } else if (use->is_Phi() ||
4636                  use->is_CheckCastPP() ||
4637                  use->is_EncodeNarrowPtr() ||
4638                  use->is_DecodeNarrowPtr() ||
4639                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4640         alloc_worklist.append_if_missing(use);
4641 #ifdef ASSERT
4642       } else if (use->is_Mem()) {
4643         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4644       } else if (use->is_MergeMem()) {
4645         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4646       } else if (use->is_SafePoint()) {
4647         // Look for MergeMem nodes for calls which reference unique allocation
4648         // (through CheckCastPP nodes) even for debug info.
4649         Node* m = use->in(TypeFunc::Memory);
4650         if (m->is_MergeMem()) {
4651           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4652         }
4653       } else if (use->Opcode() == Op_EncodeISOArray) {
4654         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4655           // EncodeISOArray overwrites destination array
4656           memnode_worklist.append_if_missing(use);
4657         }
4658       } else if (use->Opcode() == Op_Return) {
4659         // Allocation is referenced by field of returned inline type
4660         assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode");
4661       } else {
4662         uint op = use->Opcode();
4663         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4664             (use->in(MemNode::Memory) == n)) {
4665           // They overwrite memory edge corresponding to destination array,
4666           memnode_worklist.append_if_missing(use);
4667         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4668               op == Op_CastP2X || op == Op_StoreCM ||
4669               op == Op_FastLock || op == Op_AryEq ||
4670               op == Op_StrComp || op == Op_CountPositives ||
4671               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4672               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4673               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4674               op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck ||
4675               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4676           n->dump();
4677           use->dump();
4678           assert(false, "EA: missing allocation reference path");
4679         }
4680 #endif
4681       }
4682     }
4683 
4684   }
4685 
4686 #ifdef ASSERT
4687   if (VerifyReduceAllocationMerges) {
4688     for (uint i = 0; i < reducible_merges.size(); i++) {
4689       Node* phi = reducible_merges.at(i);
4690 
4691       if (!reduced_merges.member(phi)) {
4692         phi->dump(2);
4693         phi->dump(-2);
4694         assert(false, "This reducible merge wasn't reduced.");
4695       }
4696 
4697       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4698       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4699         Node* use = phi->fast_out(j);
4700         if (!use->is_SafePoint() && !use->is_CastPP()) {
4701           phi->dump(2);
4702           phi->dump(-2);
4703           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4704         }
4705       }
4706     }
4707   }
4708 #endif
4709 
4710   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4711   // type, record it in the ArrayCopy node so we know what memory this
4712   // node uses/modified.
4713   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4714     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4715     Node* dest = ac->in(ArrayCopyNode::Dest);
4716     if (dest->is_AddP()) {
4717       dest = get_addp_base(dest);
4718     }
4719     JavaObjectNode* jobj = unique_java_object(dest);
4720     if (jobj != nullptr) {
4721       Node *base = get_map(jobj->idx());
4722       if (base != nullptr) {
4723         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4724         ac->_dest_type = base_t;
4725       }
4726     }
4727     Node* src = ac->in(ArrayCopyNode::Src);
4728     if (src->is_AddP()) {
4729       src = get_addp_base(src);
4730     }
4731     jobj = unique_java_object(src);
4732     if (jobj != nullptr) {
4733       Node* base = get_map(jobj->idx());
4734       if (base != nullptr) {
4735         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4736         ac->_src_type = base_t;
4737       }
4738     }
4739   }
4740 
4741   // New alias types were created in split_AddP().
4742   uint new_index_end = (uint) _compile->num_alias_types();
4743 
4744   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4745   //            compute new values for Memory inputs  (the Memory inputs are not
4746   //            actually updated until phase 4.)
4747   if (memnode_worklist.length() == 0)
4748     return;  // nothing to do
4749   while (memnode_worklist.length() != 0) {
4750     Node *n = memnode_worklist.pop();
4751     if (visited.test_set(n->_idx)) {
4752       continue;
4753     }
4754     if (n->is_Phi() || n->is_ClearArray()) {
4755       // we don't need to do anything, but the users must be pushed
4756     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
4757       // we don't need to do anything, but the users must be pushed
4758       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4759       if (n == nullptr) {
4760         continue;
4761       }
4762     } else if (n->is_CallLeaf()) {
4763       // Runtime calls with narrow memory input (no MergeMem node)
4764       // get the memory projection
4765       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4766       if (n == nullptr) {
4767         continue;
4768       }
4769     } else if (n->Opcode() == Op_StrCompressedCopy ||
4770                n->Opcode() == Op_EncodeISOArray) {
4771       // get the memory projection
4772       n = n->find_out_with(Op_SCMemProj);
4773       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4774     } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr &&
4775                strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4776       n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
4777     } else {
4778       assert(n->is_Mem(), "memory node required.");
4779       Node *addr = n->in(MemNode::Address);
4780       const Type *addr_t = igvn->type(addr);
4781       if (addr_t == Type::TOP) {
4782         continue;
4783       }
4784       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4785       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4786       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4787       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4788       if (_compile->failing()) {
4789         return;
4790       }
4791       if (mem != n->in(MemNode::Memory)) {
4792         // We delay the memory edge update since we need old one in
4793         // MergeMem code below when instances memory slices are separated.
4794         set_map(n, mem);
4795       }
4796       if (n->is_Load()) {
4797         continue;  // don't push users
4798       } else if (n->is_LoadStore()) {
4799         // get the memory projection
4800         n = n->find_out_with(Op_SCMemProj);
4801         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4802       }
4803     }
4804     // push user on appropriate worklist
4805     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4806       Node *use = n->fast_out(i);
4807       if (use->is_Phi() || use->is_ClearArray()) {
4808         memnode_worklist.append_if_missing(use);
4809       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4810         if (use->Opcode() == Op_StoreCM) { // Ignore cardmark stores
4811           continue;
4812         }
4813         memnode_worklist.append_if_missing(use);
4814       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4815         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4816           memnode_worklist.append_if_missing(use);
4817         }
4818 #ifdef ASSERT
4819       } else if (use->is_Mem()) {
4820         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4821       } else if (use->is_MergeMem()) {
4822         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4823       } else if (use->Opcode() == Op_EncodeISOArray) {
4824         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4825           // EncodeISOArray overwrites destination array
4826           memnode_worklist.append_if_missing(use);
4827         }
4828       } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr &&
4829                  strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4830         // store_unknown_inline overwrites destination array
4831         memnode_worklist.append_if_missing(use);
4832       } else {
4833         uint op = use->Opcode();
4834         if ((use->in(MemNode::Memory) == n) &&
4835             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4836           // They overwrite memory edge corresponding to destination array,
4837           memnode_worklist.append_if_missing(use);
4838         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4839               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4840               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4841               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) {
4842           n->dump();
4843           use->dump();
4844           assert(false, "EA: missing memory path");
4845         }
4846 #endif
4847       }
4848     }
4849   }
4850 
4851   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4852   //            Walk each memory slice moving the first node encountered of each
4853   //            instance type to the input corresponding to its alias index.
4854   uint length = mergemem_worklist.length();
4855   for( uint next = 0; next < length; ++next ) {
4856     MergeMemNode* nmm = mergemem_worklist.at(next);
4857     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4858     // Note: we don't want to use MergeMemStream here because we only want to
4859     // scan inputs which exist at the start, not ones we add during processing.
4860     // Note 2: MergeMem may already contains instance memory slices added
4861     // during find_inst_mem() call when memory nodes were processed above.
4862     igvn->hash_delete(nmm);
4863     uint nslices = MIN2(nmm->req(), new_index_start);
4864     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4865       Node* mem = nmm->in(i);
4866       Node* cur = nullptr;
4867       if (mem == nullptr || mem->is_top()) {
4868         continue;
4869       }
4870       // First, update mergemem by moving memory nodes to corresponding slices
4871       // if their type became more precise since this mergemem was created.
4872       while (mem->is_Mem()) {
4873         const Type *at = igvn->type(mem->in(MemNode::Address));
4874         if (at != Type::TOP) {
4875           assert (at->isa_ptr() != nullptr, "pointer type required.");
4876           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4877           if (idx == i) {
4878             if (cur == nullptr) {
4879               cur = mem;
4880             }
4881           } else {
4882             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4883               nmm->set_memory_at(idx, mem);
4884             }
4885           }
4886         }
4887         mem = mem->in(MemNode::Memory);
4888       }
4889       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4890       // Find any instance of the current type if we haven't encountered
4891       // already a memory slice of the instance along the memory chain.
4892       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4893         if((uint)_compile->get_general_index(ni) == i) {
4894           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4895           if (nmm->is_empty_memory(m)) {
4896             Node* result = find_inst_mem(mem, ni, orig_phis);
4897             if (_compile->failing()) {
4898               return;
4899             }
4900             nmm->set_memory_at(ni, result);
4901           }
4902         }
4903       }
4904     }
4905     // Find the rest of instances values
4906     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4907       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4908       Node* result = step_through_mergemem(nmm, ni, tinst);
4909       if (result == nmm->base_memory()) {
4910         // Didn't find instance memory, search through general slice recursively.
4911         result = nmm->memory_at(_compile->get_general_index(ni));
4912         result = find_inst_mem(result, ni, orig_phis);
4913         if (_compile->failing()) {
4914           return;
4915         }
4916         nmm->set_memory_at(ni, result);
4917       }
4918     }
4919 
4920     // If we have crossed the 3/4 point of max node limit it's too risky
4921     // to continue with EA/SR because we might hit the max node limit.
4922     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4923       if (_compile->do_reduce_allocation_merges()) {
4924         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4925       } else if (_invocation > 0) {
4926         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4927       } else {
4928         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4929       }
4930       return;
4931     }
4932 
4933     igvn->hash_insert(nmm);
4934     record_for_optimizer(nmm);
4935   }
4936 
4937   //  Phase 4:  Update the inputs of non-instance memory Phis and
4938   //            the Memory input of memnodes
4939   // First update the inputs of any non-instance Phi's from
4940   // which we split out an instance Phi.  Note we don't have
4941   // to recursively process Phi's encountered on the input memory
4942   // chains as is done in split_memory_phi() since they will
4943   // also be processed here.
4944   for (int j = 0; j < orig_phis.length(); j++) {
4945     PhiNode *phi = orig_phis.at(j);
4946     int alias_idx = _compile->get_alias_index(phi->adr_type());
4947     igvn->hash_delete(phi);
4948     for (uint i = 1; i < phi->req(); i++) {
4949       Node *mem = phi->in(i);
4950       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4951       if (_compile->failing()) {
4952         return;
4953       }
4954       if (mem != new_mem) {
4955         phi->set_req(i, new_mem);
4956       }
4957     }
4958     igvn->hash_insert(phi);
4959     record_for_optimizer(phi);
4960   }
4961 
4962   // Update the memory inputs of MemNodes with the value we computed
4963   // in Phase 2 and move stores memory users to corresponding memory slices.
4964   // Disable memory split verification code until the fix for 6984348.
4965   // Currently it produces false negative results since it does not cover all cases.
4966 #if 0 // ifdef ASSERT
4967   visited.Reset();
4968   Node_Stack old_mems(arena, _compile->unique() >> 2);
4969 #endif
4970   for (uint i = 0; i < ideal_nodes.size(); i++) {
4971     Node*    n = ideal_nodes.at(i);
4972     Node* nmem = get_map(n->_idx);
4973     assert(nmem != nullptr, "sanity");
4974     if (n->is_Mem()) {
4975 #if 0 // ifdef ASSERT
4976       Node* old_mem = n->in(MemNode::Memory);
4977       if (!visited.test_set(old_mem->_idx)) {
4978         old_mems.push(old_mem, old_mem->outcnt());
4979       }
4980 #endif
4981       assert(n->in(MemNode::Memory) != nmem, "sanity");
4982       if (!n->is_Load()) {
4983         // Move memory users of a store first.
4984         move_inst_mem(n, orig_phis);
4985       }
4986       // Now update memory input
4987       igvn->hash_delete(n);
4988       n->set_req(MemNode::Memory, nmem);
4989       igvn->hash_insert(n);
4990       record_for_optimizer(n);
4991     } else {
4992       assert(n->is_Allocate() || n->is_CheckCastPP() ||
4993              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
4994     }
4995   }
4996 #if 0 // ifdef ASSERT
4997   // Verify that memory was split correctly
4998   while (old_mems.is_nonempty()) {
4999     Node* old_mem = old_mems.node();
5000     uint  old_cnt = old_mems.index();
5001     old_mems.pop();
5002     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
5003   }
5004 #endif
5005 }
5006 
5007 #ifndef PRODUCT
5008 int ConnectionGraph::_no_escape_counter = 0;
5009 int ConnectionGraph::_arg_escape_counter = 0;
5010 int ConnectionGraph::_global_escape_counter = 0;
5011 
5012 static const char *node_type_names[] = {
5013   "UnknownType",
5014   "JavaObject",
5015   "LocalVar",
5016   "Field",
5017   "Arraycopy"
5018 };
5019 
5020 static const char *esc_names[] = {
5021   "UnknownEscape",
5022   "NoEscape",
5023   "ArgEscape",
5024   "GlobalEscape"
5025 };
5026 
5027 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
5028   NodeType nt = node_type();
5029   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
5030   if (print_state) {
5031     EscapeState es = escape_state();
5032     EscapeState fields_es = fields_escape_state();
5033     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
5034     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
5035       out->print("NSR ");
5036     }
5037   }
5038 }
5039 
5040 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
5041   dump_header(print_state, out);
5042   if (is_Field()) {
5043     FieldNode* f = (FieldNode*)this;
5044     if (f->is_oop()) {
5045       out->print("oop ");
5046     }
5047     if (f->offset() > 0) {
5048       out->print("+%d ", f->offset());
5049     }
5050     out->print("(");
5051     for (BaseIterator i(f); i.has_next(); i.next()) {
5052       PointsToNode* b = i.get();
5053       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
5054     }
5055     out->print(" )");
5056   }
5057   out->print("[");
5058   for (EdgeIterator i(this); i.has_next(); i.next()) {
5059     PointsToNode* e = i.get();
5060     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
5061   }
5062   out->print(" [");
5063   for (UseIterator i(this); i.has_next(); i.next()) {
5064     PointsToNode* u = i.get();
5065     bool is_base = false;
5066     if (PointsToNode::is_base_use(u)) {
5067       is_base = true;
5068       u = PointsToNode::get_use_node(u)->as_Field();
5069     }
5070     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
5071   }
5072   out->print(" ]]  ");
5073   if (_node == nullptr) {
5074     out->print("<null>%s", newline ? "\n" : "");
5075   } else {
5076     _node->dump(newline ? "\n" : "", false, out);
5077   }
5078 }
5079 
5080 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
5081   bool first = true;
5082   int ptnodes_length = ptnodes_worklist.length();
5083   for (int i = 0; i < ptnodes_length; i++) {
5084     PointsToNode *ptn = ptnodes_worklist.at(i);
5085     if (ptn == nullptr || !ptn->is_JavaObject()) {
5086       continue;
5087     }
5088     PointsToNode::EscapeState es = ptn->escape_state();
5089     if ((es != PointsToNode::NoEscape) && !Verbose) {
5090       continue;
5091     }
5092     Node* n = ptn->ideal_node();
5093     if (n->is_Allocate() || (n->is_CallStaticJava() &&
5094                              n->as_CallStaticJava()->is_boxing_method())) {
5095       if (first) {
5096         tty->cr();
5097         tty->print("======== Connection graph for ");
5098         _compile->method()->print_short_name();
5099         tty->cr();
5100         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
5101                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
5102         tty->cr();
5103         first = false;
5104       }
5105       ptn->dump();
5106       // Print all locals and fields which reference this allocation
5107       for (UseIterator j(ptn); j.has_next(); j.next()) {
5108         PointsToNode* use = j.get();
5109         if (use->is_LocalVar()) {
5110           use->dump(Verbose);
5111         } else if (Verbose) {
5112           use->dump();
5113         }
5114       }
5115       tty->cr();
5116     }
5117   }
5118 }
5119 
5120 void ConnectionGraph::print_statistics() {
5121   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", Atomic::load(&_no_escape_counter), Atomic::load(&_arg_escape_counter), Atomic::load(&_global_escape_counter));
5122 }
5123 
5124 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5125   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5126     return;
5127   }
5128   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5129     JavaObjectNode* ptn = java_objects_worklist.at(next);
5130     if (ptn->ideal_node()->is_Allocate()) {
5131       if (ptn->escape_state() == PointsToNode::NoEscape) {
5132         Atomic::inc(&ConnectionGraph::_no_escape_counter);
5133       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5134         Atomic::inc(&ConnectionGraph::_arg_escape_counter);
5135       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5136         Atomic::inc(&ConnectionGraph::_global_escape_counter);
5137       } else {
5138         assert(false, "Unexpected Escape State");
5139       }
5140     }
5141   }
5142 }
5143 
5144 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5145   if (_compile->directive()->TraceEscapeAnalysisOption) {
5146     assert(ptn != nullptr, "should not be null");
5147     assert(reason != nullptr, "should not be null");
5148     ptn->dump_header(true);
5149     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5150     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5151     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5152   }
5153 }
5154 
5155 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5156   if (_compile->directive()->TraceEscapeAnalysisOption) {
5157     stringStream ss;
5158     ss.print("propagated from: ");
5159     from->dump(true, &ss, false);
5160     return ss.as_string();
5161   } else {
5162     return nullptr;
5163   }
5164 }
5165 
5166 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5167   if (_compile->directive()->TraceEscapeAnalysisOption) {
5168     stringStream ss;
5169     ss.print("escapes as arg to:");
5170     call->dump("", false, &ss);
5171     return ss.as_string();
5172   } else {
5173     return nullptr;
5174   }
5175 }
5176 
5177 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5178   if (_compile->directive()->TraceEscapeAnalysisOption) {
5179     stringStream ss;
5180     ss.print("is merged with other object: ");
5181     other->dump_header(true, &ss);
5182     return ss.as_string();
5183   } else {
5184     return nullptr;
5185   }
5186 }
5187 
5188 #endif
5189 
5190 void ConnectionGraph::record_for_optimizer(Node *n) {
5191   _igvn->_worklist.push(n);
5192   _igvn->add_users_to_worklist(n);
5193 }