1 /*
   2  * Copyright (c) 2005, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"

  31 #include "memory/resourceArea.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"

  39 #include "opto/locknode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),
  59   _igvn(igvn),
  60   _invocation(invocation),
  61   _build_iterations(0),
  62   _build_time(0.),
  63   _node_map(C->comp_arena()) {
  64   // Add unknown java object.
  65   add_java_object(C->top(), PointsToNode::GlobalEscape);
  66   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  67   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  68   // Add ConP and ConN null oop nodes
  69   Node* oop_null = igvn->zerocon(T_OBJECT);
  70   assert(oop_null->_idx < nodes_size(), "should be created already");
  71   add_java_object(oop_null, PointsToNode::NoEscape);
  72   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  73   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  74   if (UseCompressedOops) {
  75     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  76     assert(noop_null->_idx < nodes_size(), "should be created already");
  77     map_ideal_node(noop_null, null_obj);
  78   }
  79 }
  80 
  81 bool ConnectionGraph::has_candidates(Compile *C) {
  82   // EA brings benefits only when the code has allocations and/or locks which
  83   // are represented by ideal Macro nodes.
  84   int cnt = C->macro_count();
  85   for (int i = 0; i < cnt; i++) {
  86     Node *n = C->macro_node(i);
  87     if (n->is_Allocate()) {
  88       return true;
  89     }
  90     if (n->is_Lock()) {
  91       Node* obj = n->as_Lock()->obj_node()->uncast();
  92       if (!(obj->is_Parm() || obj->is_Con())) {
  93         return true;
  94       }
  95     }
  96     if (n->is_CallStaticJava() &&
  97         n->as_CallStaticJava()->is_boxing_method()) {
  98       return true;
  99     }
 100   }
 101   return false;
 102 }
 103 
 104 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 105   Compile::TracePhase tp(Phase::_t_escapeAnalysis);
 106   ResourceMark rm;
 107 
 108   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 109   // to create space for them in ConnectionGraph::_nodes[].
 110   Node* oop_null = igvn->zerocon(T_OBJECT);
 111   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 112   int invocation = 0;
 113   if (C->congraph() != nullptr) {
 114     invocation = C->congraph()->_invocation + 1;
 115   }
 116   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 117   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(congraph);)
 118   // Perform escape analysis
 119   if (congraph->compute_escape()) {
 120     // There are non escaping objects.
 121     C->set_congraph(congraph);
 122   }
 123   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(nullptr);)
 124   // Cleanup.
 125   if (oop_null->outcnt() == 0) {
 126     igvn->hash_delete(oop_null);
 127   }
 128   if (noop_null->outcnt() == 0) {
 129     igvn->hash_delete(noop_null);
 130   }
 131 
 132   C->print_method(PHASE_AFTER_EA, 2);
 133 }
 134 
 135 bool ConnectionGraph::compute_escape() {
 136   Compile* C = _compile;
 137   PhaseGVN* igvn = _igvn;
 138 
 139   // Worklists used by EA.
 140   Unique_Node_List delayed_worklist;
 141   Unique_Node_List reducible_merges;
 142   GrowableArray<Node*> alloc_worklist;
 143   GrowableArray<Node*> ptr_cmp_worklist;
 144   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 145   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 146   GrowableArray<PointsToNode*>   ptnodes_worklist;
 147   GrowableArray<JavaObjectNode*> java_objects_worklist;
 148   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 149   GrowableArray<FieldNode*>      oop_fields_worklist;
 150   GrowableArray<SafePointNode*>  sfn_worklist;
 151   GrowableArray<MergeMemNode*>   mergemem_worklist;
 152   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 153 
 154   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 155 
 156   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 157   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 158   // Initialize worklist
 159   if (C->root() != nullptr) {
 160     ideal_nodes.push(C->root());
 161   }
 162   // Processed ideal nodes are unique on ideal_nodes list
 163   // but several ideal nodes are mapped to the phantom_obj.
 164   // To avoid duplicated entries on the following worklists
 165   // add the phantom_obj only once to them.
 166   ptnodes_worklist.append(phantom_obj);
 167   java_objects_worklist.append(phantom_obj);
 168   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 169     Node* n = ideal_nodes.at(next);










 170     // Create PointsTo nodes and add them to Connection Graph. Called
 171     // only once per ideal node since ideal_nodes is Unique_Node list.
 172     add_node_to_connection_graph(n, &delayed_worklist);
 173     PointsToNode* ptn = ptnode_adr(n->_idx);
 174     if (ptn != nullptr && ptn != phantom_obj) {
 175       ptnodes_worklist.append(ptn);
 176       if (ptn->is_JavaObject()) {
 177         java_objects_worklist.append(ptn->as_JavaObject());
 178         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 179             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 180           // Only allocations and java static calls results are interesting.
 181           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 182         }
 183       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 184         oop_fields_worklist.append(ptn->as_Field());
 185       }
 186     }
 187     // Collect some interesting nodes for further use.
 188     switch (n->Opcode()) {
 189       case Op_MergeMem:
 190         // Collect all MergeMem nodes to add memory slices for
 191         // scalar replaceable objects in split_unique_types().
 192         mergemem_worklist.append(n->as_MergeMem());
 193         break;
 194       case Op_CmpP:
 195       case Op_CmpN:
 196         // Collect compare pointers nodes.
 197         if (OptimizePtrCompare) {
 198           ptr_cmp_worklist.append(n);
 199         }
 200         break;
 201       case Op_MemBarStoreStore:
 202         // Collect all MemBarStoreStore nodes so that depending on the
 203         // escape status of the associated Allocate node some of them
 204         // may be eliminated.
 205         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 206           storestore_worklist.append(n->as_MemBarStoreStore());
 207         }
 208         // If MemBarStoreStore has a precedent edge add it to the worklist (like MemBarRelease)
 209       case Op_MemBarRelease:
 210         if (n->req() > MemBarNode::Precedent) {
 211           record_for_optimizer(n);
 212         }
 213         break;
 214 #ifdef ASSERT
 215       case Op_AddP:
 216         // Collect address nodes for graph verification.
 217         addp_worklist.append(n);
 218         break;
 219 #endif
 220       case Op_ArrayCopy:
 221         // Keep a list of ArrayCopy nodes so if one of its input is non
 222         // escaping, we can record a unique type
 223         arraycopy_worklist.append(n->as_ArrayCopy());
 224         break;
 225       default:
 226         // not interested now, ignore...
 227         break;
 228     }
 229     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 230       Node* m = n->fast_out(i);   // Get user
 231       ideal_nodes.push(m);
 232     }
 233     if (n->is_SafePoint()) {
 234       sfn_worklist.append(n->as_SafePoint());
 235     }
 236   }
 237 
 238 #ifndef PRODUCT
 239   if (_compile->directive()->TraceEscapeAnalysisOption) {
 240     tty->print("+++++ Initial worklist for ");
 241     _compile->method()->print_name();
 242     tty->print_cr(" (ea_inv=%d)", _invocation);
 243     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 244       PointsToNode* ptn = ptnodes_worklist.at(i);
 245       ptn->dump();
 246     }
 247     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 248   }
 249 #endif
 250 
 251   if (non_escaped_allocs_worklist.length() == 0) {
 252     _collecting = false;
 253     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 254     return false; // Nothing to do.
 255   }
 256   // Add final simple edges to graph.
 257   while(delayed_worklist.size() > 0) {
 258     Node* n = delayed_worklist.pop();
 259     add_final_edges(n);
 260   }
 261 
 262 #ifdef ASSERT
 263   if (VerifyConnectionGraph) {
 264     // Verify that no new simple edges could be created and all
 265     // local vars has edges.
 266     _verify = true;
 267     int ptnodes_length = ptnodes_worklist.length();
 268     for (int next = 0; next < ptnodes_length; ++next) {
 269       PointsToNode* ptn = ptnodes_worklist.at(next);
 270       add_final_edges(ptn->ideal_node());
 271       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 272         ptn->dump();
 273         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 274       }
 275     }
 276     _verify = false;
 277   }
 278 #endif
 279   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 280   // processing, calls to CI to resolve symbols (types, fields, methods)
 281   // referenced in bytecode. During symbol resolution VM may throw
 282   // an exception which CI cleans and converts to compilation failure.
 283   if (C->failing()) {
 284     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 285     return false;
 286   }
 287 
 288   _compile->print_method(PHASE_EA_AFTER_INITIAL_CONGRAPH, 4);
 289 
 290   // 2. Finish Graph construction by propagating references to all
 291   //    java objects through graph.
 292   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 293                                  java_objects_worklist, oop_fields_worklist)) {
 294     // All objects escaped or hit time or iterations limits.
 295     _collecting = false;
 296     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 297     return false;
 298   }
 299 
 300   _compile->print_method(PHASE_EA_AFTER_COMPLETE_CONGRAPH, 4);
 301 
 302   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 303   //    scalar replaceable allocations on alloc_worklist for processing
 304   //    in split_unique_types().
 305   GrowableArray<JavaObjectNode*> jobj_worklist;
 306   int non_escaped_length = non_escaped_allocs_worklist.length();
 307   bool found_nsr_alloc = false;
 308   for (int next = 0; next < non_escaped_length; next++) {
 309     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 310     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 311     Node* n = ptn->ideal_node();
 312     if (n->is_Allocate()) {
 313       n->as_Allocate()->_is_non_escaping = noescape;
 314     }
 315     if (noescape && ptn->scalar_replaceable()) {
 316       adjust_scalar_replaceable_state(ptn, reducible_merges);
 317       if (ptn->scalar_replaceable()) {
 318         jobj_worklist.push(ptn);
 319       } else {
 320         found_nsr_alloc = true;
 321       }
 322     }
 323     _compile->print_method(PHASE_EA_ADJUST_SCALAR_REPLACEABLE_ITER, 6, n);
 324   }
 325 
 326   // Propagate NSR (Not Scalar Replaceable) state.
 327   if (found_nsr_alloc) {
 328     find_scalar_replaceable_allocs(jobj_worklist, reducible_merges);
 329   }
 330 
 331   // alloc_worklist will be processed in reverse push order.
 332   // Therefore the reducible Phis will be processed for last and that's what we
 333   // want because by then the scalarizable inputs of the merge will already have
 334   // an unique instance type.
 335   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 336     Node* n = reducible_merges.at(i);
 337     alloc_worklist.append(n);
 338   }
 339 
 340   for (int next = 0; next < jobj_worklist.length(); ++next) {
 341     JavaObjectNode* jobj = jobj_worklist.at(next);
 342     if (jobj->scalar_replaceable()) {
 343       alloc_worklist.append(jobj->ideal_node());
 344     }
 345   }
 346 
 347 #ifdef ASSERT
 348   if (VerifyConnectionGraph) {
 349     // Verify that graph is complete - no new edges could be added or needed.
 350     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 351                             java_objects_worklist, addp_worklist);
 352   }
 353   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 354   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 355          null_obj->edge_count() == 0 &&
 356          !null_obj->arraycopy_src() &&
 357          !null_obj->arraycopy_dst(), "sanity");
 358 #endif
 359 
 360   _collecting = false;
 361 
 362   _compile->print_method(PHASE_EA_AFTER_PROPAGATE_NSR, 4);
 363   } // TracePhase t3("connectionGraph")
 364 
 365   // 4. Optimize ideal graph based on EA information.
 366   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 367   if (has_non_escaping_obj) {
 368     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 369   }
 370 
 371 #ifndef PRODUCT
 372   if (PrintEscapeAnalysis) {
 373     dump(ptnodes_worklist); // Dump ConnectionGraph
 374   }
 375 #endif
 376 
 377 #ifdef ASSERT
 378   if (VerifyConnectionGraph) {
 379     int alloc_length = alloc_worklist.length();
 380     for (int next = 0; next < alloc_length; ++next) {
 381       Node* n = alloc_worklist.at(next);
 382       PointsToNode* ptn = ptnode_adr(n->_idx);
 383       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 384     }
 385   }
 386 
 387   if (VerifyReduceAllocationMerges) {
 388     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 389       Node* n = reducible_merges.at(i);
 390       if (!can_reduce_phi(n->as_Phi())) {
 391         TraceReduceAllocationMerges = true;
 392         n->dump(2);
 393         n->dump(-2);
 394         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 395       }
 396     }
 397   }
 398 #endif
 399 
 400   _compile->print_method(PHASE_EA_AFTER_GRAPH_OPTIMIZATION, 4);
 401 
 402   // 5. Separate memory graph for scalar replaceable allcations.
 403   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 404   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 405     assert(C->do_aliasing(), "Aliasing should be enabled");
 406     // Now use the escape information to create unique types for
 407     // scalar replaceable objects.
 408     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 409     if (C->failing()) {
 410       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 411       return false;
 412     }
 413 
 414 #ifdef ASSERT
 415   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 416     tty->print("=== No allocations eliminated for ");
 417     C->method()->print_short_name();
 418     if (!EliminateAllocations) {
 419       tty->print(" since EliminateAllocations is off ===");
 420     } else if(!has_scalar_replaceable_candidates) {
 421       tty->print(" since there are no scalar replaceable candidates ===");
 422     }
 423     tty->cr();
 424 #endif
 425   }
 426 








 427   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES, 4);
 428 
 429   // 6. Reduce allocation merges used as debug information. This is done after
 430   // split_unique_types because the methods used to create SafePointScalarObject
 431   // need to traverse the memory graph to find values for object fields. We also
 432   // set to null the scalarized inputs of reducible Phis so that the Allocate
 433   // that they point can be later scalar replaced.
 434   bool delay = _igvn->delay_transform();
 435   _igvn->set_delay_transform(true);
 436   for (uint i = 0; i < reducible_merges.size(); i++) {
 437     Node* n = reducible_merges.at(i);
 438     if (n->outcnt() > 0) {
 439       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 440         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 441         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 442         return false;
 443       }
 444 
 445       // Now we set the scalar replaceable inputs of ophi to null, which is
 446       // the last piece that would prevent it from being scalar replaceable.
 447       reset_scalar_replaceable_entries(n->as_Phi());
 448     }
 449   }
 450   _igvn->set_delay_transform(delay);
 451 
 452   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 453   // java calls if they pass ArgEscape objects as parameters.
 454   if (has_non_escaping_obj &&
 455       (C->env()->should_retain_local_variables() ||
 456        C->env()->jvmti_can_get_owned_monitor_info() ||
 457        C->env()->jvmti_can_walk_any_space() ||
 458        DeoptimizeObjectsALot)) {
 459     int sfn_length = sfn_worklist.length();
 460     for (int next = 0; next < sfn_length; next++) {
 461       SafePointNode* sfn = sfn_worklist.at(next);
 462       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 463       if (sfn->is_CallJava()) {
 464         CallJavaNode* call = sfn->as_CallJava();
 465         call->set_arg_escape(has_arg_escape(call));
 466       }
 467     }
 468   }
 469 
 470   _compile->print_method(PHASE_EA_AFTER_REDUCE_PHI_ON_SAFEPOINTS, 4);
 471 
 472   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 473   return has_non_escaping_obj;
 474 }
 475 
 476 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 477 // if at least one scalar replaceable allocation participates in the merge.
 478 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 479   bool found_sr_allocate = false;
 480 
 481   for (uint i = 1; i < ophi->req(); i++) {
 482     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 483     if (ptn != nullptr && ptn->scalar_replaceable()) {
 484       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 485 
 486       // Don't handle arrays.
 487       if (alloc->Opcode() != Op_Allocate) {
 488         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 489         continue;
 490       }
 491 
 492       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 493         found_sr_allocate = true;
 494       } else {
 495         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 496         ptn->set_scalar_replaceable(false);
 497       }
 498     }
 499   }
 500 
 501   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 502   return found_sr_allocate;
 503 }
 504 
 505 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 506 // I require the 'other' input to be a constant so that I can move the Cmp
 507 // around safely.
 508 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 509   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 510   Node* left = cmp->in(1);
 511   Node* right = cmp->in(2);
 512 
 513   return (left == n || right == n) &&
 514          (left->is_Con() || right->is_Con()) &&
 515          cmp->outcnt() == 1;
 516 }
 517 
 518 // We are going to check if any of the SafePointScalarMerge entries
 519 // in the SafePoint reference the Phi that we are checking.
 520 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 521   JVMState *jvms = sfpt->jvms();
 522 
 523   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 524     Node* sfpt_in = sfpt->in(i);
 525     if (sfpt_in->is_SafePointScalarMerge()) {
 526       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 527       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 528       if (nsr_ptr == n) {
 529         return true;
 530       }
 531     }
 532   }
 533 
 534   return false;
 535 }
 536 
 537 // Check if we are able to untangle the merge. The following patterns are
 538 // supported:
 539 //  - Phi -> SafePoints
 540 //  - Phi -> CmpP/N
 541 //  - Phi -> AddP -> Load
 542 //  - Phi -> CastPP -> SafePoints
 543 //  - Phi -> CastPP -> AddP -> Load
 544 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 545   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 546     Node* use = n->fast_out(i);
 547 
 548     if (use->is_SafePoint()) {
 549       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 550         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 551         return false;
 552       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 553         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 554         return false;
 555       }
 556     } else if (use->is_AddP()) {
 557       Node* addp = use;
 558       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 559         Node* use_use = addp->fast_out(j);
 560         const Type* load_type = _igvn->type(use_use);
 561 
 562         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 563           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 564           return false;
 565         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 566           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 567           return false;
 568         }
 569       }
 570     } else if (nesting > 0) {
 571       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 572       return false;
 573     } else if (use->is_CastPP()) {
 574       const Type* cast_t = _igvn->type(use);
 575       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 576 #ifndef PRODUCT
 577         if (TraceReduceAllocationMerges) {
 578           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 579           use->dump();
 580         }
 581 #endif
 582         return false;
 583       }
 584 
 585       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 586       if (!is_trivial_control) {
 587         // If it's not a trivial control then we check if we can reduce the
 588         // CmpP/N used by the If controlling the cast.
 589         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 590           Node* iff = use->in(0)->in(0);
 591           // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode,
 592           // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases.
 593           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 594           if (can_reduce) {
 595             Node* iff_cmp = iff->in(1)->in(1);
 596             int opc = iff_cmp->Opcode();
 597             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 598           }
 599           if (!can_reduce) {
 600 #ifndef PRODUCT
 601             if (TraceReduceAllocationMerges) {
 602               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 603               n->dump(5);
 604             }
 605 #endif
 606             return false;
 607           }
 608         }
 609       }
 610 
 611       if (!can_reduce_check_users(use, nesting+1)) {
 612         return false;
 613       }
 614     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 615       if (!can_reduce_cmp(n, use)) {
 616         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 617         return false;
 618       }
 619     } else {
 620       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 621       return false;
 622     }
 623   }
 624 
 625   return true;
 626 }
 627 
 628 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 629 // only used in some certain code shapes. Check comments in
 630 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 631 // details.
 632 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 633   // If there was an error attempting to reduce allocation merges for this
 634   // method we might have disabled the compilation and be retrying with RAM
 635   // disabled.
 636   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 637     return false;
 638   }
 639 
 640   const Type* phi_t = _igvn->type(ophi);
 641   if (phi_t == nullptr ||
 642       phi_t->make_ptr() == nullptr ||
 643       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 644     return false;
 645   }
 646 
 647   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 648     return false;
 649   }
 650 
 651   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 652   return true;
 653 }
 654 
 655 // This method will return a CmpP/N that we need to use on the If controlling a
 656 // CastPP after it was split. This method is only called on bases that are
 657 // nullable therefore we always need a controlling if for the splitted CastPP.
 658 //
 659 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 660 // If the CastPP currently doesn't have a control then the CmpP/N will be
 661 // against the null constant, otherwise it will be against the constant input of
 662 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 663 // case because we have constraints on it and because the CastPP has a control
 664 // input.
 665 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 666   const Type* t = base->bottom_type();
 667   Node* con = nullptr;
 668 
 669   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 670     con = _igvn->zerocon(t->basic_type());
 671   } else {
 672     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 673     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 674     Node* bol = curr_ctrl->in(0)->in(1);
 675     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 676     Node* curr_cmp = bol->in(1);
 677     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 678     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 679   }
 680 
 681   return CmpNode::make(base, con, t->basic_type());
 682 }
 683 
 684 // This method 'specializes' the CastPP passed as parameter to the base passed
 685 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 686 // means that the CastPP now will be specific for a given base instead of a Phi.
 687 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 688 // of the CastPP is a copy of the current one (if there is one) or a check
 689 // against null.
 690 //
 691 // Before:
 692 //
 693 //    C1     C2  ... Cn
 694 //     \      |      /
 695 //      \     |     /
 696 //       \    |    /
 697 //        \   |   /
 698 //         \  |  /
 699 //          \ | /
 700 //           \|/
 701 //          Region     B1      B2  ... Bn
 702 //            |          \      |      /
 703 //            |           \     |     /
 704 //            |            \    |    /
 705 //            |             \   |   /
 706 //            |              \  |  /
 707 //            |               \ | /
 708 //            ---------------> Phi
 709 //                              |
 710 //                      X       |
 711 //                      |       |
 712 //                      |       |
 713 //                      ------> CastPP
 714 //
 715 // After (only partial illustration; base = B2, current_control = C2):
 716 //
 717 //                      C2
 718 //                      |
 719 //                      If
 720 //                     / \
 721 //                    /   \
 722 //                   T     F
 723 //                  /\     /
 724 //                 /  \   /
 725 //                /    \ /
 726 //      C1    CastPP   Reg        Cn
 727 //       |              |          |
 728 //       |              |          |
 729 //       |              |          |
 730 //       -------------- | ----------
 731 //                    | | |
 732 //                    Region
 733 //
 734 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 735   Node* control_successor  = current_control->unique_ctrl_out();
 736   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 737   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 738   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 739   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 740   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 741   Node* end_region         = _igvn->transform(new RegionNode(3));
 742 
 743   // Insert the new if-else-region block into the graph
 744   end_region->set_req(1, not_eq_control);
 745   end_region->set_req(2, yes_eq_control);
 746   control_successor->replace_edge(current_control, end_region, _igvn);
 747 
 748   _igvn->_worklist.push(current_control);
 749   _igvn->_worklist.push(control_successor);
 750 
 751   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, nullptr));
 752 }
 753 
 754 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 755   const Type* load_type = _igvn->type(curr_load);
 756   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 757   Node* memory = curr_load->in(MemNode::Memory);
 758 
 759   // The data_phi merging the loads needs to be nullable if
 760   // we are loading pointers.
 761   if (load_type->make_ptr() != nullptr) {
 762     if (load_type->isa_narrowoop()) {
 763       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 764     } else if (load_type->isa_ptr()) {
 765       load_type = load_type->meet(TypePtr::NULL_PTR);
 766     } else {
 767       assert(false, "Unexpected load ptr type.");
 768     }
 769   }
 770 
 771   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 772 
 773   for (int i = 1; i < bases_for_loads->length(); i++) {
 774     Node* base = bases_for_loads->at(i);
 775     Node* cmp_region = nullptr;
 776     if (base != nullptr) {
 777       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 778         cmp_region = base->unique_ctrl_out_or_null();
 779         assert(cmp_region != nullptr, "There should be.");
 780         base = base->find_out_with(Op_CastPP);
 781       }
 782 
 783       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 784       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 785       Node* load = curr_load->clone();
 786       load->set_req(0, nullptr);
 787       load->set_req(1, mem);
 788       load->set_req(2, addr);
 789 
 790       if (cmp_region != nullptr) { // see comment on previous if
 791         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 792         intermediate_phi->set_req(1, _igvn->transform(load));
 793         load = intermediate_phi;
 794       }
 795 
 796       data_phi->set_req(i, _igvn->transform(load));
 797     } else {
 798       // Just use the default, which is already in phi
 799     }
 800   }
 801 
 802   // Takes care of updating CG and split_unique_types worklists due
 803   // to cloned AddP->Load.
 804   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 805 
 806   return _igvn->transform(data_phi);
 807 }
 808 
 809 // This method only reduces CastPP fields loads; SafePoints are handled
 810 // separately. The idea here is basically to clone the CastPP and place copies
 811 // on each input of the Phi, including non-scalar replaceable inputs.
 812 // Experimentation shows that the resulting IR graph is simpler that way than if
 813 // we just split the cast through scalar-replaceable inputs.
 814 //
 815 // The reduction process requires that CastPP's control be one of:
 816 //  1) no control,
 817 //  2) the same region as Ophi, or
 818 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 819 //
 820 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 821 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 822 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 823 // juse use a CmpP/N against the null constant.
 824 //
 825 // The If-Then-Else-Region isn't always needed. For instance, if input to
 826 // splitted cast was not nullable (or if it was the null constant) then we don't
 827 // need (shouldn't) use a CastPP at all.
 828 //
 829 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 830 // connect them to the just split CastPPs.
 831 //
 832 // Before (CastPP control is same as Phi):
 833 //
 834 //          Region     Allocate   Null    Call
 835 //            |             \      |      /
 836 //            |              \     |     /
 837 //            |               \    |    /
 838 //            |                \   |   /
 839 //            |                 \  |  /
 840 //            |                  \ | /
 841 //            ------------------> Phi            # Oop Phi
 842 //            |                    |
 843 //            |                    |
 844 //            |                    |
 845 //            |                    |
 846 //            ----------------> CastPP
 847 //                                 |
 848 //                               AddP
 849 //                                 |
 850 //                               Load
 851 //
 852 // After (Very much simplified):
 853 //
 854 //                         Call  Null
 855 //                            \  /
 856 //                            CmpP
 857 //                             |
 858 //                           Bool#NE
 859 //                             |
 860 //                             If
 861 //                            / \
 862 //                           T   F
 863 //                          / \ /
 864 //                         /   R
 865 //                     CastPP  |
 866 //                       |     |
 867 //                     AddP    |
 868 //                       |     |
 869 //                     Load    |
 870 //                         \   |   0
 871 //            Allocate      \  |  /
 872 //                \          \ | /
 873 //               AddP         Phi
 874 //                  \         /
 875 //                 Load      /
 876 //                    \  0  /
 877 //                     \ | /
 878 //                      \|/
 879 //                      Phi        # "Field" Phi
 880 //
 881 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node*> &alloc_worklist) {
 882   Node* ophi = curr_castpp->in(1);
 883   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 884 
 885   // Identify which base should be used for AddP->Load later when spliting the
 886   // CastPP->Loads through ophi. Three kind of values may be stored in this
 887   // array, depending on the nullability status of the corresponding input in
 888   // ophi.
 889   //
 890   //  - nullptr:    Meaning that the base is actually the null constant and therefore
 891   //                we won't try to load from it.
 892   //
 893   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 894   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 895   //                that will 'activate' the CastPp only when the input is not Null.
 896   //
 897   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 898   //                to load directly from it.
 899   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 900 
 901   for (uint i = 1; i < ophi->req(); i++) {
 902     Node* base = ophi->in(i);
 903     const Type* base_t = _igvn->type(base);
 904 
 905     if (base_t->maybe_null()) {
 906       if (base->is_Con()) {
 907         // Nothing todo as bases_for_loads[i] is already null
 908       } else {
 909         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 910         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 911       }
 912     } else {
 913       bases_for_loads.at_put(i, base);
 914     }
 915   }
 916 
 917   // Now let's split the CastPP->Loads through the Phi
 918   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 919     Node* use = curr_castpp->raw_out(i);
 920     if (use->is_AddP()) {
 921       for (int j = use->outcnt()-1; j >= 0;) {
 922         Node* use_use = use->raw_out(j);
 923         assert(use_use->is_Load(), "Expected this to be a Load node.");
 924 
 925         // We can't make an unconditional load from a nullable input. The
 926         // 'split_castpp_load_through_phi` method will add an
 927         // 'If-Then-Else-Region` around nullable bases and only load from them
 928         // when the input is not null.
 929         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 930         _igvn->replace_node(use_use, phi);
 931 
 932         --j;
 933         j = MIN2(j, (int)use->outcnt()-1);
 934       }
 935 
 936       _igvn->remove_dead_node(use);
 937     }
 938     --i;
 939     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 940   }
 941 }
 942 
 943 // This method split a given CmpP/N through the Phi used in one of its inputs.
 944 // As a result we convert a comparison with a pointer to a comparison with an
 945 // integer.
 946 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 947 // while the other must be a constant.
 948 // The splitting process is basically just cloning the CmpP/N above the input
 949 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 950 // can prove at compile time the result of the comparison.
 951 //
 952 // Before:
 953 //
 954 //             in1    in2 ... inN
 955 //              \      |      /
 956 //               \     |     /
 957 //                \    |    /
 958 //                 \   |   /
 959 //                  \  |  /
 960 //                   \ | /
 961 //                    Phi
 962 //                     |   Other
 963 //                     |    /
 964 //                     |   /
 965 //                     |  /
 966 //                    CmpP/N
 967 //
 968 // After:
 969 //
 970 //        in1  Other   in2 Other  inN  Other
 971 //         |    |      |   |      |    |
 972 //         \    |      |   |      |    |
 973 //          \  /       |   /      |    /
 974 //          CmpP/N    CmpP/N     CmpP/N
 975 //          Bool      Bool       Bool
 976 //            \        |        /
 977 //             \       |       /
 978 //              \      |      /
 979 //               \     |     /
 980 //                \    |    /
 981 //                 \   |   /
 982 //                  \  |  /
 983 //                   \ | /
 984 //                    Phi
 985 //                     |
 986 //                     |   Zero
 987 //                     |    /
 988 //                     |   /
 989 //                     |  /
 990 //                     CmpI
 991 //
 992 //
 993 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 994   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 995   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 996 
 997   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 998   Node* zero = _igvn->intcon(0);
 999   Node* one = _igvn->intcon(1);
1000   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
1001 
1002   // This Phi will merge the result of the Cmps split through the Phi
1003   Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT);
1004 
1005   for (uint i=1; i<ophi->req(); i++) {
1006     Node* ophi_input = ophi->in(i);
1007     Node* res_phi_input = nullptr;
1008 
1009     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
1010     if (tcmp->singleton()) {
1011       if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) ||
1012           (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) {
1013         res_phi_input = one;
1014       } else {
1015         res_phi_input = zero;
1016       }
1017     } else {
1018       Node* ncmp = _igvn->transform(cmp->clone());
1019       ncmp->set_req(1, ophi_input);
1020       ncmp->set_req(2, other);
1021       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1022       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1023     }
1024 
1025     res_phi->set_req(i, res_phi_input);
1026   }
1027 
1028   // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask".
1029   Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero));
1030   _igvn->replace_node(cmp, new_cmp);
1031 }
1032 
1033 // Push the newly created AddP on alloc_worklist and patch
1034 // the connection graph. Note that the changes in the CG below
1035 // won't affect the ES of objects since the new nodes have the
1036 // same status as the old ones.
1037 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1038   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1039   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1040   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1041 
1042   if (data_phi == nullptr || !data_phi->is_Phi()) {
1043     // Make this a retry?
1044     return ;
1045   }
1046 
1047   Node* previous_addp = previous_load->in(MemNode::Address);
1048   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1049   for (uint i = 1; i < data_phi->req(); i++) {
1050     Node* new_load = data_phi->in(i);
1051 
1052     if (new_load->is_Phi()) {
1053       // new_load is currently the "intermediate_phi" from an specialized
1054       // CastPP.
1055       new_load = new_load->in(1);
1056     }
1057 
1058     // "new_load" might actually be a constant, parameter, etc.
1059     if (new_load->is_Load()) {
1060       Node* new_addp = new_load->in(MemNode::Address);
1061 
1062       // If new_load is a Load but not from an AddP, it means that the load is folded into another
1063       // load. And since this load is not from a field, we cannot create a unique type for it.
1064       // For example:
1065       //
1066       //   if (b) {
1067       //       Holder h1 = new Holder();
1068       //       Object o = ...;
1069       //       h.o = o.getClass();
1070       //   } else {
1071       //       Holder h2 = ...;
1072       //   }
1073       //   Holder h = Phi(h1, h2);
1074       //   Object r = h.o;
1075       //
1076       // Then, splitting r through the merge point results in:
1077       //
1078       //   if (b) {
1079       //       Holder h1 = new Holder();
1080       //       Object o = ...;
1081       //       h.o = o.getClass();
1082       //       Object o1 = h.o;
1083       //   } else {
1084       //       Holder h2 = ...;
1085       //       Object o2 = h2.o;
1086       //   }
1087       //   Object r = Phi(o1, o2);
1088       //
1089       // In this case, o1 is folded to o.getClass() which is a Load but not from an AddP, but from
1090       // an OopHandle that is loaded from the Klass of o.
1091       if (!new_addp->is_AddP()) {
1092         continue;
1093       }
1094       Node* base = get_addp_base(new_addp);
1095 
1096       // The base might not be something that we can create an unique
1097       // type for. If that's the case we are done with that input.
1098       PointsToNode* jobj_ptn = unique_java_object(base);
1099       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1100         continue;
1101       }
1102 
1103       // Push to alloc_worklist since the base has an unique_type
1104       alloc_worklist.append_if_missing(new_addp);
1105 
1106       // Now let's add the node to the connection graph
1107       _nodes.at_grow(new_addp->_idx, nullptr);
1108       add_field(new_addp, fn->escape_state(), fn->offset());
1109       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1110 
1111       // If the load doesn't load an object then it won't be
1112       // part of the connection graph
1113       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1114       if (curr_load_ptn != nullptr) {
1115         _nodes.at_grow(new_load->_idx, nullptr);
1116         add_local_var(new_load, curr_load_ptn->escape_state());
1117         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1118       }
1119     }
1120   }
1121 }
1122 
1123 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1124   // We'll pass this to 'split_through_phi' so that it'll do the split even
1125   // though the load doesn't have an unique instance type.
1126   bool ignore_missing_instance_id = true;
1127 
1128   // All AddPs are present in the connection graph
1129   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1130 
1131   // Iterate over AddP looking for a Load
1132   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1133     Node* previous_load = previous_addp->raw_out(k);
1134     if (previous_load->is_Load()) {
1135       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1136 
1137       // Takes care of updating CG and split_unique_types worklists due to cloned
1138       // AddP->Load.
1139       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1140 
1141       _igvn->replace_node(previous_load, data_phi);
1142     }
1143     --k;
1144     k = MIN2(k, (int)previous_addp->outcnt()-1);
1145   }
1146 
1147   // Remove the old AddP from the processing list because it's dead now
1148   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1149   alloc_worklist.remove_if_existing(previous_addp);
1150 }
1151 
1152 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1153 // selector is:
1154 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1155 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1156 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1157 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1158   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1159   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1160   uint number_of_sr_objects = 0;
1161   for (uint i = 1; i < ophi->req(); i++) {
1162     Node* base = ophi->in(i);
1163     JavaObjectNode* ptn = unique_java_object(base);
1164 
1165     if (ptn != nullptr && ptn->scalar_replaceable()) {
1166       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1167       selector->set_req(i, sr_obj_idx);
1168       number_of_sr_objects++;
1169     }
1170   }
1171 
1172   return selector->as_Phi();
1173 }
1174 
1175 // Returns true if the AddP node 'n' has at least one base that is a reducible
1176 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1177 // checked instead.
1178 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1179   PointsToNode* ptn = ptnode_adr(n->_idx);
1180   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1181     return false;
1182   }
1183 
1184   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1185     Node* base = i.get()->ideal_node();
1186 
1187     if (reducible_merges.member(base)) {
1188       return true;
1189     }
1190 
1191     if (base->is_CastPP() || base->is_CheckCastPP()) {
1192       base = base->in(1);
1193       if (reducible_merges.member(base)) {
1194         return true;
1195       }
1196     }
1197   }
1198 
1199   return false;
1200 }
1201 
1202 // This method will call its helper method to reduce SafePoint nodes that use
1203 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1204 // "version" of Phi use the same debug information (regarding the Phi).
1205 // Therefore, I collect all safepoints and patch them all at once.
1206 //
1207 // The safepoints using the Phi node have to be processed before safepoints of
1208 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1209 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1210 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1211 // algorithm that process Phi's safepoints will think that the added Phi
1212 // reference is a regular reference.
1213 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1214   PhiNode* selector = create_selector(ophi);
1215   Unique_Node_List safepoints;
1216   Unique_Node_List casts;
1217 
1218   // Just collect the users of the Phis for later processing
1219   // in the needed order.
1220   for (uint i = 0; i < ophi->outcnt(); i++) {
1221     Node* use = ophi->raw_out(i);
1222     if (use->is_SafePoint()) {
1223       safepoints.push(use);
1224     } else if (use->is_CastPP()) {
1225       casts.push(use);
1226     } else {
1227       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1228     }
1229   }
1230 
1231   // Need to process safepoints using the Phi first
1232   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1233     return false;
1234   }
1235 
1236   // Now process CastPP->safepoints
1237   for (uint i = 0; i < casts.size(); i++) {
1238     Node* cast = casts.at(i);
1239     Unique_Node_List cast_sfpts;
1240 
1241     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1242       Node* use_use = cast->fast_out(j);
1243       if (use_use->is_SafePoint()) {
1244         cast_sfpts.push(use_use);
1245       } else {
1246         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1247       }
1248     }
1249 
1250     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1251       return false;
1252     }
1253   }
1254 
1255   return true;
1256 }
1257 
1258 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1259 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1260 // SafePointScalarObjectNode for each scalar replaceable input. Each
1261 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1262 // check detailed description in SafePointScalarMergeNode class header.
1263 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1264   PhaseMacroExpand mexp(*_igvn);
1265   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1266   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1267 
1268   Node* nsr_merge_pointer = ophi;
1269   if (cast != nullptr) {
1270     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1271     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::DependencyType::FloatingNarrowing, nullptr));
1272   }
1273 
1274   for (uint spi = 0; spi < safepoints.size(); spi++) {
1275     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1276     JVMState *jvms      = sfpt->jvms();
1277     uint merge_idx      = (sfpt->req() - jvms->scloff());
1278     int debug_start     = jvms->debug_start();
1279 
1280     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1281     smerge->init_req(0, _compile->root());
1282     _igvn->register_new_node_with_optimizer(smerge);
1283 
1284     // The next two inputs are:
1285     //  (1) A copy of the original pointer to NSR objects.
1286     //  (2) A selector, used to decide if we need to rematerialize an object
1287     //      or use the pointer to a NSR object.
1288     // See more details of these fields in the declaration of SafePointScalarMergeNode
1289     sfpt->add_req(nsr_merge_pointer);
1290     sfpt->add_req(selector);
1291 
1292     for (uint i = 1; i < ophi->req(); i++) {
1293       Node* base = ophi->in(i);
1294       JavaObjectNode* ptn = unique_java_object(base);
1295 
1296       // If the base is not scalar replaceable we don't need to register information about
1297       // it at this time.
1298       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1299         continue;
1300       }
1301 
1302       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1303       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);








1304       if (sobj == nullptr) {

1305         return false;
1306       }
1307 
1308       // Now make a pass over the debug information replacing any references
1309       // to the allocated object with "sobj"
1310       Node* ccpp = alloc->result_cast();
1311       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1312 
1313       // Register the scalarized object as a candidate for reallocation
1314       smerge->add_req(sobj);









1315     }
1316 
1317     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1318     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1319 
1320     // The call to 'replace_edges_in_range' above might have removed the
1321     // reference to ophi that we need at _merge_pointer_idx. The line below make
1322     // sure the reference is maintained.
1323     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1324     _igvn->_worklist.push(sfpt);
1325   }
1326 
1327   return true;
1328 }
1329 
1330 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node*> &alloc_worklist) {
1331   bool delay = _igvn->delay_transform();
1332   _igvn->set_delay_transform(true);
1333   _igvn->hash_delete(ophi);
1334 
1335   // Copying all users first because some will be removed and others won't.
1336   // Ophi also may acquire some new users as part of Cast reduction.
1337   // CastPPs also need to be processed before CmpPs.
1338   Unique_Node_List castpps;
1339   Unique_Node_List others;
1340   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1341     Node* use = ophi->fast_out(i);
1342 
1343     if (use->is_CastPP()) {
1344       castpps.push(use);
1345     } else if (use->is_AddP() || use->is_Cmp()) {
1346       others.push(use);
1347     } else {
1348       // Safepoints to be processed later; other users aren't expected here
1349       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1350     }
1351   }
1352 
1353   _compile->print_method(PHASE_EA_BEFORE_PHI_REDUCTION, 5, ophi);
1354 
1355   // CastPPs need to be processed before Cmps because during the process of
1356   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1357   // by the If controlling the CastPP.
1358   for (uint i = 0; i < castpps.size(); i++) {
1359     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist);
1360     _compile->print_method(PHASE_EA_AFTER_PHI_CASTPP_REDUCTION, 6, castpps.at(i));
1361   }
1362 
1363   for (uint i = 0; i < others.size(); i++) {
1364     Node* use = others.at(i);
1365 
1366     if (use->is_AddP()) {
1367       reduce_phi_on_field_access(use, alloc_worklist);
1368       _compile->print_method(PHASE_EA_AFTER_PHI_ADDP_REDUCTION, 6, use);
1369     } else if(use->is_Cmp()) {
1370       reduce_phi_on_cmp(use);
1371       _compile->print_method(PHASE_EA_AFTER_PHI_CMP_REDUCTION, 6, use);
1372     }
1373   }
1374 
1375   _igvn->set_delay_transform(delay);
1376 }
1377 
1378 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1379   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1380   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1381   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1382   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1383 
1384   for (uint i = 1; i < ophi->req(); i++) {
1385     Node* base          = ophi->in(i);
1386     JavaObjectNode* ptn = unique_java_object(base);
1387 
1388     if (ptn != nullptr && ptn->scalar_replaceable()) {
1389       new_phi->set_req(i, null_ptr);
1390     } else {
1391       new_phi->set_req(i, ophi->in(i));
1392     }
1393   }
1394 
1395   for (int i = ophi->outcnt()-1; i >= 0;) {
1396     Node* out = ophi->raw_out(i);
1397 
1398     if (out->is_ConstraintCast()) {
1399       const Type* out_t = _igvn->type(out)->make_ptr();
1400       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1401       bool change = out_new_t != out_t;
1402 
1403       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1404         Node* out2 = out->raw_out(j);
1405         if (!out2->is_SafePoint()) {
1406           change = false;
1407           break;
1408         }
1409       }
1410 
1411       if (change) {
1412         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::DependencyType::NonFloatingNarrowing, nullptr);
1413         _igvn->replace_node(out, new_cast);
1414         _igvn->register_new_node_with_optimizer(new_cast);
1415       }
1416     }
1417 
1418     --i;
1419     i = MIN2(i, (int)ophi->outcnt()-1);
1420   }
1421 
1422   _igvn->replace_node(ophi, new_phi);
1423 }
1424 
1425 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1426   if (!C->do_reduce_allocation_merges()) return;
1427 
1428   Unique_Node_List ideal_nodes;
1429   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1430   ideal_nodes.push(root);
1431 
1432   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1433     Node* n = ideal_nodes.at(next);
1434 
1435     if (n->is_SafePointScalarMerge()) {
1436       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1437 
1438       // Validate inputs of merge
1439       for (uint i = 1; i < merge->req(); i++) {
1440         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1441           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1442           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1443         }
1444       }
1445 
1446       // Validate users of merge
1447       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1448         Node* sfpt = merge->fast_out(i);
1449         if (sfpt->is_SafePoint()) {
1450           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1451 
1452           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1453             assert(false, "SafePointScalarMerge nodes can't be nested.");
1454             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1455           }
1456         } else {
1457           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1458           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1459         }
1460       }
1461     }
1462 
1463     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1464       Node* m = n->fast_out(i);
1465       ideal_nodes.push(m);
1466     }
1467   }
1468 }
1469 
1470 // Returns true if there is an object in the scope of sfn that does not escape globally.
1471 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1472   Compile* C = _compile;
1473   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1474     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1475         DeoptimizeObjectsALot) {
1476       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1477       int num_locs = jvms->loc_size();
1478       for (int idx = 0; idx < num_locs; idx++) {
1479         Node* l = sfn->local(jvms, idx);
1480         if (not_global_escape(l)) {
1481           return true;
1482         }
1483       }
1484     }
1485     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1486         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1487       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1488       int num_mon = jvms->nof_monitors();
1489       for (int idx = 0; idx < num_mon; idx++) {
1490         Node* m = sfn->monitor_obj(jvms, idx);
1491         if (m != nullptr && not_global_escape(m)) {
1492           return true;
1493         }
1494       }
1495     }
1496   }
1497   return false;
1498 }
1499 
1500 // Returns true if at least one of the arguments to the call is an object
1501 // that does not escape globally.
1502 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1503   if (call->method() != nullptr) {
1504     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1505     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1506       Node* p = call->in(idx);
1507       if (not_global_escape(p)) {
1508         return true;
1509       }
1510     }
1511   } else {
1512     const char* name = call->as_CallStaticJava()->_name;
1513     assert(name != nullptr, "no name");
1514     // no arg escapes through uncommon traps
1515     if (strcmp(name, "uncommon_trap") != 0) {
1516       // process_call_arguments() assumes that all arguments escape globally
1517       const TypeTuple* d = call->tf()->domain();
1518       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1519         const Type* at = d->field_at(i);
1520         if (at->isa_oopptr() != nullptr) {
1521           return true;
1522         }
1523       }
1524     }
1525   }
1526   return false;
1527 }
1528 
1529 
1530 
1531 // Utility function for nodes that load an object
1532 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1533   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1534   // ThreadLocal has RawPtr type.
1535   const Type* t = _igvn->type(n);
1536   if (t->make_ptr() != nullptr) {
1537     Node* adr = n->in(MemNode::Address);
1538 #ifdef ASSERT
1539     if (!adr->is_AddP()) {
1540       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1541     } else {
1542       assert((ptnode_adr(adr->_idx) == nullptr ||
1543               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1544     }
1545 #endif
1546     add_local_var_and_edge(n, PointsToNode::NoEscape,
1547                            adr, delayed_worklist);
1548   }
1549 }
1550 
1551 // Populate Connection Graph with PointsTo nodes and create simple
1552 // connection graph edges.
1553 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1554   assert(!_verify, "this method should not be called for verification");
1555   PhaseGVN* igvn = _igvn;
1556   uint n_idx = n->_idx;
1557   PointsToNode* n_ptn = ptnode_adr(n_idx);
1558   if (n_ptn != nullptr) {
1559     return; // No need to redefine PointsTo node during first iteration.
1560   }
1561   int opcode = n->Opcode();
1562   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
1563   if (gc_handled) {
1564     return; // Ignore node if already handled by GC.
1565   }
1566 
1567   if (n->is_Call()) {
1568     // Arguments to allocation and locking don't escape.
1569     if (n->is_AbstractLock()) {
1570       // Put Lock and Unlock nodes on IGVN worklist to process them during
1571       // first IGVN optimization when escape information is still available.
1572       record_for_optimizer(n);
1573     } else if (n->is_Allocate()) {
1574       add_call_node(n->as_Call());
1575       record_for_optimizer(n);
1576     } else {
1577       if (n->is_CallStaticJava()) {
1578         const char* name = n->as_CallStaticJava()->_name;
1579         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1580           return; // Skip uncommon traps
1581         }
1582       }
1583       // Don't mark as processed since call's arguments have to be processed.
1584       delayed_worklist->push(n);
1585       // Check if a call returns an object.
1586       if ((n->as_Call()->returns_pointer() &&
1587            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1588           (n->is_CallStaticJava() &&
1589            n->as_CallStaticJava()->is_boxing_method())) {
1590         add_call_node(n->as_Call());











1591       }
1592     }
1593     return;
1594   }
1595   // Put this check here to process call arguments since some call nodes
1596   // point to phantom_obj.
1597   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1598     return; // Skip predefined nodes.
1599   }
1600   switch (opcode) {
1601     case Op_AddP: {
1602       Node* base = get_addp_base(n);
1603       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1604       // Field nodes are created for all field types. They are used in
1605       // adjust_scalar_replaceable_state() and split_unique_types().
1606       // Note, non-oop fields will have only base edges in Connection
1607       // Graph because such fields are not used for oop loads and stores.
1608       int offset = address_offset(n, igvn);
1609       add_field(n, PointsToNode::NoEscape, offset);
1610       if (ptn_base == nullptr) {
1611         delayed_worklist->push(n); // Process it later.
1612       } else {
1613         n_ptn = ptnode_adr(n_idx);
1614         add_base(n_ptn->as_Field(), ptn_base);
1615       }
1616       break;
1617     }
1618     case Op_CastX2P: {

1619       map_ideal_node(n, phantom_obj);
1620       break;
1621     }

1622     case Op_CastPP:
1623     case Op_CheckCastPP:
1624     case Op_EncodeP:
1625     case Op_DecodeN:
1626     case Op_EncodePKlass:
1627     case Op_DecodeNKlass: {
1628       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1629       break;
1630     }
1631     case Op_CMoveP: {
1632       add_local_var(n, PointsToNode::NoEscape);
1633       // Do not add edges during first iteration because some could be
1634       // not defined yet.
1635       delayed_worklist->push(n);
1636       break;
1637     }
1638     case Op_ConP:
1639     case Op_ConN:
1640     case Op_ConNKlass: {
1641       // assume all oop constants globally escape except for null
1642       PointsToNode::EscapeState es;
1643       const Type* t = igvn->type(n);
1644       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1645         es = PointsToNode::NoEscape;
1646       } else {
1647         es = PointsToNode::GlobalEscape;
1648       }
1649       PointsToNode* ptn_con = add_java_object(n, es);
1650       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1651       break;
1652     }
1653     case Op_CreateEx: {
1654       // assume that all exception objects globally escape
1655       map_ideal_node(n, phantom_obj);
1656       break;
1657     }
1658     case Op_LoadKlass:
1659     case Op_LoadNKlass: {
1660       // Unknown class is loaded
1661       map_ideal_node(n, phantom_obj);
1662       break;
1663     }
1664     case Op_LoadP:
1665     case Op_LoadN: {
1666       add_objload_to_connection_graph(n, delayed_worklist);
1667       break;
1668     }
1669     case Op_Parm: {
1670       map_ideal_node(n, phantom_obj);
1671       break;
1672     }
1673     case Op_PartialSubtypeCheck: {
1674       // Produces Null or notNull and is used in only in CmpP so
1675       // phantom_obj could be used.
1676       map_ideal_node(n, phantom_obj); // Result is unknown
1677       break;
1678     }
1679     case Op_Phi: {
1680       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1681       // ThreadLocal has RawPtr type.
1682       const Type* t = n->as_Phi()->type();
1683       if (t->make_ptr() != nullptr) {
1684         add_local_var(n, PointsToNode::NoEscape);
1685         // Do not add edges during first iteration because some could be
1686         // not defined yet.
1687         delayed_worklist->push(n);
1688       }
1689       break;
1690     }








1691     case Op_Proj: {
1692       // we are only interested in the oop result projection from a call
1693       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1694           n->in(0)->as_Call()->returns_pointer()) {





1695         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1696       }
1697       break;
1698     }
1699     case Op_Rethrow: // Exception object escapes
1700     case Op_Return: {
1701       if (n->req() > TypeFunc::Parms &&
1702           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1703         // Treat Return value as LocalVar with GlobalEscape escape state.
1704         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1705       }
1706       break;
1707     }
1708     case Op_CompareAndExchangeP:
1709     case Op_CompareAndExchangeN:
1710     case Op_GetAndSetP:
1711     case Op_GetAndSetN: {
1712       add_objload_to_connection_graph(n, delayed_worklist);
1713       // fall-through
1714     }
1715     case Op_StoreP:
1716     case Op_StoreN:
1717     case Op_StoreNKlass:
1718     case Op_WeakCompareAndSwapP:
1719     case Op_WeakCompareAndSwapN:
1720     case Op_CompareAndSwapP:
1721     case Op_CompareAndSwapN: {
1722       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1723       break;
1724     }
1725     case Op_AryEq:
1726     case Op_CountPositives:
1727     case Op_StrComp:
1728     case Op_StrEquals:
1729     case Op_StrIndexOf:
1730     case Op_StrIndexOfChar:
1731     case Op_StrInflatedCopy:
1732     case Op_StrCompressedCopy:
1733     case Op_VectorizedHashCode:
1734     case Op_EncodeISOArray: {
1735       add_local_var(n, PointsToNode::ArgEscape);
1736       delayed_worklist->push(n); // Process it later.
1737       break;
1738     }
1739     case Op_ThreadLocal: {
1740       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1741       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1742       break;
1743     }
1744     case Op_Blackhole: {
1745       // All blackhole pointer arguments are globally escaping.
1746       // Only do this if there is at least one pointer argument.
1747       // Do not add edges during first iteration because some could be
1748       // not defined yet, defer to final step.
1749       for (uint i = 0; i < n->req(); i++) {
1750         Node* in = n->in(i);
1751         if (in != nullptr) {
1752           const Type* at = _igvn->type(in);
1753           if (!at->isa_ptr()) continue;
1754 
1755           add_local_var(n, PointsToNode::GlobalEscape);
1756           delayed_worklist->push(n);
1757           break;
1758         }
1759       }
1760       break;
1761     }
1762     default:
1763       ; // Do nothing for nodes not related to EA.
1764   }
1765   return;
1766 }
1767 
1768 // Add final simple edges to graph.
1769 void ConnectionGraph::add_final_edges(Node *n) {
1770   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1771 #ifdef ASSERT
1772   if (_verify && n_ptn->is_JavaObject())
1773     return; // This method does not change graph for JavaObject.
1774 #endif
1775 
1776   if (n->is_Call()) {
1777     process_call_arguments(n->as_Call());
1778     return;
1779   }
1780   assert(n->is_Store() || n->is_LoadStore() ||
1781          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1782          "node should be registered already");
1783   int opcode = n->Opcode();
1784   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1785   if (gc_handled) {
1786     return; // Ignore node if already handled by GC.
1787   }
1788   switch (opcode) {
1789     case Op_AddP: {
1790       Node* base = get_addp_base(n);
1791       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1792       assert(ptn_base != nullptr, "field's base should be registered");
1793       add_base(n_ptn->as_Field(), ptn_base);
1794       break;
1795     }

1796     case Op_CastPP:
1797     case Op_CheckCastPP:
1798     case Op_EncodeP:
1799     case Op_DecodeN:
1800     case Op_EncodePKlass:
1801     case Op_DecodeNKlass: {
1802       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1803       break;
1804     }
1805     case Op_CMoveP: {
1806       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1807         Node* in = n->in(i);
1808         if (in == nullptr) {
1809           continue;  // ignore null
1810         }
1811         Node* uncast_in = in->uncast();
1812         if (uncast_in->is_top() || uncast_in == n) {
1813           continue;  // ignore top or inputs which go back this node
1814         }
1815         PointsToNode* ptn = ptnode_adr(in->_idx);
1816         assert(ptn != nullptr, "node should be registered");
1817         add_edge(n_ptn, ptn);
1818       }
1819       break;
1820     }
1821     case Op_LoadP:
1822     case Op_LoadN: {
1823       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1824       // ThreadLocal has RawPtr type.
1825       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1826       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1827       break;
1828     }
1829     case Op_Phi: {
1830       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1831       // ThreadLocal has RawPtr type.
1832       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1833       for (uint i = 1; i < n->req(); i++) {
1834         Node* in = n->in(i);
1835         if (in == nullptr) {
1836           continue;  // ignore null
1837         }
1838         Node* uncast_in = in->uncast();
1839         if (uncast_in->is_top() || uncast_in == n) {
1840           continue;  // ignore top or inputs which go back this node
1841         }
1842         PointsToNode* ptn = ptnode_adr(in->_idx);
1843         assert(ptn != nullptr, "node should be registered");
1844         add_edge(n_ptn, ptn);
1845       }
1846       break;
1847     }
















1848     case Op_Proj: {
1849       // we are only interested in the oop result projection from a call
1850       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1851              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1852       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);





1853       break;
1854     }
1855     case Op_Rethrow: // Exception object escapes
1856     case Op_Return: {
1857       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1858              "Unexpected node type");
1859       // Treat Return value as LocalVar with GlobalEscape escape state.
1860       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1861       break;
1862     }
1863     case Op_CompareAndExchangeP:
1864     case Op_CompareAndExchangeN:
1865     case Op_GetAndSetP:
1866     case Op_GetAndSetN:{
1867       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1868       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1869       // fall-through
1870     }
1871     case Op_CompareAndSwapP:
1872     case Op_CompareAndSwapN:
1873     case Op_WeakCompareAndSwapP:
1874     case Op_WeakCompareAndSwapN:
1875     case Op_StoreP:
1876     case Op_StoreN:
1877     case Op_StoreNKlass:{
1878       add_final_edges_unsafe_access(n, opcode);
1879       break;
1880     }
1881     case Op_VectorizedHashCode:
1882     case Op_AryEq:
1883     case Op_CountPositives:
1884     case Op_StrComp:
1885     case Op_StrEquals:
1886     case Op_StrIndexOf:
1887     case Op_StrIndexOfChar:
1888     case Op_StrInflatedCopy:
1889     case Op_StrCompressedCopy:
1890     case Op_EncodeISOArray: {
1891       // char[]/byte[] arrays passed to string intrinsic do not escape but
1892       // they are not scalar replaceable. Adjust escape state for them.
1893       // Start from in(2) edge since in(1) is memory edge.
1894       for (uint i = 2; i < n->req(); i++) {
1895         Node* adr = n->in(i);
1896         const Type* at = _igvn->type(adr);
1897         if (!adr->is_top() && at->isa_ptr()) {
1898           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1899                  at->isa_ptr() != nullptr, "expecting a pointer");
1900           if (adr->is_AddP()) {
1901             adr = get_addp_base(adr);
1902           }
1903           PointsToNode* ptn = ptnode_adr(adr->_idx);
1904           assert(ptn != nullptr, "node should be registered");
1905           add_edge(n_ptn, ptn);
1906         }
1907       }
1908       break;
1909     }
1910     case Op_Blackhole: {
1911       // All blackhole pointer arguments are globally escaping.
1912       for (uint i = 0; i < n->req(); i++) {
1913         Node* in = n->in(i);
1914         if (in != nullptr) {
1915           const Type* at = _igvn->type(in);
1916           if (!at->isa_ptr()) continue;
1917 
1918           if (in->is_AddP()) {
1919             in = get_addp_base(in);
1920           }
1921 
1922           PointsToNode* ptn = ptnode_adr(in->_idx);
1923           assert(ptn != nullptr, "should be defined already");
1924           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1925           add_edge(n_ptn, ptn);
1926         }
1927       }
1928       break;
1929     }
1930     default: {
1931       // This method should be called only for EA specific nodes which may
1932       // miss some edges when they were created.
1933 #ifdef ASSERT
1934       n->dump(1);
1935 #endif
1936       guarantee(false, "unknown node");
1937     }
1938   }
1939   return;
1940 }
1941 
1942 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1943   Node* adr = n->in(MemNode::Address);
1944   const Type* adr_type = _igvn->type(adr);
1945   adr_type = adr_type->make_ptr();
1946   if (adr_type == nullptr) {
1947     return; // skip dead nodes
1948   }
1949   if (adr_type->isa_oopptr()
1950       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1951           && adr_type == TypeRawPtr::NOTNULL
1952           && is_captured_store_address(adr))) {
1953     delayed_worklist->push(n); // Process it later.
1954 #ifdef ASSERT
1955     assert (adr->is_AddP(), "expecting an AddP");
1956     if (adr_type == TypeRawPtr::NOTNULL) {
1957       // Verify a raw address for a store captured by Initialize node.
1958       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1959       assert(offs != Type::OffsetBot, "offset must be a constant");
1960     }
1961 #endif
1962   } else {
1963     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1964     if (adr->is_BoxLock()) {
1965       return;
1966     }
1967     // Stored value escapes in unsafe access.
1968     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1969       delayed_worklist->push(n); // Process unsafe access later.
1970       return;
1971     }
1972 #ifdef ASSERT
1973     n->dump(1);
1974     assert(false, "not unsafe");
1975 #endif
1976   }
1977 }
1978 
1979 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1980   Node* adr = n->in(MemNode::Address);
1981   const Type *adr_type = _igvn->type(adr);
1982   adr_type = adr_type->make_ptr();
1983 #ifdef ASSERT
1984   if (adr_type == nullptr) {
1985     n->dump(1);
1986     assert(adr_type != nullptr, "dead node should not be on list");
1987     return true;
1988   }
1989 #endif
1990 
1991   if (adr_type->isa_oopptr()
1992       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1993            && adr_type == TypeRawPtr::NOTNULL
1994            && is_captured_store_address(adr))) {
1995     // Point Address to Value
1996     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1997     assert(adr_ptn != nullptr &&
1998            adr_ptn->as_Field()->is_oop(), "node should be registered");
1999     Node* val = n->in(MemNode::ValueIn);
2000     PointsToNode* ptn = ptnode_adr(val->_idx);
2001     assert(ptn != nullptr, "node should be registered");
2002     add_edge(adr_ptn, ptn);
2003     return true;
2004   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
2005     // Stored value escapes in unsafe access.
2006     Node* val = n->in(MemNode::ValueIn);
2007     PointsToNode* ptn = ptnode_adr(val->_idx);
2008     assert(ptn != nullptr, "node should be registered");
2009     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
2010     // Add edge to object for unsafe access with offset.
2011     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
2012     assert(adr_ptn != nullptr, "node should be registered");
2013     if (adr_ptn->is_Field()) {
2014       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
2015       add_edge(adr_ptn, ptn);
2016     }
2017     return true;
2018   }
2019 #ifdef ASSERT
2020   n->dump(1);
2021   assert(false, "not unsafe");
2022 #endif
2023   return false;
2024 }
2025 
2026 void ConnectionGraph::add_call_node(CallNode* call) {
2027   assert(call->returns_pointer(), "only for call which returns pointer");
2028   uint call_idx = call->_idx;
2029   if (call->is_Allocate()) {
2030     Node* k = call->in(AllocateNode::KlassNode);
2031     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2032     assert(kt != nullptr, "TypeKlassPtr  required.");
2033     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2034     bool scalar_replaceable = true;
2035     NOT_PRODUCT(const char* nsr_reason = "");
2036     if (call->is_AllocateArray()) {
2037       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2038         es = PointsToNode::GlobalEscape;
2039       } else {
2040         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2041         if (length < 0) {
2042           // Not scalar replaceable if the length is not constant.
2043           scalar_replaceable = false;
2044           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2045         } else if (length > EliminateAllocationArraySizeLimit) {
2046           // Not scalar replaceable if the length is too big.
2047           scalar_replaceable = false;
2048           NOT_PRODUCT(nsr_reason = "has a length that is too big");
2049         }
2050       }
2051     } else {  // Allocate instance
2052       if (!kt->isa_instklassptr()) { // StressReflectiveCode
2053         es = PointsToNode::GlobalEscape;
2054       } else {
2055         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
2056         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
2057         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
2058             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
2059             !ik->can_be_instantiated() ||
2060             ik->has_finalizer()) {
2061           es = PointsToNode::GlobalEscape;
2062         } else {
2063           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2064           if (nfields > EliminateAllocationFieldsLimit) {
2065             // Not scalar replaceable if there are too many fields.
2066             scalar_replaceable = false;
2067             NOT_PRODUCT(nsr_reason = "has too many fields");
2068           }
2069         }
2070       }
2071     }
2072     add_java_object(call, es);
2073     PointsToNode* ptn = ptnode_adr(call_idx);
2074     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2075       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2076     }
2077   } else if (call->is_CallStaticJava()) {
2078     // Call nodes could be different types:
2079     //
2080     // 1. CallDynamicJavaNode (what happened during call is unknown):
2081     //
2082     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2083     //
2084     //    - all oop arguments are escaping globally;
2085     //
2086     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2087     //
2088     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2089     //
2090     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2091     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2092     //      during call is returned;
2093     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2094     //      which are returned and does not escape during call;
2095     //
2096     //    - oop arguments escaping status is defined by bytecode analysis;
2097     //
2098     // For a static call, we know exactly what method is being called.
2099     // Use bytecode estimator to record whether the call's return value escapes.
2100     ciMethod* meth = call->as_CallJava()->method();
2101     if (meth == nullptr) {
2102       assert(call->as_CallStaticJava()->is_call_to_multianewarray_stub(), "TODO: add failed case check");



2103       // Returns a newly allocated non-escaped object.
2104       add_java_object(call, PointsToNode::NoEscape);
2105       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2106     } else if (meth->is_boxing_method()) {
2107       // Returns boxing object
2108       PointsToNode::EscapeState es;
2109       vmIntrinsics::ID intr = meth->intrinsic_id();
2110       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2111         // It does not escape if object is always allocated.
2112         es = PointsToNode::NoEscape;
2113       } else {
2114         // It escapes globally if object could be loaded from cache.
2115         es = PointsToNode::GlobalEscape;
2116       }
2117       add_java_object(call, es);
2118       if (es == PointsToNode::GlobalEscape) {
2119         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2120       }
2121     } else {
2122       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2123       call_analyzer->copy_dependencies(_compile->dependencies());
2124       if (call_analyzer->is_return_allocated()) {
2125         // Returns a newly allocated non-escaped object, simply
2126         // update dependency information.
2127         // Mark it as NoEscape so that objects referenced by
2128         // it's fields will be marked as NoEscape at least.
2129         add_java_object(call, PointsToNode::NoEscape);
2130         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2131       } else {
2132         // Determine whether any arguments are returned.
2133         const TypeTuple* d = call->tf()->domain();
2134         bool ret_arg = false;
2135         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2136           if (d->field_at(i)->isa_ptr() != nullptr &&
2137               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2138             ret_arg = true;
2139             break;
2140           }
2141         }
2142         if (ret_arg) {
2143           add_local_var(call, PointsToNode::ArgEscape);
2144         } else {
2145           // Returns unknown object.
2146           map_ideal_node(call, phantom_obj);
2147         }
2148       }
2149     }
2150   } else {
2151     // An other type of call, assume the worst case:
2152     // returned value is unknown and globally escapes.
2153     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2154     map_ideal_node(call, phantom_obj);
2155   }
2156 }
2157 
2158 void ConnectionGraph::process_call_arguments(CallNode *call) {
2159     bool is_arraycopy = false;
2160     switch (call->Opcode()) {
2161 #ifdef ASSERT
2162     case Op_Allocate:
2163     case Op_AllocateArray:
2164     case Op_Lock:
2165     case Op_Unlock:
2166       assert(false, "should be done already");
2167       break;
2168 #endif
2169     case Op_ArrayCopy:
2170     case Op_CallLeafNoFP:
2171       // Most array copies are ArrayCopy nodes at this point but there
2172       // are still a few direct calls to the copy subroutines (See
2173       // PhaseStringOpts::copy_string())
2174       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2175         call->as_CallLeaf()->is_call_to_arraycopystub();
2176       // fall through
2177     case Op_CallLeafVector:
2178     case Op_CallLeaf: {
2179       // Stub calls, objects do not escape but they are not scale replaceable.
2180       // Adjust escape state for outgoing arguments.
2181       const TypeTuple * d = call->tf()->domain();
2182       bool src_has_oops = false;
2183       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2184         const Type* at = d->field_at(i);
2185         Node *arg = call->in(i);
2186         if (arg == nullptr) {
2187           continue;
2188         }
2189         const Type *aat = _igvn->type(arg);
2190         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2191           continue;
2192         }
2193         if (arg->is_AddP()) {
2194           //
2195           // The inline_native_clone() case when the arraycopy stub is called
2196           // after the allocation before Initialize and CheckCastPP nodes.
2197           // Or normal arraycopy for object arrays case.
2198           //
2199           // Set AddP's base (Allocate) as not scalar replaceable since
2200           // pointer to the base (with offset) is passed as argument.
2201           //
2202           arg = get_addp_base(arg);
2203         }
2204         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2205         assert(arg_ptn != nullptr, "should be registered");
2206         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2207         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2208           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2209                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2210           bool arg_has_oops = aat->isa_oopptr() &&
2211                               (aat->isa_instptr() ||
2212                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));



2213           if (i == TypeFunc::Parms) {
2214             src_has_oops = arg_has_oops;
2215           }
2216           //
2217           // src or dst could be j.l.Object when other is basic type array:
2218           //
2219           //   arraycopy(char[],0,Object*,0,size);
2220           //   arraycopy(Object*,0,char[],0,size);
2221           //
2222           // Don't add edges in such cases.
2223           //
2224           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2225                                        arg_has_oops && (i > TypeFunc::Parms);
2226 #ifdef ASSERT
2227           if (!(is_arraycopy ||
2228                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2229                 (call->as_CallLeaf()->_name != nullptr &&
2230                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2232                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2233                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2234                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2235                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2236                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2237                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2238                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2239                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2240                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2241                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2242                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2243                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2244                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2245                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2246                   strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 ||
2247                   strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 ||
2248                   strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 ||
2249                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 ||
2250                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 ||
2251                   strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 ||
2252                   strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 ||
2253                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 ||
2254                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 ||
2255                   strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 ||
2256                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2257                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2258                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2259                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2260                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2261                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2262                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2263                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2264                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2265                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2266                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2267                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2268                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2269                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2270                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2271                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2272                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2273                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2274                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2275                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||




2276                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2277                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2278                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2279                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2280                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2281                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2282                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2283                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2284                  ))) {
2285             call->dump();
2286             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2287           }
2288 #endif
2289           // Always process arraycopy's destination object since
2290           // we need to add all possible edges to references in
2291           // source object.
2292           if (arg_esc >= PointsToNode::ArgEscape &&
2293               !arg_is_arraycopy_dest) {
2294             continue;
2295           }
2296           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2297           if (call->is_ArrayCopy()) {
2298             ArrayCopyNode* ac = call->as_ArrayCopy();
2299             if (ac->is_clonebasic() ||
2300                 ac->is_arraycopy_validated() ||
2301                 ac->is_copyof_validated() ||
2302                 ac->is_copyofrange_validated()) {
2303               es = PointsToNode::NoEscape;
2304             }
2305           }
2306           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2307           if (arg_is_arraycopy_dest) {
2308             Node* src = call->in(TypeFunc::Parms);
2309             if (src->is_AddP()) {
2310               src = get_addp_base(src);
2311             }
2312             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2313             assert(src_ptn != nullptr, "should be registered");
2314             // Special arraycopy edge:
2315             // Only escape state of destination object's fields affects
2316             // escape state of fields in source object.
2317             add_arraycopy(call, es, src_ptn, arg_ptn);
2318           }
2319         }
2320       }
2321       break;
2322     }
2323     case Op_CallStaticJava: {
2324       // For a static call, we know exactly what method is being called.
2325       // Use bytecode estimator to record the call's escape affects
2326 #ifdef ASSERT
2327       const char* name = call->as_CallStaticJava()->_name;
2328       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2329 #endif
2330       ciMethod* meth = call->as_CallJava()->method();
2331       if ((meth != nullptr) && meth->is_boxing_method()) {
2332         break; // Boxing methods do not modify any oops.
2333       }
2334       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2335       // fall-through if not a Java method or no analyzer information
2336       if (call_analyzer != nullptr) {
2337         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2338         const TypeTuple* d = call->tf()->domain();
2339         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2340           const Type* at = d->field_at(i);
2341           int k = i - TypeFunc::Parms;
2342           Node* arg = call->in(i);
2343           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2344           if (at->isa_ptr() != nullptr &&
2345               call_analyzer->is_arg_returned(k)) {
2346             // The call returns arguments.
2347             if (call_ptn != nullptr) { // Is call's result used?
2348               assert(call_ptn->is_LocalVar(), "node should be registered");
2349               assert(arg_ptn != nullptr, "node should be registered");
2350               add_edge(call_ptn, arg_ptn);
2351             }
2352           }
2353           if (at->isa_oopptr() != nullptr &&
2354               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2355             if (!call_analyzer->is_arg_stack(k)) {
2356               // The argument global escapes
2357               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2358             } else {
2359               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2360               if (!call_analyzer->is_arg_local(k)) {
2361                 // The argument itself doesn't escape, but any fields might
2362                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2363               }
2364             }
2365           }
2366         }
2367         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2368           // The call returns arguments.
2369           assert(call_ptn->edge_count() > 0, "sanity");
2370           if (!call_analyzer->is_return_local()) {
2371             // Returns also unknown object.
2372             add_edge(call_ptn, phantom_obj);
2373           }
2374         }
2375         break;
2376       }
2377     }
2378     default: {
2379       // Fall-through here if not a Java method or no analyzer information
2380       // or some other type of call, assume the worst case: all arguments
2381       // globally escape.
2382       const TypeTuple* d = call->tf()->domain();
2383       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2384         const Type* at = d->field_at(i);
2385         if (at->isa_oopptr() != nullptr) {
2386           Node* arg = call->in(i);
2387           if (arg->is_AddP()) {
2388             arg = get_addp_base(arg);
2389           }
2390           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2391           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2392         }
2393       }
2394     }
2395   }
2396 }
2397 
2398 
2399 // Finish Graph construction.
2400 bool ConnectionGraph::complete_connection_graph(
2401                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2402                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2403                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2404                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2405   // Normally only 1-3 passes needed to build Connection Graph depending
2406   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2407   // Set limit to 20 to catch situation when something did go wrong and
2408   // bailout Escape Analysis.
2409   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2410 #define GRAPH_BUILD_ITER_LIMIT 20
2411 
2412   // Propagate GlobalEscape and ArgEscape escape states and check that
2413   // we still have non-escaping objects. The method pushs on _worklist
2414   // Field nodes which reference phantom_object.
2415   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2416     return false; // Nothing to do.
2417   }
2418   // Now propagate references to all JavaObject nodes.
2419   int java_objects_length = java_objects_worklist.length();
2420   elapsedTimer build_time;
2421   build_time.start();
2422   elapsedTimer time;
2423   bool timeout = false;
2424   int new_edges = 1;
2425   int iterations = 0;
2426   do {
2427     while ((new_edges > 0) &&
2428            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2429       double start_time = time.seconds();
2430       time.start();
2431       new_edges = 0;
2432       // Propagate references to phantom_object for nodes pushed on _worklist
2433       // by find_non_escaped_objects() and find_field_value().
2434       new_edges += add_java_object_edges(phantom_obj, false);
2435       for (int next = 0; next < java_objects_length; ++next) {
2436         JavaObjectNode* ptn = java_objects_worklist.at(next);
2437         new_edges += add_java_object_edges(ptn, true);
2438 
2439 #define SAMPLE_SIZE 4
2440         if ((next % SAMPLE_SIZE) == 0) {
2441           // Each 4 iterations calculate how much time it will take
2442           // to complete graph construction.
2443           time.stop();
2444           // Poll for requests from shutdown mechanism to quiesce compiler
2445           // because Connection graph construction may take long time.
2446           CompileBroker::maybe_block();
2447           double stop_time = time.seconds();
2448           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2449           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2450           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2451             timeout = true;
2452             break; // Timeout
2453           }
2454           start_time = stop_time;
2455           time.start();
2456         }
2457 #undef SAMPLE_SIZE
2458 
2459       }
2460       if (timeout) break;
2461       if (new_edges > 0) {
2462         // Update escape states on each iteration if graph was updated.
2463         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2464           return false; // Nothing to do.
2465         }
2466       }
2467       time.stop();
2468       if (time.seconds() >= EscapeAnalysisTimeout) {
2469         timeout = true;
2470         break;
2471       }
2472       _compile->print_method(PHASE_EA_COMPLETE_CONNECTION_GRAPH_ITER, 5);
2473     }
2474     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2475       time.start();
2476       // Find fields which have unknown value.
2477       int fields_length = oop_fields_worklist.length();
2478       for (int next = 0; next < fields_length; next++) {
2479         FieldNode* field = oop_fields_worklist.at(next);
2480         if (field->edge_count() == 0) {
2481           new_edges += find_field_value(field);
2482           // This code may added new edges to phantom_object.
2483           // Need an other cycle to propagate references to phantom_object.
2484         }
2485       }
2486       time.stop();
2487       if (time.seconds() >= EscapeAnalysisTimeout) {
2488         timeout = true;
2489         break;
2490       }
2491     } else {
2492       new_edges = 0; // Bailout
2493     }
2494   } while (new_edges > 0);
2495 
2496   build_time.stop();
2497   _build_time = build_time.seconds();
2498   _build_iterations = iterations;
2499 
2500   // Bailout if passed limits.
2501   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2502     Compile* C = _compile;
2503     if (C->log() != nullptr) {
2504       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2505       C->log()->text("%s", timeout ? "time" : "iterations");
2506       C->log()->end_elem(" limit'");
2507     }
2508     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2509            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2510     // Possible infinite build_connection_graph loop,
2511     // bailout (no changes to ideal graph were made).
2512     return false;
2513   }
2514 
2515 #undef GRAPH_BUILD_ITER_LIMIT
2516 
2517   // Find fields initialized by null for non-escaping Allocations.
2518   int non_escaped_length = non_escaped_allocs_worklist.length();
2519   for (int next = 0; next < non_escaped_length; next++) {
2520     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2521     PointsToNode::EscapeState es = ptn->escape_state();
2522     assert(es <= PointsToNode::ArgEscape, "sanity");
2523     if (es == PointsToNode::NoEscape) {
2524       if (find_init_values_null(ptn, _igvn) > 0) {
2525         // Adding references to null object does not change escape states
2526         // since it does not escape. Also no fields are added to null object.
2527         add_java_object_edges(null_obj, false);
2528       }
2529     }
2530     Node* n = ptn->ideal_node();
2531     if (n->is_Allocate()) {
2532       // The object allocated by this Allocate node will never be
2533       // seen by an other thread. Mark it so that when it is
2534       // expanded no MemBarStoreStore is added.
2535       InitializeNode* ini = n->as_Allocate()->initialization();
2536       if (ini != nullptr)
2537         ini->set_does_not_escape();
2538     }
2539   }
2540   return true; // Finished graph construction.
2541 }
2542 
2543 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2544 // and check that we still have non-escaping java objects.
2545 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2546                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2547                                                bool print_method) {
2548   GrowableArray<PointsToNode*> escape_worklist;
2549   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2550   int ptnodes_length = ptnodes_worklist.length();
2551   for (int next = 0; next < ptnodes_length; ++next) {
2552     PointsToNode* ptn = ptnodes_worklist.at(next);
2553     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2554         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2555       escape_worklist.push(ptn);
2556     }
2557   }
2558   // Set escape states to referenced nodes (edges list).
2559   while (escape_worklist.length() > 0) {
2560     PointsToNode* ptn = escape_worklist.pop();
2561     PointsToNode::EscapeState es  = ptn->escape_state();
2562     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2563     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2564         es >= PointsToNode::ArgEscape) {
2565       // GlobalEscape or ArgEscape state of field means it has unknown value.
2566       if (add_edge(ptn, phantom_obj)) {
2567         // New edge was added
2568         add_field_uses_to_worklist(ptn->as_Field());
2569       }
2570     }
2571     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2572       PointsToNode* e = i.get();
2573       if (e->is_Arraycopy()) {
2574         assert(ptn->arraycopy_dst(), "sanity");
2575         // Propagate only fields escape state through arraycopy edge.
2576         if (e->fields_escape_state() < field_es) {
2577           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2578           escape_worklist.push(e);
2579         }
2580       } else if (es >= field_es) {
2581         // fields_escape_state is also set to 'es' if it is less than 'es'.
2582         if (e->escape_state() < es) {
2583           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2584           escape_worklist.push(e);
2585         }
2586       } else {
2587         // Propagate field escape state.
2588         bool es_changed = false;
2589         if (e->fields_escape_state() < field_es) {
2590           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2591           es_changed = true;
2592         }
2593         if ((e->escape_state() < field_es) &&
2594             e->is_Field() && ptn->is_JavaObject() &&
2595             e->as_Field()->is_oop()) {
2596           // Change escape state of referenced fields.
2597           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2598           es_changed = true;
2599         } else if (e->escape_state() < es) {
2600           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2601           es_changed = true;
2602         }
2603         if (es_changed) {
2604           escape_worklist.push(e);
2605         }
2606       }
2607       if (print_method) {
2608         _compile->print_method(PHASE_EA_CONNECTION_GRAPH_PROPAGATE_ITER, 6, e->ideal_node());
2609       }
2610     }
2611   }
2612   // Remove escaped objects from non_escaped list.
2613   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2614     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2615     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2616       non_escaped_allocs_worklist.delete_at(next);
2617     }
2618     if (ptn->escape_state() == PointsToNode::NoEscape) {
2619       // Find fields in non-escaped allocations which have unknown value.
2620       find_init_values_phantom(ptn);
2621     }
2622   }
2623   return (non_escaped_allocs_worklist.length() > 0);
2624 }
2625 
2626 // Add all references to JavaObject node by walking over all uses.
2627 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2628   int new_edges = 0;
2629   if (populate_worklist) {
2630     // Populate _worklist by uses of jobj's uses.
2631     for (UseIterator i(jobj); i.has_next(); i.next()) {
2632       PointsToNode* use = i.get();
2633       if (use->is_Arraycopy()) {
2634         continue;
2635       }
2636       add_uses_to_worklist(use);
2637       if (use->is_Field() && use->as_Field()->is_oop()) {
2638         // Put on worklist all field's uses (loads) and
2639         // related field nodes (same base and offset).
2640         add_field_uses_to_worklist(use->as_Field());
2641       }
2642     }
2643   }
2644   for (int l = 0; l < _worklist.length(); l++) {
2645     PointsToNode* use = _worklist.at(l);
2646     if (PointsToNode::is_base_use(use)) {
2647       // Add reference from jobj to field and from field to jobj (field's base).
2648       use = PointsToNode::get_use_node(use)->as_Field();
2649       if (add_base(use->as_Field(), jobj)) {
2650         new_edges++;
2651       }
2652       continue;
2653     }
2654     assert(!use->is_JavaObject(), "sanity");
2655     if (use->is_Arraycopy()) {
2656       if (jobj == null_obj) { // null object does not have field edges
2657         continue;
2658       }
2659       // Added edge from Arraycopy node to arraycopy's source java object
2660       if (add_edge(use, jobj)) {
2661         jobj->set_arraycopy_src();
2662         new_edges++;
2663       }
2664       // and stop here.
2665       continue;
2666     }
2667     if (!add_edge(use, jobj)) {
2668       continue; // No new edge added, there was such edge already.
2669     }
2670     new_edges++;
2671     if (use->is_LocalVar()) {
2672       add_uses_to_worklist(use);
2673       if (use->arraycopy_dst()) {
2674         for (EdgeIterator i(use); i.has_next(); i.next()) {
2675           PointsToNode* e = i.get();
2676           if (e->is_Arraycopy()) {
2677             if (jobj == null_obj) { // null object does not have field edges
2678               continue;
2679             }
2680             // Add edge from arraycopy's destination java object to Arraycopy node.
2681             if (add_edge(jobj, e)) {
2682               new_edges++;
2683               jobj->set_arraycopy_dst();
2684             }
2685           }
2686         }
2687       }
2688     } else {
2689       // Added new edge to stored in field values.
2690       // Put on worklist all field's uses (loads) and
2691       // related field nodes (same base and offset).
2692       add_field_uses_to_worklist(use->as_Field());
2693     }
2694   }
2695   _worklist.clear();
2696   _in_worklist.reset();
2697   return new_edges;
2698 }
2699 
2700 // Put on worklist all related field nodes.
2701 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2702   assert(field->is_oop(), "sanity");
2703   int offset = field->offset();
2704   add_uses_to_worklist(field);
2705   // Loop over all bases of this field and push on worklist Field nodes
2706   // with the same offset and base (since they may reference the same field).
2707   for (BaseIterator i(field); i.has_next(); i.next()) {
2708     PointsToNode* base = i.get();
2709     add_fields_to_worklist(field, base);
2710     // Check if the base was source object of arraycopy and go over arraycopy's
2711     // destination objects since values stored to a field of source object are
2712     // accessible by uses (loads) of fields of destination objects.
2713     if (base->arraycopy_src()) {
2714       for (UseIterator j(base); j.has_next(); j.next()) {
2715         PointsToNode* arycp = j.get();
2716         if (arycp->is_Arraycopy()) {
2717           for (UseIterator k(arycp); k.has_next(); k.next()) {
2718             PointsToNode* abase = k.get();
2719             if (abase->arraycopy_dst() && abase != base) {
2720               // Look for the same arraycopy reference.
2721               add_fields_to_worklist(field, abase);
2722             }
2723           }
2724         }
2725       }
2726     }
2727   }
2728 }
2729 
2730 // Put on worklist all related field nodes.
2731 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2732   int offset = field->offset();
2733   if (base->is_LocalVar()) {
2734     for (UseIterator j(base); j.has_next(); j.next()) {
2735       PointsToNode* f = j.get();
2736       if (PointsToNode::is_base_use(f)) { // Field
2737         f = PointsToNode::get_use_node(f);
2738         if (f == field || !f->as_Field()->is_oop()) {
2739           continue;
2740         }
2741         int offs = f->as_Field()->offset();
2742         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2743           add_to_worklist(f);
2744         }
2745       }
2746     }
2747   } else {
2748     assert(base->is_JavaObject(), "sanity");
2749     if (// Skip phantom_object since it is only used to indicate that
2750         // this field's content globally escapes.
2751         (base != phantom_obj) &&
2752         // null object node does not have fields.
2753         (base != null_obj)) {
2754       for (EdgeIterator i(base); i.has_next(); i.next()) {
2755         PointsToNode* f = i.get();
2756         // Skip arraycopy edge since store to destination object field
2757         // does not update value in source object field.
2758         if (f->is_Arraycopy()) {
2759           assert(base->arraycopy_dst(), "sanity");
2760           continue;
2761         }
2762         if (f == field || !f->as_Field()->is_oop()) {
2763           continue;
2764         }
2765         int offs = f->as_Field()->offset();
2766         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2767           add_to_worklist(f);
2768         }
2769       }
2770     }
2771   }
2772 }
2773 
2774 // Find fields which have unknown value.
2775 int ConnectionGraph::find_field_value(FieldNode* field) {
2776   // Escaped fields should have init value already.
2777   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2778   int new_edges = 0;
2779   for (BaseIterator i(field); i.has_next(); i.next()) {
2780     PointsToNode* base = i.get();
2781     if (base->is_JavaObject()) {
2782       // Skip Allocate's fields which will be processed later.
2783       if (base->ideal_node()->is_Allocate()) {
2784         return 0;
2785       }
2786       assert(base == null_obj, "only null ptr base expected here");
2787     }
2788   }
2789   if (add_edge(field, phantom_obj)) {
2790     // New edge was added
2791     new_edges++;
2792     add_field_uses_to_worklist(field);
2793   }
2794   return new_edges;
2795 }
2796 
2797 // Find fields initializing values for allocations.
2798 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2799   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");

2800   Node* alloc = pta->ideal_node();
2801 
2802   // Do nothing for Allocate nodes since its fields values are
2803   // "known" unless they are initialized by arraycopy/clone.
2804   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2805     return 0;






2806   }
2807   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");

2808 #ifdef ASSERT
2809   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2810     assert(alloc->as_CallStaticJava()->is_call_to_multianewarray_stub(), "sanity");



2811   }
2812 #endif
2813   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2814   int new_edges = 0;
2815   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2816     PointsToNode* field = i.get();
2817     if (field->is_Field() && field->as_Field()->is_oop()) {
2818       if (add_edge(field, phantom_obj)) {
2819         // New edge was added
2820         new_edges++;
2821         add_field_uses_to_worklist(field->as_Field());
2822       }
2823     }
2824   }
2825   return new_edges;
2826 }
2827 
2828 // Find fields initializing values for allocations.
2829 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2830   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2831   Node* alloc = pta->ideal_node();
2832   // Do nothing for Call nodes since its fields values are unknown.
2833   if (!alloc->is_Allocate()) {
2834     return 0;
2835   }
2836   InitializeNode* ini = alloc->as_Allocate()->initialization();
2837   bool visited_bottom_offset = false;
2838   GrowableArray<int> offsets_worklist;
2839   int new_edges = 0;
2840 
2841   // Check if an oop field's initializing value is recorded and add
2842   // a corresponding null if field's value if it is not recorded.
2843   // Connection Graph does not record a default initialization by null
2844   // captured by Initialize node.
2845   //
2846   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2847     PointsToNode* field = i.get(); // Field (AddP)
2848     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2849       continue; // Not oop field
2850     }
2851     int offset = field->as_Field()->offset();
2852     if (offset == Type::OffsetBot) {
2853       if (!visited_bottom_offset) {
2854         // OffsetBot is used to reference array's element,
2855         // always add reference to null to all Field nodes since we don't
2856         // known which element is referenced.
2857         if (add_edge(field, null_obj)) {
2858           // New edge was added
2859           new_edges++;
2860           add_field_uses_to_worklist(field->as_Field());
2861           visited_bottom_offset = true;
2862         }
2863       }
2864     } else {
2865       // Check only oop fields.
2866       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2867       if (adr_type->isa_rawptr()) {
2868 #ifdef ASSERT
2869         // Raw pointers are used for initializing stores so skip it
2870         // since it should be recorded already
2871         Node* base = get_addp_base(field->ideal_node());
2872         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2873 #endif
2874         continue;
2875       }
2876       if (!offsets_worklist.contains(offset)) {
2877         offsets_worklist.append(offset);
2878         Node* value = nullptr;
2879         if (ini != nullptr) {
2880           // StoreP::value_basic_type() == T_ADDRESS
2881           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2882           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2883           // Make sure initializing store has the same type as this AddP.
2884           // This AddP may reference non existing field because it is on a
2885           // dead branch of bimorphic call which is not eliminated yet.
2886           if (store != nullptr && store->is_Store() &&
2887               store->as_Store()->value_basic_type() == ft) {
2888             value = store->in(MemNode::ValueIn);
2889 #ifdef ASSERT
2890             if (VerifyConnectionGraph) {
2891               // Verify that AddP already points to all objects the value points to.
2892               PointsToNode* val = ptnode_adr(value->_idx);
2893               assert((val != nullptr), "should be processed already");
2894               PointsToNode* missed_obj = nullptr;
2895               if (val->is_JavaObject()) {
2896                 if (!field->points_to(val->as_JavaObject())) {
2897                   missed_obj = val;
2898                 }
2899               } else {
2900                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2901                   tty->print_cr("----------init store has invalid value -----");
2902                   store->dump();
2903                   val->dump();
2904                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2905                 }
2906                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2907                   PointsToNode* obj = j.get();
2908                   if (obj->is_JavaObject()) {
2909                     if (!field->points_to(obj->as_JavaObject())) {
2910                       missed_obj = obj;
2911                       break;
2912                     }
2913                   }
2914                 }
2915               }
2916               if (missed_obj != nullptr) {
2917                 tty->print_cr("----------field---------------------------------");
2918                 field->dump();
2919                 tty->print_cr("----------missed referernce to object-----------");
2920                 missed_obj->dump();
2921                 tty->print_cr("----------object referernced by init store -----");
2922                 store->dump();
2923                 val->dump();
2924                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2925               }
2926             }
2927 #endif
2928           } else {
2929             // There could be initializing stores which follow allocation.
2930             // For example, a volatile field store is not collected
2931             // by Initialize node.
2932             //
2933             // Need to check for dependent loads to separate such stores from
2934             // stores which follow loads. For now, add initial value null so
2935             // that compare pointers optimization works correctly.
2936           }
2937         }
2938         if (value == nullptr) {
2939           // A field's initializing value was not recorded. Add null.
2940           if (add_edge(field, null_obj)) {
2941             // New edge was added
2942             new_edges++;
2943             add_field_uses_to_worklist(field->as_Field());
2944           }
2945         }
2946       }
2947     }
2948   }
2949   return new_edges;
2950 }
2951 
2952 // Adjust scalar_replaceable state after Connection Graph is built.
2953 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2954   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2955   // returns true. If one of the constraints in this method set 'jobj' to NSR
2956   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2957   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2958   // that other object and the Phi will become a reducible Phi.
2959   // There could be multiple merges involving the same jobj.
2960   Unique_Node_List candidates;
2961 
2962   // Search for non-escaping objects which are not scalar replaceable
2963   // and mark them to propagate the state to referenced objects.
2964 
2965   for (UseIterator i(jobj); i.has_next(); i.next()) {
2966     PointsToNode* use = i.get();
2967     if (use->is_Arraycopy()) {
2968       continue;
2969     }
2970     if (use->is_Field()) {
2971       FieldNode* field = use->as_Field();
2972       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2973       // 1. An object is not scalar replaceable if the field into which it is
2974       // stored has unknown offset (stored into unknown element of an array).
2975       if (field->offset() == Type::OffsetBot) {
2976         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2977         return;
2978       }
2979       for (BaseIterator i(field); i.has_next(); i.next()) {
2980         PointsToNode* base = i.get();
2981         // 2. An object is not scalar replaceable if the field into which it is
2982         // stored has multiple bases one of which is null.
2983         if ((base == null_obj) && (field->base_count() > 1)) {
2984           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2985           return;
2986         }
2987         // 2.5. An object is not scalar replaceable if the field into which it is
2988         // stored has NSR base.
2989         if (!base->scalar_replaceable()) {
2990           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2991           return;
2992         }
2993       }
2994     }
2995     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2996     // 3. An object is not scalar replaceable if it is merged with other objects
2997     // and we can't remove the merge
2998     for (EdgeIterator j(use); j.has_next(); j.next()) {
2999       PointsToNode* ptn = j.get();
3000       if (ptn->is_JavaObject() && ptn != jobj) {
3001         Node* use_n = use->ideal_node();
3002 
3003         // These other local vars may point to multiple objects through a Phi
3004         // In this case we skip them and see if we can reduce the Phi.
3005         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
3006           use_n = use_n->in(1);
3007         }
3008 
3009         // If it's already a candidate or confirmed reducible merge we can skip verification
3010         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
3011           continue;
3012         }
3013 
3014         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
3015           candidates.push(use_n);
3016         } else {
3017           // Mark all objects as NSR if we can't remove the merge
3018           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
3019           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
3020         }
3021       }
3022     }
3023     if (!jobj->scalar_replaceable()) {
3024       return;
3025     }
3026   }
3027 
3028   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
3029     if (j.get()->is_Arraycopy()) {
3030       continue;
3031     }
3032 
3033     // Non-escaping object node should point only to field nodes.
3034     FieldNode* field = j.get()->as_Field();
3035     int offset = field->as_Field()->offset();
3036 
3037     // 4. An object is not scalar replaceable if it has a field with unknown
3038     // offset (array's element is accessed in loop).
3039     if (offset == Type::OffsetBot) {
3040       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
3041       return;
3042     }
3043     // 5. Currently an object is not scalar replaceable if a LoadStore node
3044     // access its field since the field value is unknown after it.
3045     //
3046     Node* n = field->ideal_node();
3047 
3048     // Test for an unsafe access that was parsed as maybe off heap
3049     // (with a CheckCastPP to raw memory).
3050     assert(n->is_AddP(), "expect an address computation");
3051     if (n->in(AddPNode::Base)->is_top() &&
3052         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
3053       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
3054       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
3055       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
3056       return;
3057     }
3058 
3059     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3060       Node* u = n->fast_out(i);
3061       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
3062         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
3063         return;
3064       }
3065     }
3066 
3067     // 6. Or the address may point to more then one object. This may produce
3068     // the false positive result (set not scalar replaceable)
3069     // since the flow-insensitive escape analysis can't separate
3070     // the case when stores overwrite the field's value from the case
3071     // when stores happened on different control branches.
3072     //
3073     // Note: it will disable scalar replacement in some cases:
3074     //
3075     //    Point p[] = new Point[1];
3076     //    p[0] = new Point(); // Will be not scalar replaced
3077     //
3078     // but it will save us from incorrect optimizations in next cases:
3079     //
3080     //    Point p[] = new Point[1];
3081     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3082     //
3083     if (field->base_count() > 1 && candidates.size() == 0) {
3084       if (has_non_reducible_merge(field, reducible_merges)) {
3085         for (BaseIterator i(field); i.has_next(); i.next()) {
3086           PointsToNode* base = i.get();
3087           // Don't take into account LocalVar nodes which
3088           // may point to only one object which should be also
3089           // this field's base by now.
3090           if (base->is_JavaObject() && base != jobj) {
3091             // Mark all bases.
3092             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3093             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3094           }
3095         }
3096 
3097         if (!jobj->scalar_replaceable()) {
3098           return;
3099         }
3100       }
3101     }
3102   }
3103 
3104   // The candidate is truly a reducible merge only if none of the other
3105   // constraints ruled it as NSR. There could be multiple merges involving the
3106   // same jobj.
3107   assert(jobj->scalar_replaceable(), "sanity");
3108   for (uint i = 0; i < candidates.size(); i++ ) {
3109     Node* candidate = candidates.at(i);
3110     reducible_merges.push(candidate);
3111   }
3112 }
3113 
3114 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3115   for (BaseIterator i(field); i.has_next(); i.next()) {
3116     Node* base = i.get()->ideal_node();
3117     if (base->is_Phi() && !reducible_merges.member(base)) {
3118       return true;
3119     }
3120   }
3121   return false;
3122 }
3123 
3124 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) {
3125   assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function.");
3126 
3127   // Look for 'phis' that refer to 'jobj' as the last
3128   // remaining scalar replaceable input.
3129   uint reducible_merges_cnt = reducible_merges.size();
3130   for (uint i = 0; i < reducible_merges_cnt; i++) {
3131     Node* phi = reducible_merges.at(i);
3132 
3133     // This 'Phi' will be a 'good' if it still points to
3134     // at least one scalar replaceable object. Note that 'obj'
3135     // was/should be marked as NSR before calling this function.
3136     bool good_phi = false;
3137 
3138     for (uint j = 1; j < phi->req(); j++) {
3139       JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j));
3140       if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) {
3141         good_phi = true;
3142         break;
3143       }
3144     }
3145 
3146     if (!good_phi) {
3147       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);)
3148       reducible_merges.remove(i);
3149 
3150       // Decrement the index because the 'remove' call above actually
3151       // moves the last entry of the list to position 'i'.
3152       i--;
3153 
3154       reducible_merges_cnt--;
3155     }
3156   }
3157 }
3158 
3159 // Propagate NSR (Not scalar replaceable) state.
3160 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) {
3161   int jobj_length = jobj_worklist.length();
3162   bool found_nsr_alloc = true;
3163   while (found_nsr_alloc) {
3164     found_nsr_alloc = false;
3165     for (int next = 0; next < jobj_length; ++next) {
3166       JavaObjectNode* jobj = jobj_worklist.at(next);
3167       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3168         PointsToNode* use = i.get();
3169         if (use->is_Field()) {
3170           FieldNode* field = use->as_Field();
3171           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3172           assert(field->offset() != Type::OffsetBot, "sanity");
3173           for (BaseIterator i(field); i.has_next(); i.next()) {
3174             PointsToNode* base = i.get();
3175             // An object is not scalar replaceable if the field into which
3176             // it is stored has NSR base.
3177             if ((base != null_obj) && !base->scalar_replaceable()) {
3178               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3179               // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible,
3180               // because there is no point in reducing a Phi that won't improve the number of SR
3181               // objects.
3182               revisit_reducible_phi_status(jobj, reducible_merges);
3183               found_nsr_alloc = true;
3184               break;
3185             }
3186           }
3187         } else if (use->is_LocalVar()) {
3188           Node* phi = use->ideal_node();
3189           if (phi->Opcode() == Op_Phi && reducible_merges.member(phi) && !can_reduce_phi(phi->as_Phi())) {
3190             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is merged in a non-reducible phi"));
3191             reducible_merges.yank(phi);
3192             found_nsr_alloc = true;
3193             break;
3194           }
3195         }
3196         _compile->print_method(PHASE_EA_PROPAGATE_NSR_ITER, 5, jobj->ideal_node());
3197       }
3198     }
3199   }
3200 }
3201 
3202 #ifdef ASSERT
3203 void ConnectionGraph::verify_connection_graph(
3204                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3205                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3206                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3207                          GrowableArray<Node*>& addp_worklist) {
3208   // Verify that graph is complete - no new edges could be added.
3209   int java_objects_length = java_objects_worklist.length();
3210   int non_escaped_length  = non_escaped_allocs_worklist.length();
3211   int new_edges = 0;
3212   for (int next = 0; next < java_objects_length; ++next) {
3213     JavaObjectNode* ptn = java_objects_worklist.at(next);
3214     new_edges += add_java_object_edges(ptn, true);
3215   }
3216   assert(new_edges == 0, "graph was not complete");
3217   // Verify that escape state is final.
3218   int length = non_escaped_allocs_worklist.length();
3219   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist, /*print_method=*/ false);
3220   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3221          (non_escaped_length == length) &&
3222          (_worklist.length() == 0), "escape state was not final");
3223 
3224   // Verify fields information.
3225   int addp_length = addp_worklist.length();
3226   for (int next = 0; next < addp_length; ++next ) {
3227     Node* n = addp_worklist.at(next);
3228     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3229     if (field->is_oop()) {
3230       // Verify that field has all bases
3231       Node* base = get_addp_base(n);
3232       PointsToNode* ptn = ptnode_adr(base->_idx);
3233       if (ptn->is_JavaObject()) {
3234         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3235       } else {
3236         assert(ptn->is_LocalVar(), "sanity");
3237         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3238           PointsToNode* e = i.get();
3239           if (e->is_JavaObject()) {
3240             assert(field->has_base(e->as_JavaObject()), "sanity");
3241           }
3242         }
3243       }
3244       // Verify that all fields have initializing values.
3245       if (field->edge_count() == 0) {
3246         tty->print_cr("----------field does not have references----------");
3247         field->dump();
3248         for (BaseIterator i(field); i.has_next(); i.next()) {
3249           PointsToNode* base = i.get();
3250           tty->print_cr("----------field has next base---------------------");
3251           base->dump();
3252           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3253             tty->print_cr("----------base has fields-------------------------");
3254             for (EdgeIterator j(base); j.has_next(); j.next()) {
3255               j.get()->dump();
3256             }
3257             tty->print_cr("----------base has references---------------------");
3258             for (UseIterator j(base); j.has_next(); j.next()) {
3259               j.get()->dump();
3260             }
3261           }
3262         }
3263         for (UseIterator i(field); i.has_next(); i.next()) {
3264           i.get()->dump();
3265         }
3266         assert(field->edge_count() > 0, "sanity");
3267       }
3268     }
3269   }
3270 }
3271 #endif
3272 
3273 // Optimize ideal graph.
3274 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3275                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3276   Compile* C = _compile;
3277   PhaseIterGVN* igvn = _igvn;
3278   if (EliminateLocks) {
3279     // Mark locks before changing ideal graph.
3280     int cnt = C->macro_count();
3281     for (int i = 0; i < cnt; i++) {
3282       Node *n = C->macro_node(i);
3283       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3284         AbstractLockNode* alock = n->as_AbstractLock();
3285         if (!alock->is_non_esc_obj()) {
3286           if (can_eliminate_lock(alock)) {

3287             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3288             // The lock could be marked eliminated by lock coarsening
3289             // code during first IGVN before EA. Replace coarsened flag
3290             // to eliminate all associated locks/unlocks.
3291 #ifdef ASSERT
3292             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3293 #endif
3294             alock->set_non_esc_obj();
3295           }
3296         }
3297       }
3298     }
3299   }
3300 
3301   if (OptimizePtrCompare) {
3302     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3303       Node *n = ptr_cmp_worklist.at(i);
3304       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3305       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3306       if (tcmp->singleton()) {
3307         Node* cmp = igvn->makecon(tcmp);
3308 #ifndef PRODUCT
3309         if (PrintOptimizePtrCompare) {
3310           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3311           if (Verbose) {
3312             n->dump(1);
3313           }
3314         }
3315 #endif
3316         igvn->replace_node(n, cmp);
3317       }
3318     }
3319   }
3320 
3321   // For MemBarStoreStore nodes added in library_call.cpp, check
3322   // escape status of associated AllocateNode and optimize out
3323   // MemBarStoreStore node if the allocated object never escapes.
3324   for (int i = 0; i < storestore_worklist.length(); i++) {
3325     Node* storestore = storestore_worklist.at(i);
3326     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3327     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3328       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3329       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3330       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3331       igvn->register_new_node_with_optimizer(mb);
3332       igvn->replace_node(storestore, mb);





3333     }
3334   }
3335 }
3336 

























3337 // Optimize objects compare.
3338 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3339   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3340   if (!OptimizePtrCompare) {
3341     return UNKNOWN;
3342   }
3343   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3344   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3345 
3346   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3347   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3348   JavaObjectNode* jobj1 = unique_java_object(left);
3349   JavaObjectNode* jobj2 = unique_java_object(right);
3350 
3351   // The use of this method during allocation merge reduction may cause 'left'
3352   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3353   // that doesn't reference an unique java object.
3354   if (ptn1 == nullptr || ptn2 == nullptr ||
3355       jobj1 == nullptr || jobj2 == nullptr) {
3356     return UNKNOWN;
3357   }
3358 
3359   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3360   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3361 
3362   // Check simple cases first.
3363   if (jobj1 != nullptr) {
3364     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3365       if (jobj1 == jobj2) {
3366         // Comparing the same not escaping object.
3367         return EQ;
3368       }
3369       Node* obj = jobj1->ideal_node();
3370       // Comparing not escaping allocation.
3371       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3372           !ptn2->points_to(jobj1)) {
3373         return NE; // This includes nullness check.
3374       }
3375     }
3376   }
3377   if (jobj2 != nullptr) {
3378     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3379       Node* obj = jobj2->ideal_node();
3380       // Comparing not escaping allocation.
3381       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3382           !ptn1->points_to(jobj2)) {
3383         return NE; // This includes nullness check.
3384       }
3385     }
3386   }
3387   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3388       jobj2 != nullptr && jobj2 != phantom_obj &&
3389       jobj1->ideal_node()->is_Con() &&
3390       jobj2->ideal_node()->is_Con()) {
3391     // Klass or String constants compare. Need to be careful with
3392     // compressed pointers - compare types of ConN and ConP instead of nodes.
3393     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3394     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3395     if (t1->make_ptr() == t2->make_ptr()) {
3396       return EQ;
3397     } else {
3398       return NE;
3399     }
3400   }
3401   if (ptn1->meet(ptn2)) {
3402     return UNKNOWN; // Sets are not disjoint
3403   }
3404 
3405   // Sets are disjoint.
3406   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3407   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3408   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3409   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3410   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3411       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3412     // Check nullness of unknown object.
3413     return UNKNOWN;
3414   }
3415 
3416   // Disjointness by itself is not sufficient since
3417   // alias analysis is not complete for escaped objects.
3418   // Disjoint sets are definitely unrelated only when
3419   // at least one set has only not escaping allocations.
3420   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3421     if (ptn1->non_escaping_allocation()) {
3422       return NE;
3423     }
3424   }
3425   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3426     if (ptn2->non_escaping_allocation()) {
3427       return NE;
3428     }
3429   }
3430   return UNKNOWN;
3431 }
3432 
3433 // Connection Graph construction functions.
3434 
3435 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3436   PointsToNode* ptadr = _nodes.at(n->_idx);
3437   if (ptadr != nullptr) {
3438     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3439     return;
3440   }
3441   Compile* C = _compile;
3442   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3443   map_ideal_node(n, ptadr);
3444 }
3445 
3446 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3447   PointsToNode* ptadr = _nodes.at(n->_idx);
3448   if (ptadr != nullptr) {
3449     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3450     return ptadr;
3451   }
3452   Compile* C = _compile;
3453   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3454   map_ideal_node(n, ptadr);
3455   return ptadr;
3456 }
3457 
3458 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3459   PointsToNode* ptadr = _nodes.at(n->_idx);
3460   if (ptadr != nullptr) {
3461     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3462     return;
3463   }
3464   bool unsafe = false;
3465   bool is_oop = is_oop_field(n, offset, &unsafe);
3466   if (unsafe) {
3467     es = PointsToNode::GlobalEscape;
3468   }
3469   Compile* C = _compile;
3470   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3471   map_ideal_node(n, field);
3472 }
3473 
3474 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3475                                     PointsToNode* src, PointsToNode* dst) {
3476   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3477   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3478   PointsToNode* ptadr = _nodes.at(n->_idx);
3479   if (ptadr != nullptr) {
3480     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3481     return;
3482   }
3483   Compile* C = _compile;
3484   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3485   map_ideal_node(n, ptadr);
3486   // Add edge from arraycopy node to source object.
3487   (void)add_edge(ptadr, src);
3488   src->set_arraycopy_src();
3489   // Add edge from destination object to arraycopy node.
3490   (void)add_edge(dst, ptadr);
3491   dst->set_arraycopy_dst();
3492 }
3493 
3494 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3495   const Type* adr_type = n->as_AddP()->bottom_type();

3496   BasicType bt = T_INT;
3497   if (offset == Type::OffsetBot) {
3498     // Check only oop fields.
3499     if (!adr_type->isa_aryptr() ||
3500         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3501         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3502       // OffsetBot is used to reference array's element. Ignore first AddP.
3503       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3504         bt = T_OBJECT;
3505       }
3506     }
3507   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3508     if (adr_type->isa_instptr()) {
3509       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3510       if (field != nullptr) {
3511         bt = field->layout_type();
3512       } else {
3513         // Check for unsafe oop field access
3514         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3515             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3516             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3517             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3518           bt = T_OBJECT;
3519           (*unsafe) = true;
3520         }
3521       }
3522     } else if (adr_type->isa_aryptr()) {
3523       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3524         // Ignore array length load.
3525       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3526         // Ignore first AddP.
3527       } else {
3528         const Type* elemtype = adr_type->isa_aryptr()->elem();
3529         bt = elemtype->array_element_basic_type();












3530       }
3531     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3532       // Allocation initialization, ThreadLocal field access, unsafe access
3533       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3534           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3535           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3536           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3537         bt = T_OBJECT;
3538       }
3539     }
3540   }
3541   // Note: T_NARROWOOP is not classed as a real reference type
3542   return (is_reference_type(bt) || bt == T_NARROWOOP);
3543 }
3544 
3545 // Returns unique pointed java object or null.
3546 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3547   // If the node was created after the escape computation we can't answer.
3548   uint idx = n->_idx;
3549   if (idx >= nodes_size()) {
3550     return nullptr;
3551   }
3552   PointsToNode* ptn = ptnode_adr(idx);
3553   if (ptn == nullptr) {
3554     return nullptr;
3555   }
3556   if (ptn->is_JavaObject()) {
3557     return ptn->as_JavaObject();
3558   }
3559   assert(ptn->is_LocalVar(), "sanity");
3560   // Check all java objects it points to.
3561   JavaObjectNode* jobj = nullptr;
3562   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3563     PointsToNode* e = i.get();
3564     if (e->is_JavaObject()) {
3565       if (jobj == nullptr) {
3566         jobj = e->as_JavaObject();
3567       } else if (jobj != e) {
3568         return nullptr;
3569       }
3570     }
3571   }
3572   return jobj;
3573 }
3574 
3575 // Return true if this node points only to non-escaping allocations.
3576 bool PointsToNode::non_escaping_allocation() {
3577   if (is_JavaObject()) {
3578     Node* n = ideal_node();
3579     if (n->is_Allocate() || n->is_CallStaticJava()) {
3580       return (escape_state() == PointsToNode::NoEscape);
3581     } else {
3582       return false;
3583     }
3584   }
3585   assert(is_LocalVar(), "sanity");
3586   // Check all java objects it points to.
3587   for (EdgeIterator i(this); i.has_next(); i.next()) {
3588     PointsToNode* e = i.get();
3589     if (e->is_JavaObject()) {
3590       Node* n = e->ideal_node();
3591       if ((e->escape_state() != PointsToNode::NoEscape) ||
3592           !(n->is_Allocate() || n->is_CallStaticJava())) {
3593         return false;
3594       }
3595     }
3596   }
3597   return true;
3598 }
3599 
3600 // Return true if we know the node does not escape globally.
3601 bool ConnectionGraph::not_global_escape(Node *n) {
3602   assert(!_collecting, "should not call during graph construction");
3603   // If the node was created after the escape computation we can't answer.
3604   uint idx = n->_idx;
3605   if (idx >= nodes_size()) {
3606     return false;
3607   }
3608   PointsToNode* ptn = ptnode_adr(idx);
3609   if (ptn == nullptr) {
3610     return false; // not in congraph (e.g. ConI)
3611   }
3612   PointsToNode::EscapeState es = ptn->escape_state();
3613   // If we have already computed a value, return it.
3614   if (es >= PointsToNode::GlobalEscape) {
3615     return false;
3616   }
3617   if (ptn->is_JavaObject()) {
3618     return true; // (es < PointsToNode::GlobalEscape);
3619   }
3620   assert(ptn->is_LocalVar(), "sanity");
3621   // Check all java objects it points to.
3622   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3623     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3624       return false;
3625     }
3626   }
3627   return true;
3628 }
3629 
3630 // Return true if locked object does not escape globally
3631 // and locked code region (identified by BoxLockNode) is balanced:
3632 // all compiled code paths have corresponding Lock/Unlock pairs.
3633 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3634   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3635     if (EliminateNestedLocks) {
3636       // We can mark whole locking region as Local only when only
3637       // one object is used for locking.
3638       alock->box_node()->as_BoxLock()->set_local();
3639     }
3640     return true;
3641   }
3642   return false;
3643 }
3644 
3645 // Helper functions
3646 
3647 // Return true if this node points to specified node or nodes it points to.
3648 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3649   if (is_JavaObject()) {
3650     return (this == ptn);
3651   }
3652   assert(is_LocalVar() || is_Field(), "sanity");
3653   for (EdgeIterator i(this); i.has_next(); i.next()) {
3654     if (i.get() == ptn) {
3655       return true;
3656     }
3657   }
3658   return false;
3659 }
3660 
3661 // Return true if one node points to an other.
3662 bool PointsToNode::meet(PointsToNode* ptn) {
3663   if (this == ptn) {
3664     return true;
3665   } else if (ptn->is_JavaObject()) {
3666     return this->points_to(ptn->as_JavaObject());
3667   } else if (this->is_JavaObject()) {
3668     return ptn->points_to(this->as_JavaObject());
3669   }
3670   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3671   int ptn_count =  ptn->edge_count();
3672   for (EdgeIterator i(this); i.has_next(); i.next()) {
3673     PointsToNode* this_e = i.get();
3674     for (int j = 0; j < ptn_count; j++) {
3675       if (this_e == ptn->edge(j)) {
3676         return true;
3677       }
3678     }
3679   }
3680   return false;
3681 }
3682 
3683 #ifdef ASSERT
3684 // Return true if bases point to this java object.
3685 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3686   for (BaseIterator i(this); i.has_next(); i.next()) {
3687     if (i.get() == jobj) {
3688       return true;
3689     }
3690   }
3691   return false;
3692 }
3693 #endif
3694 
3695 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3696   // Handle simple case first.
3697   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3698   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3699     return true;
3700   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3701     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3702       Node* addp_use = addp->fast_out(i);
3703       if (addp_use->is_Store()) {
3704         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3705           if (addp_use->fast_out(j)->is_Initialize()) {
3706             return true;
3707           }
3708         }
3709       }
3710     }
3711   }
3712   return false;
3713 }
3714 
3715 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3716   const Type *adr_type = phase->type(adr);
3717   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3718     // We are computing a raw address for a store captured by an Initialize
3719     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3720     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3721     assert(offs != Type::OffsetBot ||
3722            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3723            "offset must be a constant or it is initialization of array");
3724     return offs;
3725   }
3726   const TypePtr *t_ptr = adr_type->isa_ptr();
3727   assert(t_ptr != nullptr, "must be a pointer type");
3728   return t_ptr->offset();
3729 }
3730 
3731 Node* ConnectionGraph::get_addp_base(Node *addp) {
3732   assert(addp->is_AddP(), "must be AddP");
3733   //
3734   // AddP cases for Base and Address inputs:
3735   // case #1. Direct object's field reference:
3736   //     Allocate
3737   //       |
3738   //     Proj #5 ( oop result )
3739   //       |
3740   //     CheckCastPP (cast to instance type)
3741   //      | |
3742   //     AddP  ( base == address )
3743   //
3744   // case #2. Indirect object's field reference:
3745   //      Phi
3746   //       |
3747   //     CastPP (cast to instance type)
3748   //      | |
3749   //     AddP  ( base == address )
3750   //
3751   // case #3. Raw object's field reference for Initialize node:
3752   //      Allocate
3753   //        |
3754   //      Proj #5 ( oop result )
3755   //  top   |
3756   //     \  |
3757   //     AddP  ( base == top )
3758   //
3759   // case #4. Array's element reference:
3760   //   {CheckCastPP | CastPP}
3761   //     |  | |
3762   //     |  AddP ( array's element offset )
3763   //     |  |
3764   //     AddP ( array's offset )
3765   //
3766   // case #5. Raw object's field reference for arraycopy stub call:
3767   //          The inline_native_clone() case when the arraycopy stub is called
3768   //          after the allocation before Initialize and CheckCastPP nodes.
3769   //      Allocate
3770   //        |
3771   //      Proj #5 ( oop result )
3772   //       | |
3773   //       AddP  ( base == address )
3774   //
3775   // case #6. Constant Pool, ThreadLocal, CastX2P or
3776   //          Raw object's field reference:
3777   //      {ConP, ThreadLocal, CastX2P, raw Load}
3778   //  top   |
3779   //     \  |
3780   //     AddP  ( base == top )
3781   //
3782   // case #7. Klass's field reference.
3783   //      LoadKlass
3784   //       | |
3785   //       AddP  ( base == address )
3786   //
3787   // case #8. narrow Klass's field reference.
3788   //      LoadNKlass
3789   //       |
3790   //      DecodeN
3791   //       | |
3792   //       AddP  ( base == address )
3793   //
3794   // case #9. Mixed unsafe access
3795   //    {instance}
3796   //        |
3797   //      CheckCastPP (raw)
3798   //  top   |
3799   //     \  |
3800   //     AddP  ( base == top )
3801   //
3802   Node *base = addp->in(AddPNode::Base);
3803   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3804     base = addp->in(AddPNode::Address);
3805     while (base->is_AddP()) {
3806       // Case #6 (unsafe access) may have several chained AddP nodes.
3807       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3808       base = base->in(AddPNode::Address);
3809     }
3810     if (base->Opcode() == Op_CheckCastPP &&
3811         base->bottom_type()->isa_rawptr() &&
3812         _igvn->type(base->in(1))->isa_oopptr()) {
3813       base = base->in(1); // Case #9
3814     } else {
3815       Node* uncast_base = base->uncast();
3816       int opcode = uncast_base->Opcode();
3817       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3818              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3819              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3820              is_captured_store_address(addp), "sanity");
3821     }
3822   }
3823   return base;
3824 }
3825 
3826 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3827   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3828   Node* addp2 = addp->raw_out(0);
3829   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3830       addp2->in(AddPNode::Base) == n &&
3831       addp2->in(AddPNode::Address) == addp) {
3832     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3833     //
3834     // Find array's offset to push it on worklist first and
3835     // as result process an array's element offset first (pushed second)
3836     // to avoid CastPP for the array's offset.
3837     // Otherwise the inserted CastPP (LocalVar) will point to what
3838     // the AddP (Field) points to. Which would be wrong since
3839     // the algorithm expects the CastPP has the same point as
3840     // as AddP's base CheckCastPP (LocalVar).
3841     //
3842     //    ArrayAllocation
3843     //     |
3844     //    CheckCastPP
3845     //     |
3846     //    memProj (from ArrayAllocation CheckCastPP)
3847     //     |  ||
3848     //     |  ||   Int (element index)
3849     //     |  ||    |   ConI (log(element size))
3850     //     |  ||    |   /
3851     //     |  ||   LShift
3852     //     |  ||  /
3853     //     |  AddP (array's element offset)
3854     //     |  |
3855     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3856     //     | / /
3857     //     AddP (array's offset)
3858     //      |
3859     //     Load/Store (memory operation on array's element)
3860     //
3861     return addp2;
3862   }
3863   return nullptr;
3864 }
3865 
3866 //
3867 // Adjust the type and inputs of an AddP which computes the
3868 // address of a field of an instance
3869 //
3870 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3871   PhaseGVN* igvn = _igvn;
3872   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3873   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3874   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3875   if (t == nullptr) {
3876     // We are computing a raw address for a store captured by an Initialize
3877     // compute an appropriate address type (cases #3 and #5).
3878     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3879     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3880     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3881     assert(offs != Type::OffsetBot, "offset must be a constant");
3882     t = base_t->add_offset(offs)->is_oopptr();







3883   }
3884   int inst_id =  base_t->instance_id();
3885   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3886                              "old type must be non-instance or match new type");
3887 
3888   // The type 't' could be subclass of 'base_t'.
3889   // As result t->offset() could be large then base_t's size and it will
3890   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3891   // constructor verifies correctness of the offset.
3892   //
3893   // It could happened on subclass's branch (from the type profiling
3894   // inlining) which was not eliminated during parsing since the exactness
3895   // of the allocation type was not propagated to the subclass type check.
3896   //
3897   // Or the type 't' could be not related to 'base_t' at all.
3898   // It could happened when CHA type is different from MDO type on a dead path
3899   // (for example, from instanceof check) which is not collapsed during parsing.
3900   //
3901   // Do nothing for such AddP node and don't process its users since
3902   // this code branch will go away.
3903   //
3904   if (!t->is_known_instance() &&
3905       !base_t->maybe_java_subtype_of(t)) {
3906      return false; // bail out
3907   }
3908   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();











3909   // Do NOT remove the next line: ensure a new alias index is allocated
3910   // for the instance type. Note: C++ will not remove it since the call
3911   // has side effect.
3912   int alias_idx = _compile->get_alias_index(tinst);
3913   igvn->set_type(addp, tinst);
3914   // record the allocation in the node map
3915   set_map(addp, get_map(base->_idx));
3916   // Set addp's Base and Address to 'base'.
3917   Node *abase = addp->in(AddPNode::Base);
3918   Node *adr   = addp->in(AddPNode::Address);
3919   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3920       adr->in(0)->_idx == (uint)inst_id) {
3921     // Skip AddP cases #3 and #5.
3922   } else {
3923     assert(!abase->is_top(), "sanity"); // AddP case #3
3924     if (abase != base) {
3925       igvn->hash_delete(addp);
3926       addp->set_req(AddPNode::Base, base);
3927       if (abase == adr) {
3928         addp->set_req(AddPNode::Address, base);
3929       } else {
3930         // AddP case #4 (adr is array's element offset AddP node)
3931 #ifdef ASSERT
3932         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3933         assert(adr->is_AddP() && atype != nullptr &&
3934                atype->instance_id() == inst_id, "array's element offset should be processed first");
3935 #endif
3936       }
3937       igvn->hash_insert(addp);
3938     }
3939   }
3940   // Put on IGVN worklist since at least addp's type was changed above.
3941   record_for_optimizer(addp);
3942   return true;
3943 }
3944 
3945 //
3946 // Create a new version of orig_phi if necessary. Returns either the newly
3947 // created phi or an existing phi.  Sets create_new to indicate whether a new
3948 // phi was created.  Cache the last newly created phi in the node map.
3949 //
3950 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3951   Compile *C = _compile;
3952   PhaseGVN* igvn = _igvn;
3953   new_created = false;
3954   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3955   // nothing to do if orig_phi is bottom memory or matches alias_idx
3956   if (phi_alias_idx == alias_idx) {
3957     return orig_phi;
3958   }
3959   // Have we recently created a Phi for this alias index?
3960   PhiNode *result = get_map_phi(orig_phi->_idx);
3961   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3962     return result;
3963   }
3964   // Previous check may fail when the same wide memory Phi was split into Phis
3965   // for different memory slices. Search all Phis for this region.
3966   if (result != nullptr) {
3967     Node* region = orig_phi->in(0);
3968     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3969       Node* phi = region->fast_out(i);
3970       if (phi->is_Phi() &&
3971           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3972         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3973         return phi->as_Phi();
3974       }
3975     }
3976   }
3977   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3978     if (C->do_escape_analysis() == true && !C->failing()) {
3979       // Retry compilation without escape analysis.
3980       // If this is the first failure, the sentinel string will "stick"
3981       // to the Compile object, and the C2Compiler will see it and retry.
3982       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3983     }
3984     return nullptr;
3985   }
3986   orig_phi_worklist.append_if_missing(orig_phi);
3987   const TypePtr *atype = C->get_adr_type(alias_idx);
3988   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3989   C->copy_node_notes_to(result, orig_phi);
3990   igvn->set_type(result, result->bottom_type());
3991   record_for_optimizer(result);
3992   set_map(orig_phi, result);
3993   new_created = true;
3994   return result;
3995 }
3996 
3997 //
3998 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3999 // specified alias index.
4000 //
4001 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
4002   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
4003   Compile *C = _compile;
4004   PhaseGVN* igvn = _igvn;
4005   bool new_phi_created;
4006   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
4007   if (!new_phi_created) {
4008     return result;
4009   }
4010   GrowableArray<PhiNode *>  phi_list;
4011   GrowableArray<uint>  cur_input;
4012   PhiNode *phi = orig_phi;
4013   uint idx = 1;
4014   bool finished = false;
4015   while(!finished) {
4016     while (idx < phi->req()) {
4017       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
4018       if (mem != nullptr && mem->is_Phi()) {
4019         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
4020         if (new_phi_created) {
4021           // found an phi for which we created a new split, push current one on worklist and begin
4022           // processing new one
4023           phi_list.push(phi);
4024           cur_input.push(idx);
4025           phi = mem->as_Phi();
4026           result = newphi;
4027           idx = 1;
4028           continue;
4029         } else {
4030           mem = newphi;
4031         }
4032       }
4033       if (C->failing()) {
4034         return nullptr;
4035       }
4036       result->set_req(idx++, mem);
4037     }
4038 #ifdef ASSERT
4039     // verify that the new Phi has an input for each input of the original
4040     assert( phi->req() == result->req(), "must have same number of inputs.");
4041     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
4042 #endif
4043     // Check if all new phi's inputs have specified alias index.
4044     // Otherwise use old phi.
4045     for (uint i = 1; i < phi->req(); i++) {
4046       Node* in = result->in(i);
4047       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
4048     }
4049     // we have finished processing a Phi, see if there are any more to do
4050     finished = (phi_list.length() == 0 );
4051     if (!finished) {
4052       phi = phi_list.pop();
4053       idx = cur_input.pop();
4054       PhiNode *prev_result = get_map_phi(phi->_idx);
4055       prev_result->set_req(idx++, result);
4056       result = prev_result;
4057     }
4058   }
4059   return result;
4060 }
4061 
4062 //
4063 // The next methods are derived from methods in MemNode.
4064 //
4065 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
4066   Node *mem = mmem;
4067   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
4068   // means an array I have not precisely typed yet.  Do not do any
4069   // alias stuff with it any time soon.
4070   if (toop->base() != Type::AnyPtr &&
4071       !(toop->isa_instptr() &&
4072         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
4073         toop->offset() == Type::OffsetBot)) {
4074     mem = mmem->memory_at(alias_idx);
4075     // Update input if it is progress over what we have now
4076   }
4077   return mem;
4078 }
4079 
4080 //
4081 // Move memory users to their memory slices.
4082 //
4083 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
4084   Compile* C = _compile;
4085   PhaseGVN* igvn = _igvn;
4086   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
4087   assert(tp != nullptr, "ptr type");
4088   int alias_idx = C->get_alias_index(tp);
4089   int general_idx = C->get_general_index(alias_idx);
4090 
4091   // Move users first
4092   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4093     Node* use = n->fast_out(i);
4094     if (use->is_MergeMem()) {
4095       MergeMemNode* mmem = use->as_MergeMem();
4096       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
4097       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
4098         continue; // Nothing to do
4099       }
4100       // Replace previous general reference to mem node.
4101       uint orig_uniq = C->unique();
4102       Node* m = find_inst_mem(n, general_idx, orig_phis);
4103       assert(orig_uniq == C->unique(), "no new nodes");
4104       mmem->set_memory_at(general_idx, m);
4105       --imax;
4106       --i;
4107     } else if (use->is_MemBar()) {
4108       assert(!use->is_Initialize(), "initializing stores should not be moved");
4109       if (use->req() > MemBarNode::Precedent &&
4110           use->in(MemBarNode::Precedent) == n) {
4111         // Don't move related membars.
4112         record_for_optimizer(use);
4113         continue;
4114       }
4115       tp = use->as_MemBar()->adr_type()->isa_ptr();
4116       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
4117           alias_idx == general_idx) {
4118         continue; // Nothing to do
4119       }
4120       // Move to general memory slice.
4121       uint orig_uniq = C->unique();
4122       Node* m = find_inst_mem(n, general_idx, orig_phis);
4123       assert(orig_uniq == C->unique(), "no new nodes");
4124       igvn->hash_delete(use);
4125       imax -= use->replace_edge(n, m, igvn);
4126       igvn->hash_insert(use);
4127       record_for_optimizer(use);
4128       --i;
4129 #ifdef ASSERT
4130     } else if (use->is_Mem()) {
4131       // Memory nodes should have new memory input.
4132       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4133       assert(tp != nullptr, "ptr type");
4134       int idx = C->get_alias_index(tp);
4135       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4136              "Following memory nodes should have new memory input or be on the same memory slice");
4137     } else if (use->is_Phi()) {
4138       // Phi nodes should be split and moved already.
4139       tp = use->as_Phi()->adr_type()->isa_ptr();
4140       assert(tp != nullptr, "ptr type");
4141       int idx = C->get_alias_index(tp);
4142       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4143     } else {
4144       use->dump();
4145       assert(false, "should not be here");
4146 #endif
4147     }
4148   }
4149 }
4150 
4151 //
4152 // Search memory chain of "mem" to find a MemNode whose address
4153 // is the specified alias index.
4154 //
4155 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4156 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4157   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4158     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4159     return nullptr;
4160   }
4161   if (orig_mem == nullptr) {
4162     return orig_mem;
4163   }
4164   Compile* C = _compile;
4165   PhaseGVN* igvn = _igvn;
4166   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4167   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4168   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4169   Node *prev = nullptr;
4170   Node *result = orig_mem;
4171   while (prev != result) {
4172     prev = result;
4173     if (result == start_mem) {
4174       break;  // hit one of our sentinels
4175     }
4176     if (result->is_Mem()) {
4177       const Type *at = igvn->type(result->in(MemNode::Address));
4178       if (at == Type::TOP) {
4179         break; // Dead
4180       }
4181       assert (at->isa_ptr() != nullptr, "pointer type required.");
4182       int idx = C->get_alias_index(at->is_ptr());
4183       if (idx == alias_idx) {
4184         break; // Found
4185       }
4186       if (!is_instance && (at->isa_oopptr() == nullptr ||
4187                            !at->is_oopptr()->is_known_instance())) {
4188         break; // Do not skip store to general memory slice.
4189       }
4190       result = result->in(MemNode::Memory);
4191     }
4192     if (!is_instance) {
4193       continue;  // don't search further for non-instance types
4194     }
4195     // skip over a call which does not affect this memory slice
4196     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4197       Node *proj_in = result->in(0);
4198       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4199         break;  // hit one of our sentinels
4200       } else if (proj_in->is_Call()) {
4201         // ArrayCopy node processed here as well
4202         CallNode *call = proj_in->as_Call();
4203         if (!call->may_modify(toop, igvn)) {
4204           result = call->in(TypeFunc::Memory);
4205         }
4206       } else if (proj_in->is_Initialize()) {
4207         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4208         // Stop if this is the initialization for the object instance which
4209         // which contains this memory slice, otherwise skip over it.
4210         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4211           result = proj_in->in(TypeFunc::Memory);
4212         } else if (C->get_alias_index(result->adr_type()) != alias_idx) {
4213           assert(C->get_general_index(alias_idx) == C->get_alias_index(result->adr_type()), "should be projection for the same field/array element");
4214           result = get_map(result->_idx);
4215           assert(result != nullptr, "new projection should have been allocated");
4216           break;
4217         }
4218       } else if (proj_in->is_MemBar()) {
4219         // Check if there is an array copy for a clone
4220         // Step over GC barrier when ReduceInitialCardMarks is disabled
4221         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4222         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
4223 
4224         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4225           // Stop if it is a clone
4226           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4227           if (ac->may_modify(toop, igvn)) {
4228             break;
4229           }
4230         }
4231         result = proj_in->in(TypeFunc::Memory);
4232       }
4233     } else if (result->is_MergeMem()) {
4234       MergeMemNode *mmem = result->as_MergeMem();
4235       result = step_through_mergemem(mmem, alias_idx, toop);
4236       if (result == mmem->base_memory()) {
4237         // Didn't find instance memory, search through general slice recursively.
4238         result = mmem->memory_at(C->get_general_index(alias_idx));
4239         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4240         if (C->failing()) {
4241           return nullptr;
4242         }
4243         mmem->set_memory_at(alias_idx, result);
4244       }
4245     } else if (result->is_Phi() &&
4246                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4247       Node *un = result->as_Phi()->unique_input(igvn);
4248       if (un != nullptr) {
4249         orig_phis.append_if_missing(result->as_Phi());
4250         result = un;
4251       } else {
4252         break;
4253       }
4254     } else if (result->is_ClearArray()) {
4255       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4256         // Can not bypass initialization of the instance
4257         // we are looking for.
4258         break;
4259       }
4260       // Otherwise skip it (the call updated 'result' value).
4261     } else if (result->Opcode() == Op_SCMemProj) {
4262       Node* mem = result->in(0);
4263       Node* adr = nullptr;
4264       if (mem->is_LoadStore()) {
4265         adr = mem->in(MemNode::Address);
4266       } else {
4267         assert(mem->Opcode() == Op_EncodeISOArray ||
4268                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4269         adr = mem->in(3); // Memory edge corresponds to destination array
4270       }
4271       const Type *at = igvn->type(adr);
4272       if (at != Type::TOP) {
4273         assert(at->isa_ptr() != nullptr, "pointer type required.");
4274         int idx = C->get_alias_index(at->is_ptr());
4275         if (idx == alias_idx) {
4276           // Assert in debug mode
4277           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4278           break; // In product mode return SCMemProj node
4279         }
4280       }
4281       result = mem->in(MemNode::Memory);
4282     } else if (result->Opcode() == Op_StrInflatedCopy) {
4283       Node* adr = result->in(3); // Memory edge corresponds to destination array
4284       const Type *at = igvn->type(adr);
4285       if (at != Type::TOP) {
4286         assert(at->isa_ptr() != nullptr, "pointer type required.");
4287         int idx = C->get_alias_index(at->is_ptr());
4288         if (idx == alias_idx) {
4289           // Assert in debug mode
4290           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4291           break; // In product mode return SCMemProj node
4292         }
4293       }
4294       result = result->in(MemNode::Memory);
4295     }
4296   }
4297   if (result->is_Phi()) {
4298     PhiNode *mphi = result->as_Phi();
4299     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4300     const TypePtr *t = mphi->adr_type();
4301     if (!is_instance) {
4302       // Push all non-instance Phis on the orig_phis worklist to update inputs
4303       // during Phase 4 if needed.
4304       orig_phis.append_if_missing(mphi);
4305     } else if (C->get_alias_index(t) != alias_idx) {
4306       // Create a new Phi with the specified alias index type.
4307       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4308     }
4309   }
4310   // the result is either MemNode, PhiNode, InitializeNode.
4311   return result;
4312 }
4313 
4314 //
4315 //  Convert the types of non-escaped object to instance types where possible,
4316 //  propagate the new type information through the graph, and update memory
4317 //  edges and MergeMem inputs to reflect the new type.
4318 //
4319 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4320 //  The processing is done in 4 phases:
4321 //
4322 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4323 //            types for the CheckCastPP for allocations where possible.
4324 //            Propagate the new types through users as follows:
4325 //               casts and Phi:  push users on alloc_worklist
4326 //               AddP:  cast Base and Address inputs to the instance type
4327 //                      push any AddP users on alloc_worklist and push any memnode
4328 //                      users onto memnode_worklist.
4329 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4330 //            search the Memory chain for a store with the appropriate type
4331 //            address type.  If a Phi is found, create a new version with
4332 //            the appropriate memory slices from each of the Phi inputs.
4333 //            For stores, process the users as follows:
4334 //               MemNode:  push on memnode_worklist
4335 //               MergeMem: push on mergemem_worklist
4336 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4337 //            moving the first node encountered of each  instance type to the
4338 //            the input corresponding to its alias index.
4339 //            appropriate memory slice.
4340 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4341 //
4342 // In the following example, the CheckCastPP nodes are the cast of allocation
4343 // results and the allocation of node 29 is non-escaped and eligible to be an
4344 // instance type.
4345 //
4346 // We start with:
4347 //
4348 //     7 Parm #memory
4349 //    10  ConI  "12"
4350 //    19  CheckCastPP   "Foo"
4351 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4352 //    29  CheckCastPP   "Foo"
4353 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4354 //
4355 //    40  StoreP  25   7  20   ... alias_index=4
4356 //    50  StoreP  35  40  30   ... alias_index=4
4357 //    60  StoreP  45  50  20   ... alias_index=4
4358 //    70  LoadP    _  60  30   ... alias_index=4
4359 //    80  Phi     75  50  60   Memory alias_index=4
4360 //    90  LoadP    _  80  30   ... alias_index=4
4361 //   100  LoadP    _  80  20   ... alias_index=4
4362 //
4363 //
4364 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4365 // and creating a new alias index for node 30.  This gives:
4366 //
4367 //     7 Parm #memory
4368 //    10  ConI  "12"
4369 //    19  CheckCastPP   "Foo"
4370 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4371 //    29  CheckCastPP   "Foo"  iid=24
4372 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4373 //
4374 //    40  StoreP  25   7  20   ... alias_index=4
4375 //    50  StoreP  35  40  30   ... alias_index=6
4376 //    60  StoreP  45  50  20   ... alias_index=4
4377 //    70  LoadP    _  60  30   ... alias_index=6
4378 //    80  Phi     75  50  60   Memory alias_index=4
4379 //    90  LoadP    _  80  30   ... alias_index=6
4380 //   100  LoadP    _  80  20   ... alias_index=4
4381 //
4382 // In phase 2, new memory inputs are computed for the loads and stores,
4383 // And a new version of the phi is created.  In phase 4, the inputs to
4384 // node 80 are updated and then the memory nodes are updated with the
4385 // values computed in phase 2.  This results in:
4386 //
4387 //     7 Parm #memory
4388 //    10  ConI  "12"
4389 //    19  CheckCastPP   "Foo"
4390 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4391 //    29  CheckCastPP   "Foo"  iid=24
4392 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4393 //
4394 //    40  StoreP  25  7   20   ... alias_index=4
4395 //    50  StoreP  35  7   30   ... alias_index=6
4396 //    60  StoreP  45  40  20   ... alias_index=4
4397 //    70  LoadP    _  50  30   ... alias_index=6
4398 //    80  Phi     75  40  60   Memory alias_index=4
4399 //   120  Phi     75  50  50   Memory alias_index=6
4400 //    90  LoadP    _ 120  30   ... alias_index=6
4401 //   100  LoadP    _  80  20   ... alias_index=4
4402 //
4403 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4404                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4405                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4406                                          Unique_Node_List &reducible_merges) {
4407   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4408   GrowableArray<Node *>  memnode_worklist;
4409   GrowableArray<PhiNode *>  orig_phis;
4410   PhaseIterGVN  *igvn = _igvn;
4411   uint new_index_start = (uint) _compile->num_alias_types();
4412   VectorSet visited;
4413   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4414   uint unique_old = _compile->unique();
4415 
4416   //  Phase 1:  Process possible allocations from alloc_worklist.
4417   //  Create instance types for the CheckCastPP for allocations where possible.
4418   //
4419   // (Note: don't forget to change the order of the second AddP node on
4420   //  the alloc_worklist if the order of the worklist processing is changed,
4421   //  see the comment in find_second_addp().)
4422   //
4423   while (alloc_worklist.length() != 0) {
4424     Node *n = alloc_worklist.pop();
4425     uint ni = n->_idx;
4426     if (n->is_Call()) {
4427       CallNode *alloc = n->as_Call();
4428       // copy escape information to call node
4429       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4430       PointsToNode::EscapeState es = ptn->escape_state();
4431       // We have an allocation or call which returns a Java object,
4432       // see if it is non-escaped.
4433       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4434         continue;
4435       }
4436       // Find CheckCastPP for the allocate or for the return value of a call
4437       n = alloc->result_cast();
4438       if (n == nullptr) {            // No uses except Initialize node
4439         if (alloc->is_Allocate()) {
4440           // Set the scalar_replaceable flag for allocation
4441           // so it could be eliminated if it has no uses.
4442           alloc->as_Allocate()->_is_scalar_replaceable = true;
4443         }
4444         continue;
4445       }
4446       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4447         // we could reach here for allocate case if one init is associated with many allocs.
4448         if (alloc->is_Allocate()) {
4449           alloc->as_Allocate()->_is_scalar_replaceable = false;
4450         }
4451         continue;
4452       }
4453 
4454       // The inline code for Object.clone() casts the allocation result to
4455       // java.lang.Object and then to the actual type of the allocated
4456       // object. Detect this case and use the second cast.
4457       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4458       // the allocation result is cast to java.lang.Object and then
4459       // to the actual Array type.
4460       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4461           && (alloc->is_AllocateArray() ||
4462               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4463         Node *cast2 = nullptr;
4464         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4465           Node *use = n->fast_out(i);
4466           if (use->is_CheckCastPP()) {
4467             cast2 = use;
4468             break;
4469           }
4470         }
4471         if (cast2 != nullptr) {
4472           n = cast2;
4473         } else {
4474           // Non-scalar replaceable if the allocation type is unknown statically
4475           // (reflection allocation), the object can't be restored during
4476           // deoptimization without precise type.
4477           continue;
4478         }
4479       }
4480 
4481       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4482       if (t == nullptr) {
4483         continue;  // not a TypeOopPtr
4484       }
4485       if (!t->klass_is_exact()) {
4486         continue; // not an unique type
4487       }
4488       if (alloc->is_Allocate()) {
4489         // Set the scalar_replaceable flag for allocation
4490         // so it could be eliminated.
4491         alloc->as_Allocate()->_is_scalar_replaceable = true;
4492       }
4493       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4494       // in order for an object to be scalar-replaceable, it must be:
4495       //   - a direct allocation (not a call returning an object)
4496       //   - non-escaping
4497       //   - eligible to be a unique type
4498       //   - not determined to be ineligible by escape analysis
4499       set_map(alloc, n);
4500       set_map(n, alloc);
4501       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4502       igvn->hash_delete(n);
4503       igvn->set_type(n,  tinst);
4504       n->raise_bottom_type(tinst);
4505       igvn->hash_insert(n);
4506       record_for_optimizer(n);
4507       // Allocate an alias index for the header fields. Accesses to
4508       // the header emitted during macro expansion wouldn't have
4509       // correct memory state otherwise.
4510       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4511       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4512       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4513         // Add a new NarrowMem projection for each existing NarrowMem projection with new adr type
4514         InitializeNode* init = alloc->as_Allocate()->initialization();
4515         assert(init != nullptr, "can't find Initialization node for this Allocate node");
4516         auto process_narrow_proj = [&](NarrowMemProjNode* proj) {
4517           const TypePtr* adr_type = proj->adr_type();
4518           const TypePtr* new_adr_type = tinst->add_offset(adr_type->offset());





4519           if (adr_type != new_adr_type && !init->already_has_narrow_mem_proj_with_adr_type(new_adr_type)) {
4520             DEBUG_ONLY( uint alias_idx = _compile->get_alias_index(new_adr_type); )
4521             assert(_compile->get_general_index(alias_idx) == _compile->get_alias_index(adr_type), "new adr type should be narrowed down from existing adr type");
4522             NarrowMemProjNode* new_proj = new NarrowMemProjNode(init, new_adr_type);
4523             igvn->set_type(new_proj, new_proj->bottom_type());
4524             record_for_optimizer(new_proj);
4525             set_map(proj, new_proj); // record it so ConnectionGraph::find_inst_mem() can find it
4526           }
4527         };
4528         init->for_each_narrow_mem_proj_with_new_uses(process_narrow_proj);
4529 
4530         // First, put on the worklist all Field edges from Connection Graph
4531         // which is more accurate than putting immediate users from Ideal Graph.
4532         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4533           PointsToNode* tgt = e.get();
4534           if (tgt->is_Arraycopy()) {
4535             continue;
4536           }
4537           Node* use = tgt->ideal_node();
4538           assert(tgt->is_Field() && use->is_AddP(),
4539                  "only AddP nodes are Field edges in CG");
4540           if (use->outcnt() > 0) { // Don't process dead nodes
4541             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4542             if (addp2 != nullptr) {
4543               assert(alloc->is_AllocateArray(),"array allocation was expected");
4544               alloc_worklist.append_if_missing(addp2);
4545             }
4546             alloc_worklist.append_if_missing(use);
4547           }
4548         }
4549 
4550         // An allocation may have an Initialize which has raw stores. Scan
4551         // the users of the raw allocation result and push AddP users
4552         // on alloc_worklist.
4553         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4554         assert (raw_result != nullptr, "must have an allocation result");
4555         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4556           Node *use = raw_result->fast_out(i);
4557           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4558             Node* addp2 = find_second_addp(use, raw_result);
4559             if (addp2 != nullptr) {
4560               assert(alloc->is_AllocateArray(),"array allocation was expected");
4561               alloc_worklist.append_if_missing(addp2);
4562             }
4563             alloc_worklist.append_if_missing(use);
4564           } else if (use->is_MemBar()) {
4565             memnode_worklist.append_if_missing(use);
4566           }
4567         }
4568       }
4569     } else if (n->is_AddP()) {
4570       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4571         // This AddP will go away when we reduce the Phi
4572         continue;
4573       }
4574       Node* addp_base = get_addp_base(n);
4575       JavaObjectNode* jobj = unique_java_object(addp_base);
4576       if (jobj == nullptr || jobj == phantom_obj) {
4577 #ifdef ASSERT
4578         ptnode_adr(get_addp_base(n)->_idx)->dump();
4579         ptnode_adr(n->_idx)->dump();
4580         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4581 #endif
4582         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4583         return;
4584       }
4585       Node *base = get_map(jobj->idx());  // CheckCastPP node
4586       if (!split_AddP(n, base)) continue; // wrong type from dead path
4587     } else if (n->is_Phi() ||
4588                n->is_CheckCastPP() ||
4589                n->is_EncodeP() ||
4590                n->is_DecodeN() ||
4591                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4592       if (visited.test_set(n->_idx)) {
4593         assert(n->is_Phi(), "loops only through Phi's");
4594         continue;  // already processed
4595       }
4596       // Reducible Phi's will be removed from the graph after split_unique_types
4597       // finishes. For now we just try to split out the SR inputs of the merge.
4598       Node* parent = n->in(1);
4599       if (reducible_merges.member(n)) {
4600         reduce_phi(n->as_Phi(), alloc_worklist);
4601 #ifdef ASSERT
4602         if (VerifyReduceAllocationMerges) {
4603           reduced_merges.push(n);
4604         }
4605 #endif
4606         continue;
4607       } else if (reducible_merges.member(parent)) {
4608         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4609         // part of reduce_merge.
4610         continue;
4611       }
4612       JavaObjectNode* jobj = unique_java_object(n);
4613       if (jobj == nullptr || jobj == phantom_obj) {
4614 #ifdef ASSERT
4615         ptnode_adr(n->_idx)->dump();
4616         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4617 #endif
4618         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4619         return;
4620       } else {
4621         Node *val = get_map(jobj->idx());   // CheckCastPP node
4622         TypeNode *tn = n->as_Type();
4623         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4624         assert(tinst != nullptr && tinst->is_known_instance() &&
4625                tinst->instance_id() == jobj->idx() , "instance type expected.");
4626 
4627         const Type *tn_type = igvn->type(tn);
4628         const TypeOopPtr *tn_t;
4629         if (tn_type->isa_narrowoop()) {
4630           tn_t = tn_type->make_ptr()->isa_oopptr();
4631         } else {
4632           tn_t = tn_type->isa_oopptr();
4633         }
4634         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {







4635           if (tn_type->isa_narrowoop()) {
4636             tn_type = tinst->make_narrowoop();
4637           } else {
4638             tn_type = tinst;
4639           }
4640           igvn->hash_delete(tn);
4641           igvn->set_type(tn, tn_type);
4642           tn->set_type(tn_type);
4643           igvn->hash_insert(tn);
4644           record_for_optimizer(n);
4645         } else {
4646           assert(tn_type == TypePtr::NULL_PTR ||
4647                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4648                  "unexpected type");
4649           continue; // Skip dead path with different type
4650         }
4651       }
4652     } else {
4653       DEBUG_ONLY(n->dump();)
4654       assert(false, "EA: unexpected node");
4655       continue;
4656     }
4657     // push allocation's users on appropriate worklist
4658     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4659       Node *use = n->fast_out(i);
4660       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4661         // Load/store to instance's field
4662         memnode_worklist.append_if_missing(use);
4663       } else if (use->is_MemBar()) {
4664         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4665           memnode_worklist.append_if_missing(use);
4666         }
4667       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4668         Node* addp2 = find_second_addp(use, n);
4669         if (addp2 != nullptr) {
4670           alloc_worklist.append_if_missing(addp2);
4671         }
4672         alloc_worklist.append_if_missing(use);
4673       } else if (use->is_Phi() ||
4674                  use->is_CheckCastPP() ||
4675                  use->is_EncodeNarrowPtr() ||
4676                  use->is_DecodeNarrowPtr() ||
4677                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4678         alloc_worklist.append_if_missing(use);
4679 #ifdef ASSERT
4680       } else if (use->is_Mem()) {
4681         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4682       } else if (use->is_MergeMem()) {
4683         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4684       } else if (use->is_SafePoint()) {
4685         // Look for MergeMem nodes for calls which reference unique allocation
4686         // (through CheckCastPP nodes) even for debug info.
4687         Node* m = use->in(TypeFunc::Memory);
4688         if (m->is_MergeMem()) {
4689           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4690         }
4691       } else if (use->Opcode() == Op_EncodeISOArray) {
4692         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4693           // EncodeISOArray overwrites destination array
4694           memnode_worklist.append_if_missing(use);
4695         }



4696       } else {
4697         uint op = use->Opcode();
4698         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4699             (use->in(MemNode::Memory) == n)) {
4700           // They overwrite memory edge corresponding to destination array,
4701           memnode_worklist.append_if_missing(use);
4702         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4703               op == Op_CastP2X ||
4704               op == Op_FastLock || op == Op_AryEq ||
4705               op == Op_StrComp || op == Op_CountPositives ||
4706               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4707               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4708               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4709               op == Op_SubTypeCheck ||
4710               op == Op_ReinterpretS2HF ||
4711               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4712           n->dump();
4713           use->dump();
4714           assert(false, "EA: missing allocation reference path");
4715         }
4716 #endif
4717       }
4718     }
4719 
4720   }
4721 
4722 #ifdef ASSERT
4723   if (VerifyReduceAllocationMerges) {
4724     for (uint i = 0; i < reducible_merges.size(); i++) {
4725       Node* phi = reducible_merges.at(i);
4726 
4727       if (!reduced_merges.member(phi)) {
4728         phi->dump(2);
4729         phi->dump(-2);
4730         assert(false, "This reducible merge wasn't reduced.");
4731       }
4732 
4733       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4734       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4735         Node* use = phi->fast_out(j);
4736         if (!use->is_SafePoint() && !use->is_CastPP()) {
4737           phi->dump(2);
4738           phi->dump(-2);
4739           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4740         }
4741       }
4742     }
4743   }
4744 #endif
4745 
4746   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4747   // type, record it in the ArrayCopy node so we know what memory this
4748   // node uses/modified.
4749   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4750     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4751     Node* dest = ac->in(ArrayCopyNode::Dest);
4752     if (dest->is_AddP()) {
4753       dest = get_addp_base(dest);
4754     }
4755     JavaObjectNode* jobj = unique_java_object(dest);
4756     if (jobj != nullptr) {
4757       Node *base = get_map(jobj->idx());
4758       if (base != nullptr) {
4759         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4760         ac->_dest_type = base_t;
4761       }
4762     }
4763     Node* src = ac->in(ArrayCopyNode::Src);
4764     if (src->is_AddP()) {
4765       src = get_addp_base(src);
4766     }
4767     jobj = unique_java_object(src);
4768     if (jobj != nullptr) {
4769       Node* base = get_map(jobj->idx());
4770       if (base != nullptr) {
4771         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4772         ac->_src_type = base_t;
4773       }
4774     }
4775   }
4776 
4777   // New alias types were created in split_AddP().
4778   uint new_index_end = (uint) _compile->num_alias_types();
4779 
4780   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_1, 5);
4781 
4782   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4783   //            compute new values for Memory inputs  (the Memory inputs are not
4784   //            actually updated until phase 4.)
4785   if (memnode_worklist.length() == 0)
4786     return;  // nothing to do
4787   while (memnode_worklist.length() != 0) {
4788     Node *n = memnode_worklist.pop();
4789     if (visited.test_set(n->_idx)) {
4790       continue;
4791     }
4792     if (n->is_Phi() || n->is_ClearArray()) {
4793       // we don't need to do anything, but the users must be pushed
4794     } else if (n->is_MemBar()) { // MemBar nodes
4795       if (!n->is_Initialize()) { // memory projections for Initialize pushed below (so we get to all their uses)
4796         // we don't need to do anything, but the users must be pushed
4797         n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4798         if (n == nullptr) {
4799           continue;
4800         }
4801       }
4802     } else if (n->is_CallLeaf()) {
4803       // Runtime calls with narrow memory input (no MergeMem node)
4804       // get the memory projection
4805       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4806       if (n == nullptr) {
4807         continue;
4808       }
4809     } else if (n->Opcode() == Op_StrInflatedCopy) {
4810       // Check direct uses of StrInflatedCopy.
4811       // It is memory type Node - no special SCMemProj node.
4812     } else if (n->Opcode() == Op_StrCompressedCopy ||
4813                n->Opcode() == Op_EncodeISOArray) {
4814       // get the memory projection
4815       n = n->find_out_with(Op_SCMemProj);
4816       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");



4817     } else if (n->is_Proj()) {
4818       assert(n->in(0)->is_Initialize(), "we only push memory projections for Initialize");
4819     } else {
4820 #ifdef ASSERT
4821       if (!n->is_Mem()) {
4822         n->dump();
4823       }
4824       assert(n->is_Mem(), "memory node required.");
4825 #endif
4826       Node *addr = n->in(MemNode::Address);
4827       const Type *addr_t = igvn->type(addr);
4828       if (addr_t == Type::TOP) {
4829         continue;
4830       }
4831       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4832       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4833       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4834       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4835       if (_compile->failing()) {
4836         return;
4837       }
4838       if (mem != n->in(MemNode::Memory)) {
4839         // We delay the memory edge update since we need old one in
4840         // MergeMem code below when instances memory slices are separated.
4841         set_map(n, mem);
4842       }
4843       if (n->is_Load()) {
4844         continue;  // don't push users
4845       } else if (n->is_LoadStore()) {
4846         // get the memory projection
4847         n = n->find_out_with(Op_SCMemProj);
4848         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4849       }
4850     }
4851     // push user on appropriate worklist
4852     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4853       Node *use = n->fast_out(i);
4854       if (use->is_Phi() || use->is_ClearArray()) {
4855         memnode_worklist.append_if_missing(use);
4856       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4857         memnode_worklist.append_if_missing(use);
4858       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4859         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4860           memnode_worklist.append_if_missing(use);
4861         }
4862       } else if (use->is_Proj()) {
4863         assert(n->is_Initialize(), "We only push projections of Initialize");
4864         if (use->as_Proj()->_con == TypeFunc::Memory) { // Ignore precedent edge
4865           memnode_worklist.append_if_missing(use);
4866         }
4867 #ifdef ASSERT
4868       } else if(use->is_Mem()) {
4869         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4870       } else if (use->is_MergeMem()) {
4871         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4872       } else if (use->Opcode() == Op_EncodeISOArray) {
4873         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4874           // EncodeISOArray overwrites destination array
4875           memnode_worklist.append_if_missing(use);
4876         }




4877       } else {
4878         uint op = use->Opcode();
4879         if ((use->in(MemNode::Memory) == n) &&
4880             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4881           // They overwrite memory edge corresponding to destination array,
4882           memnode_worklist.append_if_missing(use);
4883         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4884               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4885               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4886               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4887           n->dump();
4888           use->dump();
4889           assert(false, "EA: missing memory path");
4890         }
4891 #endif
4892       }
4893     }
4894   }
4895 
4896   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4897   //            Walk each memory slice moving the first node encountered of each
4898   //            instance type to the input corresponding to its alias index.
4899   uint length = mergemem_worklist.length();
4900   for( uint next = 0; next < length; ++next ) {
4901     MergeMemNode* nmm = mergemem_worklist.at(next);
4902     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4903     // Note: we don't want to use MergeMemStream here because we only want to
4904     // scan inputs which exist at the start, not ones we add during processing.
4905     // Note 2: MergeMem may already contains instance memory slices added
4906     // during find_inst_mem() call when memory nodes were processed above.
4907     igvn->hash_delete(nmm);
4908     uint nslices = MIN2(nmm->req(), new_index_start);
4909     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4910       Node* mem = nmm->in(i);
4911       Node* cur = nullptr;
4912       if (mem == nullptr || mem->is_top()) {
4913         continue;
4914       }
4915       // First, update mergemem by moving memory nodes to corresponding slices
4916       // if their type became more precise since this mergemem was created.
4917       while (mem->is_Mem()) {
4918         const Type* at = igvn->type(mem->in(MemNode::Address));
4919         if (at != Type::TOP) {
4920           assert (at->isa_ptr() != nullptr, "pointer type required.");
4921           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4922           if (idx == i) {
4923             if (cur == nullptr) {
4924               cur = mem;
4925             }
4926           } else {
4927             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4928               nmm->set_memory_at(idx, mem);
4929             }
4930           }
4931         }
4932         mem = mem->in(MemNode::Memory);
4933       }
4934       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4935       // Find any instance of the current type if we haven't encountered
4936       // already a memory slice of the instance along the memory chain.
4937       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4938         if((uint)_compile->get_general_index(ni) == i) {
4939           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4940           if (nmm->is_empty_memory(m)) {
4941             Node* result = find_inst_mem(mem, ni, orig_phis);
4942             if (_compile->failing()) {
4943               return;
4944             }
4945             nmm->set_memory_at(ni, result);
4946           }
4947         }
4948       }
4949     }
4950     // Find the rest of instances values
4951     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4952       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4953       Node* result = step_through_mergemem(nmm, ni, tinst);
4954       if (result == nmm->base_memory()) {
4955         // Didn't find instance memory, search through general slice recursively.
4956         result = nmm->memory_at(_compile->get_general_index(ni));
4957         result = find_inst_mem(result, ni, orig_phis);
4958         if (_compile->failing()) {
4959           return;
4960         }
4961         nmm->set_memory_at(ni, result);
4962       }
4963     }
4964 
4965     // If we have crossed the 3/4 point of max node limit it's too risky
4966     // to continue with EA/SR because we might hit the max node limit.
4967     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4968       if (_compile->do_reduce_allocation_merges()) {
4969         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4970       } else if (_invocation > 0) {
4971         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4972       } else {
4973         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4974       }
4975       return;
4976     }
4977 
4978     igvn->hash_insert(nmm);
4979     record_for_optimizer(nmm);
4980   }
4981 
4982   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_3, 5);
4983 
4984   //  Phase 4:  Update the inputs of non-instance memory Phis and
4985   //            the Memory input of memnodes
4986   // First update the inputs of any non-instance Phi's from
4987   // which we split out an instance Phi.  Note we don't have
4988   // to recursively process Phi's encountered on the input memory
4989   // chains as is done in split_memory_phi() since they  will
4990   // also be processed here.
4991   for (int j = 0; j < orig_phis.length(); j++) {
4992     PhiNode *phi = orig_phis.at(j);
4993     int alias_idx = _compile->get_alias_index(phi->adr_type());
4994     igvn->hash_delete(phi);
4995     for (uint i = 1; i < phi->req(); i++) {
4996       Node *mem = phi->in(i);
4997       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4998       if (_compile->failing()) {
4999         return;
5000       }
5001       if (mem != new_mem) {
5002         phi->set_req(i, new_mem);
5003       }
5004     }
5005     igvn->hash_insert(phi);
5006     record_for_optimizer(phi);
5007   }
5008 
5009   // Update the memory inputs of MemNodes with the value we computed
5010   // in Phase 2 and move stores memory users to corresponding memory slices.
5011   // Disable memory split verification code until the fix for 6984348.
5012   // Currently it produces false negative results since it does not cover all cases.
5013 #if 0 // ifdef ASSERT
5014   visited.Reset();
5015   Node_Stack old_mems(arena, _compile->unique() >> 2);
5016 #endif
5017   for (uint i = 0; i < ideal_nodes.size(); i++) {
5018     Node*    n = ideal_nodes.at(i);
5019     Node* nmem = get_map(n->_idx);
5020     assert(nmem != nullptr, "sanity");
5021     if (n->is_Mem()) {
5022 #if 0 // ifdef ASSERT
5023       Node* old_mem = n->in(MemNode::Memory);
5024       if (!visited.test_set(old_mem->_idx)) {
5025         old_mems.push(old_mem, old_mem->outcnt());
5026       }
5027 #endif
5028       assert(n->in(MemNode::Memory) != nmem, "sanity");
5029       if (!n->is_Load()) {
5030         // Move memory users of a store first.
5031         move_inst_mem(n, orig_phis);
5032       }
5033       // Now update memory input
5034       igvn->hash_delete(n);
5035       n->set_req(MemNode::Memory, nmem);
5036       igvn->hash_insert(n);
5037       record_for_optimizer(n);
5038     } else {
5039       assert(n->is_Allocate() || n->is_CheckCastPP() ||
5040              n->is_AddP() || n->is_Phi() || n->is_NarrowMemProj(), "unknown node used for set_map()");
5041     }
5042   }
5043 #if 0 // ifdef ASSERT
5044   // Verify that memory was split correctly
5045   while (old_mems.is_nonempty()) {
5046     Node* old_mem = old_mems.node();
5047     uint  old_cnt = old_mems.index();
5048     old_mems.pop();
5049     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
5050   }
5051 #endif
5052   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_4, 5);
5053 }
5054 
5055 #ifndef PRODUCT
5056 int ConnectionGraph::_no_escape_counter = 0;
5057 int ConnectionGraph::_arg_escape_counter = 0;
5058 int ConnectionGraph::_global_escape_counter = 0;
5059 
5060 static const char *node_type_names[] = {
5061   "UnknownType",
5062   "JavaObject",
5063   "LocalVar",
5064   "Field",
5065   "Arraycopy"
5066 };
5067 
5068 static const char *esc_names[] = {
5069   "UnknownEscape",
5070   "NoEscape",
5071   "ArgEscape",
5072   "GlobalEscape"
5073 };
5074 
5075 const char* PointsToNode::esc_name() const {
5076   return esc_names[(int)escape_state()];
5077 }
5078 
5079 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
5080   NodeType nt = node_type();
5081   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
5082   if (print_state) {
5083     EscapeState es = escape_state();
5084     EscapeState fields_es = fields_escape_state();
5085     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
5086     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
5087       out->print("NSR ");
5088     }
5089   }
5090 }
5091 
5092 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
5093   dump_header(print_state, out);
5094   if (is_Field()) {
5095     FieldNode* f = (FieldNode*)this;
5096     if (f->is_oop()) {
5097       out->print("oop ");
5098     }
5099     if (f->offset() > 0) {
5100       out->print("+%d ", f->offset());
5101     }
5102     out->print("(");
5103     for (BaseIterator i(f); i.has_next(); i.next()) {
5104       PointsToNode* b = i.get();
5105       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
5106     }
5107     out->print(" )");
5108   }
5109   out->print("[");
5110   for (EdgeIterator i(this); i.has_next(); i.next()) {
5111     PointsToNode* e = i.get();
5112     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
5113   }
5114   out->print(" [");
5115   for (UseIterator i(this); i.has_next(); i.next()) {
5116     PointsToNode* u = i.get();
5117     bool is_base = false;
5118     if (PointsToNode::is_base_use(u)) {
5119       is_base = true;
5120       u = PointsToNode::get_use_node(u)->as_Field();
5121     }
5122     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
5123   }
5124   out->print(" ]]  ");
5125   if (_node == nullptr) {
5126     out->print("<null>%s", newline ? "\n" : "");
5127   } else {
5128     _node->dump(newline ? "\n" : "", false, out);
5129   }
5130 }
5131 
5132 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
5133   bool first = true;
5134   int ptnodes_length = ptnodes_worklist.length();
5135   for (int i = 0; i < ptnodes_length; i++) {
5136     PointsToNode *ptn = ptnodes_worklist.at(i);
5137     if (ptn == nullptr || !ptn->is_JavaObject()) {
5138       continue;
5139     }
5140     PointsToNode::EscapeState es = ptn->escape_state();
5141     if ((es != PointsToNode::NoEscape) && !Verbose) {
5142       continue;
5143     }
5144     Node* n = ptn->ideal_node();
5145     if (n->is_Allocate() || (n->is_CallStaticJava() &&
5146                              n->as_CallStaticJava()->is_boxing_method())) {
5147       if (first) {
5148         tty->cr();
5149         tty->print("======== Connection graph for ");
5150         _compile->method()->print_short_name();
5151         tty->cr();
5152         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
5153                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
5154         tty->cr();
5155         first = false;
5156       }
5157       ptn->dump();
5158       // Print all locals and fields which reference this allocation
5159       for (UseIterator j(ptn); j.has_next(); j.next()) {
5160         PointsToNode* use = j.get();
5161         if (use->is_LocalVar()) {
5162           use->dump(Verbose);
5163         } else if (Verbose) {
5164           use->dump();
5165         }
5166       }
5167       tty->cr();
5168     }
5169   }
5170 }
5171 
5172 void ConnectionGraph::print_statistics() {
5173   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", AtomicAccess::load(&_no_escape_counter), AtomicAccess::load(&_arg_escape_counter), AtomicAccess::load(&_global_escape_counter));
5174 }
5175 
5176 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5177   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5178     return;
5179   }
5180   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5181     JavaObjectNode* ptn = java_objects_worklist.at(next);
5182     if (ptn->ideal_node()->is_Allocate()) {
5183       if (ptn->escape_state() == PointsToNode::NoEscape) {
5184         AtomicAccess::inc(&ConnectionGraph::_no_escape_counter);
5185       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5186         AtomicAccess::inc(&ConnectionGraph::_arg_escape_counter);
5187       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5188         AtomicAccess::inc(&ConnectionGraph::_global_escape_counter);
5189       } else {
5190         assert(false, "Unexpected Escape State");
5191       }
5192     }
5193   }
5194 }
5195 
5196 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5197   if (_compile->directive()->TraceEscapeAnalysisOption) {
5198     assert(ptn != nullptr, "should not be null");
5199     assert(reason != nullptr, "should not be null");
5200     ptn->dump_header(true);
5201     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5202     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5203     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5204   }
5205 }
5206 
5207 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5208   if (_compile->directive()->TraceEscapeAnalysisOption) {
5209     stringStream ss;
5210     ss.print("propagated from: ");
5211     from->dump(true, &ss, false);
5212     return ss.as_string();
5213   } else {
5214     return nullptr;
5215   }
5216 }
5217 
5218 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5219   if (_compile->directive()->TraceEscapeAnalysisOption) {
5220     stringStream ss;
5221     ss.print("escapes as arg to:");
5222     call->dump("", false, &ss);
5223     return ss.as_string();
5224   } else {
5225     return nullptr;
5226   }
5227 }
5228 
5229 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5230   if (_compile->directive()->TraceEscapeAnalysisOption) {
5231     stringStream ss;
5232     ss.print("is merged with other object: ");
5233     other->dump_header(true, &ss);
5234     return ss.as_string();
5235   } else {
5236     return nullptr;
5237   }
5238 }
5239 
5240 #endif
5241 
5242 void ConnectionGraph::record_for_optimizer(Node *n) {
5243   _igvn->_worklist.push(n);
5244   _igvn->add_users_to_worklist(n);
5245 }
--- EOF ---