1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/bcEscapeAnalyzer.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/allocation.hpp" 31 #include "memory/metaspace.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/c2compiler.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/cfgnode.hpp" 38 #include "opto/compile.hpp" 39 #include "opto/escape.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/locknode.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/movenode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/phaseX.hpp" 46 #include "opto/rootnode.hpp" 47 #include "utilities/macros.hpp" 48 49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) : 50 // If ReduceAllocationMerges is enabled we might call split_through_phi during 51 // split_unique_types and that will create additional nodes that need to be 52 // pushed to the ConnectionGraph. The code below bumps the initial capacity of 53 // _nodes by 10% to account for these additional nodes. If capacity is exceeded 54 // the array will be reallocated. 55 _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr), 56 _in_worklist(C->comp_arena()), 57 _next_pidx(0), 58 _collecting(true), 59 _verify(false), 60 _compile(C), 61 _igvn(igvn), 62 _invocation(invocation), 63 _build_iterations(0), 64 _build_time(0.), 65 _node_map(C->comp_arena()) { 66 // Add unknown java object. 67 add_java_object(C->top(), PointsToNode::GlobalEscape); 68 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 69 set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object")); 70 // Add ConP and ConN null oop nodes 71 Node* oop_null = igvn->zerocon(T_OBJECT); 72 assert(oop_null->_idx < nodes_size(), "should be created already"); 73 add_java_object(oop_null, PointsToNode::NoEscape); 74 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 75 set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object")); 76 if (UseCompressedOops) { 77 Node* noop_null = igvn->zerocon(T_NARROWOOP); 78 assert(noop_null->_idx < nodes_size(), "should be created already"); 79 map_ideal_node(noop_null, null_obj); 80 } 81 } 82 83 bool ConnectionGraph::has_candidates(Compile *C) { 84 // EA brings benefits only when the code has allocations and/or locks which 85 // are represented by ideal Macro nodes. 86 int cnt = C->macro_count(); 87 for (int i = 0; i < cnt; i++) { 88 Node *n = C->macro_node(i); 89 if (n->is_Allocate()) { 90 return true; 91 } 92 if (n->is_Lock()) { 93 Node* obj = n->as_Lock()->obj_node()->uncast(); 94 if (!(obj->is_Parm() || obj->is_Con())) { 95 return true; 96 } 97 } 98 if (n->is_CallStaticJava() && 99 n->as_CallStaticJava()->is_boxing_method()) { 100 return true; 101 } 102 } 103 return false; 104 } 105 106 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 107 Compile::TracePhase tp(Phase::_t_escapeAnalysis); 108 ResourceMark rm; 109 110 // Add ConP and ConN null oop nodes before ConnectionGraph construction 111 // to create space for them in ConnectionGraph::_nodes[]. 112 Node* oop_null = igvn->zerocon(T_OBJECT); 113 Node* noop_null = igvn->zerocon(T_NARROWOOP); 114 int invocation = 0; 115 if (C->congraph() != nullptr) { 116 invocation = C->congraph()->_invocation + 1; 117 } 118 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation); 119 NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(congraph);) 120 // Perform escape analysis 121 if (congraph->compute_escape()) { 122 // There are non escaping objects. 123 C->set_congraph(congraph); 124 } 125 NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(nullptr);) 126 // Cleanup. 127 if (oop_null->outcnt() == 0) { 128 igvn->hash_delete(oop_null); 129 } 130 if (noop_null->outcnt() == 0) { 131 igvn->hash_delete(noop_null); 132 } 133 134 C->print_method(PHASE_AFTER_EA, 2); 135 } 136 137 bool ConnectionGraph::compute_escape() { 138 Compile* C = _compile; 139 PhaseGVN* igvn = _igvn; 140 141 // Worklists used by EA. 142 Unique_Node_List delayed_worklist; 143 Unique_Node_List reducible_merges; 144 GrowableArray<Node*> alloc_worklist; 145 GrowableArray<Node*> ptr_cmp_worklist; 146 GrowableArray<MemBarStoreStoreNode*> storestore_worklist; 147 GrowableArray<ArrayCopyNode*> arraycopy_worklist; 148 GrowableArray<PointsToNode*> ptnodes_worklist; 149 GrowableArray<JavaObjectNode*> java_objects_worklist; 150 GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist; 151 GrowableArray<FieldNode*> oop_fields_worklist; 152 GrowableArray<SafePointNode*> sfn_worklist; 153 GrowableArray<MergeMemNode*> mergemem_worklist; 154 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 155 156 { Compile::TracePhase tp(Phase::_t_connectionGraph); 157 158 // 1. Populate Connection Graph (CG) with PointsTo nodes. 159 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 160 // Initialize worklist 161 if (C->root() != nullptr) { 162 ideal_nodes.push(C->root()); 163 } 164 // Processed ideal nodes are unique on ideal_nodes list 165 // but several ideal nodes are mapped to the phantom_obj. 166 // To avoid duplicated entries on the following worklists 167 // add the phantom_obj only once to them. 168 ptnodes_worklist.append(phantom_obj); 169 java_objects_worklist.append(phantom_obj); 170 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 171 Node* n = ideal_nodes.at(next); 172 if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) && 173 !n->in(MemNode::Address)->is_AddP() && 174 _igvn->type(n->in(MemNode::Address))->isa_oopptr()) { 175 // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA 176 Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0)); 177 _igvn->register_new_node_with_optimizer(addp); 178 _igvn->replace_input_of(n, MemNode::Address, addp); 179 ideal_nodes.push(addp); 180 _nodes.at_put_grow(addp->_idx, nullptr, nullptr); 181 } 182 // Create PointsTo nodes and add them to Connection Graph. Called 183 // only once per ideal node since ideal_nodes is Unique_Node list. 184 add_node_to_connection_graph(n, &delayed_worklist); 185 PointsToNode* ptn = ptnode_adr(n->_idx); 186 if (ptn != nullptr && ptn != phantom_obj) { 187 ptnodes_worklist.append(ptn); 188 if (ptn->is_JavaObject()) { 189 java_objects_worklist.append(ptn->as_JavaObject()); 190 if ((n->is_Allocate() || n->is_CallStaticJava()) && 191 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 192 // Only allocations and java static calls results are interesting. 193 non_escaped_allocs_worklist.append(ptn->as_JavaObject()); 194 } 195 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 196 oop_fields_worklist.append(ptn->as_Field()); 197 } 198 } 199 // Collect some interesting nodes for further use. 200 switch (n->Opcode()) { 201 case Op_MergeMem: 202 // Collect all MergeMem nodes to add memory slices for 203 // scalar replaceable objects in split_unique_types(). 204 mergemem_worklist.append(n->as_MergeMem()); 205 break; 206 case Op_CmpP: 207 case Op_CmpN: 208 // Collect compare pointers nodes. 209 if (OptimizePtrCompare) { 210 ptr_cmp_worklist.append(n); 211 } 212 break; 213 case Op_MemBarStoreStore: 214 // Collect all MemBarStoreStore nodes so that depending on the 215 // escape status of the associated Allocate node some of them 216 // may be eliminated. 217 if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) { 218 storestore_worklist.append(n->as_MemBarStoreStore()); 219 } 220 // If MemBarStoreStore has a precedent edge add it to the worklist (like MemBarRelease) 221 case Op_MemBarRelease: 222 if (n->req() > MemBarNode::Precedent) { 223 record_for_optimizer(n); 224 } 225 break; 226 #ifdef ASSERT 227 case Op_AddP: 228 // Collect address nodes for graph verification. 229 addp_worklist.append(n); 230 break; 231 #endif 232 case Op_ArrayCopy: 233 // Keep a list of ArrayCopy nodes so if one of its input is non 234 // escaping, we can record a unique type 235 arraycopy_worklist.append(n->as_ArrayCopy()); 236 break; 237 default: 238 // not interested now, ignore... 239 break; 240 } 241 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 242 Node* m = n->fast_out(i); // Get user 243 ideal_nodes.push(m); 244 } 245 if (n->is_SafePoint()) { 246 sfn_worklist.append(n->as_SafePoint()); 247 } 248 } 249 250 #ifndef PRODUCT 251 if (_compile->directive()->TraceEscapeAnalysisOption) { 252 tty->print("+++++ Initial worklist for "); 253 _compile->method()->print_name(); 254 tty->print_cr(" (ea_inv=%d)", _invocation); 255 for (int i = 0; i < ptnodes_worklist.length(); i++) { 256 PointsToNode* ptn = ptnodes_worklist.at(i); 257 ptn->dump(); 258 } 259 tty->print_cr("+++++ Calculating escape states and scalar replaceability"); 260 } 261 #endif 262 263 if (non_escaped_allocs_worklist.length() == 0) { 264 _collecting = false; 265 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 266 return false; // Nothing to do. 267 } 268 // Add final simple edges to graph. 269 while(delayed_worklist.size() > 0) { 270 Node* n = delayed_worklist.pop(); 271 add_final_edges(n); 272 } 273 274 #ifdef ASSERT 275 if (VerifyConnectionGraph) { 276 // Verify that no new simple edges could be created and all 277 // local vars has edges. 278 _verify = true; 279 int ptnodes_length = ptnodes_worklist.length(); 280 for (int next = 0; next < ptnodes_length; ++next) { 281 PointsToNode* ptn = ptnodes_worklist.at(next); 282 add_final_edges(ptn->ideal_node()); 283 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 284 ptn->dump(); 285 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 286 } 287 } 288 _verify = false; 289 } 290 #endif 291 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 292 // processing, calls to CI to resolve symbols (types, fields, methods) 293 // referenced in bytecode. During symbol resolution VM may throw 294 // an exception which CI cleans and converts to compilation failure. 295 if (C->failing()) { 296 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 297 return false; 298 } 299 300 _compile->print_method(PHASE_EA_AFTER_INITIAL_CONGRAPH, 4); 301 302 // 2. Finish Graph construction by propagating references to all 303 // java objects through graph. 304 if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 305 java_objects_worklist, oop_fields_worklist)) { 306 // All objects escaped or hit time or iterations limits. 307 _collecting = false; 308 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 309 return false; 310 } 311 312 _compile->print_method(PHASE_EA_AFTER_COMPLETE_CONGRAPH, 4); 313 314 // 3. Adjust scalar_replaceable state of nonescaping objects and push 315 // scalar replaceable allocations on alloc_worklist for processing 316 // in split_unique_types(). 317 GrowableArray<JavaObjectNode*> jobj_worklist; 318 int non_escaped_length = non_escaped_allocs_worklist.length(); 319 bool found_nsr_alloc = false; 320 for (int next = 0; next < non_escaped_length; next++) { 321 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 322 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 323 Node* n = ptn->ideal_node(); 324 if (n->is_Allocate()) { 325 n->as_Allocate()->_is_non_escaping = noescape; 326 } 327 if (noescape && ptn->scalar_replaceable()) { 328 adjust_scalar_replaceable_state(ptn, reducible_merges); 329 if (ptn->scalar_replaceable()) { 330 jobj_worklist.push(ptn); 331 } else { 332 found_nsr_alloc = true; 333 } 334 } 335 _compile->print_method(PHASE_EA_ADJUST_SCALAR_REPLACEABLE_ITER, 6, n); 336 } 337 338 // Propagate NSR (Not Scalar Replaceable) state. 339 if (found_nsr_alloc) { 340 find_scalar_replaceable_allocs(jobj_worklist, reducible_merges); 341 } 342 343 // alloc_worklist will be processed in reverse push order. 344 // Therefore the reducible Phis will be processed for last and that's what we 345 // want because by then the scalarizable inputs of the merge will already have 346 // an unique instance type. 347 for (uint i = 0; i < reducible_merges.size(); i++ ) { 348 Node* n = reducible_merges.at(i); 349 alloc_worklist.append(n); 350 } 351 352 for (int next = 0; next < jobj_worklist.length(); ++next) { 353 JavaObjectNode* jobj = jobj_worklist.at(next); 354 if (jobj->scalar_replaceable()) { 355 alloc_worklist.append(jobj->ideal_node()); 356 } 357 } 358 359 #ifdef ASSERT 360 if (VerifyConnectionGraph) { 361 // Verify that graph is complete - no new edges could be added or needed. 362 verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 363 java_objects_worklist, addp_worklist); 364 } 365 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 366 assert(null_obj->escape_state() == PointsToNode::NoEscape && 367 null_obj->edge_count() == 0 && 368 !null_obj->arraycopy_src() && 369 !null_obj->arraycopy_dst(), "sanity"); 370 #endif 371 372 _collecting = false; 373 374 _compile->print_method(PHASE_EA_AFTER_PROPAGATE_NSR, 4); 375 } // TracePhase t3("connectionGraph") 376 377 // 4. Optimize ideal graph based on EA information. 378 bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0); 379 if (has_non_escaping_obj) { 380 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 381 } 382 383 #ifndef PRODUCT 384 if (PrintEscapeAnalysis) { 385 dump(ptnodes_worklist); // Dump ConnectionGraph 386 } 387 #endif 388 389 #ifdef ASSERT 390 if (VerifyConnectionGraph) { 391 int alloc_length = alloc_worklist.length(); 392 for (int next = 0; next < alloc_length; ++next) { 393 Node* n = alloc_worklist.at(next); 394 PointsToNode* ptn = ptnode_adr(n->_idx); 395 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 396 } 397 } 398 399 if (VerifyReduceAllocationMerges) { 400 for (uint i = 0; i < reducible_merges.size(); i++ ) { 401 Node* n = reducible_merges.at(i); 402 if (!can_reduce_phi(n->as_Phi())) { 403 TraceReduceAllocationMerges = true; 404 n->dump(2); 405 n->dump(-2); 406 assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT."); 407 } 408 } 409 } 410 #endif 411 412 _compile->print_method(PHASE_EA_AFTER_GRAPH_OPTIMIZATION, 4); 413 414 // 5. Separate memory graph for scalar replaceable allcations. 415 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 416 if (has_scalar_replaceable_candidates && EliminateAllocations) { 417 assert(C->do_aliasing(), "Aliasing should be enabled"); 418 // Now use the escape information to create unique types for 419 // scalar replaceable objects. 420 split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges); 421 if (C->failing()) { 422 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 423 return false; 424 } 425 426 #ifdef ASSERT 427 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 428 tty->print("=== No allocations eliminated for "); 429 C->method()->print_short_name(); 430 if (!EliminateAllocations) { 431 tty->print(" since EliminateAllocations is off ==="); 432 } else if(!has_scalar_replaceable_candidates) { 433 tty->print(" since there are no scalar replaceable candidates ==="); 434 } 435 tty->cr(); 436 #endif 437 } 438 439 // 6. Expand flat accesses if the object does not escape. This adds nodes to 440 // the graph, so it has to be after split_unique_types. This expands atomic 441 // mismatched accesses (though encapsulated in LoadFlats and StoreFlats) into 442 // non-mismatched accesses, so it is better before reduce allocation merges. 443 if (has_non_escaping_obj) { 444 optimize_flat_accesses(sfn_worklist); 445 } 446 447 _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES, 4); 448 449 // 7. Reduce allocation merges used as debug information. This is done after 450 // split_unique_types because the methods used to create SafePointScalarObject 451 // need to traverse the memory graph to find values for object fields. We also 452 // set to null the scalarized inputs of reducible Phis so that the Allocate 453 // that they point can be later scalar replaced. 454 bool delay = _igvn->delay_transform(); 455 _igvn->set_delay_transform(true); 456 for (uint i = 0; i < reducible_merges.size(); i++) { 457 Node* n = reducible_merges.at(i); 458 if (n->outcnt() > 0) { 459 if (!reduce_phi_on_safepoints(n->as_Phi())) { 460 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 461 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 462 return false; 463 } 464 465 // Now we set the scalar replaceable inputs of ophi to null, which is 466 // the last piece that would prevent it from being scalar replaceable. 467 reset_scalar_replaceable_entries(n->as_Phi()); 468 } 469 } 470 _igvn->set_delay_transform(delay); 471 472 // Annotate at safepoints if they have <= ArgEscape objects in their scope and at 473 // java calls if they pass ArgEscape objects as parameters. 474 if (has_non_escaping_obj && 475 (C->env()->should_retain_local_variables() || 476 C->env()->jvmti_can_get_owned_monitor_info() || 477 C->env()->jvmti_can_walk_any_space() || 478 DeoptimizeObjectsALot)) { 479 int sfn_length = sfn_worklist.length(); 480 for (int next = 0; next < sfn_length; next++) { 481 SafePointNode* sfn = sfn_worklist.at(next); 482 sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn)); 483 if (sfn->is_CallJava()) { 484 CallJavaNode* call = sfn->as_CallJava(); 485 call->set_arg_escape(has_arg_escape(call)); 486 } 487 } 488 } 489 490 _compile->print_method(PHASE_EA_AFTER_REDUCE_PHI_ON_SAFEPOINTS, 4); 491 492 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 493 return has_non_escaping_obj; 494 } 495 496 // Check if it's profitable to reduce the Phi passed as parameter. Returns true 497 // if at least one scalar replaceable allocation participates in the merge. 498 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const { 499 bool found_sr_allocate = false; 500 501 for (uint i = 1; i < ophi->req(); i++) { 502 JavaObjectNode* ptn = unique_java_object(ophi->in(i)); 503 if (ptn != nullptr && ptn->scalar_replaceable()) { 504 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 505 506 // Don't handle arrays. 507 if (alloc->Opcode() != Op_Allocate) { 508 assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation."); 509 continue; 510 } 511 512 if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) { 513 found_sr_allocate = true; 514 } else { 515 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);) 516 ptn->set_scalar_replaceable(false); 517 } 518 } 519 } 520 521 NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);) 522 return found_sr_allocate; 523 } 524 525 // We can reduce the Cmp if it's a comparison between the Phi and a constant. 526 // I require the 'other' input to be a constant so that I can move the Cmp 527 // around safely. 528 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const { 529 assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name()); 530 Node* left = cmp->in(1); 531 Node* right = cmp->in(2); 532 533 return (left == n || right == n) && 534 (left->is_Con() || right->is_Con()) && 535 cmp->outcnt() == 1; 536 } 537 538 // We are going to check if any of the SafePointScalarMerge entries 539 // in the SafePoint reference the Phi that we are checking. 540 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const { 541 JVMState *jvms = sfpt->jvms(); 542 543 for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) { 544 Node* sfpt_in = sfpt->in(i); 545 if (sfpt_in->is_SafePointScalarMerge()) { 546 SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge(); 547 Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms)); 548 if (nsr_ptr == n) { 549 return true; 550 } 551 } 552 } 553 554 return false; 555 } 556 557 // Check if we are able to untangle the merge. The following patterns are 558 // supported: 559 // - Phi -> SafePoints 560 // - Phi -> CmpP/N 561 // - Phi -> AddP -> Load 562 // - Phi -> CastPP -> SafePoints 563 // - Phi -> CastPP -> AddP -> Load 564 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const { 565 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 566 Node* use = n->fast_out(i); 567 568 if (use->is_SafePoint()) { 569 if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) { 570 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);) 571 return false; 572 } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) { 573 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);) 574 return false; 575 } 576 } else if (use->is_AddP()) { 577 Node* addp = use; 578 for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) { 579 Node* use_use = addp->fast_out(j); 580 const Type* load_type = _igvn->type(use_use); 581 582 if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) { 583 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());) 584 return false; 585 } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) { 586 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());) 587 return false; 588 } 589 } 590 } else if (nesting > 0) { 591 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);) 592 return false; 593 } else if (use->is_CastPP()) { 594 const Type* cast_t = _igvn->type(use); 595 if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) { 596 #ifndef PRODUCT 597 if (TraceReduceAllocationMerges) { 598 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation); 599 use->dump(); 600 } 601 #endif 602 return false; 603 } 604 605 bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0); 606 if (!is_trivial_control) { 607 // If it's not a trivial control then we check if we can reduce the 608 // CmpP/N used by the If controlling the cast. 609 if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) { 610 Node* iff = use->in(0)->in(0); 611 // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode, 612 // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases. 613 bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp(); 614 if (can_reduce) { 615 Node* iff_cmp = iff->in(1)->in(1); 616 int opc = iff_cmp->Opcode(); 617 can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp); 618 } 619 if (!can_reduce) { 620 #ifndef PRODUCT 621 if (TraceReduceAllocationMerges) { 622 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx); 623 n->dump(5); 624 } 625 #endif 626 return false; 627 } 628 } 629 } 630 631 if (!can_reduce_check_users(use, nesting+1)) { 632 return false; 633 } 634 } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) { 635 if (!can_reduce_cmp(n, use)) { 636 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);) 637 return false; 638 } 639 } else { 640 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());) 641 return false; 642 } 643 } 644 645 return true; 646 } 647 648 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is 649 // only used in some certain code shapes. Check comments in 650 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more 651 // details. 652 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const { 653 // If there was an error attempting to reduce allocation merges for this 654 // method we might have disabled the compilation and be retrying with RAM 655 // disabled. 656 if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) { 657 return false; 658 } 659 660 const Type* phi_t = _igvn->type(ophi); 661 if (phi_t == nullptr || 662 phi_t->make_ptr() == nullptr || 663 phi_t->make_ptr()->isa_aryptr() != nullptr) { 664 return false; 665 } 666 667 if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) { 668 return false; 669 } 670 671 NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); }) 672 return true; 673 } 674 675 // This method will return a CmpP/N that we need to use on the If controlling a 676 // CastPP after it was split. This method is only called on bases that are 677 // nullable therefore we always need a controlling if for the splitted CastPP. 678 // 679 // 'curr_ctrl' is the control of the CastPP that we want to split through phi. 680 // If the CastPP currently doesn't have a control then the CmpP/N will be 681 // against the null constant, otherwise it will be against the constant input of 682 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later 683 // case because we have constraints on it and because the CastPP has a control 684 // input. 685 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) { 686 const Type* t = base->bottom_type(); 687 Node* con = nullptr; 688 689 if (curr_ctrl == nullptr || curr_ctrl->is_Region()) { 690 con = _igvn->zerocon(t->basic_type()); 691 } else { 692 // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp 693 assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name()); 694 Node* bol = curr_ctrl->in(0)->in(1); 695 assert(bol->is_Bool(), "unexpected node %s", bol->Name()); 696 Node* curr_cmp = bol->in(1); 697 assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name()); 698 con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2); 699 } 700 701 return CmpNode::make(base, con, t->basic_type()); 702 } 703 704 // This method 'specializes' the CastPP passed as parameter to the base passed 705 // as parameter. Note that the existing CastPP input is a Phi. "Specialize" 706 // means that the CastPP now will be specific for a given base instead of a Phi. 707 // An If-Then-Else-Region block is inserted to control the CastPP. The control 708 // of the CastPP is a copy of the current one (if there is one) or a check 709 // against null. 710 // 711 // Before: 712 // 713 // C1 C2 ... Cn 714 // \ | / 715 // \ | / 716 // \ | / 717 // \ | / 718 // \ | / 719 // \ | / 720 // \|/ 721 // Region B1 B2 ... Bn 722 // | \ | / 723 // | \ | / 724 // | \ | / 725 // | \ | / 726 // | \ | / 727 // | \ | / 728 // ---------------> Phi 729 // | 730 // X | 731 // | | 732 // | | 733 // ------> CastPP 734 // 735 // After (only partial illustration; base = B2, current_control = C2): 736 // 737 // C2 738 // | 739 // If 740 // / \ 741 // / \ 742 // T F 743 // /\ / 744 // / \ / 745 // / \ / 746 // C1 CastPP Reg Cn 747 // | | | 748 // | | | 749 // | | | 750 // -------------- | ---------- 751 // | | | 752 // Region 753 // 754 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) { 755 Node* control_successor = current_control->unique_ctrl_out(); 756 Node* cmp = _igvn->transform(specialize_cmp(base, castpp->in(0))); 757 Node* bol = _igvn->transform(new BoolNode(cmp, BoolTest::ne)); 758 IfNode* if_ne = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If(); 759 Node* not_eq_control = _igvn->transform(new IfTrueNode(if_ne)); 760 Node* yes_eq_control = _igvn->transform(new IfFalseNode(if_ne)); 761 Node* end_region = _igvn->transform(new RegionNode(3)); 762 763 // Insert the new if-else-region block into the graph 764 end_region->set_req(1, not_eq_control); 765 end_region->set_req(2, yes_eq_control); 766 control_successor->replace_edge(current_control, end_region, _igvn); 767 768 _igvn->_worklist.push(current_control); 769 _igvn->_worklist.push(control_successor); 770 771 return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, nullptr)); 772 } 773 774 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *> &alloc_worklist) { 775 const Type* load_type = _igvn->type(curr_load); 776 Node* nsr_value = _igvn->zerocon(load_type->basic_type()); 777 Node* memory = curr_load->in(MemNode::Memory); 778 779 // The data_phi merging the loads needs to be nullable if 780 // we are loading pointers. 781 if (load_type->make_ptr() != nullptr) { 782 if (load_type->isa_narrowoop()) { 783 load_type = load_type->meet(TypeNarrowOop::NULL_PTR); 784 } else if (load_type->isa_ptr()) { 785 load_type = load_type->meet(TypePtr::NULL_PTR); 786 } else { 787 assert(false, "Unexpected load ptr type."); 788 } 789 } 790 791 Node* data_phi = PhiNode::make(region, nsr_value, load_type); 792 793 for (int i = 1; i < bases_for_loads->length(); i++) { 794 Node* base = bases_for_loads->at(i); 795 Node* cmp_region = nullptr; 796 if (base != nullptr) { 797 if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node 798 cmp_region = base->unique_ctrl_out_or_null(); 799 assert(cmp_region != nullptr, "There should be."); 800 base = base->find_out_with(Op_CastPP); 801 } 802 803 Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset))); 804 Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory; 805 Node* load = curr_load->clone(); 806 load->set_req(0, nullptr); 807 load->set_req(1, mem); 808 load->set_req(2, addr); 809 810 if (cmp_region != nullptr) { // see comment on previous if 811 Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type); 812 intermediate_phi->set_req(1, _igvn->transform(load)); 813 load = intermediate_phi; 814 } 815 816 data_phi->set_req(i, _igvn->transform(load)); 817 } else { 818 // Just use the default, which is already in phi 819 } 820 } 821 822 // Takes care of updating CG and split_unique_types worklists due 823 // to cloned AddP->Load. 824 updates_after_load_split(data_phi, curr_load, alloc_worklist); 825 826 return _igvn->transform(data_phi); 827 } 828 829 // This method only reduces CastPP fields loads; SafePoints are handled 830 // separately. The idea here is basically to clone the CastPP and place copies 831 // on each input of the Phi, including non-scalar replaceable inputs. 832 // Experimentation shows that the resulting IR graph is simpler that way than if 833 // we just split the cast through scalar-replaceable inputs. 834 // 835 // The reduction process requires that CastPP's control be one of: 836 // 1) no control, 837 // 2) the same region as Ophi, or 838 // 3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant. 839 // 840 // After splitting the CastPP we'll put it under an If-Then-Else-Region control 841 // flow. If the CastPP originally had an IfTrue/False control input then we'll 842 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll 843 // juse use a CmpP/N against the null constant. 844 // 845 // The If-Then-Else-Region isn't always needed. For instance, if input to 846 // splitted cast was not nullable (or if it was the null constant) then we don't 847 // need (shouldn't) use a CastPP at all. 848 // 849 // After the casts are splitted we'll split the AddP->Loads through the Phi and 850 // connect them to the just split CastPPs. 851 // 852 // Before (CastPP control is same as Phi): 853 // 854 // Region Allocate Null Call 855 // | \ | / 856 // | \ | / 857 // | \ | / 858 // | \ | / 859 // | \ | / 860 // | \ | / 861 // ------------------> Phi # Oop Phi 862 // | | 863 // | | 864 // | | 865 // | | 866 // ----------------> CastPP 867 // | 868 // AddP 869 // | 870 // Load 871 // 872 // After (Very much simplified): 873 // 874 // Call Null 875 // \ / 876 // CmpP 877 // | 878 // Bool#NE 879 // | 880 // If 881 // / \ 882 // T F 883 // / \ / 884 // / R 885 // CastPP | 886 // | | 887 // AddP | 888 // | | 889 // Load | 890 // \ | 0 891 // Allocate \ | / 892 // \ \ | / 893 // AddP Phi 894 // \ / 895 // Load / 896 // \ 0 / 897 // \ | / 898 // \|/ 899 // Phi # "Field" Phi 900 // 901 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node*> &alloc_worklist) { 902 Node* ophi = curr_castpp->in(1); 903 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 904 905 // Identify which base should be used for AddP->Load later when spliting the 906 // CastPP->Loads through ophi. Three kind of values may be stored in this 907 // array, depending on the nullability status of the corresponding input in 908 // ophi. 909 // 910 // - nullptr: Meaning that the base is actually the null constant and therefore 911 // we won't try to load from it. 912 // 913 // - CFG Node: Meaning that the base is a CastPP that was specialized for 914 // this input of Ophi. I.e., we added an If->Then->Else-Region 915 // that will 'activate' the CastPp only when the input is not Null. 916 // 917 // - Other Node: Meaning that the base is not nullable and therefore we'll try 918 // to load directly from it. 919 GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr); 920 921 for (uint i = 1; i < ophi->req(); i++) { 922 Node* base = ophi->in(i); 923 const Type* base_t = _igvn->type(base); 924 925 if (base_t->maybe_null()) { 926 if (base->is_Con()) { 927 // Nothing todo as bases_for_loads[i] is already null 928 } else { 929 Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i)); 930 bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag 931 } 932 } else { 933 bases_for_loads.at_put(i, base); 934 } 935 } 936 937 // Now let's split the CastPP->Loads through the Phi 938 for (int i = curr_castpp->outcnt()-1; i >= 0;) { 939 Node* use = curr_castpp->raw_out(i); 940 if (use->is_AddP()) { 941 for (int j = use->outcnt()-1; j >= 0;) { 942 Node* use_use = use->raw_out(j); 943 assert(use_use->is_Load(), "Expected this to be a Load node."); 944 945 // We can't make an unconditional load from a nullable input. The 946 // 'split_castpp_load_through_phi` method will add an 947 // 'If-Then-Else-Region` around nullable bases and only load from them 948 // when the input is not null. 949 Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist); 950 _igvn->replace_node(use_use, phi); 951 952 --j; 953 j = MIN2(j, (int)use->outcnt()-1); 954 } 955 956 _igvn->remove_dead_node(use); 957 } 958 --i; 959 i = MIN2(i, (int)curr_castpp->outcnt()-1); 960 } 961 } 962 963 // This method split a given CmpP/N through the Phi used in one of its inputs. 964 // As a result we convert a comparison with a pointer to a comparison with an 965 // integer. 966 // The only requirement is that one of the inputs of the CmpP/N must be a Phi 967 // while the other must be a constant. 968 // The splitting process is basically just cloning the CmpP/N above the input 969 // Phi. However, some (most) of the cloned CmpP/Ns won't be requred because we 970 // can prove at compile time the result of the comparison. 971 // 972 // Before: 973 // 974 // in1 in2 ... inN 975 // \ | / 976 // \ | / 977 // \ | / 978 // \ | / 979 // \ | / 980 // \ | / 981 // Phi 982 // | Other 983 // | / 984 // | / 985 // | / 986 // CmpP/N 987 // 988 // After: 989 // 990 // in1 Other in2 Other inN Other 991 // | | | | | | 992 // \ | | | | | 993 // \ / | / | / 994 // CmpP/N CmpP/N CmpP/N 995 // Bool Bool Bool 996 // \ | / 997 // \ | / 998 // \ | / 999 // \ | / 1000 // \ | / 1001 // \ | / 1002 // \ | / 1003 // \ | / 1004 // Phi 1005 // | 1006 // | Zero 1007 // | / 1008 // | / 1009 // | / 1010 // CmpI 1011 // 1012 // 1013 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) { 1014 Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1); 1015 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 1016 1017 Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2); 1018 Node* zero = _igvn->intcon(0); 1019 Node* one = _igvn->intcon(1); 1020 BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test; 1021 1022 // This Phi will merge the result of the Cmps split through the Phi 1023 Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT); 1024 1025 for (uint i=1; i<ophi->req(); i++) { 1026 Node* ophi_input = ophi->in(i); 1027 Node* res_phi_input = nullptr; 1028 1029 const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other); 1030 if (tcmp->singleton()) { 1031 if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) || 1032 (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) { 1033 res_phi_input = one; 1034 } else { 1035 res_phi_input = zero; 1036 } 1037 } else { 1038 Node* ncmp = _igvn->transform(cmp->clone()); 1039 ncmp->set_req(1, ophi_input); 1040 ncmp->set_req(2, other); 1041 Node* bol = _igvn->transform(new BoolNode(ncmp, mask)); 1042 res_phi_input = bol->as_Bool()->as_int_value(_igvn); 1043 } 1044 1045 res_phi->set_req(i, res_phi_input); 1046 } 1047 1048 // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask". 1049 Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero)); 1050 _igvn->replace_node(cmp, new_cmp); 1051 } 1052 1053 // Push the newly created AddP on alloc_worklist and patch 1054 // the connection graph. Note that the changes in the CG below 1055 // won't affect the ES of objects since the new nodes have the 1056 // same status as the old ones. 1057 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *> &alloc_worklist) { 1058 assert(data_phi != nullptr, "Output of split_through_phi is null."); 1059 assert(data_phi != previous_load, "Output of split_through_phi is same as input."); 1060 assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi."); 1061 1062 if (data_phi == nullptr || !data_phi->is_Phi()) { 1063 // Make this a retry? 1064 return ; 1065 } 1066 1067 Node* previous_addp = previous_load->in(MemNode::Address); 1068 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1069 for (uint i = 1; i < data_phi->req(); i++) { 1070 Node* new_load = data_phi->in(i); 1071 1072 if (new_load->is_Phi()) { 1073 // new_load is currently the "intermediate_phi" from an specialized 1074 // CastPP. 1075 new_load = new_load->in(1); 1076 } 1077 1078 // "new_load" might actually be a constant, parameter, etc. 1079 if (new_load->is_Load()) { 1080 Node* new_addp = new_load->in(MemNode::Address); 1081 Node* base = get_addp_base(new_addp); 1082 1083 // The base might not be something that we can create an unique 1084 // type for. If that's the case we are done with that input. 1085 PointsToNode* jobj_ptn = unique_java_object(base); 1086 if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) { 1087 continue; 1088 } 1089 1090 // Push to alloc_worklist since the base has an unique_type 1091 alloc_worklist.append_if_missing(new_addp); 1092 1093 // Now let's add the node to the connection graph 1094 _nodes.at_grow(new_addp->_idx, nullptr); 1095 add_field(new_addp, fn->escape_state(), fn->offset()); 1096 add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx)); 1097 1098 // If the load doesn't load an object then it won't be 1099 // part of the connection graph 1100 PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx); 1101 if (curr_load_ptn != nullptr) { 1102 _nodes.at_grow(new_load->_idx, nullptr); 1103 add_local_var(new_load, curr_load_ptn->escape_state()); 1104 add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field()); 1105 } 1106 } 1107 } 1108 } 1109 1110 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *> &alloc_worklist) { 1111 // We'll pass this to 'split_through_phi' so that it'll do the split even 1112 // though the load doesn't have an unique instance type. 1113 bool ignore_missing_instance_id = true; 1114 1115 // All AddPs are present in the connection graph 1116 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1117 1118 // Iterate over AddP looking for a Load 1119 for (int k = previous_addp->outcnt()-1; k >= 0;) { 1120 Node* previous_load = previous_addp->raw_out(k); 1121 if (previous_load->is_Load()) { 1122 Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id); 1123 1124 // Takes care of updating CG and split_unique_types worklists due to cloned 1125 // AddP->Load. 1126 updates_after_load_split(data_phi, previous_load, alloc_worklist); 1127 1128 _igvn->replace_node(previous_load, data_phi); 1129 } 1130 --k; 1131 k = MIN2(k, (int)previous_addp->outcnt()-1); 1132 } 1133 1134 // Remove the old AddP from the processing list because it's dead now 1135 assert(previous_addp->outcnt() == 0, "AddP should be dead now."); 1136 alloc_worklist.remove_if_existing(previous_addp); 1137 } 1138 1139 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the 1140 // selector is: 1141 // -> a '-1' constant, the i'th input of the original Phi is NSR. 1142 // -> a 'x' constant >=0, the i'th input of of original Phi will be SR and 1143 // the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects 1144 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const { 1145 Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1)); 1146 Node* selector = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT)); 1147 uint number_of_sr_objects = 0; 1148 for (uint i = 1; i < ophi->req(); i++) { 1149 Node* base = ophi->in(i); 1150 JavaObjectNode* ptn = unique_java_object(base); 1151 1152 if (ptn != nullptr && ptn->scalar_replaceable()) { 1153 Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects)); 1154 selector->set_req(i, sr_obj_idx); 1155 number_of_sr_objects++; 1156 } 1157 } 1158 1159 return selector->as_Phi(); 1160 } 1161 1162 // Returns true if the AddP node 'n' has at least one base that is a reducible 1163 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is 1164 // checked instead. 1165 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) { 1166 PointsToNode* ptn = ptnode_adr(n->_idx); 1167 if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) { 1168 return false; 1169 } 1170 1171 for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) { 1172 Node* base = i.get()->ideal_node(); 1173 1174 if (reducible_merges.member(base)) { 1175 return true; 1176 } 1177 1178 if (base->is_CastPP() || base->is_CheckCastPP()) { 1179 base = base->in(1); 1180 if (reducible_merges.member(base)) { 1181 return true; 1182 } 1183 } 1184 } 1185 1186 return false; 1187 } 1188 1189 // This method will call its helper method to reduce SafePoint nodes that use 1190 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same 1191 // "version" of Phi use the same debug information (regarding the Phi). 1192 // Therefore, I collect all safepoints and patch them all at once. 1193 // 1194 // The safepoints using the Phi node have to be processed before safepoints of 1195 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the 1196 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the 1197 // safepoint. If we process CastPP's safepoints before Phi's safepoints the 1198 // algorithm that process Phi's safepoints will think that the added Phi 1199 // reference is a regular reference. 1200 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) { 1201 PhiNode* selector = create_selector(ophi); 1202 Unique_Node_List safepoints; 1203 Unique_Node_List casts; 1204 1205 // Just collect the users of the Phis for later processing 1206 // in the needed order. 1207 for (uint i = 0; i < ophi->outcnt(); i++) { 1208 Node* use = ophi->raw_out(i); 1209 if (use->is_SafePoint()) { 1210 safepoints.push(use); 1211 } else if (use->is_CastPP()) { 1212 casts.push(use); 1213 } else { 1214 assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left."); 1215 } 1216 } 1217 1218 // Need to process safepoints using the Phi first 1219 if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) { 1220 return false; 1221 } 1222 1223 // Now process CastPP->safepoints 1224 for (uint i = 0; i < casts.size(); i++) { 1225 Node* cast = casts.at(i); 1226 Unique_Node_List cast_sfpts; 1227 1228 for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) { 1229 Node* use_use = cast->fast_out(j); 1230 if (use_use->is_SafePoint()) { 1231 cast_sfpts.push(use_use); 1232 } else { 1233 assert(use_use->outcnt() == 0, "Only SafePoint users should be left."); 1234 } 1235 } 1236 1237 if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) { 1238 return false; 1239 } 1240 } 1241 1242 return true; 1243 } 1244 1245 // This method will create a SafePointScalarMERGEnode for each SafePoint in 1246 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a 1247 // SafePointScalarObjectNode for each scalar replaceable input. Each 1248 // SafePointScalarMergeNode may describe multiple scalar replaced objects - 1249 // check detailed description in SafePointScalarMergeNode class header. 1250 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) { 1251 PhaseMacroExpand mexp(*_igvn); 1252 Node* original_sfpt_parent = cast != nullptr ? cast : ophi; 1253 const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr(); 1254 1255 Node* nsr_merge_pointer = ophi; 1256 if (cast != nullptr) { 1257 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1258 nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::DependencyType::FloatingNarrowing, nullptr)); 1259 } 1260 1261 for (uint spi = 0; spi < safepoints.size(); spi++) { 1262 SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint(); 1263 JVMState *jvms = sfpt->jvms(); 1264 uint merge_idx = (sfpt->req() - jvms->scloff()); 1265 int debug_start = jvms->debug_start(); 1266 1267 SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx); 1268 smerge->init_req(0, _compile->root()); 1269 _igvn->register_new_node_with_optimizer(smerge); 1270 1271 // The next two inputs are: 1272 // (1) A copy of the original pointer to NSR objects. 1273 // (2) A selector, used to decide if we need to rematerialize an object 1274 // or use the pointer to a NSR object. 1275 // See more details of these fields in the declaration of SafePointScalarMergeNode 1276 sfpt->add_req(nsr_merge_pointer); 1277 sfpt->add_req(selector); 1278 1279 for (uint i = 1; i < ophi->req(); i++) { 1280 Node* base = ophi->in(i); 1281 JavaObjectNode* ptn = unique_java_object(base); 1282 1283 // If the base is not scalar replaceable we don't need to register information about 1284 // it at this time. 1285 if (ptn == nullptr || !ptn->scalar_replaceable()) { 1286 continue; 1287 } 1288 1289 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 1290 Unique_Node_List value_worklist; 1291 #ifdef ASSERT 1292 const Type* res_type = alloc->result_cast()->bottom_type(); 1293 if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) { 1294 PhiNode* phi = ophi->as_Phi(); 1295 assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity"); 1296 } 1297 #endif 1298 SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist); 1299 if (sobj == nullptr) { 1300 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1301 return false; 1302 } 1303 1304 // Now make a pass over the debug information replacing any references 1305 // to the allocated object with "sobj" 1306 Node* ccpp = alloc->result_cast(); 1307 sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn); 1308 1309 // Register the scalarized object as a candidate for reallocation 1310 smerge->add_req(sobj); 1311 1312 // Scalarize inline types that were added to the safepoint. 1313 // Don't allow linking a constant oop (if available) for flat array elements 1314 // because Deoptimization::reassign_flat_array_elements needs field values. 1315 const bool allow_oop = !merge_t->is_flat(); 1316 for (uint j = 0; j < value_worklist.size(); ++j) { 1317 InlineTypeNode* vt = value_worklist.at(j)->as_InlineType(); 1318 vt->make_scalar_in_safepoints(_igvn, allow_oop); 1319 } 1320 } 1321 1322 // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge" 1323 sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn); 1324 1325 // The call to 'replace_edges_in_range' above might have removed the 1326 // reference to ophi that we need at _merge_pointer_idx. The line below make 1327 // sure the reference is maintained. 1328 sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer); 1329 _igvn->_worklist.push(sfpt); 1330 } 1331 1332 return true; 1333 } 1334 1335 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node*> &alloc_worklist) { 1336 bool delay = _igvn->delay_transform(); 1337 _igvn->set_delay_transform(true); 1338 _igvn->hash_delete(ophi); 1339 1340 // Copying all users first because some will be removed and others won't. 1341 // Ophi also may acquire some new users as part of Cast reduction. 1342 // CastPPs also need to be processed before CmpPs. 1343 Unique_Node_List castpps; 1344 Unique_Node_List others; 1345 for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) { 1346 Node* use = ophi->fast_out(i); 1347 1348 if (use->is_CastPP()) { 1349 castpps.push(use); 1350 } else if (use->is_AddP() || use->is_Cmp()) { 1351 others.push(use); 1352 } else { 1353 // Safepoints to be processed later; other users aren't expected here 1354 assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt()); 1355 } 1356 } 1357 1358 _compile->print_method(PHASE_EA_BEFORE_PHI_REDUCTION, 5, ophi); 1359 1360 // CastPPs need to be processed before Cmps because during the process of 1361 // splitting CastPPs we make reference to the inputs of the Cmp that is used 1362 // by the If controlling the CastPP. 1363 for (uint i = 0; i < castpps.size(); i++) { 1364 reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist); 1365 _compile->print_method(PHASE_EA_AFTER_PHI_CASTPP_REDUCTION, 6, castpps.at(i)); 1366 } 1367 1368 for (uint i = 0; i < others.size(); i++) { 1369 Node* use = others.at(i); 1370 1371 if (use->is_AddP()) { 1372 reduce_phi_on_field_access(use, alloc_worklist); 1373 _compile->print_method(PHASE_EA_AFTER_PHI_ADDP_REDUCTION, 6, use); 1374 } else if(use->is_Cmp()) { 1375 reduce_phi_on_cmp(use); 1376 _compile->print_method(PHASE_EA_AFTER_PHI_CMP_REDUCTION, 6, use); 1377 } 1378 } 1379 1380 _igvn->set_delay_transform(delay); 1381 } 1382 1383 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) { 1384 Node* null_ptr = _igvn->makecon(TypePtr::NULL_PTR); 1385 const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr(); 1386 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1387 Node* new_phi = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t)); 1388 1389 for (uint i = 1; i < ophi->req(); i++) { 1390 Node* base = ophi->in(i); 1391 JavaObjectNode* ptn = unique_java_object(base); 1392 1393 if (ptn != nullptr && ptn->scalar_replaceable()) { 1394 new_phi->set_req(i, null_ptr); 1395 } else { 1396 new_phi->set_req(i, ophi->in(i)); 1397 } 1398 } 1399 1400 for (int i = ophi->outcnt()-1; i >= 0;) { 1401 Node* out = ophi->raw_out(i); 1402 1403 if (out->is_ConstraintCast()) { 1404 const Type* out_t = _igvn->type(out)->make_ptr(); 1405 const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR); 1406 bool change = out_new_t != out_t; 1407 1408 for (int j = out->outcnt()-1; change && j >= 0; --j) { 1409 Node* out2 = out->raw_out(j); 1410 if (!out2->is_SafePoint()) { 1411 change = false; 1412 break; 1413 } 1414 } 1415 1416 if (change) { 1417 Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::DependencyType::NonFloatingNarrowing, nullptr); 1418 _igvn->replace_node(out, new_cast); 1419 _igvn->register_new_node_with_optimizer(new_cast); 1420 } 1421 } 1422 1423 --i; 1424 i = MIN2(i, (int)ophi->outcnt()-1); 1425 } 1426 1427 _igvn->replace_node(ophi, new_phi); 1428 } 1429 1430 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) { 1431 if (!C->do_reduce_allocation_merges()) return; 1432 1433 Unique_Node_List ideal_nodes; 1434 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 1435 ideal_nodes.push(root); 1436 1437 for (uint next = 0; next < ideal_nodes.size(); ++next) { 1438 Node* n = ideal_nodes.at(next); 1439 1440 if (n->is_SafePointScalarMerge()) { 1441 SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge(); 1442 1443 // Validate inputs of merge 1444 for (uint i = 1; i < merge->req(); i++) { 1445 if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) { 1446 assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject."); 1447 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1448 } 1449 } 1450 1451 // Validate users of merge 1452 for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) { 1453 Node* sfpt = merge->fast_out(i); 1454 if (sfpt->is_SafePoint()) { 1455 int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms()); 1456 1457 if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) { 1458 assert(false, "SafePointScalarMerge nodes can't be nested."); 1459 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1460 } 1461 } else { 1462 assert(false, "Only safepoints can use SafePointScalarMerge nodes."); 1463 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1464 } 1465 } 1466 } 1467 1468 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1469 Node* m = n->fast_out(i); 1470 ideal_nodes.push(m); 1471 } 1472 } 1473 } 1474 1475 // Returns true if there is an object in the scope of sfn that does not escape globally. 1476 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) { 1477 Compile* C = _compile; 1478 for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1479 if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() || 1480 DeoptimizeObjectsALot) { 1481 // Jvmti agents can access locals. Must provide info about local objects at runtime. 1482 int num_locs = jvms->loc_size(); 1483 for (int idx = 0; idx < num_locs; idx++) { 1484 Node* l = sfn->local(jvms, idx); 1485 if (not_global_escape(l)) { 1486 return true; 1487 } 1488 } 1489 } 1490 if (C->env()->jvmti_can_get_owned_monitor_info() || 1491 C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) { 1492 // Jvmti agents can read monitors. Must provide info about locked objects at runtime. 1493 int num_mon = jvms->nof_monitors(); 1494 for (int idx = 0; idx < num_mon; idx++) { 1495 Node* m = sfn->monitor_obj(jvms, idx); 1496 if (m != nullptr && not_global_escape(m)) { 1497 return true; 1498 } 1499 } 1500 } 1501 } 1502 return false; 1503 } 1504 1505 // Returns true if at least one of the arguments to the call is an object 1506 // that does not escape globally. 1507 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) { 1508 if (call->method() != nullptr) { 1509 uint max_idx = TypeFunc::Parms + call->method()->arg_size(); 1510 for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) { 1511 Node* p = call->in(idx); 1512 if (not_global_escape(p)) { 1513 return true; 1514 } 1515 } 1516 } else { 1517 const char* name = call->as_CallStaticJava()->_name; 1518 assert(name != nullptr, "no name"); 1519 // no arg escapes through uncommon traps 1520 if (strcmp(name, "uncommon_trap") != 0) { 1521 // process_call_arguments() assumes that all arguments escape globally 1522 const TypeTuple* d = call->tf()->domain_sig(); 1523 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1524 const Type* at = d->field_at(i); 1525 if (at->isa_oopptr() != nullptr) { 1526 return true; 1527 } 1528 } 1529 } 1530 } 1531 return false; 1532 } 1533 1534 1535 1536 // Utility function for nodes that load an object 1537 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1538 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1539 // ThreadLocal has RawPtr type. 1540 const Type* t = _igvn->type(n); 1541 if (t->make_ptr() != nullptr) { 1542 Node* adr = n->in(MemNode::Address); 1543 #ifdef ASSERT 1544 if (!adr->is_AddP()) { 1545 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 1546 } else { 1547 assert((ptnode_adr(adr->_idx) == nullptr || 1548 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 1549 } 1550 #endif 1551 add_local_var_and_edge(n, PointsToNode::NoEscape, 1552 adr, delayed_worklist); 1553 } 1554 } 1555 1556 // Populate Connection Graph with PointsTo nodes and create simple 1557 // connection graph edges. 1558 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1559 assert(!_verify, "this method should not be called for verification"); 1560 PhaseGVN* igvn = _igvn; 1561 uint n_idx = n->_idx; 1562 PointsToNode* n_ptn = ptnode_adr(n_idx); 1563 if (n_ptn != nullptr) { 1564 return; // No need to redefine PointsTo node during first iteration. 1565 } 1566 int opcode = n->Opcode(); 1567 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode); 1568 if (gc_handled) { 1569 return; // Ignore node if already handled by GC. 1570 } 1571 1572 if (n->is_Call()) { 1573 // Arguments to allocation and locking don't escape. 1574 if (n->is_AbstractLock()) { 1575 // Put Lock and Unlock nodes on IGVN worklist to process them during 1576 // first IGVN optimization when escape information is still available. 1577 record_for_optimizer(n); 1578 } else if (n->is_Allocate()) { 1579 add_call_node(n->as_Call()); 1580 record_for_optimizer(n); 1581 } else { 1582 if (n->is_CallStaticJava()) { 1583 const char* name = n->as_CallStaticJava()->_name; 1584 if (name != nullptr && strcmp(name, "uncommon_trap") == 0) { 1585 return; // Skip uncommon traps 1586 } 1587 } 1588 // Don't mark as processed since call's arguments have to be processed. 1589 delayed_worklist->push(n); 1590 // Check if a call returns an object. 1591 if ((n->as_Call()->returns_pointer() && 1592 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) || 1593 (n->is_CallStaticJava() && 1594 n->as_CallStaticJava()->is_boxing_method())) { 1595 add_call_node(n->as_Call()); 1596 } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) { 1597 bool returns_oop = false; 1598 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) { 1599 ProjNode* pn = n->fast_out(i)->as_Proj(); 1600 if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) { 1601 returns_oop = true; 1602 } 1603 } 1604 if (returns_oop) { 1605 add_call_node(n->as_Call()); 1606 } 1607 } 1608 } 1609 return; 1610 } 1611 // Put this check here to process call arguments since some call nodes 1612 // point to phantom_obj. 1613 if (n_ptn == phantom_obj || n_ptn == null_obj) { 1614 return; // Skip predefined nodes. 1615 } 1616 switch (opcode) { 1617 case Op_AddP: { 1618 Node* base = get_addp_base(n); 1619 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1620 // Field nodes are created for all field types. They are used in 1621 // adjust_scalar_replaceable_state() and split_unique_types(). 1622 // Note, non-oop fields will have only base edges in Connection 1623 // Graph because such fields are not used for oop loads and stores. 1624 int offset = address_offset(n, igvn); 1625 add_field(n, PointsToNode::NoEscape, offset); 1626 if (ptn_base == nullptr) { 1627 delayed_worklist->push(n); // Process it later. 1628 } else { 1629 n_ptn = ptnode_adr(n_idx); 1630 add_base(n_ptn->as_Field(), ptn_base); 1631 } 1632 break; 1633 } 1634 case Op_CastX2P: 1635 case Op_CastI2N: { 1636 map_ideal_node(n, phantom_obj); 1637 break; 1638 } 1639 case Op_InlineType: 1640 case Op_CastPP: 1641 case Op_CheckCastPP: 1642 case Op_EncodeP: 1643 case Op_DecodeN: 1644 case Op_EncodePKlass: 1645 case Op_DecodeNKlass: { 1646 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1647 break; 1648 } 1649 case Op_CMoveP: { 1650 add_local_var(n, PointsToNode::NoEscape); 1651 // Do not add edges during first iteration because some could be 1652 // not defined yet. 1653 delayed_worklist->push(n); 1654 break; 1655 } 1656 case Op_ConP: 1657 case Op_ConN: 1658 case Op_ConNKlass: { 1659 // assume all oop constants globally escape except for null 1660 PointsToNode::EscapeState es; 1661 const Type* t = igvn->type(n); 1662 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 1663 es = PointsToNode::NoEscape; 1664 } else { 1665 es = PointsToNode::GlobalEscape; 1666 } 1667 PointsToNode* ptn_con = add_java_object(n, es); 1668 set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer")); 1669 break; 1670 } 1671 case Op_CreateEx: { 1672 // assume that all exception objects globally escape 1673 map_ideal_node(n, phantom_obj); 1674 break; 1675 } 1676 case Op_LoadKlass: 1677 case Op_LoadNKlass: { 1678 // Unknown class is loaded 1679 map_ideal_node(n, phantom_obj); 1680 break; 1681 } 1682 case Op_LoadP: 1683 case Op_LoadN: { 1684 add_objload_to_connection_graph(n, delayed_worklist); 1685 break; 1686 } 1687 case Op_Parm: { 1688 map_ideal_node(n, phantom_obj); 1689 break; 1690 } 1691 case Op_PartialSubtypeCheck: { 1692 // Produces Null or notNull and is used in only in CmpP so 1693 // phantom_obj could be used. 1694 map_ideal_node(n, phantom_obj); // Result is unknown 1695 break; 1696 } 1697 case Op_Phi: { 1698 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1699 // ThreadLocal has RawPtr type. 1700 const Type* t = n->as_Phi()->type(); 1701 if (t->make_ptr() != nullptr) { 1702 add_local_var(n, PointsToNode::NoEscape); 1703 // Do not add edges during first iteration because some could be 1704 // not defined yet. 1705 delayed_worklist->push(n); 1706 } 1707 break; 1708 } 1709 case Op_LoadFlat: 1710 // Treat LoadFlat similar to an unknown call that receives nothing and produces its results 1711 map_ideal_node(n, phantom_obj); 1712 break; 1713 case Op_StoreFlat: 1714 // Treat StoreFlat similar to a call that escapes the stored flattened fields 1715 delayed_worklist->push(n); 1716 break; 1717 case Op_Proj: { 1718 // we are only interested in the oop result projection from a call 1719 if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() && 1720 (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) { 1721 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1722 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1723 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist); 1724 } else if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_LoadFlat() && igvn->type(n)->isa_ptr()) { 1725 // Treat LoadFlat outputs similar to a call return value 1726 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist); 1727 } 1728 break; 1729 } 1730 case Op_Rethrow: // Exception object escapes 1731 case Op_Return: { 1732 if (n->req() > TypeFunc::Parms && 1733 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 1734 // Treat Return value as LocalVar with GlobalEscape escape state. 1735 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist); 1736 } 1737 break; 1738 } 1739 case Op_CompareAndExchangeP: 1740 case Op_CompareAndExchangeN: 1741 case Op_GetAndSetP: 1742 case Op_GetAndSetN: { 1743 add_objload_to_connection_graph(n, delayed_worklist); 1744 // fall-through 1745 } 1746 case Op_StoreP: 1747 case Op_StoreN: 1748 case Op_StoreNKlass: 1749 case Op_WeakCompareAndSwapP: 1750 case Op_WeakCompareAndSwapN: 1751 case Op_CompareAndSwapP: 1752 case Op_CompareAndSwapN: { 1753 add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1754 break; 1755 } 1756 case Op_AryEq: 1757 case Op_CountPositives: 1758 case Op_StrComp: 1759 case Op_StrEquals: 1760 case Op_StrIndexOf: 1761 case Op_StrIndexOfChar: 1762 case Op_StrInflatedCopy: 1763 case Op_StrCompressedCopy: 1764 case Op_VectorizedHashCode: 1765 case Op_EncodeISOArray: { 1766 add_local_var(n, PointsToNode::ArgEscape); 1767 delayed_worklist->push(n); // Process it later. 1768 break; 1769 } 1770 case Op_ThreadLocal: { 1771 PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape); 1772 set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer")); 1773 break; 1774 } 1775 case Op_Blackhole: { 1776 // All blackhole pointer arguments are globally escaping. 1777 // Only do this if there is at least one pointer argument. 1778 // Do not add edges during first iteration because some could be 1779 // not defined yet, defer to final step. 1780 for (uint i = 0; i < n->req(); i++) { 1781 Node* in = n->in(i); 1782 if (in != nullptr) { 1783 const Type* at = _igvn->type(in); 1784 if (!at->isa_ptr()) continue; 1785 1786 add_local_var(n, PointsToNode::GlobalEscape); 1787 delayed_worklist->push(n); 1788 break; 1789 } 1790 } 1791 break; 1792 } 1793 default: 1794 ; // Do nothing for nodes not related to EA. 1795 } 1796 return; 1797 } 1798 1799 // Add final simple edges to graph. 1800 void ConnectionGraph::add_final_edges(Node *n) { 1801 PointsToNode* n_ptn = ptnode_adr(n->_idx); 1802 #ifdef ASSERT 1803 if (_verify && n_ptn->is_JavaObject()) 1804 return; // This method does not change graph for JavaObject. 1805 #endif 1806 1807 if (n->is_Call()) { 1808 process_call_arguments(n->as_Call()); 1809 return; 1810 } 1811 assert(n->is_Store() || n->is_LoadStore() || n->is_StoreFlat() || 1812 ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)), 1813 "node should be registered already"); 1814 int opcode = n->Opcode(); 1815 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode); 1816 if (gc_handled) { 1817 return; // Ignore node if already handled by GC. 1818 } 1819 switch (opcode) { 1820 case Op_AddP: { 1821 Node* base = get_addp_base(n); 1822 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1823 assert(ptn_base != nullptr, "field's base should be registered"); 1824 add_base(n_ptn->as_Field(), ptn_base); 1825 break; 1826 } 1827 case Op_InlineType: 1828 case Op_CastPP: 1829 case Op_CheckCastPP: 1830 case Op_EncodeP: 1831 case Op_DecodeN: 1832 case Op_EncodePKlass: 1833 case Op_DecodeNKlass: { 1834 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr); 1835 break; 1836 } 1837 case Op_CMoveP: { 1838 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 1839 Node* in = n->in(i); 1840 if (in == nullptr) { 1841 continue; // ignore null 1842 } 1843 Node* uncast_in = in->uncast(); 1844 if (uncast_in->is_top() || uncast_in == n) { 1845 continue; // ignore top or inputs which go back this node 1846 } 1847 PointsToNode* ptn = ptnode_adr(in->_idx); 1848 assert(ptn != nullptr, "node should be registered"); 1849 add_edge(n_ptn, ptn); 1850 } 1851 break; 1852 } 1853 case Op_LoadP: 1854 case Op_LoadN: { 1855 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1856 // ThreadLocal has RawPtr type. 1857 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1858 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1859 break; 1860 } 1861 case Op_Phi: { 1862 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1863 // ThreadLocal has RawPtr type. 1864 assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type"); 1865 for (uint i = 1; i < n->req(); i++) { 1866 Node* in = n->in(i); 1867 if (in == nullptr) { 1868 continue; // ignore null 1869 } 1870 Node* uncast_in = in->uncast(); 1871 if (uncast_in->is_top() || uncast_in == n) { 1872 continue; // ignore top or inputs which go back this node 1873 } 1874 PointsToNode* ptn = ptnode_adr(in->_idx); 1875 assert(ptn != nullptr, "node should be registered"); 1876 add_edge(n_ptn, ptn); 1877 } 1878 break; 1879 } 1880 case Op_StoreFlat: { 1881 // StoreFlat globally escapes its stored flattened fields 1882 InlineTypeNode* value = n->as_StoreFlat()->value(); 1883 ciInlineKlass* vk = _igvn->type(value)->inline_klass(); 1884 for (int i = 0; i < vk->nof_nonstatic_fields(); i++) { 1885 ciField* field = vk->nonstatic_field_at(i); 1886 if (field->type()->is_primitive_type()) { 1887 continue; 1888 } 1889 1890 Node* field_value = value->field_value_by_offset(field->offset_in_bytes(), true); 1891 PointsToNode* field_value_ptn = ptnode_adr(field_value->_idx); 1892 set_escape_state(field_value_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "store into a flat field")); 1893 } 1894 break; 1895 } 1896 case Op_Proj: { 1897 if (n->in(0)->is_Call()) { 1898 // we are only interested in the oop result projection from a call 1899 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1900 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1901 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr); 1902 } else if (n->in(0)->is_LoadFlat()) { 1903 // Treat LoadFlat outputs similar to a call return value 1904 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr); 1905 } 1906 break; 1907 } 1908 case Op_Rethrow: // Exception object escapes 1909 case Op_Return: { 1910 assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(), 1911 "Unexpected node type"); 1912 // Treat Return value as LocalVar with GlobalEscape escape state. 1913 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr); 1914 break; 1915 } 1916 case Op_CompareAndExchangeP: 1917 case Op_CompareAndExchangeN: 1918 case Op_GetAndSetP: 1919 case Op_GetAndSetN:{ 1920 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1921 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1922 // fall-through 1923 } 1924 case Op_CompareAndSwapP: 1925 case Op_CompareAndSwapN: 1926 case Op_WeakCompareAndSwapP: 1927 case Op_WeakCompareAndSwapN: 1928 case Op_StoreP: 1929 case Op_StoreN: 1930 case Op_StoreNKlass:{ 1931 add_final_edges_unsafe_access(n, opcode); 1932 break; 1933 } 1934 case Op_VectorizedHashCode: 1935 case Op_AryEq: 1936 case Op_CountPositives: 1937 case Op_StrComp: 1938 case Op_StrEquals: 1939 case Op_StrIndexOf: 1940 case Op_StrIndexOfChar: 1941 case Op_StrInflatedCopy: 1942 case Op_StrCompressedCopy: 1943 case Op_EncodeISOArray: { 1944 // char[]/byte[] arrays passed to string intrinsic do not escape but 1945 // they are not scalar replaceable. Adjust escape state for them. 1946 // Start from in(2) edge since in(1) is memory edge. 1947 for (uint i = 2; i < n->req(); i++) { 1948 Node* adr = n->in(i); 1949 const Type* at = _igvn->type(adr); 1950 if (!adr->is_top() && at->isa_ptr()) { 1951 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 1952 at->isa_ptr() != nullptr, "expecting a pointer"); 1953 if (adr->is_AddP()) { 1954 adr = get_addp_base(adr); 1955 } 1956 PointsToNode* ptn = ptnode_adr(adr->_idx); 1957 assert(ptn != nullptr, "node should be registered"); 1958 add_edge(n_ptn, ptn); 1959 } 1960 } 1961 break; 1962 } 1963 case Op_Blackhole: { 1964 // All blackhole pointer arguments are globally escaping. 1965 for (uint i = 0; i < n->req(); i++) { 1966 Node* in = n->in(i); 1967 if (in != nullptr) { 1968 const Type* at = _igvn->type(in); 1969 if (!at->isa_ptr()) continue; 1970 1971 if (in->is_AddP()) { 1972 in = get_addp_base(in); 1973 } 1974 1975 PointsToNode* ptn = ptnode_adr(in->_idx); 1976 assert(ptn != nullptr, "should be defined already"); 1977 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole")); 1978 add_edge(n_ptn, ptn); 1979 } 1980 } 1981 break; 1982 } 1983 default: { 1984 // This method should be called only for EA specific nodes which may 1985 // miss some edges when they were created. 1986 #ifdef ASSERT 1987 n->dump(1); 1988 #endif 1989 guarantee(false, "unknown node"); 1990 } 1991 } 1992 return; 1993 } 1994 1995 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) { 1996 Node* adr = n->in(MemNode::Address); 1997 const Type* adr_type = _igvn->type(adr); 1998 adr_type = adr_type->make_ptr(); 1999 if (adr_type == nullptr) { 2000 return; // skip dead nodes 2001 } 2002 if (adr_type->isa_oopptr() 2003 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 2004 && adr_type == TypeRawPtr::NOTNULL 2005 && is_captured_store_address(adr))) { 2006 delayed_worklist->push(n); // Process it later. 2007 #ifdef ASSERT 2008 assert (adr->is_AddP(), "expecting an AddP"); 2009 if (adr_type == TypeRawPtr::NOTNULL) { 2010 // Verify a raw address for a store captured by Initialize node. 2011 int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 2012 assert(offs != Type::OffsetBot, "offset must be a constant"); 2013 } 2014 #endif 2015 } else { 2016 // Ignore copy the displaced header to the BoxNode (OSR compilation). 2017 if (adr->is_BoxLock()) { 2018 return; 2019 } 2020 // Stored value escapes in unsafe access. 2021 if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 2022 delayed_worklist->push(n); // Process unsafe access later. 2023 return; 2024 } 2025 #ifdef ASSERT 2026 n->dump(1); 2027 assert(false, "not unsafe"); 2028 #endif 2029 } 2030 } 2031 2032 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) { 2033 Node* adr = n->in(MemNode::Address); 2034 const Type *adr_type = _igvn->type(adr); 2035 adr_type = adr_type->make_ptr(); 2036 #ifdef ASSERT 2037 if (adr_type == nullptr) { 2038 n->dump(1); 2039 assert(adr_type != nullptr, "dead node should not be on list"); 2040 return true; 2041 } 2042 #endif 2043 2044 if (adr_type->isa_oopptr() 2045 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 2046 && adr_type == TypeRawPtr::NOTNULL 2047 && is_captured_store_address(adr))) { 2048 // Point Address to Value 2049 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 2050 assert(adr_ptn != nullptr && 2051 adr_ptn->as_Field()->is_oop(), "node should be registered"); 2052 Node* val = n->in(MemNode::ValueIn); 2053 PointsToNode* ptn = ptnode_adr(val->_idx); 2054 assert(ptn != nullptr, "node should be registered"); 2055 add_edge(adr_ptn, ptn); 2056 return true; 2057 } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 2058 // Stored value escapes in unsafe access. 2059 Node* val = n->in(MemNode::ValueIn); 2060 PointsToNode* ptn = ptnode_adr(val->_idx); 2061 assert(ptn != nullptr, "node should be registered"); 2062 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address")); 2063 // Add edge to object for unsafe access with offset. 2064 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 2065 assert(adr_ptn != nullptr, "node should be registered"); 2066 if (adr_ptn->is_Field()) { 2067 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 2068 add_edge(adr_ptn, ptn); 2069 } 2070 return true; 2071 } 2072 #ifdef ASSERT 2073 n->dump(1); 2074 assert(false, "not unsafe"); 2075 #endif 2076 return false; 2077 } 2078 2079 void ConnectionGraph::add_call_node(CallNode* call) { 2080 assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer"); 2081 uint call_idx = call->_idx; 2082 if (call->is_Allocate()) { 2083 Node* k = call->in(AllocateNode::KlassNode); 2084 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 2085 assert(kt != nullptr, "TypeKlassPtr required."); 2086 PointsToNode::EscapeState es = PointsToNode::NoEscape; 2087 bool scalar_replaceable = true; 2088 NOT_PRODUCT(const char* nsr_reason = ""); 2089 if (call->is_AllocateArray()) { 2090 if (!kt->isa_aryklassptr()) { // StressReflectiveCode 2091 es = PointsToNode::GlobalEscape; 2092 } else { 2093 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 2094 if (length < 0) { 2095 // Not scalar replaceable if the length is not constant. 2096 scalar_replaceable = false; 2097 NOT_PRODUCT(nsr_reason = "has a non-constant length"); 2098 } else if (length > EliminateAllocationArraySizeLimit) { 2099 // Not scalar replaceable if the length is too big. 2100 scalar_replaceable = false; 2101 NOT_PRODUCT(nsr_reason = "has a length that is too big"); 2102 } 2103 } 2104 } else { // Allocate instance 2105 if (!kt->isa_instklassptr()) { // StressReflectiveCode 2106 es = PointsToNode::GlobalEscape; 2107 } else { 2108 const TypeInstKlassPtr* ikt = kt->is_instklassptr(); 2109 ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass(); 2110 if (ik->is_subclass_of(_compile->env()->Thread_klass()) || 2111 ik->is_subclass_of(_compile->env()->Reference_klass()) || 2112 !ik->can_be_instantiated() || 2113 ik->has_finalizer()) { 2114 es = PointsToNode::GlobalEscape; 2115 } else { 2116 int nfields = ik->as_instance_klass()->nof_nonstatic_fields(); 2117 if (nfields > EliminateAllocationFieldsLimit) { 2118 // Not scalar replaceable if there are too many fields. 2119 scalar_replaceable = false; 2120 NOT_PRODUCT(nsr_reason = "has too many fields"); 2121 } 2122 } 2123 } 2124 } 2125 add_java_object(call, es); 2126 PointsToNode* ptn = ptnode_adr(call_idx); 2127 if (!scalar_replaceable && ptn->scalar_replaceable()) { 2128 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason)); 2129 } 2130 } else if (call->is_CallStaticJava()) { 2131 // Call nodes could be different types: 2132 // 2133 // 1. CallDynamicJavaNode (what happened during call is unknown): 2134 // 2135 // - mapped to GlobalEscape JavaObject node if oop is returned; 2136 // 2137 // - all oop arguments are escaping globally; 2138 // 2139 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 2140 // 2141 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 2142 // 2143 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 2144 // - mapped to NoEscape JavaObject node if non-escaping object allocated 2145 // during call is returned; 2146 // - mapped to ArgEscape LocalVar node pointed to object arguments 2147 // which are returned and does not escape during call; 2148 // 2149 // - oop arguments escaping status is defined by bytecode analysis; 2150 // 2151 // For a static call, we know exactly what method is being called. 2152 // Use bytecode estimator to record whether the call's return value escapes. 2153 ciMethod* meth = call->as_CallJava()->method(); 2154 if (meth == nullptr) { 2155 const char* name = call->as_CallStaticJava()->_name; 2156 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2157 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 || 2158 strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "TODO: add failed case check"); 2159 // Returns a newly allocated non-escaped object. 2160 add_java_object(call, PointsToNode::NoEscape); 2161 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray")); 2162 } else if (meth->is_boxing_method()) { 2163 // Returns boxing object 2164 PointsToNode::EscapeState es; 2165 vmIntrinsics::ID intr = meth->intrinsic_id(); 2166 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 2167 // It does not escape if object is always allocated. 2168 es = PointsToNode::NoEscape; 2169 } else { 2170 // It escapes globally if object could be loaded from cache. 2171 es = PointsToNode::GlobalEscape; 2172 } 2173 add_java_object(call, es); 2174 if (es == PointsToNode::GlobalEscape) { 2175 set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache")); 2176 } 2177 } else { 2178 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 2179 call_analyzer->copy_dependencies(_compile->dependencies()); 2180 if (call_analyzer->is_return_allocated()) { 2181 // Returns a newly allocated non-escaped object, simply 2182 // update dependency information. 2183 // Mark it as NoEscape so that objects referenced by 2184 // it's fields will be marked as NoEscape at least. 2185 add_java_object(call, PointsToNode::NoEscape); 2186 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call")); 2187 } else { 2188 // Determine whether any arguments are returned. 2189 const TypeTuple* d = call->tf()->domain_cc(); 2190 bool ret_arg = false; 2191 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2192 if (d->field_at(i)->isa_ptr() != nullptr && 2193 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 2194 ret_arg = true; 2195 break; 2196 } 2197 } 2198 if (ret_arg) { 2199 add_local_var(call, PointsToNode::ArgEscape); 2200 } else { 2201 // Returns unknown object. 2202 map_ideal_node(call, phantom_obj); 2203 } 2204 } 2205 } 2206 } else { 2207 // An other type of call, assume the worst case: 2208 // returned value is unknown and globally escapes. 2209 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 2210 map_ideal_node(call, phantom_obj); 2211 } 2212 } 2213 2214 void ConnectionGraph::process_call_arguments(CallNode *call) { 2215 bool is_arraycopy = false; 2216 switch (call->Opcode()) { 2217 #ifdef ASSERT 2218 case Op_Allocate: 2219 case Op_AllocateArray: 2220 case Op_Lock: 2221 case Op_Unlock: 2222 assert(false, "should be done already"); 2223 break; 2224 #endif 2225 case Op_ArrayCopy: 2226 case Op_CallLeafNoFP: 2227 // Most array copies are ArrayCopy nodes at this point but there 2228 // are still a few direct calls to the copy subroutines (See 2229 // PhaseStringOpts::copy_string()) 2230 is_arraycopy = (call->Opcode() == Op_ArrayCopy) || 2231 call->as_CallLeaf()->is_call_to_arraycopystub(); 2232 // fall through 2233 case Op_CallLeafVector: 2234 case Op_CallLeaf: { 2235 // Stub calls, objects do not escape but they are not scale replaceable. 2236 // Adjust escape state for outgoing arguments. 2237 const TypeTuple * d = call->tf()->domain_sig(); 2238 bool src_has_oops = false; 2239 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2240 const Type* at = d->field_at(i); 2241 Node *arg = call->in(i); 2242 if (arg == nullptr) { 2243 continue; 2244 } 2245 const Type *aat = _igvn->type(arg); 2246 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) { 2247 continue; 2248 } 2249 if (arg->is_AddP()) { 2250 // 2251 // The inline_native_clone() case when the arraycopy stub is called 2252 // after the allocation before Initialize and CheckCastPP nodes. 2253 // Or normal arraycopy for object arrays case. 2254 // 2255 // Set AddP's base (Allocate) as not scalar replaceable since 2256 // pointer to the base (with offset) is passed as argument. 2257 // 2258 arg = get_addp_base(arg); 2259 } 2260 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2261 assert(arg_ptn != nullptr, "should be registered"); 2262 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 2263 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 2264 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 2265 aat->isa_ptr() != nullptr, "expecting an Ptr"); 2266 bool arg_has_oops = aat->isa_oopptr() && 2267 (aat->isa_instptr() || 2268 (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) || 2269 (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr && 2270 aat->isa_aryptr()->is_flat() && 2271 aat->isa_aryptr()->elem()->inline_klass()->contains_oops())); 2272 if (i == TypeFunc::Parms) { 2273 src_has_oops = arg_has_oops; 2274 } 2275 // 2276 // src or dst could be j.l.Object when other is basic type array: 2277 // 2278 // arraycopy(char[],0,Object*,0,size); 2279 // arraycopy(Object*,0,char[],0,size); 2280 // 2281 // Don't add edges in such cases. 2282 // 2283 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 2284 arg_has_oops && (i > TypeFunc::Parms); 2285 #ifdef ASSERT 2286 if (!(is_arraycopy || 2287 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) || 2288 (call->as_CallLeaf()->_name != nullptr && 2289 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 2290 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 || 2291 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 || 2292 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 2293 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 2294 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 2295 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 2296 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 || 2297 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 || 2298 strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 || 2299 strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 || 2300 strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 || 2301 strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 || 2302 strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 || 2303 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 2304 strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 || 2305 strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 || 2306 strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 || 2307 strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 || 2308 strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 || 2309 strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 || 2310 strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 || 2311 strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 || 2312 strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 || 2313 strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 || 2314 strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 || 2315 strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 || 2316 strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 || 2317 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 || 2318 strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 || 2319 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 || 2320 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 || 2321 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 2322 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 2323 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 2324 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 2325 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 2326 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 2327 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 || 2328 strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 || 2329 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 || 2330 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 2331 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 2332 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 2333 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 2334 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 || 2335 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2336 strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 || 2337 strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 || 2338 strcmp(call->as_CallLeaf()->_name, "store_inline_type_fields_to_buf") == 0 || 2339 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 || 2340 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 || 2341 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2342 strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 || 2343 strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 || 2344 strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 || 2345 strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 || 2346 strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0) 2347 ))) { 2348 call->dump(); 2349 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name); 2350 } 2351 #endif 2352 // Always process arraycopy's destination object since 2353 // we need to add all possible edges to references in 2354 // source object. 2355 if (arg_esc >= PointsToNode::ArgEscape && 2356 !arg_is_arraycopy_dest) { 2357 continue; 2358 } 2359 PointsToNode::EscapeState es = PointsToNode::ArgEscape; 2360 if (call->is_ArrayCopy()) { 2361 ArrayCopyNode* ac = call->as_ArrayCopy(); 2362 if (ac->is_clonebasic() || 2363 ac->is_arraycopy_validated() || 2364 ac->is_copyof_validated() || 2365 ac->is_copyofrange_validated()) { 2366 es = PointsToNode::NoEscape; 2367 } 2368 } 2369 set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2370 if (arg_is_arraycopy_dest) { 2371 Node* src = call->in(TypeFunc::Parms); 2372 if (src->is_AddP()) { 2373 src = get_addp_base(src); 2374 } 2375 PointsToNode* src_ptn = ptnode_adr(src->_idx); 2376 assert(src_ptn != nullptr, "should be registered"); 2377 // Special arraycopy edge: 2378 // Only escape state of destination object's fields affects 2379 // escape state of fields in source object. 2380 add_arraycopy(call, es, src_ptn, arg_ptn); 2381 } 2382 } 2383 } 2384 break; 2385 } 2386 case Op_CallStaticJava: { 2387 // For a static call, we know exactly what method is being called. 2388 // Use bytecode estimator to record the call's escape affects 2389 #ifdef ASSERT 2390 const char* name = call->as_CallStaticJava()->_name; 2391 assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 2392 #endif 2393 ciMethod* meth = call->as_CallJava()->method(); 2394 if ((meth != nullptr) && meth->is_boxing_method()) { 2395 break; // Boxing methods do not modify any oops. 2396 } 2397 BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr; 2398 // fall-through if not a Java method or no analyzer information 2399 if (call_analyzer != nullptr) { 2400 PointsToNode* call_ptn = ptnode_adr(call->_idx); 2401 const TypeTuple* d = call->tf()->domain_cc(); 2402 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2403 const Type* at = d->field_at(i); 2404 int k = i - TypeFunc::Parms; 2405 Node* arg = call->in(i); 2406 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2407 if (at->isa_ptr() != nullptr && 2408 call_analyzer->is_arg_returned(k)) { 2409 // The call returns arguments. 2410 if (call_ptn != nullptr) { // Is call's result used? 2411 assert(call_ptn->is_LocalVar(), "node should be registered"); 2412 assert(arg_ptn != nullptr, "node should be registered"); 2413 add_edge(call_ptn, arg_ptn); 2414 } 2415 } 2416 if (at->isa_oopptr() != nullptr && 2417 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 2418 if (!call_analyzer->is_arg_stack(k)) { 2419 // The argument global escapes 2420 set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2421 } else { 2422 set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2423 if (!call_analyzer->is_arg_local(k)) { 2424 // The argument itself doesn't escape, but any fields might 2425 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2426 } 2427 } 2428 } 2429 } 2430 if (call_ptn != nullptr && call_ptn->is_LocalVar()) { 2431 // The call returns arguments. 2432 assert(call_ptn->edge_count() > 0, "sanity"); 2433 if (!call_analyzer->is_return_local()) { 2434 // Returns also unknown object. 2435 add_edge(call_ptn, phantom_obj); 2436 } 2437 } 2438 break; 2439 } 2440 } 2441 default: { 2442 // Fall-through here if not a Java method or no analyzer information 2443 // or some other type of call, assume the worst case: all arguments 2444 // globally escape. 2445 const TypeTuple* d = call->tf()->domain_cc(); 2446 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2447 const Type* at = d->field_at(i); 2448 if (at->isa_oopptr() != nullptr) { 2449 Node* arg = call->in(i); 2450 if (arg->is_AddP()) { 2451 arg = get_addp_base(arg); 2452 } 2453 assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already"); 2454 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2455 } 2456 } 2457 } 2458 } 2459 } 2460 2461 2462 // Finish Graph construction. 2463 bool ConnectionGraph::complete_connection_graph( 2464 GrowableArray<PointsToNode*>& ptnodes_worklist, 2465 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 2466 GrowableArray<JavaObjectNode*>& java_objects_worklist, 2467 GrowableArray<FieldNode*>& oop_fields_worklist) { 2468 // Normally only 1-3 passes needed to build Connection Graph depending 2469 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 2470 // Set limit to 20 to catch situation when something did go wrong and 2471 // bailout Escape Analysis. 2472 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 2473 #define GRAPH_BUILD_ITER_LIMIT 20 2474 2475 // Propagate GlobalEscape and ArgEscape escape states and check that 2476 // we still have non-escaping objects. The method pushs on _worklist 2477 // Field nodes which reference phantom_object. 2478 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2479 return false; // Nothing to do. 2480 } 2481 // Now propagate references to all JavaObject nodes. 2482 int java_objects_length = java_objects_worklist.length(); 2483 elapsedTimer build_time; 2484 build_time.start(); 2485 elapsedTimer time; 2486 bool timeout = false; 2487 int new_edges = 1; 2488 int iterations = 0; 2489 do { 2490 while ((new_edges > 0) && 2491 (iterations++ < GRAPH_BUILD_ITER_LIMIT)) { 2492 double start_time = time.seconds(); 2493 time.start(); 2494 new_edges = 0; 2495 // Propagate references to phantom_object for nodes pushed on _worklist 2496 // by find_non_escaped_objects() and find_field_value(). 2497 new_edges += add_java_object_edges(phantom_obj, false); 2498 for (int next = 0; next < java_objects_length; ++next) { 2499 JavaObjectNode* ptn = java_objects_worklist.at(next); 2500 new_edges += add_java_object_edges(ptn, true); 2501 2502 #define SAMPLE_SIZE 4 2503 if ((next % SAMPLE_SIZE) == 0) { 2504 // Each 4 iterations calculate how much time it will take 2505 // to complete graph construction. 2506 time.stop(); 2507 // Poll for requests from shutdown mechanism to quiesce compiler 2508 // because Connection graph construction may take long time. 2509 CompileBroker::maybe_block(); 2510 double stop_time = time.seconds(); 2511 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 2512 double time_until_end = time_per_iter * (double)(java_objects_length - next); 2513 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 2514 timeout = true; 2515 break; // Timeout 2516 } 2517 start_time = stop_time; 2518 time.start(); 2519 } 2520 #undef SAMPLE_SIZE 2521 2522 } 2523 if (timeout) break; 2524 if (new_edges > 0) { 2525 // Update escape states on each iteration if graph was updated. 2526 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2527 return false; // Nothing to do. 2528 } 2529 } 2530 time.stop(); 2531 if (time.seconds() >= EscapeAnalysisTimeout) { 2532 timeout = true; 2533 break; 2534 } 2535 _compile->print_method(PHASE_EA_COMPLETE_CONNECTION_GRAPH_ITER, 5); 2536 } 2537 if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) { 2538 time.start(); 2539 // Find fields which have unknown value. 2540 int fields_length = oop_fields_worklist.length(); 2541 for (int next = 0; next < fields_length; next++) { 2542 FieldNode* field = oop_fields_worklist.at(next); 2543 if (field->edge_count() == 0) { 2544 new_edges += find_field_value(field); 2545 // This code may added new edges to phantom_object. 2546 // Need an other cycle to propagate references to phantom_object. 2547 } 2548 } 2549 time.stop(); 2550 if (time.seconds() >= EscapeAnalysisTimeout) { 2551 timeout = true; 2552 break; 2553 } 2554 } else { 2555 new_edges = 0; // Bailout 2556 } 2557 } while (new_edges > 0); 2558 2559 build_time.stop(); 2560 _build_time = build_time.seconds(); 2561 _build_iterations = iterations; 2562 2563 // Bailout if passed limits. 2564 if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) { 2565 Compile* C = _compile; 2566 if (C->log() != nullptr) { 2567 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 2568 C->log()->text("%s", timeout ? "time" : "iterations"); 2569 C->log()->end_elem(" limit'"); 2570 } 2571 assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d", 2572 _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length()); 2573 // Possible infinite build_connection_graph loop, 2574 // bailout (no changes to ideal graph were made). 2575 return false; 2576 } 2577 2578 #undef GRAPH_BUILD_ITER_LIMIT 2579 2580 // Find fields initialized by null for non-escaping Allocations. 2581 int non_escaped_length = non_escaped_allocs_worklist.length(); 2582 for (int next = 0; next < non_escaped_length; next++) { 2583 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2584 PointsToNode::EscapeState es = ptn->escape_state(); 2585 assert(es <= PointsToNode::ArgEscape, "sanity"); 2586 if (es == PointsToNode::NoEscape) { 2587 if (find_init_values_null(ptn, _igvn) > 0) { 2588 // Adding references to null object does not change escape states 2589 // since it does not escape. Also no fields are added to null object. 2590 add_java_object_edges(null_obj, false); 2591 } 2592 } 2593 Node* n = ptn->ideal_node(); 2594 if (n->is_Allocate()) { 2595 // The object allocated by this Allocate node will never be 2596 // seen by an other thread. Mark it so that when it is 2597 // expanded no MemBarStoreStore is added. 2598 InitializeNode* ini = n->as_Allocate()->initialization(); 2599 if (ini != nullptr) 2600 ini->set_does_not_escape(); 2601 } 2602 } 2603 return true; // Finished graph construction. 2604 } 2605 2606 // Propagate GlobalEscape and ArgEscape escape states to all nodes 2607 // and check that we still have non-escaping java objects. 2608 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 2609 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 2610 bool print_method) { 2611 GrowableArray<PointsToNode*> escape_worklist; 2612 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 2613 int ptnodes_length = ptnodes_worklist.length(); 2614 for (int next = 0; next < ptnodes_length; ++next) { 2615 PointsToNode* ptn = ptnodes_worklist.at(next); 2616 if (ptn->escape_state() >= PointsToNode::ArgEscape || 2617 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 2618 escape_worklist.push(ptn); 2619 } 2620 } 2621 // Set escape states to referenced nodes (edges list). 2622 while (escape_worklist.length() > 0) { 2623 PointsToNode* ptn = escape_worklist.pop(); 2624 PointsToNode::EscapeState es = ptn->escape_state(); 2625 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 2626 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 2627 es >= PointsToNode::ArgEscape) { 2628 // GlobalEscape or ArgEscape state of field means it has unknown value. 2629 if (add_edge(ptn, phantom_obj)) { 2630 // New edge was added 2631 add_field_uses_to_worklist(ptn->as_Field()); 2632 } 2633 } 2634 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2635 PointsToNode* e = i.get(); 2636 if (e->is_Arraycopy()) { 2637 assert(ptn->arraycopy_dst(), "sanity"); 2638 // Propagate only fields escape state through arraycopy edge. 2639 if (e->fields_escape_state() < field_es) { 2640 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2641 escape_worklist.push(e); 2642 } 2643 } else if (es >= field_es) { 2644 // fields_escape_state is also set to 'es' if it is less than 'es'. 2645 if (e->escape_state() < es) { 2646 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2647 escape_worklist.push(e); 2648 } 2649 } else { 2650 // Propagate field escape state. 2651 bool es_changed = false; 2652 if (e->fields_escape_state() < field_es) { 2653 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2654 es_changed = true; 2655 } 2656 if ((e->escape_state() < field_es) && 2657 e->is_Field() && ptn->is_JavaObject() && 2658 e->as_Field()->is_oop()) { 2659 // Change escape state of referenced fields. 2660 set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2661 es_changed = true; 2662 } else if (e->escape_state() < es) { 2663 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2664 es_changed = true; 2665 } 2666 if (es_changed) { 2667 escape_worklist.push(e); 2668 } 2669 } 2670 if (print_method) { 2671 _compile->print_method(PHASE_EA_CONNECTION_GRAPH_PROPAGATE_ITER, 6, e->ideal_node()); 2672 } 2673 } 2674 } 2675 // Remove escaped objects from non_escaped list. 2676 for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) { 2677 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2678 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 2679 non_escaped_allocs_worklist.delete_at(next); 2680 } 2681 if (ptn->escape_state() == PointsToNode::NoEscape) { 2682 // Find fields in non-escaped allocations which have unknown value. 2683 find_init_values_phantom(ptn); 2684 } 2685 } 2686 return (non_escaped_allocs_worklist.length() > 0); 2687 } 2688 2689 // Add all references to JavaObject node by walking over all uses. 2690 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 2691 int new_edges = 0; 2692 if (populate_worklist) { 2693 // Populate _worklist by uses of jobj's uses. 2694 for (UseIterator i(jobj); i.has_next(); i.next()) { 2695 PointsToNode* use = i.get(); 2696 if (use->is_Arraycopy()) { 2697 continue; 2698 } 2699 add_uses_to_worklist(use); 2700 if (use->is_Field() && use->as_Field()->is_oop()) { 2701 // Put on worklist all field's uses (loads) and 2702 // related field nodes (same base and offset). 2703 add_field_uses_to_worklist(use->as_Field()); 2704 } 2705 } 2706 } 2707 for (int l = 0; l < _worklist.length(); l++) { 2708 PointsToNode* use = _worklist.at(l); 2709 if (PointsToNode::is_base_use(use)) { 2710 // Add reference from jobj to field and from field to jobj (field's base). 2711 use = PointsToNode::get_use_node(use)->as_Field(); 2712 if (add_base(use->as_Field(), jobj)) { 2713 new_edges++; 2714 } 2715 continue; 2716 } 2717 assert(!use->is_JavaObject(), "sanity"); 2718 if (use->is_Arraycopy()) { 2719 if (jobj == null_obj) { // null object does not have field edges 2720 continue; 2721 } 2722 // Added edge from Arraycopy node to arraycopy's source java object 2723 if (add_edge(use, jobj)) { 2724 jobj->set_arraycopy_src(); 2725 new_edges++; 2726 } 2727 // and stop here. 2728 continue; 2729 } 2730 if (!add_edge(use, jobj)) { 2731 continue; // No new edge added, there was such edge already. 2732 } 2733 new_edges++; 2734 if (use->is_LocalVar()) { 2735 add_uses_to_worklist(use); 2736 if (use->arraycopy_dst()) { 2737 for (EdgeIterator i(use); i.has_next(); i.next()) { 2738 PointsToNode* e = i.get(); 2739 if (e->is_Arraycopy()) { 2740 if (jobj == null_obj) { // null object does not have field edges 2741 continue; 2742 } 2743 // Add edge from arraycopy's destination java object to Arraycopy node. 2744 if (add_edge(jobj, e)) { 2745 new_edges++; 2746 jobj->set_arraycopy_dst(); 2747 } 2748 } 2749 } 2750 } 2751 } else { 2752 // Added new edge to stored in field values. 2753 // Put on worklist all field's uses (loads) and 2754 // related field nodes (same base and offset). 2755 add_field_uses_to_worklist(use->as_Field()); 2756 } 2757 } 2758 _worklist.clear(); 2759 _in_worklist.reset(); 2760 return new_edges; 2761 } 2762 2763 // Put on worklist all related field nodes. 2764 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 2765 assert(field->is_oop(), "sanity"); 2766 int offset = field->offset(); 2767 add_uses_to_worklist(field); 2768 // Loop over all bases of this field and push on worklist Field nodes 2769 // with the same offset and base (since they may reference the same field). 2770 for (BaseIterator i(field); i.has_next(); i.next()) { 2771 PointsToNode* base = i.get(); 2772 add_fields_to_worklist(field, base); 2773 // Check if the base was source object of arraycopy and go over arraycopy's 2774 // destination objects since values stored to a field of source object are 2775 // accessible by uses (loads) of fields of destination objects. 2776 if (base->arraycopy_src()) { 2777 for (UseIterator j(base); j.has_next(); j.next()) { 2778 PointsToNode* arycp = j.get(); 2779 if (arycp->is_Arraycopy()) { 2780 for (UseIterator k(arycp); k.has_next(); k.next()) { 2781 PointsToNode* abase = k.get(); 2782 if (abase->arraycopy_dst() && abase != base) { 2783 // Look for the same arraycopy reference. 2784 add_fields_to_worklist(field, abase); 2785 } 2786 } 2787 } 2788 } 2789 } 2790 } 2791 } 2792 2793 // Put on worklist all related field nodes. 2794 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 2795 int offset = field->offset(); 2796 if (base->is_LocalVar()) { 2797 for (UseIterator j(base); j.has_next(); j.next()) { 2798 PointsToNode* f = j.get(); 2799 if (PointsToNode::is_base_use(f)) { // Field 2800 f = PointsToNode::get_use_node(f); 2801 if (f == field || !f->as_Field()->is_oop()) { 2802 continue; 2803 } 2804 int offs = f->as_Field()->offset(); 2805 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2806 add_to_worklist(f); 2807 } 2808 } 2809 } 2810 } else { 2811 assert(base->is_JavaObject(), "sanity"); 2812 if (// Skip phantom_object since it is only used to indicate that 2813 // this field's content globally escapes. 2814 (base != phantom_obj) && 2815 // null object node does not have fields. 2816 (base != null_obj)) { 2817 for (EdgeIterator i(base); i.has_next(); i.next()) { 2818 PointsToNode* f = i.get(); 2819 // Skip arraycopy edge since store to destination object field 2820 // does not update value in source object field. 2821 if (f->is_Arraycopy()) { 2822 assert(base->arraycopy_dst(), "sanity"); 2823 continue; 2824 } 2825 if (f == field || !f->as_Field()->is_oop()) { 2826 continue; 2827 } 2828 int offs = f->as_Field()->offset(); 2829 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2830 add_to_worklist(f); 2831 } 2832 } 2833 } 2834 } 2835 } 2836 2837 // Find fields which have unknown value. 2838 int ConnectionGraph::find_field_value(FieldNode* field) { 2839 // Escaped fields should have init value already. 2840 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 2841 int new_edges = 0; 2842 for (BaseIterator i(field); i.has_next(); i.next()) { 2843 PointsToNode* base = i.get(); 2844 if (base->is_JavaObject()) { 2845 // Skip Allocate's fields which will be processed later. 2846 if (base->ideal_node()->is_Allocate()) { 2847 return 0; 2848 } 2849 assert(base == null_obj, "only null ptr base expected here"); 2850 } 2851 } 2852 if (add_edge(field, phantom_obj)) { 2853 // New edge was added 2854 new_edges++; 2855 add_field_uses_to_worklist(field); 2856 } 2857 return new_edges; 2858 } 2859 2860 // Find fields initializing values for allocations. 2861 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) { 2862 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2863 PointsToNode* init_val = phantom_obj; 2864 Node* alloc = pta->ideal_node(); 2865 2866 // Do nothing for Allocate nodes since its fields values are 2867 // "known" unless they are initialized by arraycopy/clone. 2868 if (alloc->is_Allocate() && !pta->arraycopy_dst()) { 2869 if (alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) { 2870 // Null-free inline type arrays are initialized with an init value instead of null 2871 init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::InitValue)->_idx); 2872 assert(init_val != nullptr, "init value should be registered"); 2873 } else { 2874 return 0; 2875 } 2876 } 2877 // Non-escaped allocation returned from Java or runtime call has unknown values in fields. 2878 assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity"); 2879 #ifdef ASSERT 2880 if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) { 2881 const char* name = alloc->as_CallStaticJava()->_name; 2882 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2883 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 || 2884 strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "sanity"); 2885 } 2886 #endif 2887 // Non-escaped allocation returned from Java or runtime call have unknown values in fields. 2888 int new_edges = 0; 2889 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2890 PointsToNode* field = i.get(); 2891 if (field->is_Field() && field->as_Field()->is_oop()) { 2892 if (add_edge(field, init_val)) { 2893 // New edge was added 2894 new_edges++; 2895 add_field_uses_to_worklist(field->as_Field()); 2896 } 2897 } 2898 } 2899 return new_edges; 2900 } 2901 2902 // Find fields initializing values for allocations. 2903 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) { 2904 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2905 Node* alloc = pta->ideal_node(); 2906 // Do nothing for Call nodes since its fields values are unknown. 2907 if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) { 2908 return 0; 2909 } 2910 InitializeNode* ini = alloc->as_Allocate()->initialization(); 2911 bool visited_bottom_offset = false; 2912 GrowableArray<int> offsets_worklist; 2913 int new_edges = 0; 2914 2915 // Check if an oop field's initializing value is recorded and add 2916 // a corresponding null if field's value if it is not recorded. 2917 // Connection Graph does not record a default initialization by null 2918 // captured by Initialize node. 2919 // 2920 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2921 PointsToNode* field = i.get(); // Field (AddP) 2922 if (!field->is_Field() || !field->as_Field()->is_oop()) { 2923 continue; // Not oop field 2924 } 2925 int offset = field->as_Field()->offset(); 2926 if (offset == Type::OffsetBot) { 2927 if (!visited_bottom_offset) { 2928 // OffsetBot is used to reference array's element, 2929 // always add reference to null to all Field nodes since we don't 2930 // known which element is referenced. 2931 if (add_edge(field, null_obj)) { 2932 // New edge was added 2933 new_edges++; 2934 add_field_uses_to_worklist(field->as_Field()); 2935 visited_bottom_offset = true; 2936 } 2937 } 2938 } else { 2939 // Check only oop fields. 2940 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 2941 if (adr_type->isa_rawptr()) { 2942 #ifdef ASSERT 2943 // Raw pointers are used for initializing stores so skip it 2944 // since it should be recorded already 2945 Node* base = get_addp_base(field->ideal_node()); 2946 assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type"); 2947 #endif 2948 continue; 2949 } 2950 if (!offsets_worklist.contains(offset)) { 2951 offsets_worklist.append(offset); 2952 Node* value = nullptr; 2953 if (ini != nullptr) { 2954 // StoreP::value_basic_type() == T_ADDRESS 2955 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 2956 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 2957 // Make sure initializing store has the same type as this AddP. 2958 // This AddP may reference non existing field because it is on a 2959 // dead branch of bimorphic call which is not eliminated yet. 2960 if (store != nullptr && store->is_Store() && 2961 store->as_Store()->value_basic_type() == ft) { 2962 value = store->in(MemNode::ValueIn); 2963 #ifdef ASSERT 2964 if (VerifyConnectionGraph) { 2965 // Verify that AddP already points to all objects the value points to. 2966 PointsToNode* val = ptnode_adr(value->_idx); 2967 assert((val != nullptr), "should be processed already"); 2968 PointsToNode* missed_obj = nullptr; 2969 if (val->is_JavaObject()) { 2970 if (!field->points_to(val->as_JavaObject())) { 2971 missed_obj = val; 2972 } 2973 } else { 2974 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 2975 tty->print_cr("----------init store has invalid value -----"); 2976 store->dump(); 2977 val->dump(); 2978 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 2979 } 2980 for (EdgeIterator j(val); j.has_next(); j.next()) { 2981 PointsToNode* obj = j.get(); 2982 if (obj->is_JavaObject()) { 2983 if (!field->points_to(obj->as_JavaObject())) { 2984 missed_obj = obj; 2985 break; 2986 } 2987 } 2988 } 2989 } 2990 if (missed_obj != nullptr) { 2991 tty->print_cr("----------field---------------------------------"); 2992 field->dump(); 2993 tty->print_cr("----------missed reference to object------------"); 2994 missed_obj->dump(); 2995 tty->print_cr("----------object referenced by init store-------"); 2996 store->dump(); 2997 val->dump(); 2998 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 2999 } 3000 } 3001 #endif 3002 } else { 3003 // There could be initializing stores which follow allocation. 3004 // For example, a volatile field store is not collected 3005 // by Initialize node. 3006 // 3007 // Need to check for dependent loads to separate such stores from 3008 // stores which follow loads. For now, add initial value null so 3009 // that compare pointers optimization works correctly. 3010 } 3011 } 3012 if (value == nullptr) { 3013 // A field's initializing value was not recorded. Add null. 3014 if (add_edge(field, null_obj)) { 3015 // New edge was added 3016 new_edges++; 3017 add_field_uses_to_worklist(field->as_Field()); 3018 } 3019 } 3020 } 3021 } 3022 } 3023 return new_edges; 3024 } 3025 3026 // Adjust scalar_replaceable state after Connection Graph is built. 3027 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) { 3028 // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)' 3029 // returns true. If one of the constraints in this method set 'jobj' to NSR 3030 // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as 3031 // input, 'adjust_scalar_replaceable_state' will eventually be called with 3032 // that other object and the Phi will become a reducible Phi. 3033 // There could be multiple merges involving the same jobj. 3034 Unique_Node_List candidates; 3035 3036 // Search for non-escaping objects which are not scalar replaceable 3037 // and mark them to propagate the state to referenced objects. 3038 3039 for (UseIterator i(jobj); i.has_next(); i.next()) { 3040 PointsToNode* use = i.get(); 3041 if (use->is_Arraycopy()) { 3042 continue; 3043 } 3044 if (use->is_Field()) { 3045 FieldNode* field = use->as_Field(); 3046 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 3047 // 1. An object is not scalar replaceable if the field into which it is 3048 // stored has unknown offset (stored into unknown element of an array). 3049 if (field->offset() == Type::OffsetBot) { 3050 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset")); 3051 return; 3052 } 3053 for (BaseIterator i(field); i.has_next(); i.next()) { 3054 PointsToNode* base = i.get(); 3055 // 2. An object is not scalar replaceable if the field into which it is 3056 // stored has multiple bases one of which is null. 3057 if ((base == null_obj) && (field->base_count() > 1)) { 3058 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base")); 3059 return; 3060 } 3061 // 2.5. An object is not scalar replaceable if the field into which it is 3062 // stored has NSR base. 3063 if (!base->scalar_replaceable()) { 3064 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 3065 return; 3066 } 3067 } 3068 } 3069 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 3070 // 3. An object is not scalar replaceable if it is merged with other objects 3071 // and we can't remove the merge 3072 for (EdgeIterator j(use); j.has_next(); j.next()) { 3073 PointsToNode* ptn = j.get(); 3074 if (ptn->is_JavaObject() && ptn != jobj) { 3075 Node* use_n = use->ideal_node(); 3076 3077 // These other local vars may point to multiple objects through a Phi 3078 // In this case we skip them and see if we can reduce the Phi. 3079 if (use_n->is_CastPP() || use_n->is_CheckCastPP()) { 3080 use_n = use_n->in(1); 3081 } 3082 3083 // If it's already a candidate or confirmed reducible merge we can skip verification 3084 if (candidates.member(use_n) || reducible_merges.member(use_n)) { 3085 continue; 3086 } 3087 3088 if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) { 3089 candidates.push(use_n); 3090 } else { 3091 // Mark all objects as NSR if we can't remove the merge 3092 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn))); 3093 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj))); 3094 } 3095 } 3096 } 3097 if (!jobj->scalar_replaceable()) { 3098 return; 3099 } 3100 } 3101 3102 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 3103 if (j.get()->is_Arraycopy()) { 3104 continue; 3105 } 3106 3107 // Non-escaping object node should point only to field nodes. 3108 FieldNode* field = j.get()->as_Field(); 3109 int offset = field->as_Field()->offset(); 3110 3111 // 4. An object is not scalar replaceable if it has a field with unknown 3112 // offset (array's element is accessed in loop). 3113 if (offset == Type::OffsetBot) { 3114 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset")); 3115 return; 3116 } 3117 // 5. Currently an object is not scalar replaceable if a LoadStore node 3118 // access its field since the field value is unknown after it. 3119 // 3120 Node* n = field->ideal_node(); 3121 3122 // Test for an unsafe access that was parsed as maybe off heap 3123 // (with a CheckCastPP to raw memory). 3124 assert(n->is_AddP(), "expect an address computation"); 3125 if (n->in(AddPNode::Base)->is_top() && 3126 n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) { 3127 assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected"); 3128 assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected"); 3129 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access")); 3130 return; 3131 } 3132 3133 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3134 Node* u = n->fast_out(i); 3135 if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) { 3136 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access")); 3137 return; 3138 } 3139 } 3140 3141 // 6. Or the address may point to more then one object. This may produce 3142 // the false positive result (set not scalar replaceable) 3143 // since the flow-insensitive escape analysis can't separate 3144 // the case when stores overwrite the field's value from the case 3145 // when stores happened on different control branches. 3146 // 3147 // Note: it will disable scalar replacement in some cases: 3148 // 3149 // Point p[] = new Point[1]; 3150 // p[0] = new Point(); // Will be not scalar replaced 3151 // 3152 // but it will save us from incorrect optimizations in next cases: 3153 // 3154 // Point p[] = new Point[1]; 3155 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 3156 // 3157 if (field->base_count() > 1 && candidates.size() == 0) { 3158 if (has_non_reducible_merge(field, reducible_merges)) { 3159 for (BaseIterator i(field); i.has_next(); i.next()) { 3160 PointsToNode* base = i.get(); 3161 // Don't take into account LocalVar nodes which 3162 // may point to only one object which should be also 3163 // this field's base by now. 3164 if (base->is_JavaObject() && base != jobj) { 3165 // Mark all bases. 3166 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object")); 3167 set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object")); 3168 } 3169 } 3170 3171 if (!jobj->scalar_replaceable()) { 3172 return; 3173 } 3174 } 3175 } 3176 } 3177 3178 // The candidate is truly a reducible merge only if none of the other 3179 // constraints ruled it as NSR. There could be multiple merges involving the 3180 // same jobj. 3181 assert(jobj->scalar_replaceable(), "sanity"); 3182 for (uint i = 0; i < candidates.size(); i++ ) { 3183 Node* candidate = candidates.at(i); 3184 reducible_merges.push(candidate); 3185 } 3186 } 3187 3188 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) { 3189 for (BaseIterator i(field); i.has_next(); i.next()) { 3190 Node* base = i.get()->ideal_node(); 3191 if (base->is_Phi() && !reducible_merges.member(base)) { 3192 return true; 3193 } 3194 } 3195 return false; 3196 } 3197 3198 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) { 3199 assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function."); 3200 3201 // Look for 'phis' that refer to 'jobj' as the last 3202 // remaining scalar replaceable input. 3203 uint reducible_merges_cnt = reducible_merges.size(); 3204 for (uint i = 0; i < reducible_merges_cnt; i++) { 3205 Node* phi = reducible_merges.at(i); 3206 3207 // This 'Phi' will be a 'good' if it still points to 3208 // at least one scalar replaceable object. Note that 'obj' 3209 // was/should be marked as NSR before calling this function. 3210 bool good_phi = false; 3211 3212 for (uint j = 1; j < phi->req(); j++) { 3213 JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j)); 3214 if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) { 3215 good_phi = true; 3216 break; 3217 } 3218 } 3219 3220 if (!good_phi) { 3221 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);) 3222 reducible_merges.remove(i); 3223 3224 // Decrement the index because the 'remove' call above actually 3225 // moves the last entry of the list to position 'i'. 3226 i--; 3227 3228 reducible_merges_cnt--; 3229 } 3230 } 3231 } 3232 3233 // Propagate NSR (Not scalar replaceable) state. 3234 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) { 3235 int jobj_length = jobj_worklist.length(); 3236 bool found_nsr_alloc = true; 3237 while (found_nsr_alloc) { 3238 found_nsr_alloc = false; 3239 for (int next = 0; next < jobj_length; ++next) { 3240 JavaObjectNode* jobj = jobj_worklist.at(next); 3241 for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) { 3242 PointsToNode* use = i.get(); 3243 if (use->is_Field()) { 3244 FieldNode* field = use->as_Field(); 3245 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 3246 assert(field->offset() != Type::OffsetBot, "sanity"); 3247 for (BaseIterator i(field); i.has_next(); i.next()) { 3248 PointsToNode* base = i.get(); 3249 // An object is not scalar replaceable if the field into which 3250 // it is stored has NSR base. 3251 if ((base != null_obj) && !base->scalar_replaceable()) { 3252 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 3253 // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible, 3254 // because there is no point in reducing a Phi that won't improve the number of SR 3255 // objects. 3256 revisit_reducible_phi_status(jobj, reducible_merges); 3257 found_nsr_alloc = true; 3258 break; 3259 } 3260 } 3261 } else if (use->is_LocalVar()) { 3262 Node* phi = use->ideal_node(); 3263 if (phi->Opcode() == Op_Phi && reducible_merges.member(phi) && !can_reduce_phi(phi->as_Phi())) { 3264 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is merged in a non-reducible phi")); 3265 reducible_merges.yank(phi); 3266 found_nsr_alloc = true; 3267 break; 3268 } 3269 } 3270 _compile->print_method(PHASE_EA_PROPAGATE_NSR_ITER, 5, jobj->ideal_node()); 3271 } 3272 } 3273 } 3274 } 3275 3276 #ifdef ASSERT 3277 void ConnectionGraph::verify_connection_graph( 3278 GrowableArray<PointsToNode*>& ptnodes_worklist, 3279 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 3280 GrowableArray<JavaObjectNode*>& java_objects_worklist, 3281 GrowableArray<Node*>& addp_worklist) { 3282 // Verify that graph is complete - no new edges could be added. 3283 int java_objects_length = java_objects_worklist.length(); 3284 int non_escaped_length = non_escaped_allocs_worklist.length(); 3285 int new_edges = 0; 3286 for (int next = 0; next < java_objects_length; ++next) { 3287 JavaObjectNode* ptn = java_objects_worklist.at(next); 3288 new_edges += add_java_object_edges(ptn, true); 3289 } 3290 assert(new_edges == 0, "graph was not complete"); 3291 // Verify that escape state is final. 3292 int length = non_escaped_allocs_worklist.length(); 3293 find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist, /*print_method=*/ false); 3294 assert((non_escaped_length == non_escaped_allocs_worklist.length()) && 3295 (non_escaped_length == length) && 3296 (_worklist.length() == 0), "escape state was not final"); 3297 3298 // Verify fields information. 3299 int addp_length = addp_worklist.length(); 3300 for (int next = 0; next < addp_length; ++next ) { 3301 Node* n = addp_worklist.at(next); 3302 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 3303 if (field->is_oop()) { 3304 // Verify that field has all bases 3305 Node* base = get_addp_base(n); 3306 PointsToNode* ptn = ptnode_adr(base->_idx); 3307 if (ptn->is_JavaObject()) { 3308 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 3309 } else { 3310 assert(ptn->is_LocalVar(), "sanity"); 3311 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3312 PointsToNode* e = i.get(); 3313 if (e->is_JavaObject()) { 3314 assert(field->has_base(e->as_JavaObject()), "sanity"); 3315 } 3316 } 3317 } 3318 // Verify that all fields have initializing values. 3319 if (field->edge_count() == 0) { 3320 tty->print_cr("----------field does not have references----------"); 3321 field->dump(); 3322 for (BaseIterator i(field); i.has_next(); i.next()) { 3323 PointsToNode* base = i.get(); 3324 tty->print_cr("----------field has next base---------------------"); 3325 base->dump(); 3326 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 3327 tty->print_cr("----------base has fields-------------------------"); 3328 for (EdgeIterator j(base); j.has_next(); j.next()) { 3329 j.get()->dump(); 3330 } 3331 tty->print_cr("----------base has references---------------------"); 3332 for (UseIterator j(base); j.has_next(); j.next()) { 3333 j.get()->dump(); 3334 } 3335 } 3336 } 3337 for (UseIterator i(field); i.has_next(); i.next()) { 3338 i.get()->dump(); 3339 } 3340 assert(field->edge_count() > 0, "sanity"); 3341 } 3342 } 3343 } 3344 } 3345 #endif 3346 3347 // Optimize ideal graph. 3348 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 3349 GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) { 3350 Compile* C = _compile; 3351 PhaseIterGVN* igvn = _igvn; 3352 if (EliminateLocks) { 3353 // Mark locks before changing ideal graph. 3354 int cnt = C->macro_count(); 3355 for (int i = 0; i < cnt; i++) { 3356 Node *n = C->macro_node(i); 3357 if (n->is_AbstractLock()) { // Lock and Unlock nodes 3358 AbstractLockNode* alock = n->as_AbstractLock(); 3359 if (!alock->is_non_esc_obj()) { 3360 const Type* obj_type = igvn->type(alock->obj_node()); 3361 if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) { 3362 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 3363 // The lock could be marked eliminated by lock coarsening 3364 // code during first IGVN before EA. Replace coarsened flag 3365 // to eliminate all associated locks/unlocks. 3366 #ifdef ASSERT 3367 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 3368 #endif 3369 alock->set_non_esc_obj(); 3370 } 3371 } 3372 } 3373 } 3374 } 3375 3376 if (OptimizePtrCompare) { 3377 for (int i = 0; i < ptr_cmp_worklist.length(); i++) { 3378 Node *n = ptr_cmp_worklist.at(i); 3379 assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be"); 3380 const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2)); 3381 if (tcmp->singleton()) { 3382 Node* cmp = igvn->makecon(tcmp); 3383 #ifndef PRODUCT 3384 if (PrintOptimizePtrCompare) { 3385 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ")); 3386 if (Verbose) { 3387 n->dump(1); 3388 } 3389 } 3390 #endif 3391 igvn->replace_node(n, cmp); 3392 } 3393 } 3394 } 3395 3396 // For MemBarStoreStore nodes added in library_call.cpp, check 3397 // escape status of associated AllocateNode and optimize out 3398 // MemBarStoreStore node if the allocated object never escapes. 3399 for (int i = 0; i < storestore_worklist.length(); i++) { 3400 Node* storestore = storestore_worklist.at(i); 3401 Node* alloc = storestore->in(MemBarNode::Precedent)->in(0); 3402 if (alloc->is_Allocate() && not_global_escape(alloc)) { 3403 if (alloc->in(AllocateNode::InlineType) != nullptr) { 3404 // Non-escaping inline type buffer allocations don't require a membar 3405 storestore->as_MemBar()->remove(_igvn); 3406 } else { 3407 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 3408 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 3409 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 3410 igvn->register_new_node_with_optimizer(mb); 3411 igvn->replace_node(storestore, mb); 3412 } 3413 } 3414 } 3415 } 3416 3417 // Atomic flat accesses on non-escaping objects can be optimized to non-atomic accesses 3418 void ConnectionGraph::optimize_flat_accesses(GrowableArray<SafePointNode*>& sfn_worklist) { 3419 PhaseIterGVN& igvn = *_igvn; 3420 bool delay = igvn.delay_transform(); 3421 igvn.set_delay_transform(true); 3422 igvn.C->for_each_flat_access([&](Node* n) { 3423 Node* base = n->is_LoadFlat() ? n->as_LoadFlat()->base() : n->as_StoreFlat()->base(); 3424 if (!not_global_escape(base)) { 3425 return; 3426 } 3427 3428 bool expanded; 3429 if (n->is_LoadFlat()) { 3430 expanded = n->as_LoadFlat()->expand_non_atomic(igvn); 3431 } else { 3432 expanded = n->as_StoreFlat()->expand_non_atomic(igvn); 3433 } 3434 if (expanded) { 3435 sfn_worklist.remove(n->as_SafePoint()); 3436 igvn.C->remove_flat_access(n); 3437 } 3438 }); 3439 igvn.set_delay_transform(delay); 3440 } 3441 3442 // Optimize objects compare. 3443 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) { 3444 const TypeInt* UNKNOWN = TypeInt::CC; // [-1, 0,1] 3445 if (!OptimizePtrCompare) { 3446 return UNKNOWN; 3447 } 3448 const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO 3449 const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE 3450 3451 PointsToNode* ptn1 = ptnode_adr(left->_idx); 3452 PointsToNode* ptn2 = ptnode_adr(right->_idx); 3453 JavaObjectNode* jobj1 = unique_java_object(left); 3454 JavaObjectNode* jobj2 = unique_java_object(right); 3455 3456 // The use of this method during allocation merge reduction may cause 'left' 3457 // or 'right' be something (e.g., a Phi) that isn't in the connection graph or 3458 // that doesn't reference an unique java object. 3459 if (ptn1 == nullptr || ptn2 == nullptr || 3460 jobj1 == nullptr || jobj2 == nullptr) { 3461 return UNKNOWN; 3462 } 3463 3464 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 3465 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 3466 3467 // Check simple cases first. 3468 if (jobj1 != nullptr) { 3469 if (jobj1->escape_state() == PointsToNode::NoEscape) { 3470 if (jobj1 == jobj2) { 3471 // Comparing the same not escaping object. 3472 return EQ; 3473 } 3474 Node* obj = jobj1->ideal_node(); 3475 // Comparing not escaping allocation. 3476 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3477 !ptn2->points_to(jobj1)) { 3478 return NE; // This includes nullness check. 3479 } 3480 } 3481 } 3482 if (jobj2 != nullptr) { 3483 if (jobj2->escape_state() == PointsToNode::NoEscape) { 3484 Node* obj = jobj2->ideal_node(); 3485 // Comparing not escaping allocation. 3486 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3487 !ptn1->points_to(jobj2)) { 3488 return NE; // This includes nullness check. 3489 } 3490 } 3491 } 3492 if (jobj1 != nullptr && jobj1 != phantom_obj && 3493 jobj2 != nullptr && jobj2 != phantom_obj && 3494 jobj1->ideal_node()->is_Con() && 3495 jobj2->ideal_node()->is_Con()) { 3496 // Klass or String constants compare. Need to be careful with 3497 // compressed pointers - compare types of ConN and ConP instead of nodes. 3498 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 3499 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 3500 if (t1->make_ptr() == t2->make_ptr()) { 3501 return EQ; 3502 } else { 3503 return NE; 3504 } 3505 } 3506 if (ptn1->meet(ptn2)) { 3507 return UNKNOWN; // Sets are not disjoint 3508 } 3509 3510 // Sets are disjoint. 3511 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 3512 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 3513 bool set1_has_null_ptr = ptn1->points_to(null_obj); 3514 bool set2_has_null_ptr = ptn2->points_to(null_obj); 3515 if ((set1_has_unknown_ptr && set2_has_null_ptr) || 3516 (set2_has_unknown_ptr && set1_has_null_ptr)) { 3517 // Check nullness of unknown object. 3518 return UNKNOWN; 3519 } 3520 3521 // Disjointness by itself is not sufficient since 3522 // alias analysis is not complete for escaped objects. 3523 // Disjoint sets are definitely unrelated only when 3524 // at least one set has only not escaping allocations. 3525 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 3526 if (ptn1->non_escaping_allocation()) { 3527 return NE; 3528 } 3529 } 3530 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 3531 if (ptn2->non_escaping_allocation()) { 3532 return NE; 3533 } 3534 } 3535 return UNKNOWN; 3536 } 3537 3538 // Connection Graph construction functions. 3539 3540 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 3541 PointsToNode* ptadr = _nodes.at(n->_idx); 3542 if (ptadr != nullptr) { 3543 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 3544 return; 3545 } 3546 Compile* C = _compile; 3547 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 3548 map_ideal_node(n, ptadr); 3549 } 3550 3551 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 3552 PointsToNode* ptadr = _nodes.at(n->_idx); 3553 if (ptadr != nullptr) { 3554 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 3555 return ptadr; 3556 } 3557 Compile* C = _compile; 3558 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 3559 map_ideal_node(n, ptadr); 3560 return ptadr; 3561 } 3562 3563 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 3564 PointsToNode* ptadr = _nodes.at(n->_idx); 3565 if (ptadr != nullptr) { 3566 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 3567 return; 3568 } 3569 bool unsafe = false; 3570 bool is_oop = is_oop_field(n, offset, &unsafe); 3571 if (unsafe) { 3572 es = PointsToNode::GlobalEscape; 3573 } 3574 Compile* C = _compile; 3575 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 3576 map_ideal_node(n, field); 3577 } 3578 3579 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 3580 PointsToNode* src, PointsToNode* dst) { 3581 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 3582 assert((src != null_obj) && (dst != null_obj), "not for ConP null"); 3583 PointsToNode* ptadr = _nodes.at(n->_idx); 3584 if (ptadr != nullptr) { 3585 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 3586 return; 3587 } 3588 Compile* C = _compile; 3589 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 3590 map_ideal_node(n, ptadr); 3591 // Add edge from arraycopy node to source object. 3592 (void)add_edge(ptadr, src); 3593 src->set_arraycopy_src(); 3594 // Add edge from destination object to arraycopy node. 3595 (void)add_edge(dst, ptadr); 3596 dst->set_arraycopy_dst(); 3597 } 3598 3599 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 3600 const Type* adr_type = n->as_AddP()->bottom_type(); 3601 int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot; 3602 BasicType bt = T_INT; 3603 if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) { 3604 // Check only oop fields. 3605 if (!adr_type->isa_aryptr() || 3606 adr_type->isa_aryptr()->elem() == Type::BOTTOM || 3607 adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) { 3608 // OffsetBot is used to reference array's element. Ignore first AddP. 3609 if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) { 3610 bt = T_OBJECT; 3611 } 3612 } 3613 } else if (offset != oopDesc::klass_offset_in_bytes()) { 3614 if (adr_type->isa_instptr()) { 3615 ciField* field = _compile->alias_type(adr_type->is_ptr())->field(); 3616 if (field != nullptr) { 3617 bt = field->layout_type(); 3618 } else { 3619 // Check for unsafe oop field access 3620 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3621 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3622 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3623 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3624 bt = T_OBJECT; 3625 (*unsafe) = true; 3626 } 3627 } 3628 } else if (adr_type->isa_aryptr()) { 3629 if (offset == arrayOopDesc::length_offset_in_bytes()) { 3630 // Ignore array length load. 3631 } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) { 3632 // Ignore first AddP. 3633 } else { 3634 const Type* elemtype = adr_type->is_aryptr()->elem(); 3635 if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) { 3636 ciInlineKlass* vk = elemtype->inline_klass(); 3637 field_offset += vk->payload_offset(); 3638 ciField* field = vk->get_field_by_offset(field_offset, false); 3639 if (field != nullptr) { 3640 bt = field->layout_type(); 3641 } else { 3642 assert(field_offset == vk->payload_offset() + vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), field_offset); 3643 bt = T_BOOLEAN; 3644 } 3645 } else { 3646 bt = elemtype->array_element_basic_type(); 3647 } 3648 } 3649 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 3650 // Allocation initialization, ThreadLocal field access, unsafe access 3651 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3652 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3653 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3654 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3655 bt = T_OBJECT; 3656 } 3657 } 3658 } 3659 // Note: T_NARROWOOP is not classed as a real reference type 3660 return (is_reference_type(bt) || bt == T_NARROWOOP); 3661 } 3662 3663 // Returns unique pointed java object or null. 3664 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const { 3665 // If the node was created after the escape computation we can't answer. 3666 uint idx = n->_idx; 3667 if (idx >= nodes_size()) { 3668 return nullptr; 3669 } 3670 PointsToNode* ptn = ptnode_adr(idx); 3671 if (ptn == nullptr) { 3672 return nullptr; 3673 } 3674 if (ptn->is_JavaObject()) { 3675 return ptn->as_JavaObject(); 3676 } 3677 assert(ptn->is_LocalVar(), "sanity"); 3678 // Check all java objects it points to. 3679 JavaObjectNode* jobj = nullptr; 3680 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3681 PointsToNode* e = i.get(); 3682 if (e->is_JavaObject()) { 3683 if (jobj == nullptr) { 3684 jobj = e->as_JavaObject(); 3685 } else if (jobj != e) { 3686 return nullptr; 3687 } 3688 } 3689 } 3690 return jobj; 3691 } 3692 3693 // Return true if this node points only to non-escaping allocations. 3694 bool PointsToNode::non_escaping_allocation() { 3695 if (is_JavaObject()) { 3696 Node* n = ideal_node(); 3697 if (n->is_Allocate() || n->is_CallStaticJava()) { 3698 return (escape_state() == PointsToNode::NoEscape); 3699 } else { 3700 return false; 3701 } 3702 } 3703 assert(is_LocalVar(), "sanity"); 3704 // Check all java objects it points to. 3705 for (EdgeIterator i(this); i.has_next(); i.next()) { 3706 PointsToNode* e = i.get(); 3707 if (e->is_JavaObject()) { 3708 Node* n = e->ideal_node(); 3709 if ((e->escape_state() != PointsToNode::NoEscape) || 3710 !(n->is_Allocate() || n->is_CallStaticJava())) { 3711 return false; 3712 } 3713 } 3714 } 3715 return true; 3716 } 3717 3718 // Return true if we know the node does not escape globally. 3719 bool ConnectionGraph::not_global_escape(Node *n) { 3720 assert(!_collecting, "should not call during graph construction"); 3721 // If the node was created after the escape computation we can't answer. 3722 uint idx = n->_idx; 3723 if (idx >= nodes_size()) { 3724 return false; 3725 } 3726 PointsToNode* ptn = ptnode_adr(idx); 3727 if (ptn == nullptr) { 3728 return false; // not in congraph (e.g. ConI) 3729 } 3730 PointsToNode::EscapeState es = ptn->escape_state(); 3731 // If we have already computed a value, return it. 3732 if (es >= PointsToNode::GlobalEscape) { 3733 return false; 3734 } 3735 if (ptn->is_JavaObject()) { 3736 return true; // (es < PointsToNode::GlobalEscape); 3737 } 3738 assert(ptn->is_LocalVar(), "sanity"); 3739 // Check all java objects it points to. 3740 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3741 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) { 3742 return false; 3743 } 3744 } 3745 return true; 3746 } 3747 3748 // Return true if locked object does not escape globally 3749 // and locked code region (identified by BoxLockNode) is balanced: 3750 // all compiled code paths have corresponding Lock/Unlock pairs. 3751 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) { 3752 if (alock->is_balanced() && not_global_escape(alock->obj_node())) { 3753 if (EliminateNestedLocks) { 3754 // We can mark whole locking region as Local only when only 3755 // one object is used for locking. 3756 alock->box_node()->as_BoxLock()->set_local(); 3757 } 3758 return true; 3759 } 3760 return false; 3761 } 3762 3763 // Helper functions 3764 3765 // Return true if this node points to specified node or nodes it points to. 3766 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 3767 if (is_JavaObject()) { 3768 return (this == ptn); 3769 } 3770 assert(is_LocalVar() || is_Field(), "sanity"); 3771 for (EdgeIterator i(this); i.has_next(); i.next()) { 3772 if (i.get() == ptn) { 3773 return true; 3774 } 3775 } 3776 return false; 3777 } 3778 3779 // Return true if one node points to an other. 3780 bool PointsToNode::meet(PointsToNode* ptn) { 3781 if (this == ptn) { 3782 return true; 3783 } else if (ptn->is_JavaObject()) { 3784 return this->points_to(ptn->as_JavaObject()); 3785 } else if (this->is_JavaObject()) { 3786 return ptn->points_to(this->as_JavaObject()); 3787 } 3788 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 3789 int ptn_count = ptn->edge_count(); 3790 for (EdgeIterator i(this); i.has_next(); i.next()) { 3791 PointsToNode* this_e = i.get(); 3792 for (int j = 0; j < ptn_count; j++) { 3793 if (this_e == ptn->edge(j)) { 3794 return true; 3795 } 3796 } 3797 } 3798 return false; 3799 } 3800 3801 #ifdef ASSERT 3802 // Return true if bases point to this java object. 3803 bool FieldNode::has_base(JavaObjectNode* jobj) const { 3804 for (BaseIterator i(this); i.has_next(); i.next()) { 3805 if (i.get() == jobj) { 3806 return true; 3807 } 3808 } 3809 return false; 3810 } 3811 #endif 3812 3813 bool ConnectionGraph::is_captured_store_address(Node* addp) { 3814 // Handle simple case first. 3815 assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access"); 3816 if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) { 3817 return true; 3818 } else if (addp->in(AddPNode::Address)->is_Phi()) { 3819 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 3820 Node* addp_use = addp->fast_out(i); 3821 if (addp_use->is_Store()) { 3822 for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) { 3823 if (addp_use->fast_out(j)->is_Initialize()) { 3824 return true; 3825 } 3826 } 3827 } 3828 } 3829 } 3830 return false; 3831 } 3832 3833 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) { 3834 const Type *adr_type = phase->type(adr); 3835 if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) { 3836 // We are computing a raw address for a store captured by an Initialize 3837 // compute an appropriate address type. AddP cases #3 and #5 (see below). 3838 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 3839 assert(offs != Type::OffsetBot || 3840 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 3841 "offset must be a constant or it is initialization of array"); 3842 return offs; 3843 } 3844 return adr_type->is_ptr()->flat_offset(); 3845 } 3846 3847 Node* ConnectionGraph::get_addp_base(Node *addp) { 3848 assert(addp->is_AddP(), "must be AddP"); 3849 // 3850 // AddP cases for Base and Address inputs: 3851 // case #1. Direct object's field reference: 3852 // Allocate 3853 // | 3854 // Proj #5 ( oop result ) 3855 // | 3856 // CheckCastPP (cast to instance type) 3857 // | | 3858 // AddP ( base == address ) 3859 // 3860 // case #2. Indirect object's field reference: 3861 // Phi 3862 // | 3863 // CastPP (cast to instance type) 3864 // | | 3865 // AddP ( base == address ) 3866 // 3867 // case #3. Raw object's field reference for Initialize node: 3868 // Allocate 3869 // | 3870 // Proj #5 ( oop result ) 3871 // top | 3872 // \ | 3873 // AddP ( base == top ) 3874 // 3875 // case #4. Array's element reference: 3876 // {CheckCastPP | CastPP} 3877 // | | | 3878 // | AddP ( array's element offset ) 3879 // | | 3880 // AddP ( array's offset ) 3881 // 3882 // case #5. Raw object's field reference for arraycopy stub call: 3883 // The inline_native_clone() case when the arraycopy stub is called 3884 // after the allocation before Initialize and CheckCastPP nodes. 3885 // Allocate 3886 // | 3887 // Proj #5 ( oop result ) 3888 // | | 3889 // AddP ( base == address ) 3890 // 3891 // case #6. Constant Pool, ThreadLocal, CastX2P or 3892 // Raw object's field reference: 3893 // {ConP, ThreadLocal, CastX2P, raw Load} 3894 // top | 3895 // \ | 3896 // AddP ( base == top ) 3897 // 3898 // case #7. Klass's field reference. 3899 // LoadKlass 3900 // | | 3901 // AddP ( base == address ) 3902 // 3903 // case #8. narrow Klass's field reference. 3904 // LoadNKlass 3905 // | 3906 // DecodeN 3907 // | | 3908 // AddP ( base == address ) 3909 // 3910 // case #9. Mixed unsafe access 3911 // {instance} 3912 // | 3913 // CheckCastPP (raw) 3914 // top | 3915 // \ | 3916 // AddP ( base == top ) 3917 // 3918 Node *base = addp->in(AddPNode::Base); 3919 if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9. 3920 base = addp->in(AddPNode::Address); 3921 while (base->is_AddP()) { 3922 // Case #6 (unsafe access) may have several chained AddP nodes. 3923 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 3924 base = base->in(AddPNode::Address); 3925 } 3926 if (base->Opcode() == Op_CheckCastPP && 3927 base->bottom_type()->isa_rawptr() && 3928 _igvn->type(base->in(1))->isa_oopptr()) { 3929 base = base->in(1); // Case #9 3930 } else { 3931 Node* uncast_base = base->uncast(); 3932 int opcode = uncast_base->Opcode(); 3933 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 3934 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 3935 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) || 3936 is_captured_store_address(addp), "sanity"); 3937 } 3938 } 3939 return base; 3940 } 3941 3942 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 3943 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 3944 Node* addp2 = addp->raw_out(0); 3945 if (addp->outcnt() == 1 && addp2->is_AddP() && 3946 addp2->in(AddPNode::Base) == n && 3947 addp2->in(AddPNode::Address) == addp) { 3948 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 3949 // 3950 // Find array's offset to push it on worklist first and 3951 // as result process an array's element offset first (pushed second) 3952 // to avoid CastPP for the array's offset. 3953 // Otherwise the inserted CastPP (LocalVar) will point to what 3954 // the AddP (Field) points to. Which would be wrong since 3955 // the algorithm expects the CastPP has the same point as 3956 // as AddP's base CheckCastPP (LocalVar). 3957 // 3958 // ArrayAllocation 3959 // | 3960 // CheckCastPP 3961 // | 3962 // memProj (from ArrayAllocation CheckCastPP) 3963 // | || 3964 // | || Int (element index) 3965 // | || | ConI (log(element size)) 3966 // | || | / 3967 // | || LShift 3968 // | || / 3969 // | AddP (array's element offset) 3970 // | | 3971 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 3972 // | / / 3973 // AddP (array's offset) 3974 // | 3975 // Load/Store (memory operation on array's element) 3976 // 3977 return addp2; 3978 } 3979 return nullptr; 3980 } 3981 3982 // 3983 // Adjust the type and inputs of an AddP which computes the 3984 // address of a field of an instance 3985 // 3986 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 3987 PhaseGVN* igvn = _igvn; 3988 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 3989 assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr"); 3990 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 3991 if (t == nullptr) { 3992 // We are computing a raw address for a store captured by an Initialize 3993 // compute an appropriate address type (cases #3 and #5). 3994 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 3995 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 3996 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 3997 assert(offs != Type::OffsetBot, "offset must be a constant"); 3998 if (base_t->isa_aryptr() != nullptr) { 3999 // In the case of a flat inline type array, each field has its 4000 // own slice so we need to extract the field being accessed from 4001 // the address computation 4002 t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr(); 4003 } else { 4004 t = base_t->add_offset(offs)->is_oopptr(); 4005 } 4006 } 4007 int inst_id = base_t->instance_id(); 4008 assert(!t->is_known_instance() || t->instance_id() == inst_id, 4009 "old type must be non-instance or match new type"); 4010 4011 // The type 't' could be subclass of 'base_t'. 4012 // As result t->offset() could be large then base_t's size and it will 4013 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 4014 // constructor verifies correctness of the offset. 4015 // 4016 // It could happened on subclass's branch (from the type profiling 4017 // inlining) which was not eliminated during parsing since the exactness 4018 // of the allocation type was not propagated to the subclass type check. 4019 // 4020 // Or the type 't' could be not related to 'base_t' at all. 4021 // It could happen when CHA type is different from MDO type on a dead path 4022 // (for example, from instanceof check) which is not collapsed during parsing. 4023 // 4024 // Do nothing for such AddP node and don't process its users since 4025 // this code branch will go away. 4026 // 4027 if (!t->is_known_instance() && 4028 !base_t->maybe_java_subtype_of(t)) { 4029 return false; // bail out 4030 } 4031 const TypePtr* tinst = base_t->add_offset(t->offset()); 4032 if (tinst->isa_aryptr() && t->isa_aryptr()) { 4033 // In the case of a flat inline type array, each field has its 4034 // own slice so we need to keep track of the field being accessed. 4035 tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get()); 4036 // Keep array properties (not flat/null-free) 4037 tinst = tinst->is_aryptr()->update_properties(t->is_aryptr()); 4038 if (tinst == nullptr) { 4039 return false; // Skip dead path with inconsistent properties 4040 } 4041 } 4042 4043 // Do NOT remove the next line: ensure a new alias index is allocated 4044 // for the instance type. Note: C++ will not remove it since the call 4045 // has side effect. 4046 int alias_idx = _compile->get_alias_index(tinst); 4047 igvn->set_type(addp, tinst); 4048 // record the allocation in the node map 4049 set_map(addp, get_map(base->_idx)); 4050 // Set addp's Base and Address to 'base'. 4051 Node *abase = addp->in(AddPNode::Base); 4052 Node *adr = addp->in(AddPNode::Address); 4053 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 4054 adr->in(0)->_idx == (uint)inst_id) { 4055 // Skip AddP cases #3 and #5. 4056 } else { 4057 assert(!abase->is_top(), "sanity"); // AddP case #3 4058 if (abase != base) { 4059 igvn->hash_delete(addp); 4060 addp->set_req(AddPNode::Base, base); 4061 if (abase == adr) { 4062 addp->set_req(AddPNode::Address, base); 4063 } else { 4064 // AddP case #4 (adr is array's element offset AddP node) 4065 #ifdef ASSERT 4066 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 4067 assert(adr->is_AddP() && atype != nullptr && 4068 atype->instance_id() == inst_id, "array's element offset should be processed first"); 4069 #endif 4070 } 4071 igvn->hash_insert(addp); 4072 } 4073 } 4074 // Put on IGVN worklist since at least addp's type was changed above. 4075 record_for_optimizer(addp); 4076 return true; 4077 } 4078 4079 // 4080 // Create a new version of orig_phi if necessary. Returns either the newly 4081 // created phi or an existing phi. Sets create_new to indicate whether a new 4082 // phi was created. Cache the last newly created phi in the node map. 4083 // 4084 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 4085 Compile *C = _compile; 4086 PhaseGVN* igvn = _igvn; 4087 new_created = false; 4088 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 4089 // nothing to do if orig_phi is bottom memory or matches alias_idx 4090 if (phi_alias_idx == alias_idx) { 4091 return orig_phi; 4092 } 4093 // Have we recently created a Phi for this alias index? 4094 PhiNode *result = get_map_phi(orig_phi->_idx); 4095 if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) { 4096 return result; 4097 } 4098 // Previous check may fail when the same wide memory Phi was split into Phis 4099 // for different memory slices. Search all Phis for this region. 4100 if (result != nullptr) { 4101 Node* region = orig_phi->in(0); 4102 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 4103 Node* phi = region->fast_out(i); 4104 if (phi->is_Phi() && 4105 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 4106 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 4107 return phi->as_Phi(); 4108 } 4109 } 4110 } 4111 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 4112 if (C->do_escape_analysis() == true && !C->failing()) { 4113 // Retry compilation without escape analysis. 4114 // If this is the first failure, the sentinel string will "stick" 4115 // to the Compile object, and the C2Compiler will see it and retry. 4116 C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4117 } 4118 return nullptr; 4119 } 4120 orig_phi_worklist.append_if_missing(orig_phi); 4121 const TypePtr *atype = C->get_adr_type(alias_idx); 4122 result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype); 4123 C->copy_node_notes_to(result, orig_phi); 4124 igvn->set_type(result, result->bottom_type()); 4125 record_for_optimizer(result); 4126 set_map(orig_phi, result); 4127 new_created = true; 4128 return result; 4129 } 4130 4131 // 4132 // Return a new version of Memory Phi "orig_phi" with the inputs having the 4133 // specified alias index. 4134 // 4135 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) { 4136 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 4137 Compile *C = _compile; 4138 PhaseGVN* igvn = _igvn; 4139 bool new_phi_created; 4140 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 4141 if (!new_phi_created) { 4142 return result; 4143 } 4144 GrowableArray<PhiNode *> phi_list; 4145 GrowableArray<uint> cur_input; 4146 PhiNode *phi = orig_phi; 4147 uint idx = 1; 4148 bool finished = false; 4149 while(!finished) { 4150 while (idx < phi->req()) { 4151 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1); 4152 if (mem != nullptr && mem->is_Phi()) { 4153 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 4154 if (new_phi_created) { 4155 // found an phi for which we created a new split, push current one on worklist and begin 4156 // processing new one 4157 phi_list.push(phi); 4158 cur_input.push(idx); 4159 phi = mem->as_Phi(); 4160 result = newphi; 4161 idx = 1; 4162 continue; 4163 } else { 4164 mem = newphi; 4165 } 4166 } 4167 if (C->failing()) { 4168 return nullptr; 4169 } 4170 result->set_req(idx++, mem); 4171 } 4172 #ifdef ASSERT 4173 // verify that the new Phi has an input for each input of the original 4174 assert( phi->req() == result->req(), "must have same number of inputs."); 4175 assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match"); 4176 #endif 4177 // Check if all new phi's inputs have specified alias index. 4178 // Otherwise use old phi. 4179 for (uint i = 1; i < phi->req(); i++) { 4180 Node* in = result->in(i); 4181 assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond."); 4182 } 4183 // we have finished processing a Phi, see if there are any more to do 4184 finished = (phi_list.length() == 0 ); 4185 if (!finished) { 4186 phi = phi_list.pop(); 4187 idx = cur_input.pop(); 4188 PhiNode *prev_result = get_map_phi(phi->_idx); 4189 prev_result->set_req(idx++, result); 4190 result = prev_result; 4191 } 4192 } 4193 return result; 4194 } 4195 4196 // 4197 // The next methods are derived from methods in MemNode. 4198 // 4199 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 4200 Node *mem = mmem; 4201 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 4202 // means an array I have not precisely typed yet. Do not do any 4203 // alias stuff with it any time soon. 4204 if (toop->base() != Type::AnyPtr && 4205 !(toop->isa_instptr() && 4206 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 4207 toop->offset() == Type::OffsetBot)) { 4208 mem = mmem->memory_at(alias_idx); 4209 // Update input if it is progress over what we have now 4210 } 4211 return mem; 4212 } 4213 4214 // 4215 // Move memory users to their memory slices. 4216 // 4217 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 4218 Compile* C = _compile; 4219 PhaseGVN* igvn = _igvn; 4220 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 4221 assert(tp != nullptr, "ptr type"); 4222 int alias_idx = C->get_alias_index(tp); 4223 int general_idx = C->get_general_index(alias_idx); 4224 4225 // Move users first 4226 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4227 Node* use = n->fast_out(i); 4228 if (use->is_MergeMem()) { 4229 MergeMemNode* mmem = use->as_MergeMem(); 4230 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 4231 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 4232 continue; // Nothing to do 4233 } 4234 // Replace previous general reference to mem node. 4235 uint orig_uniq = C->unique(); 4236 Node* m = find_inst_mem(n, general_idx, orig_phis); 4237 assert(orig_uniq == C->unique(), "no new nodes"); 4238 mmem->set_memory_at(general_idx, m); 4239 --imax; 4240 --i; 4241 } else if (use->is_MemBar()) { 4242 assert(!use->is_Initialize(), "initializing stores should not be moved"); 4243 if (use->req() > MemBarNode::Precedent && 4244 use->in(MemBarNode::Precedent) == n) { 4245 // Don't move related membars. 4246 record_for_optimizer(use); 4247 continue; 4248 } 4249 tp = use->as_MemBar()->adr_type()->isa_ptr(); 4250 if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) || 4251 alias_idx == general_idx) { 4252 continue; // Nothing to do 4253 } 4254 // Move to general memory slice. 4255 uint orig_uniq = C->unique(); 4256 Node* m = find_inst_mem(n, general_idx, orig_phis); 4257 assert(orig_uniq == C->unique(), "no new nodes"); 4258 igvn->hash_delete(use); 4259 imax -= use->replace_edge(n, m, igvn); 4260 igvn->hash_insert(use); 4261 record_for_optimizer(use); 4262 --i; 4263 #ifdef ASSERT 4264 } else if (use->is_Mem()) { 4265 // Memory nodes should have new memory input. 4266 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 4267 assert(tp != nullptr, "ptr type"); 4268 int idx = C->get_alias_index(tp); 4269 assert(get_map(use->_idx) != nullptr || idx == alias_idx, 4270 "Following memory nodes should have new memory input or be on the same memory slice"); 4271 } else if (use->is_Phi()) { 4272 // Phi nodes should be split and moved already. 4273 tp = use->as_Phi()->adr_type()->isa_ptr(); 4274 assert(tp != nullptr, "ptr type"); 4275 int idx = C->get_alias_index(tp); 4276 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 4277 } else { 4278 use->dump(); 4279 assert(false, "should not be here"); 4280 #endif 4281 } 4282 } 4283 } 4284 4285 // 4286 // Search memory chain of "mem" to find a MemNode whose address 4287 // is the specified alias index. 4288 // 4289 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000 4290 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, uint rec_depth) { 4291 if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) { 4292 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4293 return nullptr; 4294 } 4295 if (orig_mem == nullptr) { 4296 return orig_mem; 4297 } 4298 Compile* C = _compile; 4299 PhaseGVN* igvn = _igvn; 4300 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 4301 bool is_instance = (toop != nullptr) && toop->is_known_instance(); 4302 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 4303 Node *prev = nullptr; 4304 Node *result = orig_mem; 4305 while (prev != result) { 4306 prev = result; 4307 if (result == start_mem) { 4308 break; // hit one of our sentinels 4309 } 4310 if (result->is_Mem()) { 4311 const Type *at = igvn->type(result->in(MemNode::Address)); 4312 if (at == Type::TOP) { 4313 break; // Dead 4314 } 4315 assert (at->isa_ptr() != nullptr, "pointer type required."); 4316 int idx = C->get_alias_index(at->is_ptr()); 4317 if (idx == alias_idx) { 4318 break; // Found 4319 } 4320 if (!is_instance && (at->isa_oopptr() == nullptr || 4321 !at->is_oopptr()->is_known_instance())) { 4322 break; // Do not skip store to general memory slice. 4323 } 4324 result = result->in(MemNode::Memory); 4325 } 4326 if (!is_instance) { 4327 continue; // don't search further for non-instance types 4328 } 4329 // skip over a call which does not affect this memory slice 4330 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 4331 Node *proj_in = result->in(0); 4332 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 4333 break; // hit one of our sentinels 4334 } else if (proj_in->is_Call()) { 4335 // ArrayCopy node processed here as well 4336 CallNode *call = proj_in->as_Call(); 4337 if (!call->may_modify(toop, igvn)) { 4338 result = call->in(TypeFunc::Memory); 4339 } 4340 } else if (proj_in->is_Initialize()) { 4341 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 4342 // Stop if this is the initialization for the object instance which 4343 // which contains this memory slice, otherwise skip over it. 4344 if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) { 4345 result = proj_in->in(TypeFunc::Memory); 4346 #if 0 // TODO: Fix 8372259 4347 } else if (C->get_alias_index(result->adr_type()) != alias_idx) { 4348 assert(C->get_general_index(alias_idx) == C->get_alias_index(result->adr_type()), "should be projection for the same field/array element"); 4349 result = get_map(result->_idx); 4350 assert(result != nullptr, "new projection should have been allocated"); 4351 break; 4352 } 4353 #else 4354 } 4355 #endif 4356 } else if (proj_in->is_MemBar()) { 4357 // Check if there is an array copy for a clone 4358 // Step over GC barrier when ReduceInitialCardMarks is disabled 4359 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4360 Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0)); 4361 4362 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 4363 // Stop if it is a clone 4364 ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy(); 4365 if (ac->may_modify(toop, igvn)) { 4366 break; 4367 } 4368 } 4369 result = proj_in->in(TypeFunc::Memory); 4370 } 4371 } else if (result->is_MergeMem()) { 4372 MergeMemNode *mmem = result->as_MergeMem(); 4373 result = step_through_mergemem(mmem, alias_idx, toop); 4374 if (result == mmem->base_memory()) { 4375 // Didn't find instance memory, search through general slice recursively. 4376 result = mmem->memory_at(C->get_general_index(alias_idx)); 4377 result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1); 4378 if (C->failing()) { 4379 return nullptr; 4380 } 4381 mmem->set_memory_at(alias_idx, result); 4382 } 4383 } else if (result->is_Phi() && 4384 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 4385 Node *un = result->as_Phi()->unique_input(igvn); 4386 if (un != nullptr) { 4387 orig_phis.append_if_missing(result->as_Phi()); 4388 result = un; 4389 } else { 4390 break; 4391 } 4392 } else if (result->is_ClearArray()) { 4393 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 4394 // Can not bypass initialization of the instance 4395 // we are looking for. 4396 break; 4397 } 4398 // Otherwise skip it (the call updated 'result' value). 4399 } else if (result->Opcode() == Op_SCMemProj) { 4400 Node* mem = result->in(0); 4401 Node* adr = nullptr; 4402 if (mem->is_LoadStore()) { 4403 adr = mem->in(MemNode::Address); 4404 } else { 4405 assert(mem->Opcode() == Op_EncodeISOArray || 4406 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 4407 adr = mem->in(3); // Memory edge corresponds to destination array 4408 } 4409 const Type *at = igvn->type(adr); 4410 if (at != Type::TOP) { 4411 assert(at->isa_ptr() != nullptr, "pointer type required."); 4412 int idx = C->get_alias_index(at->is_ptr()); 4413 if (idx == alias_idx) { 4414 // Assert in debug mode 4415 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 4416 break; // In product mode return SCMemProj node 4417 } 4418 } 4419 result = mem->in(MemNode::Memory); 4420 } else if (result->Opcode() == Op_StrInflatedCopy) { 4421 Node* adr = result->in(3); // Memory edge corresponds to destination array 4422 const Type *at = igvn->type(adr); 4423 if (at != Type::TOP) { 4424 assert(at->isa_ptr() != nullptr, "pointer type required."); 4425 int idx = C->get_alias_index(at->is_ptr()); 4426 if (idx == alias_idx) { 4427 // Assert in debug mode 4428 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 4429 break; // In product mode return SCMemProj node 4430 } 4431 } 4432 result = result->in(MemNode::Memory); 4433 } 4434 } 4435 if (result->is_Phi()) { 4436 PhiNode *mphi = result->as_Phi(); 4437 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 4438 const TypePtr *t = mphi->adr_type(); 4439 if (!is_instance) { 4440 // Push all non-instance Phis on the orig_phis worklist to update inputs 4441 // during Phase 4 if needed. 4442 orig_phis.append_if_missing(mphi); 4443 } else if (C->get_alias_index(t) != alias_idx) { 4444 // Create a new Phi with the specified alias index type. 4445 result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1); 4446 } 4447 } 4448 // the result is either MemNode, PhiNode, InitializeNode. 4449 return result; 4450 } 4451 4452 // 4453 // Convert the types of non-escaped object to instance types where possible, 4454 // propagate the new type information through the graph, and update memory 4455 // edges and MergeMem inputs to reflect the new type. 4456 // 4457 // We start with allocations (and calls which may be allocations) on alloc_worklist. 4458 // The processing is done in 4 phases: 4459 // 4460 // Phase 1: Process possible allocations from alloc_worklist. Create instance 4461 // types for the CheckCastPP for allocations where possible. 4462 // Propagate the new types through users as follows: 4463 // casts and Phi: push users on alloc_worklist 4464 // AddP: cast Base and Address inputs to the instance type 4465 // push any AddP users on alloc_worklist and push any memnode 4466 // users onto memnode_worklist. 4467 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4468 // search the Memory chain for a store with the appropriate type 4469 // address type. If a Phi is found, create a new version with 4470 // the appropriate memory slices from each of the Phi inputs. 4471 // For stores, process the users as follows: 4472 // MemNode: push on memnode_worklist 4473 // MergeMem: push on mergemem_worklist 4474 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 4475 // moving the first node encountered of each instance type to the 4476 // the input corresponding to its alias index. 4477 // appropriate memory slice. 4478 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 4479 // 4480 // In the following example, the CheckCastPP nodes are the cast of allocation 4481 // results and the allocation of node 29 is non-escaped and eligible to be an 4482 // instance type. 4483 // 4484 // We start with: 4485 // 4486 // 7 Parm #memory 4487 // 10 ConI "12" 4488 // 19 CheckCastPP "Foo" 4489 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4490 // 29 CheckCastPP "Foo" 4491 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 4492 // 4493 // 40 StoreP 25 7 20 ... alias_index=4 4494 // 50 StoreP 35 40 30 ... alias_index=4 4495 // 60 StoreP 45 50 20 ... alias_index=4 4496 // 70 LoadP _ 60 30 ... alias_index=4 4497 // 80 Phi 75 50 60 Memory alias_index=4 4498 // 90 LoadP _ 80 30 ... alias_index=4 4499 // 100 LoadP _ 80 20 ... alias_index=4 4500 // 4501 // 4502 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 4503 // and creating a new alias index for node 30. This gives: 4504 // 4505 // 7 Parm #memory 4506 // 10 ConI "12" 4507 // 19 CheckCastPP "Foo" 4508 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4509 // 29 CheckCastPP "Foo" iid=24 4510 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4511 // 4512 // 40 StoreP 25 7 20 ... alias_index=4 4513 // 50 StoreP 35 40 30 ... alias_index=6 4514 // 60 StoreP 45 50 20 ... alias_index=4 4515 // 70 LoadP _ 60 30 ... alias_index=6 4516 // 80 Phi 75 50 60 Memory alias_index=4 4517 // 90 LoadP _ 80 30 ... alias_index=6 4518 // 100 LoadP _ 80 20 ... alias_index=4 4519 // 4520 // In phase 2, new memory inputs are computed for the loads and stores, 4521 // And a new version of the phi is created. In phase 4, the inputs to 4522 // node 80 are updated and then the memory nodes are updated with the 4523 // values computed in phase 2. This results in: 4524 // 4525 // 7 Parm #memory 4526 // 10 ConI "12" 4527 // 19 CheckCastPP "Foo" 4528 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4529 // 29 CheckCastPP "Foo" iid=24 4530 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4531 // 4532 // 40 StoreP 25 7 20 ... alias_index=4 4533 // 50 StoreP 35 7 30 ... alias_index=6 4534 // 60 StoreP 45 40 20 ... alias_index=4 4535 // 70 LoadP _ 50 30 ... alias_index=6 4536 // 80 Phi 75 40 60 Memory alias_index=4 4537 // 120 Phi 75 50 50 Memory alias_index=6 4538 // 90 LoadP _ 120 30 ... alias_index=6 4539 // 100 LoadP _ 80 20 ... alias_index=4 4540 // 4541 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, 4542 GrowableArray<ArrayCopyNode*> &arraycopy_worklist, 4543 GrowableArray<MergeMemNode*> &mergemem_worklist, 4544 Unique_Node_List &reducible_merges) { 4545 DEBUG_ONLY(Unique_Node_List reduced_merges;) 4546 GrowableArray<Node *> memnode_worklist; 4547 GrowableArray<PhiNode *> orig_phis; 4548 PhaseIterGVN *igvn = _igvn; 4549 uint new_index_start = (uint) _compile->num_alias_types(); 4550 VectorSet visited; 4551 ideal_nodes.clear(); // Reset for use with set_map/get_map. 4552 uint unique_old = _compile->unique(); 4553 4554 // Phase 1: Process possible allocations from alloc_worklist. 4555 // Create instance types for the CheckCastPP for allocations where possible. 4556 // 4557 // (Note: don't forget to change the order of the second AddP node on 4558 // the alloc_worklist if the order of the worklist processing is changed, 4559 // see the comment in find_second_addp().) 4560 // 4561 while (alloc_worklist.length() != 0) { 4562 Node *n = alloc_worklist.pop(); 4563 uint ni = n->_idx; 4564 if (n->is_Call()) { 4565 CallNode *alloc = n->as_Call(); 4566 // copy escape information to call node 4567 PointsToNode* ptn = ptnode_adr(alloc->_idx); 4568 PointsToNode::EscapeState es = ptn->escape_state(); 4569 // We have an allocation or call which returns a Java object, 4570 // see if it is non-escaped. 4571 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) { 4572 continue; 4573 } 4574 // Find CheckCastPP for the allocate or for the return value of a call 4575 n = alloc->result_cast(); 4576 if (n == nullptr) { // No uses except Initialize node 4577 if (alloc->is_Allocate()) { 4578 // Set the scalar_replaceable flag for allocation 4579 // so it could be eliminated if it has no uses. 4580 alloc->as_Allocate()->_is_scalar_replaceable = true; 4581 } 4582 continue; 4583 } 4584 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 4585 // we could reach here for allocate case if one init is associated with many allocs. 4586 if (alloc->is_Allocate()) { 4587 alloc->as_Allocate()->_is_scalar_replaceable = false; 4588 } 4589 continue; 4590 } 4591 4592 // The inline code for Object.clone() casts the allocation result to 4593 // java.lang.Object and then to the actual type of the allocated 4594 // object. Detect this case and use the second cast. 4595 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 4596 // the allocation result is cast to java.lang.Object and then 4597 // to the actual Array type. 4598 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 4599 && (alloc->is_AllocateArray() || 4600 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) { 4601 Node *cast2 = nullptr; 4602 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4603 Node *use = n->fast_out(i); 4604 if (use->is_CheckCastPP()) { 4605 cast2 = use; 4606 break; 4607 } 4608 } 4609 if (cast2 != nullptr) { 4610 n = cast2; 4611 } else { 4612 // Non-scalar replaceable if the allocation type is unknown statically 4613 // (reflection allocation), the object can't be restored during 4614 // deoptimization without precise type. 4615 continue; 4616 } 4617 } 4618 4619 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 4620 if (t == nullptr) { 4621 continue; // not a TypeOopPtr 4622 } 4623 if (!t->klass_is_exact()) { 4624 continue; // not an unique type 4625 } 4626 if (alloc->is_Allocate()) { 4627 // Set the scalar_replaceable flag for allocation 4628 // so it could be eliminated. 4629 alloc->as_Allocate()->_is_scalar_replaceable = true; 4630 } 4631 set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state 4632 // in order for an object to be scalar-replaceable, it must be: 4633 // - a direct allocation (not a call returning an object) 4634 // - non-escaping 4635 // - eligible to be a unique type 4636 // - not determined to be ineligible by escape analysis 4637 set_map(alloc, n); 4638 set_map(n, alloc); 4639 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 4640 igvn->hash_delete(n); 4641 igvn->set_type(n, tinst); 4642 n->raise_bottom_type(tinst); 4643 igvn->hash_insert(n); 4644 record_for_optimizer(n); 4645 // Allocate an alias index for the header fields. Accesses to 4646 // the header emitted during macro expansion wouldn't have 4647 // correct memory state otherwise. 4648 _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes())); 4649 _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes())); 4650 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 4651 // Add a new NarrowMem projection for each existing NarrowMem projection with new adr type 4652 InitializeNode* init = alloc->as_Allocate()->initialization(); 4653 assert(init != nullptr, "can't find Initialization node for this Allocate node"); 4654 auto process_narrow_proj = [&](NarrowMemProjNode* proj) { 4655 const TypePtr* adr_type = proj->adr_type(); 4656 const TypePtr* new_adr_type = tinst->with_offset(adr_type->offset()); 4657 if (adr_type->isa_aryptr()) { 4658 // In the case of a flat inline type array, each field has its own slice so we need a 4659 // NarrowMemProj for each field of the flat array elements 4660 new_adr_type = new_adr_type->is_aryptr()->with_field_offset(adr_type->is_aryptr()->field_offset().get()); 4661 } 4662 if (adr_type != new_adr_type && !init->already_has_narrow_mem_proj_with_adr_type(new_adr_type)) { 4663 DEBUG_ONLY( uint alias_idx = _compile->get_alias_index(new_adr_type); ) 4664 assert(_compile->get_general_index(alias_idx) == _compile->get_alias_index(adr_type), "new adr type should be narrowed down from existing adr type"); 4665 NarrowMemProjNode* new_proj = new NarrowMemProjNode(init, new_adr_type); 4666 igvn->set_type(new_proj, new_proj->bottom_type()); 4667 record_for_optimizer(new_proj); 4668 set_map(proj, new_proj); // record it so ConnectionGraph::find_inst_mem() can find it 4669 } 4670 }; 4671 init->for_each_narrow_mem_proj_with_new_uses(process_narrow_proj); 4672 4673 // First, put on the worklist all Field edges from Connection Graph 4674 // which is more accurate than putting immediate users from Ideal Graph. 4675 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 4676 PointsToNode* tgt = e.get(); 4677 if (tgt->is_Arraycopy()) { 4678 continue; 4679 } 4680 Node* use = tgt->ideal_node(); 4681 assert(tgt->is_Field() && use->is_AddP(), 4682 "only AddP nodes are Field edges in CG"); 4683 if (use->outcnt() > 0) { // Don't process dead nodes 4684 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 4685 if (addp2 != nullptr) { 4686 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4687 alloc_worklist.append_if_missing(addp2); 4688 } 4689 alloc_worklist.append_if_missing(use); 4690 } 4691 } 4692 4693 // An allocation may have an Initialize which has raw stores. Scan 4694 // the users of the raw allocation result and push AddP users 4695 // on alloc_worklist. 4696 Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms); 4697 assert (raw_result != nullptr, "must have an allocation result"); 4698 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 4699 Node *use = raw_result->fast_out(i); 4700 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 4701 Node* addp2 = find_second_addp(use, raw_result); 4702 if (addp2 != nullptr) { 4703 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4704 alloc_worklist.append_if_missing(addp2); 4705 } 4706 alloc_worklist.append_if_missing(use); 4707 } else if (use->is_MemBar()) { 4708 memnode_worklist.append_if_missing(use); 4709 } 4710 } 4711 } 4712 } else if (n->is_AddP()) { 4713 if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) { 4714 // This AddP will go away when we reduce the Phi 4715 continue; 4716 } 4717 Node* addp_base = get_addp_base(n); 4718 JavaObjectNode* jobj = unique_java_object(addp_base); 4719 if (jobj == nullptr || jobj == phantom_obj) { 4720 #ifdef ASSERT 4721 ptnode_adr(get_addp_base(n)->_idx)->dump(); 4722 ptnode_adr(n->_idx)->dump(); 4723 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4724 #endif 4725 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4726 return; 4727 } 4728 Node *base = get_map(jobj->idx()); // CheckCastPP node 4729 if (!split_AddP(n, base)) continue; // wrong type from dead path 4730 } else if (n->is_Phi() || 4731 n->is_CheckCastPP() || 4732 n->is_EncodeP() || 4733 n->is_DecodeN() || 4734 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 4735 if (visited.test_set(n->_idx)) { 4736 assert(n->is_Phi(), "loops only through Phi's"); 4737 continue; // already processed 4738 } 4739 // Reducible Phi's will be removed from the graph after split_unique_types 4740 // finishes. For now we just try to split out the SR inputs of the merge. 4741 Node* parent = n->in(1); 4742 if (reducible_merges.member(n)) { 4743 reduce_phi(n->as_Phi(), alloc_worklist); 4744 #ifdef ASSERT 4745 if (VerifyReduceAllocationMerges) { 4746 reduced_merges.push(n); 4747 } 4748 #endif 4749 continue; 4750 } else if (reducible_merges.member(parent)) { 4751 // 'n' is an user of a reducible merge (a Phi). It will be simplified as 4752 // part of reduce_merge. 4753 continue; 4754 } 4755 JavaObjectNode* jobj = unique_java_object(n); 4756 if (jobj == nullptr || jobj == phantom_obj) { 4757 #ifdef ASSERT 4758 ptnode_adr(n->_idx)->dump(); 4759 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4760 #endif 4761 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4762 return; 4763 } else { 4764 Node *val = get_map(jobj->idx()); // CheckCastPP node 4765 TypeNode *tn = n->as_Type(); 4766 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 4767 assert(tinst != nullptr && tinst->is_known_instance() && 4768 tinst->instance_id() == jobj->idx() , "instance type expected."); 4769 4770 const Type *tn_type = igvn->type(tn); 4771 const TypeOopPtr *tn_t; 4772 if (tn_type->isa_narrowoop()) { 4773 tn_t = tn_type->make_ptr()->isa_oopptr(); 4774 } else { 4775 tn_t = tn_type->isa_oopptr(); 4776 } 4777 if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) { 4778 if (tn_t->isa_aryptr()) { 4779 // Keep array properties (not flat/null-free) 4780 tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr()); 4781 if (tinst == nullptr) { 4782 continue; // Skip dead path with inconsistent properties 4783 } 4784 } 4785 if (tn_type->isa_narrowoop()) { 4786 tn_type = tinst->make_narrowoop(); 4787 } else { 4788 tn_type = tinst; 4789 } 4790 igvn->hash_delete(tn); 4791 igvn->set_type(tn, tn_type); 4792 tn->set_type(tn_type); 4793 igvn->hash_insert(tn); 4794 record_for_optimizer(n); 4795 } else { 4796 assert(tn_type == TypePtr::NULL_PTR || 4797 (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)), 4798 "unexpected type"); 4799 continue; // Skip dead path with different type 4800 } 4801 } 4802 } else { 4803 DEBUG_ONLY(n->dump();) 4804 assert(false, "EA: unexpected node"); 4805 continue; 4806 } 4807 // push allocation's users on appropriate worklist 4808 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4809 Node *use = n->fast_out(i); 4810 if (use->is_Mem() && use->in(MemNode::Address) == n) { 4811 // Load/store to instance's field 4812 memnode_worklist.append_if_missing(use); 4813 } else if (use->is_MemBar()) { 4814 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 4815 memnode_worklist.append_if_missing(use); 4816 } 4817 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 4818 Node* addp2 = find_second_addp(use, n); 4819 if (addp2 != nullptr) { 4820 alloc_worklist.append_if_missing(addp2); 4821 } 4822 alloc_worklist.append_if_missing(use); 4823 } else if (use->is_Phi() || 4824 use->is_CheckCastPP() || 4825 use->is_EncodeNarrowPtr() || 4826 use->is_DecodeNarrowPtr() || 4827 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 4828 alloc_worklist.append_if_missing(use); 4829 #ifdef ASSERT 4830 } else if (use->is_Mem()) { 4831 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 4832 } else if (use->is_MergeMem()) { 4833 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4834 } else if (use->is_SafePoint()) { 4835 // Look for MergeMem nodes for calls which reference unique allocation 4836 // (through CheckCastPP nodes) even for debug info. 4837 Node* m = use->in(TypeFunc::Memory); 4838 if (m->is_MergeMem()) { 4839 assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4840 } 4841 } else if (use->Opcode() == Op_EncodeISOArray) { 4842 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 4843 // EncodeISOArray overwrites destination array 4844 memnode_worklist.append_if_missing(use); 4845 } 4846 } else if (use->Opcode() == Op_Return) { 4847 // Allocation is referenced by field of returned inline type 4848 assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode"); 4849 } else { 4850 uint op = use->Opcode(); 4851 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) && 4852 (use->in(MemNode::Memory) == n)) { 4853 // They overwrite memory edge corresponding to destination array, 4854 memnode_worklist.append_if_missing(use); 4855 } else if (!(op == Op_CmpP || op == Op_Conv2B || 4856 op == Op_CastP2X || 4857 op == Op_FastLock || op == Op_AryEq || 4858 op == Op_StrComp || op == Op_CountPositives || 4859 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 4860 op == Op_StrEquals || op == Op_VectorizedHashCode || 4861 op == Op_StrIndexOf || op == Op_StrIndexOfChar || 4862 op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck || 4863 op == Op_ReinterpretS2HF || 4864 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) { 4865 n->dump(); 4866 use->dump(); 4867 assert(false, "EA: missing allocation reference path"); 4868 } 4869 #endif 4870 } 4871 } 4872 4873 } 4874 4875 #ifdef ASSERT 4876 if (VerifyReduceAllocationMerges) { 4877 for (uint i = 0; i < reducible_merges.size(); i++) { 4878 Node* phi = reducible_merges.at(i); 4879 4880 if (!reduced_merges.member(phi)) { 4881 phi->dump(2); 4882 phi->dump(-2); 4883 assert(false, "This reducible merge wasn't reduced."); 4884 } 4885 4886 // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts. 4887 for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) { 4888 Node* use = phi->fast_out(j); 4889 if (!use->is_SafePoint() && !use->is_CastPP()) { 4890 phi->dump(2); 4891 phi->dump(-2); 4892 assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt()); 4893 } 4894 } 4895 } 4896 } 4897 #endif 4898 4899 // Go over all ArrayCopy nodes and if one of the inputs has a unique 4900 // type, record it in the ArrayCopy node so we know what memory this 4901 // node uses/modified. 4902 for (int next = 0; next < arraycopy_worklist.length(); next++) { 4903 ArrayCopyNode* ac = arraycopy_worklist.at(next); 4904 Node* dest = ac->in(ArrayCopyNode::Dest); 4905 if (dest->is_AddP()) { 4906 dest = get_addp_base(dest); 4907 } 4908 JavaObjectNode* jobj = unique_java_object(dest); 4909 if (jobj != nullptr) { 4910 Node *base = get_map(jobj->idx()); 4911 if (base != nullptr) { 4912 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4913 ac->_dest_type = base_t; 4914 } 4915 } 4916 Node* src = ac->in(ArrayCopyNode::Src); 4917 if (src->is_AddP()) { 4918 src = get_addp_base(src); 4919 } 4920 jobj = unique_java_object(src); 4921 if (jobj != nullptr) { 4922 Node* base = get_map(jobj->idx()); 4923 if (base != nullptr) { 4924 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4925 ac->_src_type = base_t; 4926 } 4927 } 4928 } 4929 4930 // New alias types were created in split_AddP(). 4931 uint new_index_end = (uint) _compile->num_alias_types(); 4932 4933 _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_1, 5); 4934 4935 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4936 // compute new values for Memory inputs (the Memory inputs are not 4937 // actually updated until phase 4.) 4938 if (memnode_worklist.length() == 0) 4939 return; // nothing to do 4940 while (memnode_worklist.length() != 0) { 4941 Node *n = memnode_worklist.pop(); 4942 if (visited.test_set(n->_idx)) { 4943 continue; 4944 } 4945 if (n->is_Phi() || n->is_ClearArray()) { 4946 // we don't need to do anything, but the users must be pushed 4947 } else if (n->is_MemBar()) { // MemBar nodes 4948 if (!n->is_Initialize()) { // memory projections for Initialize pushed below (so we get to all their uses) 4949 // we don't need to do anything, but the users must be pushed 4950 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory); 4951 if (n == nullptr) { 4952 continue; 4953 } 4954 } 4955 } else if (n->is_CallLeaf()) { 4956 // Runtime calls with narrow memory input (no MergeMem node) 4957 // get the memory projection 4958 n = n->as_Call()->proj_out_or_null(TypeFunc::Memory); 4959 if (n == nullptr) { 4960 continue; 4961 } 4962 } else if (n->Opcode() == Op_StrInflatedCopy) { 4963 // Check direct uses of StrInflatedCopy. 4964 // It is memory type Node - no special SCMemProj node. 4965 } else if (n->Opcode() == Op_StrCompressedCopy || 4966 n->Opcode() == Op_EncodeISOArray) { 4967 // get the memory projection 4968 n = n->find_out_with(Op_SCMemProj); 4969 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 4970 } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr && 4971 strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 4972 n = n->as_CallLeaf()->proj_out(TypeFunc::Memory); 4973 } else if (n->is_Proj()) { 4974 assert(n->in(0)->is_Initialize(), "we only push memory projections for Initialize"); 4975 } else { 4976 #ifdef ASSERT 4977 if (!n->is_Mem()) { 4978 n->dump(); 4979 } 4980 assert(n->is_Mem(), "memory node required."); 4981 #endif 4982 Node *addr = n->in(MemNode::Address); 4983 const Type *addr_t = igvn->type(addr); 4984 if (addr_t == Type::TOP) { 4985 continue; 4986 } 4987 assert (addr_t->isa_ptr() != nullptr, "pointer type required."); 4988 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 4989 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 4990 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 4991 if (_compile->failing()) { 4992 return; 4993 } 4994 if (mem != n->in(MemNode::Memory)) { 4995 // We delay the memory edge update since we need old one in 4996 // MergeMem code below when instances memory slices are separated. 4997 set_map(n, mem); 4998 } 4999 if (n->is_Load()) { 5000 continue; // don't push users 5001 } else if (n->is_LoadStore()) { 5002 // get the memory projection 5003 n = n->find_out_with(Op_SCMemProj); 5004 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 5005 } 5006 } 5007 // push user on appropriate worklist 5008 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5009 Node *use = n->fast_out(i); 5010 if (use->is_Phi() || use->is_ClearArray()) { 5011 memnode_worklist.append_if_missing(use); 5012 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 5013 memnode_worklist.append_if_missing(use); 5014 } else if (use->is_MemBar() || use->is_CallLeaf()) { 5015 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 5016 memnode_worklist.append_if_missing(use); 5017 } 5018 } else if (use->is_Proj()) { 5019 assert(n->is_Initialize(), "We only push projections of Initialize"); 5020 if (use->as_Proj()->_con == TypeFunc::Memory) { // Ignore precedent edge 5021 memnode_worklist.append_if_missing(use); 5022 } 5023 #ifdef ASSERT 5024 } else if (use->is_Mem()) { 5025 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 5026 } else if (use->is_MergeMem()) { 5027 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 5028 } else if (use->Opcode() == Op_EncodeISOArray) { 5029 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 5030 // EncodeISOArray overwrites destination array 5031 memnode_worklist.append_if_missing(use); 5032 } 5033 } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr && 5034 strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 5035 // store_unknown_inline overwrites destination array 5036 memnode_worklist.append_if_missing(use); 5037 } else { 5038 uint op = use->Opcode(); 5039 if ((use->in(MemNode::Memory) == n) && 5040 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) { 5041 // They overwrite memory edge corresponding to destination array, 5042 memnode_worklist.append_if_missing(use); 5043 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) || 5044 op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives || 5045 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode || 5046 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) { 5047 n->dump(); 5048 use->dump(); 5049 assert(false, "EA: missing memory path"); 5050 } 5051 #endif 5052 } 5053 } 5054 } 5055 5056 // Phase 3: Process MergeMem nodes from mergemem_worklist. 5057 // Walk each memory slice moving the first node encountered of each 5058 // instance type to the input corresponding to its alias index. 5059 uint length = mergemem_worklist.length(); 5060 for( uint next = 0; next < length; ++next ) { 5061 MergeMemNode* nmm = mergemem_worklist.at(next); 5062 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 5063 // Note: we don't want to use MergeMemStream here because we only want to 5064 // scan inputs which exist at the start, not ones we add during processing. 5065 // Note 2: MergeMem may already contains instance memory slices added 5066 // during find_inst_mem() call when memory nodes were processed above. 5067 igvn->hash_delete(nmm); 5068 uint nslices = MIN2(nmm->req(), new_index_start); 5069 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 5070 Node* mem = nmm->in(i); 5071 Node* cur = nullptr; 5072 if (mem == nullptr || mem->is_top()) { 5073 continue; 5074 } 5075 // First, update mergemem by moving memory nodes to corresponding slices 5076 // if their type became more precise since this mergemem was created. 5077 while (mem->is_Mem()) { 5078 const Type* at = igvn->type(mem->in(MemNode::Address)); 5079 if (at != Type::TOP) { 5080 assert (at->isa_ptr() != nullptr, "pointer type required."); 5081 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 5082 if (idx == i) { 5083 if (cur == nullptr) { 5084 cur = mem; 5085 } 5086 } else { 5087 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 5088 nmm->set_memory_at(idx, mem); 5089 } 5090 } 5091 } 5092 mem = mem->in(MemNode::Memory); 5093 } 5094 nmm->set_memory_at(i, (cur != nullptr) ? cur : mem); 5095 // Find any instance of the current type if we haven't encountered 5096 // already a memory slice of the instance along the memory chain. 5097 for (uint ni = new_index_start; ni < new_index_end; ni++) { 5098 if((uint)_compile->get_general_index(ni) == i) { 5099 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 5100 if (nmm->is_empty_memory(m)) { 5101 Node* result = find_inst_mem(mem, ni, orig_phis); 5102 if (_compile->failing()) { 5103 return; 5104 } 5105 nmm->set_memory_at(ni, result); 5106 } 5107 } 5108 } 5109 } 5110 // Find the rest of instances values 5111 for (uint ni = new_index_start; ni < new_index_end; ni++) { 5112 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 5113 Node* result = step_through_mergemem(nmm, ni, tinst); 5114 if (result == nmm->base_memory()) { 5115 // Didn't find instance memory, search through general slice recursively. 5116 result = nmm->memory_at(_compile->get_general_index(ni)); 5117 result = find_inst_mem(result, ni, orig_phis); 5118 if (_compile->failing()) { 5119 return; 5120 } 5121 nmm->set_memory_at(ni, result); 5122 } 5123 } 5124 5125 // If we have crossed the 3/4 point of max node limit it's too risky 5126 // to continue with EA/SR because we might hit the max node limit. 5127 if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) { 5128 if (_compile->do_reduce_allocation_merges()) { 5129 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 5130 } else if (_invocation > 0) { 5131 _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis()); 5132 } else { 5133 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 5134 } 5135 return; 5136 } 5137 5138 igvn->hash_insert(nmm); 5139 record_for_optimizer(nmm); 5140 } 5141 5142 _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_3, 5); 5143 5144 // Phase 4: Update the inputs of non-instance memory Phis and 5145 // the Memory input of memnodes 5146 // First update the inputs of any non-instance Phi's from 5147 // which we split out an instance Phi. Note we don't have 5148 // to recursively process Phi's encountered on the input memory 5149 // chains as is done in split_memory_phi() since they will 5150 // also be processed here. 5151 for (int j = 0; j < orig_phis.length(); j++) { 5152 PhiNode *phi = orig_phis.at(j); 5153 int alias_idx = _compile->get_alias_index(phi->adr_type()); 5154 igvn->hash_delete(phi); 5155 for (uint i = 1; i < phi->req(); i++) { 5156 Node *mem = phi->in(i); 5157 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 5158 if (_compile->failing()) { 5159 return; 5160 } 5161 if (mem != new_mem) { 5162 phi->set_req(i, new_mem); 5163 } 5164 } 5165 igvn->hash_insert(phi); 5166 record_for_optimizer(phi); 5167 } 5168 5169 // Update the memory inputs of MemNodes with the value we computed 5170 // in Phase 2 and move stores memory users to corresponding memory slices. 5171 // Disable memory split verification code until the fix for 6984348. 5172 // Currently it produces false negative results since it does not cover all cases. 5173 #if 0 // ifdef ASSERT 5174 visited.Reset(); 5175 Node_Stack old_mems(arena, _compile->unique() >> 2); 5176 #endif 5177 for (uint i = 0; i < ideal_nodes.size(); i++) { 5178 Node* n = ideal_nodes.at(i); 5179 Node* nmem = get_map(n->_idx); 5180 assert(nmem != nullptr, "sanity"); 5181 if (n->is_Mem()) { 5182 #if 0 // ifdef ASSERT 5183 Node* old_mem = n->in(MemNode::Memory); 5184 if (!visited.test_set(old_mem->_idx)) { 5185 old_mems.push(old_mem, old_mem->outcnt()); 5186 } 5187 #endif 5188 assert(n->in(MemNode::Memory) != nmem, "sanity"); 5189 if (!n->is_Load()) { 5190 // Move memory users of a store first. 5191 move_inst_mem(n, orig_phis); 5192 } 5193 // Now update memory input 5194 igvn->hash_delete(n); 5195 n->set_req(MemNode::Memory, nmem); 5196 igvn->hash_insert(n); 5197 record_for_optimizer(n); 5198 } else { 5199 assert(n->is_Allocate() || n->is_CheckCastPP() || 5200 n->is_AddP() || n->is_Phi() || n->is_NarrowMemProj(), "unknown node used for set_map()"); 5201 } 5202 } 5203 #if 0 // ifdef ASSERT 5204 // Verify that memory was split correctly 5205 while (old_mems.is_nonempty()) { 5206 Node* old_mem = old_mems.node(); 5207 uint old_cnt = old_mems.index(); 5208 old_mems.pop(); 5209 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 5210 } 5211 #endif 5212 _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_4, 5); 5213 } 5214 5215 #ifndef PRODUCT 5216 int ConnectionGraph::_no_escape_counter = 0; 5217 int ConnectionGraph::_arg_escape_counter = 0; 5218 int ConnectionGraph::_global_escape_counter = 0; 5219 5220 static const char *node_type_names[] = { 5221 "UnknownType", 5222 "JavaObject", 5223 "LocalVar", 5224 "Field", 5225 "Arraycopy" 5226 }; 5227 5228 static const char *esc_names[] = { 5229 "UnknownEscape", 5230 "NoEscape", 5231 "ArgEscape", 5232 "GlobalEscape" 5233 }; 5234 5235 const char* PointsToNode::esc_name() const { 5236 return esc_names[(int)escape_state()]; 5237 } 5238 5239 void PointsToNode::dump_header(bool print_state, outputStream* out) const { 5240 NodeType nt = node_type(); 5241 out->print("%s(%d) ", node_type_names[(int) nt], _pidx); 5242 if (print_state) { 5243 EscapeState es = escape_state(); 5244 EscapeState fields_es = fields_escape_state(); 5245 out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 5246 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) { 5247 out->print("NSR "); 5248 } 5249 } 5250 } 5251 5252 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const { 5253 dump_header(print_state, out); 5254 if (is_Field()) { 5255 FieldNode* f = (FieldNode*)this; 5256 if (f->is_oop()) { 5257 out->print("oop "); 5258 } 5259 if (f->offset() > 0) { 5260 out->print("+%d ", f->offset()); 5261 } 5262 out->print("("); 5263 for (BaseIterator i(f); i.has_next(); i.next()) { 5264 PointsToNode* b = i.get(); 5265 out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 5266 } 5267 out->print(" )"); 5268 } 5269 out->print("["); 5270 for (EdgeIterator i(this); i.has_next(); i.next()) { 5271 PointsToNode* e = i.get(); 5272 out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 5273 } 5274 out->print(" ["); 5275 for (UseIterator i(this); i.has_next(); i.next()) { 5276 PointsToNode* u = i.get(); 5277 bool is_base = false; 5278 if (PointsToNode::is_base_use(u)) { 5279 is_base = true; 5280 u = PointsToNode::get_use_node(u)->as_Field(); 5281 } 5282 out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 5283 } 5284 out->print(" ]] "); 5285 if (_node == nullptr) { 5286 out->print("<null>%s", newline ? "\n" : ""); 5287 } else { 5288 _node->dump(newline ? "\n" : "", false, out); 5289 } 5290 } 5291 5292 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 5293 bool first = true; 5294 int ptnodes_length = ptnodes_worklist.length(); 5295 for (int i = 0; i < ptnodes_length; i++) { 5296 PointsToNode *ptn = ptnodes_worklist.at(i); 5297 if (ptn == nullptr || !ptn->is_JavaObject()) { 5298 continue; 5299 } 5300 PointsToNode::EscapeState es = ptn->escape_state(); 5301 if ((es != PointsToNode::NoEscape) && !Verbose) { 5302 continue; 5303 } 5304 Node* n = ptn->ideal_node(); 5305 if (n->is_Allocate() || (n->is_CallStaticJava() && 5306 n->as_CallStaticJava()->is_boxing_method())) { 5307 if (first) { 5308 tty->cr(); 5309 tty->print("======== Connection graph for "); 5310 _compile->method()->print_short_name(); 5311 tty->cr(); 5312 tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d", 5313 _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length()); 5314 tty->cr(); 5315 first = false; 5316 } 5317 ptn->dump(); 5318 // Print all locals and fields which reference this allocation 5319 for (UseIterator j(ptn); j.has_next(); j.next()) { 5320 PointsToNode* use = j.get(); 5321 if (use->is_LocalVar()) { 5322 use->dump(Verbose); 5323 } else if (Verbose) { 5324 use->dump(); 5325 } 5326 } 5327 tty->cr(); 5328 } 5329 } 5330 } 5331 5332 void ConnectionGraph::print_statistics() { 5333 tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", AtomicAccess::load(&_no_escape_counter), AtomicAccess::load(&_arg_escape_counter), AtomicAccess::load(&_global_escape_counter)); 5334 } 5335 5336 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) { 5337 if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation 5338 return; 5339 } 5340 for (int next = 0; next < java_objects_worklist.length(); ++next) { 5341 JavaObjectNode* ptn = java_objects_worklist.at(next); 5342 if (ptn->ideal_node()->is_Allocate()) { 5343 if (ptn->escape_state() == PointsToNode::NoEscape) { 5344 AtomicAccess::inc(&ConnectionGraph::_no_escape_counter); 5345 } else if (ptn->escape_state() == PointsToNode::ArgEscape) { 5346 AtomicAccess::inc(&ConnectionGraph::_arg_escape_counter); 5347 } else if (ptn->escape_state() == PointsToNode::GlobalEscape) { 5348 AtomicAccess::inc(&ConnectionGraph::_global_escape_counter); 5349 } else { 5350 assert(false, "Unexpected Escape State"); 5351 } 5352 } 5353 } 5354 } 5355 5356 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const { 5357 if (_compile->directive()->TraceEscapeAnalysisOption) { 5358 assert(ptn != nullptr, "should not be null"); 5359 assert(reason != nullptr, "should not be null"); 5360 ptn->dump_header(true); 5361 PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es; 5362 PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state(); 5363 tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason); 5364 } 5365 } 5366 5367 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const { 5368 if (_compile->directive()->TraceEscapeAnalysisOption) { 5369 stringStream ss; 5370 ss.print("propagated from: "); 5371 from->dump(true, &ss, false); 5372 return ss.as_string(); 5373 } else { 5374 return nullptr; 5375 } 5376 } 5377 5378 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const { 5379 if (_compile->directive()->TraceEscapeAnalysisOption) { 5380 stringStream ss; 5381 ss.print("escapes as arg to:"); 5382 call->dump("", false, &ss); 5383 return ss.as_string(); 5384 } else { 5385 return nullptr; 5386 } 5387 } 5388 5389 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const { 5390 if (_compile->directive()->TraceEscapeAnalysisOption) { 5391 stringStream ss; 5392 ss.print("is merged with other object: "); 5393 other->dump_header(true, &ss); 5394 return ss.as_string(); 5395 } else { 5396 return nullptr; 5397 } 5398 } 5399 5400 #endif 5401 5402 void ConnectionGraph::record_for_optimizer(Node *n) { 5403 _igvn->_worklist.push(n); 5404 _igvn->add_users_to_worklist(n); 5405 } --- EOF ---