11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/c2/barrierSetC2.hpp"
29 #include "libadt/vectset.hpp"
30 #include "memory/allocation.hpp"
31 #include "memory/resourceArea.hpp"
32 #include "opto/arraycopynode.hpp"
33 #include "opto/c2compiler.hpp"
34 #include "opto/callnode.hpp"
35 #include "opto/castnode.hpp"
36 #include "opto/cfgnode.hpp"
37 #include "opto/compile.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/locknode.hpp"
40 #include "opto/macro.hpp"
41 #include "opto/movenode.hpp"
42 #include "opto/narrowptrnode.hpp"
43 #include "opto/phaseX.hpp"
44 #include "opto/rootnode.hpp"
45 #include "utilities/macros.hpp"
46
47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
48 // If ReduceAllocationMerges is enabled we might call split_through_phi during
49 // split_unique_types and that will create additional nodes that need to be
50 // pushed to the ConnectionGraph. The code below bumps the initial capacity of
51 // _nodes by 10% to account for these additional nodes. If capacity is exceeded
52 // the array will be reallocated.
53 _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
54 _in_worklist(C->comp_arena()),
55 _next_pidx(0),
56 _collecting(true),
57 _verify(false),
58 _compile(C),
146 GrowableArray<SafePointNode*> sfn_worklist;
147 GrowableArray<MergeMemNode*> mergemem_worklist;
148 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
149
150 { Compile::TracePhase tp(Phase::_t_connectionGraph);
151
152 // 1. Populate Connection Graph (CG) with PointsTo nodes.
153 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space
154 // Initialize worklist
155 if (C->root() != nullptr) {
156 ideal_nodes.push(C->root());
157 }
158 // Processed ideal nodes are unique on ideal_nodes list
159 // but several ideal nodes are mapped to the phantom_obj.
160 // To avoid duplicated entries on the following worklists
161 // add the phantom_obj only once to them.
162 ptnodes_worklist.append(phantom_obj);
163 java_objects_worklist.append(phantom_obj);
164 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
165 Node* n = ideal_nodes.at(next);
166 // Create PointsTo nodes and add them to Connection Graph. Called
167 // only once per ideal node since ideal_nodes is Unique_Node list.
168 add_node_to_connection_graph(n, &delayed_worklist);
169 PointsToNode* ptn = ptnode_adr(n->_idx);
170 if (ptn != nullptr && ptn != phantom_obj) {
171 ptnodes_worklist.append(ptn);
172 if (ptn->is_JavaObject()) {
173 java_objects_worklist.append(ptn->as_JavaObject());
174 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
175 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
176 // Only allocations and java static calls results are interesting.
177 non_escaped_allocs_worklist.append(ptn->as_JavaObject());
178 }
179 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
180 oop_fields_worklist.append(ptn->as_Field());
181 }
182 }
183 // Collect some interesting nodes for further use.
184 switch (n->Opcode()) {
185 case Op_MergeMem:
396 split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
397 if (C->failing()) {
398 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
399 return false;
400 }
401 C->print_method(PHASE_AFTER_EA, 2);
402
403 #ifdef ASSERT
404 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
405 tty->print("=== No allocations eliminated for ");
406 C->method()->print_short_name();
407 if (!EliminateAllocations) {
408 tty->print(" since EliminateAllocations is off ===");
409 } else if(!has_scalar_replaceable_candidates) {
410 tty->print(" since there are no scalar replaceable candidates ===");
411 }
412 tty->cr();
413 #endif
414 }
415
416 // 6. Reduce allocation merges used as debug information. This is done after
417 // split_unique_types because the methods used to create SafePointScalarObject
418 // need to traverse the memory graph to find values for object fields. We also
419 // set to null the scalarized inputs of reducible Phis so that the Allocate
420 // that they point can be later scalar replaced.
421 bool delay = _igvn->delay_transform();
422 _igvn->set_delay_transform(true);
423 for (uint i = 0; i < reducible_merges.size(); i++) {
424 Node* n = reducible_merges.at(i);
425 if (n->outcnt() > 0) {
426 if (!reduce_phi_on_safepoints(n->as_Phi())) {
427 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
428 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
429 return false;
430 }
431
432 // Now we set the scalar replaceable inputs of ophi to null, which is
433 // the last piece that would prevent it from being scalar replaceable.
434 reset_scalar_replaceable_entries(n->as_Phi());
435 }
436 }
1235
1236 // The next two inputs are:
1237 // (1) A copy of the original pointer to NSR objects.
1238 // (2) A selector, used to decide if we need to rematerialize an object
1239 // or use the pointer to a NSR object.
1240 // See more details of these fields in the declaration of SafePointScalarMergeNode
1241 sfpt->add_req(nsr_merge_pointer);
1242 sfpt->add_req(selector);
1243
1244 for (uint i = 1; i < ophi->req(); i++) {
1245 Node* base = ophi->in(i);
1246 JavaObjectNode* ptn = unique_java_object(base);
1247
1248 // If the base is not scalar replaceable we don't need to register information about
1249 // it at this time.
1250 if (ptn == nullptr || !ptn->scalar_replaceable()) {
1251 continue;
1252 }
1253
1254 AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1255 SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);
1256 if (sobj == nullptr) {
1257 return false;
1258 }
1259
1260 // Now make a pass over the debug information replacing any references
1261 // to the allocated object with "sobj"
1262 Node* ccpp = alloc->result_cast();
1263 sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1264
1265 // Register the scalarized object as a candidate for reallocation
1266 smerge->add_req(sobj);
1267 }
1268
1269 // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1270 sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1271
1272 // The call to 'replace_edges_in_range' above might have removed the
1273 // reference to ophi that we need at _merge_pointer_idx. The line below make
1274 // sure the reference is maintained.
1275 sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1276 _igvn->_worklist.push(sfpt);
1277 }
1278
1279 return true;
1280 }
1281
1282 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) {
1283 bool delay = _igvn->delay_transform();
1284 _igvn->set_delay_transform(true);
1285 _igvn->hash_delete(ophi);
1286
1445 return false;
1446 }
1447
1448 // Returns true if at least one of the arguments to the call is an object
1449 // that does not escape globally.
1450 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1451 if (call->method() != nullptr) {
1452 uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1453 for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1454 Node* p = call->in(idx);
1455 if (not_global_escape(p)) {
1456 return true;
1457 }
1458 }
1459 } else {
1460 const char* name = call->as_CallStaticJava()->_name;
1461 assert(name != nullptr, "no name");
1462 // no arg escapes through uncommon traps
1463 if (strcmp(name, "uncommon_trap") != 0) {
1464 // process_call_arguments() assumes that all arguments escape globally
1465 const TypeTuple* d = call->tf()->domain();
1466 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1467 const Type* at = d->field_at(i);
1468 if (at->isa_oopptr() != nullptr) {
1469 return true;
1470 }
1471 }
1472 }
1473 }
1474 return false;
1475 }
1476
1477
1478
1479 // Utility function for nodes that load an object
1480 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1481 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1482 // ThreadLocal has RawPtr type.
1483 const Type* t = _igvn->type(n);
1484 if (t->make_ptr() != nullptr) {
1485 Node* adr = n->in(MemNode::Address);
1519 // first IGVN optimization when escape information is still available.
1520 record_for_optimizer(n);
1521 } else if (n->is_Allocate()) {
1522 add_call_node(n->as_Call());
1523 record_for_optimizer(n);
1524 } else {
1525 if (n->is_CallStaticJava()) {
1526 const char* name = n->as_CallStaticJava()->_name;
1527 if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1528 return; // Skip uncommon traps
1529 }
1530 }
1531 // Don't mark as processed since call's arguments have to be processed.
1532 delayed_worklist->push(n);
1533 // Check if a call returns an object.
1534 if ((n->as_Call()->returns_pointer() &&
1535 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1536 (n->is_CallStaticJava() &&
1537 n->as_CallStaticJava()->is_boxing_method())) {
1538 add_call_node(n->as_Call());
1539 }
1540 }
1541 return;
1542 }
1543 // Put this check here to process call arguments since some call nodes
1544 // point to phantom_obj.
1545 if (n_ptn == phantom_obj || n_ptn == null_obj) {
1546 return; // Skip predefined nodes.
1547 }
1548 switch (opcode) {
1549 case Op_AddP: {
1550 Node* base = get_addp_base(n);
1551 PointsToNode* ptn_base = ptnode_adr(base->_idx);
1552 // Field nodes are created for all field types. They are used in
1553 // adjust_scalar_replaceable_state() and split_unique_types().
1554 // Note, non-oop fields will have only base edges in Connection
1555 // Graph because such fields are not used for oop loads and stores.
1556 int offset = address_offset(n, igvn);
1557 add_field(n, PointsToNode::NoEscape, offset);
1558 if (ptn_base == nullptr) {
1559 delayed_worklist->push(n); // Process it later.
1560 } else {
1561 n_ptn = ptnode_adr(n_idx);
1562 add_base(n_ptn->as_Field(), ptn_base);
1563 }
1564 break;
1565 }
1566 case Op_CastX2P: {
1567 map_ideal_node(n, phantom_obj);
1568 break;
1569 }
1570 case Op_CastPP:
1571 case Op_CheckCastPP:
1572 case Op_EncodeP:
1573 case Op_DecodeN:
1574 case Op_EncodePKlass:
1575 case Op_DecodeNKlass: {
1576 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1577 break;
1578 }
1579 case Op_CMoveP: {
1580 add_local_var(n, PointsToNode::NoEscape);
1581 // Do not add edges during first iteration because some could be
1582 // not defined yet.
1583 delayed_worklist->push(n);
1584 break;
1585 }
1586 case Op_ConP:
1587 case Op_ConN:
1588 case Op_ConNKlass: {
1589 // assume all oop constants globally escape except for null
1619 break;
1620 }
1621 case Op_PartialSubtypeCheck: {
1622 // Produces Null or notNull and is used in only in CmpP so
1623 // phantom_obj could be used.
1624 map_ideal_node(n, phantom_obj); // Result is unknown
1625 break;
1626 }
1627 case Op_Phi: {
1628 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1629 // ThreadLocal has RawPtr type.
1630 const Type* t = n->as_Phi()->type();
1631 if (t->make_ptr() != nullptr) {
1632 add_local_var(n, PointsToNode::NoEscape);
1633 // Do not add edges during first iteration because some could be
1634 // not defined yet.
1635 delayed_worklist->push(n);
1636 }
1637 break;
1638 }
1639 case Op_Proj: {
1640 // we are only interested in the oop result projection from a call
1641 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1642 n->in(0)->as_Call()->returns_pointer()) {
1643 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1644 }
1645 break;
1646 }
1647 case Op_Rethrow: // Exception object escapes
1648 case Op_Return: {
1649 if (n->req() > TypeFunc::Parms &&
1650 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1651 // Treat Return value as LocalVar with GlobalEscape escape state.
1652 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1653 }
1654 break;
1655 }
1656 case Op_CompareAndExchangeP:
1657 case Op_CompareAndExchangeN:
1658 case Op_GetAndSetP:
1659 case Op_GetAndSetN: {
1660 add_objload_to_connection_graph(n, delayed_worklist);
1661 // fall-through
1662 }
1708 break;
1709 }
1710 default:
1711 ; // Do nothing for nodes not related to EA.
1712 }
1713 return;
1714 }
1715
1716 // Add final simple edges to graph.
1717 void ConnectionGraph::add_final_edges(Node *n) {
1718 PointsToNode* n_ptn = ptnode_adr(n->_idx);
1719 #ifdef ASSERT
1720 if (_verify && n_ptn->is_JavaObject())
1721 return; // This method does not change graph for JavaObject.
1722 #endif
1723
1724 if (n->is_Call()) {
1725 process_call_arguments(n->as_Call());
1726 return;
1727 }
1728 assert(n->is_Store() || n->is_LoadStore() ||
1729 ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1730 "node should be registered already");
1731 int opcode = n->Opcode();
1732 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1733 if (gc_handled) {
1734 return; // Ignore node if already handled by GC.
1735 }
1736 switch (opcode) {
1737 case Op_AddP: {
1738 Node* base = get_addp_base(n);
1739 PointsToNode* ptn_base = ptnode_adr(base->_idx);
1740 assert(ptn_base != nullptr, "field's base should be registered");
1741 add_base(n_ptn->as_Field(), ptn_base);
1742 break;
1743 }
1744 case Op_CastPP:
1745 case Op_CheckCastPP:
1746 case Op_EncodeP:
1747 case Op_DecodeN:
1748 case Op_EncodePKlass:
1749 case Op_DecodeNKlass: {
1750 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1751 break;
1752 }
1753 case Op_CMoveP: {
1754 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1755 Node* in = n->in(i);
1756 if (in == nullptr) {
1757 continue; // ignore null
1758 }
1759 Node* uncast_in = in->uncast();
1760 if (uncast_in->is_top() || uncast_in == n) {
1761 continue; // ignore top or inputs which go back this node
1762 }
1763 PointsToNode* ptn = ptnode_adr(in->_idx);
1776 }
1777 case Op_Phi: {
1778 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1779 // ThreadLocal has RawPtr type.
1780 assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1781 for (uint i = 1; i < n->req(); i++) {
1782 Node* in = n->in(i);
1783 if (in == nullptr) {
1784 continue; // ignore null
1785 }
1786 Node* uncast_in = in->uncast();
1787 if (uncast_in->is_top() || uncast_in == n) {
1788 continue; // ignore top or inputs which go back this node
1789 }
1790 PointsToNode* ptn = ptnode_adr(in->_idx);
1791 assert(ptn != nullptr, "node should be registered");
1792 add_edge(n_ptn, ptn);
1793 }
1794 break;
1795 }
1796 case Op_Proj: {
1797 // we are only interested in the oop result projection from a call
1798 assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1799 n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1800 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1801 break;
1802 }
1803 case Op_Rethrow: // Exception object escapes
1804 case Op_Return: {
1805 assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1806 "Unexpected node type");
1807 // Treat Return value as LocalVar with GlobalEscape escape state.
1808 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1809 break;
1810 }
1811 case Op_CompareAndExchangeP:
1812 case Op_CompareAndExchangeN:
1813 case Op_GetAndSetP:
1814 case Op_GetAndSetN:{
1815 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1816 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1817 // fall-through
1818 }
1819 case Op_CompareAndSwapP:
1820 case Op_CompareAndSwapN:
1955 PointsToNode* ptn = ptnode_adr(val->_idx);
1956 assert(ptn != nullptr, "node should be registered");
1957 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1958 // Add edge to object for unsafe access with offset.
1959 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1960 assert(adr_ptn != nullptr, "node should be registered");
1961 if (adr_ptn->is_Field()) {
1962 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1963 add_edge(adr_ptn, ptn);
1964 }
1965 return true;
1966 }
1967 #ifdef ASSERT
1968 n->dump(1);
1969 assert(false, "not unsafe");
1970 #endif
1971 return false;
1972 }
1973
1974 void ConnectionGraph::add_call_node(CallNode* call) {
1975 assert(call->returns_pointer(), "only for call which returns pointer");
1976 uint call_idx = call->_idx;
1977 if (call->is_Allocate()) {
1978 Node* k = call->in(AllocateNode::KlassNode);
1979 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1980 assert(kt != nullptr, "TypeKlassPtr required.");
1981 PointsToNode::EscapeState es = PointsToNode::NoEscape;
1982 bool scalar_replaceable = true;
1983 NOT_PRODUCT(const char* nsr_reason = "");
1984 if (call->is_AllocateArray()) {
1985 if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1986 es = PointsToNode::GlobalEscape;
1987 } else {
1988 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1989 if (length < 0) {
1990 // Not scalar replaceable if the length is not constant.
1991 scalar_replaceable = false;
1992 NOT_PRODUCT(nsr_reason = "has a non-constant length");
1993 } else if (length > EliminateAllocationArraySizeLimit) {
1994 // Not scalar replaceable if the length is too big.
1995 scalar_replaceable = false;
2031 //
2032 // - all oop arguments are escaping globally;
2033 //
2034 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2035 //
2036 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
2037 //
2038 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2039 // - mapped to NoEscape JavaObject node if non-escaping object allocated
2040 // during call is returned;
2041 // - mapped to ArgEscape LocalVar node pointed to object arguments
2042 // which are returned and does not escape during call;
2043 //
2044 // - oop arguments escaping status is defined by bytecode analysis;
2045 //
2046 // For a static call, we know exactly what method is being called.
2047 // Use bytecode estimator to record whether the call's return value escapes.
2048 ciMethod* meth = call->as_CallJava()->method();
2049 if (meth == nullptr) {
2050 const char* name = call->as_CallStaticJava()->_name;
2051 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");
2052 // Returns a newly allocated non-escaped object.
2053 add_java_object(call, PointsToNode::NoEscape);
2054 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2055 } else if (meth->is_boxing_method()) {
2056 // Returns boxing object
2057 PointsToNode::EscapeState es;
2058 vmIntrinsics::ID intr = meth->intrinsic_id();
2059 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2060 // It does not escape if object is always allocated.
2061 es = PointsToNode::NoEscape;
2062 } else {
2063 // It escapes globally if object could be loaded from cache.
2064 es = PointsToNode::GlobalEscape;
2065 }
2066 add_java_object(call, es);
2067 if (es == PointsToNode::GlobalEscape) {
2068 set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2069 }
2070 } else {
2071 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2072 call_analyzer->copy_dependencies(_compile->dependencies());
2073 if (call_analyzer->is_return_allocated()) {
2074 // Returns a newly allocated non-escaped object, simply
2075 // update dependency information.
2076 // Mark it as NoEscape so that objects referenced by
2077 // it's fields will be marked as NoEscape at least.
2078 add_java_object(call, PointsToNode::NoEscape);
2079 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2080 } else {
2081 // Determine whether any arguments are returned.
2082 const TypeTuple* d = call->tf()->domain();
2083 bool ret_arg = false;
2084 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2085 if (d->field_at(i)->isa_ptr() != nullptr &&
2086 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2087 ret_arg = true;
2088 break;
2089 }
2090 }
2091 if (ret_arg) {
2092 add_local_var(call, PointsToNode::ArgEscape);
2093 } else {
2094 // Returns unknown object.
2095 map_ideal_node(call, phantom_obj);
2096 }
2097 }
2098 }
2099 } else {
2100 // An other type of call, assume the worst case:
2101 // returned value is unknown and globally escapes.
2102 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2110 #ifdef ASSERT
2111 case Op_Allocate:
2112 case Op_AllocateArray:
2113 case Op_Lock:
2114 case Op_Unlock:
2115 assert(false, "should be done already");
2116 break;
2117 #endif
2118 case Op_ArrayCopy:
2119 case Op_CallLeafNoFP:
2120 // Most array copies are ArrayCopy nodes at this point but there
2121 // are still a few direct calls to the copy subroutines (See
2122 // PhaseStringOpts::copy_string())
2123 is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2124 call->as_CallLeaf()->is_call_to_arraycopystub();
2125 // fall through
2126 case Op_CallLeafVector:
2127 case Op_CallLeaf: {
2128 // Stub calls, objects do not escape but they are not scale replaceable.
2129 // Adjust escape state for outgoing arguments.
2130 const TypeTuple * d = call->tf()->domain();
2131 bool src_has_oops = false;
2132 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2133 const Type* at = d->field_at(i);
2134 Node *arg = call->in(i);
2135 if (arg == nullptr) {
2136 continue;
2137 }
2138 const Type *aat = _igvn->type(arg);
2139 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2140 continue;
2141 }
2142 if (arg->is_AddP()) {
2143 //
2144 // The inline_native_clone() case when the arraycopy stub is called
2145 // after the allocation before Initialize and CheckCastPP nodes.
2146 // Or normal arraycopy for object arrays case.
2147 //
2148 // Set AddP's base (Allocate) as not scalar replaceable since
2149 // pointer to the base (with offset) is passed as argument.
2150 //
2151 arg = get_addp_base(arg);
2152 }
2153 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2154 assert(arg_ptn != nullptr, "should be registered");
2155 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2156 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2157 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2158 aat->isa_ptr() != nullptr, "expecting an Ptr");
2159 bool arg_has_oops = aat->isa_oopptr() &&
2160 (aat->isa_instptr() ||
2161 (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));
2162 if (i == TypeFunc::Parms) {
2163 src_has_oops = arg_has_oops;
2164 }
2165 //
2166 // src or dst could be j.l.Object when other is basic type array:
2167 //
2168 // arraycopy(char[],0,Object*,0,size);
2169 // arraycopy(Object*,0,char[],0,size);
2170 //
2171 // Don't add edges in such cases.
2172 //
2173 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2174 arg_has_oops && (i > TypeFunc::Parms);
2175 #ifdef ASSERT
2176 if (!(is_arraycopy ||
2177 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2178 (call->as_CallLeaf()->_name != nullptr &&
2179 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2180 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2181 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2205 strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2206 strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2207 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2208 strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2209 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2210 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2211 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2212 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2213 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2214 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2215 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2216 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2217 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2218 strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2219 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2220 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2221 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2222 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2223 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2224 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2225 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2226 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2227 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2228 strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2229 strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2230 strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2231 strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2232 strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2233 ))) {
2234 call->dump();
2235 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2236 }
2237 #endif
2238 // Always process arraycopy's destination object since
2239 // we need to add all possible edges to references in
2240 // source object.
2241 if (arg_esc >= PointsToNode::ArgEscape &&
2242 !arg_is_arraycopy_dest) {
2243 continue;
2244 }
2267 }
2268 }
2269 }
2270 break;
2271 }
2272 case Op_CallStaticJava: {
2273 // For a static call, we know exactly what method is being called.
2274 // Use bytecode estimator to record the call's escape affects
2275 #ifdef ASSERT
2276 const char* name = call->as_CallStaticJava()->_name;
2277 assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2278 #endif
2279 ciMethod* meth = call->as_CallJava()->method();
2280 if ((meth != nullptr) && meth->is_boxing_method()) {
2281 break; // Boxing methods do not modify any oops.
2282 }
2283 BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2284 // fall-through if not a Java method or no analyzer information
2285 if (call_analyzer != nullptr) {
2286 PointsToNode* call_ptn = ptnode_adr(call->_idx);
2287 const TypeTuple* d = call->tf()->domain();
2288 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2289 const Type* at = d->field_at(i);
2290 int k = i - TypeFunc::Parms;
2291 Node* arg = call->in(i);
2292 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2293 if (at->isa_ptr() != nullptr &&
2294 call_analyzer->is_arg_returned(k)) {
2295 // The call returns arguments.
2296 if (call_ptn != nullptr) { // Is call's result used?
2297 assert(call_ptn->is_LocalVar(), "node should be registered");
2298 assert(arg_ptn != nullptr, "node should be registered");
2299 add_edge(call_ptn, arg_ptn);
2300 }
2301 }
2302 if (at->isa_oopptr() != nullptr &&
2303 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2304 if (!call_analyzer->is_arg_stack(k)) {
2305 // The argument global escapes
2306 set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2307 } else {
2311 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2312 }
2313 }
2314 }
2315 }
2316 if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2317 // The call returns arguments.
2318 assert(call_ptn->edge_count() > 0, "sanity");
2319 if (!call_analyzer->is_return_local()) {
2320 // Returns also unknown object.
2321 add_edge(call_ptn, phantom_obj);
2322 }
2323 }
2324 break;
2325 }
2326 }
2327 default: {
2328 // Fall-through here if not a Java method or no analyzer information
2329 // or some other type of call, assume the worst case: all arguments
2330 // globally escape.
2331 const TypeTuple* d = call->tf()->domain();
2332 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2333 const Type* at = d->field_at(i);
2334 if (at->isa_oopptr() != nullptr) {
2335 Node* arg = call->in(i);
2336 if (arg->is_AddP()) {
2337 arg = get_addp_base(arg);
2338 }
2339 assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2340 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2341 }
2342 }
2343 }
2344 }
2345 }
2346
2347
2348 // Finish Graph construction.
2349 bool ConnectionGraph::complete_connection_graph(
2350 GrowableArray<PointsToNode*>& ptnodes_worklist,
2351 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2724 PointsToNode* base = i.get();
2725 if (base->is_JavaObject()) {
2726 // Skip Allocate's fields which will be processed later.
2727 if (base->ideal_node()->is_Allocate()) {
2728 return 0;
2729 }
2730 assert(base == null_obj, "only null ptr base expected here");
2731 }
2732 }
2733 if (add_edge(field, phantom_obj)) {
2734 // New edge was added
2735 new_edges++;
2736 add_field_uses_to_worklist(field);
2737 }
2738 return new_edges;
2739 }
2740
2741 // Find fields initializing values for allocations.
2742 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2743 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2744 Node* alloc = pta->ideal_node();
2745
2746 // Do nothing for Allocate nodes since its fields values are
2747 // "known" unless they are initialized by arraycopy/clone.
2748 if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2749 return 0;
2750 }
2751 assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
2752 #ifdef ASSERT
2753 if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2754 const char* name = alloc->as_CallStaticJava()->_name;
2755 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");
2756 }
2757 #endif
2758 // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2759 int new_edges = 0;
2760 for (EdgeIterator i(pta); i.has_next(); i.next()) {
2761 PointsToNode* field = i.get();
2762 if (field->is_Field() && field->as_Field()->is_oop()) {
2763 if (add_edge(field, phantom_obj)) {
2764 // New edge was added
2765 new_edges++;
2766 add_field_uses_to_worklist(field->as_Field());
2767 }
2768 }
2769 }
2770 return new_edges;
2771 }
2772
2773 // Find fields initializing values for allocations.
2774 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2775 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2776 Node* alloc = pta->ideal_node();
2777 // Do nothing for Call nodes since its fields values are unknown.
2778 if (!alloc->is_Allocate()) {
2779 return 0;
2780 }
2781 InitializeNode* ini = alloc->as_Allocate()->initialization();
2782 bool visited_bottom_offset = false;
2783 GrowableArray<int> offsets_worklist;
2784 int new_edges = 0;
2785
2786 // Check if an oop field's initializing value is recorded and add
2787 // a corresponding null if field's value if it is not recorded.
2788 // Connection Graph does not record a default initialization by null
2789 // captured by Initialize node.
2790 //
2791 for (EdgeIterator i(pta); i.has_next(); i.next()) {
2792 PointsToNode* field = i.get(); // Field (AddP)
2793 if (!field->is_Field() || !field->as_Field()->is_oop()) {
2794 continue; // Not oop field
2795 }
2796 int offset = field->as_Field()->offset();
2797 if (offset == Type::OffsetBot) {
2798 if (!visited_bottom_offset) {
2844 } else {
2845 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2846 tty->print_cr("----------init store has invalid value -----");
2847 store->dump();
2848 val->dump();
2849 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2850 }
2851 for (EdgeIterator j(val); j.has_next(); j.next()) {
2852 PointsToNode* obj = j.get();
2853 if (obj->is_JavaObject()) {
2854 if (!field->points_to(obj->as_JavaObject())) {
2855 missed_obj = obj;
2856 break;
2857 }
2858 }
2859 }
2860 }
2861 if (missed_obj != nullptr) {
2862 tty->print_cr("----------field---------------------------------");
2863 field->dump();
2864 tty->print_cr("----------missed referernce to object-----------");
2865 missed_obj->dump();
2866 tty->print_cr("----------object referernced by init store -----");
2867 store->dump();
2868 val->dump();
2869 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2870 }
2871 }
2872 #endif
2873 } else {
2874 // There could be initializing stores which follow allocation.
2875 // For example, a volatile field store is not collected
2876 // by Initialize node.
2877 //
2878 // Need to check for dependent loads to separate such stores from
2879 // stores which follow loads. For now, add initial value null so
2880 // that compare pointers optimization works correctly.
2881 }
2882 }
2883 if (value == nullptr) {
2884 // A field's initializing value was not recorded. Add null.
2885 if (add_edge(field, null_obj)) {
2886 // New edge was added
3210 assert(field->edge_count() > 0, "sanity");
3211 }
3212 }
3213 }
3214 }
3215 #endif
3216
3217 // Optimize ideal graph.
3218 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3219 GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3220 Compile* C = _compile;
3221 PhaseIterGVN* igvn = _igvn;
3222 if (EliminateLocks) {
3223 // Mark locks before changing ideal graph.
3224 int cnt = C->macro_count();
3225 for (int i = 0; i < cnt; i++) {
3226 Node *n = C->macro_node(i);
3227 if (n->is_AbstractLock()) { // Lock and Unlock nodes
3228 AbstractLockNode* alock = n->as_AbstractLock();
3229 if (!alock->is_non_esc_obj()) {
3230 if (can_eliminate_lock(alock)) {
3231 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3232 // The lock could be marked eliminated by lock coarsening
3233 // code during first IGVN before EA. Replace coarsened flag
3234 // to eliminate all associated locks/unlocks.
3235 #ifdef ASSERT
3236 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3237 #endif
3238 alock->set_non_esc_obj();
3239 }
3240 }
3241 }
3242 }
3243 }
3244
3245 if (OptimizePtrCompare) {
3246 for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3247 Node *n = ptr_cmp_worklist.at(i);
3248 assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3249 const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3250 if (tcmp->singleton()) {
3252 #ifndef PRODUCT
3253 if (PrintOptimizePtrCompare) {
3254 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3255 if (Verbose) {
3256 n->dump(1);
3257 }
3258 }
3259 #endif
3260 igvn->replace_node(n, cmp);
3261 }
3262 }
3263 }
3264
3265 // For MemBarStoreStore nodes added in library_call.cpp, check
3266 // escape status of associated AllocateNode and optimize out
3267 // MemBarStoreStore node if the allocated object never escapes.
3268 for (int i = 0; i < storestore_worklist.length(); i++) {
3269 Node* storestore = storestore_worklist.at(i);
3270 Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3271 if (alloc->is_Allocate() && not_global_escape(alloc)) {
3272 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3273 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
3274 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3275 igvn->register_new_node_with_optimizer(mb);
3276 igvn->replace_node(storestore, mb);
3277 }
3278 }
3279 }
3280
3281 // Optimize objects compare.
3282 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3283 const TypeInt* UNKNOWN = TypeInt::CC; // [-1, 0,1]
3284 if (!OptimizePtrCompare) {
3285 return UNKNOWN;
3286 }
3287 const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3288 const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3289
3290 PointsToNode* ptn1 = ptnode_adr(left->_idx);
3291 PointsToNode* ptn2 = ptnode_adr(right->_idx);
3292 JavaObjectNode* jobj1 = unique_java_object(left);
3293 JavaObjectNode* jobj2 = unique_java_object(right);
3294
3295 // The use of this method during allocation merge reduction may cause 'left'
3296 // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3297 // that doesn't reference an unique java object.
3298 if (ptn1 == nullptr || ptn2 == nullptr ||
3299 jobj1 == nullptr || jobj2 == nullptr) {
3300 return UNKNOWN;
3420 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3421 assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3422 PointsToNode* ptadr = _nodes.at(n->_idx);
3423 if (ptadr != nullptr) {
3424 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3425 return;
3426 }
3427 Compile* C = _compile;
3428 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3429 map_ideal_node(n, ptadr);
3430 // Add edge from arraycopy node to source object.
3431 (void)add_edge(ptadr, src);
3432 src->set_arraycopy_src();
3433 // Add edge from destination object to arraycopy node.
3434 (void)add_edge(dst, ptadr);
3435 dst->set_arraycopy_dst();
3436 }
3437
3438 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3439 const Type* adr_type = n->as_AddP()->bottom_type();
3440 BasicType bt = T_INT;
3441 if (offset == Type::OffsetBot) {
3442 // Check only oop fields.
3443 if (!adr_type->isa_aryptr() ||
3444 adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3445 adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3446 // OffsetBot is used to reference array's element. Ignore first AddP.
3447 if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3448 bt = T_OBJECT;
3449 }
3450 }
3451 } else if (offset != oopDesc::klass_offset_in_bytes()) {
3452 if (adr_type->isa_instptr()) {
3453 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3454 if (field != nullptr) {
3455 bt = field->layout_type();
3456 } else {
3457 // Check for unsafe oop field access
3458 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3459 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3460 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3461 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3462 bt = T_OBJECT;
3463 (*unsafe) = true;
3464 }
3465 }
3466 } else if (adr_type->isa_aryptr()) {
3467 if (offset == arrayOopDesc::length_offset_in_bytes()) {
3468 // Ignore array length load.
3469 } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3470 // Ignore first AddP.
3471 } else {
3472 const Type* elemtype = adr_type->isa_aryptr()->elem();
3473 bt = elemtype->array_element_basic_type();
3474 }
3475 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3476 // Allocation initialization, ThreadLocal field access, unsafe access
3477 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3478 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3479 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3480 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3481 bt = T_OBJECT;
3482 }
3483 }
3484 }
3485 // Note: T_NARROWOOP is not classed as a real reference type
3486 return (is_reference_type(bt) || bt == T_NARROWOOP);
3487 }
3488
3489 // Returns unique pointed java object or null.
3490 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3491 // If the node was created after the escape computation we can't answer.
3492 uint idx = n->_idx;
3493 if (idx >= nodes_size()) {
3650 return true;
3651 }
3652 }
3653 }
3654 }
3655 }
3656 return false;
3657 }
3658
3659 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3660 const Type *adr_type = phase->type(adr);
3661 if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3662 // We are computing a raw address for a store captured by an Initialize
3663 // compute an appropriate address type. AddP cases #3 and #5 (see below).
3664 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3665 assert(offs != Type::OffsetBot ||
3666 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3667 "offset must be a constant or it is initialization of array");
3668 return offs;
3669 }
3670 const TypePtr *t_ptr = adr_type->isa_ptr();
3671 assert(t_ptr != nullptr, "must be a pointer type");
3672 return t_ptr->offset();
3673 }
3674
3675 Node* ConnectionGraph::get_addp_base(Node *addp) {
3676 assert(addp->is_AddP(), "must be AddP");
3677 //
3678 // AddP cases for Base and Address inputs:
3679 // case #1. Direct object's field reference:
3680 // Allocate
3681 // |
3682 // Proj #5 ( oop result )
3683 // |
3684 // CheckCastPP (cast to instance type)
3685 // | |
3686 // AddP ( base == address )
3687 //
3688 // case #2. Indirect object's field reference:
3689 // Phi
3690 // |
3691 // CastPP (cast to instance type)
3692 // | |
3806 }
3807 return nullptr;
3808 }
3809
3810 //
3811 // Adjust the type and inputs of an AddP which computes the
3812 // address of a field of an instance
3813 //
3814 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3815 PhaseGVN* igvn = _igvn;
3816 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3817 assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3818 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3819 if (t == nullptr) {
3820 // We are computing a raw address for a store captured by an Initialize
3821 // compute an appropriate address type (cases #3 and #5).
3822 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3823 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3824 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3825 assert(offs != Type::OffsetBot, "offset must be a constant");
3826 t = base_t->add_offset(offs)->is_oopptr();
3827 }
3828 int inst_id = base_t->instance_id();
3829 assert(!t->is_known_instance() || t->instance_id() == inst_id,
3830 "old type must be non-instance or match new type");
3831
3832 // The type 't' could be subclass of 'base_t'.
3833 // As result t->offset() could be large then base_t's size and it will
3834 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3835 // constructor verifies correctness of the offset.
3836 //
3837 // It could happened on subclass's branch (from the type profiling
3838 // inlining) which was not eliminated during parsing since the exactness
3839 // of the allocation type was not propagated to the subclass type check.
3840 //
3841 // Or the type 't' could be not related to 'base_t' at all.
3842 // It could happened when CHA type is different from MDO type on a dead path
3843 // (for example, from instanceof check) which is not collapsed during parsing.
3844 //
3845 // Do nothing for such AddP node and don't process its users since
3846 // this code branch will go away.
3847 //
3848 if (!t->is_known_instance() &&
3849 !base_t->maybe_java_subtype_of(t)) {
3850 return false; // bail out
3851 }
3852 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
3853 // Do NOT remove the next line: ensure a new alias index is allocated
3854 // for the instance type. Note: C++ will not remove it since the call
3855 // has side effect.
3856 int alias_idx = _compile->get_alias_index(tinst);
3857 igvn->set_type(addp, tinst);
3858 // record the allocation in the node map
3859 set_map(addp, get_map(base->_idx));
3860 // Set addp's Base and Address to 'base'.
3861 Node *abase = addp->in(AddPNode::Base);
3862 Node *adr = addp->in(AddPNode::Address);
3863 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3864 adr->in(0)->_idx == (uint)inst_id) {
3865 // Skip AddP cases #3 and #5.
3866 } else {
3867 assert(!abase->is_top(), "sanity"); // AddP case #3
3868 if (abase != base) {
3869 igvn->hash_delete(addp);
3870 addp->set_req(AddPNode::Base, base);
3871 if (abase == adr) {
3872 addp->set_req(AddPNode::Address, base);
4538 ptnode_adr(n->_idx)->dump();
4539 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4540 #endif
4541 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4542 return;
4543 } else {
4544 Node *val = get_map(jobj->idx()); // CheckCastPP node
4545 TypeNode *tn = n->as_Type();
4546 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4547 assert(tinst != nullptr && tinst->is_known_instance() &&
4548 tinst->instance_id() == jobj->idx() , "instance type expected.");
4549
4550 const Type *tn_type = igvn->type(tn);
4551 const TypeOopPtr *tn_t;
4552 if (tn_type->isa_narrowoop()) {
4553 tn_t = tn_type->make_ptr()->isa_oopptr();
4554 } else {
4555 tn_t = tn_type->isa_oopptr();
4556 }
4557 if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4558 if (tn_type->isa_narrowoop()) {
4559 tn_type = tinst->make_narrowoop();
4560 } else {
4561 tn_type = tinst;
4562 }
4563 igvn->hash_delete(tn);
4564 igvn->set_type(tn, tn_type);
4565 tn->set_type(tn_type);
4566 igvn->hash_insert(tn);
4567 record_for_optimizer(n);
4568 } else {
4569 assert(tn_type == TypePtr::NULL_PTR ||
4570 (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4571 "unexpected type");
4572 continue; // Skip dead path with different type
4573 }
4574 }
4575 } else {
4576 DEBUG_ONLY(n->dump();)
4577 assert(false, "EA: unexpected node");
4578 continue;
4579 }
4580 // push allocation's users on appropriate worklist
4581 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4582 Node *use = n->fast_out(i);
4583 if(use->is_Mem() && use->in(MemNode::Address) == n) {
4584 // Load/store to instance's field
4585 memnode_worklist.append_if_missing(use);
4586 } else if (use->is_MemBar()) {
4587 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4588 memnode_worklist.append_if_missing(use);
4589 }
4590 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4591 Node* addp2 = find_second_addp(use, n);
4592 if (addp2 != nullptr) {
4593 alloc_worklist.append_if_missing(addp2);
4594 }
4595 alloc_worklist.append_if_missing(use);
4596 } else if (use->is_Phi() ||
4597 use->is_CheckCastPP() ||
4598 use->is_EncodeNarrowPtr() ||
4599 use->is_DecodeNarrowPtr() ||
4600 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4601 alloc_worklist.append_if_missing(use);
4602 #ifdef ASSERT
4603 } else if (use->is_Mem()) {
4604 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4605 } else if (use->is_MergeMem()) {
4606 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4607 } else if (use->is_SafePoint()) {
4608 // Look for MergeMem nodes for calls which reference unique allocation
4609 // (through CheckCastPP nodes) even for debug info.
4610 Node* m = use->in(TypeFunc::Memory);
4611 if (m->is_MergeMem()) {
4612 assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4613 }
4614 } else if (use->Opcode() == Op_EncodeISOArray) {
4615 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4616 // EncodeISOArray overwrites destination array
4617 memnode_worklist.append_if_missing(use);
4618 }
4619 } else {
4620 uint op = use->Opcode();
4621 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4622 (use->in(MemNode::Memory) == n)) {
4623 // They overwrite memory edge corresponding to destination array,
4624 memnode_worklist.append_if_missing(use);
4625 } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4626 op == Op_CastP2X ||
4627 op == Op_FastLock || op == Op_AryEq ||
4628 op == Op_StrComp || op == Op_CountPositives ||
4629 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4630 op == Op_StrEquals || op == Op_VectorizedHashCode ||
4631 op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4632 op == Op_SubTypeCheck ||
4633 op == Op_ReinterpretS2HF ||
4634 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4635 n->dump();
4636 use->dump();
4637 assert(false, "EA: missing allocation reference path");
4638 }
4639 #endif
4640 }
4641 }
4642
4643 }
4644
4645 #ifdef ASSERT
4646 if (VerifyReduceAllocationMerges) {
4647 for (uint i = 0; i < reducible_merges.size(); i++) {
4648 Node* phi = reducible_merges.at(i);
4649
4650 if (!reduced_merges.member(phi)) {
4651 phi->dump(2);
4652 phi->dump(-2);
4716 // we don't need to do anything, but the users must be pushed
4717 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4718 if (n == nullptr) {
4719 continue;
4720 }
4721 } else if (n->is_CallLeaf()) {
4722 // Runtime calls with narrow memory input (no MergeMem node)
4723 // get the memory projection
4724 n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4725 if (n == nullptr) {
4726 continue;
4727 }
4728 } else if (n->Opcode() == Op_StrInflatedCopy) {
4729 // Check direct uses of StrInflatedCopy.
4730 // It is memory type Node - no special SCMemProj node.
4731 } else if (n->Opcode() == Op_StrCompressedCopy ||
4732 n->Opcode() == Op_EncodeISOArray) {
4733 // get the memory projection
4734 n = n->find_out_with(Op_SCMemProj);
4735 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4736 } else {
4737 #ifdef ASSERT
4738 if (!n->is_Mem()) {
4739 n->dump();
4740 }
4741 assert(n->is_Mem(), "memory node required.");
4742 #endif
4743 Node *addr = n->in(MemNode::Address);
4744 const Type *addr_t = igvn->type(addr);
4745 if (addr_t == Type::TOP) {
4746 continue;
4747 }
4748 assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4749 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4750 assert ((uint)alias_idx < new_index_end, "wrong alias index");
4751 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4752 if (_compile->failing()) {
4753 return;
4754 }
4755 if (mem != n->in(MemNode::Memory)) {
4760 if (n->is_Load()) {
4761 continue; // don't push users
4762 } else if (n->is_LoadStore()) {
4763 // get the memory projection
4764 n = n->find_out_with(Op_SCMemProj);
4765 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4766 }
4767 }
4768 // push user on appropriate worklist
4769 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4770 Node *use = n->fast_out(i);
4771 if (use->is_Phi() || use->is_ClearArray()) {
4772 memnode_worklist.append_if_missing(use);
4773 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4774 memnode_worklist.append_if_missing(use);
4775 } else if (use->is_MemBar() || use->is_CallLeaf()) {
4776 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4777 memnode_worklist.append_if_missing(use);
4778 }
4779 #ifdef ASSERT
4780 } else if(use->is_Mem()) {
4781 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4782 } else if (use->is_MergeMem()) {
4783 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4784 } else if (use->Opcode() == Op_EncodeISOArray) {
4785 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4786 // EncodeISOArray overwrites destination array
4787 memnode_worklist.append_if_missing(use);
4788 }
4789 } else {
4790 uint op = use->Opcode();
4791 if ((use->in(MemNode::Memory) == n) &&
4792 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4793 // They overwrite memory edge corresponding to destination array,
4794 memnode_worklist.append_if_missing(use);
4795 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4796 op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4797 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4798 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4799 n->dump();
4800 use->dump();
4801 assert(false, "EA: missing memory path");
4802 }
4803 #endif
4804 }
4805 }
4806 }
4807
4808 // Phase 3: Process MergeMem nodes from mergemem_worklist.
4809 // Walk each memory slice moving the first node encountered of each
4810 // instance type to the input corresponding to its alias index.
4811 uint length = mergemem_worklist.length();
4812 for( uint next = 0; next < length; ++next ) {
4813 MergeMemNode* nmm = mergemem_worklist.at(next);
4814 assert(!visited.test_set(nmm->_idx), "should not be visited before");
4815 // Note: we don't want to use MergeMemStream here because we only want to
4816 // scan inputs which exist at the start, not ones we add during processing.
4817 // Note 2: MergeMem may already contains instance memory slices added
4818 // during find_inst_mem() call when memory nodes were processed above.
4879 if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4880 if (_compile->do_reduce_allocation_merges()) {
4881 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4882 } else if (_invocation > 0) {
4883 _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4884 } else {
4885 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4886 }
4887 return;
4888 }
4889
4890 igvn->hash_insert(nmm);
4891 record_for_optimizer(nmm);
4892 }
4893
4894 // Phase 4: Update the inputs of non-instance memory Phis and
4895 // the Memory input of memnodes
4896 // First update the inputs of any non-instance Phi's from
4897 // which we split out an instance Phi. Note we don't have
4898 // to recursively process Phi's encountered on the input memory
4899 // chains as is done in split_memory_phi() since they will
4900 // also be processed here.
4901 for (int j = 0; j < orig_phis.length(); j++) {
4902 PhiNode *phi = orig_phis.at(j);
4903 int alias_idx = _compile->get_alias_index(phi->adr_type());
4904 igvn->hash_delete(phi);
4905 for (uint i = 1; i < phi->req(); i++) {
4906 Node *mem = phi->in(i);
4907 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4908 if (_compile->failing()) {
4909 return;
4910 }
4911 if (mem != new_mem) {
4912 phi->set_req(i, new_mem);
4913 }
4914 }
4915 igvn->hash_insert(phi);
4916 record_for_optimizer(phi);
4917 }
4918
4919 // Update the memory inputs of MemNodes with the value we computed
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/bcEscapeAnalyzer.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/c2/barrierSetC2.hpp"
29 #include "libadt/vectset.hpp"
30 #include "memory/allocation.hpp"
31 #include "memory/metaspace.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "opto/arraycopynode.hpp"
34 #include "opto/c2compiler.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/cfgnode.hpp"
38 #include "opto/compile.hpp"
39 #include "opto/escape.hpp"
40 #include "opto/inlinetypenode.hpp"
41 #include "opto/locknode.hpp"
42 #include "opto/macro.hpp"
43 #include "opto/movenode.hpp"
44 #include "opto/narrowptrnode.hpp"
45 #include "opto/phaseX.hpp"
46 #include "opto/rootnode.hpp"
47 #include "utilities/macros.hpp"
48
49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
50 // If ReduceAllocationMerges is enabled we might call split_through_phi during
51 // split_unique_types and that will create additional nodes that need to be
52 // pushed to the ConnectionGraph. The code below bumps the initial capacity of
53 // _nodes by 10% to account for these additional nodes. If capacity is exceeded
54 // the array will be reallocated.
55 _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
56 _in_worklist(C->comp_arena()),
57 _next_pidx(0),
58 _collecting(true),
59 _verify(false),
60 _compile(C),
148 GrowableArray<SafePointNode*> sfn_worklist;
149 GrowableArray<MergeMemNode*> mergemem_worklist;
150 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
151
152 { Compile::TracePhase tp(Phase::_t_connectionGraph);
153
154 // 1. Populate Connection Graph (CG) with PointsTo nodes.
155 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space
156 // Initialize worklist
157 if (C->root() != nullptr) {
158 ideal_nodes.push(C->root());
159 }
160 // Processed ideal nodes are unique on ideal_nodes list
161 // but several ideal nodes are mapped to the phantom_obj.
162 // To avoid duplicated entries on the following worklists
163 // add the phantom_obj only once to them.
164 ptnodes_worklist.append(phantom_obj);
165 java_objects_worklist.append(phantom_obj);
166 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
167 Node* n = ideal_nodes.at(next);
168 if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) &&
169 !n->in(MemNode::Address)->is_AddP() &&
170 _igvn->type(n->in(MemNode::Address))->isa_oopptr()) {
171 // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA
172 Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0));
173 _igvn->register_new_node_with_optimizer(addp);
174 _igvn->replace_input_of(n, MemNode::Address, addp);
175 ideal_nodes.push(addp);
176 _nodes.at_put_grow(addp->_idx, nullptr, nullptr);
177 }
178 // Create PointsTo nodes and add them to Connection Graph. Called
179 // only once per ideal node since ideal_nodes is Unique_Node list.
180 add_node_to_connection_graph(n, &delayed_worklist);
181 PointsToNode* ptn = ptnode_adr(n->_idx);
182 if (ptn != nullptr && ptn != phantom_obj) {
183 ptnodes_worklist.append(ptn);
184 if (ptn->is_JavaObject()) {
185 java_objects_worklist.append(ptn->as_JavaObject());
186 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
187 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
188 // Only allocations and java static calls results are interesting.
189 non_escaped_allocs_worklist.append(ptn->as_JavaObject());
190 }
191 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
192 oop_fields_worklist.append(ptn->as_Field());
193 }
194 }
195 // Collect some interesting nodes for further use.
196 switch (n->Opcode()) {
197 case Op_MergeMem:
408 split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
409 if (C->failing()) {
410 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
411 return false;
412 }
413 C->print_method(PHASE_AFTER_EA, 2);
414
415 #ifdef ASSERT
416 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
417 tty->print("=== No allocations eliminated for ");
418 C->method()->print_short_name();
419 if (!EliminateAllocations) {
420 tty->print(" since EliminateAllocations is off ===");
421 } else if(!has_scalar_replaceable_candidates) {
422 tty->print(" since there are no scalar replaceable candidates ===");
423 }
424 tty->cr();
425 #endif
426 }
427
428 // 6. Expand flat accesses if the object does not escape. This adds nodes to
429 // the graph, so it has to be after split_unique_types. This expands atomic
430 // mismatched accesses (though encapsulated in LoadFlats and StoreFlats) into
431 // non-mismatched accesses, so it is better before reduce allocation merges.
432 if (has_non_escaping_obj) {
433 optimize_flat_accesses(sfn_worklist);
434 }
435
436 // 7. Reduce allocation merges used as debug information. This is done after
437 // split_unique_types because the methods used to create SafePointScalarObject
438 // need to traverse the memory graph to find values for object fields. We also
439 // set to null the scalarized inputs of reducible Phis so that the Allocate
440 // that they point can be later scalar replaced.
441 bool delay = _igvn->delay_transform();
442 _igvn->set_delay_transform(true);
443 for (uint i = 0; i < reducible_merges.size(); i++) {
444 Node* n = reducible_merges.at(i);
445 if (n->outcnt() > 0) {
446 if (!reduce_phi_on_safepoints(n->as_Phi())) {
447 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
448 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
449 return false;
450 }
451
452 // Now we set the scalar replaceable inputs of ophi to null, which is
453 // the last piece that would prevent it from being scalar replaceable.
454 reset_scalar_replaceable_entries(n->as_Phi());
455 }
456 }
1255
1256 // The next two inputs are:
1257 // (1) A copy of the original pointer to NSR objects.
1258 // (2) A selector, used to decide if we need to rematerialize an object
1259 // or use the pointer to a NSR object.
1260 // See more details of these fields in the declaration of SafePointScalarMergeNode
1261 sfpt->add_req(nsr_merge_pointer);
1262 sfpt->add_req(selector);
1263
1264 for (uint i = 1; i < ophi->req(); i++) {
1265 Node* base = ophi->in(i);
1266 JavaObjectNode* ptn = unique_java_object(base);
1267
1268 // If the base is not scalar replaceable we don't need to register information about
1269 // it at this time.
1270 if (ptn == nullptr || !ptn->scalar_replaceable()) {
1271 continue;
1272 }
1273
1274 AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1275 Unique_Node_List value_worklist;
1276 #ifdef ASSERT
1277 const Type* res_type = alloc->result_cast()->bottom_type();
1278 if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) {
1279 PhiNode* phi = ophi->as_Phi();
1280 assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity");
1281 }
1282 #endif
1283 SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist);
1284 if (sobj == nullptr) {
1285 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1286 return false;
1287 }
1288
1289 // Now make a pass over the debug information replacing any references
1290 // to the allocated object with "sobj"
1291 Node* ccpp = alloc->result_cast();
1292 sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1293
1294 // Register the scalarized object as a candidate for reallocation
1295 smerge->add_req(sobj);
1296
1297 // Scalarize inline types that were added to the safepoint.
1298 // Don't allow linking a constant oop (if available) for flat array elements
1299 // because Deoptimization::reassign_flat_array_elements needs field values.
1300 const bool allow_oop = !merge_t->is_flat();
1301 for (uint j = 0; j < value_worklist.size(); ++j) {
1302 InlineTypeNode* vt = value_worklist.at(j)->as_InlineType();
1303 vt->make_scalar_in_safepoints(_igvn, allow_oop);
1304 }
1305 }
1306
1307 // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1308 sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1309
1310 // The call to 'replace_edges_in_range' above might have removed the
1311 // reference to ophi that we need at _merge_pointer_idx. The line below make
1312 // sure the reference is maintained.
1313 sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1314 _igvn->_worklist.push(sfpt);
1315 }
1316
1317 return true;
1318 }
1319
1320 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) {
1321 bool delay = _igvn->delay_transform();
1322 _igvn->set_delay_transform(true);
1323 _igvn->hash_delete(ophi);
1324
1483 return false;
1484 }
1485
1486 // Returns true if at least one of the arguments to the call is an object
1487 // that does not escape globally.
1488 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1489 if (call->method() != nullptr) {
1490 uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1491 for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1492 Node* p = call->in(idx);
1493 if (not_global_escape(p)) {
1494 return true;
1495 }
1496 }
1497 } else {
1498 const char* name = call->as_CallStaticJava()->_name;
1499 assert(name != nullptr, "no name");
1500 // no arg escapes through uncommon traps
1501 if (strcmp(name, "uncommon_trap") != 0) {
1502 // process_call_arguments() assumes that all arguments escape globally
1503 const TypeTuple* d = call->tf()->domain_sig();
1504 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1505 const Type* at = d->field_at(i);
1506 if (at->isa_oopptr() != nullptr) {
1507 return true;
1508 }
1509 }
1510 }
1511 }
1512 return false;
1513 }
1514
1515
1516
1517 // Utility function for nodes that load an object
1518 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1519 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1520 // ThreadLocal has RawPtr type.
1521 const Type* t = _igvn->type(n);
1522 if (t->make_ptr() != nullptr) {
1523 Node* adr = n->in(MemNode::Address);
1557 // first IGVN optimization when escape information is still available.
1558 record_for_optimizer(n);
1559 } else if (n->is_Allocate()) {
1560 add_call_node(n->as_Call());
1561 record_for_optimizer(n);
1562 } else {
1563 if (n->is_CallStaticJava()) {
1564 const char* name = n->as_CallStaticJava()->_name;
1565 if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1566 return; // Skip uncommon traps
1567 }
1568 }
1569 // Don't mark as processed since call's arguments have to be processed.
1570 delayed_worklist->push(n);
1571 // Check if a call returns an object.
1572 if ((n->as_Call()->returns_pointer() &&
1573 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1574 (n->is_CallStaticJava() &&
1575 n->as_CallStaticJava()->is_boxing_method())) {
1576 add_call_node(n->as_Call());
1577 } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) {
1578 bool returns_oop = false;
1579 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
1580 ProjNode* pn = n->fast_out(i)->as_Proj();
1581 if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
1582 returns_oop = true;
1583 }
1584 }
1585 if (returns_oop) {
1586 add_call_node(n->as_Call());
1587 }
1588 }
1589 }
1590 return;
1591 }
1592 // Put this check here to process call arguments since some call nodes
1593 // point to phantom_obj.
1594 if (n_ptn == phantom_obj || n_ptn == null_obj) {
1595 return; // Skip predefined nodes.
1596 }
1597 switch (opcode) {
1598 case Op_AddP: {
1599 Node* base = get_addp_base(n);
1600 PointsToNode* ptn_base = ptnode_adr(base->_idx);
1601 // Field nodes are created for all field types. They are used in
1602 // adjust_scalar_replaceable_state() and split_unique_types().
1603 // Note, non-oop fields will have only base edges in Connection
1604 // Graph because such fields are not used for oop loads and stores.
1605 int offset = address_offset(n, igvn);
1606 add_field(n, PointsToNode::NoEscape, offset);
1607 if (ptn_base == nullptr) {
1608 delayed_worklist->push(n); // Process it later.
1609 } else {
1610 n_ptn = ptnode_adr(n_idx);
1611 add_base(n_ptn->as_Field(), ptn_base);
1612 }
1613 break;
1614 }
1615 case Op_CastX2P:
1616 case Op_CastI2N: {
1617 map_ideal_node(n, phantom_obj);
1618 break;
1619 }
1620 case Op_InlineType:
1621 case Op_CastPP:
1622 case Op_CheckCastPP:
1623 case Op_EncodeP:
1624 case Op_DecodeN:
1625 case Op_EncodePKlass:
1626 case Op_DecodeNKlass: {
1627 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1628 break;
1629 }
1630 case Op_CMoveP: {
1631 add_local_var(n, PointsToNode::NoEscape);
1632 // Do not add edges during first iteration because some could be
1633 // not defined yet.
1634 delayed_worklist->push(n);
1635 break;
1636 }
1637 case Op_ConP:
1638 case Op_ConN:
1639 case Op_ConNKlass: {
1640 // assume all oop constants globally escape except for null
1670 break;
1671 }
1672 case Op_PartialSubtypeCheck: {
1673 // Produces Null or notNull and is used in only in CmpP so
1674 // phantom_obj could be used.
1675 map_ideal_node(n, phantom_obj); // Result is unknown
1676 break;
1677 }
1678 case Op_Phi: {
1679 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1680 // ThreadLocal has RawPtr type.
1681 const Type* t = n->as_Phi()->type();
1682 if (t->make_ptr() != nullptr) {
1683 add_local_var(n, PointsToNode::NoEscape);
1684 // Do not add edges during first iteration because some could be
1685 // not defined yet.
1686 delayed_worklist->push(n);
1687 }
1688 break;
1689 }
1690 case Op_LoadFlat:
1691 // Treat LoadFlat similar to an unknown call that receives nothing and produces its results
1692 map_ideal_node(n, phantom_obj);
1693 break;
1694 case Op_StoreFlat:
1695 // Treat StoreFlat similar to a call that escapes the stored flattened fields
1696 delayed_worklist->push(n);
1697 break;
1698 case Op_Proj: {
1699 // we are only interested in the oop result projection from a call
1700 if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
1701 (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
1702 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1703 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1704 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1705 } else if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_LoadFlat() && igvn->type(n)->isa_ptr()) {
1706 // Treat LoadFlat outputs similar to a call return value
1707 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1708 }
1709 break;
1710 }
1711 case Op_Rethrow: // Exception object escapes
1712 case Op_Return: {
1713 if (n->req() > TypeFunc::Parms &&
1714 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1715 // Treat Return value as LocalVar with GlobalEscape escape state.
1716 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1717 }
1718 break;
1719 }
1720 case Op_CompareAndExchangeP:
1721 case Op_CompareAndExchangeN:
1722 case Op_GetAndSetP:
1723 case Op_GetAndSetN: {
1724 add_objload_to_connection_graph(n, delayed_worklist);
1725 // fall-through
1726 }
1772 break;
1773 }
1774 default:
1775 ; // Do nothing for nodes not related to EA.
1776 }
1777 return;
1778 }
1779
1780 // Add final simple edges to graph.
1781 void ConnectionGraph::add_final_edges(Node *n) {
1782 PointsToNode* n_ptn = ptnode_adr(n->_idx);
1783 #ifdef ASSERT
1784 if (_verify && n_ptn->is_JavaObject())
1785 return; // This method does not change graph for JavaObject.
1786 #endif
1787
1788 if (n->is_Call()) {
1789 process_call_arguments(n->as_Call());
1790 return;
1791 }
1792 assert(n->is_Store() || n->is_LoadStore() || n->is_StoreFlat() ||
1793 ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1794 "node should be registered already");
1795 int opcode = n->Opcode();
1796 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1797 if (gc_handled) {
1798 return; // Ignore node if already handled by GC.
1799 }
1800 switch (opcode) {
1801 case Op_AddP: {
1802 Node* base = get_addp_base(n);
1803 PointsToNode* ptn_base = ptnode_adr(base->_idx);
1804 assert(ptn_base != nullptr, "field's base should be registered");
1805 add_base(n_ptn->as_Field(), ptn_base);
1806 break;
1807 }
1808 case Op_InlineType:
1809 case Op_CastPP:
1810 case Op_CheckCastPP:
1811 case Op_EncodeP:
1812 case Op_DecodeN:
1813 case Op_EncodePKlass:
1814 case Op_DecodeNKlass: {
1815 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1816 break;
1817 }
1818 case Op_CMoveP: {
1819 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1820 Node* in = n->in(i);
1821 if (in == nullptr) {
1822 continue; // ignore null
1823 }
1824 Node* uncast_in = in->uncast();
1825 if (uncast_in->is_top() || uncast_in == n) {
1826 continue; // ignore top or inputs which go back this node
1827 }
1828 PointsToNode* ptn = ptnode_adr(in->_idx);
1841 }
1842 case Op_Phi: {
1843 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1844 // ThreadLocal has RawPtr type.
1845 assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1846 for (uint i = 1; i < n->req(); i++) {
1847 Node* in = n->in(i);
1848 if (in == nullptr) {
1849 continue; // ignore null
1850 }
1851 Node* uncast_in = in->uncast();
1852 if (uncast_in->is_top() || uncast_in == n) {
1853 continue; // ignore top or inputs which go back this node
1854 }
1855 PointsToNode* ptn = ptnode_adr(in->_idx);
1856 assert(ptn != nullptr, "node should be registered");
1857 add_edge(n_ptn, ptn);
1858 }
1859 break;
1860 }
1861 case Op_StoreFlat: {
1862 // StoreFlat globally escapes its stored flattened fields
1863 InlineTypeNode* value = n->as_StoreFlat()->value();
1864 ciInlineKlass* vk = _igvn->type(value)->inline_klass();
1865 for (int i = 0; i < vk->nof_nonstatic_fields(); i++) {
1866 ciField* field = vk->nonstatic_field_at(i);
1867 if (field->type()->is_primitive_type()) {
1868 continue;
1869 }
1870
1871 Node* field_value = value->field_value_by_offset(field->offset_in_bytes(), true);
1872 PointsToNode* field_value_ptn = ptnode_adr(field_value->_idx);
1873 set_escape_state(field_value_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "store into a flat field"));
1874 }
1875 break;
1876 }
1877 case Op_Proj: {
1878 if (n->in(0)->is_Call()) {
1879 // we are only interested in the oop result projection from a call
1880 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1881 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1882 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1883 } else if (n->in(0)->is_LoadFlat()) {
1884 // Treat LoadFlat outputs similar to a call return value
1885 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1886 }
1887 break;
1888 }
1889 case Op_Rethrow: // Exception object escapes
1890 case Op_Return: {
1891 assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1892 "Unexpected node type");
1893 // Treat Return value as LocalVar with GlobalEscape escape state.
1894 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1895 break;
1896 }
1897 case Op_CompareAndExchangeP:
1898 case Op_CompareAndExchangeN:
1899 case Op_GetAndSetP:
1900 case Op_GetAndSetN:{
1901 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1902 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1903 // fall-through
1904 }
1905 case Op_CompareAndSwapP:
1906 case Op_CompareAndSwapN:
2041 PointsToNode* ptn = ptnode_adr(val->_idx);
2042 assert(ptn != nullptr, "node should be registered");
2043 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
2044 // Add edge to object for unsafe access with offset.
2045 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
2046 assert(adr_ptn != nullptr, "node should be registered");
2047 if (adr_ptn->is_Field()) {
2048 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
2049 add_edge(adr_ptn, ptn);
2050 }
2051 return true;
2052 }
2053 #ifdef ASSERT
2054 n->dump(1);
2055 assert(false, "not unsafe");
2056 #endif
2057 return false;
2058 }
2059
2060 void ConnectionGraph::add_call_node(CallNode* call) {
2061 assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer");
2062 uint call_idx = call->_idx;
2063 if (call->is_Allocate()) {
2064 Node* k = call->in(AllocateNode::KlassNode);
2065 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2066 assert(kt != nullptr, "TypeKlassPtr required.");
2067 PointsToNode::EscapeState es = PointsToNode::NoEscape;
2068 bool scalar_replaceable = true;
2069 NOT_PRODUCT(const char* nsr_reason = "");
2070 if (call->is_AllocateArray()) {
2071 if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2072 es = PointsToNode::GlobalEscape;
2073 } else {
2074 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2075 if (length < 0) {
2076 // Not scalar replaceable if the length is not constant.
2077 scalar_replaceable = false;
2078 NOT_PRODUCT(nsr_reason = "has a non-constant length");
2079 } else if (length > EliminateAllocationArraySizeLimit) {
2080 // Not scalar replaceable if the length is too big.
2081 scalar_replaceable = false;
2117 //
2118 // - all oop arguments are escaping globally;
2119 //
2120 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2121 //
2122 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
2123 //
2124 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2125 // - mapped to NoEscape JavaObject node if non-escaping object allocated
2126 // during call is returned;
2127 // - mapped to ArgEscape LocalVar node pointed to object arguments
2128 // which are returned and does not escape during call;
2129 //
2130 // - oop arguments escaping status is defined by bytecode analysis;
2131 //
2132 // For a static call, we know exactly what method is being called.
2133 // Use bytecode estimator to record whether the call's return value escapes.
2134 ciMethod* meth = call->as_CallJava()->method();
2135 if (meth == nullptr) {
2136 const char* name = call->as_CallStaticJava()->_name;
2137 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2138 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 ||
2139 strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "TODO: add failed case check");
2140 // Returns a newly allocated non-escaped object.
2141 add_java_object(call, PointsToNode::NoEscape);
2142 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2143 } else if (meth->is_boxing_method()) {
2144 // Returns boxing object
2145 PointsToNode::EscapeState es;
2146 vmIntrinsics::ID intr = meth->intrinsic_id();
2147 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2148 // It does not escape if object is always allocated.
2149 es = PointsToNode::NoEscape;
2150 } else {
2151 // It escapes globally if object could be loaded from cache.
2152 es = PointsToNode::GlobalEscape;
2153 }
2154 add_java_object(call, es);
2155 if (es == PointsToNode::GlobalEscape) {
2156 set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2157 }
2158 } else {
2159 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2160 call_analyzer->copy_dependencies(_compile->dependencies());
2161 if (call_analyzer->is_return_allocated()) {
2162 // Returns a newly allocated non-escaped object, simply
2163 // update dependency information.
2164 // Mark it as NoEscape so that objects referenced by
2165 // it's fields will be marked as NoEscape at least.
2166 add_java_object(call, PointsToNode::NoEscape);
2167 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2168 } else {
2169 // Determine whether any arguments are returned.
2170 const TypeTuple* d = call->tf()->domain_cc();
2171 bool ret_arg = false;
2172 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2173 if (d->field_at(i)->isa_ptr() != nullptr &&
2174 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2175 ret_arg = true;
2176 break;
2177 }
2178 }
2179 if (ret_arg) {
2180 add_local_var(call, PointsToNode::ArgEscape);
2181 } else {
2182 // Returns unknown object.
2183 map_ideal_node(call, phantom_obj);
2184 }
2185 }
2186 }
2187 } else {
2188 // An other type of call, assume the worst case:
2189 // returned value is unknown and globally escapes.
2190 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2198 #ifdef ASSERT
2199 case Op_Allocate:
2200 case Op_AllocateArray:
2201 case Op_Lock:
2202 case Op_Unlock:
2203 assert(false, "should be done already");
2204 break;
2205 #endif
2206 case Op_ArrayCopy:
2207 case Op_CallLeafNoFP:
2208 // Most array copies are ArrayCopy nodes at this point but there
2209 // are still a few direct calls to the copy subroutines (See
2210 // PhaseStringOpts::copy_string())
2211 is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2212 call->as_CallLeaf()->is_call_to_arraycopystub();
2213 // fall through
2214 case Op_CallLeafVector:
2215 case Op_CallLeaf: {
2216 // Stub calls, objects do not escape but they are not scale replaceable.
2217 // Adjust escape state for outgoing arguments.
2218 const TypeTuple * d = call->tf()->domain_sig();
2219 bool src_has_oops = false;
2220 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2221 const Type* at = d->field_at(i);
2222 Node *arg = call->in(i);
2223 if (arg == nullptr) {
2224 continue;
2225 }
2226 const Type *aat = _igvn->type(arg);
2227 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2228 continue;
2229 }
2230 if (arg->is_AddP()) {
2231 //
2232 // The inline_native_clone() case when the arraycopy stub is called
2233 // after the allocation before Initialize and CheckCastPP nodes.
2234 // Or normal arraycopy for object arrays case.
2235 //
2236 // Set AddP's base (Allocate) as not scalar replaceable since
2237 // pointer to the base (with offset) is passed as argument.
2238 //
2239 arg = get_addp_base(arg);
2240 }
2241 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2242 assert(arg_ptn != nullptr, "should be registered");
2243 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2244 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2245 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2246 aat->isa_ptr() != nullptr, "expecting an Ptr");
2247 bool arg_has_oops = aat->isa_oopptr() &&
2248 (aat->isa_instptr() ||
2249 (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) ||
2250 (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr &&
2251 aat->isa_aryptr()->is_flat() &&
2252 aat->isa_aryptr()->elem()->inline_klass()->contains_oops()));
2253 if (i == TypeFunc::Parms) {
2254 src_has_oops = arg_has_oops;
2255 }
2256 //
2257 // src or dst could be j.l.Object when other is basic type array:
2258 //
2259 // arraycopy(char[],0,Object*,0,size);
2260 // arraycopy(Object*,0,char[],0,size);
2261 //
2262 // Don't add edges in such cases.
2263 //
2264 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2265 arg_has_oops && (i > TypeFunc::Parms);
2266 #ifdef ASSERT
2267 if (!(is_arraycopy ||
2268 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2269 (call->as_CallLeaf()->_name != nullptr &&
2270 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2271 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2272 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2296 strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2297 strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2298 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2299 strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2300 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2301 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2302 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2303 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2304 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2305 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2306 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2307 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2308 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2309 strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2310 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2311 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2312 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2313 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2314 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2315 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2316 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2317 strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 ||
2318 strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 ||
2319 strcmp(call->as_CallLeaf()->_name, "store_inline_type_fields_to_buf") == 0 ||
2320 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2321 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2322 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2323 strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2324 strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2325 strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2326 strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2327 strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2328 ))) {
2329 call->dump();
2330 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2331 }
2332 #endif
2333 // Always process arraycopy's destination object since
2334 // we need to add all possible edges to references in
2335 // source object.
2336 if (arg_esc >= PointsToNode::ArgEscape &&
2337 !arg_is_arraycopy_dest) {
2338 continue;
2339 }
2362 }
2363 }
2364 }
2365 break;
2366 }
2367 case Op_CallStaticJava: {
2368 // For a static call, we know exactly what method is being called.
2369 // Use bytecode estimator to record the call's escape affects
2370 #ifdef ASSERT
2371 const char* name = call->as_CallStaticJava()->_name;
2372 assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2373 #endif
2374 ciMethod* meth = call->as_CallJava()->method();
2375 if ((meth != nullptr) && meth->is_boxing_method()) {
2376 break; // Boxing methods do not modify any oops.
2377 }
2378 BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2379 // fall-through if not a Java method or no analyzer information
2380 if (call_analyzer != nullptr) {
2381 PointsToNode* call_ptn = ptnode_adr(call->_idx);
2382 const TypeTuple* d = call->tf()->domain_cc();
2383 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2384 const Type* at = d->field_at(i);
2385 int k = i - TypeFunc::Parms;
2386 Node* arg = call->in(i);
2387 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2388 if (at->isa_ptr() != nullptr &&
2389 call_analyzer->is_arg_returned(k)) {
2390 // The call returns arguments.
2391 if (call_ptn != nullptr) { // Is call's result used?
2392 assert(call_ptn->is_LocalVar(), "node should be registered");
2393 assert(arg_ptn != nullptr, "node should be registered");
2394 add_edge(call_ptn, arg_ptn);
2395 }
2396 }
2397 if (at->isa_oopptr() != nullptr &&
2398 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2399 if (!call_analyzer->is_arg_stack(k)) {
2400 // The argument global escapes
2401 set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2402 } else {
2406 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2407 }
2408 }
2409 }
2410 }
2411 if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2412 // The call returns arguments.
2413 assert(call_ptn->edge_count() > 0, "sanity");
2414 if (!call_analyzer->is_return_local()) {
2415 // Returns also unknown object.
2416 add_edge(call_ptn, phantom_obj);
2417 }
2418 }
2419 break;
2420 }
2421 }
2422 default: {
2423 // Fall-through here if not a Java method or no analyzer information
2424 // or some other type of call, assume the worst case: all arguments
2425 // globally escape.
2426 const TypeTuple* d = call->tf()->domain_cc();
2427 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2428 const Type* at = d->field_at(i);
2429 if (at->isa_oopptr() != nullptr) {
2430 Node* arg = call->in(i);
2431 if (arg->is_AddP()) {
2432 arg = get_addp_base(arg);
2433 }
2434 assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2435 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2436 }
2437 }
2438 }
2439 }
2440 }
2441
2442
2443 // Finish Graph construction.
2444 bool ConnectionGraph::complete_connection_graph(
2445 GrowableArray<PointsToNode*>& ptnodes_worklist,
2446 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2819 PointsToNode* base = i.get();
2820 if (base->is_JavaObject()) {
2821 // Skip Allocate's fields which will be processed later.
2822 if (base->ideal_node()->is_Allocate()) {
2823 return 0;
2824 }
2825 assert(base == null_obj, "only null ptr base expected here");
2826 }
2827 }
2828 if (add_edge(field, phantom_obj)) {
2829 // New edge was added
2830 new_edges++;
2831 add_field_uses_to_worklist(field);
2832 }
2833 return new_edges;
2834 }
2835
2836 // Find fields initializing values for allocations.
2837 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2838 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2839 PointsToNode* init_val = phantom_obj;
2840 Node* alloc = pta->ideal_node();
2841
2842 // Do nothing for Allocate nodes since its fields values are
2843 // "known" unless they are initialized by arraycopy/clone.
2844 if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2845 if (alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2846 // Null-free inline type arrays are initialized with an init value instead of null
2847 init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::InitValue)->_idx);
2848 assert(init_val != nullptr, "init value should be registered");
2849 } else {
2850 return 0;
2851 }
2852 }
2853 // Non-escaped allocation returned from Java or runtime call has unknown values in fields.
2854 assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity");
2855 #ifdef ASSERT
2856 if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) {
2857 const char* name = alloc->as_CallStaticJava()->_name;
2858 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2859 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 ||
2860 strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "sanity");
2861 }
2862 #endif
2863 // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2864 int new_edges = 0;
2865 for (EdgeIterator i(pta); i.has_next(); i.next()) {
2866 PointsToNode* field = i.get();
2867 if (field->is_Field() && field->as_Field()->is_oop()) {
2868 if (add_edge(field, init_val)) {
2869 // New edge was added
2870 new_edges++;
2871 add_field_uses_to_worklist(field->as_Field());
2872 }
2873 }
2874 }
2875 return new_edges;
2876 }
2877
2878 // Find fields initializing values for allocations.
2879 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2880 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2881 Node* alloc = pta->ideal_node();
2882 // Do nothing for Call nodes since its fields values are unknown.
2883 if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2884 return 0;
2885 }
2886 InitializeNode* ini = alloc->as_Allocate()->initialization();
2887 bool visited_bottom_offset = false;
2888 GrowableArray<int> offsets_worklist;
2889 int new_edges = 0;
2890
2891 // Check if an oop field's initializing value is recorded and add
2892 // a corresponding null if field's value if it is not recorded.
2893 // Connection Graph does not record a default initialization by null
2894 // captured by Initialize node.
2895 //
2896 for (EdgeIterator i(pta); i.has_next(); i.next()) {
2897 PointsToNode* field = i.get(); // Field (AddP)
2898 if (!field->is_Field() || !field->as_Field()->is_oop()) {
2899 continue; // Not oop field
2900 }
2901 int offset = field->as_Field()->offset();
2902 if (offset == Type::OffsetBot) {
2903 if (!visited_bottom_offset) {
2949 } else {
2950 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2951 tty->print_cr("----------init store has invalid value -----");
2952 store->dump();
2953 val->dump();
2954 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2955 }
2956 for (EdgeIterator j(val); j.has_next(); j.next()) {
2957 PointsToNode* obj = j.get();
2958 if (obj->is_JavaObject()) {
2959 if (!field->points_to(obj->as_JavaObject())) {
2960 missed_obj = obj;
2961 break;
2962 }
2963 }
2964 }
2965 }
2966 if (missed_obj != nullptr) {
2967 tty->print_cr("----------field---------------------------------");
2968 field->dump();
2969 tty->print_cr("----------missed reference to object------------");
2970 missed_obj->dump();
2971 tty->print_cr("----------object referenced by init store-------");
2972 store->dump();
2973 val->dump();
2974 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2975 }
2976 }
2977 #endif
2978 } else {
2979 // There could be initializing stores which follow allocation.
2980 // For example, a volatile field store is not collected
2981 // by Initialize node.
2982 //
2983 // Need to check for dependent loads to separate such stores from
2984 // stores which follow loads. For now, add initial value null so
2985 // that compare pointers optimization works correctly.
2986 }
2987 }
2988 if (value == nullptr) {
2989 // A field's initializing value was not recorded. Add null.
2990 if (add_edge(field, null_obj)) {
2991 // New edge was added
3315 assert(field->edge_count() > 0, "sanity");
3316 }
3317 }
3318 }
3319 }
3320 #endif
3321
3322 // Optimize ideal graph.
3323 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3324 GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3325 Compile* C = _compile;
3326 PhaseIterGVN* igvn = _igvn;
3327 if (EliminateLocks) {
3328 // Mark locks before changing ideal graph.
3329 int cnt = C->macro_count();
3330 for (int i = 0; i < cnt; i++) {
3331 Node *n = C->macro_node(i);
3332 if (n->is_AbstractLock()) { // Lock and Unlock nodes
3333 AbstractLockNode* alock = n->as_AbstractLock();
3334 if (!alock->is_non_esc_obj()) {
3335 const Type* obj_type = igvn->type(alock->obj_node());
3336 if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) {
3337 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3338 // The lock could be marked eliminated by lock coarsening
3339 // code during first IGVN before EA. Replace coarsened flag
3340 // to eliminate all associated locks/unlocks.
3341 #ifdef ASSERT
3342 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3343 #endif
3344 alock->set_non_esc_obj();
3345 }
3346 }
3347 }
3348 }
3349 }
3350
3351 if (OptimizePtrCompare) {
3352 for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3353 Node *n = ptr_cmp_worklist.at(i);
3354 assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3355 const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3356 if (tcmp->singleton()) {
3358 #ifndef PRODUCT
3359 if (PrintOptimizePtrCompare) {
3360 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3361 if (Verbose) {
3362 n->dump(1);
3363 }
3364 }
3365 #endif
3366 igvn->replace_node(n, cmp);
3367 }
3368 }
3369 }
3370
3371 // For MemBarStoreStore nodes added in library_call.cpp, check
3372 // escape status of associated AllocateNode and optimize out
3373 // MemBarStoreStore node if the allocated object never escapes.
3374 for (int i = 0; i < storestore_worklist.length(); i++) {
3375 Node* storestore = storestore_worklist.at(i);
3376 Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3377 if (alloc->is_Allocate() && not_global_escape(alloc)) {
3378 if (alloc->in(AllocateNode::InlineType) != nullptr) {
3379 // Non-escaping inline type buffer allocations don't require a membar
3380 storestore->as_MemBar()->remove(_igvn);
3381 } else {
3382 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3383 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
3384 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3385 igvn->register_new_node_with_optimizer(mb);
3386 igvn->replace_node(storestore, mb);
3387 }
3388 }
3389 }
3390 }
3391
3392 // Atomic flat accesses on non-escaping objects can be optimized to non-atomic accesses
3393 void ConnectionGraph::optimize_flat_accesses(GrowableArray<SafePointNode*>& sfn_worklist) {
3394 PhaseIterGVN& igvn = *_igvn;
3395 bool delay = igvn.delay_transform();
3396 igvn.set_delay_transform(true);
3397 igvn.C->for_each_flat_access([&](Node* n) {
3398 Node* base = n->is_LoadFlat() ? n->as_LoadFlat()->base() : n->as_StoreFlat()->base();
3399 if (!not_global_escape(base)) {
3400 return;
3401 }
3402
3403 bool expanded;
3404 if (n->is_LoadFlat()) {
3405 expanded = n->as_LoadFlat()->expand_non_atomic(igvn);
3406 } else {
3407 expanded = n->as_StoreFlat()->expand_non_atomic(igvn);
3408 }
3409 if (expanded) {
3410 sfn_worklist.remove(n->as_SafePoint());
3411 igvn.C->remove_flat_access(n);
3412 }
3413 });
3414 igvn.set_delay_transform(delay);
3415 }
3416
3417 // Optimize objects compare.
3418 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3419 const TypeInt* UNKNOWN = TypeInt::CC; // [-1, 0,1]
3420 if (!OptimizePtrCompare) {
3421 return UNKNOWN;
3422 }
3423 const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3424 const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3425
3426 PointsToNode* ptn1 = ptnode_adr(left->_idx);
3427 PointsToNode* ptn2 = ptnode_adr(right->_idx);
3428 JavaObjectNode* jobj1 = unique_java_object(left);
3429 JavaObjectNode* jobj2 = unique_java_object(right);
3430
3431 // The use of this method during allocation merge reduction may cause 'left'
3432 // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3433 // that doesn't reference an unique java object.
3434 if (ptn1 == nullptr || ptn2 == nullptr ||
3435 jobj1 == nullptr || jobj2 == nullptr) {
3436 return UNKNOWN;
3556 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3557 assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3558 PointsToNode* ptadr = _nodes.at(n->_idx);
3559 if (ptadr != nullptr) {
3560 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3561 return;
3562 }
3563 Compile* C = _compile;
3564 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3565 map_ideal_node(n, ptadr);
3566 // Add edge from arraycopy node to source object.
3567 (void)add_edge(ptadr, src);
3568 src->set_arraycopy_src();
3569 // Add edge from destination object to arraycopy node.
3570 (void)add_edge(dst, ptadr);
3571 dst->set_arraycopy_dst();
3572 }
3573
3574 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3575 const Type* adr_type = n->as_AddP()->bottom_type();
3576 int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
3577 BasicType bt = T_INT;
3578 if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
3579 // Check only oop fields.
3580 if (!adr_type->isa_aryptr() ||
3581 adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3582 adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3583 // OffsetBot is used to reference array's element. Ignore first AddP.
3584 if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3585 bt = T_OBJECT;
3586 }
3587 }
3588 } else if (offset != oopDesc::klass_offset_in_bytes()) {
3589 if (adr_type->isa_instptr()) {
3590 ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
3591 if (field != nullptr) {
3592 bt = field->layout_type();
3593 } else {
3594 // Check for unsafe oop field access
3595 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3596 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3597 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3598 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3599 bt = T_OBJECT;
3600 (*unsafe) = true;
3601 }
3602 }
3603 } else if (adr_type->isa_aryptr()) {
3604 if (offset == arrayOopDesc::length_offset_in_bytes()) {
3605 // Ignore array length load.
3606 } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3607 // Ignore first AddP.
3608 } else {
3609 const Type* elemtype = adr_type->is_aryptr()->elem();
3610 if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) {
3611 ciInlineKlass* vk = elemtype->inline_klass();
3612 field_offset += vk->payload_offset();
3613 ciField* field = vk->get_field_by_offset(field_offset, false);
3614 if (field != nullptr) {
3615 bt = field->layout_type();
3616 } else {
3617 assert(field_offset == vk->payload_offset() + vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), field_offset);
3618 bt = T_BOOLEAN;
3619 }
3620 } else {
3621 bt = elemtype->array_element_basic_type();
3622 }
3623 }
3624 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3625 // Allocation initialization, ThreadLocal field access, unsafe access
3626 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3627 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3628 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3629 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3630 bt = T_OBJECT;
3631 }
3632 }
3633 }
3634 // Note: T_NARROWOOP is not classed as a real reference type
3635 return (is_reference_type(bt) || bt == T_NARROWOOP);
3636 }
3637
3638 // Returns unique pointed java object or null.
3639 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3640 // If the node was created after the escape computation we can't answer.
3641 uint idx = n->_idx;
3642 if (idx >= nodes_size()) {
3799 return true;
3800 }
3801 }
3802 }
3803 }
3804 }
3805 return false;
3806 }
3807
3808 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3809 const Type *adr_type = phase->type(adr);
3810 if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3811 // We are computing a raw address for a store captured by an Initialize
3812 // compute an appropriate address type. AddP cases #3 and #5 (see below).
3813 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3814 assert(offs != Type::OffsetBot ||
3815 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3816 "offset must be a constant or it is initialization of array");
3817 return offs;
3818 }
3819 return adr_type->is_ptr()->flat_offset();
3820 }
3821
3822 Node* ConnectionGraph::get_addp_base(Node *addp) {
3823 assert(addp->is_AddP(), "must be AddP");
3824 //
3825 // AddP cases for Base and Address inputs:
3826 // case #1. Direct object's field reference:
3827 // Allocate
3828 // |
3829 // Proj #5 ( oop result )
3830 // |
3831 // CheckCastPP (cast to instance type)
3832 // | |
3833 // AddP ( base == address )
3834 //
3835 // case #2. Indirect object's field reference:
3836 // Phi
3837 // |
3838 // CastPP (cast to instance type)
3839 // | |
3953 }
3954 return nullptr;
3955 }
3956
3957 //
3958 // Adjust the type and inputs of an AddP which computes the
3959 // address of a field of an instance
3960 //
3961 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3962 PhaseGVN* igvn = _igvn;
3963 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3964 assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3965 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3966 if (t == nullptr) {
3967 // We are computing a raw address for a store captured by an Initialize
3968 // compute an appropriate address type (cases #3 and #5).
3969 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3970 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3971 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3972 assert(offs != Type::OffsetBot, "offset must be a constant");
3973 if (base_t->isa_aryptr() != nullptr) {
3974 // In the case of a flat inline type array, each field has its
3975 // own slice so we need to extract the field being accessed from
3976 // the address computation
3977 t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
3978 } else {
3979 t = base_t->add_offset(offs)->is_oopptr();
3980 }
3981 }
3982 int inst_id = base_t->instance_id();
3983 assert(!t->is_known_instance() || t->instance_id() == inst_id,
3984 "old type must be non-instance or match new type");
3985
3986 // The type 't' could be subclass of 'base_t'.
3987 // As result t->offset() could be large then base_t's size and it will
3988 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3989 // constructor verifies correctness of the offset.
3990 //
3991 // It could happened on subclass's branch (from the type profiling
3992 // inlining) which was not eliminated during parsing since the exactness
3993 // of the allocation type was not propagated to the subclass type check.
3994 //
3995 // Or the type 't' could be not related to 'base_t' at all.
3996 // It could happen when CHA type is different from MDO type on a dead path
3997 // (for example, from instanceof check) which is not collapsed during parsing.
3998 //
3999 // Do nothing for such AddP node and don't process its users since
4000 // this code branch will go away.
4001 //
4002 if (!t->is_known_instance() &&
4003 !base_t->maybe_java_subtype_of(t)) {
4004 return false; // bail out
4005 }
4006 const TypePtr* tinst = base_t->add_offset(t->offset());
4007 if (tinst->isa_aryptr() && t->isa_aryptr()) {
4008 // In the case of a flat inline type array, each field has its
4009 // own slice so we need to keep track of the field being accessed.
4010 tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
4011 // Keep array properties (not flat/null-free)
4012 tinst = tinst->is_aryptr()->update_properties(t->is_aryptr());
4013 if (tinst == nullptr) {
4014 return false; // Skip dead path with inconsistent properties
4015 }
4016 }
4017
4018 // Do NOT remove the next line: ensure a new alias index is allocated
4019 // for the instance type. Note: C++ will not remove it since the call
4020 // has side effect.
4021 int alias_idx = _compile->get_alias_index(tinst);
4022 igvn->set_type(addp, tinst);
4023 // record the allocation in the node map
4024 set_map(addp, get_map(base->_idx));
4025 // Set addp's Base and Address to 'base'.
4026 Node *abase = addp->in(AddPNode::Base);
4027 Node *adr = addp->in(AddPNode::Address);
4028 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
4029 adr->in(0)->_idx == (uint)inst_id) {
4030 // Skip AddP cases #3 and #5.
4031 } else {
4032 assert(!abase->is_top(), "sanity"); // AddP case #3
4033 if (abase != base) {
4034 igvn->hash_delete(addp);
4035 addp->set_req(AddPNode::Base, base);
4036 if (abase == adr) {
4037 addp->set_req(AddPNode::Address, base);
4703 ptnode_adr(n->_idx)->dump();
4704 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4705 #endif
4706 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4707 return;
4708 } else {
4709 Node *val = get_map(jobj->idx()); // CheckCastPP node
4710 TypeNode *tn = n->as_Type();
4711 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4712 assert(tinst != nullptr && tinst->is_known_instance() &&
4713 tinst->instance_id() == jobj->idx() , "instance type expected.");
4714
4715 const Type *tn_type = igvn->type(tn);
4716 const TypeOopPtr *tn_t;
4717 if (tn_type->isa_narrowoop()) {
4718 tn_t = tn_type->make_ptr()->isa_oopptr();
4719 } else {
4720 tn_t = tn_type->isa_oopptr();
4721 }
4722 if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4723 if (tn_t->isa_aryptr()) {
4724 // Keep array properties (not flat/null-free)
4725 tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr());
4726 if (tinst == nullptr) {
4727 continue; // Skip dead path with inconsistent properties
4728 }
4729 }
4730 if (tn_type->isa_narrowoop()) {
4731 tn_type = tinst->make_narrowoop();
4732 } else {
4733 tn_type = tinst;
4734 }
4735 igvn->hash_delete(tn);
4736 igvn->set_type(tn, tn_type);
4737 tn->set_type(tn_type);
4738 igvn->hash_insert(tn);
4739 record_for_optimizer(n);
4740 } else {
4741 assert(tn_type == TypePtr::NULL_PTR ||
4742 (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4743 "unexpected type");
4744 continue; // Skip dead path with different type
4745 }
4746 }
4747 } else {
4748 DEBUG_ONLY(n->dump();)
4749 assert(false, "EA: unexpected node");
4750 continue;
4751 }
4752 // push allocation's users on appropriate worklist
4753 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4754 Node *use = n->fast_out(i);
4755 if (use->is_Mem() && use->in(MemNode::Address) == n) {
4756 // Load/store to instance's field
4757 memnode_worklist.append_if_missing(use);
4758 } else if (use->is_MemBar()) {
4759 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4760 memnode_worklist.append_if_missing(use);
4761 }
4762 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4763 Node* addp2 = find_second_addp(use, n);
4764 if (addp2 != nullptr) {
4765 alloc_worklist.append_if_missing(addp2);
4766 }
4767 alloc_worklist.append_if_missing(use);
4768 } else if (use->is_Phi() ||
4769 use->is_CheckCastPP() ||
4770 use->is_EncodeNarrowPtr() ||
4771 use->is_DecodeNarrowPtr() ||
4772 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4773 alloc_worklist.append_if_missing(use);
4774 #ifdef ASSERT
4775 } else if (use->is_Mem()) {
4776 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4777 } else if (use->is_MergeMem()) {
4778 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4779 } else if (use->is_SafePoint()) {
4780 // Look for MergeMem nodes for calls which reference unique allocation
4781 // (through CheckCastPP nodes) even for debug info.
4782 Node* m = use->in(TypeFunc::Memory);
4783 if (m->is_MergeMem()) {
4784 assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4785 }
4786 } else if (use->Opcode() == Op_EncodeISOArray) {
4787 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4788 // EncodeISOArray overwrites destination array
4789 memnode_worklist.append_if_missing(use);
4790 }
4791 } else if (use->Opcode() == Op_Return) {
4792 // Allocation is referenced by field of returned inline type
4793 assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode");
4794 } else {
4795 uint op = use->Opcode();
4796 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4797 (use->in(MemNode::Memory) == n)) {
4798 // They overwrite memory edge corresponding to destination array,
4799 memnode_worklist.append_if_missing(use);
4800 } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4801 op == Op_CastP2X ||
4802 op == Op_FastLock || op == Op_AryEq ||
4803 op == Op_StrComp || op == Op_CountPositives ||
4804 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4805 op == Op_StrEquals || op == Op_VectorizedHashCode ||
4806 op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4807 op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck ||
4808 op == Op_ReinterpretS2HF ||
4809 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4810 n->dump();
4811 use->dump();
4812 assert(false, "EA: missing allocation reference path");
4813 }
4814 #endif
4815 }
4816 }
4817
4818 }
4819
4820 #ifdef ASSERT
4821 if (VerifyReduceAllocationMerges) {
4822 for (uint i = 0; i < reducible_merges.size(); i++) {
4823 Node* phi = reducible_merges.at(i);
4824
4825 if (!reduced_merges.member(phi)) {
4826 phi->dump(2);
4827 phi->dump(-2);
4891 // we don't need to do anything, but the users must be pushed
4892 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4893 if (n == nullptr) {
4894 continue;
4895 }
4896 } else if (n->is_CallLeaf()) {
4897 // Runtime calls with narrow memory input (no MergeMem node)
4898 // get the memory projection
4899 n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4900 if (n == nullptr) {
4901 continue;
4902 }
4903 } else if (n->Opcode() == Op_StrInflatedCopy) {
4904 // Check direct uses of StrInflatedCopy.
4905 // It is memory type Node - no special SCMemProj node.
4906 } else if (n->Opcode() == Op_StrCompressedCopy ||
4907 n->Opcode() == Op_EncodeISOArray) {
4908 // get the memory projection
4909 n = n->find_out_with(Op_SCMemProj);
4910 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4911 } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr &&
4912 strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4913 n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
4914 } else {
4915 #ifdef ASSERT
4916 if (!n->is_Mem()) {
4917 n->dump();
4918 }
4919 assert(n->is_Mem(), "memory node required.");
4920 #endif
4921 Node *addr = n->in(MemNode::Address);
4922 const Type *addr_t = igvn->type(addr);
4923 if (addr_t == Type::TOP) {
4924 continue;
4925 }
4926 assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4927 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4928 assert ((uint)alias_idx < new_index_end, "wrong alias index");
4929 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4930 if (_compile->failing()) {
4931 return;
4932 }
4933 if (mem != n->in(MemNode::Memory)) {
4938 if (n->is_Load()) {
4939 continue; // don't push users
4940 } else if (n->is_LoadStore()) {
4941 // get the memory projection
4942 n = n->find_out_with(Op_SCMemProj);
4943 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4944 }
4945 }
4946 // push user on appropriate worklist
4947 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4948 Node *use = n->fast_out(i);
4949 if (use->is_Phi() || use->is_ClearArray()) {
4950 memnode_worklist.append_if_missing(use);
4951 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4952 memnode_worklist.append_if_missing(use);
4953 } else if (use->is_MemBar() || use->is_CallLeaf()) {
4954 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4955 memnode_worklist.append_if_missing(use);
4956 }
4957 #ifdef ASSERT
4958 } else if (use->is_Mem()) {
4959 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4960 } else if (use->is_MergeMem()) {
4961 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4962 } else if (use->Opcode() == Op_EncodeISOArray) {
4963 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4964 // EncodeISOArray overwrites destination array
4965 memnode_worklist.append_if_missing(use);
4966 }
4967 } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr &&
4968 strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4969 // store_unknown_inline overwrites destination array
4970 memnode_worklist.append_if_missing(use);
4971 } else {
4972 uint op = use->Opcode();
4973 if ((use->in(MemNode::Memory) == n) &&
4974 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4975 // They overwrite memory edge corresponding to destination array,
4976 memnode_worklist.append_if_missing(use);
4977 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4978 op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4979 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4980 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) {
4981 n->dump();
4982 use->dump();
4983 assert(false, "EA: missing memory path");
4984 }
4985 #endif
4986 }
4987 }
4988 }
4989
4990 // Phase 3: Process MergeMem nodes from mergemem_worklist.
4991 // Walk each memory slice moving the first node encountered of each
4992 // instance type to the input corresponding to its alias index.
4993 uint length = mergemem_worklist.length();
4994 for( uint next = 0; next < length; ++next ) {
4995 MergeMemNode* nmm = mergemem_worklist.at(next);
4996 assert(!visited.test_set(nmm->_idx), "should not be visited before");
4997 // Note: we don't want to use MergeMemStream here because we only want to
4998 // scan inputs which exist at the start, not ones we add during processing.
4999 // Note 2: MergeMem may already contains instance memory slices added
5000 // during find_inst_mem() call when memory nodes were processed above.
5061 if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
5062 if (_compile->do_reduce_allocation_merges()) {
5063 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
5064 } else if (_invocation > 0) {
5065 _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
5066 } else {
5067 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
5068 }
5069 return;
5070 }
5071
5072 igvn->hash_insert(nmm);
5073 record_for_optimizer(nmm);
5074 }
5075
5076 // Phase 4: Update the inputs of non-instance memory Phis and
5077 // the Memory input of memnodes
5078 // First update the inputs of any non-instance Phi's from
5079 // which we split out an instance Phi. Note we don't have
5080 // to recursively process Phi's encountered on the input memory
5081 // chains as is done in split_memory_phi() since they will
5082 // also be processed here.
5083 for (int j = 0; j < orig_phis.length(); j++) {
5084 PhiNode *phi = orig_phis.at(j);
5085 int alias_idx = _compile->get_alias_index(phi->adr_type());
5086 igvn->hash_delete(phi);
5087 for (uint i = 1; i < phi->req(); i++) {
5088 Node *mem = phi->in(i);
5089 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
5090 if (_compile->failing()) {
5091 return;
5092 }
5093 if (mem != new_mem) {
5094 phi->set_req(i, new_mem);
5095 }
5096 }
5097 igvn->hash_insert(phi);
5098 record_for_optimizer(phi);
5099 }
5100
5101 // Update the memory inputs of MemNodes with the value we computed
|