< prev index next >

src/hotspot/share/opto/escape.cpp

Print this page

  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"

  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"

  38 #include "opto/macro.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/phaseX.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/castnode.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),

 146   GrowableArray<SafePointNode*>  sfn_worklist;
 147   GrowableArray<MergeMemNode*>   mergemem_worklist;
 148   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 149 
 150   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 151 
 152   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 153   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 154   // Initialize worklist
 155   if (C->root() != nullptr) {
 156     ideal_nodes.push(C->root());
 157   }
 158   // Processed ideal nodes are unique on ideal_nodes list
 159   // but several ideal nodes are mapped to the phantom_obj.
 160   // To avoid duplicated entries on the following worklists
 161   // add the phantom_obj only once to them.
 162   ptnodes_worklist.append(phantom_obj);
 163   java_objects_worklist.append(phantom_obj);
 164   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 165     Node* n = ideal_nodes.at(next);










 166     // Create PointsTo nodes and add them to Connection Graph. Called
 167     // only once per ideal node since ideal_nodes is Unique_Node list.
 168     add_node_to_connection_graph(n, &delayed_worklist);
 169     PointsToNode* ptn = ptnode_adr(n->_idx);
 170     if (ptn != nullptr && ptn != phantom_obj) {
 171       ptnodes_worklist.append(ptn);
 172       if (ptn->is_JavaObject()) {
 173         java_objects_worklist.append(ptn->as_JavaObject());
 174         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 175             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 176           // Only allocations and java static calls results are interesting.
 177           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 178         }
 179       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 180         oop_fields_worklist.append(ptn->as_Field());
 181       }
 182     }
 183     // Collect some interesting nodes for further use.
 184     switch (n->Opcode()) {
 185       case Op_MergeMem:

1235 
1236     // The next two inputs are:
1237     //  (1) A copy of the original pointer to NSR objects.
1238     //  (2) A selector, used to decide if we need to rematerialize an object
1239     //      or use the pointer to a NSR object.
1240     // See more details of these fields in the declaration of SafePointScalarMergeNode
1241     sfpt->add_req(nsr_merge_pointer);
1242     sfpt->add_req(selector);
1243 
1244     for (uint i = 1; i < ophi->req(); i++) {
1245       Node* base = ophi->in(i);
1246       JavaObjectNode* ptn = unique_java_object(base);
1247 
1248       // If the base is not scalar replaceable we don't need to register information about
1249       // it at this time.
1250       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1251         continue;
1252       }
1253 
1254       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1255       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);








1256       if (sobj == nullptr) {

1257         return false;
1258       }
1259 
1260       // Now make a pass over the debug information replacing any references
1261       // to the allocated object with "sobj"
1262       Node* ccpp = alloc->result_cast();
1263       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1264 
1265       // Register the scalarized object as a candidate for reallocation
1266       smerge->add_req(sobj);









1267     }
1268 
1269     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1270     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1271 
1272     // The call to 'replace_edges_in_range' above might have removed the
1273     // reference to ophi that we need at _merge_pointer_idx. The line below make
1274     // sure the reference is maintained.
1275     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1276     _igvn->_worklist.push(sfpt);
1277   }
1278 
1279   return true;
1280 }
1281 
1282 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1283   bool delay = _igvn->delay_transform();
1284   _igvn->set_delay_transform(true);
1285   _igvn->hash_delete(ophi);
1286 

1445   return false;
1446 }
1447 
1448 // Returns true if at least one of the arguments to the call is an object
1449 // that does not escape globally.
1450 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1451   if (call->method() != nullptr) {
1452     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1453     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1454       Node* p = call->in(idx);
1455       if (not_global_escape(p)) {
1456         return true;
1457       }
1458     }
1459   } else {
1460     const char* name = call->as_CallStaticJava()->_name;
1461     assert(name != nullptr, "no name");
1462     // no arg escapes through uncommon traps
1463     if (strcmp(name, "uncommon_trap") != 0) {
1464       // process_call_arguments() assumes that all arguments escape globally
1465       const TypeTuple* d = call->tf()->domain();
1466       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1467         const Type* at = d->field_at(i);
1468         if (at->isa_oopptr() != nullptr) {
1469           return true;
1470         }
1471       }
1472     }
1473   }
1474   return false;
1475 }
1476 
1477 
1478 
1479 // Utility function for nodes that load an object
1480 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1481   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1482   // ThreadLocal has RawPtr type.
1483   const Type* t = _igvn->type(n);
1484   if (t->make_ptr() != nullptr) {
1485     Node* adr = n->in(MemNode::Address);

1519       // first IGVN optimization when escape information is still available.
1520       record_for_optimizer(n);
1521     } else if (n->is_Allocate()) {
1522       add_call_node(n->as_Call());
1523       record_for_optimizer(n);
1524     } else {
1525       if (n->is_CallStaticJava()) {
1526         const char* name = n->as_CallStaticJava()->_name;
1527         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1528           return; // Skip uncommon traps
1529         }
1530       }
1531       // Don't mark as processed since call's arguments have to be processed.
1532       delayed_worklist->push(n);
1533       // Check if a call returns an object.
1534       if ((n->as_Call()->returns_pointer() &&
1535            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1536           (n->is_CallStaticJava() &&
1537            n->as_CallStaticJava()->is_boxing_method())) {
1538         add_call_node(n->as_Call());











1539       }
1540     }
1541     return;
1542   }
1543   // Put this check here to process call arguments since some call nodes
1544   // point to phantom_obj.
1545   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1546     return; // Skip predefined nodes.
1547   }
1548   switch (opcode) {
1549     case Op_AddP: {
1550       Node* base = get_addp_base(n);
1551       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1552       // Field nodes are created for all field types. They are used in
1553       // adjust_scalar_replaceable_state() and split_unique_types().
1554       // Note, non-oop fields will have only base edges in Connection
1555       // Graph because such fields are not used for oop loads and stores.
1556       int offset = address_offset(n, igvn);
1557       add_field(n, PointsToNode::NoEscape, offset);
1558       if (ptn_base == nullptr) {
1559         delayed_worklist->push(n); // Process it later.
1560       } else {
1561         n_ptn = ptnode_adr(n_idx);
1562         add_base(n_ptn->as_Field(), ptn_base);
1563       }
1564       break;
1565     }
1566     case Op_CastX2P: {

1567       map_ideal_node(n, phantom_obj);
1568       break;
1569     }

1570     case Op_CastPP:
1571     case Op_CheckCastPP:
1572     case Op_EncodeP:
1573     case Op_DecodeN:
1574     case Op_EncodePKlass:
1575     case Op_DecodeNKlass: {
1576       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1577       break;
1578     }
1579     case Op_CMoveP: {
1580       add_local_var(n, PointsToNode::NoEscape);
1581       // Do not add edges during first iteration because some could be
1582       // not defined yet.
1583       delayed_worklist->push(n);
1584       break;
1585     }
1586     case Op_ConP:
1587     case Op_ConN:
1588     case Op_ConNKlass: {
1589       // assume all oop constants globally escape except for null

1621     case Op_PartialSubtypeCheck: {
1622       // Produces Null or notNull and is used in only in CmpP so
1623       // phantom_obj could be used.
1624       map_ideal_node(n, phantom_obj); // Result is unknown
1625       break;
1626     }
1627     case Op_Phi: {
1628       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1629       // ThreadLocal has RawPtr type.
1630       const Type* t = n->as_Phi()->type();
1631       if (t->make_ptr() != nullptr) {
1632         add_local_var(n, PointsToNode::NoEscape);
1633         // Do not add edges during first iteration because some could be
1634         // not defined yet.
1635         delayed_worklist->push(n);
1636       }
1637       break;
1638     }
1639     case Op_Proj: {
1640       // we are only interested in the oop result projection from a call
1641       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1642           n->in(0)->as_Call()->returns_pointer()) {


1643         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1644       }
1645       break;
1646     }
1647     case Op_Rethrow: // Exception object escapes
1648     case Op_Return: {
1649       if (n->req() > TypeFunc::Parms &&
1650           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1651         // Treat Return value as LocalVar with GlobalEscape escape state.
1652         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1653       }
1654       break;
1655     }
1656     case Op_CompareAndExchangeP:
1657     case Op_CompareAndExchangeN:
1658     case Op_GetAndSetP:
1659     case Op_GetAndSetN: {
1660       add_objload_to_connection_graph(n, delayed_worklist);
1661       // fall-through
1662     }

1724   if (n->is_Call()) {
1725     process_call_arguments(n->as_Call());
1726     return;
1727   }
1728   assert(n->is_Store() || n->is_LoadStore() ||
1729          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1730          "node should be registered already");
1731   int opcode = n->Opcode();
1732   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1733   if (gc_handled) {
1734     return; // Ignore node if already handled by GC.
1735   }
1736   switch (opcode) {
1737     case Op_AddP: {
1738       Node* base = get_addp_base(n);
1739       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1740       assert(ptn_base != nullptr, "field's base should be registered");
1741       add_base(n_ptn->as_Field(), ptn_base);
1742       break;
1743     }

1744     case Op_CastPP:
1745     case Op_CheckCastPP:
1746     case Op_EncodeP:
1747     case Op_DecodeN:
1748     case Op_EncodePKlass:
1749     case Op_DecodeNKlass: {
1750       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1751       break;
1752     }
1753     case Op_CMoveP: {
1754       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1755         Node* in = n->in(i);
1756         if (in == nullptr) {
1757           continue;  // ignore null
1758         }
1759         Node* uncast_in = in->uncast();
1760         if (uncast_in->is_top() || uncast_in == n) {
1761           continue;  // ignore top or inputs which go back this node
1762         }
1763         PointsToNode* ptn = ptnode_adr(in->_idx);

1778       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1779       // ThreadLocal has RawPtr type.
1780       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1781       for (uint i = 1; i < n->req(); i++) {
1782         Node* in = n->in(i);
1783         if (in == nullptr) {
1784           continue;  // ignore null
1785         }
1786         Node* uncast_in = in->uncast();
1787         if (uncast_in->is_top() || uncast_in == n) {
1788           continue;  // ignore top or inputs which go back this node
1789         }
1790         PointsToNode* ptn = ptnode_adr(in->_idx);
1791         assert(ptn != nullptr, "node should be registered");
1792         add_edge(n_ptn, ptn);
1793       }
1794       break;
1795     }
1796     case Op_Proj: {
1797       // we are only interested in the oop result projection from a call
1798       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1799              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1800       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1801       break;
1802     }
1803     case Op_Rethrow: // Exception object escapes
1804     case Op_Return: {
1805       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1806              "Unexpected node type");
1807       // Treat Return value as LocalVar with GlobalEscape escape state.
1808       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1809       break;
1810     }
1811     case Op_CompareAndExchangeP:
1812     case Op_CompareAndExchangeN:
1813     case Op_GetAndSetP:
1814     case Op_GetAndSetN:{
1815       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1816       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1817       // fall-through
1818     }
1819     case Op_CompareAndSwapP:

1955     PointsToNode* ptn = ptnode_adr(val->_idx);
1956     assert(ptn != nullptr, "node should be registered");
1957     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1958     // Add edge to object for unsafe access with offset.
1959     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1960     assert(adr_ptn != nullptr, "node should be registered");
1961     if (adr_ptn->is_Field()) {
1962       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1963       add_edge(adr_ptn, ptn);
1964     }
1965     return true;
1966   }
1967 #ifdef ASSERT
1968   n->dump(1);
1969   assert(false, "not unsafe");
1970 #endif
1971   return false;
1972 }
1973 
1974 void ConnectionGraph::add_call_node(CallNode* call) {
1975   assert(call->returns_pointer(), "only for call which returns pointer");
1976   uint call_idx = call->_idx;
1977   if (call->is_Allocate()) {
1978     Node* k = call->in(AllocateNode::KlassNode);
1979     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1980     assert(kt != nullptr, "TypeKlassPtr  required.");
1981     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1982     bool scalar_replaceable = true;
1983     NOT_PRODUCT(const char* nsr_reason = "");
1984     if (call->is_AllocateArray()) {
1985       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1986         es = PointsToNode::GlobalEscape;
1987       } else {
1988         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1989         if (length < 0) {
1990           // Not scalar replaceable if the length is not constant.
1991           scalar_replaceable = false;
1992           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1993         } else if (length > EliminateAllocationArraySizeLimit) {
1994           // Not scalar replaceable if the length is too big.
1995           scalar_replaceable = false;

2031     //
2032     //    - all oop arguments are escaping globally;
2033     //
2034     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2035     //
2036     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2037     //
2038     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2039     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2040     //      during call is returned;
2041     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2042     //      which are returned and does not escape during call;
2043     //
2044     //    - oop arguments escaping status is defined by bytecode analysis;
2045     //
2046     // For a static call, we know exactly what method is being called.
2047     // Use bytecode estimator to record whether the call's return value escapes.
2048     ciMethod* meth = call->as_CallJava()->method();
2049     if (meth == nullptr) {
2050       const char* name = call->as_CallStaticJava()->_name;
2051       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");

2052       // Returns a newly allocated non-escaped object.
2053       add_java_object(call, PointsToNode::NoEscape);
2054       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2055     } else if (meth->is_boxing_method()) {
2056       // Returns boxing object
2057       PointsToNode::EscapeState es;
2058       vmIntrinsics::ID intr = meth->intrinsic_id();
2059       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2060         // It does not escape if object is always allocated.
2061         es = PointsToNode::NoEscape;
2062       } else {
2063         // It escapes globally if object could be loaded from cache.
2064         es = PointsToNode::GlobalEscape;
2065       }
2066       add_java_object(call, es);
2067       if (es == PointsToNode::GlobalEscape) {
2068         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2069       }
2070     } else {
2071       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2072       call_analyzer->copy_dependencies(_compile->dependencies());
2073       if (call_analyzer->is_return_allocated()) {
2074         // Returns a newly allocated non-escaped object, simply
2075         // update dependency information.
2076         // Mark it as NoEscape so that objects referenced by
2077         // it's fields will be marked as NoEscape at least.
2078         add_java_object(call, PointsToNode::NoEscape);
2079         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2080       } else {
2081         // Determine whether any arguments are returned.
2082         const TypeTuple* d = call->tf()->domain();
2083         bool ret_arg = false;
2084         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2085           if (d->field_at(i)->isa_ptr() != nullptr &&
2086               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2087             ret_arg = true;
2088             break;
2089           }
2090         }
2091         if (ret_arg) {
2092           add_local_var(call, PointsToNode::ArgEscape);
2093         } else {
2094           // Returns unknown object.
2095           map_ideal_node(call, phantom_obj);
2096         }
2097       }
2098     }
2099   } else {
2100     // An other type of call, assume the worst case:
2101     // returned value is unknown and globally escapes.
2102     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

2110 #ifdef ASSERT
2111     case Op_Allocate:
2112     case Op_AllocateArray:
2113     case Op_Lock:
2114     case Op_Unlock:
2115       assert(false, "should be done already");
2116       break;
2117 #endif
2118     case Op_ArrayCopy:
2119     case Op_CallLeafNoFP:
2120       // Most array copies are ArrayCopy nodes at this point but there
2121       // are still a few direct calls to the copy subroutines (See
2122       // PhaseStringOpts::copy_string())
2123       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2124         call->as_CallLeaf()->is_call_to_arraycopystub();
2125       // fall through
2126     case Op_CallLeafVector:
2127     case Op_CallLeaf: {
2128       // Stub calls, objects do not escape but they are not scale replaceable.
2129       // Adjust escape state for outgoing arguments.
2130       const TypeTuple * d = call->tf()->domain();
2131       bool src_has_oops = false;
2132       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2133         const Type* at = d->field_at(i);
2134         Node *arg = call->in(i);
2135         if (arg == nullptr) {
2136           continue;
2137         }
2138         const Type *aat = _igvn->type(arg);
2139         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2140           continue;
2141         }
2142         if (arg->is_AddP()) {
2143           //
2144           // The inline_native_clone() case when the arraycopy stub is called
2145           // after the allocation before Initialize and CheckCastPP nodes.
2146           // Or normal arraycopy for object arrays case.
2147           //
2148           // Set AddP's base (Allocate) as not scalar replaceable since
2149           // pointer to the base (with offset) is passed as argument.
2150           //
2151           arg = get_addp_base(arg);
2152         }
2153         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2154         assert(arg_ptn != nullptr, "should be registered");
2155         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2156         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2157           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2158                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2159           bool arg_has_oops = aat->isa_oopptr() &&
2160                               (aat->isa_instptr() ||
2161                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));



2162           if (i == TypeFunc::Parms) {
2163             src_has_oops = arg_has_oops;
2164           }
2165           //
2166           // src or dst could be j.l.Object when other is basic type array:
2167           //
2168           //   arraycopy(char[],0,Object*,0,size);
2169           //   arraycopy(Object*,0,char[],0,size);
2170           //
2171           // Don't add edges in such cases.
2172           //
2173           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2174                                        arg_has_oops && (i > TypeFunc::Parms);
2175 #ifdef ASSERT
2176           if (!(is_arraycopy ||
2177                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2178                 (call->as_CallLeaf()->_name != nullptr &&
2179                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2180                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2181                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

2205                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2215                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2216                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2217                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2218                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2219                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2220                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2221                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2222                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2223                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2224                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||



2225                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2226                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2227                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2228                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2229                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2232                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2233                  ))) {
2234             call->dump();
2235             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2236           }
2237 #endif
2238           // Always process arraycopy's destination object since
2239           // we need to add all possible edges to references in
2240           // source object.
2241           if (arg_esc >= PointsToNode::ArgEscape &&
2242               !arg_is_arraycopy_dest) {
2243             continue;
2244           }

2267           }
2268         }
2269       }
2270       break;
2271     }
2272     case Op_CallStaticJava: {
2273       // For a static call, we know exactly what method is being called.
2274       // Use bytecode estimator to record the call's escape affects
2275 #ifdef ASSERT
2276       const char* name = call->as_CallStaticJava()->_name;
2277       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2278 #endif
2279       ciMethod* meth = call->as_CallJava()->method();
2280       if ((meth != nullptr) && meth->is_boxing_method()) {
2281         break; // Boxing methods do not modify any oops.
2282       }
2283       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2284       // fall-through if not a Java method or no analyzer information
2285       if (call_analyzer != nullptr) {
2286         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2287         const TypeTuple* d = call->tf()->domain();
2288         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2289           const Type* at = d->field_at(i);
2290           int k = i - TypeFunc::Parms;
2291           Node* arg = call->in(i);
2292           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2293           if (at->isa_ptr() != nullptr &&
2294               call_analyzer->is_arg_returned(k)) {
2295             // The call returns arguments.
2296             if (call_ptn != nullptr) { // Is call's result used?
2297               assert(call_ptn->is_LocalVar(), "node should be registered");
2298               assert(arg_ptn != nullptr, "node should be registered");
2299               add_edge(call_ptn, arg_ptn);
2300             }
2301           }
2302           if (at->isa_oopptr() != nullptr &&
2303               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2304             if (!call_analyzer->is_arg_stack(k)) {
2305               // The argument global escapes
2306               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2307             } else {

2311                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2312               }
2313             }
2314           }
2315         }
2316         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2317           // The call returns arguments.
2318           assert(call_ptn->edge_count() > 0, "sanity");
2319           if (!call_analyzer->is_return_local()) {
2320             // Returns also unknown object.
2321             add_edge(call_ptn, phantom_obj);
2322           }
2323         }
2324         break;
2325       }
2326     }
2327     default: {
2328       // Fall-through here if not a Java method or no analyzer information
2329       // or some other type of call, assume the worst case: all arguments
2330       // globally escape.
2331       const TypeTuple* d = call->tf()->domain();
2332       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2333         const Type* at = d->field_at(i);
2334         if (at->isa_oopptr() != nullptr) {
2335           Node* arg = call->in(i);
2336           if (arg->is_AddP()) {
2337             arg = get_addp_base(arg);
2338           }
2339           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2340           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2341         }
2342       }
2343     }
2344   }
2345 }
2346 
2347 
2348 // Finish Graph construction.
2349 bool ConnectionGraph::complete_connection_graph(
2350                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2351                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2724     PointsToNode* base = i.get();
2725     if (base->is_JavaObject()) {
2726       // Skip Allocate's fields which will be processed later.
2727       if (base->ideal_node()->is_Allocate()) {
2728         return 0;
2729       }
2730       assert(base == null_obj, "only null ptr base expected here");
2731     }
2732   }
2733   if (add_edge(field, phantom_obj)) {
2734     // New edge was added
2735     new_edges++;
2736     add_field_uses_to_worklist(field);
2737   }
2738   return new_edges;
2739 }
2740 
2741 // Find fields initializing values for allocations.
2742 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2743   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");

2744   Node* alloc = pta->ideal_node();
2745 
2746   // Do nothing for Allocate nodes since its fields values are
2747   // "known" unless they are initialized by arraycopy/clone.
2748   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2749     return 0;






2750   }
2751   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");

2752 #ifdef ASSERT
2753   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2754     const char* name = alloc->as_CallStaticJava()->_name;
2755     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");

2756   }
2757 #endif
2758   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2759   int new_edges = 0;
2760   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2761     PointsToNode* field = i.get();
2762     if (field->is_Field() && field->as_Field()->is_oop()) {
2763       if (add_edge(field, phantom_obj)) {
2764         // New edge was added
2765         new_edges++;
2766         add_field_uses_to_worklist(field->as_Field());
2767       }
2768     }
2769   }
2770   return new_edges;
2771 }
2772 
2773 // Find fields initializing values for allocations.
2774 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2775   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2776   Node* alloc = pta->ideal_node();
2777   // Do nothing for Call nodes since its fields values are unknown.
2778   if (!alloc->is_Allocate()) {
2779     return 0;
2780   }
2781   InitializeNode* ini = alloc->as_Allocate()->initialization();
2782   bool visited_bottom_offset = false;
2783   GrowableArray<int> offsets_worklist;
2784   int new_edges = 0;
2785 
2786   // Check if an oop field's initializing value is recorded and add
2787   // a corresponding null if field's value if it is not recorded.
2788   // Connection Graph does not record a default initialization by null
2789   // captured by Initialize node.
2790   //
2791   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2792     PointsToNode* field = i.get(); // Field (AddP)
2793     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2794       continue; // Not oop field
2795     }
2796     int offset = field->as_Field()->offset();
2797     if (offset == Type::OffsetBot) {
2798       if (!visited_bottom_offset) {

2844               } else {
2845                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2846                   tty->print_cr("----------init store has invalid value -----");
2847                   store->dump();
2848                   val->dump();
2849                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2850                 }
2851                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2852                   PointsToNode* obj = j.get();
2853                   if (obj->is_JavaObject()) {
2854                     if (!field->points_to(obj->as_JavaObject())) {
2855                       missed_obj = obj;
2856                       break;
2857                     }
2858                   }
2859                 }
2860               }
2861               if (missed_obj != nullptr) {
2862                 tty->print_cr("----------field---------------------------------");
2863                 field->dump();
2864                 tty->print_cr("----------missed referernce to object-----------");
2865                 missed_obj->dump();
2866                 tty->print_cr("----------object referernced by init store -----");
2867                 store->dump();
2868                 val->dump();
2869                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2870               }
2871             }
2872 #endif
2873           } else {
2874             // There could be initializing stores which follow allocation.
2875             // For example, a volatile field store is not collected
2876             // by Initialize node.
2877             //
2878             // Need to check for dependent loads to separate such stores from
2879             // stores which follow loads. For now, add initial value null so
2880             // that compare pointers optimization works correctly.
2881           }
2882         }
2883         if (value == nullptr) {
2884           // A field's initializing value was not recorded. Add null.
2885           if (add_edge(field, null_obj)) {
2886             // New edge was added

3202         assert(field->edge_count() > 0, "sanity");
3203       }
3204     }
3205   }
3206 }
3207 #endif
3208 
3209 // Optimize ideal graph.
3210 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3211                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3212   Compile* C = _compile;
3213   PhaseIterGVN* igvn = _igvn;
3214   if (EliminateLocks) {
3215     // Mark locks before changing ideal graph.
3216     int cnt = C->macro_count();
3217     for (int i = 0; i < cnt; i++) {
3218       Node *n = C->macro_node(i);
3219       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3220         AbstractLockNode* alock = n->as_AbstractLock();
3221         if (!alock->is_non_esc_obj()) {
3222           if (can_eliminate_lock(alock)) {

3223             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3224             // The lock could be marked eliminated by lock coarsening
3225             // code during first IGVN before EA. Replace coarsened flag
3226             // to eliminate all associated locks/unlocks.
3227 #ifdef ASSERT
3228             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3229 #endif
3230             alock->set_non_esc_obj();
3231           }
3232         }
3233       }
3234     }
3235   }
3236 
3237   if (OptimizePtrCompare) {
3238     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3239       Node *n = ptr_cmp_worklist.at(i);
3240       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3241       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3242       if (tcmp->singleton()) {

3244 #ifndef PRODUCT
3245         if (PrintOptimizePtrCompare) {
3246           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3247           if (Verbose) {
3248             n->dump(1);
3249           }
3250         }
3251 #endif
3252         igvn->replace_node(n, cmp);
3253       }
3254     }
3255   }
3256 
3257   // For MemBarStoreStore nodes added in library_call.cpp, check
3258   // escape status of associated AllocateNode and optimize out
3259   // MemBarStoreStore node if the allocated object never escapes.
3260   for (int i = 0; i < storestore_worklist.length(); i++) {
3261     Node* storestore = storestore_worklist.at(i);
3262     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3263     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3264       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3265       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3266       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3267       igvn->register_new_node_with_optimizer(mb);
3268       igvn->replace_node(storestore, mb);





3269     }
3270   }
3271 }
3272 
3273 // Optimize objects compare.
3274 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3275   assert(OptimizePtrCompare, "sanity");
3276   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3277   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3278   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3279 
3280   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3281   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3282   JavaObjectNode* jobj1 = unique_java_object(left);
3283   JavaObjectNode* jobj2 = unique_java_object(right);
3284 
3285   // The use of this method during allocation merge reduction may cause 'left'
3286   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3287   // that doesn't reference an unique java object.
3288   if (ptn1 == nullptr || ptn2 == nullptr ||

3410   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3411   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3412   PointsToNode* ptadr = _nodes.at(n->_idx);
3413   if (ptadr != nullptr) {
3414     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3415     return;
3416   }
3417   Compile* C = _compile;
3418   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3419   map_ideal_node(n, ptadr);
3420   // Add edge from arraycopy node to source object.
3421   (void)add_edge(ptadr, src);
3422   src->set_arraycopy_src();
3423   // Add edge from destination object to arraycopy node.
3424   (void)add_edge(dst, ptadr);
3425   dst->set_arraycopy_dst();
3426 }
3427 
3428 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3429   const Type* adr_type = n->as_AddP()->bottom_type();

3430   BasicType bt = T_INT;
3431   if (offset == Type::OffsetBot) {
3432     // Check only oop fields.
3433     if (!adr_type->isa_aryptr() ||
3434         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3435         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3436       // OffsetBot is used to reference array's element. Ignore first AddP.
3437       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3438         bt = T_OBJECT;
3439       }
3440     }
3441   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3442     if (adr_type->isa_instptr()) {
3443       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3444       if (field != nullptr) {
3445         bt = field->layout_type();
3446       } else {
3447         // Check for unsafe oop field access
3448         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3449             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3450             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3451             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3452           bt = T_OBJECT;
3453           (*unsafe) = true;
3454         }
3455       }
3456     } else if (adr_type->isa_aryptr()) {
3457       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3458         // Ignore array length load.
3459       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3460         // Ignore first AddP.
3461       } else {
3462         const Type* elemtype = adr_type->isa_aryptr()->elem();
3463         bt = elemtype->array_element_basic_type();












3464       }
3465     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3466       // Allocation initialization, ThreadLocal field access, unsafe access
3467       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3468           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3469           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3470           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3471         bt = T_OBJECT;
3472       }
3473     }
3474   }
3475   // Note: T_NARROWOOP is not classed as a real reference type
3476   return (is_reference_type(bt) || bt == T_NARROWOOP);
3477 }
3478 
3479 // Returns unique pointed java object or null.
3480 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3481   // If the node was created after the escape computation we can't answer.
3482   uint idx = n->_idx;
3483   if (idx >= nodes_size()) {

3640             return true;
3641           }
3642         }
3643       }
3644     }
3645   }
3646   return false;
3647 }
3648 
3649 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3650   const Type *adr_type = phase->type(adr);
3651   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3652     // We are computing a raw address for a store captured by an Initialize
3653     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3654     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3655     assert(offs != Type::OffsetBot ||
3656            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3657            "offset must be a constant or it is initialization of array");
3658     return offs;
3659   }
3660   const TypePtr *t_ptr = adr_type->isa_ptr();
3661   assert(t_ptr != nullptr, "must be a pointer type");
3662   return t_ptr->offset();
3663 }
3664 
3665 Node* ConnectionGraph::get_addp_base(Node *addp) {
3666   assert(addp->is_AddP(), "must be AddP");
3667   //
3668   // AddP cases for Base and Address inputs:
3669   // case #1. Direct object's field reference:
3670   //     Allocate
3671   //       |
3672   //     Proj #5 ( oop result )
3673   //       |
3674   //     CheckCastPP (cast to instance type)
3675   //      | |
3676   //     AddP  ( base == address )
3677   //
3678   // case #2. Indirect object's field reference:
3679   //      Phi
3680   //       |
3681   //     CastPP (cast to instance type)
3682   //      | |

3796   }
3797   return nullptr;
3798 }
3799 
3800 //
3801 // Adjust the type and inputs of an AddP which computes the
3802 // address of a field of an instance
3803 //
3804 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3805   PhaseGVN* igvn = _igvn;
3806   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3807   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3808   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3809   if (t == nullptr) {
3810     // We are computing a raw address for a store captured by an Initialize
3811     // compute an appropriate address type (cases #3 and #5).
3812     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3813     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3814     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3815     assert(offs != Type::OffsetBot, "offset must be a constant");
3816     t = base_t->add_offset(offs)->is_oopptr();







3817   }
3818   int inst_id =  base_t->instance_id();
3819   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3820                              "old type must be non-instance or match new type");
3821 
3822   // The type 't' could be subclass of 'base_t'.
3823   // As result t->offset() could be large then base_t's size and it will
3824   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3825   // constructor verifies correctness of the offset.
3826   //
3827   // It could happened on subclass's branch (from the type profiling
3828   // inlining) which was not eliminated during parsing since the exactness
3829   // of the allocation type was not propagated to the subclass type check.
3830   //
3831   // Or the type 't' could be not related to 'base_t' at all.
3832   // It could happened when CHA type is different from MDO type on a dead path
3833   // (for example, from instanceof check) which is not collapsed during parsing.
3834   //
3835   // Do nothing for such AddP node and don't process its users since
3836   // this code branch will go away.
3837   //
3838   if (!t->is_known_instance() &&
3839       !base_t->maybe_java_subtype_of(t)) {
3840      return false; // bail out
3841   }
3842   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();











3843   // Do NOT remove the next line: ensure a new alias index is allocated
3844   // for the instance type. Note: C++ will not remove it since the call
3845   // has side effect.
3846   int alias_idx = _compile->get_alias_index(tinst);
3847   igvn->set_type(addp, tinst);
3848   // record the allocation in the node map
3849   set_map(addp, get_map(base->_idx));
3850   // Set addp's Base and Address to 'base'.
3851   Node *abase = addp->in(AddPNode::Base);
3852   Node *adr   = addp->in(AddPNode::Address);
3853   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3854       adr->in(0)->_idx == (uint)inst_id) {
3855     // Skip AddP cases #3 and #5.
3856   } else {
3857     assert(!abase->is_top(), "sanity"); // AddP case #3
3858     if (abase != base) {
3859       igvn->hash_delete(addp);
3860       addp->set_req(AddPNode::Base, base);
3861       if (abase == adr) {
3862         addp->set_req(AddPNode::Address, base);

4528         ptnode_adr(n->_idx)->dump();
4529         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4530 #endif
4531         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4532         return;
4533       } else {
4534         Node *val = get_map(jobj->idx());   // CheckCastPP node
4535         TypeNode *tn = n->as_Type();
4536         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4537         assert(tinst != nullptr && tinst->is_known_instance() &&
4538                tinst->instance_id() == jobj->idx() , "instance type expected.");
4539 
4540         const Type *tn_type = igvn->type(tn);
4541         const TypeOopPtr *tn_t;
4542         if (tn_type->isa_narrowoop()) {
4543           tn_t = tn_type->make_ptr()->isa_oopptr();
4544         } else {
4545           tn_t = tn_type->isa_oopptr();
4546         }
4547         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {







4548           if (tn_type->isa_narrowoop()) {
4549             tn_type = tinst->make_narrowoop();
4550           } else {
4551             tn_type = tinst;
4552           }
4553           igvn->hash_delete(tn);
4554           igvn->set_type(tn, tn_type);
4555           tn->set_type(tn_type);
4556           igvn->hash_insert(tn);
4557           record_for_optimizer(n);
4558         } else {
4559           assert(tn_type == TypePtr::NULL_PTR ||
4560                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4561                  "unexpected type");
4562           continue; // Skip dead path with different type
4563         }
4564       }
4565     } else {
4566       DEBUG_ONLY(n->dump();)
4567       assert(false, "EA: unexpected node");
4568       continue;
4569     }
4570     // push allocation's users on appropriate worklist
4571     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4572       Node *use = n->fast_out(i);
4573       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4574         // Load/store to instance's field
4575         memnode_worklist.append_if_missing(use);
4576       } else if (use->is_MemBar()) {
4577         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4578           memnode_worklist.append_if_missing(use);
4579         }
4580       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4581         Node* addp2 = find_second_addp(use, n);
4582         if (addp2 != nullptr) {
4583           alloc_worklist.append_if_missing(addp2);
4584         }
4585         alloc_worklist.append_if_missing(use);
4586       } else if (use->is_Phi() ||
4587                  use->is_CheckCastPP() ||
4588                  use->is_EncodeNarrowPtr() ||
4589                  use->is_DecodeNarrowPtr() ||
4590                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4591         alloc_worklist.append_if_missing(use);
4592 #ifdef ASSERT
4593       } else if (use->is_Mem()) {
4594         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4595       } else if (use->is_MergeMem()) {
4596         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4597       } else if (use->is_SafePoint()) {
4598         // Look for MergeMem nodes for calls which reference unique allocation
4599         // (through CheckCastPP nodes) even for debug info.
4600         Node* m = use->in(TypeFunc::Memory);
4601         if (m->is_MergeMem()) {
4602           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4603         }
4604       } else if (use->Opcode() == Op_EncodeISOArray) {
4605         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4606           // EncodeISOArray overwrites destination array
4607           memnode_worklist.append_if_missing(use);
4608         }



4609       } else {
4610         uint op = use->Opcode();
4611         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4612             (use->in(MemNode::Memory) == n)) {
4613           // They overwrite memory edge corresponding to destination array,
4614           memnode_worklist.append_if_missing(use);
4615         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4616               op == Op_CastP2X ||
4617               op == Op_FastLock || op == Op_AryEq ||
4618               op == Op_StrComp || op == Op_CountPositives ||
4619               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4620               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4621               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4622               op == Op_SubTypeCheck ||
4623               op == Op_ReinterpretS2HF ||
4624               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4625           n->dump();
4626           use->dump();
4627           assert(false, "EA: missing allocation reference path");
4628         }
4629 #endif
4630       }
4631     }
4632 
4633   }
4634 
4635 #ifdef ASSERT
4636   if (VerifyReduceAllocationMerges) {
4637     for (uint i = 0; i < reducible_merges.size(); i++) {
4638       Node* phi = reducible_merges.at(i);
4639 
4640       if (!reduced_merges.member(phi)) {
4641         phi->dump(2);
4642         phi->dump(-2);

4706       // we don't need to do anything, but the users must be pushed
4707       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4708       if (n == nullptr) {
4709         continue;
4710       }
4711     } else if (n->is_CallLeaf()) {
4712       // Runtime calls with narrow memory input (no MergeMem node)
4713       // get the memory projection
4714       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4715       if (n == nullptr) {
4716         continue;
4717       }
4718     } else if (n->Opcode() == Op_StrInflatedCopy) {
4719       // Check direct uses of StrInflatedCopy.
4720       // It is memory type Node - no special SCMemProj node.
4721     } else if (n->Opcode() == Op_StrCompressedCopy ||
4722                n->Opcode() == Op_EncodeISOArray) {
4723       // get the memory projection
4724       n = n->find_out_with(Op_SCMemProj);
4725       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");



4726     } else {
4727 #ifdef ASSERT
4728       if (!n->is_Mem()) {
4729         n->dump();
4730       }
4731       assert(n->is_Mem(), "memory node required.");
4732 #endif
4733       Node *addr = n->in(MemNode::Address);
4734       const Type *addr_t = igvn->type(addr);
4735       if (addr_t == Type::TOP) {
4736         continue;
4737       }
4738       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4739       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4740       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4741       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4742       if (_compile->failing()) {
4743         return;
4744       }
4745       if (mem != n->in(MemNode::Memory)) {

4750       if (n->is_Load()) {
4751         continue;  // don't push users
4752       } else if (n->is_LoadStore()) {
4753         // get the memory projection
4754         n = n->find_out_with(Op_SCMemProj);
4755         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4756       }
4757     }
4758     // push user on appropriate worklist
4759     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4760       Node *use = n->fast_out(i);
4761       if (use->is_Phi() || use->is_ClearArray()) {
4762         memnode_worklist.append_if_missing(use);
4763       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4764         memnode_worklist.append_if_missing(use);
4765       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4766         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4767           memnode_worklist.append_if_missing(use);
4768         }
4769 #ifdef ASSERT
4770       } else if(use->is_Mem()) {
4771         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4772       } else if (use->is_MergeMem()) {
4773         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4774       } else if (use->Opcode() == Op_EncodeISOArray) {
4775         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4776           // EncodeISOArray overwrites destination array
4777           memnode_worklist.append_if_missing(use);
4778         }




4779       } else {
4780         uint op = use->Opcode();
4781         if ((use->in(MemNode::Memory) == n) &&
4782             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4783           // They overwrite memory edge corresponding to destination array,
4784           memnode_worklist.append_if_missing(use);
4785         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4786               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4787               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4788               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4789           n->dump();
4790           use->dump();
4791           assert(false, "EA: missing memory path");
4792         }
4793 #endif
4794       }
4795     }
4796   }
4797 
4798   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4799   //            Walk each memory slice moving the first node encountered of each
4800   //            instance type to the input corresponding to its alias index.
4801   uint length = mergemem_worklist.length();
4802   for( uint next = 0; next < length; ++next ) {
4803     MergeMemNode* nmm = mergemem_worklist.at(next);
4804     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4805     // Note: we don't want to use MergeMemStream here because we only want to
4806     // scan inputs which exist at the start, not ones we add during processing.
4807     // Note 2: MergeMem may already contains instance memory slices added
4808     // during find_inst_mem() call when memory nodes were processed above.

4869     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4870       if (_compile->do_reduce_allocation_merges()) {
4871         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4872       } else if (_invocation > 0) {
4873         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4874       } else {
4875         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4876       }
4877       return;
4878     }
4879 
4880     igvn->hash_insert(nmm);
4881     record_for_optimizer(nmm);
4882   }
4883 
4884   //  Phase 4:  Update the inputs of non-instance memory Phis and
4885   //            the Memory input of memnodes
4886   // First update the inputs of any non-instance Phi's from
4887   // which we split out an instance Phi.  Note we don't have
4888   // to recursively process Phi's encountered on the input memory
4889   // chains as is done in split_memory_phi() since they  will
4890   // also be processed here.
4891   for (int j = 0; j < orig_phis.length(); j++) {
4892     PhiNode *phi = orig_phis.at(j);
4893     int alias_idx = _compile->get_alias_index(phi->adr_type());
4894     igvn->hash_delete(phi);
4895     for (uint i = 1; i < phi->req(); i++) {
4896       Node *mem = phi->in(i);
4897       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4898       if (_compile->failing()) {
4899         return;
4900       }
4901       if (mem != new_mem) {
4902         phi->set_req(i, new_mem);
4903       }
4904     }
4905     igvn->hash_insert(phi);
4906     record_for_optimizer(phi);
4907   }
4908 
4909   // Update the memory inputs of MemNodes with the value we computed

  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/metaspace.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/phaseX.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "utilities/macros.hpp"
  48 
  49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  50   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  51   // split_unique_types and that will create additional nodes that need to be
  52   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  53   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  54   // the array will be reallocated.
  55   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  56   _in_worklist(C->comp_arena()),
  57   _next_pidx(0),
  58   _collecting(true),
  59   _verify(false),

 148   GrowableArray<SafePointNode*>  sfn_worklist;
 149   GrowableArray<MergeMemNode*>   mergemem_worklist;
 150   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 151 
 152   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 153 
 154   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 155   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 156   // Initialize worklist
 157   if (C->root() != nullptr) {
 158     ideal_nodes.push(C->root());
 159   }
 160   // Processed ideal nodes are unique on ideal_nodes list
 161   // but several ideal nodes are mapped to the phantom_obj.
 162   // To avoid duplicated entries on the following worklists
 163   // add the phantom_obj only once to them.
 164   ptnodes_worklist.append(phantom_obj);
 165   java_objects_worklist.append(phantom_obj);
 166   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 167     Node* n = ideal_nodes.at(next);
 168     if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) &&
 169         !n->in(MemNode::Address)->is_AddP() &&
 170         _igvn->type(n->in(MemNode::Address))->isa_oopptr()) {
 171       // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA
 172       Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0));
 173       _igvn->register_new_node_with_optimizer(addp);
 174       _igvn->replace_input_of(n, MemNode::Address, addp);
 175       ideal_nodes.push(addp);
 176       _nodes.at_put_grow(addp->_idx, nullptr, nullptr);
 177     }
 178     // Create PointsTo nodes and add them to Connection Graph. Called
 179     // only once per ideal node since ideal_nodes is Unique_Node list.
 180     add_node_to_connection_graph(n, &delayed_worklist);
 181     PointsToNode* ptn = ptnode_adr(n->_idx);
 182     if (ptn != nullptr && ptn != phantom_obj) {
 183       ptnodes_worklist.append(ptn);
 184       if (ptn->is_JavaObject()) {
 185         java_objects_worklist.append(ptn->as_JavaObject());
 186         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 187             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 188           // Only allocations and java static calls results are interesting.
 189           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 190         }
 191       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 192         oop_fields_worklist.append(ptn->as_Field());
 193       }
 194     }
 195     // Collect some interesting nodes for further use.
 196     switch (n->Opcode()) {
 197       case Op_MergeMem:

1247 
1248     // The next two inputs are:
1249     //  (1) A copy of the original pointer to NSR objects.
1250     //  (2) A selector, used to decide if we need to rematerialize an object
1251     //      or use the pointer to a NSR object.
1252     // See more details of these fields in the declaration of SafePointScalarMergeNode
1253     sfpt->add_req(nsr_merge_pointer);
1254     sfpt->add_req(selector);
1255 
1256     for (uint i = 1; i < ophi->req(); i++) {
1257       Node* base = ophi->in(i);
1258       JavaObjectNode* ptn = unique_java_object(base);
1259 
1260       // If the base is not scalar replaceable we don't need to register information about
1261       // it at this time.
1262       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1263         continue;
1264       }
1265 
1266       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1267       Unique_Node_List value_worklist;
1268 #ifdef ASSERT
1269       const Type* res_type = alloc->result_cast()->bottom_type();
1270       if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) {
1271         PhiNode* phi = ophi->as_Phi();
1272         assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity");
1273       }
1274 #endif
1275       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist);
1276       if (sobj == nullptr) {
1277         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1278         return false;
1279       }
1280 
1281       // Now make a pass over the debug information replacing any references
1282       // to the allocated object with "sobj"
1283       Node* ccpp = alloc->result_cast();
1284       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1285 
1286       // Register the scalarized object as a candidate for reallocation
1287       smerge->add_req(sobj);
1288 
1289       // Scalarize inline types that were added to the safepoint.
1290       // Don't allow linking a constant oop (if available) for flat array elements
1291       // because Deoptimization::reassign_flat_array_elements needs field values.
1292       const bool allow_oop = !merge_t->is_flat();
1293       for (uint j = 0; j < value_worklist.size(); ++j) {
1294         InlineTypeNode* vt = value_worklist.at(j)->as_InlineType();
1295         vt->make_scalar_in_safepoints(_igvn, allow_oop);
1296       }
1297     }
1298 
1299     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1300     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1301 
1302     // The call to 'replace_edges_in_range' above might have removed the
1303     // reference to ophi that we need at _merge_pointer_idx. The line below make
1304     // sure the reference is maintained.
1305     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1306     _igvn->_worklist.push(sfpt);
1307   }
1308 
1309   return true;
1310 }
1311 
1312 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1313   bool delay = _igvn->delay_transform();
1314   _igvn->set_delay_transform(true);
1315   _igvn->hash_delete(ophi);
1316 

1475   return false;
1476 }
1477 
1478 // Returns true if at least one of the arguments to the call is an object
1479 // that does not escape globally.
1480 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1481   if (call->method() != nullptr) {
1482     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1483     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1484       Node* p = call->in(idx);
1485       if (not_global_escape(p)) {
1486         return true;
1487       }
1488     }
1489   } else {
1490     const char* name = call->as_CallStaticJava()->_name;
1491     assert(name != nullptr, "no name");
1492     // no arg escapes through uncommon traps
1493     if (strcmp(name, "uncommon_trap") != 0) {
1494       // process_call_arguments() assumes that all arguments escape globally
1495       const TypeTuple* d = call->tf()->domain_sig();
1496       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1497         const Type* at = d->field_at(i);
1498         if (at->isa_oopptr() != nullptr) {
1499           return true;
1500         }
1501       }
1502     }
1503   }
1504   return false;
1505 }
1506 
1507 
1508 
1509 // Utility function for nodes that load an object
1510 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1511   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1512   // ThreadLocal has RawPtr type.
1513   const Type* t = _igvn->type(n);
1514   if (t->make_ptr() != nullptr) {
1515     Node* adr = n->in(MemNode::Address);

1549       // first IGVN optimization when escape information is still available.
1550       record_for_optimizer(n);
1551     } else if (n->is_Allocate()) {
1552       add_call_node(n->as_Call());
1553       record_for_optimizer(n);
1554     } else {
1555       if (n->is_CallStaticJava()) {
1556         const char* name = n->as_CallStaticJava()->_name;
1557         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1558           return; // Skip uncommon traps
1559         }
1560       }
1561       // Don't mark as processed since call's arguments have to be processed.
1562       delayed_worklist->push(n);
1563       // Check if a call returns an object.
1564       if ((n->as_Call()->returns_pointer() &&
1565            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1566           (n->is_CallStaticJava() &&
1567            n->as_CallStaticJava()->is_boxing_method())) {
1568         add_call_node(n->as_Call());
1569       } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) {
1570         bool returns_oop = false;
1571         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
1572           ProjNode* pn = n->fast_out(i)->as_Proj();
1573           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
1574             returns_oop = true;
1575           }
1576         }
1577         if (returns_oop) {
1578           add_call_node(n->as_Call());
1579         }
1580       }
1581     }
1582     return;
1583   }
1584   // Put this check here to process call arguments since some call nodes
1585   // point to phantom_obj.
1586   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1587     return; // Skip predefined nodes.
1588   }
1589   switch (opcode) {
1590     case Op_AddP: {
1591       Node* base = get_addp_base(n);
1592       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1593       // Field nodes are created for all field types. They are used in
1594       // adjust_scalar_replaceable_state() and split_unique_types().
1595       // Note, non-oop fields will have only base edges in Connection
1596       // Graph because such fields are not used for oop loads and stores.
1597       int offset = address_offset(n, igvn);
1598       add_field(n, PointsToNode::NoEscape, offset);
1599       if (ptn_base == nullptr) {
1600         delayed_worklist->push(n); // Process it later.
1601       } else {
1602         n_ptn = ptnode_adr(n_idx);
1603         add_base(n_ptn->as_Field(), ptn_base);
1604       }
1605       break;
1606     }
1607     case Op_CastX2P:
1608     case Op_CastI2N: {
1609       map_ideal_node(n, phantom_obj);
1610       break;
1611     }
1612     case Op_InlineType:
1613     case Op_CastPP:
1614     case Op_CheckCastPP:
1615     case Op_EncodeP:
1616     case Op_DecodeN:
1617     case Op_EncodePKlass:
1618     case Op_DecodeNKlass: {
1619       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1620       break;
1621     }
1622     case Op_CMoveP: {
1623       add_local_var(n, PointsToNode::NoEscape);
1624       // Do not add edges during first iteration because some could be
1625       // not defined yet.
1626       delayed_worklist->push(n);
1627       break;
1628     }
1629     case Op_ConP:
1630     case Op_ConN:
1631     case Op_ConNKlass: {
1632       // assume all oop constants globally escape except for null

1664     case Op_PartialSubtypeCheck: {
1665       // Produces Null or notNull and is used in only in CmpP so
1666       // phantom_obj could be used.
1667       map_ideal_node(n, phantom_obj); // Result is unknown
1668       break;
1669     }
1670     case Op_Phi: {
1671       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1672       // ThreadLocal has RawPtr type.
1673       const Type* t = n->as_Phi()->type();
1674       if (t->make_ptr() != nullptr) {
1675         add_local_var(n, PointsToNode::NoEscape);
1676         // Do not add edges during first iteration because some could be
1677         // not defined yet.
1678         delayed_worklist->push(n);
1679       }
1680       break;
1681     }
1682     case Op_Proj: {
1683       // we are only interested in the oop result projection from a call
1684       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
1685           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
1686         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1687                n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1688         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1689       }
1690       break;
1691     }
1692     case Op_Rethrow: // Exception object escapes
1693     case Op_Return: {
1694       if (n->req() > TypeFunc::Parms &&
1695           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1696         // Treat Return value as LocalVar with GlobalEscape escape state.
1697         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1698       }
1699       break;
1700     }
1701     case Op_CompareAndExchangeP:
1702     case Op_CompareAndExchangeN:
1703     case Op_GetAndSetP:
1704     case Op_GetAndSetN: {
1705       add_objload_to_connection_graph(n, delayed_worklist);
1706       // fall-through
1707     }

1769   if (n->is_Call()) {
1770     process_call_arguments(n->as_Call());
1771     return;
1772   }
1773   assert(n->is_Store() || n->is_LoadStore() ||
1774          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1775          "node should be registered already");
1776   int opcode = n->Opcode();
1777   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1778   if (gc_handled) {
1779     return; // Ignore node if already handled by GC.
1780   }
1781   switch (opcode) {
1782     case Op_AddP: {
1783       Node* base = get_addp_base(n);
1784       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1785       assert(ptn_base != nullptr, "field's base should be registered");
1786       add_base(n_ptn->as_Field(), ptn_base);
1787       break;
1788     }
1789     case Op_InlineType:
1790     case Op_CastPP:
1791     case Op_CheckCastPP:
1792     case Op_EncodeP:
1793     case Op_DecodeN:
1794     case Op_EncodePKlass:
1795     case Op_DecodeNKlass: {
1796       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1797       break;
1798     }
1799     case Op_CMoveP: {
1800       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1801         Node* in = n->in(i);
1802         if (in == nullptr) {
1803           continue;  // ignore null
1804         }
1805         Node* uncast_in = in->uncast();
1806         if (uncast_in->is_top() || uncast_in == n) {
1807           continue;  // ignore top or inputs which go back this node
1808         }
1809         PointsToNode* ptn = ptnode_adr(in->_idx);

1824       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1825       // ThreadLocal has RawPtr type.
1826       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1827       for (uint i = 1; i < n->req(); i++) {
1828         Node* in = n->in(i);
1829         if (in == nullptr) {
1830           continue;  // ignore null
1831         }
1832         Node* uncast_in = in->uncast();
1833         if (uncast_in->is_top() || uncast_in == n) {
1834           continue;  // ignore top or inputs which go back this node
1835         }
1836         PointsToNode* ptn = ptnode_adr(in->_idx);
1837         assert(ptn != nullptr, "node should be registered");
1838         add_edge(n_ptn, ptn);
1839       }
1840       break;
1841     }
1842     case Op_Proj: {
1843       // we are only interested in the oop result projection from a call
1844       assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1845              n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1846       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1847       break;
1848     }
1849     case Op_Rethrow: // Exception object escapes
1850     case Op_Return: {
1851       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1852              "Unexpected node type");
1853       // Treat Return value as LocalVar with GlobalEscape escape state.
1854       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1855       break;
1856     }
1857     case Op_CompareAndExchangeP:
1858     case Op_CompareAndExchangeN:
1859     case Op_GetAndSetP:
1860     case Op_GetAndSetN:{
1861       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1862       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1863       // fall-through
1864     }
1865     case Op_CompareAndSwapP:

2001     PointsToNode* ptn = ptnode_adr(val->_idx);
2002     assert(ptn != nullptr, "node should be registered");
2003     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
2004     // Add edge to object for unsafe access with offset.
2005     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
2006     assert(adr_ptn != nullptr, "node should be registered");
2007     if (adr_ptn->is_Field()) {
2008       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
2009       add_edge(adr_ptn, ptn);
2010     }
2011     return true;
2012   }
2013 #ifdef ASSERT
2014   n->dump(1);
2015   assert(false, "not unsafe");
2016 #endif
2017   return false;
2018 }
2019 
2020 void ConnectionGraph::add_call_node(CallNode* call) {
2021   assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer");
2022   uint call_idx = call->_idx;
2023   if (call->is_Allocate()) {
2024     Node* k = call->in(AllocateNode::KlassNode);
2025     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2026     assert(kt != nullptr, "TypeKlassPtr  required.");
2027     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2028     bool scalar_replaceable = true;
2029     NOT_PRODUCT(const char* nsr_reason = "");
2030     if (call->is_AllocateArray()) {
2031       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2032         es = PointsToNode::GlobalEscape;
2033       } else {
2034         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2035         if (length < 0) {
2036           // Not scalar replaceable if the length is not constant.
2037           scalar_replaceable = false;
2038           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2039         } else if (length > EliminateAllocationArraySizeLimit) {
2040           // Not scalar replaceable if the length is too big.
2041           scalar_replaceable = false;

2077     //
2078     //    - all oop arguments are escaping globally;
2079     //
2080     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2081     //
2082     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2083     //
2084     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2085     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2086     //      during call is returned;
2087     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2088     //      which are returned and does not escape during call;
2089     //
2090     //    - oop arguments escaping status is defined by bytecode analysis;
2091     //
2092     // For a static call, we know exactly what method is being called.
2093     // Use bytecode estimator to record whether the call's return value escapes.
2094     ciMethod* meth = call->as_CallJava()->method();
2095     if (meth == nullptr) {
2096       const char* name = call->as_CallStaticJava()->_name;
2097       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2098              strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "TODO: add failed case check");
2099       // Returns a newly allocated non-escaped object.
2100       add_java_object(call, PointsToNode::NoEscape);
2101       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2102     } else if (meth->is_boxing_method()) {
2103       // Returns boxing object
2104       PointsToNode::EscapeState es;
2105       vmIntrinsics::ID intr = meth->intrinsic_id();
2106       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2107         // It does not escape if object is always allocated.
2108         es = PointsToNode::NoEscape;
2109       } else {
2110         // It escapes globally if object could be loaded from cache.
2111         es = PointsToNode::GlobalEscape;
2112       }
2113       add_java_object(call, es);
2114       if (es == PointsToNode::GlobalEscape) {
2115         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2116       }
2117     } else {
2118       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2119       call_analyzer->copy_dependencies(_compile->dependencies());
2120       if (call_analyzer->is_return_allocated()) {
2121         // Returns a newly allocated non-escaped object, simply
2122         // update dependency information.
2123         // Mark it as NoEscape so that objects referenced by
2124         // it's fields will be marked as NoEscape at least.
2125         add_java_object(call, PointsToNode::NoEscape);
2126         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2127       } else {
2128         // Determine whether any arguments are returned.
2129         const TypeTuple* d = call->tf()->domain_cc();
2130         bool ret_arg = false;
2131         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2132           if (d->field_at(i)->isa_ptr() != nullptr &&
2133               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2134             ret_arg = true;
2135             break;
2136           }
2137         }
2138         if (ret_arg) {
2139           add_local_var(call, PointsToNode::ArgEscape);
2140         } else {
2141           // Returns unknown object.
2142           map_ideal_node(call, phantom_obj);
2143         }
2144       }
2145     }
2146   } else {
2147     // An other type of call, assume the worst case:
2148     // returned value is unknown and globally escapes.
2149     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

2157 #ifdef ASSERT
2158     case Op_Allocate:
2159     case Op_AllocateArray:
2160     case Op_Lock:
2161     case Op_Unlock:
2162       assert(false, "should be done already");
2163       break;
2164 #endif
2165     case Op_ArrayCopy:
2166     case Op_CallLeafNoFP:
2167       // Most array copies are ArrayCopy nodes at this point but there
2168       // are still a few direct calls to the copy subroutines (See
2169       // PhaseStringOpts::copy_string())
2170       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2171         call->as_CallLeaf()->is_call_to_arraycopystub();
2172       // fall through
2173     case Op_CallLeafVector:
2174     case Op_CallLeaf: {
2175       // Stub calls, objects do not escape but they are not scale replaceable.
2176       // Adjust escape state for outgoing arguments.
2177       const TypeTuple * d = call->tf()->domain_sig();
2178       bool src_has_oops = false;
2179       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2180         const Type* at = d->field_at(i);
2181         Node *arg = call->in(i);
2182         if (arg == nullptr) {
2183           continue;
2184         }
2185         const Type *aat = _igvn->type(arg);
2186         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2187           continue;
2188         }
2189         if (arg->is_AddP()) {
2190           //
2191           // The inline_native_clone() case when the arraycopy stub is called
2192           // after the allocation before Initialize and CheckCastPP nodes.
2193           // Or normal arraycopy for object arrays case.
2194           //
2195           // Set AddP's base (Allocate) as not scalar replaceable since
2196           // pointer to the base (with offset) is passed as argument.
2197           //
2198           arg = get_addp_base(arg);
2199         }
2200         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2201         assert(arg_ptn != nullptr, "should be registered");
2202         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2203         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2204           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2205                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2206           bool arg_has_oops = aat->isa_oopptr() &&
2207                               (aat->isa_instptr() ||
2208                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) ||
2209                                (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr &&
2210                                                                aat->isa_aryptr()->is_flat() &&
2211                                                                aat->isa_aryptr()->elem()->inline_klass()->contains_oops()));
2212           if (i == TypeFunc::Parms) {
2213             src_has_oops = arg_has_oops;
2214           }
2215           //
2216           // src or dst could be j.l.Object when other is basic type array:
2217           //
2218           //   arraycopy(char[],0,Object*,0,size);
2219           //   arraycopy(Object*,0,char[],0,size);
2220           //
2221           // Don't add edges in such cases.
2222           //
2223           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2224                                        arg_has_oops && (i > TypeFunc::Parms);
2225 #ifdef ASSERT
2226           if (!(is_arraycopy ||
2227                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2228                 (call->as_CallLeaf()->_name != nullptr &&
2229                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

2255                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2256                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2257                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2258                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2259                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2260                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2261                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2262                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2263                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2264                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2265                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2266                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2267                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2268                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2269                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2270                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2271                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2272                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2273                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2274                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2275                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2276                   strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 ||
2277                   strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 ||
2278                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2279                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2280                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2281                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2282                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2283                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2284                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2285                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2286                  ))) {
2287             call->dump();
2288             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2289           }
2290 #endif
2291           // Always process arraycopy's destination object since
2292           // we need to add all possible edges to references in
2293           // source object.
2294           if (arg_esc >= PointsToNode::ArgEscape &&
2295               !arg_is_arraycopy_dest) {
2296             continue;
2297           }

2320           }
2321         }
2322       }
2323       break;
2324     }
2325     case Op_CallStaticJava: {
2326       // For a static call, we know exactly what method is being called.
2327       // Use bytecode estimator to record the call's escape affects
2328 #ifdef ASSERT
2329       const char* name = call->as_CallStaticJava()->_name;
2330       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2331 #endif
2332       ciMethod* meth = call->as_CallJava()->method();
2333       if ((meth != nullptr) && meth->is_boxing_method()) {
2334         break; // Boxing methods do not modify any oops.
2335       }
2336       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2337       // fall-through if not a Java method or no analyzer information
2338       if (call_analyzer != nullptr) {
2339         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2340         const TypeTuple* d = call->tf()->domain_cc();
2341         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2342           const Type* at = d->field_at(i);
2343           int k = i - TypeFunc::Parms;
2344           Node* arg = call->in(i);
2345           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2346           if (at->isa_ptr() != nullptr &&
2347               call_analyzer->is_arg_returned(k)) {
2348             // The call returns arguments.
2349             if (call_ptn != nullptr) { // Is call's result used?
2350               assert(call_ptn->is_LocalVar(), "node should be registered");
2351               assert(arg_ptn != nullptr, "node should be registered");
2352               add_edge(call_ptn, arg_ptn);
2353             }
2354           }
2355           if (at->isa_oopptr() != nullptr &&
2356               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2357             if (!call_analyzer->is_arg_stack(k)) {
2358               // The argument global escapes
2359               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2360             } else {

2364                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2365               }
2366             }
2367           }
2368         }
2369         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2370           // The call returns arguments.
2371           assert(call_ptn->edge_count() > 0, "sanity");
2372           if (!call_analyzer->is_return_local()) {
2373             // Returns also unknown object.
2374             add_edge(call_ptn, phantom_obj);
2375           }
2376         }
2377         break;
2378       }
2379     }
2380     default: {
2381       // Fall-through here if not a Java method or no analyzer information
2382       // or some other type of call, assume the worst case: all arguments
2383       // globally escape.
2384       const TypeTuple* d = call->tf()->domain_cc();
2385       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2386         const Type* at = d->field_at(i);
2387         if (at->isa_oopptr() != nullptr) {
2388           Node* arg = call->in(i);
2389           if (arg->is_AddP()) {
2390             arg = get_addp_base(arg);
2391           }
2392           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2393           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2394         }
2395       }
2396     }
2397   }
2398 }
2399 
2400 
2401 // Finish Graph construction.
2402 bool ConnectionGraph::complete_connection_graph(
2403                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2404                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2777     PointsToNode* base = i.get();
2778     if (base->is_JavaObject()) {
2779       // Skip Allocate's fields which will be processed later.
2780       if (base->ideal_node()->is_Allocate()) {
2781         return 0;
2782       }
2783       assert(base == null_obj, "only null ptr base expected here");
2784     }
2785   }
2786   if (add_edge(field, phantom_obj)) {
2787     // New edge was added
2788     new_edges++;
2789     add_field_uses_to_worklist(field);
2790   }
2791   return new_edges;
2792 }
2793 
2794 // Find fields initializing values for allocations.
2795 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2796   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2797   PointsToNode* init_val = phantom_obj;
2798   Node* alloc = pta->ideal_node();
2799 
2800   // Do nothing for Allocate nodes since its fields values are
2801   // "known" unless they are initialized by arraycopy/clone.
2802   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2803     if (alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2804       // Null-free inline type arrays are initialized with an init value instead of null
2805       init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::InitValue)->_idx);
2806       assert(init_val != nullptr, "init value should be registered");
2807     } else {
2808       return 0;
2809     }
2810   }
2811   // Non-escaped allocation returned from Java or runtime call has unknown values in fields.
2812   assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity");
2813 #ifdef ASSERT
2814   if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) {
2815     const char* name = alloc->as_CallStaticJava()->_name;
2816     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2817            strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "sanity");
2818   }
2819 #endif
2820   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2821   int new_edges = 0;
2822   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2823     PointsToNode* field = i.get();
2824     if (field->is_Field() && field->as_Field()->is_oop()) {
2825       if (add_edge(field, init_val)) {
2826         // New edge was added
2827         new_edges++;
2828         add_field_uses_to_worklist(field->as_Field());
2829       }
2830     }
2831   }
2832   return new_edges;
2833 }
2834 
2835 // Find fields initializing values for allocations.
2836 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2837   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2838   Node* alloc = pta->ideal_node();
2839   // Do nothing for Call nodes since its fields values are unknown.
2840   if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2841     return 0;
2842   }
2843   InitializeNode* ini = alloc->as_Allocate()->initialization();
2844   bool visited_bottom_offset = false;
2845   GrowableArray<int> offsets_worklist;
2846   int new_edges = 0;
2847 
2848   // Check if an oop field's initializing value is recorded and add
2849   // a corresponding null if field's value if it is not recorded.
2850   // Connection Graph does not record a default initialization by null
2851   // captured by Initialize node.
2852   //
2853   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2854     PointsToNode* field = i.get(); // Field (AddP)
2855     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2856       continue; // Not oop field
2857     }
2858     int offset = field->as_Field()->offset();
2859     if (offset == Type::OffsetBot) {
2860       if (!visited_bottom_offset) {

2906               } else {
2907                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2908                   tty->print_cr("----------init store has invalid value -----");
2909                   store->dump();
2910                   val->dump();
2911                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2912                 }
2913                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2914                   PointsToNode* obj = j.get();
2915                   if (obj->is_JavaObject()) {
2916                     if (!field->points_to(obj->as_JavaObject())) {
2917                       missed_obj = obj;
2918                       break;
2919                     }
2920                   }
2921                 }
2922               }
2923               if (missed_obj != nullptr) {
2924                 tty->print_cr("----------field---------------------------------");
2925                 field->dump();
2926                 tty->print_cr("----------missed reference to object------------");
2927                 missed_obj->dump();
2928                 tty->print_cr("----------object referenced by init store-------");
2929                 store->dump();
2930                 val->dump();
2931                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2932               }
2933             }
2934 #endif
2935           } else {
2936             // There could be initializing stores which follow allocation.
2937             // For example, a volatile field store is not collected
2938             // by Initialize node.
2939             //
2940             // Need to check for dependent loads to separate such stores from
2941             // stores which follow loads. For now, add initial value null so
2942             // that compare pointers optimization works correctly.
2943           }
2944         }
2945         if (value == nullptr) {
2946           // A field's initializing value was not recorded. Add null.
2947           if (add_edge(field, null_obj)) {
2948             // New edge was added

3264         assert(field->edge_count() > 0, "sanity");
3265       }
3266     }
3267   }
3268 }
3269 #endif
3270 
3271 // Optimize ideal graph.
3272 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3273                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3274   Compile* C = _compile;
3275   PhaseIterGVN* igvn = _igvn;
3276   if (EliminateLocks) {
3277     // Mark locks before changing ideal graph.
3278     int cnt = C->macro_count();
3279     for (int i = 0; i < cnt; i++) {
3280       Node *n = C->macro_node(i);
3281       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3282         AbstractLockNode* alock = n->as_AbstractLock();
3283         if (!alock->is_non_esc_obj()) {
3284           const Type* obj_type = igvn->type(alock->obj_node());
3285           if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) {
3286             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3287             // The lock could be marked eliminated by lock coarsening
3288             // code during first IGVN before EA. Replace coarsened flag
3289             // to eliminate all associated locks/unlocks.
3290 #ifdef ASSERT
3291             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3292 #endif
3293             alock->set_non_esc_obj();
3294           }
3295         }
3296       }
3297     }
3298   }
3299 
3300   if (OptimizePtrCompare) {
3301     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3302       Node *n = ptr_cmp_worklist.at(i);
3303       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3304       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3305       if (tcmp->singleton()) {

3307 #ifndef PRODUCT
3308         if (PrintOptimizePtrCompare) {
3309           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3310           if (Verbose) {
3311             n->dump(1);
3312           }
3313         }
3314 #endif
3315         igvn->replace_node(n, cmp);
3316       }
3317     }
3318   }
3319 
3320   // For MemBarStoreStore nodes added in library_call.cpp, check
3321   // escape status of associated AllocateNode and optimize out
3322   // MemBarStoreStore node if the allocated object never escapes.
3323   for (int i = 0; i < storestore_worklist.length(); i++) {
3324     Node* storestore = storestore_worklist.at(i);
3325     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3326     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3327       if (alloc->in(AllocateNode::InlineType) != nullptr) {
3328         // Non-escaping inline type buffer allocations don't require a membar
3329         storestore->as_MemBar()->remove(_igvn);
3330       } else {
3331         MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3332         mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3333         mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3334         igvn->register_new_node_with_optimizer(mb);
3335         igvn->replace_node(storestore, mb);
3336       }
3337     }
3338   }
3339 }
3340 
3341 // Optimize objects compare.
3342 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3343   assert(OptimizePtrCompare, "sanity");
3344   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3345   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3346   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3347 
3348   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3349   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3350   JavaObjectNode* jobj1 = unique_java_object(left);
3351   JavaObjectNode* jobj2 = unique_java_object(right);
3352 
3353   // The use of this method during allocation merge reduction may cause 'left'
3354   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3355   // that doesn't reference an unique java object.
3356   if (ptn1 == nullptr || ptn2 == nullptr ||

3478   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3479   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3480   PointsToNode* ptadr = _nodes.at(n->_idx);
3481   if (ptadr != nullptr) {
3482     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3483     return;
3484   }
3485   Compile* C = _compile;
3486   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3487   map_ideal_node(n, ptadr);
3488   // Add edge from arraycopy node to source object.
3489   (void)add_edge(ptadr, src);
3490   src->set_arraycopy_src();
3491   // Add edge from destination object to arraycopy node.
3492   (void)add_edge(dst, ptadr);
3493   dst->set_arraycopy_dst();
3494 }
3495 
3496 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3497   const Type* adr_type = n->as_AddP()->bottom_type();
3498   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
3499   BasicType bt = T_INT;
3500   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
3501     // Check only oop fields.
3502     if (!adr_type->isa_aryptr() ||
3503         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3504         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3505       // OffsetBot is used to reference array's element. Ignore first AddP.
3506       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3507         bt = T_OBJECT;
3508       }
3509     }
3510   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3511     if (adr_type->isa_instptr()) {
3512       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
3513       if (field != nullptr) {
3514         bt = field->layout_type();
3515       } else {
3516         // Check for unsafe oop field access
3517         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3518             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3519             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3520             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3521           bt = T_OBJECT;
3522           (*unsafe) = true;
3523         }
3524       }
3525     } else if (adr_type->isa_aryptr()) {
3526       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3527         // Ignore array length load.
3528       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3529         // Ignore first AddP.
3530       } else {
3531         const Type* elemtype = adr_type->is_aryptr()->elem();
3532         if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) {
3533           ciInlineKlass* vk = elemtype->inline_klass();
3534           field_offset += vk->payload_offset();
3535           ciField* field = vk->get_field_by_offset(field_offset, false);
3536           if (field != nullptr) {
3537             bt = field->layout_type();
3538           } else {
3539             assert(field_offset == vk->payload_offset() + vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), field_offset);
3540             bt = T_BOOLEAN;
3541           }
3542         } else {
3543           bt = elemtype->array_element_basic_type();
3544         }
3545       }
3546     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3547       // Allocation initialization, ThreadLocal field access, unsafe access
3548       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3549           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3550           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3551           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3552         bt = T_OBJECT;
3553       }
3554     }
3555   }
3556   // Note: T_NARROWOOP is not classed as a real reference type
3557   return (is_reference_type(bt) || bt == T_NARROWOOP);
3558 }
3559 
3560 // Returns unique pointed java object or null.
3561 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3562   // If the node was created after the escape computation we can't answer.
3563   uint idx = n->_idx;
3564   if (idx >= nodes_size()) {

3721             return true;
3722           }
3723         }
3724       }
3725     }
3726   }
3727   return false;
3728 }
3729 
3730 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3731   const Type *adr_type = phase->type(adr);
3732   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3733     // We are computing a raw address for a store captured by an Initialize
3734     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3735     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3736     assert(offs != Type::OffsetBot ||
3737            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3738            "offset must be a constant or it is initialization of array");
3739     return offs;
3740   }
3741   return adr_type->is_ptr()->flat_offset();


3742 }
3743 
3744 Node* ConnectionGraph::get_addp_base(Node *addp) {
3745   assert(addp->is_AddP(), "must be AddP");
3746   //
3747   // AddP cases for Base and Address inputs:
3748   // case #1. Direct object's field reference:
3749   //     Allocate
3750   //       |
3751   //     Proj #5 ( oop result )
3752   //       |
3753   //     CheckCastPP (cast to instance type)
3754   //      | |
3755   //     AddP  ( base == address )
3756   //
3757   // case #2. Indirect object's field reference:
3758   //      Phi
3759   //       |
3760   //     CastPP (cast to instance type)
3761   //      | |

3875   }
3876   return nullptr;
3877 }
3878 
3879 //
3880 // Adjust the type and inputs of an AddP which computes the
3881 // address of a field of an instance
3882 //
3883 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3884   PhaseGVN* igvn = _igvn;
3885   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3886   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3887   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3888   if (t == nullptr) {
3889     // We are computing a raw address for a store captured by an Initialize
3890     // compute an appropriate address type (cases #3 and #5).
3891     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3892     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3893     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3894     assert(offs != Type::OffsetBot, "offset must be a constant");
3895     if (base_t->isa_aryptr() != nullptr) {
3896       // In the case of a flat inline type array, each field has its
3897       // own slice so we need to extract the field being accessed from
3898       // the address computation
3899       t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
3900     } else {
3901       t = base_t->add_offset(offs)->is_oopptr();
3902     }
3903   }
3904   int inst_id = base_t->instance_id();
3905   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3906                              "old type must be non-instance or match new type");
3907 
3908   // The type 't' could be subclass of 'base_t'.
3909   // As result t->offset() could be large then base_t's size and it will
3910   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3911   // constructor verifies correctness of the offset.
3912   //
3913   // It could happened on subclass's branch (from the type profiling
3914   // inlining) which was not eliminated during parsing since the exactness
3915   // of the allocation type was not propagated to the subclass type check.
3916   //
3917   // Or the type 't' could be not related to 'base_t' at all.
3918   // It could happen when CHA type is different from MDO type on a dead path
3919   // (for example, from instanceof check) which is not collapsed during parsing.
3920   //
3921   // Do nothing for such AddP node and don't process its users since
3922   // this code branch will go away.
3923   //
3924   if (!t->is_known_instance() &&
3925       !base_t->maybe_java_subtype_of(t)) {
3926      return false; // bail out
3927   }
3928   const TypePtr* tinst = base_t->add_offset(t->offset());
3929   if (tinst->isa_aryptr() && t->isa_aryptr()) {
3930     // In the case of a flat inline type array, each field has its
3931     // own slice so we need to keep track of the field being accessed.
3932     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
3933     // Keep array properties (not flat/null-free)
3934     tinst = tinst->is_aryptr()->update_properties(t->is_aryptr());
3935     if (tinst == nullptr) {
3936       return false; // Skip dead path with inconsistent properties
3937     }
3938   }
3939 
3940   // Do NOT remove the next line: ensure a new alias index is allocated
3941   // for the instance type. Note: C++ will not remove it since the call
3942   // has side effect.
3943   int alias_idx = _compile->get_alias_index(tinst);
3944   igvn->set_type(addp, tinst);
3945   // record the allocation in the node map
3946   set_map(addp, get_map(base->_idx));
3947   // Set addp's Base and Address to 'base'.
3948   Node *abase = addp->in(AddPNode::Base);
3949   Node *adr   = addp->in(AddPNode::Address);
3950   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3951       adr->in(0)->_idx == (uint)inst_id) {
3952     // Skip AddP cases #3 and #5.
3953   } else {
3954     assert(!abase->is_top(), "sanity"); // AddP case #3
3955     if (abase != base) {
3956       igvn->hash_delete(addp);
3957       addp->set_req(AddPNode::Base, base);
3958       if (abase == adr) {
3959         addp->set_req(AddPNode::Address, base);

4625         ptnode_adr(n->_idx)->dump();
4626         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4627 #endif
4628         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4629         return;
4630       } else {
4631         Node *val = get_map(jobj->idx());   // CheckCastPP node
4632         TypeNode *tn = n->as_Type();
4633         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4634         assert(tinst != nullptr && tinst->is_known_instance() &&
4635                tinst->instance_id() == jobj->idx() , "instance type expected.");
4636 
4637         const Type *tn_type = igvn->type(tn);
4638         const TypeOopPtr *tn_t;
4639         if (tn_type->isa_narrowoop()) {
4640           tn_t = tn_type->make_ptr()->isa_oopptr();
4641         } else {
4642           tn_t = tn_type->isa_oopptr();
4643         }
4644         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4645           if (tn_t->isa_aryptr()) {
4646             // Keep array properties (not flat/null-free)
4647             tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr());
4648             if (tinst == nullptr) {
4649               continue; // Skip dead path with inconsistent properties
4650             }
4651           }
4652           if (tn_type->isa_narrowoop()) {
4653             tn_type = tinst->make_narrowoop();
4654           } else {
4655             tn_type = tinst;
4656           }
4657           igvn->hash_delete(tn);
4658           igvn->set_type(tn, tn_type);
4659           tn->set_type(tn_type);
4660           igvn->hash_insert(tn);
4661           record_for_optimizer(n);
4662         } else {
4663           assert(tn_type == TypePtr::NULL_PTR ||
4664                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4665                  "unexpected type");
4666           continue; // Skip dead path with different type
4667         }
4668       }
4669     } else {
4670       DEBUG_ONLY(n->dump();)
4671       assert(false, "EA: unexpected node");
4672       continue;
4673     }
4674     // push allocation's users on appropriate worklist
4675     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4676       Node *use = n->fast_out(i);
4677       if (use->is_Mem() && use->in(MemNode::Address) == n) {
4678         // Load/store to instance's field
4679         memnode_worklist.append_if_missing(use);
4680       } else if (use->is_MemBar()) {
4681         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4682           memnode_worklist.append_if_missing(use);
4683         }
4684       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4685         Node* addp2 = find_second_addp(use, n);
4686         if (addp2 != nullptr) {
4687           alloc_worklist.append_if_missing(addp2);
4688         }
4689         alloc_worklist.append_if_missing(use);
4690       } else if (use->is_Phi() ||
4691                  use->is_CheckCastPP() ||
4692                  use->is_EncodeNarrowPtr() ||
4693                  use->is_DecodeNarrowPtr() ||
4694                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4695         alloc_worklist.append_if_missing(use);
4696 #ifdef ASSERT
4697       } else if (use->is_Mem()) {
4698         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4699       } else if (use->is_MergeMem()) {
4700         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4701       } else if (use->is_SafePoint()) {
4702         // Look for MergeMem nodes for calls which reference unique allocation
4703         // (through CheckCastPP nodes) even for debug info.
4704         Node* m = use->in(TypeFunc::Memory);
4705         if (m->is_MergeMem()) {
4706           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4707         }
4708       } else if (use->Opcode() == Op_EncodeISOArray) {
4709         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4710           // EncodeISOArray overwrites destination array
4711           memnode_worklist.append_if_missing(use);
4712         }
4713       } else if (use->Opcode() == Op_Return) {
4714         // Allocation is referenced by field of returned inline type
4715         assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode");
4716       } else {
4717         uint op = use->Opcode();
4718         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4719             (use->in(MemNode::Memory) == n)) {
4720           // They overwrite memory edge corresponding to destination array,
4721           memnode_worklist.append_if_missing(use);
4722         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4723               op == Op_CastP2X ||
4724               op == Op_FastLock || op == Op_AryEq ||
4725               op == Op_StrComp || op == Op_CountPositives ||
4726               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4727               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4728               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4729               op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck ||
4730               op == Op_ReinterpretS2HF ||
4731               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4732           n->dump();
4733           use->dump();
4734           assert(false, "EA: missing allocation reference path");
4735         }
4736 #endif
4737       }
4738     }
4739 
4740   }
4741 
4742 #ifdef ASSERT
4743   if (VerifyReduceAllocationMerges) {
4744     for (uint i = 0; i < reducible_merges.size(); i++) {
4745       Node* phi = reducible_merges.at(i);
4746 
4747       if (!reduced_merges.member(phi)) {
4748         phi->dump(2);
4749         phi->dump(-2);

4813       // we don't need to do anything, but the users must be pushed
4814       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4815       if (n == nullptr) {
4816         continue;
4817       }
4818     } else if (n->is_CallLeaf()) {
4819       // Runtime calls with narrow memory input (no MergeMem node)
4820       // get the memory projection
4821       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4822       if (n == nullptr) {
4823         continue;
4824       }
4825     } else if (n->Opcode() == Op_StrInflatedCopy) {
4826       // Check direct uses of StrInflatedCopy.
4827       // It is memory type Node - no special SCMemProj node.
4828     } else if (n->Opcode() == Op_StrCompressedCopy ||
4829                n->Opcode() == Op_EncodeISOArray) {
4830       // get the memory projection
4831       n = n->find_out_with(Op_SCMemProj);
4832       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4833     } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr &&
4834                strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4835       n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
4836     } else {
4837 #ifdef ASSERT
4838       if (!n->is_Mem()) {
4839         n->dump();
4840       }
4841       assert(n->is_Mem(), "memory node required.");
4842 #endif
4843       Node *addr = n->in(MemNode::Address);
4844       const Type *addr_t = igvn->type(addr);
4845       if (addr_t == Type::TOP) {
4846         continue;
4847       }
4848       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4849       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4850       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4851       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4852       if (_compile->failing()) {
4853         return;
4854       }
4855       if (mem != n->in(MemNode::Memory)) {

4860       if (n->is_Load()) {
4861         continue;  // don't push users
4862       } else if (n->is_LoadStore()) {
4863         // get the memory projection
4864         n = n->find_out_with(Op_SCMemProj);
4865         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4866       }
4867     }
4868     // push user on appropriate worklist
4869     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4870       Node *use = n->fast_out(i);
4871       if (use->is_Phi() || use->is_ClearArray()) {
4872         memnode_worklist.append_if_missing(use);
4873       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4874         memnode_worklist.append_if_missing(use);
4875       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4876         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4877           memnode_worklist.append_if_missing(use);
4878         }
4879 #ifdef ASSERT
4880       } else if (use->is_Mem()) {
4881         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4882       } else if (use->is_MergeMem()) {
4883         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4884       } else if (use->Opcode() == Op_EncodeISOArray) {
4885         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4886           // EncodeISOArray overwrites destination array
4887           memnode_worklist.append_if_missing(use);
4888         }
4889       } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr &&
4890                  strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4891         // store_unknown_inline overwrites destination array
4892         memnode_worklist.append_if_missing(use);
4893       } else {
4894         uint op = use->Opcode();
4895         if ((use->in(MemNode::Memory) == n) &&
4896             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4897           // They overwrite memory edge corresponding to destination array,
4898           memnode_worklist.append_if_missing(use);
4899         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4900               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4901               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4902               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) {
4903           n->dump();
4904           use->dump();
4905           assert(false, "EA: missing memory path");
4906         }
4907 #endif
4908       }
4909     }
4910   }
4911 
4912   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4913   //            Walk each memory slice moving the first node encountered of each
4914   //            instance type to the input corresponding to its alias index.
4915   uint length = mergemem_worklist.length();
4916   for( uint next = 0; next < length; ++next ) {
4917     MergeMemNode* nmm = mergemem_worklist.at(next);
4918     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4919     // Note: we don't want to use MergeMemStream here because we only want to
4920     // scan inputs which exist at the start, not ones we add during processing.
4921     // Note 2: MergeMem may already contains instance memory slices added
4922     // during find_inst_mem() call when memory nodes were processed above.

4983     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4984       if (_compile->do_reduce_allocation_merges()) {
4985         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4986       } else if (_invocation > 0) {
4987         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4988       } else {
4989         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4990       }
4991       return;
4992     }
4993 
4994     igvn->hash_insert(nmm);
4995     record_for_optimizer(nmm);
4996   }
4997 
4998   //  Phase 4:  Update the inputs of non-instance memory Phis and
4999   //            the Memory input of memnodes
5000   // First update the inputs of any non-instance Phi's from
5001   // which we split out an instance Phi.  Note we don't have
5002   // to recursively process Phi's encountered on the input memory
5003   // chains as is done in split_memory_phi() since they will
5004   // also be processed here.
5005   for (int j = 0; j < orig_phis.length(); j++) {
5006     PhiNode *phi = orig_phis.at(j);
5007     int alias_idx = _compile->get_alias_index(phi->adr_type());
5008     igvn->hash_delete(phi);
5009     for (uint i = 1; i < phi->req(); i++) {
5010       Node *mem = phi->in(i);
5011       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
5012       if (_compile->failing()) {
5013         return;
5014       }
5015       if (mem != new_mem) {
5016         phi->set_req(i, new_mem);
5017       }
5018     }
5019     igvn->hash_insert(phi);
5020     record_for_optimizer(phi);
5021   }
5022 
5023   // Update the memory inputs of MemNodes with the value we computed
< prev index next >