< prev index next >

src/hotspot/share/opto/escape.cpp

Print this page

  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"

  31 #include "memory/resourceArea.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"

  39 #include "opto/locknode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),

 146   GrowableArray<SafePointNode*>  sfn_worklist;
 147   GrowableArray<MergeMemNode*>   mergemem_worklist;
 148   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 149 
 150   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 151 
 152   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 153   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 154   // Initialize worklist
 155   if (C->root() != nullptr) {
 156     ideal_nodes.push(C->root());
 157   }
 158   // Processed ideal nodes are unique on ideal_nodes list
 159   // but several ideal nodes are mapped to the phantom_obj.
 160   // To avoid duplicated entries on the following worklists
 161   // add the phantom_obj only once to them.
 162   ptnodes_worklist.append(phantom_obj);
 163   java_objects_worklist.append(phantom_obj);
 164   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 165     Node* n = ideal_nodes.at(next);










 166     // Create PointsTo nodes and add them to Connection Graph. Called
 167     // only once per ideal node since ideal_nodes is Unique_Node list.
 168     add_node_to_connection_graph(n, &delayed_worklist);
 169     PointsToNode* ptn = ptnode_adr(n->_idx);
 170     if (ptn != nullptr && ptn != phantom_obj) {
 171       ptnodes_worklist.append(ptn);
 172       if (ptn->is_JavaObject()) {
 173         java_objects_worklist.append(ptn->as_JavaObject());
 174         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 175             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 176           // Only allocations and java static calls results are interesting.
 177           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 178         }
 179       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 180         oop_fields_worklist.append(ptn->as_Field());
 181       }
 182     }
 183     // Collect some interesting nodes for further use.
 184     switch (n->Opcode()) {
 185       case Op_MergeMem:

 396     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 397     if (C->failing()) {
 398       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 399       return false;
 400     }
 401     C->print_method(PHASE_AFTER_EA, 2);
 402 
 403 #ifdef ASSERT
 404   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 405     tty->print("=== No allocations eliminated for ");
 406     C->method()->print_short_name();
 407     if (!EliminateAllocations) {
 408       tty->print(" since EliminateAllocations is off ===");
 409     } else if(!has_scalar_replaceable_candidates) {
 410       tty->print(" since there are no scalar replaceable candidates ===");
 411     }
 412     tty->cr();
 413 #endif
 414   }
 415 
 416   // 6. Reduce allocation merges used as debug information. This is done after








 417   // split_unique_types because the methods used to create SafePointScalarObject
 418   // need to traverse the memory graph to find values for object fields. We also
 419   // set to null the scalarized inputs of reducible Phis so that the Allocate
 420   // that they point can be later scalar replaced.
 421   bool delay = _igvn->delay_transform();
 422   _igvn->set_delay_transform(true);
 423   for (uint i = 0; i < reducible_merges.size(); i++) {
 424     Node* n = reducible_merges.at(i);
 425     if (n->outcnt() > 0) {
 426       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 427         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 428         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 429         return false;
 430       }
 431 
 432       // Now we set the scalar replaceable inputs of ophi to null, which is
 433       // the last piece that would prevent it from being scalar replaceable.
 434       reset_scalar_replaceable_entries(n->as_Phi());
 435     }
 436   }

1235 
1236     // The next two inputs are:
1237     //  (1) A copy of the original pointer to NSR objects.
1238     //  (2) A selector, used to decide if we need to rematerialize an object
1239     //      or use the pointer to a NSR object.
1240     // See more details of these fields in the declaration of SafePointScalarMergeNode
1241     sfpt->add_req(nsr_merge_pointer);
1242     sfpt->add_req(selector);
1243 
1244     for (uint i = 1; i < ophi->req(); i++) {
1245       Node* base = ophi->in(i);
1246       JavaObjectNode* ptn = unique_java_object(base);
1247 
1248       // If the base is not scalar replaceable we don't need to register information about
1249       // it at this time.
1250       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1251         continue;
1252       }
1253 
1254       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1255       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);








1256       if (sobj == nullptr) {

1257         return false;
1258       }
1259 
1260       // Now make a pass over the debug information replacing any references
1261       // to the allocated object with "sobj"
1262       Node* ccpp = alloc->result_cast();
1263       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1264 
1265       // Register the scalarized object as a candidate for reallocation
1266       smerge->add_req(sobj);









1267     }
1268 
1269     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1270     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1271 
1272     // The call to 'replace_edges_in_range' above might have removed the
1273     // reference to ophi that we need at _merge_pointer_idx. The line below make
1274     // sure the reference is maintained.
1275     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1276     _igvn->_worklist.push(sfpt);
1277   }
1278 
1279   return true;
1280 }
1281 
1282 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1283   bool delay = _igvn->delay_transform();
1284   _igvn->set_delay_transform(true);
1285   _igvn->hash_delete(ophi);
1286 

1444   return false;
1445 }
1446 
1447 // Returns true if at least one of the arguments to the call is an object
1448 // that does not escape globally.
1449 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1450   if (call->method() != nullptr) {
1451     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1452     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1453       Node* p = call->in(idx);
1454       if (not_global_escape(p)) {
1455         return true;
1456       }
1457     }
1458   } else {
1459     const char* name = call->as_CallStaticJava()->_name;
1460     assert(name != nullptr, "no name");
1461     // no arg escapes through uncommon traps
1462     if (strcmp(name, "uncommon_trap") != 0) {
1463       // process_call_arguments() assumes that all arguments escape globally
1464       const TypeTuple* d = call->tf()->domain();
1465       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1466         const Type* at = d->field_at(i);
1467         if (at->isa_oopptr() != nullptr) {
1468           return true;
1469         }
1470       }
1471     }
1472   }
1473   return false;
1474 }
1475 
1476 
1477 
1478 // Utility function for nodes that load an object
1479 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1480   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1481   // ThreadLocal has RawPtr type.
1482   const Type* t = _igvn->type(n);
1483   if (t->make_ptr() != nullptr) {
1484     Node* adr = n->in(MemNode::Address);

1518       // first IGVN optimization when escape information is still available.
1519       record_for_optimizer(n);
1520     } else if (n->is_Allocate()) {
1521       add_call_node(n->as_Call());
1522       record_for_optimizer(n);
1523     } else {
1524       if (n->is_CallStaticJava()) {
1525         const char* name = n->as_CallStaticJava()->_name;
1526         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1527           return; // Skip uncommon traps
1528         }
1529       }
1530       // Don't mark as processed since call's arguments have to be processed.
1531       delayed_worklist->push(n);
1532       // Check if a call returns an object.
1533       if ((n->as_Call()->returns_pointer() &&
1534            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1535           (n->is_CallStaticJava() &&
1536            n->as_CallStaticJava()->is_boxing_method())) {
1537         add_call_node(n->as_Call());











1538       }
1539     }
1540     return;
1541   }
1542   // Put this check here to process call arguments since some call nodes
1543   // point to phantom_obj.
1544   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1545     return; // Skip predefined nodes.
1546   }
1547   switch (opcode) {
1548     case Op_AddP: {
1549       Node* base = get_addp_base(n);
1550       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1551       // Field nodes are created for all field types. They are used in
1552       // adjust_scalar_replaceable_state() and split_unique_types().
1553       // Note, non-oop fields will have only base edges in Connection
1554       // Graph because such fields are not used for oop loads and stores.
1555       int offset = address_offset(n, igvn);
1556       add_field(n, PointsToNode::NoEscape, offset);
1557       if (ptn_base == nullptr) {
1558         delayed_worklist->push(n); // Process it later.
1559       } else {
1560         n_ptn = ptnode_adr(n_idx);
1561         add_base(n_ptn->as_Field(), ptn_base);
1562       }
1563       break;
1564     }
1565     case Op_CastX2P: {

1566       map_ideal_node(n, phantom_obj);
1567       break;
1568     }

1569     case Op_CastPP:
1570     case Op_CheckCastPP:
1571     case Op_EncodeP:
1572     case Op_DecodeN:
1573     case Op_EncodePKlass:
1574     case Op_DecodeNKlass: {
1575       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1576       break;
1577     }
1578     case Op_CMoveP: {
1579       add_local_var(n, PointsToNode::NoEscape);
1580       // Do not add edges during first iteration because some could be
1581       // not defined yet.
1582       delayed_worklist->push(n);
1583       break;
1584     }
1585     case Op_ConP:
1586     case Op_ConN:
1587     case Op_ConNKlass: {
1588       // assume all oop constants globally escape except for null

1618       break;
1619     }
1620     case Op_PartialSubtypeCheck: {
1621       // Produces Null or notNull and is used in only in CmpP so
1622       // phantom_obj could be used.
1623       map_ideal_node(n, phantom_obj); // Result is unknown
1624       break;
1625     }
1626     case Op_Phi: {
1627       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1628       // ThreadLocal has RawPtr type.
1629       const Type* t = n->as_Phi()->type();
1630       if (t->make_ptr() != nullptr) {
1631         add_local_var(n, PointsToNode::NoEscape);
1632         // Do not add edges during first iteration because some could be
1633         // not defined yet.
1634         delayed_worklist->push(n);
1635       }
1636       break;
1637     }








1638     case Op_Proj: {
1639       // we are only interested in the oop result projection from a call
1640       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1641           n->in(0)->as_Call()->returns_pointer()) {





1642         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1643       }
1644       break;
1645     }
1646     case Op_Rethrow: // Exception object escapes
1647     case Op_Return: {
1648       if (n->req() > TypeFunc::Parms &&
1649           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1650         // Treat Return value as LocalVar with GlobalEscape escape state.
1651         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1652       }
1653       break;
1654     }
1655     case Op_CompareAndExchangeP:
1656     case Op_CompareAndExchangeN:
1657     case Op_GetAndSetP:
1658     case Op_GetAndSetN: {
1659       add_objload_to_connection_graph(n, delayed_worklist);
1660       // fall-through
1661     }

1707       break;
1708     }
1709     default:
1710       ; // Do nothing for nodes not related to EA.
1711   }
1712   return;
1713 }
1714 
1715 // Add final simple edges to graph.
1716 void ConnectionGraph::add_final_edges(Node *n) {
1717   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1718 #ifdef ASSERT
1719   if (_verify && n_ptn->is_JavaObject())
1720     return; // This method does not change graph for JavaObject.
1721 #endif
1722 
1723   if (n->is_Call()) {
1724     process_call_arguments(n->as_Call());
1725     return;
1726   }
1727   assert(n->is_Store() || n->is_LoadStore() ||
1728          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1729          "node should be registered already");
1730   int opcode = n->Opcode();
1731   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1732   if (gc_handled) {
1733     return; // Ignore node if already handled by GC.
1734   }
1735   switch (opcode) {
1736     case Op_AddP: {
1737       Node* base = get_addp_base(n);
1738       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1739       assert(ptn_base != nullptr, "field's base should be registered");
1740       add_base(n_ptn->as_Field(), ptn_base);
1741       break;
1742     }

1743     case Op_CastPP:
1744     case Op_CheckCastPP:
1745     case Op_EncodeP:
1746     case Op_DecodeN:
1747     case Op_EncodePKlass:
1748     case Op_DecodeNKlass: {
1749       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1750       break;
1751     }
1752     case Op_CMoveP: {
1753       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1754         Node* in = n->in(i);
1755         if (in == nullptr) {
1756           continue;  // ignore null
1757         }
1758         Node* uncast_in = in->uncast();
1759         if (uncast_in->is_top() || uncast_in == n) {
1760           continue;  // ignore top or inputs which go back this node
1761         }
1762         PointsToNode* ptn = ptnode_adr(in->_idx);

1775     }
1776     case Op_Phi: {
1777       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1778       // ThreadLocal has RawPtr type.
1779       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1780       for (uint i = 1; i < n->req(); i++) {
1781         Node* in = n->in(i);
1782         if (in == nullptr) {
1783           continue;  // ignore null
1784         }
1785         Node* uncast_in = in->uncast();
1786         if (uncast_in->is_top() || uncast_in == n) {
1787           continue;  // ignore top or inputs which go back this node
1788         }
1789         PointsToNode* ptn = ptnode_adr(in->_idx);
1790         assert(ptn != nullptr, "node should be registered");
1791         add_edge(n_ptn, ptn);
1792       }
1793       break;
1794     }
















1795     case Op_Proj: {
1796       // we are only interested in the oop result projection from a call
1797       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1798              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1799       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);





1800       break;
1801     }
1802     case Op_Rethrow: // Exception object escapes
1803     case Op_Return: {
1804       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1805              "Unexpected node type");
1806       // Treat Return value as LocalVar with GlobalEscape escape state.
1807       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1808       break;
1809     }
1810     case Op_CompareAndExchangeP:
1811     case Op_CompareAndExchangeN:
1812     case Op_GetAndSetP:
1813     case Op_GetAndSetN:{
1814       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1815       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1816       // fall-through
1817     }
1818     case Op_CompareAndSwapP:
1819     case Op_CompareAndSwapN:

1954     PointsToNode* ptn = ptnode_adr(val->_idx);
1955     assert(ptn != nullptr, "node should be registered");
1956     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1957     // Add edge to object for unsafe access with offset.
1958     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1959     assert(adr_ptn != nullptr, "node should be registered");
1960     if (adr_ptn->is_Field()) {
1961       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1962       add_edge(adr_ptn, ptn);
1963     }
1964     return true;
1965   }
1966 #ifdef ASSERT
1967   n->dump(1);
1968   assert(false, "not unsafe");
1969 #endif
1970   return false;
1971 }
1972 
1973 void ConnectionGraph::add_call_node(CallNode* call) {
1974   assert(call->returns_pointer(), "only for call which returns pointer");
1975   uint call_idx = call->_idx;
1976   if (call->is_Allocate()) {
1977     Node* k = call->in(AllocateNode::KlassNode);
1978     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1979     assert(kt != nullptr, "TypeKlassPtr  required.");
1980     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1981     bool scalar_replaceable = true;
1982     NOT_PRODUCT(const char* nsr_reason = "");
1983     if (call->is_AllocateArray()) {
1984       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1985         es = PointsToNode::GlobalEscape;
1986       } else {
1987         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1988         if (length < 0) {
1989           // Not scalar replaceable if the length is not constant.
1990           scalar_replaceable = false;
1991           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1992         } else if (length > EliminateAllocationArraySizeLimit) {
1993           // Not scalar replaceable if the length is too big.
1994           scalar_replaceable = false;

2030     //
2031     //    - all oop arguments are escaping globally;
2032     //
2033     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2034     //
2035     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2036     //
2037     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2038     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2039     //      during call is returned;
2040     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2041     //      which are returned and does not escape during call;
2042     //
2043     //    - oop arguments escaping status is defined by bytecode analysis;
2044     //
2045     // For a static call, we know exactly what method is being called.
2046     // Use bytecode estimator to record whether the call's return value escapes.
2047     ciMethod* meth = call->as_CallJava()->method();
2048     if (meth == nullptr) {
2049       const char* name = call->as_CallStaticJava()->_name;
2050       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");


2051       // Returns a newly allocated non-escaped object.
2052       add_java_object(call, PointsToNode::NoEscape);
2053       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2054     } else if (meth->is_boxing_method()) {
2055       // Returns boxing object
2056       PointsToNode::EscapeState es;
2057       vmIntrinsics::ID intr = meth->intrinsic_id();
2058       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2059         // It does not escape if object is always allocated.
2060         es = PointsToNode::NoEscape;
2061       } else {
2062         // It escapes globally if object could be loaded from cache.
2063         es = PointsToNode::GlobalEscape;
2064       }
2065       add_java_object(call, es);
2066       if (es == PointsToNode::GlobalEscape) {
2067         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2068       }
2069     } else {
2070       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2071       call_analyzer->copy_dependencies(_compile->dependencies());
2072       if (call_analyzer->is_return_allocated()) {
2073         // Returns a newly allocated non-escaped object, simply
2074         // update dependency information.
2075         // Mark it as NoEscape so that objects referenced by
2076         // it's fields will be marked as NoEscape at least.
2077         add_java_object(call, PointsToNode::NoEscape);
2078         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2079       } else {
2080         // Determine whether any arguments are returned.
2081         const TypeTuple* d = call->tf()->domain();
2082         bool ret_arg = false;
2083         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2084           if (d->field_at(i)->isa_ptr() != nullptr &&
2085               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2086             ret_arg = true;
2087             break;
2088           }
2089         }
2090         if (ret_arg) {
2091           add_local_var(call, PointsToNode::ArgEscape);
2092         } else {
2093           // Returns unknown object.
2094           map_ideal_node(call, phantom_obj);
2095         }
2096       }
2097     }
2098   } else {
2099     // An other type of call, assume the worst case:
2100     // returned value is unknown and globally escapes.
2101     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

2109 #ifdef ASSERT
2110     case Op_Allocate:
2111     case Op_AllocateArray:
2112     case Op_Lock:
2113     case Op_Unlock:
2114       assert(false, "should be done already");
2115       break;
2116 #endif
2117     case Op_ArrayCopy:
2118     case Op_CallLeafNoFP:
2119       // Most array copies are ArrayCopy nodes at this point but there
2120       // are still a few direct calls to the copy subroutines (See
2121       // PhaseStringOpts::copy_string())
2122       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2123         call->as_CallLeaf()->is_call_to_arraycopystub();
2124       // fall through
2125     case Op_CallLeafVector:
2126     case Op_CallLeaf: {
2127       // Stub calls, objects do not escape but they are not scale replaceable.
2128       // Adjust escape state for outgoing arguments.
2129       const TypeTuple * d = call->tf()->domain();
2130       bool src_has_oops = false;
2131       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2132         const Type* at = d->field_at(i);
2133         Node *arg = call->in(i);
2134         if (arg == nullptr) {
2135           continue;
2136         }
2137         const Type *aat = _igvn->type(arg);
2138         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2139           continue;
2140         }
2141         if (arg->is_AddP()) {
2142           //
2143           // The inline_native_clone() case when the arraycopy stub is called
2144           // after the allocation before Initialize and CheckCastPP nodes.
2145           // Or normal arraycopy for object arrays case.
2146           //
2147           // Set AddP's base (Allocate) as not scalar replaceable since
2148           // pointer to the base (with offset) is passed as argument.
2149           //
2150           arg = get_addp_base(arg);
2151         }
2152         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2153         assert(arg_ptn != nullptr, "should be registered");
2154         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2155         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2156           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2157                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2158           bool arg_has_oops = aat->isa_oopptr() &&
2159                               (aat->isa_instptr() ||
2160                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));



2161           if (i == TypeFunc::Parms) {
2162             src_has_oops = arg_has_oops;
2163           }
2164           //
2165           // src or dst could be j.l.Object when other is basic type array:
2166           //
2167           //   arraycopy(char[],0,Object*,0,size);
2168           //   arraycopy(Object*,0,char[],0,size);
2169           //
2170           // Don't add edges in such cases.
2171           //
2172           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2173                                        arg_has_oops && (i > TypeFunc::Parms);
2174 #ifdef ASSERT
2175           if (!(is_arraycopy ||
2176                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2177                 (call->as_CallLeaf()->_name != nullptr &&
2178                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2179                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2180                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

2204                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2205                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2215                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2216                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2217                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2218                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2219                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2220                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2221                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2222                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2223                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||




2224                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2225                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2226                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2227                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2228                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2229                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2232                  ))) {
2233             call->dump();
2234             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2235           }
2236 #endif
2237           // Always process arraycopy's destination object since
2238           // we need to add all possible edges to references in
2239           // source object.
2240           if (arg_esc >= PointsToNode::ArgEscape &&
2241               !arg_is_arraycopy_dest) {
2242             continue;
2243           }

2266           }
2267         }
2268       }
2269       break;
2270     }
2271     case Op_CallStaticJava: {
2272       // For a static call, we know exactly what method is being called.
2273       // Use bytecode estimator to record the call's escape affects
2274 #ifdef ASSERT
2275       const char* name = call->as_CallStaticJava()->_name;
2276       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2277 #endif
2278       ciMethod* meth = call->as_CallJava()->method();
2279       if ((meth != nullptr) && meth->is_boxing_method()) {
2280         break; // Boxing methods do not modify any oops.
2281       }
2282       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2283       // fall-through if not a Java method or no analyzer information
2284       if (call_analyzer != nullptr) {
2285         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2286         const TypeTuple* d = call->tf()->domain();
2287         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2288           const Type* at = d->field_at(i);
2289           int k = i - TypeFunc::Parms;
2290           Node* arg = call->in(i);
2291           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2292           if (at->isa_ptr() != nullptr &&
2293               call_analyzer->is_arg_returned(k)) {
2294             // The call returns arguments.
2295             if (call_ptn != nullptr) { // Is call's result used?
2296               assert(call_ptn->is_LocalVar(), "node should be registered");
2297               assert(arg_ptn != nullptr, "node should be registered");
2298               add_edge(call_ptn, arg_ptn);
2299             }
2300           }
2301           if (at->isa_oopptr() != nullptr &&
2302               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2303             if (!call_analyzer->is_arg_stack(k)) {
2304               // The argument global escapes
2305               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2306             } else {

2310                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2311               }
2312             }
2313           }
2314         }
2315         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2316           // The call returns arguments.
2317           assert(call_ptn->edge_count() > 0, "sanity");
2318           if (!call_analyzer->is_return_local()) {
2319             // Returns also unknown object.
2320             add_edge(call_ptn, phantom_obj);
2321           }
2322         }
2323         break;
2324       }
2325     }
2326     default: {
2327       // Fall-through here if not a Java method or no analyzer information
2328       // or some other type of call, assume the worst case: all arguments
2329       // globally escape.
2330       const TypeTuple* d = call->tf()->domain();
2331       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2332         const Type* at = d->field_at(i);
2333         if (at->isa_oopptr() != nullptr) {
2334           Node* arg = call->in(i);
2335           if (arg->is_AddP()) {
2336             arg = get_addp_base(arg);
2337           }
2338           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2339           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2340         }
2341       }
2342     }
2343   }
2344 }
2345 
2346 
2347 // Finish Graph construction.
2348 bool ConnectionGraph::complete_connection_graph(
2349                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2350                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2723     PointsToNode* base = i.get();
2724     if (base->is_JavaObject()) {
2725       // Skip Allocate's fields which will be processed later.
2726       if (base->ideal_node()->is_Allocate()) {
2727         return 0;
2728       }
2729       assert(base == null_obj, "only null ptr base expected here");
2730     }
2731   }
2732   if (add_edge(field, phantom_obj)) {
2733     // New edge was added
2734     new_edges++;
2735     add_field_uses_to_worklist(field);
2736   }
2737   return new_edges;
2738 }
2739 
2740 // Find fields initializing values for allocations.
2741 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2742   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");

2743   Node* alloc = pta->ideal_node();
2744 
2745   // Do nothing for Allocate nodes since its fields values are
2746   // "known" unless they are initialized by arraycopy/clone.
2747   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2748     return 0;






2749   }
2750   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");

2751 #ifdef ASSERT
2752   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2753     const char* name = alloc->as_CallStaticJava()->_name;
2754     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");


2755   }
2756 #endif
2757   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2758   int new_edges = 0;
2759   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2760     PointsToNode* field = i.get();
2761     if (field->is_Field() && field->as_Field()->is_oop()) {
2762       if (add_edge(field, phantom_obj)) {
2763         // New edge was added
2764         new_edges++;
2765         add_field_uses_to_worklist(field->as_Field());
2766       }
2767     }
2768   }
2769   return new_edges;
2770 }
2771 
2772 // Find fields initializing values for allocations.
2773 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2774   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2775   Node* alloc = pta->ideal_node();
2776   // Do nothing for Call nodes since its fields values are unknown.
2777   if (!alloc->is_Allocate()) {
2778     return 0;
2779   }
2780   InitializeNode* ini = alloc->as_Allocate()->initialization();
2781   bool visited_bottom_offset = false;
2782   GrowableArray<int> offsets_worklist;
2783   int new_edges = 0;
2784 
2785   // Check if an oop field's initializing value is recorded and add
2786   // a corresponding null if field's value if it is not recorded.
2787   // Connection Graph does not record a default initialization by null
2788   // captured by Initialize node.
2789   //
2790   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2791     PointsToNode* field = i.get(); // Field (AddP)
2792     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2793       continue; // Not oop field
2794     }
2795     int offset = field->as_Field()->offset();
2796     if (offset == Type::OffsetBot) {
2797       if (!visited_bottom_offset) {

2843               } else {
2844                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2845                   tty->print_cr("----------init store has invalid value -----");
2846                   store->dump();
2847                   val->dump();
2848                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2849                 }
2850                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2851                   PointsToNode* obj = j.get();
2852                   if (obj->is_JavaObject()) {
2853                     if (!field->points_to(obj->as_JavaObject())) {
2854                       missed_obj = obj;
2855                       break;
2856                     }
2857                   }
2858                 }
2859               }
2860               if (missed_obj != nullptr) {
2861                 tty->print_cr("----------field---------------------------------");
2862                 field->dump();
2863                 tty->print_cr("----------missed referernce to object-----------");
2864                 missed_obj->dump();
2865                 tty->print_cr("----------object referernced by init store -----");
2866                 store->dump();
2867                 val->dump();
2868                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2869               }
2870             }
2871 #endif
2872           } else {
2873             // There could be initializing stores which follow allocation.
2874             // For example, a volatile field store is not collected
2875             // by Initialize node.
2876             //
2877             // Need to check for dependent loads to separate such stores from
2878             // stores which follow loads. For now, add initial value null so
2879             // that compare pointers optimization works correctly.
2880           }
2881         }
2882         if (value == nullptr) {
2883           // A field's initializing value was not recorded. Add null.
2884           if (add_edge(field, null_obj)) {
2885             // New edge was added

3209         assert(field->edge_count() > 0, "sanity");
3210       }
3211     }
3212   }
3213 }
3214 #endif
3215 
3216 // Optimize ideal graph.
3217 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3218                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3219   Compile* C = _compile;
3220   PhaseIterGVN* igvn = _igvn;
3221   if (EliminateLocks) {
3222     // Mark locks before changing ideal graph.
3223     int cnt = C->macro_count();
3224     for (int i = 0; i < cnt; i++) {
3225       Node *n = C->macro_node(i);
3226       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3227         AbstractLockNode* alock = n->as_AbstractLock();
3228         if (!alock->is_non_esc_obj()) {
3229           if (can_eliminate_lock(alock)) {

3230             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3231             // The lock could be marked eliminated by lock coarsening
3232             // code during first IGVN before EA. Replace coarsened flag
3233             // to eliminate all associated locks/unlocks.
3234 #ifdef ASSERT
3235             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3236 #endif
3237             alock->set_non_esc_obj();
3238           }
3239         }
3240       }
3241     }
3242   }
3243 
3244   if (OptimizePtrCompare) {
3245     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3246       Node *n = ptr_cmp_worklist.at(i);
3247       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3248       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3249       if (tcmp->singleton()) {

3251 #ifndef PRODUCT
3252         if (PrintOptimizePtrCompare) {
3253           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3254           if (Verbose) {
3255             n->dump(1);
3256           }
3257         }
3258 #endif
3259         igvn->replace_node(n, cmp);
3260       }
3261     }
3262   }
3263 
3264   // For MemBarStoreStore nodes added in library_call.cpp, check
3265   // escape status of associated AllocateNode and optimize out
3266   // MemBarStoreStore node if the allocated object never escapes.
3267   for (int i = 0; i < storestore_worklist.length(); i++) {
3268     Node* storestore = storestore_worklist.at(i);
3269     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3270     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3271       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3272       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3273       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3274       igvn->register_new_node_with_optimizer(mb);
3275       igvn->replace_node(storestore, mb);





3276     }
3277   }
3278 }
3279 

























3280 // Optimize objects compare.
3281 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3282   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3283   if (!OptimizePtrCompare) {
3284     return UNKNOWN;
3285   }
3286   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3287   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3288 
3289   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3290   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3291   JavaObjectNode* jobj1 = unique_java_object(left);
3292   JavaObjectNode* jobj2 = unique_java_object(right);
3293 
3294   // The use of this method during allocation merge reduction may cause 'left'
3295   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3296   // that doesn't reference an unique java object.
3297   if (ptn1 == nullptr || ptn2 == nullptr ||
3298       jobj1 == nullptr || jobj2 == nullptr) {
3299     return UNKNOWN;

3419   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3420   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3421   PointsToNode* ptadr = _nodes.at(n->_idx);
3422   if (ptadr != nullptr) {
3423     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3424     return;
3425   }
3426   Compile* C = _compile;
3427   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3428   map_ideal_node(n, ptadr);
3429   // Add edge from arraycopy node to source object.
3430   (void)add_edge(ptadr, src);
3431   src->set_arraycopy_src();
3432   // Add edge from destination object to arraycopy node.
3433   (void)add_edge(dst, ptadr);
3434   dst->set_arraycopy_dst();
3435 }
3436 
3437 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3438   const Type* adr_type = n->as_AddP()->bottom_type();

3439   BasicType bt = T_INT;
3440   if (offset == Type::OffsetBot) {
3441     // Check only oop fields.
3442     if (!adr_type->isa_aryptr() ||
3443         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3444         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3445       // OffsetBot is used to reference array's element. Ignore first AddP.
3446       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3447         bt = T_OBJECT;
3448       }
3449     }
3450   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3451     if (adr_type->isa_instptr()) {
3452       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3453       if (field != nullptr) {
3454         bt = field->layout_type();
3455       } else {
3456         // Check for unsafe oop field access
3457         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3458             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3459             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3460             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3461           bt = T_OBJECT;
3462           (*unsafe) = true;
3463         }
3464       }
3465     } else if (adr_type->isa_aryptr()) {
3466       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3467         // Ignore array length load.
3468       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3469         // Ignore first AddP.
3470       } else {
3471         const Type* elemtype = adr_type->isa_aryptr()->elem();
3472         bt = elemtype->array_element_basic_type();












3473       }
3474     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3475       // Allocation initialization, ThreadLocal field access, unsafe access
3476       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3477           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3478           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3479           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3480         bt = T_OBJECT;
3481       }
3482     }
3483   }
3484   // Note: T_NARROWOOP is not classed as a real reference type
3485   return (is_reference_type(bt) || bt == T_NARROWOOP);
3486 }
3487 
3488 // Returns unique pointed java object or null.
3489 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3490   // If the node was created after the escape computation we can't answer.
3491   uint idx = n->_idx;
3492   if (idx >= nodes_size()) {

3649             return true;
3650           }
3651         }
3652       }
3653     }
3654   }
3655   return false;
3656 }
3657 
3658 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3659   const Type *adr_type = phase->type(adr);
3660   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3661     // We are computing a raw address for a store captured by an Initialize
3662     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3663     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3664     assert(offs != Type::OffsetBot ||
3665            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3666            "offset must be a constant or it is initialization of array");
3667     return offs;
3668   }
3669   const TypePtr *t_ptr = adr_type->isa_ptr();
3670   assert(t_ptr != nullptr, "must be a pointer type");
3671   return t_ptr->offset();
3672 }
3673 
3674 Node* ConnectionGraph::get_addp_base(Node *addp) {
3675   assert(addp->is_AddP(), "must be AddP");
3676   //
3677   // AddP cases for Base and Address inputs:
3678   // case #1. Direct object's field reference:
3679   //     Allocate
3680   //       |
3681   //     Proj #5 ( oop result )
3682   //       |
3683   //     CheckCastPP (cast to instance type)
3684   //      | |
3685   //     AddP  ( base == address )
3686   //
3687   // case #2. Indirect object's field reference:
3688   //      Phi
3689   //       |
3690   //     CastPP (cast to instance type)
3691   //      | |

3805   }
3806   return nullptr;
3807 }
3808 
3809 //
3810 // Adjust the type and inputs of an AddP which computes the
3811 // address of a field of an instance
3812 //
3813 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3814   PhaseGVN* igvn = _igvn;
3815   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3816   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3817   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3818   if (t == nullptr) {
3819     // We are computing a raw address for a store captured by an Initialize
3820     // compute an appropriate address type (cases #3 and #5).
3821     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3822     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3823     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3824     assert(offs != Type::OffsetBot, "offset must be a constant");
3825     t = base_t->add_offset(offs)->is_oopptr();







3826   }
3827   int inst_id =  base_t->instance_id();
3828   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3829                              "old type must be non-instance or match new type");
3830 
3831   // The type 't' could be subclass of 'base_t'.
3832   // As result t->offset() could be large then base_t's size and it will
3833   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3834   // constructor verifies correctness of the offset.
3835   //
3836   // It could happened on subclass's branch (from the type profiling
3837   // inlining) which was not eliminated during parsing since the exactness
3838   // of the allocation type was not propagated to the subclass type check.
3839   //
3840   // Or the type 't' could be not related to 'base_t' at all.
3841   // It could happened when CHA type is different from MDO type on a dead path
3842   // (for example, from instanceof check) which is not collapsed during parsing.
3843   //
3844   // Do nothing for such AddP node and don't process its users since
3845   // this code branch will go away.
3846   //
3847   if (!t->is_known_instance() &&
3848       !base_t->maybe_java_subtype_of(t)) {
3849      return false; // bail out
3850   }
3851   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();











3852   // Do NOT remove the next line: ensure a new alias index is allocated
3853   // for the instance type. Note: C++ will not remove it since the call
3854   // has side effect.
3855   int alias_idx = _compile->get_alias_index(tinst);
3856   igvn->set_type(addp, tinst);
3857   // record the allocation in the node map
3858   set_map(addp, get_map(base->_idx));
3859   // Set addp's Base and Address to 'base'.
3860   Node *abase = addp->in(AddPNode::Base);
3861   Node *adr   = addp->in(AddPNode::Address);
3862   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3863       adr->in(0)->_idx == (uint)inst_id) {
3864     // Skip AddP cases #3 and #5.
3865   } else {
3866     assert(!abase->is_top(), "sanity"); // AddP case #3
3867     if (abase != base) {
3868       igvn->hash_delete(addp);
3869       addp->set_req(AddPNode::Base, base);
3870       if (abase == adr) {
3871         addp->set_req(AddPNode::Address, base);

4537         ptnode_adr(n->_idx)->dump();
4538         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4539 #endif
4540         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4541         return;
4542       } else {
4543         Node *val = get_map(jobj->idx());   // CheckCastPP node
4544         TypeNode *tn = n->as_Type();
4545         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4546         assert(tinst != nullptr && tinst->is_known_instance() &&
4547                tinst->instance_id() == jobj->idx() , "instance type expected.");
4548 
4549         const Type *tn_type = igvn->type(tn);
4550         const TypeOopPtr *tn_t;
4551         if (tn_type->isa_narrowoop()) {
4552           tn_t = tn_type->make_ptr()->isa_oopptr();
4553         } else {
4554           tn_t = tn_type->isa_oopptr();
4555         }
4556         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {







4557           if (tn_type->isa_narrowoop()) {
4558             tn_type = tinst->make_narrowoop();
4559           } else {
4560             tn_type = tinst;
4561           }
4562           igvn->hash_delete(tn);
4563           igvn->set_type(tn, tn_type);
4564           tn->set_type(tn_type);
4565           igvn->hash_insert(tn);
4566           record_for_optimizer(n);
4567         } else {
4568           assert(tn_type == TypePtr::NULL_PTR ||
4569                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4570                  "unexpected type");
4571           continue; // Skip dead path with different type
4572         }
4573       }
4574     } else {
4575       DEBUG_ONLY(n->dump();)
4576       assert(false, "EA: unexpected node");
4577       continue;
4578     }
4579     // push allocation's users on appropriate worklist
4580     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4581       Node *use = n->fast_out(i);
4582       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4583         // Load/store to instance's field
4584         memnode_worklist.append_if_missing(use);
4585       } else if (use->is_MemBar()) {
4586         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4587           memnode_worklist.append_if_missing(use);
4588         }
4589       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4590         Node* addp2 = find_second_addp(use, n);
4591         if (addp2 != nullptr) {
4592           alloc_worklist.append_if_missing(addp2);
4593         }
4594         alloc_worklist.append_if_missing(use);
4595       } else if (use->is_Phi() ||
4596                  use->is_CheckCastPP() ||
4597                  use->is_EncodeNarrowPtr() ||
4598                  use->is_DecodeNarrowPtr() ||
4599                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4600         alloc_worklist.append_if_missing(use);
4601 #ifdef ASSERT
4602       } else if (use->is_Mem()) {
4603         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4604       } else if (use->is_MergeMem()) {
4605         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4606       } else if (use->is_SafePoint()) {
4607         // Look for MergeMem nodes for calls which reference unique allocation
4608         // (through CheckCastPP nodes) even for debug info.
4609         Node* m = use->in(TypeFunc::Memory);
4610         if (m->is_MergeMem()) {
4611           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4612         }
4613       } else if (use->Opcode() == Op_EncodeISOArray) {
4614         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4615           // EncodeISOArray overwrites destination array
4616           memnode_worklist.append_if_missing(use);
4617         }



4618       } else {
4619         uint op = use->Opcode();
4620         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4621             (use->in(MemNode::Memory) == n)) {
4622           // They overwrite memory edge corresponding to destination array,
4623           memnode_worklist.append_if_missing(use);
4624         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4625               op == Op_CastP2X ||
4626               op == Op_FastLock || op == Op_AryEq ||
4627               op == Op_StrComp || op == Op_CountPositives ||
4628               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4629               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4630               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4631               op == Op_SubTypeCheck ||
4632               op == Op_ReinterpretS2HF ||
4633               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4634           n->dump();
4635           use->dump();
4636           assert(false, "EA: missing allocation reference path");
4637         }
4638 #endif
4639       }
4640     }
4641 
4642   }
4643 
4644 #ifdef ASSERT
4645   if (VerifyReduceAllocationMerges) {
4646     for (uint i = 0; i < reducible_merges.size(); i++) {
4647       Node* phi = reducible_merges.at(i);
4648 
4649       if (!reduced_merges.member(phi)) {
4650         phi->dump(2);
4651         phi->dump(-2);

4715       // we don't need to do anything, but the users must be pushed
4716       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4717       if (n == nullptr) {
4718         continue;
4719       }
4720     } else if (n->is_CallLeaf()) {
4721       // Runtime calls with narrow memory input (no MergeMem node)
4722       // get the memory projection
4723       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4724       if (n == nullptr) {
4725         continue;
4726       }
4727     } else if (n->Opcode() == Op_StrInflatedCopy) {
4728       // Check direct uses of StrInflatedCopy.
4729       // It is memory type Node - no special SCMemProj node.
4730     } else if (n->Opcode() == Op_StrCompressedCopy ||
4731                n->Opcode() == Op_EncodeISOArray) {
4732       // get the memory projection
4733       n = n->find_out_with(Op_SCMemProj);
4734       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");



4735     } else {
4736 #ifdef ASSERT
4737       if (!n->is_Mem()) {
4738         n->dump();
4739       }
4740       assert(n->is_Mem(), "memory node required.");
4741 #endif
4742       Node *addr = n->in(MemNode::Address);
4743       const Type *addr_t = igvn->type(addr);
4744       if (addr_t == Type::TOP) {
4745         continue;
4746       }
4747       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4748       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4749       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4750       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4751       if (_compile->failing()) {
4752         return;
4753       }
4754       if (mem != n->in(MemNode::Memory)) {

4759       if (n->is_Load()) {
4760         continue;  // don't push users
4761       } else if (n->is_LoadStore()) {
4762         // get the memory projection
4763         n = n->find_out_with(Op_SCMemProj);
4764         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4765       }
4766     }
4767     // push user on appropriate worklist
4768     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4769       Node *use = n->fast_out(i);
4770       if (use->is_Phi() || use->is_ClearArray()) {
4771         memnode_worklist.append_if_missing(use);
4772       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4773         memnode_worklist.append_if_missing(use);
4774       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4775         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4776           memnode_worklist.append_if_missing(use);
4777         }
4778 #ifdef ASSERT
4779       } else if(use->is_Mem()) {
4780         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4781       } else if (use->is_MergeMem()) {
4782         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4783       } else if (use->Opcode() == Op_EncodeISOArray) {
4784         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4785           // EncodeISOArray overwrites destination array
4786           memnode_worklist.append_if_missing(use);
4787         }




4788       } else {
4789         uint op = use->Opcode();
4790         if ((use->in(MemNode::Memory) == n) &&
4791             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4792           // They overwrite memory edge corresponding to destination array,
4793           memnode_worklist.append_if_missing(use);
4794         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4795               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4796               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4797               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4798           n->dump();
4799           use->dump();
4800           assert(false, "EA: missing memory path");
4801         }
4802 #endif
4803       }
4804     }
4805   }
4806 
4807   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4808   //            Walk each memory slice moving the first node encountered of each
4809   //            instance type to the input corresponding to its alias index.
4810   uint length = mergemem_worklist.length();
4811   for( uint next = 0; next < length; ++next ) {
4812     MergeMemNode* nmm = mergemem_worklist.at(next);
4813     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4814     // Note: we don't want to use MergeMemStream here because we only want to
4815     // scan inputs which exist at the start, not ones we add during processing.
4816     // Note 2: MergeMem may already contains instance memory slices added
4817     // during find_inst_mem() call when memory nodes were processed above.

4878     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4879       if (_compile->do_reduce_allocation_merges()) {
4880         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4881       } else if (_invocation > 0) {
4882         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4883       } else {
4884         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4885       }
4886       return;
4887     }
4888 
4889     igvn->hash_insert(nmm);
4890     record_for_optimizer(nmm);
4891   }
4892 
4893   //  Phase 4:  Update the inputs of non-instance memory Phis and
4894   //            the Memory input of memnodes
4895   // First update the inputs of any non-instance Phi's from
4896   // which we split out an instance Phi.  Note we don't have
4897   // to recursively process Phi's encountered on the input memory
4898   // chains as is done in split_memory_phi() since they  will
4899   // also be processed here.
4900   for (int j = 0; j < orig_phis.length(); j++) {
4901     PhiNode *phi = orig_phis.at(j);
4902     int alias_idx = _compile->get_alias_index(phi->adr_type());
4903     igvn->hash_delete(phi);
4904     for (uint i = 1; i < phi->req(); i++) {
4905       Node *mem = phi->in(i);
4906       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4907       if (_compile->failing()) {
4908         return;
4909       }
4910       if (mem != new_mem) {
4911         phi->set_req(i, new_mem);
4912       }
4913     }
4914     igvn->hash_insert(phi);
4915     record_for_optimizer(phi);
4916   }
4917 
4918   // Update the memory inputs of MemNodes with the value we computed

  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/metaspace.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/inlinetypenode.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "utilities/macros.hpp"
  48 
  49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  50   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  51   // split_unique_types and that will create additional nodes that need to be
  52   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  53   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  54   // the array will be reallocated.
  55   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  56   _in_worklist(C->comp_arena()),
  57   _next_pidx(0),
  58   _collecting(true),
  59   _verify(false),
  60   _compile(C),

 148   GrowableArray<SafePointNode*>  sfn_worklist;
 149   GrowableArray<MergeMemNode*>   mergemem_worklist;
 150   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 151 
 152   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 153 
 154   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 155   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 156   // Initialize worklist
 157   if (C->root() != nullptr) {
 158     ideal_nodes.push(C->root());
 159   }
 160   // Processed ideal nodes are unique on ideal_nodes list
 161   // but several ideal nodes are mapped to the phantom_obj.
 162   // To avoid duplicated entries on the following worklists
 163   // add the phantom_obj only once to them.
 164   ptnodes_worklist.append(phantom_obj);
 165   java_objects_worklist.append(phantom_obj);
 166   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 167     Node* n = ideal_nodes.at(next);
 168     if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) &&
 169         !n->in(MemNode::Address)->is_AddP() &&
 170         _igvn->type(n->in(MemNode::Address))->isa_oopptr()) {
 171       // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA
 172       Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0));
 173       _igvn->register_new_node_with_optimizer(addp);
 174       _igvn->replace_input_of(n, MemNode::Address, addp);
 175       ideal_nodes.push(addp);
 176       _nodes.at_put_grow(addp->_idx, nullptr, nullptr);
 177     }
 178     // Create PointsTo nodes and add them to Connection Graph. Called
 179     // only once per ideal node since ideal_nodes is Unique_Node list.
 180     add_node_to_connection_graph(n, &delayed_worklist);
 181     PointsToNode* ptn = ptnode_adr(n->_idx);
 182     if (ptn != nullptr && ptn != phantom_obj) {
 183       ptnodes_worklist.append(ptn);
 184       if (ptn->is_JavaObject()) {
 185         java_objects_worklist.append(ptn->as_JavaObject());
 186         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 187             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 188           // Only allocations and java static calls results are interesting.
 189           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 190         }
 191       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 192         oop_fields_worklist.append(ptn->as_Field());
 193       }
 194     }
 195     // Collect some interesting nodes for further use.
 196     switch (n->Opcode()) {
 197       case Op_MergeMem:

 408     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 409     if (C->failing()) {
 410       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 411       return false;
 412     }
 413     C->print_method(PHASE_AFTER_EA, 2);
 414 
 415 #ifdef ASSERT
 416   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 417     tty->print("=== No allocations eliminated for ");
 418     C->method()->print_short_name();
 419     if (!EliminateAllocations) {
 420       tty->print(" since EliminateAllocations is off ===");
 421     } else if(!has_scalar_replaceable_candidates) {
 422       tty->print(" since there are no scalar replaceable candidates ===");
 423     }
 424     tty->cr();
 425 #endif
 426   }
 427 
 428   // 6. Expand flat accesses if the object does not escape. This adds nodes to
 429   // the graph, so it has to be after split_unique_types. This expands atomic
 430   // mismatched accesses (though encapsulated in LoadFlats and StoreFlats) into
 431   // non-mismatched accesses, so it is better before reduce allocation merges.
 432   if (has_non_escaping_obj) {
 433     optimize_flat_accesses(sfn_worklist);
 434   }
 435 
 436   // 7. Reduce allocation merges used as debug information. This is done after
 437   // split_unique_types because the methods used to create SafePointScalarObject
 438   // need to traverse the memory graph to find values for object fields. We also
 439   // set to null the scalarized inputs of reducible Phis so that the Allocate
 440   // that they point can be later scalar replaced.
 441   bool delay = _igvn->delay_transform();
 442   _igvn->set_delay_transform(true);
 443   for (uint i = 0; i < reducible_merges.size(); i++) {
 444     Node* n = reducible_merges.at(i);
 445     if (n->outcnt() > 0) {
 446       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 447         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 448         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 449         return false;
 450       }
 451 
 452       // Now we set the scalar replaceable inputs of ophi to null, which is
 453       // the last piece that would prevent it from being scalar replaceable.
 454       reset_scalar_replaceable_entries(n->as_Phi());
 455     }
 456   }

1255 
1256     // The next two inputs are:
1257     //  (1) A copy of the original pointer to NSR objects.
1258     //  (2) A selector, used to decide if we need to rematerialize an object
1259     //      or use the pointer to a NSR object.
1260     // See more details of these fields in the declaration of SafePointScalarMergeNode
1261     sfpt->add_req(nsr_merge_pointer);
1262     sfpt->add_req(selector);
1263 
1264     for (uint i = 1; i < ophi->req(); i++) {
1265       Node* base = ophi->in(i);
1266       JavaObjectNode* ptn = unique_java_object(base);
1267 
1268       // If the base is not scalar replaceable we don't need to register information about
1269       // it at this time.
1270       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1271         continue;
1272       }
1273 
1274       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1275       Unique_Node_List value_worklist;
1276 #ifdef ASSERT
1277       const Type* res_type = alloc->result_cast()->bottom_type();
1278       if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) {
1279         PhiNode* phi = ophi->as_Phi();
1280         assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity");
1281       }
1282 #endif
1283       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist);
1284       if (sobj == nullptr) {
1285         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1286         return false;
1287       }
1288 
1289       // Now make a pass over the debug information replacing any references
1290       // to the allocated object with "sobj"
1291       Node* ccpp = alloc->result_cast();
1292       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1293 
1294       // Register the scalarized object as a candidate for reallocation
1295       smerge->add_req(sobj);
1296 
1297       // Scalarize inline types that were added to the safepoint.
1298       // Don't allow linking a constant oop (if available) for flat array elements
1299       // because Deoptimization::reassign_flat_array_elements needs field values.
1300       const bool allow_oop = !merge_t->is_flat();
1301       for (uint j = 0; j < value_worklist.size(); ++j) {
1302         InlineTypeNode* vt = value_worklist.at(j)->as_InlineType();
1303         vt->make_scalar_in_safepoints(_igvn, allow_oop);
1304       }
1305     }
1306 
1307     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1308     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1309 
1310     // The call to 'replace_edges_in_range' above might have removed the
1311     // reference to ophi that we need at _merge_pointer_idx. The line below make
1312     // sure the reference is maintained.
1313     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1314     _igvn->_worklist.push(sfpt);
1315   }
1316 
1317   return true;
1318 }
1319 
1320 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1321   bool delay = _igvn->delay_transform();
1322   _igvn->set_delay_transform(true);
1323   _igvn->hash_delete(ophi);
1324 

1482   return false;
1483 }
1484 
1485 // Returns true if at least one of the arguments to the call is an object
1486 // that does not escape globally.
1487 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1488   if (call->method() != nullptr) {
1489     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1490     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1491       Node* p = call->in(idx);
1492       if (not_global_escape(p)) {
1493         return true;
1494       }
1495     }
1496   } else {
1497     const char* name = call->as_CallStaticJava()->_name;
1498     assert(name != nullptr, "no name");
1499     // no arg escapes through uncommon traps
1500     if (strcmp(name, "uncommon_trap") != 0) {
1501       // process_call_arguments() assumes that all arguments escape globally
1502       const TypeTuple* d = call->tf()->domain_sig();
1503       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1504         const Type* at = d->field_at(i);
1505         if (at->isa_oopptr() != nullptr) {
1506           return true;
1507         }
1508       }
1509     }
1510   }
1511   return false;
1512 }
1513 
1514 
1515 
1516 // Utility function for nodes that load an object
1517 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1518   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1519   // ThreadLocal has RawPtr type.
1520   const Type* t = _igvn->type(n);
1521   if (t->make_ptr() != nullptr) {
1522     Node* adr = n->in(MemNode::Address);

1556       // first IGVN optimization when escape information is still available.
1557       record_for_optimizer(n);
1558     } else if (n->is_Allocate()) {
1559       add_call_node(n->as_Call());
1560       record_for_optimizer(n);
1561     } else {
1562       if (n->is_CallStaticJava()) {
1563         const char* name = n->as_CallStaticJava()->_name;
1564         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1565           return; // Skip uncommon traps
1566         }
1567       }
1568       // Don't mark as processed since call's arguments have to be processed.
1569       delayed_worklist->push(n);
1570       // Check if a call returns an object.
1571       if ((n->as_Call()->returns_pointer() &&
1572            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1573           (n->is_CallStaticJava() &&
1574            n->as_CallStaticJava()->is_boxing_method())) {
1575         add_call_node(n->as_Call());
1576       } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) {
1577         bool returns_oop = false;
1578         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
1579           ProjNode* pn = n->fast_out(i)->as_Proj();
1580           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
1581             returns_oop = true;
1582           }
1583         }
1584         if (returns_oop) {
1585           add_call_node(n->as_Call());
1586         }
1587       }
1588     }
1589     return;
1590   }
1591   // Put this check here to process call arguments since some call nodes
1592   // point to phantom_obj.
1593   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1594     return; // Skip predefined nodes.
1595   }
1596   switch (opcode) {
1597     case Op_AddP: {
1598       Node* base = get_addp_base(n);
1599       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1600       // Field nodes are created for all field types. They are used in
1601       // adjust_scalar_replaceable_state() and split_unique_types().
1602       // Note, non-oop fields will have only base edges in Connection
1603       // Graph because such fields are not used for oop loads and stores.
1604       int offset = address_offset(n, igvn);
1605       add_field(n, PointsToNode::NoEscape, offset);
1606       if (ptn_base == nullptr) {
1607         delayed_worklist->push(n); // Process it later.
1608       } else {
1609         n_ptn = ptnode_adr(n_idx);
1610         add_base(n_ptn->as_Field(), ptn_base);
1611       }
1612       break;
1613     }
1614     case Op_CastX2P:
1615     case Op_CastI2N: {
1616       map_ideal_node(n, phantom_obj);
1617       break;
1618     }
1619     case Op_InlineType:
1620     case Op_CastPP:
1621     case Op_CheckCastPP:
1622     case Op_EncodeP:
1623     case Op_DecodeN:
1624     case Op_EncodePKlass:
1625     case Op_DecodeNKlass: {
1626       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1627       break;
1628     }
1629     case Op_CMoveP: {
1630       add_local_var(n, PointsToNode::NoEscape);
1631       // Do not add edges during first iteration because some could be
1632       // not defined yet.
1633       delayed_worklist->push(n);
1634       break;
1635     }
1636     case Op_ConP:
1637     case Op_ConN:
1638     case Op_ConNKlass: {
1639       // assume all oop constants globally escape except for null

1669       break;
1670     }
1671     case Op_PartialSubtypeCheck: {
1672       // Produces Null or notNull and is used in only in CmpP so
1673       // phantom_obj could be used.
1674       map_ideal_node(n, phantom_obj); // Result is unknown
1675       break;
1676     }
1677     case Op_Phi: {
1678       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1679       // ThreadLocal has RawPtr type.
1680       const Type* t = n->as_Phi()->type();
1681       if (t->make_ptr() != nullptr) {
1682         add_local_var(n, PointsToNode::NoEscape);
1683         // Do not add edges during first iteration because some could be
1684         // not defined yet.
1685         delayed_worklist->push(n);
1686       }
1687       break;
1688     }
1689     case Op_LoadFlat:
1690       // Treat LoadFlat similar to an unknown call that receives nothing and produces its results
1691       map_ideal_node(n, phantom_obj);
1692       break;
1693     case Op_StoreFlat:
1694       // Treat StoreFlat similar to a call that escapes the stored flattened fields
1695       delayed_worklist->push(n);
1696       break;
1697     case Op_Proj: {
1698       // we are only interested in the oop result projection from a call
1699       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
1700           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
1701         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1702                n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1703         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1704       } else if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_LoadFlat() && igvn->type(n)->isa_ptr()) {
1705         // Treat LoadFlat outputs similar to a call return value
1706         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1707       }
1708       break;
1709     }
1710     case Op_Rethrow: // Exception object escapes
1711     case Op_Return: {
1712       if (n->req() > TypeFunc::Parms &&
1713           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1714         // Treat Return value as LocalVar with GlobalEscape escape state.
1715         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1716       }
1717       break;
1718     }
1719     case Op_CompareAndExchangeP:
1720     case Op_CompareAndExchangeN:
1721     case Op_GetAndSetP:
1722     case Op_GetAndSetN: {
1723       add_objload_to_connection_graph(n, delayed_worklist);
1724       // fall-through
1725     }

1771       break;
1772     }
1773     default:
1774       ; // Do nothing for nodes not related to EA.
1775   }
1776   return;
1777 }
1778 
1779 // Add final simple edges to graph.
1780 void ConnectionGraph::add_final_edges(Node *n) {
1781   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1782 #ifdef ASSERT
1783   if (_verify && n_ptn->is_JavaObject())
1784     return; // This method does not change graph for JavaObject.
1785 #endif
1786 
1787   if (n->is_Call()) {
1788     process_call_arguments(n->as_Call());
1789     return;
1790   }
1791   assert(n->is_Store() || n->is_LoadStore() || n->is_StoreFlat() ||
1792          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1793          "node should be registered already");
1794   int opcode = n->Opcode();
1795   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1796   if (gc_handled) {
1797     return; // Ignore node if already handled by GC.
1798   }
1799   switch (opcode) {
1800     case Op_AddP: {
1801       Node* base = get_addp_base(n);
1802       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1803       assert(ptn_base != nullptr, "field's base should be registered");
1804       add_base(n_ptn->as_Field(), ptn_base);
1805       break;
1806     }
1807     case Op_InlineType:
1808     case Op_CastPP:
1809     case Op_CheckCastPP:
1810     case Op_EncodeP:
1811     case Op_DecodeN:
1812     case Op_EncodePKlass:
1813     case Op_DecodeNKlass: {
1814       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1815       break;
1816     }
1817     case Op_CMoveP: {
1818       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1819         Node* in = n->in(i);
1820         if (in == nullptr) {
1821           continue;  // ignore null
1822         }
1823         Node* uncast_in = in->uncast();
1824         if (uncast_in->is_top() || uncast_in == n) {
1825           continue;  // ignore top or inputs which go back this node
1826         }
1827         PointsToNode* ptn = ptnode_adr(in->_idx);

1840     }
1841     case Op_Phi: {
1842       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1843       // ThreadLocal has RawPtr type.
1844       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1845       for (uint i = 1; i < n->req(); i++) {
1846         Node* in = n->in(i);
1847         if (in == nullptr) {
1848           continue;  // ignore null
1849         }
1850         Node* uncast_in = in->uncast();
1851         if (uncast_in->is_top() || uncast_in == n) {
1852           continue;  // ignore top or inputs which go back this node
1853         }
1854         PointsToNode* ptn = ptnode_adr(in->_idx);
1855         assert(ptn != nullptr, "node should be registered");
1856         add_edge(n_ptn, ptn);
1857       }
1858       break;
1859     }
1860     case Op_StoreFlat: {
1861       // StoreFlat globally escapes its stored flattened fields
1862       InlineTypeNode* value = n->as_StoreFlat()->value();
1863       ciInlineKlass* vk = _igvn->type(value)->inline_klass();
1864       for (int i = 0; i < vk->nof_nonstatic_fields(); i++) {
1865         ciField* field = vk->nonstatic_field_at(i);
1866         if (field->type()->is_primitive_type()) {
1867           continue;
1868         }
1869 
1870         Node* field_value = value->field_value_by_offset(field->offset_in_bytes(), true);
1871         PointsToNode* field_value_ptn = ptnode_adr(field_value->_idx);
1872         set_escape_state(field_value_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "store into a flat field"));
1873       }
1874       break;
1875     }
1876     case Op_Proj: {
1877       if (n->in(0)->is_Call()) {
1878         // we are only interested in the oop result projection from a call
1879         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1880               n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1881         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1882       } else if (n->in(0)->is_LoadFlat()) {
1883         // Treat LoadFlat outputs similar to a call return value
1884         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1885       }
1886       break;
1887     }
1888     case Op_Rethrow: // Exception object escapes
1889     case Op_Return: {
1890       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1891              "Unexpected node type");
1892       // Treat Return value as LocalVar with GlobalEscape escape state.
1893       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1894       break;
1895     }
1896     case Op_CompareAndExchangeP:
1897     case Op_CompareAndExchangeN:
1898     case Op_GetAndSetP:
1899     case Op_GetAndSetN:{
1900       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1901       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1902       // fall-through
1903     }
1904     case Op_CompareAndSwapP:
1905     case Op_CompareAndSwapN:

2040     PointsToNode* ptn = ptnode_adr(val->_idx);
2041     assert(ptn != nullptr, "node should be registered");
2042     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
2043     // Add edge to object for unsafe access with offset.
2044     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
2045     assert(adr_ptn != nullptr, "node should be registered");
2046     if (adr_ptn->is_Field()) {
2047       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
2048       add_edge(adr_ptn, ptn);
2049     }
2050     return true;
2051   }
2052 #ifdef ASSERT
2053   n->dump(1);
2054   assert(false, "not unsafe");
2055 #endif
2056   return false;
2057 }
2058 
2059 void ConnectionGraph::add_call_node(CallNode* call) {
2060   assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer");
2061   uint call_idx = call->_idx;
2062   if (call->is_Allocate()) {
2063     Node* k = call->in(AllocateNode::KlassNode);
2064     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2065     assert(kt != nullptr, "TypeKlassPtr  required.");
2066     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2067     bool scalar_replaceable = true;
2068     NOT_PRODUCT(const char* nsr_reason = "");
2069     if (call->is_AllocateArray()) {
2070       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2071         es = PointsToNode::GlobalEscape;
2072       } else {
2073         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2074         if (length < 0) {
2075           // Not scalar replaceable if the length is not constant.
2076           scalar_replaceable = false;
2077           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2078         } else if (length > EliminateAllocationArraySizeLimit) {
2079           // Not scalar replaceable if the length is too big.
2080           scalar_replaceable = false;

2116     //
2117     //    - all oop arguments are escaping globally;
2118     //
2119     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2120     //
2121     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2122     //
2123     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2124     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2125     //      during call is returned;
2126     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2127     //      which are returned and does not escape during call;
2128     //
2129     //    - oop arguments escaping status is defined by bytecode analysis;
2130     //
2131     // For a static call, we know exactly what method is being called.
2132     // Use bytecode estimator to record whether the call's return value escapes.
2133     ciMethod* meth = call->as_CallJava()->method();
2134     if (meth == nullptr) {
2135       const char* name = call->as_CallStaticJava()->_name;
2136       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2137              strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 ||
2138              strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "TODO: add failed case check");
2139       // Returns a newly allocated non-escaped object.
2140       add_java_object(call, PointsToNode::NoEscape);
2141       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2142     } else if (meth->is_boxing_method()) {
2143       // Returns boxing object
2144       PointsToNode::EscapeState es;
2145       vmIntrinsics::ID intr = meth->intrinsic_id();
2146       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2147         // It does not escape if object is always allocated.
2148         es = PointsToNode::NoEscape;
2149       } else {
2150         // It escapes globally if object could be loaded from cache.
2151         es = PointsToNode::GlobalEscape;
2152       }
2153       add_java_object(call, es);
2154       if (es == PointsToNode::GlobalEscape) {
2155         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2156       }
2157     } else {
2158       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2159       call_analyzer->copy_dependencies(_compile->dependencies());
2160       if (call_analyzer->is_return_allocated()) {
2161         // Returns a newly allocated non-escaped object, simply
2162         // update dependency information.
2163         // Mark it as NoEscape so that objects referenced by
2164         // it's fields will be marked as NoEscape at least.
2165         add_java_object(call, PointsToNode::NoEscape);
2166         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2167       } else {
2168         // Determine whether any arguments are returned.
2169         const TypeTuple* d = call->tf()->domain_cc();
2170         bool ret_arg = false;
2171         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2172           if (d->field_at(i)->isa_ptr() != nullptr &&
2173               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2174             ret_arg = true;
2175             break;
2176           }
2177         }
2178         if (ret_arg) {
2179           add_local_var(call, PointsToNode::ArgEscape);
2180         } else {
2181           // Returns unknown object.
2182           map_ideal_node(call, phantom_obj);
2183         }
2184       }
2185     }
2186   } else {
2187     // An other type of call, assume the worst case:
2188     // returned value is unknown and globally escapes.
2189     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

2197 #ifdef ASSERT
2198     case Op_Allocate:
2199     case Op_AllocateArray:
2200     case Op_Lock:
2201     case Op_Unlock:
2202       assert(false, "should be done already");
2203       break;
2204 #endif
2205     case Op_ArrayCopy:
2206     case Op_CallLeafNoFP:
2207       // Most array copies are ArrayCopy nodes at this point but there
2208       // are still a few direct calls to the copy subroutines (See
2209       // PhaseStringOpts::copy_string())
2210       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2211         call->as_CallLeaf()->is_call_to_arraycopystub();
2212       // fall through
2213     case Op_CallLeafVector:
2214     case Op_CallLeaf: {
2215       // Stub calls, objects do not escape but they are not scale replaceable.
2216       // Adjust escape state for outgoing arguments.
2217       const TypeTuple * d = call->tf()->domain_sig();
2218       bool src_has_oops = false;
2219       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2220         const Type* at = d->field_at(i);
2221         Node *arg = call->in(i);
2222         if (arg == nullptr) {
2223           continue;
2224         }
2225         const Type *aat = _igvn->type(arg);
2226         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2227           continue;
2228         }
2229         if (arg->is_AddP()) {
2230           //
2231           // The inline_native_clone() case when the arraycopy stub is called
2232           // after the allocation before Initialize and CheckCastPP nodes.
2233           // Or normal arraycopy for object arrays case.
2234           //
2235           // Set AddP's base (Allocate) as not scalar replaceable since
2236           // pointer to the base (with offset) is passed as argument.
2237           //
2238           arg = get_addp_base(arg);
2239         }
2240         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2241         assert(arg_ptn != nullptr, "should be registered");
2242         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2243         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2244           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2245                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2246           bool arg_has_oops = aat->isa_oopptr() &&
2247                               (aat->isa_instptr() ||
2248                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) ||
2249                                (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr &&
2250                                                                aat->isa_aryptr()->is_flat() &&
2251                                                                aat->isa_aryptr()->elem()->inline_klass()->contains_oops()));
2252           if (i == TypeFunc::Parms) {
2253             src_has_oops = arg_has_oops;
2254           }
2255           //
2256           // src or dst could be j.l.Object when other is basic type array:
2257           //
2258           //   arraycopy(char[],0,Object*,0,size);
2259           //   arraycopy(Object*,0,char[],0,size);
2260           //
2261           // Don't add edges in such cases.
2262           //
2263           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2264                                        arg_has_oops && (i > TypeFunc::Parms);
2265 #ifdef ASSERT
2266           if (!(is_arraycopy ||
2267                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2268                 (call->as_CallLeaf()->_name != nullptr &&
2269                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2270                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2271                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

2295                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2296                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2297                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2298                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2299                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2300                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2301                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2302                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2303                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2304                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2305                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2306                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2307                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2308                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2309                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2310                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2311                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2312                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2313                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2314                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2315                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2316                   strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 ||
2317                   strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 ||
2318                   strcmp(call->as_CallLeaf()->_name, "store_inline_type_fields_to_buf") == 0 ||
2319                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2320                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2321                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2322                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2323                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2324                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2325                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2326                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2327                  ))) {
2328             call->dump();
2329             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2330           }
2331 #endif
2332           // Always process arraycopy's destination object since
2333           // we need to add all possible edges to references in
2334           // source object.
2335           if (arg_esc >= PointsToNode::ArgEscape &&
2336               !arg_is_arraycopy_dest) {
2337             continue;
2338           }

2361           }
2362         }
2363       }
2364       break;
2365     }
2366     case Op_CallStaticJava: {
2367       // For a static call, we know exactly what method is being called.
2368       // Use bytecode estimator to record the call's escape affects
2369 #ifdef ASSERT
2370       const char* name = call->as_CallStaticJava()->_name;
2371       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2372 #endif
2373       ciMethod* meth = call->as_CallJava()->method();
2374       if ((meth != nullptr) && meth->is_boxing_method()) {
2375         break; // Boxing methods do not modify any oops.
2376       }
2377       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2378       // fall-through if not a Java method or no analyzer information
2379       if (call_analyzer != nullptr) {
2380         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2381         const TypeTuple* d = call->tf()->domain_cc();
2382         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2383           const Type* at = d->field_at(i);
2384           int k = i - TypeFunc::Parms;
2385           Node* arg = call->in(i);
2386           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2387           if (at->isa_ptr() != nullptr &&
2388               call_analyzer->is_arg_returned(k)) {
2389             // The call returns arguments.
2390             if (call_ptn != nullptr) { // Is call's result used?
2391               assert(call_ptn->is_LocalVar(), "node should be registered");
2392               assert(arg_ptn != nullptr, "node should be registered");
2393               add_edge(call_ptn, arg_ptn);
2394             }
2395           }
2396           if (at->isa_oopptr() != nullptr &&
2397               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2398             if (!call_analyzer->is_arg_stack(k)) {
2399               // The argument global escapes
2400               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2401             } else {

2405                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2406               }
2407             }
2408           }
2409         }
2410         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2411           // The call returns arguments.
2412           assert(call_ptn->edge_count() > 0, "sanity");
2413           if (!call_analyzer->is_return_local()) {
2414             // Returns also unknown object.
2415             add_edge(call_ptn, phantom_obj);
2416           }
2417         }
2418         break;
2419       }
2420     }
2421     default: {
2422       // Fall-through here if not a Java method or no analyzer information
2423       // or some other type of call, assume the worst case: all arguments
2424       // globally escape.
2425       const TypeTuple* d = call->tf()->domain_cc();
2426       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2427         const Type* at = d->field_at(i);
2428         if (at->isa_oopptr() != nullptr) {
2429           Node* arg = call->in(i);
2430           if (arg->is_AddP()) {
2431             arg = get_addp_base(arg);
2432           }
2433           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2434           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2435         }
2436       }
2437     }
2438   }
2439 }
2440 
2441 
2442 // Finish Graph construction.
2443 bool ConnectionGraph::complete_connection_graph(
2444                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2445                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2818     PointsToNode* base = i.get();
2819     if (base->is_JavaObject()) {
2820       // Skip Allocate's fields which will be processed later.
2821       if (base->ideal_node()->is_Allocate()) {
2822         return 0;
2823       }
2824       assert(base == null_obj, "only null ptr base expected here");
2825     }
2826   }
2827   if (add_edge(field, phantom_obj)) {
2828     // New edge was added
2829     new_edges++;
2830     add_field_uses_to_worklist(field);
2831   }
2832   return new_edges;
2833 }
2834 
2835 // Find fields initializing values for allocations.
2836 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2837   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2838   PointsToNode* init_val = phantom_obj;
2839   Node* alloc = pta->ideal_node();
2840 
2841   // Do nothing for Allocate nodes since its fields values are
2842   // "known" unless they are initialized by arraycopy/clone.
2843   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2844     if (alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2845       // Null-free inline type arrays are initialized with an init value instead of null
2846       init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::InitValue)->_idx);
2847       assert(init_val != nullptr, "init value should be registered");
2848     } else {
2849       return 0;
2850     }
2851   }
2852   // Non-escaped allocation returned from Java or runtime call has unknown values in fields.
2853   assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity");
2854 #ifdef ASSERT
2855   if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) {
2856     const char* name = alloc->as_CallStaticJava()->_name;
2857     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 ||
2858            strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0 ||
2859            strncmp(name, "store_inline_type_fields_to_buf", 31) == 0, "sanity");
2860   }
2861 #endif
2862   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2863   int new_edges = 0;
2864   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2865     PointsToNode* field = i.get();
2866     if (field->is_Field() && field->as_Field()->is_oop()) {
2867       if (add_edge(field, init_val)) {
2868         // New edge was added
2869         new_edges++;
2870         add_field_uses_to_worklist(field->as_Field());
2871       }
2872     }
2873   }
2874   return new_edges;
2875 }
2876 
2877 // Find fields initializing values for allocations.
2878 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2879   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2880   Node* alloc = pta->ideal_node();
2881   // Do nothing for Call nodes since its fields values are unknown.
2882   if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::InitValue) != nullptr) {
2883     return 0;
2884   }
2885   InitializeNode* ini = alloc->as_Allocate()->initialization();
2886   bool visited_bottom_offset = false;
2887   GrowableArray<int> offsets_worklist;
2888   int new_edges = 0;
2889 
2890   // Check if an oop field's initializing value is recorded and add
2891   // a corresponding null if field's value if it is not recorded.
2892   // Connection Graph does not record a default initialization by null
2893   // captured by Initialize node.
2894   //
2895   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2896     PointsToNode* field = i.get(); // Field (AddP)
2897     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2898       continue; // Not oop field
2899     }
2900     int offset = field->as_Field()->offset();
2901     if (offset == Type::OffsetBot) {
2902       if (!visited_bottom_offset) {

2948               } else {
2949                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2950                   tty->print_cr("----------init store has invalid value -----");
2951                   store->dump();
2952                   val->dump();
2953                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2954                 }
2955                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2956                   PointsToNode* obj = j.get();
2957                   if (obj->is_JavaObject()) {
2958                     if (!field->points_to(obj->as_JavaObject())) {
2959                       missed_obj = obj;
2960                       break;
2961                     }
2962                   }
2963                 }
2964               }
2965               if (missed_obj != nullptr) {
2966                 tty->print_cr("----------field---------------------------------");
2967                 field->dump();
2968                 tty->print_cr("----------missed reference to object------------");
2969                 missed_obj->dump();
2970                 tty->print_cr("----------object referenced by init store-------");
2971                 store->dump();
2972                 val->dump();
2973                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2974               }
2975             }
2976 #endif
2977           } else {
2978             // There could be initializing stores which follow allocation.
2979             // For example, a volatile field store is not collected
2980             // by Initialize node.
2981             //
2982             // Need to check for dependent loads to separate such stores from
2983             // stores which follow loads. For now, add initial value null so
2984             // that compare pointers optimization works correctly.
2985           }
2986         }
2987         if (value == nullptr) {
2988           // A field's initializing value was not recorded. Add null.
2989           if (add_edge(field, null_obj)) {
2990             // New edge was added

3314         assert(field->edge_count() > 0, "sanity");
3315       }
3316     }
3317   }
3318 }
3319 #endif
3320 
3321 // Optimize ideal graph.
3322 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3323                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3324   Compile* C = _compile;
3325   PhaseIterGVN* igvn = _igvn;
3326   if (EliminateLocks) {
3327     // Mark locks before changing ideal graph.
3328     int cnt = C->macro_count();
3329     for (int i = 0; i < cnt; i++) {
3330       Node *n = C->macro_node(i);
3331       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3332         AbstractLockNode* alock = n->as_AbstractLock();
3333         if (!alock->is_non_esc_obj()) {
3334           const Type* obj_type = igvn->type(alock->obj_node());
3335           if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) {
3336             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3337             // The lock could be marked eliminated by lock coarsening
3338             // code during first IGVN before EA. Replace coarsened flag
3339             // to eliminate all associated locks/unlocks.
3340 #ifdef ASSERT
3341             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3342 #endif
3343             alock->set_non_esc_obj();
3344           }
3345         }
3346       }
3347     }
3348   }
3349 
3350   if (OptimizePtrCompare) {
3351     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3352       Node *n = ptr_cmp_worklist.at(i);
3353       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3354       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3355       if (tcmp->singleton()) {

3357 #ifndef PRODUCT
3358         if (PrintOptimizePtrCompare) {
3359           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3360           if (Verbose) {
3361             n->dump(1);
3362           }
3363         }
3364 #endif
3365         igvn->replace_node(n, cmp);
3366       }
3367     }
3368   }
3369 
3370   // For MemBarStoreStore nodes added in library_call.cpp, check
3371   // escape status of associated AllocateNode and optimize out
3372   // MemBarStoreStore node if the allocated object never escapes.
3373   for (int i = 0; i < storestore_worklist.length(); i++) {
3374     Node* storestore = storestore_worklist.at(i);
3375     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3376     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3377       if (alloc->in(AllocateNode::InlineType) != nullptr) {
3378         // Non-escaping inline type buffer allocations don't require a membar
3379         storestore->as_MemBar()->remove(_igvn);
3380       } else {
3381         MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3382         mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3383         mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3384         igvn->register_new_node_with_optimizer(mb);
3385         igvn->replace_node(storestore, mb);
3386       }
3387     }
3388   }
3389 }
3390 
3391 // Atomic flat accesses on non-escaping objects can be optimized to non-atomic accesses
3392 void ConnectionGraph::optimize_flat_accesses(GrowableArray<SafePointNode*>& sfn_worklist) {
3393   PhaseIterGVN& igvn = *_igvn;
3394   bool delay = igvn.delay_transform();
3395   igvn.set_delay_transform(true);
3396   igvn.C->for_each_flat_access([&](Node* n) {
3397     Node* base = n->is_LoadFlat() ? n->as_LoadFlat()->base() : n->as_StoreFlat()->base();
3398     if (!not_global_escape(base)) {
3399       return;
3400     }
3401 
3402     bool expanded;
3403     if (n->is_LoadFlat()) {
3404       expanded = n->as_LoadFlat()->expand_non_atomic(igvn);
3405     } else {
3406       expanded = n->as_StoreFlat()->expand_non_atomic(igvn);
3407     }
3408     if (expanded) {
3409       sfn_worklist.remove(n->as_SafePoint());
3410       igvn.C->remove_flat_access(n);
3411     }
3412   });
3413   igvn.set_delay_transform(delay);
3414 }
3415 
3416 // Optimize objects compare.
3417 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3418   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3419   if (!OptimizePtrCompare) {
3420     return UNKNOWN;
3421   }
3422   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3423   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3424 
3425   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3426   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3427   JavaObjectNode* jobj1 = unique_java_object(left);
3428   JavaObjectNode* jobj2 = unique_java_object(right);
3429 
3430   // The use of this method during allocation merge reduction may cause 'left'
3431   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3432   // that doesn't reference an unique java object.
3433   if (ptn1 == nullptr || ptn2 == nullptr ||
3434       jobj1 == nullptr || jobj2 == nullptr) {
3435     return UNKNOWN;

3555   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3556   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3557   PointsToNode* ptadr = _nodes.at(n->_idx);
3558   if (ptadr != nullptr) {
3559     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3560     return;
3561   }
3562   Compile* C = _compile;
3563   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3564   map_ideal_node(n, ptadr);
3565   // Add edge from arraycopy node to source object.
3566   (void)add_edge(ptadr, src);
3567   src->set_arraycopy_src();
3568   // Add edge from destination object to arraycopy node.
3569   (void)add_edge(dst, ptadr);
3570   dst->set_arraycopy_dst();
3571 }
3572 
3573 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3574   const Type* adr_type = n->as_AddP()->bottom_type();
3575   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
3576   BasicType bt = T_INT;
3577   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
3578     // Check only oop fields.
3579     if (!adr_type->isa_aryptr() ||
3580         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3581         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3582       // OffsetBot is used to reference array's element. Ignore first AddP.
3583       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3584         bt = T_OBJECT;
3585       }
3586     }
3587   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3588     if (adr_type->isa_instptr()) {
3589       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
3590       if (field != nullptr) {
3591         bt = field->layout_type();
3592       } else {
3593         // Check for unsafe oop field access
3594         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3595             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3596             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3597             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3598           bt = T_OBJECT;
3599           (*unsafe) = true;
3600         }
3601       }
3602     } else if (adr_type->isa_aryptr()) {
3603       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3604         // Ignore array length load.
3605       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3606         // Ignore first AddP.
3607       } else {
3608         const Type* elemtype = adr_type->is_aryptr()->elem();
3609         if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) {
3610           ciInlineKlass* vk = elemtype->inline_klass();
3611           field_offset += vk->payload_offset();
3612           ciField* field = vk->get_field_by_offset(field_offset, false);
3613           if (field != nullptr) {
3614             bt = field->layout_type();
3615           } else {
3616             assert(field_offset == vk->payload_offset() + vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), field_offset);
3617             bt = T_BOOLEAN;
3618           }
3619         } else {
3620           bt = elemtype->array_element_basic_type();
3621         }
3622       }
3623     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3624       // Allocation initialization, ThreadLocal field access, unsafe access
3625       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3626           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3627           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3628           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3629         bt = T_OBJECT;
3630       }
3631     }
3632   }
3633   // Note: T_NARROWOOP is not classed as a real reference type
3634   return (is_reference_type(bt) || bt == T_NARROWOOP);
3635 }
3636 
3637 // Returns unique pointed java object or null.
3638 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3639   // If the node was created after the escape computation we can't answer.
3640   uint idx = n->_idx;
3641   if (idx >= nodes_size()) {

3798             return true;
3799           }
3800         }
3801       }
3802     }
3803   }
3804   return false;
3805 }
3806 
3807 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3808   const Type *adr_type = phase->type(adr);
3809   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3810     // We are computing a raw address for a store captured by an Initialize
3811     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3812     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3813     assert(offs != Type::OffsetBot ||
3814            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3815            "offset must be a constant or it is initialization of array");
3816     return offs;
3817   }
3818   return adr_type->is_ptr()->flat_offset();


3819 }
3820 
3821 Node* ConnectionGraph::get_addp_base(Node *addp) {
3822   assert(addp->is_AddP(), "must be AddP");
3823   //
3824   // AddP cases for Base and Address inputs:
3825   // case #1. Direct object's field reference:
3826   //     Allocate
3827   //       |
3828   //     Proj #5 ( oop result )
3829   //       |
3830   //     CheckCastPP (cast to instance type)
3831   //      | |
3832   //     AddP  ( base == address )
3833   //
3834   // case #2. Indirect object's field reference:
3835   //      Phi
3836   //       |
3837   //     CastPP (cast to instance type)
3838   //      | |

3952   }
3953   return nullptr;
3954 }
3955 
3956 //
3957 // Adjust the type and inputs of an AddP which computes the
3958 // address of a field of an instance
3959 //
3960 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3961   PhaseGVN* igvn = _igvn;
3962   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3963   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3964   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3965   if (t == nullptr) {
3966     // We are computing a raw address for a store captured by an Initialize
3967     // compute an appropriate address type (cases #3 and #5).
3968     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3969     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3970     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3971     assert(offs != Type::OffsetBot, "offset must be a constant");
3972     if (base_t->isa_aryptr() != nullptr) {
3973       // In the case of a flat inline type array, each field has its
3974       // own slice so we need to extract the field being accessed from
3975       // the address computation
3976       t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
3977     } else {
3978       t = base_t->add_offset(offs)->is_oopptr();
3979     }
3980   }
3981   int inst_id = base_t->instance_id();
3982   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3983                              "old type must be non-instance or match new type");
3984 
3985   // The type 't' could be subclass of 'base_t'.
3986   // As result t->offset() could be large then base_t's size and it will
3987   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3988   // constructor verifies correctness of the offset.
3989   //
3990   // It could happened on subclass's branch (from the type profiling
3991   // inlining) which was not eliminated during parsing since the exactness
3992   // of the allocation type was not propagated to the subclass type check.
3993   //
3994   // Or the type 't' could be not related to 'base_t' at all.
3995   // It could happen when CHA type is different from MDO type on a dead path
3996   // (for example, from instanceof check) which is not collapsed during parsing.
3997   //
3998   // Do nothing for such AddP node and don't process its users since
3999   // this code branch will go away.
4000   //
4001   if (!t->is_known_instance() &&
4002       !base_t->maybe_java_subtype_of(t)) {
4003      return false; // bail out
4004   }
4005   const TypePtr* tinst = base_t->add_offset(t->offset());
4006   if (tinst->isa_aryptr() && t->isa_aryptr()) {
4007     // In the case of a flat inline type array, each field has its
4008     // own slice so we need to keep track of the field being accessed.
4009     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
4010     // Keep array properties (not flat/null-free)
4011     tinst = tinst->is_aryptr()->update_properties(t->is_aryptr());
4012     if (tinst == nullptr) {
4013       return false; // Skip dead path with inconsistent properties
4014     }
4015   }
4016 
4017   // Do NOT remove the next line: ensure a new alias index is allocated
4018   // for the instance type. Note: C++ will not remove it since the call
4019   // has side effect.
4020   int alias_idx = _compile->get_alias_index(tinst);
4021   igvn->set_type(addp, tinst);
4022   // record the allocation in the node map
4023   set_map(addp, get_map(base->_idx));
4024   // Set addp's Base and Address to 'base'.
4025   Node *abase = addp->in(AddPNode::Base);
4026   Node *adr   = addp->in(AddPNode::Address);
4027   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
4028       adr->in(0)->_idx == (uint)inst_id) {
4029     // Skip AddP cases #3 and #5.
4030   } else {
4031     assert(!abase->is_top(), "sanity"); // AddP case #3
4032     if (abase != base) {
4033       igvn->hash_delete(addp);
4034       addp->set_req(AddPNode::Base, base);
4035       if (abase == adr) {
4036         addp->set_req(AddPNode::Address, base);

4702         ptnode_adr(n->_idx)->dump();
4703         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4704 #endif
4705         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4706         return;
4707       } else {
4708         Node *val = get_map(jobj->idx());   // CheckCastPP node
4709         TypeNode *tn = n->as_Type();
4710         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4711         assert(tinst != nullptr && tinst->is_known_instance() &&
4712                tinst->instance_id() == jobj->idx() , "instance type expected.");
4713 
4714         const Type *tn_type = igvn->type(tn);
4715         const TypeOopPtr *tn_t;
4716         if (tn_type->isa_narrowoop()) {
4717           tn_t = tn_type->make_ptr()->isa_oopptr();
4718         } else {
4719           tn_t = tn_type->isa_oopptr();
4720         }
4721         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4722           if (tn_t->isa_aryptr()) {
4723             // Keep array properties (not flat/null-free)
4724             tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr());
4725             if (tinst == nullptr) {
4726               continue; // Skip dead path with inconsistent properties
4727             }
4728           }
4729           if (tn_type->isa_narrowoop()) {
4730             tn_type = tinst->make_narrowoop();
4731           } else {
4732             tn_type = tinst;
4733           }
4734           igvn->hash_delete(tn);
4735           igvn->set_type(tn, tn_type);
4736           tn->set_type(tn_type);
4737           igvn->hash_insert(tn);
4738           record_for_optimizer(n);
4739         } else {
4740           assert(tn_type == TypePtr::NULL_PTR ||
4741                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4742                  "unexpected type");
4743           continue; // Skip dead path with different type
4744         }
4745       }
4746     } else {
4747       DEBUG_ONLY(n->dump();)
4748       assert(false, "EA: unexpected node");
4749       continue;
4750     }
4751     // push allocation's users on appropriate worklist
4752     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4753       Node *use = n->fast_out(i);
4754       if (use->is_Mem() && use->in(MemNode::Address) == n) {
4755         // Load/store to instance's field
4756         memnode_worklist.append_if_missing(use);
4757       } else if (use->is_MemBar()) {
4758         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4759           memnode_worklist.append_if_missing(use);
4760         }
4761       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4762         Node* addp2 = find_second_addp(use, n);
4763         if (addp2 != nullptr) {
4764           alloc_worklist.append_if_missing(addp2);
4765         }
4766         alloc_worklist.append_if_missing(use);
4767       } else if (use->is_Phi() ||
4768                  use->is_CheckCastPP() ||
4769                  use->is_EncodeNarrowPtr() ||
4770                  use->is_DecodeNarrowPtr() ||
4771                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4772         alloc_worklist.append_if_missing(use);
4773 #ifdef ASSERT
4774       } else if (use->is_Mem()) {
4775         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4776       } else if (use->is_MergeMem()) {
4777         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4778       } else if (use->is_SafePoint()) {
4779         // Look for MergeMem nodes for calls which reference unique allocation
4780         // (through CheckCastPP nodes) even for debug info.
4781         Node* m = use->in(TypeFunc::Memory);
4782         if (m->is_MergeMem()) {
4783           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4784         }
4785       } else if (use->Opcode() == Op_EncodeISOArray) {
4786         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4787           // EncodeISOArray overwrites destination array
4788           memnode_worklist.append_if_missing(use);
4789         }
4790       } else if (use->Opcode() == Op_Return) {
4791         // Allocation is referenced by field of returned inline type
4792         assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode");
4793       } else {
4794         uint op = use->Opcode();
4795         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4796             (use->in(MemNode::Memory) == n)) {
4797           // They overwrite memory edge corresponding to destination array,
4798           memnode_worklist.append_if_missing(use);
4799         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4800               op == Op_CastP2X ||
4801               op == Op_FastLock || op == Op_AryEq ||
4802               op == Op_StrComp || op == Op_CountPositives ||
4803               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4804               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4805               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4806               op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck ||
4807               op == Op_ReinterpretS2HF ||
4808               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4809           n->dump();
4810           use->dump();
4811           assert(false, "EA: missing allocation reference path");
4812         }
4813 #endif
4814       }
4815     }
4816 
4817   }
4818 
4819 #ifdef ASSERT
4820   if (VerifyReduceAllocationMerges) {
4821     for (uint i = 0; i < reducible_merges.size(); i++) {
4822       Node* phi = reducible_merges.at(i);
4823 
4824       if (!reduced_merges.member(phi)) {
4825         phi->dump(2);
4826         phi->dump(-2);

4890       // we don't need to do anything, but the users must be pushed
4891       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4892       if (n == nullptr) {
4893         continue;
4894       }
4895     } else if (n->is_CallLeaf()) {
4896       // Runtime calls with narrow memory input (no MergeMem node)
4897       // get the memory projection
4898       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4899       if (n == nullptr) {
4900         continue;
4901       }
4902     } else if (n->Opcode() == Op_StrInflatedCopy) {
4903       // Check direct uses of StrInflatedCopy.
4904       // It is memory type Node - no special SCMemProj node.
4905     } else if (n->Opcode() == Op_StrCompressedCopy ||
4906                n->Opcode() == Op_EncodeISOArray) {
4907       // get the memory projection
4908       n = n->find_out_with(Op_SCMemProj);
4909       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4910     } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr &&
4911                strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4912       n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
4913     } else {
4914 #ifdef ASSERT
4915       if (!n->is_Mem()) {
4916         n->dump();
4917       }
4918       assert(n->is_Mem(), "memory node required.");
4919 #endif
4920       Node *addr = n->in(MemNode::Address);
4921       const Type *addr_t = igvn->type(addr);
4922       if (addr_t == Type::TOP) {
4923         continue;
4924       }
4925       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4926       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4927       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4928       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4929       if (_compile->failing()) {
4930         return;
4931       }
4932       if (mem != n->in(MemNode::Memory)) {

4937       if (n->is_Load()) {
4938         continue;  // don't push users
4939       } else if (n->is_LoadStore()) {
4940         // get the memory projection
4941         n = n->find_out_with(Op_SCMemProj);
4942         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4943       }
4944     }
4945     // push user on appropriate worklist
4946     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4947       Node *use = n->fast_out(i);
4948       if (use->is_Phi() || use->is_ClearArray()) {
4949         memnode_worklist.append_if_missing(use);
4950       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4951         memnode_worklist.append_if_missing(use);
4952       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4953         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4954           memnode_worklist.append_if_missing(use);
4955         }
4956 #ifdef ASSERT
4957       } else if (use->is_Mem()) {
4958         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4959       } else if (use->is_MergeMem()) {
4960         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4961       } else if (use->Opcode() == Op_EncodeISOArray) {
4962         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4963           // EncodeISOArray overwrites destination array
4964           memnode_worklist.append_if_missing(use);
4965         }
4966       } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr &&
4967                  strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4968         // store_unknown_inline overwrites destination array
4969         memnode_worklist.append_if_missing(use);
4970       } else {
4971         uint op = use->Opcode();
4972         if ((use->in(MemNode::Memory) == n) &&
4973             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4974           // They overwrite memory edge corresponding to destination array,
4975           memnode_worklist.append_if_missing(use);
4976         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4977               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4978               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4979               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) {
4980           n->dump();
4981           use->dump();
4982           assert(false, "EA: missing memory path");
4983         }
4984 #endif
4985       }
4986     }
4987   }
4988 
4989   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4990   //            Walk each memory slice moving the first node encountered of each
4991   //            instance type to the input corresponding to its alias index.
4992   uint length = mergemem_worklist.length();
4993   for( uint next = 0; next < length; ++next ) {
4994     MergeMemNode* nmm = mergemem_worklist.at(next);
4995     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4996     // Note: we don't want to use MergeMemStream here because we only want to
4997     // scan inputs which exist at the start, not ones we add during processing.
4998     // Note 2: MergeMem may already contains instance memory slices added
4999     // during find_inst_mem() call when memory nodes were processed above.

5060     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
5061       if (_compile->do_reduce_allocation_merges()) {
5062         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
5063       } else if (_invocation > 0) {
5064         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
5065       } else {
5066         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
5067       }
5068       return;
5069     }
5070 
5071     igvn->hash_insert(nmm);
5072     record_for_optimizer(nmm);
5073   }
5074 
5075   //  Phase 4:  Update the inputs of non-instance memory Phis and
5076   //            the Memory input of memnodes
5077   // First update the inputs of any non-instance Phi's from
5078   // which we split out an instance Phi.  Note we don't have
5079   // to recursively process Phi's encountered on the input memory
5080   // chains as is done in split_memory_phi() since they will
5081   // also be processed here.
5082   for (int j = 0; j < orig_phis.length(); j++) {
5083     PhiNode *phi = orig_phis.at(j);
5084     int alias_idx = _compile->get_alias_index(phi->adr_type());
5085     igvn->hash_delete(phi);
5086     for (uint i = 1; i < phi->req(); i++) {
5087       Node *mem = phi->in(i);
5088       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
5089       if (_compile->failing()) {
5090         return;
5091       }
5092       if (mem != new_mem) {
5093         phi->set_req(i, new_mem);
5094       }
5095     }
5096     igvn->hash_insert(phi);
5097     record_for_optimizer(phi);
5098   }
5099 
5100   // Update the memory inputs of MemNodes with the value we computed
< prev index next >