< prev index next >

src/hotspot/share/opto/escape.cpp

Print this page

  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"

  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/macro.hpp"
  40 #include "opto/phaseX.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  46   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  47   // split_unique_types and that will create additional nodes that need to be
  48   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  49   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  50   // the array will be reallocated.
  51   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),

 144   GrowableArray<SafePointNode*>  sfn_worklist;
 145   GrowableArray<MergeMemNode*>   mergemem_worklist;
 146   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 147 
 148   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 149 
 150   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 151   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 152   // Initialize worklist
 153   if (C->root() != nullptr) {
 154     ideal_nodes.push(C->root());
 155   }
 156   // Processed ideal nodes are unique on ideal_nodes list
 157   // but several ideal nodes are mapped to the phantom_obj.
 158   // To avoid duplicated entries on the following worklists
 159   // add the phantom_obj only once to them.
 160   ptnodes_worklist.append(phantom_obj);
 161   java_objects_worklist.append(phantom_obj);
 162   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 163     Node* n = ideal_nodes.at(next);










 164     // Create PointsTo nodes and add them to Connection Graph. Called
 165     // only once per ideal node since ideal_nodes is Unique_Node list.
 166     add_node_to_connection_graph(n, &delayed_worklist);
 167     PointsToNode* ptn = ptnode_adr(n->_idx);
 168     if (ptn != nullptr && ptn != phantom_obj) {
 169       ptnodes_worklist.append(ptn);
 170       if (ptn->is_JavaObject()) {
 171         java_objects_worklist.append(ptn->as_JavaObject());
 172         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 173             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 174           // Only allocations and java static calls results are interesting.
 175           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 176         }
 177       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 178         oop_fields_worklist.append(ptn->as_Field());
 179       }
 180     }
 181     // Collect some interesting nodes for further use.
 182     switch (n->Opcode()) {
 183       case Op_MergeMem:

 676 
 677     // The next two inputs are:
 678     //  (1) A copy of the original pointer to NSR objects.
 679     //  (2) A selector, used to decide if we need to rematerialize an object
 680     //      or use the pointer to a NSR object.
 681     // See more details of these fields in the declaration of SafePointScalarMergeNode
 682     sfpt->add_req(ophi);
 683     sfpt->add_req(selector);
 684 
 685     for (uint i = 1; i < ophi->req(); i++) {
 686       Node* base          = ophi->in(i);
 687       JavaObjectNode* ptn = unique_java_object(base);
 688 
 689       // If the base is not scalar replaceable we don't need to register information about
 690       // it at this time.
 691       if (ptn == nullptr || !ptn->scalar_replaceable()) {
 692         continue;
 693       }
 694 
 695       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 696       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);


 697       if (sobj == nullptr) {
 698         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 699         return;
 700       }
 701 
 702       // Now make a pass over the debug information replacing any references
 703       // to the allocated object with "sobj"
 704       Node* ccpp = alloc->result_cast();
 705       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
 706 
 707       // Register the scalarized object as a candidate for reallocation
 708       smerge->add_req(sobj);
 709     }
 710 
 711     // Replaces debug information references to "ophi" in "sfpt" with references to "smerge"
 712     sfpt->replace_edges_in_range(ophi, smerge, debug_start, jvms->debug_end(), _igvn);
 713 
 714     // The call to 'replace_edges_in_range' above might have removed the
 715     // reference to ophi that we need at _merge_pointer_idx. The line below make
 716     // sure the reference is maintained.

 840   return false;
 841 }
 842 
 843 // Returns true if at least one of the arguments to the call is an object
 844 // that does not escape globally.
 845 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
 846   if (call->method() != nullptr) {
 847     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
 848     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
 849       Node* p = call->in(idx);
 850       if (not_global_escape(p)) {
 851         return true;
 852       }
 853     }
 854   } else {
 855     const char* name = call->as_CallStaticJava()->_name;
 856     assert(name != nullptr, "no name");
 857     // no arg escapes through uncommon traps
 858     if (strcmp(name, "uncommon_trap") != 0) {
 859       // process_call_arguments() assumes that all arguments escape globally
 860       const TypeTuple* d = call->tf()->domain();
 861       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 862         const Type* at = d->field_at(i);
 863         if (at->isa_oopptr() != nullptr) {
 864           return true;
 865         }
 866       }
 867     }
 868   }
 869   return false;
 870 }
 871 
 872 
 873 
 874 // Utility function for nodes that load an object
 875 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 876   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 877   // ThreadLocal has RawPtr type.
 878   const Type* t = _igvn->type(n);
 879   if (t->make_ptr() != nullptr) {
 880     Node* adr = n->in(MemNode::Address);

 914       // first IGVN optimization when escape information is still available.
 915       record_for_optimizer(n);
 916     } else if (n->is_Allocate()) {
 917       add_call_node(n->as_Call());
 918       record_for_optimizer(n);
 919     } else {
 920       if (n->is_CallStaticJava()) {
 921         const char* name = n->as_CallStaticJava()->_name;
 922         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
 923           return; // Skip uncommon traps
 924         }
 925       }
 926       // Don't mark as processed since call's arguments have to be processed.
 927       delayed_worklist->push(n);
 928       // Check if a call returns an object.
 929       if ((n->as_Call()->returns_pointer() &&
 930            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
 931           (n->is_CallStaticJava() &&
 932            n->as_CallStaticJava()->is_boxing_method())) {
 933         add_call_node(n->as_Call());











 934       }
 935     }
 936     return;
 937   }
 938   // Put this check here to process call arguments since some call nodes
 939   // point to phantom_obj.
 940   if (n_ptn == phantom_obj || n_ptn == null_obj) {
 941     return; // Skip predefined nodes.
 942   }
 943   switch (opcode) {
 944     case Op_AddP: {
 945       Node* base = get_addp_base(n);
 946       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 947       // Field nodes are created for all field types. They are used in
 948       // adjust_scalar_replaceable_state() and split_unique_types().
 949       // Note, non-oop fields will have only base edges in Connection
 950       // Graph because such fields are not used for oop loads and stores.
 951       int offset = address_offset(n, igvn);
 952       add_field(n, PointsToNode::NoEscape, offset);
 953       if (ptn_base == nullptr) {
 954         delayed_worklist->push(n); // Process it later.
 955       } else {
 956         n_ptn = ptnode_adr(n_idx);
 957         add_base(n_ptn->as_Field(), ptn_base);
 958       }
 959       break;
 960     }
 961     case Op_CastX2P: {
 962       map_ideal_node(n, phantom_obj);
 963       break;
 964     }

 965     case Op_CastPP:
 966     case Op_CheckCastPP:
 967     case Op_EncodeP:
 968     case Op_DecodeN:
 969     case Op_EncodePKlass:
 970     case Op_DecodeNKlass: {
 971       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
 972       break;
 973     }
 974     case Op_CMoveP: {
 975       add_local_var(n, PointsToNode::NoEscape);
 976       // Do not add edges during first iteration because some could be
 977       // not defined yet.
 978       delayed_worklist->push(n);
 979       break;
 980     }
 981     case Op_ConP:
 982     case Op_ConN:
 983     case Op_ConNKlass: {
 984       // assume all oop constants globally escape except for null

1016     case Op_PartialSubtypeCheck: {
1017       // Produces Null or notNull and is used in only in CmpP so
1018       // phantom_obj could be used.
1019       map_ideal_node(n, phantom_obj); // Result is unknown
1020       break;
1021     }
1022     case Op_Phi: {
1023       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1024       // ThreadLocal has RawPtr type.
1025       const Type* t = n->as_Phi()->type();
1026       if (t->make_ptr() != nullptr) {
1027         add_local_var(n, PointsToNode::NoEscape);
1028         // Do not add edges during first iteration because some could be
1029         // not defined yet.
1030         delayed_worklist->push(n);
1031       }
1032       break;
1033     }
1034     case Op_Proj: {
1035       // we are only interested in the oop result projection from a call
1036       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1037           n->in(0)->as_Call()->returns_pointer()) {


1038         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1039       }
1040       break;
1041     }
1042     case Op_Rethrow: // Exception object escapes
1043     case Op_Return: {
1044       if (n->req() > TypeFunc::Parms &&
1045           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1046         // Treat Return value as LocalVar with GlobalEscape escape state.
1047         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1048       }
1049       break;
1050     }
1051     case Op_CompareAndExchangeP:
1052     case Op_CompareAndExchangeN:
1053     case Op_GetAndSetP:
1054     case Op_GetAndSetN: {
1055       add_objload_to_connection_graph(n, delayed_worklist);
1056       // fall-through
1057     }

1119   if (n->is_Call()) {
1120     process_call_arguments(n->as_Call());
1121     return;
1122   }
1123   assert(n->is_Store() || n->is_LoadStore() ||
1124          (n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr),
1125          "node should be registered already");
1126   int opcode = n->Opcode();
1127   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1128   if (gc_handled) {
1129     return; // Ignore node if already handled by GC.
1130   }
1131   switch (opcode) {
1132     case Op_AddP: {
1133       Node* base = get_addp_base(n);
1134       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1135       assert(ptn_base != nullptr, "field's base should be registered");
1136       add_base(n_ptn->as_Field(), ptn_base);
1137       break;
1138     }

1139     case Op_CastPP:
1140     case Op_CheckCastPP:
1141     case Op_EncodeP:
1142     case Op_DecodeN:
1143     case Op_EncodePKlass:
1144     case Op_DecodeNKlass: {
1145       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1146       break;
1147     }
1148     case Op_CMoveP: {
1149       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1150         Node* in = n->in(i);
1151         if (in == nullptr) {
1152           continue;  // ignore null
1153         }
1154         Node* uncast_in = in->uncast();
1155         if (uncast_in->is_top() || uncast_in == n) {
1156           continue;  // ignore top or inputs which go back this node
1157         }
1158         PointsToNode* ptn = ptnode_adr(in->_idx);

1173       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1174       // ThreadLocal has RawPtr type.
1175       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1176       for (uint i = 1; i < n->req(); i++) {
1177         Node* in = n->in(i);
1178         if (in == nullptr) {
1179           continue;  // ignore null
1180         }
1181         Node* uncast_in = in->uncast();
1182         if (uncast_in->is_top() || uncast_in == n) {
1183           continue;  // ignore top or inputs which go back this node
1184         }
1185         PointsToNode* ptn = ptnode_adr(in->_idx);
1186         assert(ptn != nullptr, "node should be registered");
1187         add_edge(n_ptn, ptn);
1188       }
1189       break;
1190     }
1191     case Op_Proj: {
1192       // we are only interested in the oop result projection from a call
1193       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1194              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1195       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1196       break;
1197     }
1198     case Op_Rethrow: // Exception object escapes
1199     case Op_Return: {
1200       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1201              "Unexpected node type");
1202       // Treat Return value as LocalVar with GlobalEscape escape state.
1203       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1204       break;
1205     }
1206     case Op_CompareAndExchangeP:
1207     case Op_CompareAndExchangeN:
1208     case Op_GetAndSetP:
1209     case Op_GetAndSetN:{
1210       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1211       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1212       // fall-through
1213     }
1214     case Op_CompareAndSwapP:

1350     PointsToNode* ptn = ptnode_adr(val->_idx);
1351     assert(ptn != nullptr, "node should be registered");
1352     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1353     // Add edge to object for unsafe access with offset.
1354     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1355     assert(adr_ptn != nullptr, "node should be registered");
1356     if (adr_ptn->is_Field()) {
1357       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1358       add_edge(adr_ptn, ptn);
1359     }
1360     return true;
1361   }
1362 #ifdef ASSERT
1363   n->dump(1);
1364   assert(false, "not unsafe");
1365 #endif
1366   return false;
1367 }
1368 
1369 void ConnectionGraph::add_call_node(CallNode* call) {
1370   assert(call->returns_pointer(), "only for call which returns pointer");
1371   uint call_idx = call->_idx;
1372   if (call->is_Allocate()) {
1373     Node* k = call->in(AllocateNode::KlassNode);
1374     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1375     assert(kt != nullptr, "TypeKlassPtr  required.");
1376     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1377     bool scalar_replaceable = true;
1378     NOT_PRODUCT(const char* nsr_reason = "");
1379     if (call->is_AllocateArray()) {
1380       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1381         es = PointsToNode::GlobalEscape;
1382       } else {
1383         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1384         if (length < 0) {
1385           // Not scalar replaceable if the length is not constant.
1386           scalar_replaceable = false;
1387           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1388         } else if (length > EliminateAllocationArraySizeLimit) {
1389           // Not scalar replaceable if the length is too big.
1390           scalar_replaceable = false;

1426     //
1427     //    - all oop arguments are escaping globally;
1428     //
1429     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
1430     //
1431     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
1432     //
1433     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
1434     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
1435     //      during call is returned;
1436     //    - mapped to ArgEscape LocalVar node pointed to object arguments
1437     //      which are returned and does not escape during call;
1438     //
1439     //    - oop arguments escaping status is defined by bytecode analysis;
1440     //
1441     // For a static call, we know exactly what method is being called.
1442     // Use bytecode estimator to record whether the call's return value escapes.
1443     ciMethod* meth = call->as_CallJava()->method();
1444     if (meth == nullptr) {
1445       const char* name = call->as_CallStaticJava()->_name;
1446       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");

1447       // Returns a newly allocated non-escaped object.
1448       add_java_object(call, PointsToNode::NoEscape);
1449       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
1450     } else if (meth->is_boxing_method()) {
1451       // Returns boxing object
1452       PointsToNode::EscapeState es;
1453       vmIntrinsics::ID intr = meth->intrinsic_id();
1454       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
1455         // It does not escape if object is always allocated.
1456         es = PointsToNode::NoEscape;
1457       } else {
1458         // It escapes globally if object could be loaded from cache.
1459         es = PointsToNode::GlobalEscape;
1460       }
1461       add_java_object(call, es);
1462       if (es == PointsToNode::GlobalEscape) {
1463         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
1464       }
1465     } else {
1466       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
1467       call_analyzer->copy_dependencies(_compile->dependencies());
1468       if (call_analyzer->is_return_allocated()) {
1469         // Returns a newly allocated non-escaped object, simply
1470         // update dependency information.
1471         // Mark it as NoEscape so that objects referenced by
1472         // it's fields will be marked as NoEscape at least.
1473         add_java_object(call, PointsToNode::NoEscape);
1474         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
1475       } else {
1476         // Determine whether any arguments are returned.
1477         const TypeTuple* d = call->tf()->domain();
1478         bool ret_arg = false;
1479         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1480           if (d->field_at(i)->isa_ptr() != nullptr &&
1481               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1482             ret_arg = true;
1483             break;
1484           }
1485         }
1486         if (ret_arg) {
1487           add_local_var(call, PointsToNode::ArgEscape);
1488         } else {
1489           // Returns unknown object.
1490           map_ideal_node(call, phantom_obj);
1491         }
1492       }
1493     }
1494   } else {
1495     // An other type of call, assume the worst case:
1496     // returned value is unknown and globally escapes.
1497     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

1505 #ifdef ASSERT
1506     case Op_Allocate:
1507     case Op_AllocateArray:
1508     case Op_Lock:
1509     case Op_Unlock:
1510       assert(false, "should be done already");
1511       break;
1512 #endif
1513     case Op_ArrayCopy:
1514     case Op_CallLeafNoFP:
1515       // Most array copies are ArrayCopy nodes at this point but there
1516       // are still a few direct calls to the copy subroutines (See
1517       // PhaseStringOpts::copy_string())
1518       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
1519         call->as_CallLeaf()->is_call_to_arraycopystub();
1520       // fall through
1521     case Op_CallLeafVector:
1522     case Op_CallLeaf: {
1523       // Stub calls, objects do not escape but they are not scale replaceable.
1524       // Adjust escape state for outgoing arguments.
1525       const TypeTuple * d = call->tf()->domain();
1526       bool src_has_oops = false;
1527       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1528         const Type* at = d->field_at(i);
1529         Node *arg = call->in(i);
1530         if (arg == nullptr) {
1531           continue;
1532         }
1533         const Type *aat = _igvn->type(arg);
1534         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
1535           continue;
1536         }
1537         if (arg->is_AddP()) {
1538           //
1539           // The inline_native_clone() case when the arraycopy stub is called
1540           // after the allocation before Initialize and CheckCastPP nodes.
1541           // Or normal arraycopy for object arrays case.
1542           //
1543           // Set AddP's base (Allocate) as not scalar replaceable since
1544           // pointer to the base (with offset) is passed as argument.
1545           //
1546           arg = get_addp_base(arg);
1547         }
1548         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1549         assert(arg_ptn != nullptr, "should be registered");
1550         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
1551         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
1552           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1553                  aat->isa_ptr() != nullptr, "expecting an Ptr");
1554           bool arg_has_oops = aat->isa_oopptr() &&
1555                               (aat->isa_instptr() ||
1556                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));



1557           if (i == TypeFunc::Parms) {
1558             src_has_oops = arg_has_oops;
1559           }
1560           //
1561           // src or dst could be j.l.Object when other is basic type array:
1562           //
1563           //   arraycopy(char[],0,Object*,0,size);
1564           //   arraycopy(Object*,0,char[],0,size);
1565           //
1566           // Don't add edges in such cases.
1567           //
1568           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
1569                                        arg_has_oops && (i > TypeFunc::Parms);
1570 #ifdef ASSERT
1571           if (!(is_arraycopy ||
1572                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
1573                 (call->as_CallLeaf()->_name != nullptr &&
1574                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1575                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1576                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

1585                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
1586                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1587                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
1588                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
1589                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
1590                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
1591                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
1592                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1593                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1594                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1595                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1596                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1597                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1598                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
1599                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
1600                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1601                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1602                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1603                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1604                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||



1605                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
1606                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
1607                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
1608                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
1609                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
1610                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0)
1611                  ))) {
1612             call->dump();
1613             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1614           }
1615 #endif
1616           // Always process arraycopy's destination object since
1617           // we need to add all possible edges to references in
1618           // source object.
1619           if (arg_esc >= PointsToNode::ArgEscape &&
1620               !arg_is_arraycopy_dest) {
1621             continue;
1622           }
1623           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1624           if (call->is_ArrayCopy()) {

1649           }
1650         }
1651       }
1652       break;
1653     }
1654     case Op_CallStaticJava: {
1655       // For a static call, we know exactly what method is being called.
1656       // Use bytecode estimator to record the call's escape affects
1657 #ifdef ASSERT
1658       const char* name = call->as_CallStaticJava()->_name;
1659       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1660 #endif
1661       ciMethod* meth = call->as_CallJava()->method();
1662       if ((meth != nullptr) && meth->is_boxing_method()) {
1663         break; // Boxing methods do not modify any oops.
1664       }
1665       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
1666       // fall-through if not a Java method or no analyzer information
1667       if (call_analyzer != nullptr) {
1668         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1669         const TypeTuple* d = call->tf()->domain();
1670         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1671           const Type* at = d->field_at(i);
1672           int k = i - TypeFunc::Parms;
1673           Node* arg = call->in(i);
1674           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1675           if (at->isa_ptr() != nullptr &&
1676               call_analyzer->is_arg_returned(k)) {
1677             // The call returns arguments.
1678             if (call_ptn != nullptr) { // Is call's result used?
1679               assert(call_ptn->is_LocalVar(), "node should be registered");
1680               assert(arg_ptn != nullptr, "node should be registered");
1681               add_edge(call_ptn, arg_ptn);
1682             }
1683           }
1684           if (at->isa_oopptr() != nullptr &&
1685               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1686             if (!call_analyzer->is_arg_stack(k)) {
1687               // The argument global escapes
1688               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1689             } else {

1693                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1694               }
1695             }
1696           }
1697         }
1698         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
1699           // The call returns arguments.
1700           assert(call_ptn->edge_count() > 0, "sanity");
1701           if (!call_analyzer->is_return_local()) {
1702             // Returns also unknown object.
1703             add_edge(call_ptn, phantom_obj);
1704           }
1705         }
1706         break;
1707       }
1708     }
1709     default: {
1710       // Fall-through here if not a Java method or no analyzer information
1711       // or some other type of call, assume the worst case: all arguments
1712       // globally escape.
1713       const TypeTuple* d = call->tf()->domain();
1714       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1715         const Type* at = d->field_at(i);
1716         if (at->isa_oopptr() != nullptr) {
1717           Node* arg = call->in(i);
1718           if (arg->is_AddP()) {
1719             arg = get_addp_base(arg);
1720           }
1721           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
1722           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1723         }
1724       }
1725     }
1726   }
1727 }
1728 
1729 
1730 // Finish Graph construction.
1731 bool ConnectionGraph::complete_connection_graph(
1732                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1733                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2106     PointsToNode* base = i.get();
2107     if (base->is_JavaObject()) {
2108       // Skip Allocate's fields which will be processed later.
2109       if (base->ideal_node()->is_Allocate()) {
2110         return 0;
2111       }
2112       assert(base == null_obj, "only null ptr base expected here");
2113     }
2114   }
2115   if (add_edge(field, phantom_obj)) {
2116     // New edge was added
2117     new_edges++;
2118     add_field_uses_to_worklist(field);
2119   }
2120   return new_edges;
2121 }
2122 
2123 // Find fields initializing values for allocations.
2124 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2125   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");

2126   Node* alloc = pta->ideal_node();
2127 
2128   // Do nothing for Allocate nodes since its fields values are
2129   // "known" unless they are initialized by arraycopy/clone.
2130   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2131     return 0;







2132   }
2133   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");

2134 #ifdef ASSERT
2135   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2136     const char* name = alloc->as_CallStaticJava()->_name;
2137     assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");

2138   }
2139 #endif
2140   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2141   int new_edges = 0;
2142   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2143     PointsToNode* field = i.get();
2144     if (field->is_Field() && field->as_Field()->is_oop()) {
2145       if (add_edge(field, phantom_obj)) {
2146         // New edge was added
2147         new_edges++;
2148         add_field_uses_to_worklist(field->as_Field());
2149       }
2150     }
2151   }
2152   return new_edges;
2153 }
2154 
2155 // Find fields initializing values for allocations.
2156 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2157   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2158   Node* alloc = pta->ideal_node();
2159   // Do nothing for Call nodes since its fields values are unknown.
2160   if (!alloc->is_Allocate()) {
2161     return 0;
2162   }
2163   InitializeNode* ini = alloc->as_Allocate()->initialization();
2164   bool visited_bottom_offset = false;
2165   GrowableArray<int> offsets_worklist;
2166   int new_edges = 0;
2167 
2168   // Check if an oop field's initializing value is recorded and add
2169   // a corresponding null if field's value if it is not recorded.
2170   // Connection Graph does not record a default initialization by null
2171   // captured by Initialize node.
2172   //
2173   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2174     PointsToNode* field = i.get(); // Field (AddP)
2175     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2176       continue; // Not oop field
2177     }
2178     int offset = field->as_Field()->offset();
2179     if (offset == Type::OffsetBot) {
2180       if (!visited_bottom_offset) {

2226               } else {
2227                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2228                   tty->print_cr("----------init store has invalid value -----");
2229                   store->dump();
2230                   val->dump();
2231                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2232                 }
2233                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2234                   PointsToNode* obj = j.get();
2235                   if (obj->is_JavaObject()) {
2236                     if (!field->points_to(obj->as_JavaObject())) {
2237                       missed_obj = obj;
2238                       break;
2239                     }
2240                   }
2241                 }
2242               }
2243               if (missed_obj != nullptr) {
2244                 tty->print_cr("----------field---------------------------------");
2245                 field->dump();
2246                 tty->print_cr("----------missed referernce to object-----------");
2247                 missed_obj->dump();
2248                 tty->print_cr("----------object referernced by init store -----");
2249                 store->dump();
2250                 val->dump();
2251                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2252               }
2253             }
2254 #endif
2255           } else {
2256             // There could be initializing stores which follow allocation.
2257             // For example, a volatile field store is not collected
2258             // by Initialize node.
2259             //
2260             // Need to check for dependent loads to separate such stores from
2261             // stores which follow loads. For now, add initial value null so
2262             // that compare pointers optimization works correctly.
2263           }
2264         }
2265         if (value == nullptr) {
2266           // A field's initializing value was not recorded. Add null.
2267           if (add_edge(field, null_obj)) {
2268             // New edge was added

2530         assert(field->edge_count() > 0, "sanity");
2531       }
2532     }
2533   }
2534 }
2535 #endif
2536 
2537 // Optimize ideal graph.
2538 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
2539                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
2540   Compile* C = _compile;
2541   PhaseIterGVN* igvn = _igvn;
2542   if (EliminateLocks) {
2543     // Mark locks before changing ideal graph.
2544     int cnt = C->macro_count();
2545     for (int i = 0; i < cnt; i++) {
2546       Node *n = C->macro_node(i);
2547       if (n->is_AbstractLock()) { // Lock and Unlock nodes
2548         AbstractLockNode* alock = n->as_AbstractLock();
2549         if (!alock->is_non_esc_obj()) {
2550           if (not_global_escape(alock->obj_node())) {

2551             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
2552             // The lock could be marked eliminated by lock coarsening
2553             // code during first IGVN before EA. Replace coarsened flag
2554             // to eliminate all associated locks/unlocks.
2555 #ifdef ASSERT
2556             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
2557 #endif
2558             alock->set_non_esc_obj();
2559           }
2560         }
2561       }
2562     }
2563   }
2564 
2565   if (OptimizePtrCompare) {
2566     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
2567       Node *n = ptr_cmp_worklist.at(i);
2568       const TypeInt* tcmp = optimize_ptr_compare(n);
2569       if (tcmp->singleton()) {
2570         Node* cmp = igvn->makecon(tcmp);
2571 #ifndef PRODUCT
2572         if (PrintOptimizePtrCompare) {
2573           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
2574           if (Verbose) {
2575             n->dump(1);
2576           }
2577         }
2578 #endif
2579         igvn->replace_node(n, cmp);
2580       }
2581     }
2582   }
2583 
2584   // For MemBarStoreStore nodes added in library_call.cpp, check
2585   // escape status of associated AllocateNode and optimize out
2586   // MemBarStoreStore node if the allocated object never escapes.
2587   for (int i = 0; i < storestore_worklist.length(); i++) {
2588     Node* storestore = storestore_worklist.at(i);
2589     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
2590     if (alloc->is_Allocate() && not_global_escape(alloc)) {
2591       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
2592       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
2593       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
2594       igvn->register_new_node_with_optimizer(mb);
2595       igvn->replace_node(storestore, mb);





2596     }
2597   }
2598 }
2599 
2600 // Optimize objects compare.
2601 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* n) {
2602   assert(OptimizePtrCompare, "sanity");
2603   assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
2604   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
2605   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
2606   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
2607 
2608   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
2609   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
2610   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
2611   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
2612   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
2613   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
2614 
2615   // Check simple cases first.

2729   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2730   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
2731   PointsToNode* ptadr = _nodes.at(n->_idx);
2732   if (ptadr != nullptr) {
2733     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2734     return;
2735   }
2736   Compile* C = _compile;
2737   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2738   map_ideal_node(n, ptadr);
2739   // Add edge from arraycopy node to source object.
2740   (void)add_edge(ptadr, src);
2741   src->set_arraycopy_src();
2742   // Add edge from destination object to arraycopy node.
2743   (void)add_edge(dst, ptadr);
2744   dst->set_arraycopy_dst();
2745 }
2746 
2747 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2748   const Type* adr_type = n->as_AddP()->bottom_type();

2749   BasicType bt = T_INT;
2750   if (offset == Type::OffsetBot) {
2751     // Check only oop fields.
2752     if (!adr_type->isa_aryptr() ||
2753         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
2754         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
2755       // OffsetBot is used to reference array's element. Ignore first AddP.
2756       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
2757         bt = T_OBJECT;
2758       }
2759     }
2760   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2761     if (adr_type->isa_instptr()) {
2762       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2763       if (field != nullptr) {
2764         bt = field->layout_type();
2765       } else {
2766         // Check for unsafe oop field access
2767         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2768             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2769             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2770             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2771           bt = T_OBJECT;
2772           (*unsafe) = true;
2773         }
2774       }
2775     } else if (adr_type->isa_aryptr()) {
2776       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2777         // Ignore array length load.
2778       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
2779         // Ignore first AddP.
2780       } else {
2781         const Type* elemtype = adr_type->isa_aryptr()->elem();
2782         bt = elemtype->array_element_basic_type();






2783       }
2784     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2785       // Allocation initialization, ThreadLocal field access, unsafe access
2786       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2787           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2788           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2789           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2790         bt = T_OBJECT;
2791       }
2792     }
2793   }
2794   // Note: T_NARROWOOP is not classed as a real reference type
2795   return (is_reference_type(bt) || bt == T_NARROWOOP);
2796 }
2797 
2798 // Returns unique pointed java object or null.
2799 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
2800   // If the node was created after the escape computation we can't answer.
2801   uint idx = n->_idx;
2802   if (idx >= nodes_size()) {

2945             return true;
2946           }
2947         }
2948       }
2949     }
2950   }
2951   return false;
2952 }
2953 
2954 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
2955   const Type *adr_type = phase->type(adr);
2956   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
2957     // We are computing a raw address for a store captured by an Initialize
2958     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2959     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2960     assert(offs != Type::OffsetBot ||
2961            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2962            "offset must be a constant or it is initialization of array");
2963     return offs;
2964   }
2965   const TypePtr *t_ptr = adr_type->isa_ptr();
2966   assert(t_ptr != nullptr, "must be a pointer type");
2967   return t_ptr->offset();
2968 }
2969 
2970 Node* ConnectionGraph::get_addp_base(Node *addp) {
2971   assert(addp->is_AddP(), "must be AddP");
2972   //
2973   // AddP cases for Base and Address inputs:
2974   // case #1. Direct object's field reference:
2975   //     Allocate
2976   //       |
2977   //     Proj #5 ( oop result )
2978   //       |
2979   //     CheckCastPP (cast to instance type)
2980   //      | |
2981   //     AddP  ( base == address )
2982   //
2983   // case #2. Indirect object's field reference:
2984   //      Phi
2985   //       |
2986   //     CastPP (cast to instance type)
2987   //      | |

3101   }
3102   return nullptr;
3103 }
3104 
3105 //
3106 // Adjust the type and inputs of an AddP which computes the
3107 // address of a field of an instance
3108 //
3109 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3110   PhaseGVN* igvn = _igvn;
3111   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3112   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3113   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3114   if (t == nullptr) {
3115     // We are computing a raw address for a store captured by an Initialize
3116     // compute an appropriate address type (cases #3 and #5).
3117     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3118     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3119     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3120     assert(offs != Type::OffsetBot, "offset must be a constant");
3121     t = base_t->add_offset(offs)->is_oopptr();







3122   }
3123   int inst_id =  base_t->instance_id();
3124   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3125                              "old type must be non-instance or match new type");
3126 
3127   // The type 't' could be subclass of 'base_t'.
3128   // As result t->offset() could be large then base_t's size and it will
3129   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3130   // constructor verifies correctness of the offset.
3131   //
3132   // It could happened on subclass's branch (from the type profiling
3133   // inlining) which was not eliminated during parsing since the exactness
3134   // of the allocation type was not propagated to the subclass type check.
3135   //
3136   // Or the type 't' could be not related to 'base_t' at all.
3137   // It could happened when CHA type is different from MDO type on a dead path
3138   // (for example, from instanceof check) which is not collapsed during parsing.
3139   //
3140   // Do nothing for such AddP node and don't process its users since
3141   // this code branch will go away.
3142   //
3143   if (!t->is_known_instance() &&
3144       !base_t->maybe_java_subtype_of(t)) {
3145      return false; // bail out
3146   }
3147   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();











3148   // Do NOT remove the next line: ensure a new alias index is allocated
3149   // for the instance type. Note: C++ will not remove it since the call
3150   // has side effect.
3151   int alias_idx = _compile->get_alias_index(tinst);
3152   igvn->set_type(addp, tinst);
3153   // record the allocation in the node map
3154   set_map(addp, get_map(base->_idx));
3155   // Set addp's Base and Address to 'base'.
3156   Node *abase = addp->in(AddPNode::Base);
3157   Node *adr   = addp->in(AddPNode::Address);
3158   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3159       adr->in(0)->_idx == (uint)inst_id) {
3160     // Skip AddP cases #3 and #5.
3161   } else {
3162     assert(!abase->is_top(), "sanity"); // AddP case #3
3163     if (abase != base) {
3164       igvn->hash_delete(addp);
3165       addp->set_req(AddPNode::Base, base);
3166       if (abase == adr) {
3167         addp->set_req(AddPNode::Address, base);

3827         ptnode_adr(n->_idx)->dump();
3828         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
3829 #endif
3830         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3831         return;
3832       } else {
3833         Node *val = get_map(jobj->idx());   // CheckCastPP node
3834         TypeNode *tn = n->as_Type();
3835         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3836         assert(tinst != nullptr && tinst->is_known_instance() &&
3837                tinst->instance_id() == jobj->idx() , "instance type expected.");
3838 
3839         const Type *tn_type = igvn->type(tn);
3840         const TypeOopPtr *tn_t;
3841         if (tn_type->isa_narrowoop()) {
3842           tn_t = tn_type->make_ptr()->isa_oopptr();
3843         } else {
3844           tn_t = tn_type->isa_oopptr();
3845         }
3846         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {







3847           if (tn_type->isa_narrowoop()) {
3848             tn_type = tinst->make_narrowoop();
3849           } else {
3850             tn_type = tinst;
3851           }
3852           igvn->hash_delete(tn);
3853           igvn->set_type(tn, tn_type);
3854           tn->set_type(tn_type);
3855           igvn->hash_insert(tn);
3856           record_for_optimizer(n);
3857         } else {
3858           assert(tn_type == TypePtr::NULL_PTR ||
3859                  tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t),
3860                  "unexpected type");
3861           continue; // Skip dead path with different type
3862         }
3863       }
3864     } else {
3865       debug_only(n->dump();)
3866       assert(false, "EA: unexpected node");
3867       continue;
3868     }
3869     // push allocation's users on appropriate worklist
3870     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3871       Node *use = n->fast_out(i);
3872       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3873         // Load/store to instance's field
3874         memnode_worklist.append_if_missing(use);
3875       } else if (use->is_MemBar()) {
3876         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3877           memnode_worklist.append_if_missing(use);
3878         }
3879       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3880         Node* addp2 = find_second_addp(use, n);
3881         if (addp2 != nullptr) {
3882           alloc_worklist.append_if_missing(addp2);
3883         }
3884         alloc_worklist.append_if_missing(use);
3885       } else if (use->is_Phi() ||
3886                  use->is_CheckCastPP() ||
3887                  use->is_EncodeNarrowPtr() ||
3888                  use->is_DecodeNarrowPtr() ||
3889                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3890         alloc_worklist.append_if_missing(use);
3891 #ifdef ASSERT
3892       } else if (use->is_Mem()) {
3893         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3894       } else if (use->is_MergeMem()) {
3895         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3896       } else if (use->is_SafePoint()) {
3897         // Look for MergeMem nodes for calls which reference unique allocation
3898         // (through CheckCastPP nodes) even for debug info.
3899         Node* m = use->in(TypeFunc::Memory);
3900         if (m->is_MergeMem()) {
3901           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3902         }
3903       } else if (use->Opcode() == Op_EncodeISOArray) {
3904         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3905           // EncodeISOArray overwrites destination array
3906           memnode_worklist.append_if_missing(use);
3907         }



3908       } else {
3909         uint op = use->Opcode();
3910         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3911             (use->in(MemNode::Memory) == n)) {
3912           // They overwrite memory edge corresponding to destination array,
3913           memnode_worklist.append_if_missing(use);
3914         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3915               op == Op_CastP2X || op == Op_StoreCM ||
3916               op == Op_FastLock || op == Op_AryEq ||
3917               op == Op_StrComp || op == Op_CountPositives ||
3918               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3919               op == Op_StrEquals || op == Op_VectorizedHashCode ||
3920               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3921               op == Op_SubTypeCheck ||
3922               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3923           n->dump();
3924           use->dump();
3925           assert(false, "EA: missing allocation reference path");
3926         }
3927 #endif
3928       }
3929     }
3930 
3931   }
3932 
3933 #ifdef ASSERT
3934   if (VerifyReduceAllocationMerges) {
3935     // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints.
3936     for (uint i = 0; i < reducible_merges.size(); i++) {
3937       Node* phi = reducible_merges.at(i);
3938 
3939       if (!reduced_merges.member(phi)) {
3940         phi->dump(2);
3941         phi->dump(-2);

3994   if (memnode_worklist.length() == 0)
3995     return;  // nothing to do
3996   while (memnode_worklist.length() != 0) {
3997     Node *n = memnode_worklist.pop();
3998     if (visited.test_set(n->_idx)) {
3999       continue;
4000     }
4001     if (n->is_Phi() || n->is_ClearArray()) {
4002       // we don't need to do anything, but the users must be pushed
4003     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
4004       // we don't need to do anything, but the users must be pushed
4005       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4006       if (n == nullptr) {
4007         continue;
4008       }
4009     } else if (n->Opcode() == Op_StrCompressedCopy ||
4010                n->Opcode() == Op_EncodeISOArray) {
4011       // get the memory projection
4012       n = n->find_out_with(Op_SCMemProj);
4013       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");



4014     } else {
4015       assert(n->is_Mem(), "memory node required.");
4016       Node *addr = n->in(MemNode::Address);
4017       const Type *addr_t = igvn->type(addr);
4018       if (addr_t == Type::TOP) {
4019         continue;
4020       }
4021       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4022       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4023       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4024       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4025       if (_compile->failing()) {
4026         return;
4027       }
4028       if (mem != n->in(MemNode::Memory)) {
4029         // We delay the memory edge update since we need old one in
4030         // MergeMem code below when instances memory slices are separated.
4031         set_map(n, mem);
4032       }
4033       if (n->is_Load()) {

4036         // get the memory projection
4037         n = n->find_out_with(Op_SCMemProj);
4038         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4039       }
4040     }
4041     // push user on appropriate worklist
4042     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4043       Node *use = n->fast_out(i);
4044       if (use->is_Phi() || use->is_ClearArray()) {
4045         memnode_worklist.append_if_missing(use);
4046       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4047         if (use->Opcode() == Op_StoreCM) { // Ignore cardmark stores
4048           continue;
4049         }
4050         memnode_worklist.append_if_missing(use);
4051       } else if (use->is_MemBar()) {
4052         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4053           memnode_worklist.append_if_missing(use);
4054         }
4055 #ifdef ASSERT
4056       } else if(use->is_Mem()) {
4057         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4058       } else if (use->is_MergeMem()) {
4059         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4060       } else if (use->Opcode() == Op_EncodeISOArray) {
4061         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4062           // EncodeISOArray overwrites destination array
4063           memnode_worklist.append_if_missing(use);
4064         }




4065       } else {
4066         uint op = use->Opcode();
4067         if ((use->in(MemNode::Memory) == n) &&
4068             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4069           // They overwrite memory edge corresponding to destination array,
4070           memnode_worklist.append_if_missing(use);
4071         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4072               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4073               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4074               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4075           n->dump();
4076           use->dump();
4077           assert(false, "EA: missing memory path");
4078         }
4079 #endif
4080       }
4081     }
4082   }
4083 
4084   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4085   //            Walk each memory slice moving the first node encountered of each
4086   //            instance type to the input corresponding to its alias index.
4087   uint length = mergemem_worklist.length();
4088   for( uint next = 0; next < length; ++next ) {
4089     MergeMemNode* nmm = mergemem_worklist.at(next);
4090     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4091     // Note: we don't want to use MergeMemStream here because we only want to
4092     // scan inputs which exist at the start, not ones we add during processing.
4093     // Note 2: MergeMem may already contains instance memory slices added
4094     // during find_inst_mem() call when memory nodes were processed above.

4141       Node* result = step_through_mergemem(nmm, ni, tinst);
4142       if (result == nmm->base_memory()) {
4143         // Didn't find instance memory, search through general slice recursively.
4144         result = nmm->memory_at(_compile->get_general_index(ni));
4145         result = find_inst_mem(result, ni, orig_phis);
4146         if (_compile->failing()) {
4147           return;
4148         }
4149         nmm->set_memory_at(ni, result);
4150       }
4151     }
4152     igvn->hash_insert(nmm);
4153     record_for_optimizer(nmm);
4154   }
4155 
4156   //  Phase 4:  Update the inputs of non-instance memory Phis and
4157   //            the Memory input of memnodes
4158   // First update the inputs of any non-instance Phi's from
4159   // which we split out an instance Phi.  Note we don't have
4160   // to recursively process Phi's encountered on the input memory
4161   // chains as is done in split_memory_phi() since they  will
4162   // also be processed here.
4163   for (int j = 0; j < orig_phis.length(); j++) {
4164     PhiNode *phi = orig_phis.at(j);
4165     int alias_idx = _compile->get_alias_index(phi->adr_type());
4166     igvn->hash_delete(phi);
4167     for (uint i = 1; i < phi->req(); i++) {
4168       Node *mem = phi->in(i);
4169       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4170       if (_compile->failing()) {
4171         return;
4172       }
4173       if (mem != new_mem) {
4174         phi->set_req(i, new_mem);
4175       }
4176     }
4177     igvn->hash_insert(phi);
4178     record_for_optimizer(phi);
4179   }
4180 
4181   // Update the memory inputs of MemNodes with the value we computed

  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/metaspace.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "utilities/macros.hpp"
  45 
  46 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  47   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  48   // split_unique_types and that will create additional nodes that need to be
  49   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  50   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  51   // the array will be reallocated.
  52   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),

 145   GrowableArray<SafePointNode*>  sfn_worklist;
 146   GrowableArray<MergeMemNode*>   mergemem_worklist;
 147   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 148 
 149   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 150 
 151   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 152   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 153   // Initialize worklist
 154   if (C->root() != nullptr) {
 155     ideal_nodes.push(C->root());
 156   }
 157   // Processed ideal nodes are unique on ideal_nodes list
 158   // but several ideal nodes are mapped to the phantom_obj.
 159   // To avoid duplicated entries on the following worklists
 160   // add the phantom_obj only once to them.
 161   ptnodes_worklist.append(phantom_obj);
 162   java_objects_worklist.append(phantom_obj);
 163   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 164     Node* n = ideal_nodes.at(next);
 165     if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) &&
 166         !n->in(MemNode::Address)->is_AddP() &&
 167         _igvn->type(n->in(MemNode::Address))->isa_oopptr()) {
 168       // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA
 169       Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0));
 170       _igvn->register_new_node_with_optimizer(addp);
 171       _igvn->replace_input_of(n, MemNode::Address, addp);
 172       ideal_nodes.push(addp);
 173       _nodes.at_put_grow(addp->_idx, nullptr, nullptr);
 174     }
 175     // Create PointsTo nodes and add them to Connection Graph. Called
 176     // only once per ideal node since ideal_nodes is Unique_Node list.
 177     add_node_to_connection_graph(n, &delayed_worklist);
 178     PointsToNode* ptn = ptnode_adr(n->_idx);
 179     if (ptn != nullptr && ptn != phantom_obj) {
 180       ptnodes_worklist.append(ptn);
 181       if (ptn->is_JavaObject()) {
 182         java_objects_worklist.append(ptn->as_JavaObject());
 183         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 184             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 185           // Only allocations and java static calls results are interesting.
 186           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 187         }
 188       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 189         oop_fields_worklist.append(ptn->as_Field());
 190       }
 191     }
 192     // Collect some interesting nodes for further use.
 193     switch (n->Opcode()) {
 194       case Op_MergeMem:

 687 
 688     // The next two inputs are:
 689     //  (1) A copy of the original pointer to NSR objects.
 690     //  (2) A selector, used to decide if we need to rematerialize an object
 691     //      or use the pointer to a NSR object.
 692     // See more details of these fields in the declaration of SafePointScalarMergeNode
 693     sfpt->add_req(ophi);
 694     sfpt->add_req(selector);
 695 
 696     for (uint i = 1; i < ophi->req(); i++) {
 697       Node* base          = ophi->in(i);
 698       JavaObjectNode* ptn = unique_java_object(base);
 699 
 700       // If the base is not scalar replaceable we don't need to register information about
 701       // it at this time.
 702       if (ptn == nullptr || !ptn->scalar_replaceable()) {
 703         continue;
 704       }
 705 
 706       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 707       Unique_Node_List value_worklist;
 708       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist);
 709       guarantee(value_worklist.size() == 0, "Unimplemented: Valhalla support for 8287061");
 710       if (sobj == nullptr) {
 711         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 712         return;
 713       }
 714 
 715       // Now make a pass over the debug information replacing any references
 716       // to the allocated object with "sobj"
 717       Node* ccpp = alloc->result_cast();
 718       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
 719 
 720       // Register the scalarized object as a candidate for reallocation
 721       smerge->add_req(sobj);
 722     }
 723 
 724     // Replaces debug information references to "ophi" in "sfpt" with references to "smerge"
 725     sfpt->replace_edges_in_range(ophi, smerge, debug_start, jvms->debug_end(), _igvn);
 726 
 727     // The call to 'replace_edges_in_range' above might have removed the
 728     // reference to ophi that we need at _merge_pointer_idx. The line below make
 729     // sure the reference is maintained.

 853   return false;
 854 }
 855 
 856 // Returns true if at least one of the arguments to the call is an object
 857 // that does not escape globally.
 858 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
 859   if (call->method() != nullptr) {
 860     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
 861     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
 862       Node* p = call->in(idx);
 863       if (not_global_escape(p)) {
 864         return true;
 865       }
 866     }
 867   } else {
 868     const char* name = call->as_CallStaticJava()->_name;
 869     assert(name != nullptr, "no name");
 870     // no arg escapes through uncommon traps
 871     if (strcmp(name, "uncommon_trap") != 0) {
 872       // process_call_arguments() assumes that all arguments escape globally
 873       const TypeTuple* d = call->tf()->domain_sig();
 874       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 875         const Type* at = d->field_at(i);
 876         if (at->isa_oopptr() != nullptr) {
 877           return true;
 878         }
 879       }
 880     }
 881   }
 882   return false;
 883 }
 884 
 885 
 886 
 887 // Utility function for nodes that load an object
 888 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 889   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 890   // ThreadLocal has RawPtr type.
 891   const Type* t = _igvn->type(n);
 892   if (t->make_ptr() != nullptr) {
 893     Node* adr = n->in(MemNode::Address);

 927       // first IGVN optimization when escape information is still available.
 928       record_for_optimizer(n);
 929     } else if (n->is_Allocate()) {
 930       add_call_node(n->as_Call());
 931       record_for_optimizer(n);
 932     } else {
 933       if (n->is_CallStaticJava()) {
 934         const char* name = n->as_CallStaticJava()->_name;
 935         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
 936           return; // Skip uncommon traps
 937         }
 938       }
 939       // Don't mark as processed since call's arguments have to be processed.
 940       delayed_worklist->push(n);
 941       // Check if a call returns an object.
 942       if ((n->as_Call()->returns_pointer() &&
 943            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
 944           (n->is_CallStaticJava() &&
 945            n->as_CallStaticJava()->is_boxing_method())) {
 946         add_call_node(n->as_Call());
 947       } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) {
 948         bool returns_oop = false;
 949         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
 950           ProjNode* pn = n->fast_out(i)->as_Proj();
 951           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
 952             returns_oop = true;
 953           }
 954         }
 955         if (returns_oop) {
 956           add_call_node(n->as_Call());
 957         }
 958       }
 959     }
 960     return;
 961   }
 962   // Put this check here to process call arguments since some call nodes
 963   // point to phantom_obj.
 964   if (n_ptn == phantom_obj || n_ptn == null_obj) {
 965     return; // Skip predefined nodes.
 966   }
 967   switch (opcode) {
 968     case Op_AddP: {
 969       Node* base = get_addp_base(n);
 970       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 971       // Field nodes are created for all field types. They are used in
 972       // adjust_scalar_replaceable_state() and split_unique_types().
 973       // Note, non-oop fields will have only base edges in Connection
 974       // Graph because such fields are not used for oop loads and stores.
 975       int offset = address_offset(n, igvn);
 976       add_field(n, PointsToNode::NoEscape, offset);
 977       if (ptn_base == nullptr) {
 978         delayed_worklist->push(n); // Process it later.
 979       } else {
 980         n_ptn = ptnode_adr(n_idx);
 981         add_base(n_ptn->as_Field(), ptn_base);
 982       }
 983       break;
 984     }
 985     case Op_CastX2P: {
 986       map_ideal_node(n, phantom_obj);
 987       break;
 988     }
 989     case Op_InlineType:
 990     case Op_CastPP:
 991     case Op_CheckCastPP:
 992     case Op_EncodeP:
 993     case Op_DecodeN:
 994     case Op_EncodePKlass:
 995     case Op_DecodeNKlass: {
 996       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
 997       break;
 998     }
 999     case Op_CMoveP: {
1000       add_local_var(n, PointsToNode::NoEscape);
1001       // Do not add edges during first iteration because some could be
1002       // not defined yet.
1003       delayed_worklist->push(n);
1004       break;
1005     }
1006     case Op_ConP:
1007     case Op_ConN:
1008     case Op_ConNKlass: {
1009       // assume all oop constants globally escape except for null

1041     case Op_PartialSubtypeCheck: {
1042       // Produces Null or notNull and is used in only in CmpP so
1043       // phantom_obj could be used.
1044       map_ideal_node(n, phantom_obj); // Result is unknown
1045       break;
1046     }
1047     case Op_Phi: {
1048       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1049       // ThreadLocal has RawPtr type.
1050       const Type* t = n->as_Phi()->type();
1051       if (t->make_ptr() != nullptr) {
1052         add_local_var(n, PointsToNode::NoEscape);
1053         // Do not add edges during first iteration because some could be
1054         // not defined yet.
1055         delayed_worklist->push(n);
1056       }
1057       break;
1058     }
1059     case Op_Proj: {
1060       // we are only interested in the oop result projection from a call
1061       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
1062           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
1063         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1064                n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1065         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1066       }
1067       break;
1068     }
1069     case Op_Rethrow: // Exception object escapes
1070     case Op_Return: {
1071       if (n->req() > TypeFunc::Parms &&
1072           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1073         // Treat Return value as LocalVar with GlobalEscape escape state.
1074         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1075       }
1076       break;
1077     }
1078     case Op_CompareAndExchangeP:
1079     case Op_CompareAndExchangeN:
1080     case Op_GetAndSetP:
1081     case Op_GetAndSetN: {
1082       add_objload_to_connection_graph(n, delayed_worklist);
1083       // fall-through
1084     }

1146   if (n->is_Call()) {
1147     process_call_arguments(n->as_Call());
1148     return;
1149   }
1150   assert(n->is_Store() || n->is_LoadStore() ||
1151          (n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr),
1152          "node should be registered already");
1153   int opcode = n->Opcode();
1154   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1155   if (gc_handled) {
1156     return; // Ignore node if already handled by GC.
1157   }
1158   switch (opcode) {
1159     case Op_AddP: {
1160       Node* base = get_addp_base(n);
1161       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1162       assert(ptn_base != nullptr, "field's base should be registered");
1163       add_base(n_ptn->as_Field(), ptn_base);
1164       break;
1165     }
1166     case Op_InlineType:
1167     case Op_CastPP:
1168     case Op_CheckCastPP:
1169     case Op_EncodeP:
1170     case Op_DecodeN:
1171     case Op_EncodePKlass:
1172     case Op_DecodeNKlass: {
1173       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1174       break;
1175     }
1176     case Op_CMoveP: {
1177       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1178         Node* in = n->in(i);
1179         if (in == nullptr) {
1180           continue;  // ignore null
1181         }
1182         Node* uncast_in = in->uncast();
1183         if (uncast_in->is_top() || uncast_in == n) {
1184           continue;  // ignore top or inputs which go back this node
1185         }
1186         PointsToNode* ptn = ptnode_adr(in->_idx);

1201       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1202       // ThreadLocal has RawPtr type.
1203       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1204       for (uint i = 1; i < n->req(); i++) {
1205         Node* in = n->in(i);
1206         if (in == nullptr) {
1207           continue;  // ignore null
1208         }
1209         Node* uncast_in = in->uncast();
1210         if (uncast_in->is_top() || uncast_in == n) {
1211           continue;  // ignore top or inputs which go back this node
1212         }
1213         PointsToNode* ptn = ptnode_adr(in->_idx);
1214         assert(ptn != nullptr, "node should be registered");
1215         add_edge(n_ptn, ptn);
1216       }
1217       break;
1218     }
1219     case Op_Proj: {
1220       // we are only interested in the oop result projection from a call
1221       assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
1222              n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?");
1223       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1224       break;
1225     }
1226     case Op_Rethrow: // Exception object escapes
1227     case Op_Return: {
1228       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1229              "Unexpected node type");
1230       // Treat Return value as LocalVar with GlobalEscape escape state.
1231       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1232       break;
1233     }
1234     case Op_CompareAndExchangeP:
1235     case Op_CompareAndExchangeN:
1236     case Op_GetAndSetP:
1237     case Op_GetAndSetN:{
1238       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1239       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1240       // fall-through
1241     }
1242     case Op_CompareAndSwapP:

1378     PointsToNode* ptn = ptnode_adr(val->_idx);
1379     assert(ptn != nullptr, "node should be registered");
1380     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1381     // Add edge to object for unsafe access with offset.
1382     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1383     assert(adr_ptn != nullptr, "node should be registered");
1384     if (adr_ptn->is_Field()) {
1385       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1386       add_edge(adr_ptn, ptn);
1387     }
1388     return true;
1389   }
1390 #ifdef ASSERT
1391   n->dump(1);
1392   assert(false, "not unsafe");
1393 #endif
1394   return false;
1395 }
1396 
1397 void ConnectionGraph::add_call_node(CallNode* call) {
1398   assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer");
1399   uint call_idx = call->_idx;
1400   if (call->is_Allocate()) {
1401     Node* k = call->in(AllocateNode::KlassNode);
1402     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1403     assert(kt != nullptr, "TypeKlassPtr  required.");
1404     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1405     bool scalar_replaceable = true;
1406     NOT_PRODUCT(const char* nsr_reason = "");
1407     if (call->is_AllocateArray()) {
1408       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1409         es = PointsToNode::GlobalEscape;
1410       } else {
1411         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1412         if (length < 0) {
1413           // Not scalar replaceable if the length is not constant.
1414           scalar_replaceable = false;
1415           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1416         } else if (length > EliminateAllocationArraySizeLimit) {
1417           // Not scalar replaceable if the length is too big.
1418           scalar_replaceable = false;

1454     //
1455     //    - all oop arguments are escaping globally;
1456     //
1457     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
1458     //
1459     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
1460     //
1461     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
1462     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
1463     //      during call is returned;
1464     //    - mapped to ArgEscape LocalVar node pointed to object arguments
1465     //      which are returned and does not escape during call;
1466     //
1467     //    - oop arguments escaping status is defined by bytecode analysis;
1468     //
1469     // For a static call, we know exactly what method is being called.
1470     // Use bytecode estimator to record whether the call's return value escapes.
1471     ciMethod* meth = call->as_CallJava()->method();
1472     if (meth == nullptr) {
1473       const char* name = call->as_CallStaticJava()->_name;
1474       assert(strncmp(name, "_multianewarray", 15) == 0 ||
1475              strncmp(name, "_load_unknown_inline", 20) == 0, "TODO: add failed case check");
1476       // Returns a newly allocated non-escaped object.
1477       add_java_object(call, PointsToNode::NoEscape);
1478       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
1479     } else if (meth->is_boxing_method()) {
1480       // Returns boxing object
1481       PointsToNode::EscapeState es;
1482       vmIntrinsics::ID intr = meth->intrinsic_id();
1483       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
1484         // It does not escape if object is always allocated.
1485         es = PointsToNode::NoEscape;
1486       } else {
1487         // It escapes globally if object could be loaded from cache.
1488         es = PointsToNode::GlobalEscape;
1489       }
1490       add_java_object(call, es);
1491       if (es == PointsToNode::GlobalEscape) {
1492         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
1493       }
1494     } else {
1495       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
1496       call_analyzer->copy_dependencies(_compile->dependencies());
1497       if (call_analyzer->is_return_allocated()) {
1498         // Returns a newly allocated non-escaped object, simply
1499         // update dependency information.
1500         // Mark it as NoEscape so that objects referenced by
1501         // it's fields will be marked as NoEscape at least.
1502         add_java_object(call, PointsToNode::NoEscape);
1503         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
1504       } else {
1505         // Determine whether any arguments are returned.
1506         const TypeTuple* d = call->tf()->domain_cc();
1507         bool ret_arg = false;
1508         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1509           if (d->field_at(i)->isa_ptr() != nullptr &&
1510               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1511             ret_arg = true;
1512             break;
1513           }
1514         }
1515         if (ret_arg) {
1516           add_local_var(call, PointsToNode::ArgEscape);
1517         } else {
1518           // Returns unknown object.
1519           map_ideal_node(call, phantom_obj);
1520         }
1521       }
1522     }
1523   } else {
1524     // An other type of call, assume the worst case:
1525     // returned value is unknown and globally escapes.
1526     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");

1534 #ifdef ASSERT
1535     case Op_Allocate:
1536     case Op_AllocateArray:
1537     case Op_Lock:
1538     case Op_Unlock:
1539       assert(false, "should be done already");
1540       break;
1541 #endif
1542     case Op_ArrayCopy:
1543     case Op_CallLeafNoFP:
1544       // Most array copies are ArrayCopy nodes at this point but there
1545       // are still a few direct calls to the copy subroutines (See
1546       // PhaseStringOpts::copy_string())
1547       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
1548         call->as_CallLeaf()->is_call_to_arraycopystub();
1549       // fall through
1550     case Op_CallLeafVector:
1551     case Op_CallLeaf: {
1552       // Stub calls, objects do not escape but they are not scale replaceable.
1553       // Adjust escape state for outgoing arguments.
1554       const TypeTuple * d = call->tf()->domain_sig();
1555       bool src_has_oops = false;
1556       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1557         const Type* at = d->field_at(i);
1558         Node *arg = call->in(i);
1559         if (arg == nullptr) {
1560           continue;
1561         }
1562         const Type *aat = _igvn->type(arg);
1563         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
1564           continue;
1565         }
1566         if (arg->is_AddP()) {
1567           //
1568           // The inline_native_clone() case when the arraycopy stub is called
1569           // after the allocation before Initialize and CheckCastPP nodes.
1570           // Or normal arraycopy for object arrays case.
1571           //
1572           // Set AddP's base (Allocate) as not scalar replaceable since
1573           // pointer to the base (with offset) is passed as argument.
1574           //
1575           arg = get_addp_base(arg);
1576         }
1577         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1578         assert(arg_ptn != nullptr, "should be registered");
1579         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
1580         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
1581           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1582                  aat->isa_ptr() != nullptr, "expecting an Ptr");
1583           bool arg_has_oops = aat->isa_oopptr() &&
1584                               (aat->isa_instptr() ||
1585                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) ||
1586                                (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr &&
1587                                                                aat->isa_aryptr()->is_flat() &&
1588                                                                aat->isa_aryptr()->elem()->inline_klass()->contains_oops()));
1589           if (i == TypeFunc::Parms) {
1590             src_has_oops = arg_has_oops;
1591           }
1592           //
1593           // src or dst could be j.l.Object when other is basic type array:
1594           //
1595           //   arraycopy(char[],0,Object*,0,size);
1596           //   arraycopy(Object*,0,char[],0,size);
1597           //
1598           // Don't add edges in such cases.
1599           //
1600           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
1601                                        arg_has_oops && (i > TypeFunc::Parms);
1602 #ifdef ASSERT
1603           if (!(is_arraycopy ||
1604                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
1605                 (call->as_CallLeaf()->_name != nullptr &&
1606                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1607                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1608                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||

1617                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
1618                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1619                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
1620                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
1621                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
1622                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
1623                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
1624                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1625                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1626                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1627                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1628                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1629                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1630                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
1631                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
1632                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1633                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1634                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1635                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1636                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1637                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
1638                   strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 ||
1639                   strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 ||
1640                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
1641                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
1642                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
1643                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
1644                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
1645                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0)
1646                  ))) {
1647             call->dump();
1648             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1649           }
1650 #endif
1651           // Always process arraycopy's destination object since
1652           // we need to add all possible edges to references in
1653           // source object.
1654           if (arg_esc >= PointsToNode::ArgEscape &&
1655               !arg_is_arraycopy_dest) {
1656             continue;
1657           }
1658           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1659           if (call->is_ArrayCopy()) {

1684           }
1685         }
1686       }
1687       break;
1688     }
1689     case Op_CallStaticJava: {
1690       // For a static call, we know exactly what method is being called.
1691       // Use bytecode estimator to record the call's escape affects
1692 #ifdef ASSERT
1693       const char* name = call->as_CallStaticJava()->_name;
1694       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1695 #endif
1696       ciMethod* meth = call->as_CallJava()->method();
1697       if ((meth != nullptr) && meth->is_boxing_method()) {
1698         break; // Boxing methods do not modify any oops.
1699       }
1700       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
1701       // fall-through if not a Java method or no analyzer information
1702       if (call_analyzer != nullptr) {
1703         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1704         const TypeTuple* d = call->tf()->domain_cc();
1705         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1706           const Type* at = d->field_at(i);
1707           int k = i - TypeFunc::Parms;
1708           Node* arg = call->in(i);
1709           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1710           if (at->isa_ptr() != nullptr &&
1711               call_analyzer->is_arg_returned(k)) {
1712             // The call returns arguments.
1713             if (call_ptn != nullptr) { // Is call's result used?
1714               assert(call_ptn->is_LocalVar(), "node should be registered");
1715               assert(arg_ptn != nullptr, "node should be registered");
1716               add_edge(call_ptn, arg_ptn);
1717             }
1718           }
1719           if (at->isa_oopptr() != nullptr &&
1720               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1721             if (!call_analyzer->is_arg_stack(k)) {
1722               // The argument global escapes
1723               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1724             } else {

1728                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1729               }
1730             }
1731           }
1732         }
1733         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
1734           // The call returns arguments.
1735           assert(call_ptn->edge_count() > 0, "sanity");
1736           if (!call_analyzer->is_return_local()) {
1737             // Returns also unknown object.
1738             add_edge(call_ptn, phantom_obj);
1739           }
1740         }
1741         break;
1742       }
1743     }
1744     default: {
1745       // Fall-through here if not a Java method or no analyzer information
1746       // or some other type of call, assume the worst case: all arguments
1747       // globally escape.
1748       const TypeTuple* d = call->tf()->domain_cc();
1749       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1750         const Type* at = d->field_at(i);
1751         if (at->isa_oopptr() != nullptr) {
1752           Node* arg = call->in(i);
1753           if (arg->is_AddP()) {
1754             arg = get_addp_base(arg);
1755           }
1756           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
1757           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
1758         }
1759       }
1760     }
1761   }
1762 }
1763 
1764 
1765 // Finish Graph construction.
1766 bool ConnectionGraph::complete_connection_graph(
1767                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1768                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,

2141     PointsToNode* base = i.get();
2142     if (base->is_JavaObject()) {
2143       // Skip Allocate's fields which will be processed later.
2144       if (base->ideal_node()->is_Allocate()) {
2145         return 0;
2146       }
2147       assert(base == null_obj, "only null ptr base expected here");
2148     }
2149   }
2150   if (add_edge(field, phantom_obj)) {
2151     // New edge was added
2152     new_edges++;
2153     add_field_uses_to_worklist(field);
2154   }
2155   return new_edges;
2156 }
2157 
2158 // Find fields initializing values for allocations.
2159 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2160   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2161   PointsToNode* init_val = phantom_obj;
2162   Node* alloc = pta->ideal_node();
2163 
2164   // Do nothing for Allocate nodes since its fields values are
2165   // "known" unless they are initialized by arraycopy/clone.
2166   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2167     if (alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) {
2168       // Non-flat inline type arrays are initialized with
2169       // the default value instead of null. Handle them here.
2170       init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::DefaultValue)->_idx);
2171       assert(init_val != nullptr, "default value should be registered");
2172     } else {
2173       return 0;
2174     }
2175   }
2176   // Non-escaped allocation returned from Java or runtime call has unknown values in fields.
2177   assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity");
2178 #ifdef ASSERT
2179   if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) {
2180     const char* name = alloc->as_CallStaticJava()->_name;
2181     assert(strncmp(name, "_multianewarray", 15) == 0 ||
2182            strncmp(name, "_load_unknown_inline", 20) == 0, "sanity");
2183   }
2184 #endif
2185   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2186   int new_edges = 0;
2187   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2188     PointsToNode* field = i.get();
2189     if (field->is_Field() && field->as_Field()->is_oop()) {
2190       if (add_edge(field, init_val)) {
2191         // New edge was added
2192         new_edges++;
2193         add_field_uses_to_worklist(field->as_Field());
2194       }
2195     }
2196   }
2197   return new_edges;
2198 }
2199 
2200 // Find fields initializing values for allocations.
2201 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2202   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2203   Node* alloc = pta->ideal_node();
2204   // Do nothing for Call nodes since its fields values are unknown.
2205   if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) {
2206     return 0;
2207   }
2208   InitializeNode* ini = alloc->as_Allocate()->initialization();
2209   bool visited_bottom_offset = false;
2210   GrowableArray<int> offsets_worklist;
2211   int new_edges = 0;
2212 
2213   // Check if an oop field's initializing value is recorded and add
2214   // a corresponding null if field's value if it is not recorded.
2215   // Connection Graph does not record a default initialization by null
2216   // captured by Initialize node.
2217   //
2218   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2219     PointsToNode* field = i.get(); // Field (AddP)
2220     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2221       continue; // Not oop field
2222     }
2223     int offset = field->as_Field()->offset();
2224     if (offset == Type::OffsetBot) {
2225       if (!visited_bottom_offset) {

2271               } else {
2272                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2273                   tty->print_cr("----------init store has invalid value -----");
2274                   store->dump();
2275                   val->dump();
2276                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2277                 }
2278                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2279                   PointsToNode* obj = j.get();
2280                   if (obj->is_JavaObject()) {
2281                     if (!field->points_to(obj->as_JavaObject())) {
2282                       missed_obj = obj;
2283                       break;
2284                     }
2285                   }
2286                 }
2287               }
2288               if (missed_obj != nullptr) {
2289                 tty->print_cr("----------field---------------------------------");
2290                 field->dump();
2291                 tty->print_cr("----------missed reference to object------------");
2292                 missed_obj->dump();
2293                 tty->print_cr("----------object referenced by init store-------");
2294                 store->dump();
2295                 val->dump();
2296                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2297               }
2298             }
2299 #endif
2300           } else {
2301             // There could be initializing stores which follow allocation.
2302             // For example, a volatile field store is not collected
2303             // by Initialize node.
2304             //
2305             // Need to check for dependent loads to separate such stores from
2306             // stores which follow loads. For now, add initial value null so
2307             // that compare pointers optimization works correctly.
2308           }
2309         }
2310         if (value == nullptr) {
2311           // A field's initializing value was not recorded. Add null.
2312           if (add_edge(field, null_obj)) {
2313             // New edge was added

2575         assert(field->edge_count() > 0, "sanity");
2576       }
2577     }
2578   }
2579 }
2580 #endif
2581 
2582 // Optimize ideal graph.
2583 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
2584                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
2585   Compile* C = _compile;
2586   PhaseIterGVN* igvn = _igvn;
2587   if (EliminateLocks) {
2588     // Mark locks before changing ideal graph.
2589     int cnt = C->macro_count();
2590     for (int i = 0; i < cnt; i++) {
2591       Node *n = C->macro_node(i);
2592       if (n->is_AbstractLock()) { // Lock and Unlock nodes
2593         AbstractLockNode* alock = n->as_AbstractLock();
2594         if (!alock->is_non_esc_obj()) {
2595           const Type* obj_type = igvn->type(alock->obj_node());
2596           if (not_global_escape(alock->obj_node()) && !obj_type->is_inlinetypeptr()) {
2597             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
2598             // The lock could be marked eliminated by lock coarsening
2599             // code during first IGVN before EA. Replace coarsened flag
2600             // to eliminate all associated locks/unlocks.
2601 #ifdef ASSERT
2602             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
2603 #endif
2604             alock->set_non_esc_obj();
2605           }
2606         }
2607       }
2608     }
2609   }
2610 
2611   if (OptimizePtrCompare) {
2612     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
2613       Node *n = ptr_cmp_worklist.at(i);
2614       const TypeInt* tcmp = optimize_ptr_compare(n);
2615       if (tcmp->singleton()) {
2616         Node* cmp = igvn->makecon(tcmp);
2617 #ifndef PRODUCT
2618         if (PrintOptimizePtrCompare) {
2619           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
2620           if (Verbose) {
2621             n->dump(1);
2622           }
2623         }
2624 #endif
2625         igvn->replace_node(n, cmp);
2626       }
2627     }
2628   }
2629 
2630   // For MemBarStoreStore nodes added in library_call.cpp, check
2631   // escape status of associated AllocateNode and optimize out
2632   // MemBarStoreStore node if the allocated object never escapes.
2633   for (int i = 0; i < storestore_worklist.length(); i++) {
2634     Node* storestore = storestore_worklist.at(i);
2635     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
2636     if (alloc->is_Allocate() && not_global_escape(alloc)) {
2637       if (alloc->in(AllocateNode::InlineType) != nullptr) {
2638         // Non-escaping inline type buffer allocations don't require a membar
2639         storestore->as_MemBar()->remove(_igvn);
2640       } else {
2641         MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
2642         mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
2643         mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
2644         igvn->register_new_node_with_optimizer(mb);
2645         igvn->replace_node(storestore, mb);
2646       }
2647     }
2648   }
2649 }
2650 
2651 // Optimize objects compare.
2652 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* n) {
2653   assert(OptimizePtrCompare, "sanity");
2654   assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
2655   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
2656   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
2657   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
2658 
2659   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
2660   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
2661   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
2662   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
2663   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
2664   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
2665 
2666   // Check simple cases first.

2780   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2781   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
2782   PointsToNode* ptadr = _nodes.at(n->_idx);
2783   if (ptadr != nullptr) {
2784     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2785     return;
2786   }
2787   Compile* C = _compile;
2788   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2789   map_ideal_node(n, ptadr);
2790   // Add edge from arraycopy node to source object.
2791   (void)add_edge(ptadr, src);
2792   src->set_arraycopy_src();
2793   // Add edge from destination object to arraycopy node.
2794   (void)add_edge(dst, ptadr);
2795   dst->set_arraycopy_dst();
2796 }
2797 
2798 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2799   const Type* adr_type = n->as_AddP()->bottom_type();
2800   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
2801   BasicType bt = T_INT;
2802   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
2803     // Check only oop fields.
2804     if (!adr_type->isa_aryptr() ||
2805         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
2806         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
2807       // OffsetBot is used to reference array's element. Ignore first AddP.
2808       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
2809         bt = T_OBJECT;
2810       }
2811     }
2812   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2813     if (adr_type->isa_instptr()) {
2814       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
2815       if (field != nullptr) {
2816         bt = field->layout_type();
2817       } else {
2818         // Check for unsafe oop field access
2819         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2820             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2821             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2822             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2823           bt = T_OBJECT;
2824           (*unsafe) = true;
2825         }
2826       }
2827     } else if (adr_type->isa_aryptr()) {
2828       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2829         // Ignore array length load.
2830       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
2831         // Ignore first AddP.
2832       } else {
2833         const Type* elemtype = adr_type->is_aryptr()->elem();
2834         if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) {
2835           ciInlineKlass* vk = elemtype->inline_klass();
2836           field_offset += vk->first_field_offset();
2837           bt = vk->get_field_by_offset(field_offset, false)->layout_type();
2838         } else {
2839           bt = elemtype->array_element_basic_type();
2840         }
2841       }
2842     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2843       // Allocation initialization, ThreadLocal field access, unsafe access
2844       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2845           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2846           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2847           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2848         bt = T_OBJECT;
2849       }
2850     }
2851   }
2852   // Note: T_NARROWOOP is not classed as a real reference type
2853   return (is_reference_type(bt) || bt == T_NARROWOOP);
2854 }
2855 
2856 // Returns unique pointed java object or null.
2857 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
2858   // If the node was created after the escape computation we can't answer.
2859   uint idx = n->_idx;
2860   if (idx >= nodes_size()) {

3003             return true;
3004           }
3005         }
3006       }
3007     }
3008   }
3009   return false;
3010 }
3011 
3012 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3013   const Type *adr_type = phase->type(adr);
3014   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3015     // We are computing a raw address for a store captured by an Initialize
3016     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3017     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3018     assert(offs != Type::OffsetBot ||
3019            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3020            "offset must be a constant or it is initialization of array");
3021     return offs;
3022   }
3023   return adr_type->is_ptr()->flat_offset();


3024 }
3025 
3026 Node* ConnectionGraph::get_addp_base(Node *addp) {
3027   assert(addp->is_AddP(), "must be AddP");
3028   //
3029   // AddP cases for Base and Address inputs:
3030   // case #1. Direct object's field reference:
3031   //     Allocate
3032   //       |
3033   //     Proj #5 ( oop result )
3034   //       |
3035   //     CheckCastPP (cast to instance type)
3036   //      | |
3037   //     AddP  ( base == address )
3038   //
3039   // case #2. Indirect object's field reference:
3040   //      Phi
3041   //       |
3042   //     CastPP (cast to instance type)
3043   //      | |

3157   }
3158   return nullptr;
3159 }
3160 
3161 //
3162 // Adjust the type and inputs of an AddP which computes the
3163 // address of a field of an instance
3164 //
3165 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3166   PhaseGVN* igvn = _igvn;
3167   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3168   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3169   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3170   if (t == nullptr) {
3171     // We are computing a raw address for a store captured by an Initialize
3172     // compute an appropriate address type (cases #3 and #5).
3173     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3174     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3175     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3176     assert(offs != Type::OffsetBot, "offset must be a constant");
3177     if (base_t->isa_aryptr() != nullptr) {
3178       // In the case of a flat inline type array, each field has its
3179       // own slice so we need to extract the field being accessed from
3180       // the address computation
3181       t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
3182     } else {
3183       t = base_t->add_offset(offs)->is_oopptr();
3184     }
3185   }
3186   int inst_id = base_t->instance_id();
3187   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3188                              "old type must be non-instance or match new type");
3189 
3190   // The type 't' could be subclass of 'base_t'.
3191   // As result t->offset() could be large then base_t's size and it will
3192   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3193   // constructor verifies correctness of the offset.
3194   //
3195   // It could happened on subclass's branch (from the type profiling
3196   // inlining) which was not eliminated during parsing since the exactness
3197   // of the allocation type was not propagated to the subclass type check.
3198   //
3199   // Or the type 't' could be not related to 'base_t' at all.
3200   // It could happen when CHA type is different from MDO type on a dead path
3201   // (for example, from instanceof check) which is not collapsed during parsing.
3202   //
3203   // Do nothing for such AddP node and don't process its users since
3204   // this code branch will go away.
3205   //
3206   if (!t->is_known_instance() &&
3207       !base_t->maybe_java_subtype_of(t)) {
3208      return false; // bail out
3209   }
3210   const TypePtr* tinst = base_t->add_offset(t->offset());
3211   if (tinst->isa_aryptr() && t->isa_aryptr()) {
3212     // In the case of a flat inline type array, each field has its
3213     // own slice so we need to keep track of the field being accessed.
3214     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
3215     // Keep array properties (not flat/null-free)
3216     tinst = tinst->is_aryptr()->update_properties(t->is_aryptr());
3217     if (tinst == nullptr) {
3218       return false; // Skip dead path with inconsistent properties
3219     }
3220   }
3221 
3222   // Do NOT remove the next line: ensure a new alias index is allocated
3223   // for the instance type. Note: C++ will not remove it since the call
3224   // has side effect.
3225   int alias_idx = _compile->get_alias_index(tinst);
3226   igvn->set_type(addp, tinst);
3227   // record the allocation in the node map
3228   set_map(addp, get_map(base->_idx));
3229   // Set addp's Base and Address to 'base'.
3230   Node *abase = addp->in(AddPNode::Base);
3231   Node *adr   = addp->in(AddPNode::Address);
3232   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3233       adr->in(0)->_idx == (uint)inst_id) {
3234     // Skip AddP cases #3 and #5.
3235   } else {
3236     assert(!abase->is_top(), "sanity"); // AddP case #3
3237     if (abase != base) {
3238       igvn->hash_delete(addp);
3239       addp->set_req(AddPNode::Base, base);
3240       if (abase == adr) {
3241         addp->set_req(AddPNode::Address, base);

3901         ptnode_adr(n->_idx)->dump();
3902         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
3903 #endif
3904         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3905         return;
3906       } else {
3907         Node *val = get_map(jobj->idx());   // CheckCastPP node
3908         TypeNode *tn = n->as_Type();
3909         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3910         assert(tinst != nullptr && tinst->is_known_instance() &&
3911                tinst->instance_id() == jobj->idx() , "instance type expected.");
3912 
3913         const Type *tn_type = igvn->type(tn);
3914         const TypeOopPtr *tn_t;
3915         if (tn_type->isa_narrowoop()) {
3916           tn_t = tn_type->make_ptr()->isa_oopptr();
3917         } else {
3918           tn_t = tn_type->isa_oopptr();
3919         }
3920         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
3921           if (tn_t->isa_aryptr()) {
3922             // Keep array properties (not flat/null-free)
3923             tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr());
3924             if (tinst == nullptr) {
3925               continue; // Skip dead path with inconsistent properties
3926             }
3927           }
3928           if (tn_type->isa_narrowoop()) {
3929             tn_type = tinst->make_narrowoop();
3930           } else {
3931             tn_type = tinst;
3932           }
3933           igvn->hash_delete(tn);
3934           igvn->set_type(tn, tn_type);
3935           tn->set_type(tn_type);
3936           igvn->hash_insert(tn);
3937           record_for_optimizer(n);
3938         } else {
3939           assert(tn_type == TypePtr::NULL_PTR ||
3940                  tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t),
3941                  "unexpected type");
3942           continue; // Skip dead path with different type
3943         }
3944       }
3945     } else {
3946       debug_only(n->dump();)
3947       assert(false, "EA: unexpected node");
3948       continue;
3949     }
3950     // push allocation's users on appropriate worklist
3951     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3952       Node *use = n->fast_out(i);
3953       if (use->is_Mem() && use->in(MemNode::Address) == n) {
3954         // Load/store to instance's field
3955         memnode_worklist.append_if_missing(use);
3956       } else if (use->is_MemBar()) {
3957         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3958           memnode_worklist.append_if_missing(use);
3959         }
3960       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3961         Node* addp2 = find_second_addp(use, n);
3962         if (addp2 != nullptr) {
3963           alloc_worklist.append_if_missing(addp2);
3964         }
3965         alloc_worklist.append_if_missing(use);
3966       } else if (use->is_Phi() ||
3967                  use->is_CheckCastPP() ||
3968                  use->is_EncodeNarrowPtr() ||
3969                  use->is_DecodeNarrowPtr() ||
3970                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3971         alloc_worklist.append_if_missing(use);
3972 #ifdef ASSERT
3973       } else if (use->is_Mem()) {
3974         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3975       } else if (use->is_MergeMem()) {
3976         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3977       } else if (use->is_SafePoint()) {
3978         // Look for MergeMem nodes for calls which reference unique allocation
3979         // (through CheckCastPP nodes) even for debug info.
3980         Node* m = use->in(TypeFunc::Memory);
3981         if (m->is_MergeMem()) {
3982           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3983         }
3984       } else if (use->Opcode() == Op_EncodeISOArray) {
3985         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3986           // EncodeISOArray overwrites destination array
3987           memnode_worklist.append_if_missing(use);
3988         }
3989       } else if (use->Opcode() == Op_Return) {
3990         // Allocation is referenced by field of returned inline type
3991         assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode");
3992       } else {
3993         uint op = use->Opcode();
3994         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3995             (use->in(MemNode::Memory) == n)) {
3996           // They overwrite memory edge corresponding to destination array,
3997           memnode_worklist.append_if_missing(use);
3998         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3999               op == Op_CastP2X || op == Op_StoreCM ||
4000               op == Op_FastLock || op == Op_AryEq ||
4001               op == Op_StrComp || op == Op_CountPositives ||
4002               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4003               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4004               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4005               op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck ||
4006               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4007           n->dump();
4008           use->dump();
4009           assert(false, "EA: missing allocation reference path");
4010         }
4011 #endif
4012       }
4013     }
4014 
4015   }
4016 
4017 #ifdef ASSERT
4018   if (VerifyReduceAllocationMerges) {
4019     // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints.
4020     for (uint i = 0; i < reducible_merges.size(); i++) {
4021       Node* phi = reducible_merges.at(i);
4022 
4023       if (!reduced_merges.member(phi)) {
4024         phi->dump(2);
4025         phi->dump(-2);

4078   if (memnode_worklist.length() == 0)
4079     return;  // nothing to do
4080   while (memnode_worklist.length() != 0) {
4081     Node *n = memnode_worklist.pop();
4082     if (visited.test_set(n->_idx)) {
4083       continue;
4084     }
4085     if (n->is_Phi() || n->is_ClearArray()) {
4086       // we don't need to do anything, but the users must be pushed
4087     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
4088       // we don't need to do anything, but the users must be pushed
4089       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4090       if (n == nullptr) {
4091         continue;
4092       }
4093     } else if (n->Opcode() == Op_StrCompressedCopy ||
4094                n->Opcode() == Op_EncodeISOArray) {
4095       // get the memory projection
4096       n = n->find_out_with(Op_SCMemProj);
4097       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4098     } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr &&
4099                strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4100       n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
4101     } else {
4102       assert(n->is_Mem(), "memory node required.");
4103       Node *addr = n->in(MemNode::Address);
4104       const Type *addr_t = igvn->type(addr);
4105       if (addr_t == Type::TOP) {
4106         continue;
4107       }
4108       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4109       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4110       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4111       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4112       if (_compile->failing()) {
4113         return;
4114       }
4115       if (mem != n->in(MemNode::Memory)) {
4116         // We delay the memory edge update since we need old one in
4117         // MergeMem code below when instances memory slices are separated.
4118         set_map(n, mem);
4119       }
4120       if (n->is_Load()) {

4123         // get the memory projection
4124         n = n->find_out_with(Op_SCMemProj);
4125         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4126       }
4127     }
4128     // push user on appropriate worklist
4129     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4130       Node *use = n->fast_out(i);
4131       if (use->is_Phi() || use->is_ClearArray()) {
4132         memnode_worklist.append_if_missing(use);
4133       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4134         if (use->Opcode() == Op_StoreCM) { // Ignore cardmark stores
4135           continue;
4136         }
4137         memnode_worklist.append_if_missing(use);
4138       } else if (use->is_MemBar()) {
4139         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4140           memnode_worklist.append_if_missing(use);
4141         }
4142 #ifdef ASSERT
4143       } else if (use->is_Mem()) {
4144         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4145       } else if (use->is_MergeMem()) {
4146         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4147       } else if (use->Opcode() == Op_EncodeISOArray) {
4148         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4149           // EncodeISOArray overwrites destination array
4150           memnode_worklist.append_if_missing(use);
4151         }
4152       } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr &&
4153                  strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) {
4154         // store_unknown_inline overwrites destination array
4155         memnode_worklist.append_if_missing(use);
4156       } else {
4157         uint op = use->Opcode();
4158         if ((use->in(MemNode::Memory) == n) &&
4159             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4160           // They overwrite memory edge corresponding to destination array,
4161           memnode_worklist.append_if_missing(use);
4162         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4163               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4164               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4165               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) {
4166           n->dump();
4167           use->dump();
4168           assert(false, "EA: missing memory path");
4169         }
4170 #endif
4171       }
4172     }
4173   }
4174 
4175   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4176   //            Walk each memory slice moving the first node encountered of each
4177   //            instance type to the input corresponding to its alias index.
4178   uint length = mergemem_worklist.length();
4179   for( uint next = 0; next < length; ++next ) {
4180     MergeMemNode* nmm = mergemem_worklist.at(next);
4181     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4182     // Note: we don't want to use MergeMemStream here because we only want to
4183     // scan inputs which exist at the start, not ones we add during processing.
4184     // Note 2: MergeMem may already contains instance memory slices added
4185     // during find_inst_mem() call when memory nodes were processed above.

4232       Node* result = step_through_mergemem(nmm, ni, tinst);
4233       if (result == nmm->base_memory()) {
4234         // Didn't find instance memory, search through general slice recursively.
4235         result = nmm->memory_at(_compile->get_general_index(ni));
4236         result = find_inst_mem(result, ni, orig_phis);
4237         if (_compile->failing()) {
4238           return;
4239         }
4240         nmm->set_memory_at(ni, result);
4241       }
4242     }
4243     igvn->hash_insert(nmm);
4244     record_for_optimizer(nmm);
4245   }
4246 
4247   //  Phase 4:  Update the inputs of non-instance memory Phis and
4248   //            the Memory input of memnodes
4249   // First update the inputs of any non-instance Phi's from
4250   // which we split out an instance Phi.  Note we don't have
4251   // to recursively process Phi's encountered on the input memory
4252   // chains as is done in split_memory_phi() since they will
4253   // also be processed here.
4254   for (int j = 0; j < orig_phis.length(); j++) {
4255     PhiNode *phi = orig_phis.at(j);
4256     int alias_idx = _compile->get_alias_index(phi->adr_type());
4257     igvn->hash_delete(phi);
4258     for (uint i = 1; i < phi->req(); i++) {
4259       Node *mem = phi->in(i);
4260       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4261       if (_compile->failing()) {
4262         return;
4263       }
4264       if (mem != new_mem) {
4265         phi->set_req(i, new_mem);
4266       }
4267     }
4268     igvn->hash_insert(phi);
4269     record_for_optimizer(phi);
4270   }
4271 
4272   // Update the memory inputs of MemNodes with the value we computed
< prev index next >