1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "libadt/vectset.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/chaitin.hpp"
  38 #include "runtime/deoptimization.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 // To avoid float value underflow
  45 #define MIN_BLOCK_FREQUENCY 1.e-35f
  46 
  47 //----------------------------schedule_node_into_block-------------------------
  48 // Insert node n into block b. Look for projections of n and make sure they
  49 // are in b also.
  50 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  51   // Set basic block of n, Add n to b,
  52   map_node_to_block(n, b);
  53   b->add_inst(n);
  54 
  55   // After Matching, nearly any old Node may have projections trailing it.
  56   // These are usually machine-dependent flags.  In any case, they might
  57   // float to another block below this one.  Move them up.
  58   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  59     Node*  use  = n->fast_out(i);
  60     if (use->is_Proj()) {
  61       Block* buse = get_block_for_node(use);
  62       if (buse != b) {              // In wrong block?
  63         if (buse != nullptr) {
  64           buse->find_remove(use);   // Remove from wrong block
  65         }
  66         map_node_to_block(use, b);
  67         b->add_inst(use);
  68       }
  69     }
  70   }
  71 }
  72 
  73 //----------------------------replace_block_proj_ctrl-------------------------
  74 // Nodes that have is_block_proj() nodes as their control need to use
  75 // the appropriate Region for their actual block as their control since
  76 // the projection will be in a predecessor block.
  77 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  78   const Node *in0 = n->in(0);
  79   assert(in0 != nullptr, "Only control-dependent");
  80   const Node *p = in0->is_block_proj();
  81   if (p != nullptr && p != n) {    // Control from a block projection?
  82     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  83     // Find trailing Region
  84     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  85     uint j = 0;
  86     if (pb->_num_succs != 1) {  // More then 1 successor?
  87       // Search for successor
  88       uint max = pb->number_of_nodes();
  89       assert( max > 1, "" );
  90       uint start = max - pb->_num_succs;
  91       // Find which output path belongs to projection
  92       for (j = start; j < max; j++) {
  93         if( pb->get_node(j) == in0 )
  94           break;
  95       }
  96       assert( j < max, "must find" );
  97       // Change control to match head of successor basic block
  98       j -= start;
  99     }
 100     n->set_req(0, pb->_succs[j]->head());
 101   }
 102 }
 103 
 104 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
 105   assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes");
 106   if (dom_node == node) {
 107     return true;
 108   }
 109   Block* d = find_block_for_node(dom_node);
 110   Block* n = find_block_for_node(node);
 111   assert(n != nullptr && d != nullptr, "blocks must exist");
 112 
 113   if (d == n) {
 114     if (dom_node->is_block_start()) {
 115       return true;
 116     }
 117     if (node->is_block_start()) {
 118       return false;
 119     }
 120     if (dom_node->is_block_proj()) {
 121       return false;
 122     }
 123     if (node->is_block_proj()) {
 124       return true;
 125     }
 126 
 127     assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint");
 128     assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint");
 129 
 130     // Neither 'node' nor 'dom_node' is a block start or block projection.
 131     // Check if 'dom_node' is above 'node' in the control graph.
 132     if (is_dominating_control(dom_node, node)) {
 133       return true;
 134     }
 135 
 136 #ifdef ASSERT
 137     // If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node'
 138     if (!is_dominating_control(node, dom_node)) {
 139       node->dump();
 140       dom_node->dump();
 141       assert(false, "neither dom_node nor node dominates the other");
 142     }
 143 #endif
 144 
 145     return false;
 146   }
 147   return d->dom_lca(n) == d;
 148 }
 149 
 150 bool PhaseCFG::is_CFG(Node* n) {
 151   return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n);
 152 }
 153 
 154 bool PhaseCFG::is_control_proj_or_safepoint(Node* n) const {
 155   bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL);
 156   assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint)
 157           || (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0");
 158   return result;
 159 }
 160 
 161 Block* PhaseCFG::find_block_for_node(Node* n) const {
 162   if (n->is_block_start() || n->is_block_proj()) {
 163     return get_block_for_node(n);
 164   } else {
 165     // Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be
 166     // an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block.
 167     assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint");
 168     Node* ctrl = n->in(0);
 169     while (!ctrl->is_block_start()) {
 170       ctrl = ctrl->in(0);
 171     }
 172     return get_block_for_node(ctrl);
 173   }
 174 }
 175 
 176 // Walk up the control graph from 'n' and check if 'dom_ctrl' is found.
 177 bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) {
 178   Node* ctrl = n->in(0);
 179   while (!ctrl->is_block_start()) {
 180     if (ctrl == dom_ctrl) {
 181       return true;
 182     }
 183     ctrl = ctrl->in(0);
 184   }
 185   return false;
 186 }
 187 
 188 
 189 //------------------------------schedule_pinned_nodes--------------------------
 190 // Set the basic block for Nodes pinned into blocks
 191 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 192   // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
 193   GrowableArray <Node*> spstack(C->live_nodes() + 8);
 194   spstack.push(_root);
 195   while (spstack.is_nonempty()) {
 196     Node* node = spstack.pop();
 197     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 198       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 199         assert(node->in(0), "pinned Node must have Control");
 200         // Before setting block replace block_proj control edge
 201         replace_block_proj_ctrl(node);
 202         Node* input = node->in(0);
 203         while (!input->is_block_start()) {
 204           input = input->in(0);
 205         }
 206         Block* block = get_block_for_node(input); // Basic block of controlling input
 207         schedule_node_into_block(node, block);
 208       }
 209 
 210       // If the node has precedence edges (added when CastPP nodes are
 211       // removed in final_graph_reshaping), fix the control of the
 212       // node to cover the precedence edges and remove the
 213       // dependencies.
 214       Node* n = nullptr;
 215       for (uint i = node->len()-1; i >= node->req(); i--) {
 216         Node* m = node->in(i);
 217         if (m == nullptr) continue;
 218         assert(is_CFG(m), "must be a CFG node");
 219         node->rm_prec(i);
 220         if (n == nullptr) {
 221           n = m;
 222         } else {
 223           assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
 224           n = is_dominator(n, m) ? m : n;
 225         }
 226       }
 227       if (n != nullptr) {
 228         assert(node->in(0), "control should have been set");
 229         assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
 230         if (!is_dominator(n, node->in(0))) {
 231           node->set_req(0, n);
 232         }
 233       }
 234 
 235       // process all inputs that are non null
 236       for (int i = node->req()-1; i >= 0; --i) {
 237         if (node->in(i) != nullptr) {
 238           spstack.push(node->in(i));
 239         }
 240       }
 241     }
 242   }
 243 }
 244 
 245 // Assert that new input b2 is dominated by all previous inputs.
 246 // Check this by by seeing that it is dominated by b1, the deepest
 247 // input observed until b2.
 248 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 249   if (b1 == nullptr)  return;
 250   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 251   Block* tmp = b2;
 252   while (tmp != b1 && tmp != nullptr) {
 253     tmp = tmp->_idom;
 254   }
 255   if (tmp != b1) {
 256 #ifdef ASSERT
 257     // Detected an unschedulable graph.  Print some nice stuff and die.
 258     tty->print_cr("!!! Unschedulable graph !!!");
 259     for (uint j=0; j<n->len(); j++) { // For all inputs
 260       Node* inn = n->in(j); // Get input
 261       if (inn == nullptr)  continue;  // Ignore null, missing inputs
 262       Block* inb = cfg->get_block_for_node(inn);
 263       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 264                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 265       inn->dump();
 266     }
 267     tty->print("Failing node: ");
 268     n->dump();
 269     assert(false, "unschedulable graph");
 270 #endif
 271     cfg->C->record_failure("unschedulable graph");
 272   }
 273 }
 274 
 275 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 276   // Find the last input dominated by all other inputs.
 277   Block* deepb           = nullptr;     // Deepest block so far
 278   int    deepb_dom_depth = 0;
 279   for (uint k = 0; k < n->len(); k++) { // For all inputs
 280     Node* inn = n->in(k);               // Get input
 281     if (inn == nullptr)  continue;      // Ignore null, missing inputs
 282     Block* inb = cfg->get_block_for_node(inn);
 283     assert(inb != nullptr, "must already have scheduled this input");
 284     if (deepb_dom_depth < (int) inb->_dom_depth) {
 285       // The new inb must be dominated by the previous deepb.
 286       // The various inputs must be linearly ordered in the dom
 287       // tree, or else there will not be a unique deepest block.
 288       assert_dom(deepb, inb, n, cfg);
 289       if (cfg->C->failing()) {
 290         return nullptr;
 291       }
 292       deepb = inb;                      // Save deepest block
 293       deepb_dom_depth = deepb->_dom_depth;
 294     }
 295   }
 296   assert(deepb != nullptr, "must be at least one input to n");
 297   return deepb;
 298 }
 299 
 300 
 301 //------------------------------schedule_early---------------------------------
 302 // Find the earliest Block any instruction can be placed in.  Some instructions
 303 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 304 // which all their inputs occur.
 305 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
 306   // Allocate stack with enough space to avoid frequent realloc
 307   Node_Stack nstack(roots.size() + 8);
 308   // _root will be processed among C->top() inputs
 309   roots.push(C->top(), 0);
 310   visited.set(C->top()->_idx);
 311 
 312   while (roots.size() != 0) {
 313     // Use local variables nstack_top_n & nstack_top_i to cache values
 314     // on stack's top.
 315     Node* parent_node = roots.node();
 316     uint  input_index = 0;
 317     roots.pop();
 318 
 319     while (true) {
 320       if (input_index == 0) {
 321         // Fixup some control.  Constants without control get attached
 322         // to root and nodes that use is_block_proj() nodes should be attached
 323         // to the region that starts their block.
 324         const Node* control_input = parent_node->in(0);
 325         if (control_input != nullptr) {
 326           replace_block_proj_ctrl(parent_node);
 327         } else {
 328           // Is a constant with NO inputs?
 329           if (parent_node->req() == 1) {
 330             parent_node->set_req(0, _root);
 331           }
 332         }
 333       }
 334 
 335       // First, visit all inputs and force them to get a block.  If an
 336       // input is already in a block we quit following inputs (to avoid
 337       // cycles). Instead we put that Node on a worklist to be handled
 338       // later (since IT'S inputs may not have a block yet).
 339 
 340       // Assume all n's inputs will be processed
 341       bool done = true;
 342 
 343       while (input_index < parent_node->len()) {
 344         Node* in = parent_node->in(input_index++);
 345         if (in == nullptr) {
 346           continue;
 347         }
 348 
 349         int is_visited = visited.test_set(in->_idx);
 350         if (!has_block(in)) {
 351           if (is_visited) {
 352             assert(false, "graph should be schedulable");
 353             return false;
 354           }
 355           // Save parent node and next input's index.
 356           nstack.push(parent_node, input_index);
 357           // Process current input now.
 358           parent_node = in;
 359           input_index = 0;
 360           // Not all n's inputs processed.
 361           done = false;
 362           break;
 363         } else if (!is_visited) {
 364           // Visit this guy later, using worklist
 365           roots.push(in, 0);
 366         }
 367       }
 368 
 369       if (done) {
 370         // All of n's inputs have been processed, complete post-processing.
 371 
 372         // Some instructions are pinned into a block.  These include Region,
 373         // Phi, Start, Return, and other control-dependent instructions and
 374         // any projections which depend on them.
 375         if (!parent_node->pinned()) {
 376           // Set earliest legal block.
 377           Block* earliest_block = find_deepest_input(parent_node, this);
 378           if (C->failing()) {
 379             return false;
 380           }
 381           map_node_to_block(parent_node, earliest_block);
 382         } else {
 383           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 384         }
 385 
 386         if (nstack.is_empty()) {
 387           // Finished all nodes on stack.
 388           // Process next node on the worklist 'roots'.
 389           break;
 390         }
 391         // Get saved parent node and next input's index.
 392         parent_node = nstack.node();
 393         input_index = nstack.index();
 394         nstack.pop();
 395       }
 396     }
 397   }
 398   return true;
 399 }
 400 
 401 //------------------------------dom_lca----------------------------------------
 402 // Find least common ancestor in dominator tree
 403 // LCA is a current notion of LCA, to be raised above 'this'.
 404 // As a convenient boundary condition, return 'this' if LCA is null.
 405 // Find the LCA of those two nodes.
 406 Block* Block::dom_lca(Block* LCA) {
 407   if (LCA == nullptr || LCA == this)  return this;
 408 
 409   Block* anc = this;
 410   while (anc->_dom_depth > LCA->_dom_depth)
 411     anc = anc->_idom;           // Walk up till anc is as high as LCA
 412 
 413   while (LCA->_dom_depth > anc->_dom_depth)
 414     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 415 
 416   while (LCA != anc) {          // Walk both up till they are the same
 417     LCA = LCA->_idom;
 418     anc = anc->_idom;
 419   }
 420 
 421   return LCA;
 422 }
 423 
 424 //--------------------------raise_LCA_above_use--------------------------------
 425 // We are placing a definition, and have been given a def->use edge.
 426 // The definition must dominate the use, so move the LCA upward in the
 427 // dominator tree to dominate the use.  If the use is a phi, adjust
 428 // the LCA only with the phi input paths which actually use this def.
 429 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 430   Block* buse = cfg->get_block_for_node(use);
 431   if (buse == nullptr) return LCA;   // Unused killing Projs have no use block
 432   if (!use->is_Phi())  return buse->dom_lca(LCA);
 433   uint pmax = use->req();       // Number of Phi inputs
 434   // Why does not this loop just break after finding the matching input to
 435   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 436   // chains.  Means I cannot distinguish, from the def-use direction, which
 437   // of many use-defs lead from the same use to the same def.  That is, this
 438   // Phi might have several uses of the same def.  Each use appears in a
 439   // different predecessor block.  But when I enter here, I cannot distinguish
 440   // which use-def edge I should find the predecessor block for.  So I find
 441   // them all.  Means I do a little extra work if a Phi uses the same value
 442   // more than once.
 443   for (uint j=1; j<pmax; j++) { // For all inputs
 444     if (use->in(j) == def) {    // Found matching input?
 445       Block* pred = cfg->get_block_for_node(buse->pred(j));
 446       LCA = pred->dom_lca(LCA);
 447     }
 448   }
 449   return LCA;
 450 }
 451 
 452 //----------------------------raise_LCA_above_marks----------------------------
 453 // Return a new LCA that dominates LCA and any of its marked predecessors.
 454 // Search all my parents up to 'early' (exclusive), looking for predecessors
 455 // which are marked with the given index.  Return the LCA (in the dom tree)
 456 // of all marked blocks.  If there are none marked, return the original
 457 // LCA.
 458 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 459   assert(early->dominates(LCA), "precondition failed");
 460   Block_List worklist;
 461   worklist.push(LCA);
 462   while (worklist.size() > 0) {
 463     Block* mid = worklist.pop();
 464     if (mid == early)  continue;  // stop searching here
 465 
 466     // Test and set the visited bit.
 467     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 468 
 469     // Don't process the current LCA, otherwise the search may terminate early
 470     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 471       // Raise the LCA.
 472       LCA = mid->dom_lca(LCA);
 473       if (LCA == early)  break;   // stop searching everywhere
 474       assert(early->dominates(LCA), "unsound LCA update");
 475       // Resume searching at that point, skipping intermediate levels.
 476       worklist.push(LCA);
 477       if (LCA == mid)
 478         continue; // Don't mark as visited to avoid early termination.
 479     } else {
 480       // Keep searching through this block's predecessors.
 481       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 482         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 483         worklist.push(mid_parent);
 484       }
 485     }
 486     mid->set_raise_LCA_visited(mark);
 487   }
 488   return LCA;
 489 }
 490 
 491 //--------------------------memory_early_block--------------------------------
 492 // This is a variation of find_deepest_input, the heart of schedule_early.
 493 // Find the "early" block for a load, if we considered only memory and
 494 // address inputs, that is, if other data inputs were ignored.
 495 //
 496 // Because a subset of edges are considered, the resulting block will
 497 // be earlier (at a shallower dom_depth) than the true schedule_early
 498 // point of the node. We compute this earlier block as a more permissive
 499 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 500 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 501   Node* base;
 502   Node* index;
 503   Node* store = load->in(MemNode::Memory);
 504   load->as_Mach()->memory_inputs(base, index);
 505 
 506   assert(base != NodeSentinel && index != NodeSentinel,
 507          "unexpected base/index inputs");
 508 
 509   Node* mem_inputs[4];
 510   int mem_inputs_length = 0;
 511   if (base != nullptr)  mem_inputs[mem_inputs_length++] = base;
 512   if (index != nullptr) mem_inputs[mem_inputs_length++] = index;
 513   if (store != nullptr) mem_inputs[mem_inputs_length++] = store;
 514 
 515   // In the comparison below, add one to account for the control input,
 516   // which may be null, but always takes up a spot in the in array.
 517   if (mem_inputs_length + 1 < (int) load->req()) {
 518     // This "load" has more inputs than just the memory, base and index inputs.
 519     // For purposes of checking anti-dependences, we need to start
 520     // from the early block of only the address portion of the instruction,
 521     // and ignore other blocks that may have factored into the wider
 522     // schedule_early calculation.
 523     if (load->in(0) != nullptr) mem_inputs[mem_inputs_length++] = load->in(0);
 524 
 525     Block* deepb           = nullptr;        // Deepest block so far
 526     int    deepb_dom_depth = 0;
 527     for (int i = 0; i < mem_inputs_length; i++) {
 528       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 529       if (deepb_dom_depth < (int) inb->_dom_depth) {
 530         // The new inb must be dominated by the previous deepb.
 531         // The various inputs must be linearly ordered in the dom
 532         // tree, or else there will not be a unique deepest block.
 533         assert_dom(deepb, inb, load, cfg);
 534         if (cfg->C->failing()) {
 535           return nullptr;
 536         }
 537         deepb = inb;                      // Save deepest block
 538         deepb_dom_depth = deepb->_dom_depth;
 539       }
 540     }
 541     early = deepb;
 542   }
 543 
 544   return early;
 545 }
 546 
 547 // This function is used by raise_above_anti_dependences to find unrelated loads for stores in implicit null checks.
 548 bool PhaseCFG::unrelated_load_in_store_null_block(Node* store, Node* load) {
 549   // We expect an anti-dependence edge from 'load' to 'store', except when
 550   // implicit_null_check() has hoisted 'store' above its early block to
 551   // perform an implicit null check, and 'load' is placed in the null
 552   // block. In this case it is safe to ignore the anti-dependence, as the
 553   // null block is only reached if 'store' tries to write to null object and
 554   // 'load' read from non-null object (there is preceding check for that)
 555   // These objects can't be the same.
 556   Block* store_block = get_block_for_node(store);
 557   Block* load_block = get_block_for_node(load);
 558   Node* end = store_block->end();
 559   if (end->is_MachNullCheck() && (end->in(1) == store) && store_block->dominates(load_block)) {
 560     Node* if_true = end->find_out_with(Op_IfTrue);
 561     assert(if_true != nullptr, "null check without null projection");
 562     Node* null_block_region = if_true->find_out_with(Op_Region);
 563     assert(null_block_region != nullptr, "null check without null region");
 564     return get_block_for_node(null_block_region) == load_block;
 565   }
 566   return false;
 567 }
 568 
 569 class DefUseMemStatesQueue : public StackObj {
 570 private:
 571   class DefUsePair : public StackObj {
 572   private:
 573     Node* _def; // memory state
 574     Node* _use; // use of the memory state that also modifies the memory state
 575 
 576   public:
 577     DefUsePair(Node* def, Node* use) :
 578       _def(def), _use(use) {
 579     }
 580 
 581     DefUsePair() :
 582       _def(nullptr), _use(nullptr) {
 583     }
 584 
 585     Node* def() const {
 586       return _def;
 587     }
 588 
 589     Node* use() const {
 590       return _use;
 591     }
 592   };
 593 
 594   GrowableArray<DefUsePair> _queue;
 595   GrowableArray<MergeMemNode*> _worklist_visited; // visited mergemem nodes
 596 
 597   bool already_enqueued(Node* def_mem, PhiNode* use_phi) const {
 598     // def_mem is one of the inputs of use_phi and at least one input of use_phi is
 599     // not def_mem. It's however possible that use_phi has def_mem as input multiple
 600     // times. If that happens, use_phi is recorded as a use of def_mem multiple
 601     // times as well. When PhaseCFG::raise_above_anti_dependences() goes over
 602     // uses of def_mem and enqueues them for processing, use_phi would then be
 603     // enqueued for processing multiple times when it only needs to be
 604     // processed once. The code below checks if use_phi as a use of def_mem was
 605     // already enqueued to avoid redundant processing of use_phi.
 606     int j = _queue.length()-1;
 607     // If there are any use of def_mem already enqueued, they were enqueued
 608     // last (all use of def_mem are processed in one go).
 609     for (; j >= 0; j--) {
 610       const DefUsePair& def_use_pair = _queue.at(j);
 611       if (def_use_pair.def() != def_mem) {
 612         // We're done with the uses of def_mem
 613         break;
 614       }
 615       if (def_use_pair.use() == use_phi) {
 616         return true;
 617       }
 618     }
 619 #ifdef ASSERT
 620     for (; j >= 0; j--) {
 621       const DefUsePair& def_use_pair = _queue.at(j);
 622       assert(def_use_pair.def() != def_mem, "Should be done with the uses of def_mem");
 623     }
 624 #endif
 625     return false;
 626   }
 627 
 628 public:
 629   DefUseMemStatesQueue(ResourceArea* area) {
 630   }
 631 
 632   void push(Node* def_mem_state, Node* use_mem_state) {
 633     if (use_mem_state->is_MergeMem()) {
 634       // Be sure we don't get into combinatorial problems.
 635       if (!_worklist_visited.append_if_missing(use_mem_state->as_MergeMem())) {
 636         return; // already on work list; do not repeat
 637       }
 638     } else if (use_mem_state->is_Phi()) {
 639       // A Phi could have the same mem as input multiple times. If that's the case, we don't need to enqueue it
 640       // more than once. We otherwise allow phis to be repeated; they can merge two relevant states.
 641       if (already_enqueued(def_mem_state, use_mem_state->as_Phi())) {
 642         return;
 643       }
 644     }
 645 
 646     _queue.push(DefUsePair(def_mem_state, use_mem_state));
 647   }
 648 
 649   bool is_nonempty() const {
 650     return _queue.is_nonempty();
 651   }
 652 
 653   Node* top_def() const {
 654     return _queue.top().def();
 655   }
 656 
 657   Node* top_use() const {
 658     return _queue.top().use();
 659   }
 660 
 661   void pop() {
 662     _queue.pop();
 663   }
 664 };
 665 
 666 // Enforce a scheduling of the given 'load' that ensures anti-dependent stores
 667 // do not overwrite the load's input memory state before the load executes.
 668 //
 669 // The given 'load' has a current scheduling range in the dominator tree that
 670 // starts at the load's early block (computed in schedule_early) and ends at
 671 // the given 'LCA' block for the load. However, there may still exist
 672 // anti-dependent stores between the early block and the LCA that overwrite
 673 // memory that the load must witness. For such stores, we must
 674 //
 675 //   1. raise the load's LCA to force the load to (eventually) be scheduled at
 676 //      latest in the store's block, and
 677 //   2. if the load may get scheduled in the store's block, additionally insert
 678 //      an anti-dependence edge (i.e., precedence edge) from the load to the
 679 //      store to ensure LCM schedules the load before the store within the
 680 //      block.
 681 //
 682 // For a given store, we say that the store is on a _distinct_ control-flow
 683 // path relative to the load if there are no paths from early to LCA that go
 684 // through the store's block. Such stores are not anti-dependent, and there is
 685 // no need to update the LCA nor to add anti-dependence edges.
 686 //
 687 // Due to the presence of loops, we must also raise the LCA above
 688 // anti-dependent memory Phis. We defer the details (see later comments in the
 689 // method) and for now look at an example without loops.
 690 //
 691 //          CFG               DOMINATOR TREE
 692 //
 693 //       B1 (early,L)              B1
 694 //       |\________                /\\___
 695 //       |         \              /  \   \
 696 //       B2 (L,S)   \            B2  B7  B6
 697 //      /  \         \           /\\___
 698 //     B3  B4 (S)    B7 (S)     /  \   \
 699 //      \  /         /         B3  B4  B5
 700 //       B5 (LCA,L) /
 701 //        \    ____/
 702 //         \  /
 703 //          B6
 704 //
 705 // Here, the load's scheduling range when calling raise_above_anti_dependences
 706 // is between early and LCA in the dominator tree, i.e., in block B1, B2, or B5
 707 // (indicated with "L"). However, there are a number of stores (indicated with
 708 // "S") that overwrite the memory which the load must witness. First, consider
 709 // the store in B4. We cannot legally schedule the load in B4, so an
 710 // anti-dependence edge is redundant. However, we must raise the LCA above
 711 // B4, which means that the updated LCA is B2. Now, consider the store in B2.
 712 // The LCA is already B2, so we do not need to raise it any further.
 713 // If we, eventually, decide to schedule the load in B2, it could happen that
 714 // LCM decides to place the load after the anti-dependent store in B2.
 715 // Therefore, we now need to add an anti-dependence edge between the load and
 716 // the B2 store, ensuring that the load is scheduled before the store. Finally,
 717 // the store in B7 is on a distinct control-flow path. Therefore, B7 requires
 718 // no action.
 719 //
 720 // The raise_above_anti_dependences method returns the updated LCA and ensures
 721 // there are no anti-dependent stores in any block between the load's early
 722 // block and the updated LCA. Any stores in the updated LCA will have new
 723 // anti-dependence edges back to the load. The caller may schedule the load in
 724 // the updated LCA, or it may hoist the load above the updated LCA, if the
 725 // updated LCA is not the early block.
 726 Block* PhaseCFG::raise_above_anti_dependences(Block* LCA, Node* load, const bool verify) {
 727   ResourceMark rm;
 728   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 729   assert(LCA != nullptr, "");
 730   DEBUG_ONLY(Block* LCA_orig = LCA);
 731 
 732   // Compute the alias index.  Loads and stores with different alias indices
 733   // do not need anti-dependence edges.
 734   int load_alias_idx = C->get_alias_index(load->adr_type());
 735 #ifdef ASSERT
 736   assert(Compile::AliasIdxTop <= load_alias_idx && load_alias_idx < C->num_alias_types(), "Invalid alias index");
 737   if (load_alias_idx == Compile::AliasIdxBot && C->do_aliasing() &&
 738       (PrintOpto || VerifyAliases ||
 739        (PrintMiscellaneous && (WizardMode || Verbose)))) {
 740     // Load nodes should not consume all of memory.
 741     // Reporting a bottom type indicates a bug in adlc.
 742     // If some particular type of node validly consumes all of memory,
 743     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 744     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 745     load->dump(2);
 746     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 747   }
 748 #endif
 749 
 750   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 751     // It is impossible to spoil this load by putting stores before it,
 752     // because we know that the stores will never update the value
 753     // which 'load' must witness.
 754     return LCA;
 755   }
 756 
 757   node_idx_t load_index = load->_idx;
 758 
 759   // Record the earliest legal placement of 'load', as determined by the unique
 760   // point in the dominator tree where all memory effects and other inputs are
 761   // first available (computed by schedule_early). For normal loads, 'early' is
 762   // the shallowest place (dominator-tree wise) to look for anti-dependences
 763   // between this load and any store.
 764   Block* early = get_block_for_node(load);
 765 
 766   // If we are subsuming loads, compute an "early" block that only considers
 767   // memory or address inputs. This block may be different from the
 768   // schedule_early block when it is at an even shallower depth in the
 769   // dominator tree, and allow for a broader discovery of anti-dependences.
 770   if (C->subsume_loads()) {
 771     early = memory_early_block(load, early, this);
 772     if (C->failing()) {
 773       return nullptr;
 774     }
 775   }
 776 
 777   assert(early->dominates(LCA_orig), "precondition failed");
 778 
 779   ResourceArea* area = Thread::current()->resource_area();
 780 
 781   // Bookkeeping of possibly anti-dependent stores that we find outside the
 782   // early block and that may need anti-dependence edges. Note that stores in
 783   // non_early_stores are not necessarily dominated by early. The search starts
 784   // from initial_mem, which can reside in a block that dominates early, and
 785   // therefore, stores we find may be in blocks that are on completely distinct
 786   // control-flow paths compared to early. However, in the end, only stores in
 787   // blocks dominated by early matter. The reason for bookkeeping not only
 788   // relevant stores is efficiency: we lazily record all possible
 789   // anti-dependent stores and add anti-dependence edges only to the relevant
 790   // ones at the very end of this method when we know the final updated LCA.
 791   Node_List non_early_stores(area);
 792 
 793   // Whether we must raise the LCA after the main worklist loop below.
 794   bool must_raise_LCA_above_marks = false;
 795 
 796   // The input load uses some memory state (initial_mem).
 797   Node* initial_mem = load->in(MemNode::Memory);
 798   // To find anti-dependences we must look for users of the same memory state.
 799   // To do this, we search the memory graph downwards from initial_mem. During
 800   // this search, we encounter different types of nodes that we handle
 801   // according to the following three categories:
 802   //
 803   // - MergeMems
 804   // - Memory-state-modifying nodes (informally referred to as "stores" above
 805   //   and below)
 806   // - Memory Phis
 807   //
 808   // MergeMems do not modify the memory state. Anti-dependent stores or memory
 809   // Phis may, however, exist downstream of MergeMems. Therefore, we must
 810   // permit the search to continue through MergeMems. Stores may raise the LCA
 811   // and may potentially also require an anti-dependence edge. Memory Phis may
 812   // raise the LCA but never require anti-dependence edges. See the comments
 813   // throughout the worklist loop below for further details.
 814   //
 815   // It may be useful to think of the anti-dependence search as traversing a
 816   // tree rooted at initial_mem, with internal nodes of type MergeMem and
 817   // memory Phis and stores as (potentially repeated) leaves.
 818 
 819   // We don't optimize the memory graph for pinned loads, so we may need to raise the
 820   // root of our search tree through the corresponding slices of MergeMem nodes to
 821   // get to the node that really creates the memory state for this slice.
 822   if (load_alias_idx >= Compile::AliasIdxRaw) {
 823     while (initial_mem->is_MergeMem()) {
 824       MergeMemNode* mm = initial_mem->as_MergeMem();
 825       Node* p = mm->memory_at(load_alias_idx);
 826       if (p != mm->base_memory()) {
 827         initial_mem = p;
 828       } else {
 829         break;
 830       }
 831     }
 832   }
 833   // To administer the search, we use a worklist consisting of (def,use)-pairs
 834   // of memory states, corresponding to edges in the search tree (and edges
 835   // in the memory graph). We need to keep track of search tree edges in the
 836   // worklist rather than individual nodes due to memory Phis (see details
 837   // below).
 838   DefUseMemStatesQueue worklist(area);
 839   // We start the search at initial_mem and indicate the search root with the
 840   // edge (nullptr, initial_mem).
 841   worklist.push(nullptr, initial_mem);
 842 
 843   // The worklist loop
 844   while (worklist.is_nonempty()) {
 845     // Pop the next edge from the worklist
 846     Node* def_mem_state = worklist.top_def();
 847     Node* use_mem_state = worklist.top_use();
 848     worklist.pop();
 849 
 850     // We are either
 851     // - at the root of the search with the edge (nullptr, initial_mem),
 852     // - just past initial_mem with the edge (initial_mem, use_mem_state), or
 853     // - just past a MergeMem with the edge (MergeMem, use_mem_state).
 854     assert(def_mem_state == nullptr || def_mem_state == initial_mem ||
 855            def_mem_state->is_MergeMem(),
 856            "unexpected memory state");
 857 
 858     const uint op = use_mem_state->Opcode();
 859 
 860 #ifdef ASSERT
 861     // CacheWB nodes are peculiar in a sense that they both are anti-dependent and produce memory.
 862     // Allow them to be treated as a store.
 863     bool is_cache_wb = false;
 864     if (use_mem_state->is_Mach()) {
 865       int ideal_op = use_mem_state->as_Mach()->ideal_Opcode();
 866       is_cache_wb = (ideal_op == Op_CacheWB);
 867     }
 868     assert(!use_mem_state->needs_anti_dependence_check() || is_cache_wb, "no loads");
 869 #endif
 870 
 871     // If we are either at the search root or have found a MergeMem, we step
 872     // past use_mem_state and populate the search worklist with edges
 873     // (use_mem_state, child) for use_mem_state's children.
 874     if (def_mem_state == nullptr // root (exclusive) of tree we are searching
 875         || op == Op_MergeMem     // internal node of tree we are searching
 876     ) {
 877       def_mem_state = use_mem_state;
 878 
 879       for (DUIterator_Fast imax, i = def_mem_state->fast_outs(imax); i < imax; i++) {
 880         use_mem_state = def_mem_state->fast_out(i);
 881         if (use_mem_state->needs_anti_dependence_check()) {
 882           // use_mem_state is also a kind of load (i.e.,
 883           // needs_anti_dependence_check), and it is not a store nor a memory
 884           // Phi. Hence, it is not anti-dependent on the load.
 885           continue;
 886         }
 887         worklist.push(def_mem_state, use_mem_state);
 888       }
 889       // Nothing more to do for the current (nullptr, initial_mem) or
 890       // (initial_mem/MergeMem, MergeMem) edge, move on.
 891       continue;
 892     }
 893 
 894     assert(!use_mem_state->is_MergeMem(),
 895            "use_mem_state should be either a store or a memory Phi");
 896 
 897     if (op == Op_MachProj || op == Op_Catch)   continue;
 898 
 899     // Compute the alias index. If the use_mem_state has an alias index
 900     // different from the load's, it is not anti-dependent. Wide MemBar's
 901     // are anti-dependent with everything (except immutable memories).
 902     const TypePtr* adr_type = use_mem_state->adr_type();
 903     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 904 
 905     // Most slow-path runtime calls do NOT modify Java memory, but
 906     // they can block and so write Raw memory.
 907     if (use_mem_state->is_Mach()) {
 908       MachNode* muse = use_mem_state->as_Mach();
 909       if (load_alias_idx != Compile::AliasIdxRaw) {
 910         // Check for call into the runtime using the Java calling
 911         // convention (and from there into a wrapper); it has no
 912         // _method.  Can't do this optimization for Native calls because
 913         // they CAN write to Java memory.
 914         if (muse->ideal_Opcode() == Op_CallStaticJava) {
 915           assert(muse->is_MachSafePoint(), "");
 916           MachSafePointNode* ms = (MachSafePointNode*)muse;
 917           assert(ms->is_MachCallJava(), "");
 918           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 919           if (mcj->_method == nullptr) {
 920             // These runtime calls do not write to Java visible memory
 921             // (other than Raw) and so are not anti-dependent.
 922             continue;
 923           }
 924         }
 925         // Same for SafePoints: they read/write Raw but only read otherwise.
 926         // This is basically a workaround for SafePoints only defining control
 927         // instead of control + memory.
 928         if (muse->ideal_Opcode() == Op_SafePoint) {
 929           continue;
 930         }
 931       } else {
 932         // Some raw memory, such as the load of "top" at an allocation,
 933         // can be control dependent on the previous safepoint. See
 934         // comments in GraphKit::allocate_heap() about control input.
 935         // Inserting an anti-dependence edge between such a safepoint and a use
 936         // creates a cycle, and will cause a subsequent failure in
 937         // local scheduling.  (BugId 4919904)
 938         // (%%% How can a control input be a safepoint and not a projection??)
 939         if (muse->ideal_Opcode() == Op_SafePoint && load->in(0) == muse) {
 940           continue;
 941         }
 942       }
 943     }
 944 
 945     // Determine the block of the use_mem_state.
 946     Block* use_mem_state_block = get_block_for_node(use_mem_state);
 947     assert(use_mem_state_block != nullptr,
 948            "unused killing projections skipped above");
 949 
 950     // For efficiency, we take a lazy approach to both raising the LCA and
 951     // adding anti-dependence edges. In this worklist loop, we only mark blocks
 952     // which we must raise the LCA above (set_raise_LCA_mark), and keep
 953     // track of nodes that potentially need anti-dependence edges
 954     // (non_early_stores). The only exceptions to this are if we
 955     // immediately see that we have to raise the LCA all the way to the early
 956     // block, and if we find stores in the early block (which always need
 957     // anti-dependence edges).
 958     //
 959     // After the worklist loop, we perform an efficient combined LCA-raising
 960     // operation over all marks and only then add anti-dependence edges where
 961     // strictly necessary according to the new raised LCA.
 962 
 963     if (use_mem_state->is_Phi()) {
 964       // We have reached a memory Phi node. On our search from initial_mem to
 965       // the Phi, we have found no anti-dependences (otherwise, we would have
 966       // already terminated the search along this branch). Consider the example
 967       // below, indicating a Phi node and its node inputs (we omit the control
 968       // input).
 969       //
 970       //    def_mem_state
 971       //          |
 972       //          | ? ?
 973       //          \ | /
 974       //           Phi
 975       //
 976       // We reached the Phi from def_mem_state and know that, on this
 977       // particular input, the memory that the load must witness is not
 978       // overwritten. However, for the Phi's other inputs (? in the
 979       // illustration), we have no information and must thus conservatively
 980       // assume that the load's memory is overwritten at and below the Phi.
 981       //
 982       // It is impossible to schedule the load before the Phi in
 983       // the same block as the Phi (use_mem_state_block), and anti-dependence
 984       // edges are, therefore, redundant. We must, however, find the
 985       // predecessor block of use_mem_state_block that corresponds to
 986       // def_mem_state, and raise the LCA above that block. Note that this block
 987       // is not necessarily def_mem_state's block! See the continuation of our
 988       // previous example below (now illustrating blocks instead of nodes)
 989       //
 990       //    def_mem_state's block
 991       //          |
 992       //          |
 993       //      pred_block
 994       //          |
 995       //          |   ?   ?
 996       //          |   |   |
 997       //      use_mem_state_block
 998       //
 999       // Here, we must raise the LCA above pred_block rather than
1000       // def_mem_state's block.
1001       //
1002       // Do not assert(use_mem_state_block != early, "Phi merging memory after access")
1003       // PhiNode may be at start of block 'early' with backedge to 'early'
1004       if (LCA == early) {
1005         // Don't bother if LCA is already raised all the way
1006         continue;
1007       }
1008       DEBUG_ONLY(bool found_match = false);
1009       for (uint j = PhiNode::Input, jmax = use_mem_state->req(); j < jmax; j++) {
1010         if (use_mem_state->in(j) == def_mem_state) {   // Found matching input?
1011           DEBUG_ONLY(found_match = true);
1012           Block* pred_block = get_block_for_node(use_mem_state_block->pred(j));
1013           if (pred_block != early) {
1014             // Lazily set the LCA mark
1015             pred_block->set_raise_LCA_mark(load_index);
1016             must_raise_LCA_above_marks = true;
1017           } else /* if (pred_block == early) */ {
1018             // We know already now that we must raise LCA all the way to early.
1019             LCA = early;
1020             // This turns off the process of gathering non_early_stores.
1021           }
1022         }
1023       }
1024       assert(found_match, "no worklist bug");
1025     } else if (use_mem_state_block != early) {
1026       // We found an anti-dependent store outside the load's 'early' block. The
1027       // store may be between the current LCA and the earliest possible block
1028       // (but it could very well also be on a distinct control-flow path).
1029       // Lazily set the LCA mark and push to non_early_stores.
1030       if (LCA == early) {
1031         // Don't bother if LCA is already raised all the way
1032         continue;
1033       }
1034       if (unrelated_load_in_store_null_block(use_mem_state, load)) {
1035         continue;
1036       }
1037       use_mem_state_block->set_raise_LCA_mark(load_index);
1038       must_raise_LCA_above_marks = true;
1039       non_early_stores.push(use_mem_state);
1040     } else /* if (use_mem_state_block == early) */ {
1041       // We found an anti-dependent store in the load's 'early' block.
1042       // Therefore, we know already now that we must raise LCA all the way to
1043       // early and that we need to add an anti-dependence edge to the store.
1044       assert(use_mem_state != load->find_exact_control(load->in(0)), "dependence cycle found");
1045       if (verify) {
1046         assert(use_mem_state->find_edge(load) != -1 || unrelated_load_in_store_null_block(use_mem_state, load),
1047                "missing precedence edge");
1048       } else {
1049         use_mem_state->add_prec(load);
1050       }
1051       LCA = early;
1052       // This turns off the process of gathering non_early_stores.
1053     }
1054   }
1055   // Worklist is now empty; we have visited all possible anti-dependences.
1056 
1057   // Finished if 'load' must be scheduled in its 'early' block.
1058   // If we found any stores there, they have already been given
1059   // anti-dependence edges.
1060   if (LCA == early) {
1061     return LCA;
1062   }
1063 
1064   // We get here only if there are no anti-dependent stores in the load's
1065   // 'early' block and if no memory Phi has forced LCA to the early block. Now
1066   // we must raise the LCA above the blocks for all the anti-dependent stores
1067   // and above the predecessor blocks of anti-dependent memory Phis we reached
1068   // during the search.
1069   if (must_raise_LCA_above_marks) {
1070     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
1071   }
1072 
1073   // If LCA == early at this point, there were no stores that required
1074   // anti-dependence edges in the early block. Otherwise, we would have eagerly
1075   // raised the LCA to early already in the worklist loop.
1076   if (LCA == early) {
1077     return LCA;
1078   }
1079 
1080   // The raised LCA block can now be a home to anti-dependent stores for which
1081   // we still need to add anti-dependence edges, but no LCA predecessor block
1082   // contains any such stores (otherwise, we would have raised the LCA even
1083   // higher).
1084   //
1085   // The raised LCA will be a lower bound for placing the load, preventing the
1086   // load from sinking past any block containing a store that may overwrite
1087   // memory that the load must witness.
1088   //
1089   // Now we need to insert the necessary anti-dependence edges from 'load' to
1090   // each store in the non-early LCA block. We have recorded all such potential
1091   // stores in non_early_stores.
1092   //
1093   // If LCA->raise_LCA_mark() != load_index, it means that we raised the LCA to
1094   // a block in which we did not find any anti-dependent stores. So, no need to
1095   // search for any such stores.
1096   if (LCA->raise_LCA_mark() == load_index) {
1097     while (non_early_stores.size() > 0) {
1098       Node* store = non_early_stores.pop();
1099       Block* store_block = get_block_for_node(store);
1100       if (store_block == LCA) {
1101         // Add anti-dependence edge from the load to the store in the non-early
1102         // LCA.
1103         assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
1104         if (verify) {
1105           assert(store->find_edge(load) != -1, "missing precedence edge");
1106         } else {
1107           store->add_prec(load);
1108         }
1109       } else {
1110         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
1111       }
1112     }
1113   }
1114 
1115   assert(LCA->dominates(LCA_orig), "unsound updated LCA");
1116 
1117   // Return the highest block containing stores; any stores
1118   // within that block have been given anti-dependence edges.
1119   return LCA;
1120 }
1121 
1122 // This class is used to iterate backwards over the nodes in the graph.
1123 
1124 class Node_Backward_Iterator {
1125 
1126 private:
1127   Node_Backward_Iterator();
1128 
1129 public:
1130   // Constructor for the iterator
1131   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
1132 
1133   // Postincrement operator to iterate over the nodes
1134   Node *next();
1135 
1136 private:
1137   VectorSet   &_visited;
1138   Node_Stack  &_stack;
1139   PhaseCFG &_cfg;
1140 };
1141 
1142 // Constructor for the Node_Backward_Iterator
1143 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
1144   : _visited(visited), _stack(stack), _cfg(cfg) {
1145   // The stack should contain exactly the root
1146   stack.clear();
1147   stack.push(root, root->outcnt());
1148 
1149   // Clear the visited bits
1150   visited.clear();
1151 }
1152 
1153 // Iterator for the Node_Backward_Iterator
1154 Node *Node_Backward_Iterator::next() {
1155 
1156   // If the _stack is empty, then just return null: finished.
1157   if ( !_stack.size() )
1158     return nullptr;
1159 
1160   // I visit unvisited not-anti-dependence users first, then anti-dependent
1161   // children next. I iterate backwards to support removal of nodes.
1162   // The stack holds states consisting of 3 values:
1163   // current Def node, flag which indicates 1st/2nd pass, index of current out edge
1164   Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
1165   bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
1166   uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
1167   _stack.pop();
1168 
1169   // I cycle here when I am entering a deeper level of recursion.
1170   // The key variable 'self' was set prior to jumping here.
1171   while( 1 ) {
1172 
1173     _visited.set(self->_idx);
1174 
1175     // Now schedule all uses as late as possible.
1176     const Node* src = self->is_Proj() ? self->in(0) : self;
1177     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
1178 
1179     // Schedule all nodes in a post-order visit
1180     Node *unvisited = nullptr;  // Unvisited anti-dependent Node, if any
1181 
1182     // Scan for unvisited nodes
1183     while (idx > 0) {
1184       // For all uses, schedule late
1185       Node* n = self->raw_out(--idx); // Use
1186 
1187       // Skip already visited children
1188       if ( _visited.test(n->_idx) )
1189         continue;
1190 
1191       // do not traverse backward control edges
1192       Node *use = n->is_Proj() ? n->in(0) : n;
1193       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
1194 
1195       if ( use_rpo < src_rpo )
1196         continue;
1197 
1198       // Phi nodes always precede uses in a basic block
1199       if ( use_rpo == src_rpo && use->is_Phi() )
1200         continue;
1201 
1202       unvisited = n;      // Found unvisited
1203 
1204       // Check for possible-anti-dependent
1205       // 1st pass: No such nodes, 2nd pass: Only such nodes.
1206       if (n->needs_anti_dependence_check() == iterate_anti_dep) {
1207         unvisited = n;      // Found unvisited
1208         break;
1209       }
1210     }
1211 
1212     // Did I find an unvisited not-anti-dependent Node?
1213     if (!unvisited) {
1214       if (!iterate_anti_dep) {
1215         // 2nd pass: Iterate over nodes which needs_anti_dependence_check.
1216         iterate_anti_dep = true;
1217         idx = self->outcnt();
1218         continue;
1219       }
1220       break;                  // All done with children; post-visit 'self'
1221     }
1222 
1223     // Visit the unvisited Node.  Contains the obvious push to
1224     // indicate I'm entering a deeper level of recursion.  I push the
1225     // old state onto the _stack and set a new state and loop (recurse).
1226     _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
1227     self = unvisited;
1228     iterate_anti_dep = false;
1229     idx = self->outcnt();
1230   } // End recursion loop
1231 
1232   return self;
1233 }
1234 
1235 //------------------------------ComputeLatenciesBackwards----------------------
1236 // Compute the latency of all the instructions.
1237 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
1238 #ifndef PRODUCT
1239   if (trace_opto_pipelining())
1240     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
1241 #endif
1242 
1243   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1244   Node *n;
1245 
1246   // Walk over all the nodes from last to first
1247   while ((n = iter.next())) {
1248     // Set the latency for the definitions of this instruction
1249     partial_latency_of_defs(n);
1250   }
1251 } // end ComputeLatenciesBackwards
1252 
1253 //------------------------------partial_latency_of_defs------------------------
1254 // Compute the latency impact of this node on all defs.  This computes
1255 // a number that increases as we approach the beginning of the routine.
1256 void PhaseCFG::partial_latency_of_defs(Node *n) {
1257   // Set the latency for this instruction
1258 #ifndef PRODUCT
1259   if (trace_opto_pipelining()) {
1260     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1261     dump();
1262   }
1263 #endif
1264 
1265   if (n->is_Proj()) {
1266     n = n->in(0);
1267   }
1268 
1269   if (n->is_Root()) {
1270     return;
1271   }
1272 
1273   uint nlen = n->len();
1274   uint use_latency = get_latency_for_node(n);
1275   uint use_pre_order = get_block_for_node(n)->_pre_order;
1276 
1277   for (uint j = 0; j < nlen; j++) {
1278     Node *def = n->in(j);
1279 
1280     if (!def || def == n) {
1281       continue;
1282     }
1283 
1284     // Walk backwards thru projections
1285     if (def->is_Proj()) {
1286       def = def->in(0);
1287     }
1288 
1289 #ifndef PRODUCT
1290     if (trace_opto_pipelining()) {
1291       tty->print("#    in(%2d): ", j);
1292       def->dump();
1293     }
1294 #endif
1295 
1296     // If the defining block is not known, assume it is ok
1297     Block *def_block = get_block_for_node(def);
1298     uint def_pre_order = def_block ? def_block->_pre_order : 0;
1299 
1300     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
1301       continue;
1302     }
1303 
1304     uint delta_latency = n->latency(j);
1305     uint current_latency = delta_latency + use_latency;
1306 
1307     if (get_latency_for_node(def) < current_latency) {
1308       set_latency_for_node(def, current_latency);
1309     }
1310 
1311 #ifndef PRODUCT
1312     if (trace_opto_pipelining()) {
1313       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1314     }
1315 #endif
1316   }
1317 }
1318 
1319 //------------------------------latency_from_use-------------------------------
1320 // Compute the latency of a specific use
1321 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1322   // If self-reference, return no latency
1323   if (use == n || use->is_Root()) {
1324     return 0;
1325   }
1326 
1327   uint def_pre_order = get_block_for_node(def)->_pre_order;
1328   uint latency = 0;
1329 
1330   // If the use is not a projection, then it is simple...
1331   if (!use->is_Proj()) {
1332 #ifndef PRODUCT
1333     if (trace_opto_pipelining()) {
1334       tty->print("#    out(): ");
1335       use->dump();
1336     }
1337 #endif
1338 
1339     uint use_pre_order = get_block_for_node(use)->_pre_order;
1340 
1341     if (use_pre_order < def_pre_order)
1342       return 0;
1343 
1344     if (use_pre_order == def_pre_order && use->is_Phi())
1345       return 0;
1346 
1347     uint nlen = use->len();
1348     uint nl = get_latency_for_node(use);
1349 
1350     for ( uint j=0; j<nlen; j++ ) {
1351       if (use->in(j) == n) {
1352         // Change this if we want local latencies
1353         uint ul = use->latency(j);
1354         uint  l = ul + nl;
1355         if (latency < l) latency = l;
1356 #ifndef PRODUCT
1357         if (trace_opto_pipelining()) {
1358           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
1359                         nl, j, ul, l, latency);
1360         }
1361 #endif
1362       }
1363     }
1364   } else {
1365     // This is a projection, just grab the latency of the use(s)
1366     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1367       uint l = latency_from_use(use, def, use->fast_out(j));
1368       if (latency < l) latency = l;
1369     }
1370   }
1371 
1372   return latency;
1373 }
1374 
1375 //------------------------------latency_from_uses------------------------------
1376 // Compute the latency of this instruction relative to all of it's uses.
1377 // This computes a number that increases as we approach the beginning of the
1378 // routine.
1379 void PhaseCFG::latency_from_uses(Node *n) {
1380   // Set the latency for this instruction
1381 #ifndef PRODUCT
1382   if (trace_opto_pipelining()) {
1383     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1384     dump();
1385   }
1386 #endif
1387   uint latency=0;
1388   const Node *def = n->is_Proj() ? n->in(0): n;
1389 
1390   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1391     uint l = latency_from_use(n, def, n->fast_out(i));
1392 
1393     if (latency < l) latency = l;
1394   }
1395 
1396   set_latency_for_node(n, latency);
1397 }
1398 
1399 //------------------------------is_cheaper_block-------------------------
1400 // Check if a block between early and LCA block of uses is cheaper by
1401 // frequency-based policy, latency-based policy and random-based policy
1402 bool PhaseCFG::is_cheaper_block(Block* LCA, Node* self, uint target_latency,
1403                                 uint end_latency, double least_freq,
1404                                 int cand_cnt, bool in_latency) {
1405   if (StressGCM) {
1406     // Should be randomly accepted in stress mode
1407     return C->randomized_select(cand_cnt);
1408   }
1409 
1410   const double delta = 1 + PROB_UNLIKELY_MAG(4);
1411 
1412   // Better Frequency. Add a small delta to the comparison to not needlessly
1413   // hoist because of, e.g., small numerical inaccuracies.
1414   if (LCA->_freq * delta < least_freq) {
1415     return true;
1416   }
1417 
1418   // Otherwise, choose with latency
1419   if (!in_latency                     &&  // No block containing latency
1420       LCA->_freq < least_freq * delta &&  // No worse frequency
1421       target_latency >= end_latency   &&  // within latency range
1422       !self->is_iteratively_computed()    // But don't hoist IV increments
1423             // because they may end up above other uses of their phi forcing
1424             // their result register to be different from their input.
1425   ) {
1426     return true;
1427   }
1428 
1429   return false;
1430 }
1431 
1432 //------------------------------hoist_to_cheaper_block-------------------------
1433 // Pick a block for node self, between early and LCA block of uses, that is a
1434 // cheaper alternative to LCA.
1435 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1436   Block* least       = LCA;
1437   double least_freq  = least->_freq;
1438   uint target        = get_latency_for_node(self);
1439   uint start_latency = get_latency_for_node(LCA->head());
1440   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1441   bool in_latency    = (target <= start_latency);
1442   const Block* root_block = get_block_for_node(_root);
1443 
1444   // Turn off latency scheduling if scheduling is just plain off
1445   if (!C->do_scheduling())
1446     in_latency = true;
1447 
1448   // Do not hoist (to cover latency) instructions which target a
1449   // single register.  Hoisting stretches the live range of the
1450   // single register and may force spilling.
1451   MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr;
1452   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1453     in_latency = true;
1454 
1455 #ifndef PRODUCT
1456   if (trace_opto_pipelining()) {
1457     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1458     self->dump();
1459     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1460       LCA->_pre_order,
1461       LCA->head()->_idx,
1462       start_latency,
1463       LCA->get_node(LCA->end_idx())->_idx,
1464       end_latency,
1465       least_freq);
1466   }
1467 #endif
1468 
1469   int cand_cnt = 0;  // number of candidates tried
1470 
1471   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1472   // the earliest legal location. Capture the least execution frequency,
1473   // or choose a random block if -XX:+StressGCM, or using latency-based policy
1474   while (LCA != early) {
1475     LCA = LCA->_idom;         // Follow up the dominator tree
1476 
1477     if (LCA == nullptr) {
1478       // Bailout without retry
1479       assert(false, "graph should be schedulable");
1480       C->record_method_not_compilable("late schedule failed: LCA is null");
1481       return least;
1482     }
1483 
1484     // Don't hoist machine instructions to the root basic block
1485     if (mach && LCA == root_block)
1486       break;
1487 
1488     if (self->is_memory_writer() &&
1489         (LCA->_loop->depth() > early->_loop->depth())) {
1490       // LCA is an invalid placement for a memory writer: choosing it would
1491       // cause memory interference, as illustrated in schedule_late().
1492       continue;
1493     }
1494     verify_memory_writer_placement(LCA, self);
1495 
1496     uint start_lat = get_latency_for_node(LCA->head());
1497     uint end_idx   = LCA->end_idx();
1498     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1499     double LCA_freq = LCA->_freq;
1500 #ifndef PRODUCT
1501     if (trace_opto_pipelining()) {
1502       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1503         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1504     }
1505 #endif
1506     cand_cnt++;
1507     if (is_cheaper_block(LCA, self, target, end_lat, least_freq, cand_cnt, in_latency)) {
1508       least = LCA;            // Found cheaper block
1509       least_freq = LCA_freq;
1510       start_latency = start_lat;
1511       end_latency = end_lat;
1512       if (target <= start_lat)
1513         in_latency = true;
1514     }
1515   }
1516 
1517 #ifndef PRODUCT
1518   if (trace_opto_pipelining()) {
1519     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1520       least->_pre_order, start_latency, least_freq);
1521   }
1522 #endif
1523 
1524   // See if the latency needs to be updated
1525   if (target < end_latency) {
1526 #ifndef PRODUCT
1527     if (trace_opto_pipelining()) {
1528       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1529     }
1530 #endif
1531     set_latency_for_node(self, end_latency);
1532     partial_latency_of_defs(self);
1533   }
1534 
1535   return least;
1536 }
1537 
1538 
1539 //------------------------------schedule_late-----------------------------------
1540 // Now schedule all codes as LATE as possible.  This is the LCA in the
1541 // dominator tree of all USES of a value.  Pick the block with the least
1542 // loop nesting depth that is lowest in the dominator tree.
1543 extern const char must_clone[];
1544 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1545 #ifndef PRODUCT
1546   if (trace_opto_pipelining())
1547     tty->print("\n#---- schedule_late ----\n");
1548 #endif
1549 
1550   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1551   Node *self;
1552 
1553   // Walk over all the nodes from last to first
1554   while ((self = iter.next())) {
1555     Block* early = get_block_for_node(self); // Earliest legal placement
1556 
1557     if (self->is_top()) {
1558       // Top node goes in bb #2 with other constants.
1559       // It must be special-cased, because it has no out edges.
1560       early->add_inst(self);
1561       continue;
1562     }
1563 
1564     // No uses, just terminate
1565     if (self->outcnt() == 0) {
1566       assert(self->is_MachProj(), "sanity");
1567       continue;                   // Must be a dead machine projection
1568     }
1569 
1570     // If node is pinned in the block, then no scheduling can be done.
1571     if( self->pinned() )          // Pinned in block?
1572       continue;
1573 
1574 #ifdef ASSERT
1575     // Assert that memory writers (e.g. stores) have a "home" block (the block
1576     // given by their control input), and that this block corresponds to their
1577     // earliest possible placement. This guarantees that
1578     // hoist_to_cheaper_block() will always have at least one valid choice.
1579     if (self->is_memory_writer()) {
1580       assert(find_block_for_node(self->in(0)) == early,
1581              "The home of a memory writer must also be its earliest placement");
1582     }
1583 #endif
1584 
1585     MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr;
1586     if (mach) {
1587       switch (mach->ideal_Opcode()) {
1588       case Op_CreateEx:
1589         // Don't move exception creation
1590         early->add_inst(self);
1591         continue;
1592         break;
1593       case Op_CheckCastPP: {
1594         // Don't move CheckCastPP nodes away from their input, if the input
1595         // is a rawptr (5071820).
1596         Node *def = self->in(1);
1597         if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
1598           early->add_inst(self);
1599 #ifdef ASSERT
1600           _raw_oops.push(def);
1601 #endif
1602           continue;
1603         }
1604         break;
1605       }
1606       default:
1607         break;
1608       }
1609       if (C->has_irreducible_loop() && self->is_memory_writer()) {
1610         // If the CFG is irreducible, place memory writers in their home block.
1611         // This prevents hoist_to_cheaper_block() from accidentally placing such
1612         // nodes into deeper loops, as in the following example:
1613         //
1614         // Home placement of store in B1 (loop L1):
1615         //
1616         // B1 (L1):
1617         //   m1 <- ..
1618         //   m2 <- store m1, ..
1619         // B2 (L2):
1620         //   jump B2
1621         // B3 (L1):
1622         //   .. <- .. m2, ..
1623         //
1624         // Wrong "hoisting" of store to B2 (in loop L2, child of L1):
1625         //
1626         // B1 (L1):
1627         //   m1 <- ..
1628         // B2 (L2):
1629         //   m2 <- store m1, ..
1630         //   # Wrong: m1 and m2 interfere at this point.
1631         //   jump B2
1632         // B3 (L1):
1633         //   .. <- .. m2, ..
1634         //
1635         // This "hoist inversion" can happen due to different factors such as
1636         // inaccurate estimation of frequencies for irreducible CFGs, and loops
1637         // with always-taken exits in reducible CFGs. In the reducible case,
1638         // hoist inversion is prevented by discarding invalid blocks (those in
1639         // deeper loops than the home block). In the irreducible case, the
1640         // invalid blocks cannot be identified due to incomplete loop nesting
1641         // information, hence a conservative solution is taken.
1642 #ifndef PRODUCT
1643         if (trace_opto_pipelining()) {
1644           tty->print_cr("# Irreducible loops: schedule in home block B%d:",
1645                         early->_pre_order);
1646           self->dump();
1647         }
1648 #endif
1649         schedule_node_into_block(self, early);
1650         continue;
1651       }
1652     }
1653 
1654     // Gather LCA of all uses
1655     Block *LCA = nullptr;
1656     {
1657       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1658         // For all uses, find LCA
1659         Node* use = self->fast_out(i);
1660         LCA = raise_LCA_above_use(LCA, use, self, this);
1661       }
1662       guarantee(LCA != nullptr, "There must be a LCA");
1663     }  // (Hide defs of imax, i from rest of block.)
1664 
1665     // Place temps in the block of their use.  This isn't a
1666     // requirement for correctness but it reduces useless
1667     // interference between temps and other nodes.
1668     if (mach != nullptr && mach->is_MachTemp()) {
1669       map_node_to_block(self, LCA);
1670       LCA->add_inst(self);
1671       continue;
1672     }
1673 
1674     // Check if 'self' could be anti-dependent on memory
1675     if (self->needs_anti_dependence_check()) {
1676       // Hoist LCA above possible-defs and insert anti-dependences to
1677       // defs in new LCA block.
1678       LCA = raise_above_anti_dependences(LCA, self);
1679       if (C->failing()) {
1680         return;
1681       }
1682     }
1683 
1684     if (early->_dom_depth > LCA->_dom_depth) {
1685       // Somehow the LCA has moved above the earliest legal point.
1686       // (One way this can happen is via memory_early_block.)
1687       if (C->subsume_loads() == true && !C->failing()) {
1688         // Retry with subsume_loads == false
1689         // If this is the first failure, the sentinel string will "stick"
1690         // to the Compile object, and the C2Compiler will see it and retry.
1691         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1692       } else {
1693         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1694         assert(C->failure_is_artificial(), "graph should be schedulable");
1695         C->record_method_not_compilable("late schedule failed: incorrect graph" DEBUG_ONLY(COMMA true));
1696       }
1697       return;
1698     }
1699 
1700     if (self->is_memory_writer()) {
1701       // If the LCA of a memory writer is a descendant of its home loop, hoist
1702       // it into a valid placement.
1703       while (LCA->_loop->depth() > early->_loop->depth()) {
1704         LCA = LCA->_idom;
1705       }
1706       assert(LCA != nullptr, "a valid LCA must exist");
1707       verify_memory_writer_placement(LCA, self);
1708     }
1709 
1710     // If there is no opportunity to hoist, then we're done.
1711     // In stress mode, try to hoist even the single operations.
1712     bool try_to_hoist = StressGCM || (LCA != early);
1713 
1714     // Must clone guys stay next to use; no hoisting allowed.
1715     // Also cannot hoist guys that alter memory or are otherwise not
1716     // allocatable (hoisting can make a value live longer, leading to
1717     // anti and output dependency problems which are normally resolved
1718     // by the register allocator giving everyone a different register).
1719     if (mach != nullptr && must_clone[mach->ideal_Opcode()])
1720       try_to_hoist = false;
1721 
1722     Block* late = nullptr;
1723     if (try_to_hoist) {
1724       // Now find the block with the least execution frequency.
1725       // Start at the latest schedule and work up to the earliest schedule
1726       // in the dominator tree.  Thus the Node will dominate all its uses.
1727       late = hoist_to_cheaper_block(LCA, early, self);
1728     } else {
1729       // Just use the LCA of the uses.
1730       late = LCA;
1731     }
1732 
1733     // Put the node into target block
1734     schedule_node_into_block(self, late);
1735 
1736 #ifdef ASSERT
1737     if (self->needs_anti_dependence_check()) {
1738       // since precedence edges are only inserted when we're sure they
1739       // are needed make sure that after placement in a block we don't
1740       // need any new precedence edges.
1741       verify_anti_dependences(late, self);
1742     }
1743 #endif
1744   } // Loop until all nodes have been visited
1745 
1746 } // end ScheduleLate
1747 
1748 //------------------------------GlobalCodeMotion-------------------------------
1749 void PhaseCFG::global_code_motion() {
1750   ResourceMark rm;
1751 
1752 #ifndef PRODUCT
1753   if (trace_opto_pipelining()) {
1754     tty->print("\n---- Start GlobalCodeMotion ----\n");
1755   }
1756 #endif
1757 
1758   // Initialize the node to block mapping for things on the proj_list
1759   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1760     unmap_node_from_block(_matcher.get_projection(i));
1761   }
1762 
1763   // Set the basic block for Nodes pinned into blocks
1764   VectorSet visited;
1765   schedule_pinned_nodes(visited);
1766 
1767   // Find the earliest Block any instruction can be placed in.  Some
1768   // instructions are pinned into Blocks.  Unpinned instructions can
1769   // appear in last block in which all their inputs occur.
1770   visited.clear();
1771   Node_Stack stack((C->live_nodes() >> 2) + 16); // pre-grow
1772   if (!schedule_early(visited, stack)) {
1773     // Bailout without retry
1774     assert(C->failure_is_artificial(), "early schedule failed");
1775     C->record_method_not_compilable("early schedule failed" DEBUG_ONLY(COMMA true));
1776     return;
1777   }
1778 
1779   // Build Def-Use edges.
1780   // Compute the latency information (via backwards walk) for all the
1781   // instructions in the graph
1782   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1783 
1784   if (C->do_scheduling()) {
1785     compute_latencies_backwards(visited, stack);
1786   }
1787 
1788   // Now schedule all codes as LATE as possible.  This is the LCA in the
1789   // dominator tree of all USES of a value.  Pick the block with the least
1790   // loop nesting depth that is lowest in the dominator tree.
1791   // ( visited.clear() called in schedule_late()->Node_Backward_Iterator() )
1792   schedule_late(visited, stack);
1793   if (C->failing()) {
1794     return;
1795   }
1796 
1797 #ifndef PRODUCT
1798   if (trace_opto_pipelining()) {
1799     tty->print("\n---- Detect implicit null checks ----\n");
1800   }
1801 #endif
1802 
1803   // Detect implicit-null-check opportunities.  Basically, find null checks
1804   // with suitable memory ops nearby.  Use the memory op to do the null check.
1805   // I can generate a memory op if there is not one nearby.
1806   if (C->is_method_compilation()) {
1807     // By reversing the loop direction we get a very minor gain on mpegaudio.
1808     // Feel free to revert to a forward loop for clarity.
1809     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1810     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1811       Node* proj = _matcher._null_check_tests[i];
1812       Node* val  = _matcher._null_check_tests[i + 1];
1813       Block* block = get_block_for_node(proj);
1814       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1815       // The implicit_null_check will only perform the transformation
1816       // if the null branch is truly uncommon, *and* it leads to an
1817       // uncommon trap.  Combined with the too_many_traps guards
1818       // above, this prevents SEGV storms reported in 6366351,
1819       // by recompiling offending methods without this optimization.
1820       if (C->failing()) {
1821         return;
1822       }
1823     }
1824   }
1825 
1826   bool block_size_threshold_ok = false;
1827   intptr_t *recalc_pressure_nodes = nullptr;
1828   if (OptoRegScheduling) {
1829     for (uint i = 0; i < number_of_blocks(); i++) {
1830       Block* block = get_block(i);
1831       if (block->number_of_nodes() > 10) {
1832         block_size_threshold_ok = true;
1833         break;
1834       }
1835     }
1836   }
1837 
1838   // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1839   // is key to enabling this feature.
1840   PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1841   ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive);      // Arena for liveness
1842   ResourceMark rm_live(&live_arena);
1843   PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1844   PhaseIFG ifg(&live_arena);
1845   if (OptoRegScheduling && block_size_threshold_ok) {
1846     regalloc.mark_ssa();
1847     Compile::TracePhase tp(_t_computeLive);
1848     rm_live.reset_to_mark();           // Reclaim working storage
1849     IndexSet::reset_memory(C, &live_arena);
1850     uint node_size = regalloc._lrg_map.max_lrg_id();
1851     ifg.init(node_size); // Empty IFG
1852     regalloc.set_ifg(ifg);
1853     regalloc.set_live(live);
1854     regalloc.gather_lrg_masks(false);    // Collect LRG masks
1855     live.compute(node_size); // Compute liveness
1856 
1857     recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1858     for (uint i = 0; i < node_size; i++) {
1859       recalc_pressure_nodes[i] = 0;
1860     }
1861   }
1862   _regalloc = &regalloc;
1863 
1864 #ifndef PRODUCT
1865   if (trace_opto_pipelining()) {
1866     tty->print("\n---- Start Local Scheduling ----\n");
1867   }
1868 #endif
1869 
1870   // Schedule locally.  Right now a simple topological sort.
1871   // Later, do a real latency aware scheduler.
1872   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1873   visited.reset();
1874   for (uint i = 0; i < number_of_blocks(); i++) {
1875     Block* block = get_block(i);
1876     if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1877       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1878         assert(C->failure_is_artificial(), "local schedule failed");
1879         C->record_method_not_compilable("local schedule failed" DEBUG_ONLY(COMMA true));
1880       }
1881       _regalloc = nullptr;
1882       return;
1883     }
1884   }
1885   _regalloc = nullptr;
1886 
1887   // If we inserted any instructions between a Call and his CatchNode,
1888   // clone the instructions on all paths below the Catch.
1889   for (uint i = 0; i < number_of_blocks(); i++) {
1890     Block* block = get_block(i);
1891     call_catch_cleanup(block);
1892     if (C->failing()) {
1893       return;
1894     }
1895   }
1896 
1897 #ifndef PRODUCT
1898   if (trace_opto_pipelining()) {
1899     tty->print("\n---- After GlobalCodeMotion ----\n");
1900     for (uint i = 0; i < number_of_blocks(); i++) {
1901       Block* block = get_block(i);
1902       block->dump();
1903     }
1904   }
1905 #endif
1906   // Dead.
1907   _node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef);
1908 }
1909 
1910 bool PhaseCFG::do_global_code_motion() {
1911 
1912   build_dominator_tree();
1913   if (C->failing()) {
1914     return false;
1915   }
1916 
1917   NOT_PRODUCT( C->verify_graph_edges(); )
1918 
1919   estimate_block_frequency();
1920 
1921   global_code_motion();
1922 
1923   if (C->failing()) {
1924     return false;
1925   }
1926 
1927   return true;
1928 }
1929 
1930 //------------------------------Estimate_Block_Frequency-----------------------
1931 // Estimate block frequencies based on IfNode probabilities.
1932 void PhaseCFG::estimate_block_frequency() {
1933 
1934   // Force conditional branches leading to uncommon traps to be unlikely,
1935   // not because we get to the uncommon_trap with less relative frequency,
1936   // but because an uncommon_trap typically causes a deopt, so we only get
1937   // there once.
1938   if (C->do_freq_based_layout()) {
1939     Block_List worklist;
1940     Block* root_blk = get_block(0);
1941     for (uint i = 1; i < root_blk->num_preds(); i++) {
1942       Block *pb = get_block_for_node(root_blk->pred(i));
1943       if (pb->has_uncommon_code()) {
1944         worklist.push(pb);
1945       }
1946     }
1947     while (worklist.size() > 0) {
1948       Block* uct = worklist.pop();
1949       if (uct == get_root_block()) {
1950         continue;
1951       }
1952       for (uint i = 1; i < uct->num_preds(); i++) {
1953         Block *pb = get_block_for_node(uct->pred(i));
1954         if (pb->_num_succs == 1) {
1955           worklist.push(pb);
1956         } else if (pb->num_fall_throughs() == 2) {
1957           pb->update_uncommon_branch(uct);
1958         }
1959       }
1960     }
1961   }
1962 
1963   // Create the loop tree and calculate loop depth.
1964   _root_loop = create_loop_tree();
1965   _root_loop->compute_loop_depth(0);
1966 
1967   // Compute block frequency of each block, relative to a single loop entry.
1968   _root_loop->compute_freq();
1969 
1970   // Adjust all frequencies to be relative to a single method entry
1971   _root_loop->_freq = 1.0;
1972   _root_loop->scale_freq();
1973 
1974   // Save outmost loop frequency for LRG frequency threshold
1975   _outer_loop_frequency = _root_loop->outer_loop_freq();
1976 
1977   // force paths ending at uncommon traps to be infrequent
1978   if (!C->do_freq_based_layout()) {
1979     Block_List worklist;
1980     Block* root_blk = get_block(0);
1981     for (uint i = 1; i < root_blk->num_preds(); i++) {
1982       Block *pb = get_block_for_node(root_blk->pred(i));
1983       if (pb->has_uncommon_code()) {
1984         worklist.push(pb);
1985       }
1986     }
1987     while (worklist.size() > 0) {
1988       Block* uct = worklist.pop();
1989       uct->_freq = PROB_MIN;
1990       for (uint i = 1; i < uct->num_preds(); i++) {
1991         Block *pb = get_block_for_node(uct->pred(i));
1992         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1993           worklist.push(pb);
1994         }
1995       }
1996     }
1997   }
1998 
1999 #ifdef ASSERT
2000   for (uint i = 0; i < number_of_blocks(); i++) {
2001     Block* b = get_block(i);
2002     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
2003   }
2004 #endif
2005 
2006 #ifndef PRODUCT
2007   if (PrintCFGBlockFreq) {
2008     tty->print_cr("CFG Block Frequencies");
2009     _root_loop->dump_tree();
2010     if (Verbose) {
2011       tty->print_cr("PhaseCFG dump");
2012       dump();
2013       tty->print_cr("Node dump");
2014       _root->dump(99999);
2015     }
2016   }
2017 #endif
2018 }
2019 
2020 //----------------------------create_loop_tree--------------------------------
2021 // Create a loop tree from the CFG
2022 CFGLoop* PhaseCFG::create_loop_tree() {
2023 
2024 #ifdef ASSERT
2025   assert(get_block(0) == get_root_block(), "first block should be root block");
2026   for (uint i = 0; i < number_of_blocks(); i++) {
2027     Block* block = get_block(i);
2028     // Check that _loop field are clear...we could clear them if not.
2029     assert(block->_loop == nullptr, "clear _loop expected");
2030     // Sanity check that the RPO numbering is reflected in the _blocks array.
2031     // It doesn't have to be for the loop tree to be built, but if it is not,
2032     // then the blocks have been reordered since dom graph building...which
2033     // may question the RPO numbering
2034     assert(block->_rpo == i, "unexpected reverse post order number");
2035   }
2036 #endif
2037 
2038   int idct = 0;
2039   CFGLoop* root_loop = new CFGLoop(idct++);
2040 
2041   Block_List worklist;
2042 
2043   // Assign blocks to loops
2044   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
2045     Block* block = get_block(i);
2046 
2047     if (block->head()->is_Loop()) {
2048       Block* loop_head = block;
2049       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
2050       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
2051       Block* tail = get_block_for_node(tail_n);
2052 
2053       // Defensively filter out Loop nodes for non-single-entry loops.
2054       // For all reasonable loops, the head occurs before the tail in RPO.
2055       if (i <= tail->_rpo) {
2056 
2057         // The tail and (recursive) predecessors of the tail
2058         // are made members of a new loop.
2059 
2060         assert(worklist.size() == 0, "nonempty worklist");
2061         CFGLoop* nloop = new CFGLoop(idct++);
2062         assert(loop_head->_loop == nullptr, "just checking");
2063         loop_head->_loop = nloop;
2064         // Add to nloop so push_pred() will skip over inner loops
2065         nloop->add_member(loop_head);
2066         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
2067 
2068         while (worklist.size() > 0) {
2069           Block* member = worklist.pop();
2070           if (member != loop_head) {
2071             for (uint j = 1; j < member->num_preds(); j++) {
2072               nloop->push_pred(member, j, worklist, this);
2073             }
2074           }
2075         }
2076       }
2077     }
2078   }
2079 
2080   // Create a member list for each loop consisting
2081   // of both blocks and (immediate child) loops.
2082   for (uint i = 0; i < number_of_blocks(); i++) {
2083     Block* block = get_block(i);
2084     CFGLoop* lp = block->_loop;
2085     if (lp == nullptr) {
2086       // Not assigned to a loop. Add it to the method's pseudo loop.
2087       block->_loop = root_loop;
2088       lp = root_loop;
2089     }
2090     if (lp == root_loop || block != lp->head()) { // loop heads are already members
2091       lp->add_member(block);
2092     }
2093     if (lp != root_loop) {
2094       if (lp->parent() == nullptr) {
2095         // Not a nested loop. Make it a child of the method's pseudo loop.
2096         root_loop->add_nested_loop(lp);
2097       }
2098       if (block == lp->head()) {
2099         // Add nested loop to member list of parent loop.
2100         lp->parent()->add_member(lp);
2101       }
2102     }
2103   }
2104 
2105   return root_loop;
2106 }
2107 
2108 //------------------------------push_pred--------------------------------------
2109 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
2110   Node* pred_n = blk->pred(i);
2111   Block* pred = cfg->get_block_for_node(pred_n);
2112   CFGLoop *pred_loop = pred->_loop;
2113   if (pred_loop == nullptr) {
2114     // Filter out blocks for non-single-entry loops.
2115     // For all reasonable loops, the head occurs before the tail in RPO.
2116     if (pred->_rpo > head()->_rpo) {
2117       pred->_loop = this;
2118       worklist.push(pred);
2119     }
2120   } else if (pred_loop != this) {
2121     // Nested loop.
2122     while (pred_loop->_parent != nullptr && pred_loop->_parent != this) {
2123       pred_loop = pred_loop->_parent;
2124     }
2125     // Make pred's loop be a child
2126     if (pred_loop->_parent == nullptr) {
2127       add_nested_loop(pred_loop);
2128       // Continue with loop entry predecessor.
2129       Block* pred_head = pred_loop->head();
2130       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
2131       assert(pred_head != head(), "loop head in only one loop");
2132       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
2133     } else {
2134       assert(pred_loop->_parent == this && _parent == nullptr, "just checking");
2135     }
2136   }
2137 }
2138 
2139 //------------------------------add_nested_loop--------------------------------
2140 // Make cl a child of the current loop in the loop tree.
2141 void CFGLoop::add_nested_loop(CFGLoop* cl) {
2142   assert(_parent == nullptr, "no parent yet");
2143   assert(cl != this, "not my own parent");
2144   cl->_parent = this;
2145   CFGLoop* ch = _child;
2146   if (ch == nullptr) {
2147     _child = cl;
2148   } else {
2149     while (ch->_sibling != nullptr) { ch = ch->_sibling; }
2150     ch->_sibling = cl;
2151   }
2152 }
2153 
2154 //------------------------------compute_loop_depth-----------------------------
2155 // Store the loop depth in each CFGLoop object.
2156 // Recursively walk the children to do the same for them.
2157 void CFGLoop::compute_loop_depth(int depth) {
2158   _depth = depth;
2159   CFGLoop* ch = _child;
2160   while (ch != nullptr) {
2161     ch->compute_loop_depth(depth + 1);
2162     ch = ch->_sibling;
2163   }
2164 }
2165 
2166 //------------------------------compute_freq-----------------------------------
2167 // Compute the frequency of each block and loop, relative to a single entry
2168 // into the dominating loop head.
2169 void CFGLoop::compute_freq() {
2170   // Bottom up traversal of loop tree (visit inner loops first.)
2171   // Set loop head frequency to 1.0, then transitively
2172   // compute frequency for all successors in the loop,
2173   // as well as for each exit edge.  Inner loops are
2174   // treated as single blocks with loop exit targets
2175   // as the successor blocks.
2176 
2177   // Nested loops first
2178   CFGLoop* ch = _child;
2179   while (ch != nullptr) {
2180     ch->compute_freq();
2181     ch = ch->_sibling;
2182   }
2183   assert (_members.length() > 0, "no empty loops");
2184   Block* hd = head();
2185   hd->_freq = 1.0;
2186   for (int i = 0; i < _members.length(); i++) {
2187     CFGElement* s = _members.at(i);
2188     double freq = s->_freq;
2189     if (s->is_block()) {
2190       Block* b = s->as_Block();
2191       for (uint j = 0; j < b->_num_succs; j++) {
2192         Block* sb = b->_succs[j];
2193         update_succ_freq(sb, freq * b->succ_prob(j));
2194       }
2195     } else {
2196       CFGLoop* lp = s->as_CFGLoop();
2197       assert(lp->_parent == this, "immediate child");
2198       for (int k = 0; k < lp->_exits.length(); k++) {
2199         Block* eb = lp->_exits.at(k).get_target();
2200         double prob = lp->_exits.at(k).get_prob();
2201         update_succ_freq(eb, freq * prob);
2202       }
2203     }
2204   }
2205 
2206   // For all loops other than the outer, "method" loop,
2207   // sum and normalize the exit probability. The "method" loop
2208   // should keep the initial exit probability of 1, so that
2209   // inner blocks do not get erroneously scaled.
2210   if (_depth != 0) {
2211     // Total the exit probabilities for this loop.
2212     double exits_sum = 0.0f;
2213     for (int i = 0; i < _exits.length(); i++) {
2214       exits_sum += _exits.at(i).get_prob();
2215     }
2216 
2217     // Normalize the exit probabilities. Until now, the
2218     // probabilities estimate the possibility of exit per
2219     // a single loop iteration; afterward, they estimate
2220     // the probability of exit per loop entry.
2221     for (int i = 0; i < _exits.length(); i++) {
2222       Block* et = _exits.at(i).get_target();
2223       float new_prob = 0.0f;
2224       if (_exits.at(i).get_prob() > 0.0f) {
2225         new_prob = _exits.at(i).get_prob() / exits_sum;
2226       }
2227       BlockProbPair bpp(et, new_prob);
2228       _exits.at_put(i, bpp);
2229     }
2230 
2231     // Save the total, but guard against unreasonable probability,
2232     // as the value is used to estimate the loop trip count.
2233     // An infinite trip count would blur relative block
2234     // frequencies.
2235     if (exits_sum > 1.0f) exits_sum = 1.0;
2236     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
2237     _exit_prob = exits_sum;
2238   }
2239 }
2240 
2241 //------------------------------succ_prob-------------------------------------
2242 // Determine the probability of reaching successor 'i' from the receiver block.
2243 float Block::succ_prob(uint i) {
2244   int eidx = end_idx();
2245   Node *n = get_node(eidx);  // Get ending Node
2246 
2247   int op = n->Opcode();
2248   if (n->is_Mach()) {
2249     if (n->is_MachNullCheck()) {
2250       // Can only reach here if called after lcm. The original Op_If is gone,
2251       // so we attempt to infer the probability from one or both of the
2252       // successor blocks.
2253       assert(_num_succs == 2, "expecting 2 successors of a null check");
2254       // If either successor has only one predecessor, then the
2255       // probability estimate can be derived using the
2256       // relative frequency of the successor and this block.
2257       if (_succs[i]->num_preds() == 2) {
2258         return _succs[i]->_freq / _freq;
2259       } else if (_succs[1-i]->num_preds() == 2) {
2260         return 1 - (_succs[1-i]->_freq / _freq);
2261       } else {
2262         // Estimate using both successor frequencies
2263         float freq = _succs[i]->_freq;
2264         return freq / (freq + _succs[1-i]->_freq);
2265       }
2266     }
2267     op = n->as_Mach()->ideal_Opcode();
2268   }
2269 
2270 
2271   // Switch on branch type
2272   switch( op ) {
2273   case Op_CountedLoopEnd:
2274   case Op_If: {
2275     assert (i < 2, "just checking");
2276     // Conditionals pass on only part of their frequency
2277     float prob  = n->as_MachIf()->_prob;
2278     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
2279     // If succ[i] is the FALSE branch, invert path info
2280     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
2281       return 1.0f - prob; // not taken
2282     } else {
2283       return prob; // taken
2284     }
2285   }
2286 
2287   case Op_Jump:
2288     return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con];
2289 
2290   case Op_Catch: {
2291     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2292     if (ci->_con == CatchProjNode::fall_through_index) {
2293       // Fall-thru path gets the lion's share.
2294       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
2295     } else {
2296       // Presume exceptional paths are equally unlikely
2297       return PROB_UNLIKELY_MAG(5);
2298     }
2299   }
2300 
2301   case Op_Root:
2302   case Op_Goto:
2303     // Pass frequency straight thru to target
2304     return 1.0f;
2305 
2306   case Op_NeverBranch: {
2307     Node* succ = n->as_NeverBranch()->proj_out(0)->unique_ctrl_out();
2308     if (_succs[i]->head() == succ) {
2309       return 1.0f;
2310     }
2311     return 0.0f;
2312   }
2313 
2314   case Op_TailCall:
2315   case Op_TailJump:
2316   case Op_ForwardException:
2317   case Op_Return:
2318   case Op_Halt:
2319   case Op_Rethrow:
2320     // Do not push out freq to root block
2321     return 0.0f;
2322 
2323   default:
2324     ShouldNotReachHere();
2325   }
2326 
2327   return 0.0f;
2328 }
2329 
2330 //------------------------------num_fall_throughs-----------------------------
2331 // Return the number of fall-through candidates for a block
2332 int Block::num_fall_throughs() {
2333   int eidx = end_idx();
2334   Node *n = get_node(eidx);  // Get ending Node
2335 
2336   int op = n->Opcode();
2337   if (n->is_Mach()) {
2338     if (n->is_MachNullCheck()) {
2339       // In theory, either side can fall-thru, for simplicity sake,
2340       // let's say only the false branch can now.
2341       return 1;
2342     }
2343     op = n->as_Mach()->ideal_Opcode();
2344   }
2345 
2346   // Switch on branch type
2347   switch( op ) {
2348   case Op_CountedLoopEnd:
2349   case Op_If:
2350     return 2;
2351 
2352   case Op_Root:
2353   case Op_Goto:
2354     return 1;
2355 
2356   case Op_Catch: {
2357     for (uint i = 0; i < _num_succs; i++) {
2358       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2359       if (ci->_con == CatchProjNode::fall_through_index) {
2360         return 1;
2361       }
2362     }
2363     return 0;
2364   }
2365 
2366   case Op_Jump:
2367   case Op_NeverBranch:
2368   case Op_TailCall:
2369   case Op_TailJump:
2370   case Op_ForwardException:
2371   case Op_Return:
2372   case Op_Halt:
2373   case Op_Rethrow:
2374     return 0;
2375 
2376   default:
2377     ShouldNotReachHere();
2378   }
2379 
2380   return 0;
2381 }
2382 
2383 //------------------------------succ_fall_through-----------------------------
2384 // Return true if a specific successor could be fall-through target.
2385 bool Block::succ_fall_through(uint i) {
2386   int eidx = end_idx();
2387   Node *n = get_node(eidx);  // Get ending Node
2388 
2389   int op = n->Opcode();
2390   if (n->is_Mach()) {
2391     if (n->is_MachNullCheck()) {
2392       // In theory, either side can fall-thru, for simplicity sake,
2393       // let's say only the false branch can now.
2394       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
2395     }
2396     op = n->as_Mach()->ideal_Opcode();
2397   }
2398 
2399   // Switch on branch type
2400   switch( op ) {
2401   case Op_CountedLoopEnd:
2402   case Op_If:
2403   case Op_Root:
2404   case Op_Goto:
2405     return true;
2406 
2407   case Op_Catch: {
2408     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2409     return ci->_con == CatchProjNode::fall_through_index;
2410   }
2411 
2412   case Op_Jump:
2413   case Op_NeverBranch:
2414   case Op_TailCall:
2415   case Op_TailJump:
2416   case Op_ForwardException:
2417   case Op_Return:
2418   case Op_Halt:
2419   case Op_Rethrow:
2420     return false;
2421 
2422   default:
2423     ShouldNotReachHere();
2424   }
2425 
2426   return false;
2427 }
2428 
2429 //------------------------------update_uncommon_branch------------------------
2430 // Update the probability of a two-branch to be uncommon
2431 void Block::update_uncommon_branch(Block* ub) {
2432   int eidx = end_idx();
2433   Node *n = get_node(eidx);  // Get ending Node
2434 
2435   int op = n->as_Mach()->ideal_Opcode();
2436 
2437   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2438   assert(num_fall_throughs() == 2, "must be a two way branch block");
2439 
2440   // Which successor is ub?
2441   uint s;
2442   for (s = 0; s <_num_succs; s++) {
2443     if (_succs[s] == ub) break;
2444   }
2445   assert(s < 2, "uncommon successor must be found");
2446 
2447   // If ub is the true path, make the proability small, else
2448   // ub is the false path, and make the probability large
2449   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2450 
2451   // Get existing probability
2452   float p = n->as_MachIf()->_prob;
2453 
2454   if (invert) p = 1.0 - p;
2455   if (p > PROB_MIN) {
2456     p = PROB_MIN;
2457   }
2458   if (invert) p = 1.0 - p;
2459 
2460   n->as_MachIf()->_prob = p;
2461 }
2462 
2463 //------------------------------update_succ_freq-------------------------------
2464 // Update the appropriate frequency associated with block 'b', a successor of
2465 // a block in this loop.
2466 void CFGLoop::update_succ_freq(Block* b, double freq) {
2467   if (b->_loop == this) {
2468     if (b == head()) {
2469       // back branch within the loop
2470       // Do nothing now, the loop carried frequency will be
2471       // adjust later in scale_freq().
2472     } else {
2473       // simple branch within the loop
2474       b->_freq += freq;
2475     }
2476   } else if (!in_loop_nest(b)) {
2477     // branch is exit from this loop
2478     BlockProbPair bpp(b, freq);
2479     _exits.append(bpp);
2480   } else {
2481     // branch into nested loop
2482     CFGLoop* ch = b->_loop;
2483     ch->_freq += freq;
2484   }
2485 }
2486 
2487 //------------------------------in_loop_nest-----------------------------------
2488 // Determine if block b is in the receiver's loop nest.
2489 bool CFGLoop::in_loop_nest(Block* b) {
2490   int depth = _depth;
2491   CFGLoop* b_loop = b->_loop;
2492   int b_depth = b_loop->_depth;
2493   if (depth == b_depth) {
2494     return true;
2495   }
2496   while (b_depth > depth) {
2497     b_loop = b_loop->_parent;
2498     b_depth = b_loop->_depth;
2499   }
2500   return b_loop == this;
2501 }
2502 
2503 //------------------------------scale_freq-------------------------------------
2504 // Scale frequency of loops and blocks by trip counts from outer loops
2505 // Do a top down traversal of loop tree (visit outer loops first.)
2506 void CFGLoop::scale_freq() {
2507   double loop_freq = _freq * trip_count();
2508   _freq = loop_freq;
2509   for (int i = 0; i < _members.length(); i++) {
2510     CFGElement* s = _members.at(i);
2511     double block_freq = s->_freq * loop_freq;
2512     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2513       block_freq = MIN_BLOCK_FREQUENCY;
2514     s->_freq = block_freq;
2515   }
2516   CFGLoop* ch = _child;
2517   while (ch != nullptr) {
2518     ch->scale_freq();
2519     ch = ch->_sibling;
2520   }
2521 }
2522 
2523 // Frequency of outer loop
2524 double CFGLoop::outer_loop_freq() const {
2525   if (_child != nullptr) {
2526     return _child->_freq;
2527   }
2528   return _freq;
2529 }
2530 
2531 #ifndef PRODUCT
2532 //------------------------------dump_tree--------------------------------------
2533 void CFGLoop::dump_tree() const {
2534   dump();
2535   if (_child != nullptr)   _child->dump_tree();
2536   if (_sibling != nullptr) _sibling->dump_tree();
2537 }
2538 
2539 //------------------------------dump-------------------------------------------
2540 void CFGLoop::dump() const {
2541   for (int i = 0; i < _depth; i++) tty->print("   ");
2542   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2543              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2544   for (int i = 0; i < _depth; i++) tty->print("   ");
2545   tty->print("         members:");
2546   int k = 0;
2547   for (int i = 0; i < _members.length(); i++) {
2548     if (k++ >= 6) {
2549       tty->print("\n              ");
2550       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2551       k = 0;
2552     }
2553     CFGElement *s = _members.at(i);
2554     if (s->is_block()) {
2555       Block *b = s->as_Block();
2556       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2557     } else {
2558       CFGLoop* lp = s->as_CFGLoop();
2559       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2560     }
2561   }
2562   tty->print("\n");
2563   for (int i = 0; i < _depth; i++) tty->print("   ");
2564   tty->print("         exits:  ");
2565   k = 0;
2566   for (int i = 0; i < _exits.length(); i++) {
2567     if (k++ >= 7) {
2568       tty->print("\n              ");
2569       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2570       k = 0;
2571     }
2572     Block *blk = _exits.at(i).get_target();
2573     double prob = _exits.at(i).get_prob();
2574     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2575   }
2576   tty->print("\n");
2577 }
2578 #endif