1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "libadt/vectset.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "opto/block.hpp" 29 #include "opto/c2compiler.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/cfgnode.hpp" 32 #include "opto/machnode.hpp" 33 #include "opto/opcodes.hpp" 34 #include "opto/phaseX.hpp" 35 #include "opto/rootnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "opto/chaitin.hpp" 38 #include "runtime/deoptimization.hpp" 39 40 // Portions of code courtesy of Clifford Click 41 42 // Optimization - Graph Style 43 44 // To avoid float value underflow 45 #define MIN_BLOCK_FREQUENCY 1.e-35f 46 47 //----------------------------schedule_node_into_block------------------------- 48 // Insert node n into block b. Look for projections of n and make sure they 49 // are in b also. 50 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) { 51 // Set basic block of n, Add n to b, 52 map_node_to_block(n, b); 53 b->add_inst(n); 54 55 // After Matching, nearly any old Node may have projections trailing it. 56 // These are usually machine-dependent flags. In any case, they might 57 // float to another block below this one. Move them up. 58 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 59 Node* use = n->fast_out(i); 60 if (use->is_Proj()) { 61 Block* buse = get_block_for_node(use); 62 if (buse != b) { // In wrong block? 63 if (buse != nullptr) { 64 buse->find_remove(use); // Remove from wrong block 65 } 66 map_node_to_block(use, b); 67 b->add_inst(use); 68 } 69 } 70 } 71 } 72 73 //----------------------------replace_block_proj_ctrl------------------------- 74 // Nodes that have is_block_proj() nodes as their control need to use 75 // the appropriate Region for their actual block as their control since 76 // the projection will be in a predecessor block. 77 void PhaseCFG::replace_block_proj_ctrl( Node *n ) { 78 const Node *in0 = n->in(0); 79 assert(in0 != nullptr, "Only control-dependent"); 80 const Node *p = in0->is_block_proj(); 81 if (p != nullptr && p != n) { // Control from a block projection? 82 assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here"); 83 // Find trailing Region 84 Block *pb = get_block_for_node(in0); // Block-projection already has basic block 85 uint j = 0; 86 if (pb->_num_succs != 1) { // More then 1 successor? 87 // Search for successor 88 uint max = pb->number_of_nodes(); 89 assert( max > 1, "" ); 90 uint start = max - pb->_num_succs; 91 // Find which output path belongs to projection 92 for (j = start; j < max; j++) { 93 if( pb->get_node(j) == in0 ) 94 break; 95 } 96 assert( j < max, "must find" ); 97 // Change control to match head of successor basic block 98 j -= start; 99 } 100 n->set_req(0, pb->_succs[j]->head()); 101 } 102 } 103 104 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) { 105 assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes"); 106 if (dom_node == node) { 107 return true; 108 } 109 Block* d = find_block_for_node(dom_node); 110 Block* n = find_block_for_node(node); 111 assert(n != nullptr && d != nullptr, "blocks must exist"); 112 113 if (d == n) { 114 if (dom_node->is_block_start()) { 115 return true; 116 } 117 if (node->is_block_start()) { 118 return false; 119 } 120 if (dom_node->is_block_proj()) { 121 return false; 122 } 123 if (node->is_block_proj()) { 124 return true; 125 } 126 127 assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint"); 128 assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint"); 129 130 // Neither 'node' nor 'dom_node' is a block start or block projection. 131 // Check if 'dom_node' is above 'node' in the control graph. 132 if (is_dominating_control(dom_node, node)) { 133 return true; 134 } 135 136 #ifdef ASSERT 137 // If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node' 138 if (!is_dominating_control(node, dom_node)) { 139 node->dump(); 140 dom_node->dump(); 141 assert(false, "neither dom_node nor node dominates the other"); 142 } 143 #endif 144 145 return false; 146 } 147 return d->dom_lca(n) == d; 148 } 149 150 bool PhaseCFG::is_CFG(Node* n) { 151 return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n); 152 } 153 154 bool PhaseCFG::is_control_proj_or_safepoint(Node* n) const { 155 bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL); 156 assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) 157 || (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0"); 158 return result; 159 } 160 161 Block* PhaseCFG::find_block_for_node(Node* n) const { 162 if (n->is_block_start() || n->is_block_proj()) { 163 return get_block_for_node(n); 164 } else { 165 // Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be 166 // an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block. 167 assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint"); 168 Node* ctrl = n->in(0); 169 while (!ctrl->is_block_start()) { 170 ctrl = ctrl->in(0); 171 } 172 return get_block_for_node(ctrl); 173 } 174 } 175 176 // Walk up the control graph from 'n' and check if 'dom_ctrl' is found. 177 bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) { 178 Node* ctrl = n->in(0); 179 while (!ctrl->is_block_start()) { 180 if (ctrl == dom_ctrl) { 181 return true; 182 } 183 ctrl = ctrl->in(0); 184 } 185 return false; 186 } 187 188 189 //------------------------------schedule_pinned_nodes-------------------------- 190 // Set the basic block for Nodes pinned into blocks 191 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) { 192 // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc 193 GrowableArray <Node*> spstack(C->live_nodes() + 8); 194 spstack.push(_root); 195 while (spstack.is_nonempty()) { 196 Node* node = spstack.pop(); 197 if (!visited.test_set(node->_idx)) { // Test node and flag it as visited 198 if (node->pinned() && !has_block(node)) { // Pinned? Nail it down! 199 assert(node->in(0), "pinned Node must have Control"); 200 // Before setting block replace block_proj control edge 201 replace_block_proj_ctrl(node); 202 Node* input = node->in(0); 203 while (!input->is_block_start()) { 204 input = input->in(0); 205 } 206 Block* block = get_block_for_node(input); // Basic block of controlling input 207 schedule_node_into_block(node, block); 208 } 209 210 // If the node has precedence edges (added when CastPP nodes are 211 // removed in final_graph_reshaping), fix the control of the 212 // node to cover the precedence edges and remove the 213 // dependencies. 214 Node* n = nullptr; 215 for (uint i = node->len()-1; i >= node->req(); i--) { 216 Node* m = node->in(i); 217 if (m == nullptr) continue; 218 assert(is_CFG(m), "must be a CFG node"); 219 node->rm_prec(i); 220 if (n == nullptr) { 221 n = m; 222 } else { 223 assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other"); 224 n = is_dominator(n, m) ? m : n; 225 } 226 } 227 if (n != nullptr) { 228 assert(node->in(0), "control should have been set"); 229 assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other"); 230 if (!is_dominator(n, node->in(0))) { 231 node->set_req(0, n); 232 } 233 } 234 235 // process all inputs that are non null 236 for (int i = node->len()-1; i >= 0; --i) { 237 if (node->in(i) != nullptr) { 238 spstack.push(node->in(i)); 239 } 240 } 241 } 242 } 243 } 244 245 // Assert that new input b2 is dominated by all previous inputs. 246 // Check this by by seeing that it is dominated by b1, the deepest 247 // input observed until b2. 248 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) { 249 if (b1 == nullptr) return; 250 assert(b1->_dom_depth < b2->_dom_depth, "sanity"); 251 Block* tmp = b2; 252 while (tmp != b1 && tmp != nullptr) { 253 tmp = tmp->_idom; 254 } 255 if (tmp != b1) { 256 #ifdef ASSERT 257 // Detected an unschedulable graph. Print some nice stuff and die. 258 tty->print_cr("!!! Unschedulable graph !!!"); 259 for (uint j=0; j<n->len(); j++) { // For all inputs 260 Node* inn = n->in(j); // Get input 261 if (inn == nullptr) continue; // Ignore null, missing inputs 262 Block* inb = cfg->get_block_for_node(inn); 263 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order, 264 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth); 265 inn->dump(); 266 } 267 tty->print("Failing node: "); 268 n->dump(); 269 assert(false, "unschedulable graph"); 270 #endif 271 cfg->C->record_failure("unschedulable graph"); 272 } 273 } 274 275 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) { 276 // Find the last input dominated by all other inputs. 277 Block* deepb = nullptr; // Deepest block so far 278 int deepb_dom_depth = 0; 279 for (uint k = 0; k < n->len(); k++) { // For all inputs 280 Node* inn = n->in(k); // Get input 281 if (inn == nullptr) continue; // Ignore null, missing inputs 282 Block* inb = cfg->get_block_for_node(inn); 283 assert(inb != nullptr, "must already have scheduled this input"); 284 if (deepb_dom_depth < (int) inb->_dom_depth) { 285 // The new inb must be dominated by the previous deepb. 286 // The various inputs must be linearly ordered in the dom 287 // tree, or else there will not be a unique deepest block. 288 assert_dom(deepb, inb, n, cfg); 289 if (cfg->C->failing()) { 290 return nullptr; 291 } 292 deepb = inb; // Save deepest block 293 deepb_dom_depth = deepb->_dom_depth; 294 } 295 } 296 assert(deepb != nullptr, "must be at least one input to n"); 297 return deepb; 298 } 299 300 301 //------------------------------schedule_early--------------------------------- 302 // Find the earliest Block any instruction can be placed in. Some instructions 303 // are pinned into Blocks. Unpinned instructions can appear in last block in 304 // which all their inputs occur. 305 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) { 306 // Allocate stack with enough space to avoid frequent realloc 307 Node_Stack nstack(roots.size() + 8); 308 // _root will be processed among C->top() inputs 309 roots.push(C->top(), 0); 310 visited.set(C->top()->_idx); 311 312 while (roots.size() != 0) { 313 // Use local variables nstack_top_n & nstack_top_i to cache values 314 // on stack's top. 315 Node* parent_node = roots.node(); 316 uint input_index = 0; 317 roots.pop(); 318 319 while (true) { 320 if (input_index == 0) { 321 // Fixup some control. Constants without control get attached 322 // to root and nodes that use is_block_proj() nodes should be attached 323 // to the region that starts their block. 324 const Node* control_input = parent_node->in(0); 325 if (control_input != nullptr) { 326 replace_block_proj_ctrl(parent_node); 327 } else { 328 // Is a constant with NO inputs? 329 if (parent_node->req() == 1) { 330 parent_node->set_req(0, _root); 331 } 332 } 333 } 334 335 // First, visit all inputs and force them to get a block. If an 336 // input is already in a block we quit following inputs (to avoid 337 // cycles). Instead we put that Node on a worklist to be handled 338 // later (since IT'S inputs may not have a block yet). 339 340 // Assume all n's inputs will be processed 341 bool done = true; 342 343 while (input_index < parent_node->len()) { 344 Node* in = parent_node->in(input_index++); 345 if (in == nullptr) { 346 continue; 347 } 348 349 int is_visited = visited.test_set(in->_idx); 350 if (!has_block(in)) { 351 if (is_visited) { 352 assert(false, "graph should be schedulable"); 353 return false; 354 } 355 // Save parent node and next input's index. 356 nstack.push(parent_node, input_index); 357 // Process current input now. 358 parent_node = in; 359 input_index = 0; 360 // Not all n's inputs processed. 361 done = false; 362 break; 363 } else if (!is_visited) { 364 // Visit this guy later, using worklist 365 roots.push(in, 0); 366 } 367 } 368 369 if (done) { 370 // All of n's inputs have been processed, complete post-processing. 371 372 // Some instructions are pinned into a block. These include Region, 373 // Phi, Start, Return, and other control-dependent instructions and 374 // any projections which depend on them. 375 if (!parent_node->pinned()) { 376 // Set earliest legal block. 377 Block* earliest_block = find_deepest_input(parent_node, this); 378 if (C->failing()) { 379 return false; 380 } 381 map_node_to_block(parent_node, earliest_block); 382 } else { 383 assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge"); 384 } 385 386 if (nstack.is_empty()) { 387 // Finished all nodes on stack. 388 // Process next node on the worklist 'roots'. 389 break; 390 } 391 // Get saved parent node and next input's index. 392 parent_node = nstack.node(); 393 input_index = nstack.index(); 394 nstack.pop(); 395 } 396 } 397 } 398 return true; 399 } 400 401 //------------------------------dom_lca---------------------------------------- 402 // Find least common ancestor in dominator tree 403 // LCA is a current notion of LCA, to be raised above 'this'. 404 // As a convenient boundary condition, return 'this' if LCA is null. 405 // Find the LCA of those two nodes. 406 Block* Block::dom_lca(Block* LCA) { 407 if (LCA == nullptr || LCA == this) return this; 408 409 Block* anc = this; 410 while (anc->_dom_depth > LCA->_dom_depth) 411 anc = anc->_idom; // Walk up till anc is as high as LCA 412 413 while (LCA->_dom_depth > anc->_dom_depth) 414 LCA = LCA->_idom; // Walk up till LCA is as high as anc 415 416 while (LCA != anc) { // Walk both up till they are the same 417 LCA = LCA->_idom; 418 anc = anc->_idom; 419 } 420 421 return LCA; 422 } 423 424 //--------------------------raise_LCA_above_use-------------------------------- 425 // We are placing a definition, and have been given a def->use edge. 426 // The definition must dominate the use, so move the LCA upward in the 427 // dominator tree to dominate the use. If the use is a phi, adjust 428 // the LCA only with the phi input paths which actually use this def. 429 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) { 430 Block* buse = cfg->get_block_for_node(use); 431 if (buse == nullptr) return LCA; // Unused killing Projs have no use block 432 if (!use->is_Phi()) return buse->dom_lca(LCA); 433 uint pmax = use->req(); // Number of Phi inputs 434 // Why does not this loop just break after finding the matching input to 435 // the Phi? Well...it's like this. I do not have true def-use/use-def 436 // chains. Means I cannot distinguish, from the def-use direction, which 437 // of many use-defs lead from the same use to the same def. That is, this 438 // Phi might have several uses of the same def. Each use appears in a 439 // different predecessor block. But when I enter here, I cannot distinguish 440 // which use-def edge I should find the predecessor block for. So I find 441 // them all. Means I do a little extra work if a Phi uses the same value 442 // more than once. 443 for (uint j=1; j<pmax; j++) { // For all inputs 444 if (use->in(j) == def) { // Found matching input? 445 Block* pred = cfg->get_block_for_node(buse->pred(j)); 446 LCA = pred->dom_lca(LCA); 447 } 448 } 449 return LCA; 450 } 451 452 //----------------------------raise_LCA_above_marks---------------------------- 453 // Return a new LCA that dominates LCA and any of its marked predecessors. 454 // Search all my parents up to 'early' (exclusive), looking for predecessors 455 // which are marked with the given index. Return the LCA (in the dom tree) 456 // of all marked blocks. If there are none marked, return the original 457 // LCA. 458 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) { 459 assert(early->dominates(LCA), "precondition failed"); 460 Block_List worklist; 461 worklist.push(LCA); 462 while (worklist.size() > 0) { 463 Block* mid = worklist.pop(); 464 if (mid == early) continue; // stop searching here 465 466 // Test and set the visited bit. 467 if (mid->raise_LCA_visited() == mark) continue; // already visited 468 469 // Don't process the current LCA, otherwise the search may terminate early 470 if (mid != LCA && mid->raise_LCA_mark() == mark) { 471 // Raise the LCA. 472 LCA = mid->dom_lca(LCA); 473 if (LCA == early) break; // stop searching everywhere 474 assert(early->dominates(LCA), "unsound LCA update"); 475 // Resume searching at that point, skipping intermediate levels. 476 worklist.push(LCA); 477 if (LCA == mid) 478 continue; // Don't mark as visited to avoid early termination. 479 } else { 480 // Keep searching through this block's predecessors. 481 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) { 482 Block* mid_parent = cfg->get_block_for_node(mid->pred(j)); 483 worklist.push(mid_parent); 484 } 485 } 486 mid->set_raise_LCA_visited(mark); 487 } 488 return LCA; 489 } 490 491 //--------------------------memory_early_block-------------------------------- 492 // This is a variation of find_deepest_input, the heart of schedule_early. 493 // Find the "early" block for a load, if we considered only memory and 494 // address inputs, that is, if other data inputs were ignored. 495 // 496 // Because a subset of edges are considered, the resulting block will 497 // be earlier (at a shallower dom_depth) than the true schedule_early 498 // point of the node. We compute this earlier block as a more permissive 499 // site for anti-dependency insertion, but only if subsume_loads is enabled. 500 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) { 501 Node* base; 502 Node* index; 503 Node* store = load->in(MemNode::Memory); 504 load->as_Mach()->memory_inputs(base, index); 505 506 assert(base != NodeSentinel && index != NodeSentinel, 507 "unexpected base/index inputs"); 508 509 Node* mem_inputs[4]; 510 int mem_inputs_length = 0; 511 if (base != nullptr) mem_inputs[mem_inputs_length++] = base; 512 if (index != nullptr) mem_inputs[mem_inputs_length++] = index; 513 if (store != nullptr) mem_inputs[mem_inputs_length++] = store; 514 515 // In the comparison below, add one to account for the control input, 516 // which may be null, but always takes up a spot in the in array. 517 if (mem_inputs_length + 1 < (int) load->req()) { 518 // This "load" has more inputs than just the memory, base and index inputs. 519 // For purposes of checking anti-dependences, we need to start 520 // from the early block of only the address portion of the instruction, 521 // and ignore other blocks that may have factored into the wider 522 // schedule_early calculation. 523 if (load->in(0) != nullptr) mem_inputs[mem_inputs_length++] = load->in(0); 524 525 Block* deepb = nullptr; // Deepest block so far 526 int deepb_dom_depth = 0; 527 for (int i = 0; i < mem_inputs_length; i++) { 528 Block* inb = cfg->get_block_for_node(mem_inputs[i]); 529 if (deepb_dom_depth < (int) inb->_dom_depth) { 530 // The new inb must be dominated by the previous deepb. 531 // The various inputs must be linearly ordered in the dom 532 // tree, or else there will not be a unique deepest block. 533 assert_dom(deepb, inb, load, cfg); 534 if (cfg->C->failing()) { 535 return nullptr; 536 } 537 deepb = inb; // Save deepest block 538 deepb_dom_depth = deepb->_dom_depth; 539 } 540 } 541 early = deepb; 542 } 543 544 return early; 545 } 546 547 // This function is used by raise_above_anti_dependences to find unrelated loads for stores in implicit null checks. 548 bool PhaseCFG::unrelated_load_in_store_null_block(Node* store, Node* load) { 549 // We expect an anti-dependence edge from 'load' to 'store', except when 550 // implicit_null_check() has hoisted 'store' above its early block to 551 // perform an implicit null check, and 'load' is placed in the null 552 // block. In this case it is safe to ignore the anti-dependence, as the 553 // null block is only reached if 'store' tries to write to null object and 554 // 'load' read from non-null object (there is preceding check for that) 555 // These objects can't be the same. 556 Block* store_block = get_block_for_node(store); 557 Block* load_block = get_block_for_node(load); 558 Node* end = store_block->end(); 559 if (end->is_MachNullCheck() && (end->in(1) == store) && store_block->dominates(load_block)) { 560 Node* if_true = end->find_out_with(Op_IfTrue); 561 assert(if_true != nullptr, "null check without null projection"); 562 Node* null_block_region = if_true->find_out_with(Op_Region); 563 assert(null_block_region != nullptr, "null check without null region"); 564 return get_block_for_node(null_block_region) == load_block; 565 } 566 return false; 567 } 568 569 class DefUseMemStatesQueue : public StackObj { 570 private: 571 class DefUsePair : public StackObj { 572 private: 573 Node* _def; // memory state 574 Node* _use; // use of the memory state that also modifies the memory state 575 576 public: 577 DefUsePair(Node* def, Node* use) : 578 _def(def), _use(use) { 579 } 580 581 DefUsePair() : 582 _def(nullptr), _use(nullptr) { 583 } 584 585 Node* def() const { 586 return _def; 587 } 588 589 Node* use() const { 590 return _use; 591 } 592 }; 593 594 GrowableArray<DefUsePair> _queue; 595 GrowableArray<MergeMemNode*> _worklist_visited; // visited mergemem nodes 596 597 bool already_enqueued(Node* def_mem, PhiNode* use_phi) const { 598 // def_mem is one of the inputs of use_phi and at least one input of use_phi is 599 // not def_mem. It's however possible that use_phi has def_mem as input multiple 600 // times. If that happens, use_phi is recorded as a use of def_mem multiple 601 // times as well. When PhaseCFG::raise_above_anti_dependences() goes over 602 // uses of def_mem and enqueues them for processing, use_phi would then be 603 // enqueued for processing multiple times when it only needs to be 604 // processed once. The code below checks if use_phi as a use of def_mem was 605 // already enqueued to avoid redundant processing of use_phi. 606 int j = _queue.length()-1; 607 // If there are any use of def_mem already enqueued, they were enqueued 608 // last (all use of def_mem are processed in one go). 609 for (; j >= 0; j--) { 610 const DefUsePair& def_use_pair = _queue.at(j); 611 if (def_use_pair.def() != def_mem) { 612 // We're done with the uses of def_mem 613 break; 614 } 615 if (def_use_pair.use() == use_phi) { 616 return true; 617 } 618 } 619 #ifdef ASSERT 620 for (; j >= 0; j--) { 621 const DefUsePair& def_use_pair = _queue.at(j); 622 assert(def_use_pair.def() != def_mem, "Should be done with the uses of def_mem"); 623 } 624 #endif 625 return false; 626 } 627 628 public: 629 DefUseMemStatesQueue(ResourceArea* area) { 630 } 631 632 void push(Node* def_mem_state, Node* use_mem_state) { 633 if (use_mem_state->is_MergeMem()) { 634 // Be sure we don't get into combinatorial problems. 635 if (!_worklist_visited.append_if_missing(use_mem_state->as_MergeMem())) { 636 return; // already on work list; do not repeat 637 } 638 } else if (use_mem_state->is_Phi()) { 639 // A Phi could have the same mem as input multiple times. If that's the case, we don't need to enqueue it 640 // more than once. We otherwise allow phis to be repeated; they can merge two relevant states. 641 if (already_enqueued(def_mem_state, use_mem_state->as_Phi())) { 642 return; 643 } 644 } 645 646 _queue.push(DefUsePair(def_mem_state, use_mem_state)); 647 } 648 649 bool is_nonempty() const { 650 return _queue.is_nonempty(); 651 } 652 653 Node* top_def() const { 654 return _queue.top().def(); 655 } 656 657 Node* top_use() const { 658 return _queue.top().use(); 659 } 660 661 void pop() { 662 _queue.pop(); 663 } 664 }; 665 666 // Enforce a scheduling of the given 'load' that ensures anti-dependent stores 667 // do not overwrite the load's input memory state before the load executes. 668 // 669 // The given 'load' has a current scheduling range in the dominator tree that 670 // starts at the load's early block (computed in schedule_early) and ends at 671 // the given 'LCA' block for the load. However, there may still exist 672 // anti-dependent stores between the early block and the LCA that overwrite 673 // memory that the load must witness. For such stores, we must 674 // 675 // 1. raise the load's LCA to force the load to (eventually) be scheduled at 676 // latest in the store's block, and 677 // 2. if the load may get scheduled in the store's block, additionally insert 678 // an anti-dependence edge (i.e., precedence edge) from the load to the 679 // store to ensure LCM schedules the load before the store within the 680 // block. 681 // 682 // For a given store, we say that the store is on a _distinct_ control-flow 683 // path relative to the load if there are no paths from early to LCA that go 684 // through the store's block. Such stores are not anti-dependent, and there is 685 // no need to update the LCA nor to add anti-dependence edges. 686 // 687 // Due to the presence of loops, we must also raise the LCA above 688 // anti-dependent memory Phis. We defer the details (see later comments in the 689 // method) and for now look at an example without loops. 690 // 691 // CFG DOMINATOR TREE 692 // 693 // B1 (early,L) B1 694 // |\________ /\\___ 695 // | \ / \ \ 696 // B2 (L,S) \ B2 B7 B6 697 // / \ \ /\\___ 698 // B3 B4 (S) B7 (S) / \ \ 699 // \ / / B3 B4 B5 700 // B5 (LCA,L) / 701 // \ ____/ 702 // \ / 703 // B6 704 // 705 // Here, the load's scheduling range when calling raise_above_anti_dependences 706 // is between early and LCA in the dominator tree, i.e., in block B1, B2, or B5 707 // (indicated with "L"). However, there are a number of stores (indicated with 708 // "S") that overwrite the memory which the load must witness. First, consider 709 // the store in B4. We cannot legally schedule the load in B4, so an 710 // anti-dependence edge is redundant. However, we must raise the LCA above 711 // B4, which means that the updated LCA is B2. Now, consider the store in B2. 712 // The LCA is already B2, so we do not need to raise it any further. 713 // If we, eventually, decide to schedule the load in B2, it could happen that 714 // LCM decides to place the load after the anti-dependent store in B2. 715 // Therefore, we now need to add an anti-dependence edge between the load and 716 // the B2 store, ensuring that the load is scheduled before the store. Finally, 717 // the store in B7 is on a distinct control-flow path. Therefore, B7 requires 718 // no action. 719 // 720 // The raise_above_anti_dependences method returns the updated LCA and ensures 721 // there are no anti-dependent stores in any block between the load's early 722 // block and the updated LCA. Any stores in the updated LCA will have new 723 // anti-dependence edges back to the load. The caller may schedule the load in 724 // the updated LCA, or it may hoist the load above the updated LCA, if the 725 // updated LCA is not the early block. 726 Block* PhaseCFG::raise_above_anti_dependences(Block* LCA, Node* load, const bool verify) { 727 ResourceMark rm; 728 assert(load->needs_anti_dependence_check(), "must be a load of some sort"); 729 assert(LCA != nullptr, ""); 730 DEBUG_ONLY(Block* LCA_orig = LCA); 731 732 // Compute the alias index. Loads and stores with different alias indices 733 // do not need anti-dependence edges. 734 int load_alias_idx = C->get_alias_index(load->adr_type()); 735 #ifdef ASSERT 736 assert(Compile::AliasIdxTop <= load_alias_idx && load_alias_idx < C->num_alias_types(), "Invalid alias index"); 737 if (load_alias_idx == Compile::AliasIdxBot && C->do_aliasing() && 738 (PrintOpto || VerifyAliases || 739 (PrintMiscellaneous && (WizardMode || Verbose)))) { 740 // Load nodes should not consume all of memory. 741 // Reporting a bottom type indicates a bug in adlc. 742 // If some particular type of node validly consumes all of memory, 743 // sharpen the preceding "if" to exclude it, so we can catch bugs here. 744 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory."); 745 load->dump(2); 746 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, ""); 747 } 748 #endif 749 750 if (!C->alias_type(load_alias_idx)->is_rewritable()) { 751 // It is impossible to spoil this load by putting stores before it, 752 // because we know that the stores will never update the value 753 // which 'load' must witness. 754 return LCA; 755 } 756 757 node_idx_t load_index = load->_idx; 758 759 // Record the earliest legal placement of 'load', as determined by the unique 760 // point in the dominator tree where all memory effects and other inputs are 761 // first available (computed by schedule_early). For normal loads, 'early' is 762 // the shallowest place (dominator-tree wise) to look for anti-dependences 763 // between this load and any store. 764 Block* early = get_block_for_node(load); 765 766 // If we are subsuming loads, compute an "early" block that only considers 767 // memory or address inputs. This block may be different from the 768 // schedule_early block when it is at an even shallower depth in the 769 // dominator tree, and allow for a broader discovery of anti-dependences. 770 if (C->subsume_loads()) { 771 early = memory_early_block(load, early, this); 772 if (C->failing()) { 773 return nullptr; 774 } 775 } 776 777 assert(early->dominates(LCA_orig), "precondition failed"); 778 779 ResourceArea* area = Thread::current()->resource_area(); 780 781 // Bookkeeping of possibly anti-dependent stores that we find outside the 782 // early block and that may need anti-dependence edges. Note that stores in 783 // non_early_stores are not necessarily dominated by early. The search starts 784 // from initial_mem, which can reside in a block that dominates early, and 785 // therefore, stores we find may be in blocks that are on completely distinct 786 // control-flow paths compared to early. However, in the end, only stores in 787 // blocks dominated by early matter. The reason for bookkeeping not only 788 // relevant stores is efficiency: we lazily record all possible 789 // anti-dependent stores and add anti-dependence edges only to the relevant 790 // ones at the very end of this method when we know the final updated LCA. 791 Node_List non_early_stores(area); 792 793 // Whether we must raise the LCA after the main worklist loop below. 794 bool must_raise_LCA_above_marks = false; 795 796 // The input load uses some memory state (initial_mem). 797 Node* initial_mem = load->in(MemNode::Memory); 798 // To find anti-dependences we must look for users of the same memory state. 799 // To do this, we search the memory graph downwards from initial_mem. During 800 // this search, we encounter different types of nodes that we handle 801 // according to the following three categories: 802 // 803 // - MergeMems 804 // - Memory-state-modifying nodes (informally referred to as "stores" above 805 // and below) 806 // - Memory Phis 807 // 808 // MergeMems do not modify the memory state. Anti-dependent stores or memory 809 // Phis may, however, exist downstream of MergeMems. Therefore, we must 810 // permit the search to continue through MergeMems. Stores may raise the LCA 811 // and may potentially also require an anti-dependence edge. Memory Phis may 812 // raise the LCA but never require anti-dependence edges. See the comments 813 // throughout the worklist loop below for further details. 814 // 815 // It may be useful to think of the anti-dependence search as traversing a 816 // tree rooted at initial_mem, with internal nodes of type MergeMem and 817 // memory Phis and stores as (potentially repeated) leaves. 818 819 // We don't optimize the memory graph for pinned loads, so we may need to raise the 820 // root of our search tree through the corresponding slices of MergeMem nodes to 821 // get to the node that really creates the memory state for this slice. 822 if (load_alias_idx >= Compile::AliasIdxRaw) { 823 while (initial_mem->is_MergeMem()) { 824 MergeMemNode* mm = initial_mem->as_MergeMem(); 825 Node* p = mm->memory_at(load_alias_idx); 826 if (p != mm->base_memory()) { 827 initial_mem = p; 828 } else { 829 break; 830 } 831 } 832 } 833 // To administer the search, we use a worklist consisting of (def,use)-pairs 834 // of memory states, corresponding to edges in the search tree (and edges 835 // in the memory graph). We need to keep track of search tree edges in the 836 // worklist rather than individual nodes due to memory Phis (see details 837 // below). 838 DefUseMemStatesQueue worklist(area); 839 // We start the search at initial_mem and indicate the search root with the 840 // edge (nullptr, initial_mem). 841 worklist.push(nullptr, initial_mem); 842 843 // The worklist loop 844 while (worklist.is_nonempty()) { 845 // Pop the next edge from the worklist 846 Node* def_mem_state = worklist.top_def(); 847 Node* use_mem_state = worklist.top_use(); 848 worklist.pop(); 849 850 // We are either 851 // - at the root of the search with the edge (nullptr, initial_mem), 852 // - just past initial_mem with the edge (initial_mem, use_mem_state), or 853 // - just past a MergeMem with the edge (MergeMem, use_mem_state). 854 assert(def_mem_state == nullptr || def_mem_state == initial_mem || 855 def_mem_state->is_MergeMem(), 856 "unexpected memory state"); 857 858 const uint op = use_mem_state->Opcode(); 859 860 #ifdef ASSERT 861 // CacheWB nodes are peculiar in a sense that they both are anti-dependent and produce memory. 862 // Allow them to be treated as a store. 863 bool is_cache_wb = false; 864 if (use_mem_state->is_Mach()) { 865 int ideal_op = use_mem_state->as_Mach()->ideal_Opcode(); 866 is_cache_wb = (ideal_op == Op_CacheWB); 867 } 868 assert(!use_mem_state->needs_anti_dependence_check() || is_cache_wb, "no loads"); 869 #endif 870 871 // If we are either at the search root or have found a MergeMem, we step 872 // past use_mem_state and populate the search worklist with edges 873 // (use_mem_state, child) for use_mem_state's children. 874 if (def_mem_state == nullptr // root (exclusive) of tree we are searching 875 || op == Op_MergeMem // internal node of tree we are searching 876 ) { 877 def_mem_state = use_mem_state; 878 879 for (DUIterator_Fast imax, i = def_mem_state->fast_outs(imax); i < imax; i++) { 880 use_mem_state = def_mem_state->fast_out(i); 881 if (use_mem_state->needs_anti_dependence_check()) { 882 // use_mem_state is also a kind of load (i.e., 883 // needs_anti_dependence_check), and it is not a store nor a memory 884 // Phi. Hence, it is not anti-dependent on the load. 885 continue; 886 } 887 worklist.push(def_mem_state, use_mem_state); 888 } 889 // Nothing more to do for the current (nullptr, initial_mem) or 890 // (initial_mem/MergeMem, MergeMem) edge, move on. 891 continue; 892 } 893 894 assert(!use_mem_state->is_MergeMem(), 895 "use_mem_state should be either a store or a memory Phi"); 896 897 if (op == Op_MachProj || op == Op_Catch) continue; 898 899 // Compute the alias index. If the use_mem_state has an alias index 900 // different from the load's, it is not anti-dependent. Wide MemBar's 901 // are anti-dependent with everything (except immutable memories). 902 const TypePtr* adr_type = use_mem_state->adr_type(); 903 if (!C->can_alias(adr_type, load_alias_idx)) continue; 904 905 // Most slow-path runtime calls do NOT modify Java memory, but 906 // they can block and so write Raw memory. 907 if (use_mem_state->is_Mach()) { 908 MachNode* muse = use_mem_state->as_Mach(); 909 if (load_alias_idx != Compile::AliasIdxRaw) { 910 // Check for call into the runtime using the Java calling 911 // convention (and from there into a wrapper); it has no 912 // _method. Can't do this optimization for Native calls because 913 // they CAN write to Java memory. 914 if (muse->ideal_Opcode() == Op_CallStaticJava) { 915 assert(muse->is_MachSafePoint(), ""); 916 MachSafePointNode* ms = (MachSafePointNode*)muse; 917 assert(ms->is_MachCallJava(), ""); 918 MachCallJavaNode* mcj = (MachCallJavaNode*) ms; 919 if (mcj->_method == nullptr) { 920 // These runtime calls do not write to Java visible memory 921 // (other than Raw) and so are not anti-dependent. 922 continue; 923 } 924 } 925 // Same for SafePoints: they read/write Raw but only read otherwise. 926 // This is basically a workaround for SafePoints only defining control 927 // instead of control + memory. 928 if (muse->ideal_Opcode() == Op_SafePoint) { 929 continue; 930 } 931 } else { 932 // Some raw memory, such as the load of "top" at an allocation, 933 // can be control dependent on the previous safepoint. See 934 // comments in GraphKit::allocate_heap() about control input. 935 // Inserting an anti-dependence edge between such a safepoint and a use 936 // creates a cycle, and will cause a subsequent failure in 937 // local scheduling. (BugId 4919904) 938 // (%%% How can a control input be a safepoint and not a projection??) 939 if (muse->ideal_Opcode() == Op_SafePoint && load->in(0) == muse) { 940 continue; 941 } 942 } 943 } 944 945 // Determine the block of the use_mem_state. 946 Block* use_mem_state_block = get_block_for_node(use_mem_state); 947 assert(use_mem_state_block != nullptr, 948 "unused killing projections skipped above"); 949 950 // For efficiency, we take a lazy approach to both raising the LCA and 951 // adding anti-dependence edges. In this worklist loop, we only mark blocks 952 // which we must raise the LCA above (set_raise_LCA_mark), and keep 953 // track of nodes that potentially need anti-dependence edges 954 // (non_early_stores). The only exceptions to this are if we 955 // immediately see that we have to raise the LCA all the way to the early 956 // block, and if we find stores in the early block (which always need 957 // anti-dependence edges). 958 // 959 // After the worklist loop, we perform an efficient combined LCA-raising 960 // operation over all marks and only then add anti-dependence edges where 961 // strictly necessary according to the new raised LCA. 962 963 if (use_mem_state->is_Phi()) { 964 // We have reached a memory Phi node. On our search from initial_mem to 965 // the Phi, we have found no anti-dependences (otherwise, we would have 966 // already terminated the search along this branch). Consider the example 967 // below, indicating a Phi node and its node inputs (we omit the control 968 // input). 969 // 970 // def_mem_state 971 // | 972 // | ? ? 973 // \ | / 974 // Phi 975 // 976 // We reached the Phi from def_mem_state and know that, on this 977 // particular input, the memory that the load must witness is not 978 // overwritten. However, for the Phi's other inputs (? in the 979 // illustration), we have no information and must thus conservatively 980 // assume that the load's memory is overwritten at and below the Phi. 981 // 982 // It is impossible to schedule the load before the Phi in 983 // the same block as the Phi (use_mem_state_block), and anti-dependence 984 // edges are, therefore, redundant. We must, however, find the 985 // predecessor block of use_mem_state_block that corresponds to 986 // def_mem_state, and raise the LCA above that block. Note that this block 987 // is not necessarily def_mem_state's block! See the continuation of our 988 // previous example below (now illustrating blocks instead of nodes) 989 // 990 // def_mem_state's block 991 // | 992 // | 993 // pred_block 994 // | 995 // | ? ? 996 // | | | 997 // use_mem_state_block 998 // 999 // Here, we must raise the LCA above pred_block rather than 1000 // def_mem_state's block. 1001 // 1002 // Do not assert(use_mem_state_block != early, "Phi merging memory after access") 1003 // PhiNode may be at start of block 'early' with backedge to 'early' 1004 if (LCA == early) { 1005 // Don't bother if LCA is already raised all the way 1006 continue; 1007 } 1008 DEBUG_ONLY(bool found_match = false); 1009 for (uint j = PhiNode::Input, jmax = use_mem_state->req(); j < jmax; j++) { 1010 if (use_mem_state->in(j) == def_mem_state) { // Found matching input? 1011 DEBUG_ONLY(found_match = true); 1012 Block* pred_block = get_block_for_node(use_mem_state_block->pred(j)); 1013 if (pred_block != early) { 1014 // Lazily set the LCA mark 1015 pred_block->set_raise_LCA_mark(load_index); 1016 must_raise_LCA_above_marks = true; 1017 } else /* if (pred_block == early) */ { 1018 // We know already now that we must raise LCA all the way to early. 1019 LCA = early; 1020 // This turns off the process of gathering non_early_stores. 1021 } 1022 } 1023 } 1024 assert(found_match, "no worklist bug"); 1025 } else if (use_mem_state_block != early) { 1026 // We found an anti-dependent store outside the load's 'early' block. The 1027 // store may be between the current LCA and the earliest possible block 1028 // (but it could very well also be on a distinct control-flow path). 1029 // Lazily set the LCA mark and push to non_early_stores. 1030 if (LCA == early) { 1031 // Don't bother if LCA is already raised all the way 1032 continue; 1033 } 1034 if (unrelated_load_in_store_null_block(use_mem_state, load)) { 1035 continue; 1036 } 1037 use_mem_state_block->set_raise_LCA_mark(load_index); 1038 must_raise_LCA_above_marks = true; 1039 non_early_stores.push(use_mem_state); 1040 } else /* if (use_mem_state_block == early) */ { 1041 // We found an anti-dependent store in the load's 'early' block. 1042 // Therefore, we know already now that we must raise LCA all the way to 1043 // early and that we need to add an anti-dependence edge to the store. 1044 assert(use_mem_state != load->find_exact_control(load->in(0)), "dependence cycle found"); 1045 if (verify) { 1046 assert(use_mem_state->find_edge(load) != -1 || unrelated_load_in_store_null_block(use_mem_state, load), 1047 "missing precedence edge"); 1048 } else { 1049 use_mem_state->add_prec(load); 1050 } 1051 LCA = early; 1052 // This turns off the process of gathering non_early_stores. 1053 } 1054 } 1055 // Worklist is now empty; we have visited all possible anti-dependences. 1056 1057 // Finished if 'load' must be scheduled in its 'early' block. 1058 // If we found any stores there, they have already been given 1059 // anti-dependence edges. 1060 if (LCA == early) { 1061 return LCA; 1062 } 1063 1064 // We get here only if there are no anti-dependent stores in the load's 1065 // 'early' block and if no memory Phi has forced LCA to the early block. Now 1066 // we must raise the LCA above the blocks for all the anti-dependent stores 1067 // and above the predecessor blocks of anti-dependent memory Phis we reached 1068 // during the search. 1069 if (must_raise_LCA_above_marks) { 1070 LCA = raise_LCA_above_marks(LCA, load->_idx, early, this); 1071 } 1072 1073 // If LCA == early at this point, there were no stores that required 1074 // anti-dependence edges in the early block. Otherwise, we would have eagerly 1075 // raised the LCA to early already in the worklist loop. 1076 if (LCA == early) { 1077 return LCA; 1078 } 1079 1080 // The raised LCA block can now be a home to anti-dependent stores for which 1081 // we still need to add anti-dependence edges, but no LCA predecessor block 1082 // contains any such stores (otherwise, we would have raised the LCA even 1083 // higher). 1084 // 1085 // The raised LCA will be a lower bound for placing the load, preventing the 1086 // load from sinking past any block containing a store that may overwrite 1087 // memory that the load must witness. 1088 // 1089 // Now we need to insert the necessary anti-dependence edges from 'load' to 1090 // each store in the non-early LCA block. We have recorded all such potential 1091 // stores in non_early_stores. 1092 // 1093 // If LCA->raise_LCA_mark() != load_index, it means that we raised the LCA to 1094 // a block in which we did not find any anti-dependent stores. So, no need to 1095 // search for any such stores. 1096 if (LCA->raise_LCA_mark() == load_index) { 1097 while (non_early_stores.size() > 0) { 1098 Node* store = non_early_stores.pop(); 1099 Block* store_block = get_block_for_node(store); 1100 if (store_block == LCA) { 1101 // Add anti-dependence edge from the load to the store in the non-early 1102 // LCA. 1103 assert(store != load->find_exact_control(load->in(0)), "dependence cycle found"); 1104 if (verify) { 1105 assert(store->find_edge(load) != -1, "missing precedence edge"); 1106 } else { 1107 store->add_prec(load); 1108 } 1109 } else { 1110 assert(store_block->raise_LCA_mark() == load_index, "block was marked"); 1111 } 1112 } 1113 } 1114 1115 assert(LCA->dominates(LCA_orig), "unsound updated LCA"); 1116 1117 // Return the highest block containing stores; any stores 1118 // within that block have been given anti-dependence edges. 1119 return LCA; 1120 } 1121 1122 // This class is used to iterate backwards over the nodes in the graph. 1123 1124 class Node_Backward_Iterator { 1125 1126 private: 1127 Node_Backward_Iterator(); 1128 1129 public: 1130 // Constructor for the iterator 1131 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg); 1132 1133 // Postincrement operator to iterate over the nodes 1134 Node *next(); 1135 1136 private: 1137 VectorSet &_visited; 1138 Node_Stack &_stack; 1139 PhaseCFG &_cfg; 1140 }; 1141 1142 // Constructor for the Node_Backward_Iterator 1143 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg) 1144 : _visited(visited), _stack(stack), _cfg(cfg) { 1145 // The stack should contain exactly the root 1146 stack.clear(); 1147 stack.push(root, root->outcnt()); 1148 1149 // Clear the visited bits 1150 visited.clear(); 1151 } 1152 1153 // Iterator for the Node_Backward_Iterator 1154 Node *Node_Backward_Iterator::next() { 1155 1156 // If the _stack is empty, then just return null: finished. 1157 if ( !_stack.size() ) 1158 return nullptr; 1159 1160 // I visit unvisited not-anti-dependence users first, then anti-dependent 1161 // children next. I iterate backwards to support removal of nodes. 1162 // The stack holds states consisting of 3 values: 1163 // current Def node, flag which indicates 1st/2nd pass, index of current out edge 1164 Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1); 1165 bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1); 1166 uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes. 1167 _stack.pop(); 1168 1169 // I cycle here when I am entering a deeper level of recursion. 1170 // The key variable 'self' was set prior to jumping here. 1171 while( 1 ) { 1172 1173 _visited.set(self->_idx); 1174 1175 // Now schedule all uses as late as possible. 1176 const Node* src = self->is_Proj() ? self->in(0) : self; 1177 uint src_rpo = _cfg.get_block_for_node(src)->_rpo; 1178 1179 // Schedule all nodes in a post-order visit 1180 Node *unvisited = nullptr; // Unvisited anti-dependent Node, if any 1181 1182 // Scan for unvisited nodes 1183 while (idx > 0) { 1184 // For all uses, schedule late 1185 Node* n = self->raw_out(--idx); // Use 1186 1187 // Skip already visited children 1188 if ( _visited.test(n->_idx) ) 1189 continue; 1190 1191 // do not traverse backward control edges 1192 Node *use = n->is_Proj() ? n->in(0) : n; 1193 uint use_rpo = _cfg.get_block_for_node(use)->_rpo; 1194 1195 if ( use_rpo < src_rpo ) 1196 continue; 1197 1198 // Phi nodes always precede uses in a basic block 1199 if ( use_rpo == src_rpo && use->is_Phi() ) 1200 continue; 1201 1202 unvisited = n; // Found unvisited 1203 1204 // Check for possible-anti-dependent 1205 // 1st pass: No such nodes, 2nd pass: Only such nodes. 1206 if (n->needs_anti_dependence_check() == iterate_anti_dep) { 1207 unvisited = n; // Found unvisited 1208 break; 1209 } 1210 } 1211 1212 // Did I find an unvisited not-anti-dependent Node? 1213 if (!unvisited) { 1214 if (!iterate_anti_dep) { 1215 // 2nd pass: Iterate over nodes which needs_anti_dependence_check. 1216 iterate_anti_dep = true; 1217 idx = self->outcnt(); 1218 continue; 1219 } 1220 break; // All done with children; post-visit 'self' 1221 } 1222 1223 // Visit the unvisited Node. Contains the obvious push to 1224 // indicate I'm entering a deeper level of recursion. I push the 1225 // old state onto the _stack and set a new state and loop (recurse). 1226 _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx); 1227 self = unvisited; 1228 iterate_anti_dep = false; 1229 idx = self->outcnt(); 1230 } // End recursion loop 1231 1232 return self; 1233 } 1234 1235 //------------------------------ComputeLatenciesBackwards---------------------- 1236 // Compute the latency of all the instructions. 1237 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) { 1238 #ifndef PRODUCT 1239 if (trace_opto_pipelining()) 1240 tty->print("\n#---- ComputeLatenciesBackwards ----\n"); 1241 #endif 1242 1243 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this); 1244 Node *n; 1245 1246 // Walk over all the nodes from last to first 1247 while ((n = iter.next())) { 1248 // Set the latency for the definitions of this instruction 1249 partial_latency_of_defs(n); 1250 } 1251 } // end ComputeLatenciesBackwards 1252 1253 //------------------------------partial_latency_of_defs------------------------ 1254 // Compute the latency impact of this node on all defs. This computes 1255 // a number that increases as we approach the beginning of the routine. 1256 void PhaseCFG::partial_latency_of_defs(Node *n) { 1257 // Set the latency for this instruction 1258 #ifndef PRODUCT 1259 if (trace_opto_pipelining()) { 1260 tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n)); 1261 dump(); 1262 } 1263 #endif 1264 1265 if (n->is_Proj()) { 1266 n = n->in(0); 1267 } 1268 1269 if (n->is_Root()) { 1270 return; 1271 } 1272 1273 uint nlen = n->len(); 1274 uint use_latency = get_latency_for_node(n); 1275 uint use_pre_order = get_block_for_node(n)->_pre_order; 1276 1277 for (uint j = 0; j < nlen; j++) { 1278 Node *def = n->in(j); 1279 1280 if (!def || def == n) { 1281 continue; 1282 } 1283 1284 // Walk backwards thru projections 1285 if (def->is_Proj()) { 1286 def = def->in(0); 1287 } 1288 1289 #ifndef PRODUCT 1290 if (trace_opto_pipelining()) { 1291 tty->print("# in(%2d): ", j); 1292 def->dump(); 1293 } 1294 #endif 1295 1296 // If the defining block is not known, assume it is ok 1297 Block *def_block = get_block_for_node(def); 1298 uint def_pre_order = def_block ? def_block->_pre_order : 0; 1299 1300 if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) { 1301 continue; 1302 } 1303 1304 uint delta_latency = n->latency(j); 1305 uint current_latency = delta_latency + use_latency; 1306 1307 if (get_latency_for_node(def) < current_latency) { 1308 set_latency_for_node(def, current_latency); 1309 } 1310 1311 #ifndef PRODUCT 1312 if (trace_opto_pipelining()) { 1313 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def)); 1314 } 1315 #endif 1316 } 1317 } 1318 1319 //------------------------------latency_from_use------------------------------- 1320 // Compute the latency of a specific use 1321 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) { 1322 // If self-reference, return no latency 1323 if (use == n || use->is_Root()) { 1324 return 0; 1325 } 1326 1327 uint def_pre_order = get_block_for_node(def)->_pre_order; 1328 uint latency = 0; 1329 1330 // If the use is not a projection, then it is simple... 1331 if (!use->is_Proj()) { 1332 #ifndef PRODUCT 1333 if (trace_opto_pipelining()) { 1334 tty->print("# out(): "); 1335 use->dump(); 1336 } 1337 #endif 1338 1339 uint use_pre_order = get_block_for_node(use)->_pre_order; 1340 1341 if (use_pre_order < def_pre_order) 1342 return 0; 1343 1344 if (use_pre_order == def_pre_order && use->is_Phi()) 1345 return 0; 1346 1347 uint nlen = use->len(); 1348 uint nl = get_latency_for_node(use); 1349 1350 for ( uint j=0; j<nlen; j++ ) { 1351 if (use->in(j) == n) { 1352 // Change this if we want local latencies 1353 uint ul = use->latency(j); 1354 uint l = ul + nl; 1355 if (latency < l) latency = l; 1356 #ifndef PRODUCT 1357 if (trace_opto_pipelining()) { 1358 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d", 1359 nl, j, ul, l, latency); 1360 } 1361 #endif 1362 } 1363 } 1364 } else { 1365 // This is a projection, just grab the latency of the use(s) 1366 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) { 1367 uint l = latency_from_use(use, def, use->fast_out(j)); 1368 if (latency < l) latency = l; 1369 } 1370 } 1371 1372 return latency; 1373 } 1374 1375 //------------------------------latency_from_uses------------------------------ 1376 // Compute the latency of this instruction relative to all of it's uses. 1377 // This computes a number that increases as we approach the beginning of the 1378 // routine. 1379 void PhaseCFG::latency_from_uses(Node *n) { 1380 // Set the latency for this instruction 1381 #ifndef PRODUCT 1382 if (trace_opto_pipelining()) { 1383 tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n)); 1384 dump(); 1385 } 1386 #endif 1387 uint latency=0; 1388 const Node *def = n->is_Proj() ? n->in(0): n; 1389 1390 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1391 uint l = latency_from_use(n, def, n->fast_out(i)); 1392 1393 if (latency < l) latency = l; 1394 } 1395 1396 set_latency_for_node(n, latency); 1397 } 1398 1399 //------------------------------is_cheaper_block------------------------- 1400 // Check if a block between early and LCA block of uses is cheaper by 1401 // frequency-based policy, latency-based policy and random-based policy 1402 bool PhaseCFG::is_cheaper_block(Block* LCA, Node* self, uint target_latency, 1403 uint end_latency, double least_freq, 1404 int cand_cnt, bool in_latency) { 1405 if (StressGCM) { 1406 // Should be randomly accepted in stress mode 1407 return C->randomized_select(cand_cnt); 1408 } 1409 1410 const double delta = 1 + PROB_UNLIKELY_MAG(4); 1411 1412 // Better Frequency. Add a small delta to the comparison to not needlessly 1413 // hoist because of, e.g., small numerical inaccuracies. 1414 if (LCA->_freq * delta < least_freq) { 1415 return true; 1416 } 1417 1418 // Otherwise, choose with latency 1419 if (!in_latency && // No block containing latency 1420 LCA->_freq < least_freq * delta && // No worse frequency 1421 target_latency >= end_latency && // within latency range 1422 !self->is_iteratively_computed() // But don't hoist IV increments 1423 // because they may end up above other uses of their phi forcing 1424 // their result register to be different from their input. 1425 ) { 1426 return true; 1427 } 1428 1429 return false; 1430 } 1431 1432 //------------------------------hoist_to_cheaper_block------------------------- 1433 // Pick a block for node self, between early and LCA block of uses, that is a 1434 // cheaper alternative to LCA. 1435 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) { 1436 Block* least = LCA; 1437 double least_freq = least->_freq; 1438 uint target = get_latency_for_node(self); 1439 uint start_latency = get_latency_for_node(LCA->head()); 1440 uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx())); 1441 bool in_latency = (target <= start_latency); 1442 const Block* root_block = get_block_for_node(_root); 1443 1444 // Turn off latency scheduling if scheduling is just plain off 1445 if (!C->do_scheduling()) 1446 in_latency = true; 1447 1448 // Do not hoist (to cover latency) instructions which target a 1449 // single register. Hoisting stretches the live range of the 1450 // single register and may force spilling. 1451 MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr; 1452 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty()) 1453 in_latency = true; 1454 1455 #ifndef PRODUCT 1456 if (trace_opto_pipelining()) { 1457 tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self)); 1458 self->dump(); 1459 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1460 LCA->_pre_order, 1461 LCA->head()->_idx, 1462 start_latency, 1463 LCA->get_node(LCA->end_idx())->_idx, 1464 end_latency, 1465 least_freq); 1466 } 1467 #endif 1468 1469 int cand_cnt = 0; // number of candidates tried 1470 1471 // Walk up the dominator tree from LCA (Lowest common ancestor) to 1472 // the earliest legal location. Capture the least execution frequency, 1473 // or choose a random block if -XX:+StressGCM, or using latency-based policy 1474 while (LCA != early) { 1475 LCA = LCA->_idom; // Follow up the dominator tree 1476 1477 if (LCA == nullptr) { 1478 // Bailout without retry 1479 assert(false, "graph should be schedulable"); 1480 C->record_method_not_compilable("late schedule failed: LCA is null"); 1481 return least; 1482 } 1483 1484 // Don't hoist machine instructions to the root basic block 1485 if (mach && LCA == root_block) 1486 break; 1487 1488 if (self->is_memory_writer() && 1489 (LCA->_loop->depth() > early->_loop->depth())) { 1490 // LCA is an invalid placement for a memory writer: choosing it would 1491 // cause memory interference, as illustrated in schedule_late(). 1492 continue; 1493 } 1494 verify_memory_writer_placement(LCA, self); 1495 1496 uint start_lat = get_latency_for_node(LCA->head()); 1497 uint end_idx = LCA->end_idx(); 1498 uint end_lat = get_latency_for_node(LCA->get_node(end_idx)); 1499 double LCA_freq = LCA->_freq; 1500 #ifndef PRODUCT 1501 if (trace_opto_pipelining()) { 1502 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1503 LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq); 1504 } 1505 #endif 1506 cand_cnt++; 1507 if (is_cheaper_block(LCA, self, target, end_lat, least_freq, cand_cnt, in_latency)) { 1508 least = LCA; // Found cheaper block 1509 least_freq = LCA_freq; 1510 start_latency = start_lat; 1511 end_latency = end_lat; 1512 if (target <= start_lat) 1513 in_latency = true; 1514 } 1515 } 1516 1517 #ifndef PRODUCT 1518 if (trace_opto_pipelining()) { 1519 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g", 1520 least->_pre_order, start_latency, least_freq); 1521 } 1522 #endif 1523 1524 // See if the latency needs to be updated 1525 if (target < end_latency) { 1526 #ifndef PRODUCT 1527 if (trace_opto_pipelining()) { 1528 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency); 1529 } 1530 #endif 1531 set_latency_for_node(self, end_latency); 1532 partial_latency_of_defs(self); 1533 } 1534 1535 return least; 1536 } 1537 1538 1539 //------------------------------schedule_late----------------------------------- 1540 // Now schedule all codes as LATE as possible. This is the LCA in the 1541 // dominator tree of all USES of a value. Pick the block with the least 1542 // loop nesting depth that is lowest in the dominator tree. 1543 extern const char must_clone[]; 1544 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) { 1545 #ifndef PRODUCT 1546 if (trace_opto_pipelining()) 1547 tty->print("\n#---- schedule_late ----\n"); 1548 #endif 1549 1550 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this); 1551 Node *self; 1552 1553 // Walk over all the nodes from last to first 1554 while ((self = iter.next())) { 1555 Block* early = get_block_for_node(self); // Earliest legal placement 1556 1557 if (self->is_top()) { 1558 // Top node goes in bb #2 with other constants. 1559 // It must be special-cased, because it has no out edges. 1560 early->add_inst(self); 1561 continue; 1562 } 1563 1564 // No uses, just terminate 1565 if (self->outcnt() == 0) { 1566 assert(self->is_MachProj(), "sanity"); 1567 continue; // Must be a dead machine projection 1568 } 1569 1570 // If node is pinned in the block, then no scheduling can be done. 1571 if( self->pinned() ) // Pinned in block? 1572 continue; 1573 1574 #ifdef ASSERT 1575 // Assert that memory writers (e.g. stores) have a "home" block (the block 1576 // given by their control input), and that this block corresponds to their 1577 // earliest possible placement. This guarantees that 1578 // hoist_to_cheaper_block() will always have at least one valid choice. 1579 if (self->is_memory_writer()) { 1580 assert(find_block_for_node(self->in(0)) == early, 1581 "The home of a memory writer must also be its earliest placement"); 1582 } 1583 #endif 1584 1585 MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr; 1586 if (mach) { 1587 switch (mach->ideal_Opcode()) { 1588 case Op_CreateEx: 1589 // Don't move exception creation 1590 early->add_inst(self); 1591 continue; 1592 break; 1593 case Op_CastI2N: 1594 early->add_inst(self); 1595 continue; 1596 case Op_CheckCastPP: { 1597 // Don't move CheckCastPP nodes away from their input, if the input 1598 // is a rawptr (5071820). 1599 Node *def = self->in(1); 1600 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 1601 early->add_inst(self); 1602 #ifdef ASSERT 1603 _raw_oops.push(def); 1604 #endif 1605 continue; 1606 } 1607 break; 1608 } 1609 default: 1610 break; 1611 } 1612 if (C->has_irreducible_loop() && self->is_memory_writer()) { 1613 // If the CFG is irreducible, place memory writers in their home block. 1614 // This prevents hoist_to_cheaper_block() from accidentally placing such 1615 // nodes into deeper loops, as in the following example: 1616 // 1617 // Home placement of store in B1 (loop L1): 1618 // 1619 // B1 (L1): 1620 // m1 <- .. 1621 // m2 <- store m1, .. 1622 // B2 (L2): 1623 // jump B2 1624 // B3 (L1): 1625 // .. <- .. m2, .. 1626 // 1627 // Wrong "hoisting" of store to B2 (in loop L2, child of L1): 1628 // 1629 // B1 (L1): 1630 // m1 <- .. 1631 // B2 (L2): 1632 // m2 <- store m1, .. 1633 // # Wrong: m1 and m2 interfere at this point. 1634 // jump B2 1635 // B3 (L1): 1636 // .. <- .. m2, .. 1637 // 1638 // This "hoist inversion" can happen due to different factors such as 1639 // inaccurate estimation of frequencies for irreducible CFGs, and loops 1640 // with always-taken exits in reducible CFGs. In the reducible case, 1641 // hoist inversion is prevented by discarding invalid blocks (those in 1642 // deeper loops than the home block). In the irreducible case, the 1643 // invalid blocks cannot be identified due to incomplete loop nesting 1644 // information, hence a conservative solution is taken. 1645 #ifndef PRODUCT 1646 if (trace_opto_pipelining()) { 1647 tty->print_cr("# Irreducible loops: schedule in home block B%d:", 1648 early->_pre_order); 1649 self->dump(); 1650 } 1651 #endif 1652 schedule_node_into_block(self, early); 1653 continue; 1654 } 1655 } 1656 1657 // Gather LCA of all uses 1658 Block *LCA = nullptr; 1659 { 1660 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { 1661 // For all uses, find LCA 1662 Node* use = self->fast_out(i); 1663 LCA = raise_LCA_above_use(LCA, use, self, this); 1664 } 1665 guarantee(LCA != nullptr, "There must be a LCA"); 1666 } // (Hide defs of imax, i from rest of block.) 1667 1668 // Place temps in the block of their use. This isn't a 1669 // requirement for correctness but it reduces useless 1670 // interference between temps and other nodes. 1671 if (mach != nullptr && mach->is_MachTemp()) { 1672 map_node_to_block(self, LCA); 1673 LCA->add_inst(self); 1674 continue; 1675 } 1676 1677 // Check if 'self' could be anti-dependent on memory 1678 if (self->needs_anti_dependence_check()) { 1679 // Hoist LCA above possible-defs and insert anti-dependences to 1680 // defs in new LCA block. 1681 LCA = raise_above_anti_dependences(LCA, self); 1682 if (C->failing()) { 1683 return; 1684 } 1685 } 1686 1687 if (early->_dom_depth > LCA->_dom_depth) { 1688 // Somehow the LCA has moved above the earliest legal point. 1689 // (One way this can happen is via memory_early_block.) 1690 if (C->subsume_loads() == true && !C->failing()) { 1691 // Retry with subsume_loads == false 1692 // If this is the first failure, the sentinel string will "stick" 1693 // to the Compile object, and the C2Compiler will see it and retry. 1694 C->record_failure(C2Compiler::retry_no_subsuming_loads()); 1695 } else { 1696 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth) 1697 assert(C->failure_is_artificial(), "graph should be schedulable"); 1698 C->record_method_not_compilable("late schedule failed: incorrect graph" DEBUG_ONLY(COMMA true)); 1699 } 1700 return; 1701 } 1702 1703 if (self->is_memory_writer()) { 1704 // If the LCA of a memory writer is a descendant of its home loop, hoist 1705 // it into a valid placement. 1706 while (LCA->_loop->depth() > early->_loop->depth()) { 1707 LCA = LCA->_idom; 1708 } 1709 assert(LCA != nullptr, "a valid LCA must exist"); 1710 verify_memory_writer_placement(LCA, self); 1711 } 1712 1713 // If there is no opportunity to hoist, then we're done. 1714 // In stress mode, try to hoist even the single operations. 1715 bool try_to_hoist = StressGCM || (LCA != early); 1716 1717 // Must clone guys stay next to use; no hoisting allowed. 1718 // Also cannot hoist guys that alter memory or are otherwise not 1719 // allocatable (hoisting can make a value live longer, leading to 1720 // anti and output dependency problems which are normally resolved 1721 // by the register allocator giving everyone a different register). 1722 if (mach != nullptr && must_clone[mach->ideal_Opcode()]) 1723 try_to_hoist = false; 1724 1725 Block* late = nullptr; 1726 if (try_to_hoist) { 1727 // Now find the block with the least execution frequency. 1728 // Start at the latest schedule and work up to the earliest schedule 1729 // in the dominator tree. Thus the Node will dominate all its uses. 1730 late = hoist_to_cheaper_block(LCA, early, self); 1731 } else { 1732 // Just use the LCA of the uses. 1733 late = LCA; 1734 } 1735 1736 // Put the node into target block 1737 schedule_node_into_block(self, late); 1738 1739 #ifdef ASSERT 1740 if (self->needs_anti_dependence_check()) { 1741 // since precedence edges are only inserted when we're sure they 1742 // are needed make sure that after placement in a block we don't 1743 // need any new precedence edges. 1744 verify_anti_dependences(late, self); 1745 } 1746 #endif 1747 } // Loop until all nodes have been visited 1748 1749 } // end ScheduleLate 1750 1751 //------------------------------GlobalCodeMotion------------------------------- 1752 void PhaseCFG::global_code_motion() { 1753 ResourceMark rm; 1754 1755 #ifndef PRODUCT 1756 if (trace_opto_pipelining()) { 1757 tty->print("\n---- Start GlobalCodeMotion ----\n"); 1758 } 1759 #endif 1760 1761 // Initialize the node to block mapping for things on the proj_list 1762 for (uint i = 0; i < _matcher.number_of_projections(); i++) { 1763 unmap_node_from_block(_matcher.get_projection(i)); 1764 } 1765 1766 // Set the basic block for Nodes pinned into blocks 1767 VectorSet visited; 1768 schedule_pinned_nodes(visited); 1769 1770 // Find the earliest Block any instruction can be placed in. Some 1771 // instructions are pinned into Blocks. Unpinned instructions can 1772 // appear in last block in which all their inputs occur. 1773 visited.clear(); 1774 Node_Stack stack((C->live_nodes() >> 2) + 16); // pre-grow 1775 if (!schedule_early(visited, stack)) { 1776 // Bailout without retry 1777 assert(C->failure_is_artificial(), "early schedule failed"); 1778 C->record_method_not_compilable("early schedule failed" DEBUG_ONLY(COMMA true)); 1779 return; 1780 } 1781 1782 // Build Def-Use edges. 1783 // Compute the latency information (via backwards walk) for all the 1784 // instructions in the graph 1785 _node_latency = new GrowableArray<uint>(); // resource_area allocation 1786 1787 if (C->do_scheduling()) { 1788 compute_latencies_backwards(visited, stack); 1789 } 1790 1791 // Now schedule all codes as LATE as possible. This is the LCA in the 1792 // dominator tree of all USES of a value. Pick the block with the least 1793 // loop nesting depth that is lowest in the dominator tree. 1794 // ( visited.clear() called in schedule_late()->Node_Backward_Iterator() ) 1795 schedule_late(visited, stack); 1796 if (C->failing()) { 1797 return; 1798 } 1799 1800 #ifndef PRODUCT 1801 if (trace_opto_pipelining()) { 1802 tty->print("\n---- Detect implicit null checks ----\n"); 1803 } 1804 #endif 1805 1806 // Detect implicit-null-check opportunities. Basically, find null checks 1807 // with suitable memory ops nearby. Use the memory op to do the null check. 1808 // I can generate a memory op if there is not one nearby. 1809 if (C->is_method_compilation()) { 1810 // By reversing the loop direction we get a very minor gain on mpegaudio. 1811 // Feel free to revert to a forward loop for clarity. 1812 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) { 1813 for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) { 1814 Node* proj = _matcher._null_check_tests[i]; 1815 Node* val = _matcher._null_check_tests[i + 1]; 1816 Block* block = get_block_for_node(proj); 1817 implicit_null_check(block, proj, val, C->allowed_deopt_reasons()); 1818 // The implicit_null_check will only perform the transformation 1819 // if the null branch is truly uncommon, *and* it leads to an 1820 // uncommon trap. Combined with the too_many_traps guards 1821 // above, this prevents SEGV storms reported in 6366351, 1822 // by recompiling offending methods without this optimization. 1823 if (C->failing()) { 1824 return; 1825 } 1826 } 1827 } 1828 1829 bool block_size_threshold_ok = false; 1830 intptr_t *recalc_pressure_nodes = nullptr; 1831 if (OptoRegScheduling) { 1832 for (uint i = 0; i < number_of_blocks(); i++) { 1833 Block* block = get_block(i); 1834 if (block->number_of_nodes() > 10) { 1835 block_size_threshold_ok = true; 1836 break; 1837 } 1838 } 1839 } 1840 1841 // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it 1842 // is key to enabling this feature. 1843 PhaseChaitin regalloc(C->unique(), *this, _matcher, true); 1844 ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive); // Arena for liveness 1845 ResourceMark rm_live(&live_arena); 1846 PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true); 1847 PhaseIFG ifg(&live_arena); 1848 if (OptoRegScheduling && block_size_threshold_ok) { 1849 regalloc.mark_ssa(); 1850 Compile::TracePhase tp(_t_computeLive); 1851 rm_live.reset_to_mark(); // Reclaim working storage 1852 IndexSet::reset_memory(C, &live_arena); 1853 uint node_size = regalloc._lrg_map.max_lrg_id(); 1854 ifg.init(node_size); // Empty IFG 1855 regalloc.set_ifg(ifg); 1856 regalloc.set_live(live); 1857 regalloc.gather_lrg_masks(false); // Collect LRG masks 1858 live.compute(node_size); // Compute liveness 1859 1860 recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size); 1861 for (uint i = 0; i < node_size; i++) { 1862 recalc_pressure_nodes[i] = 0; 1863 } 1864 } 1865 _regalloc = ®alloc; 1866 1867 #ifndef PRODUCT 1868 if (trace_opto_pipelining()) { 1869 tty->print("\n---- Start Local Scheduling ----\n"); 1870 } 1871 #endif 1872 1873 // Schedule locally. Right now a simple topological sort. 1874 // Later, do a real latency aware scheduler. 1875 GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1); 1876 visited.reset(); 1877 for (uint i = 0; i < number_of_blocks(); i++) { 1878 Block* block = get_block(i); 1879 if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) { 1880 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 1881 assert(C->failure_is_artificial(), "local schedule failed"); 1882 C->record_method_not_compilable("local schedule failed" DEBUG_ONLY(COMMA true)); 1883 } 1884 _regalloc = nullptr; 1885 return; 1886 } 1887 } 1888 _regalloc = nullptr; 1889 1890 // If we inserted any instructions between a Call and his CatchNode, 1891 // clone the instructions on all paths below the Catch. 1892 for (uint i = 0; i < number_of_blocks(); i++) { 1893 Block* block = get_block(i); 1894 call_catch_cleanup(block); 1895 if (C->failing()) { 1896 return; 1897 } 1898 } 1899 1900 #ifndef PRODUCT 1901 if (trace_opto_pipelining()) { 1902 tty->print("\n---- After GlobalCodeMotion ----\n"); 1903 for (uint i = 0; i < number_of_blocks(); i++) { 1904 Block* block = get_block(i); 1905 block->dump(); 1906 } 1907 } 1908 #endif 1909 // Dead. 1910 _node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef); 1911 } 1912 1913 bool PhaseCFG::do_global_code_motion() { 1914 1915 build_dominator_tree(); 1916 if (C->failing()) { 1917 return false; 1918 } 1919 1920 NOT_PRODUCT( C->verify_graph_edges(); ) 1921 1922 estimate_block_frequency(); 1923 1924 global_code_motion(); 1925 1926 if (C->failing()) { 1927 return false; 1928 } 1929 1930 return true; 1931 } 1932 1933 //------------------------------Estimate_Block_Frequency----------------------- 1934 // Estimate block frequencies based on IfNode probabilities. 1935 void PhaseCFG::estimate_block_frequency() { 1936 1937 // Force conditional branches leading to uncommon traps to be unlikely, 1938 // not because we get to the uncommon_trap with less relative frequency, 1939 // but because an uncommon_trap typically causes a deopt, so we only get 1940 // there once. 1941 if (C->do_freq_based_layout()) { 1942 Block_List worklist; 1943 Block* root_blk = get_block(0); 1944 for (uint i = 1; i < root_blk->num_preds(); i++) { 1945 Block *pb = get_block_for_node(root_blk->pred(i)); 1946 if (pb->has_uncommon_code()) { 1947 worklist.push(pb); 1948 } 1949 } 1950 while (worklist.size() > 0) { 1951 Block* uct = worklist.pop(); 1952 if (uct == get_root_block()) { 1953 continue; 1954 } 1955 for (uint i = 1; i < uct->num_preds(); i++) { 1956 Block *pb = get_block_for_node(uct->pred(i)); 1957 if (pb->_num_succs == 1) { 1958 worklist.push(pb); 1959 } else if (pb->num_fall_throughs() == 2) { 1960 pb->update_uncommon_branch(uct); 1961 } 1962 } 1963 } 1964 } 1965 1966 // Create the loop tree and calculate loop depth. 1967 _root_loop = create_loop_tree(); 1968 _root_loop->compute_loop_depth(0); 1969 1970 // Compute block frequency of each block, relative to a single loop entry. 1971 _root_loop->compute_freq(); 1972 1973 // Adjust all frequencies to be relative to a single method entry 1974 _root_loop->_freq = 1.0; 1975 _root_loop->scale_freq(); 1976 1977 // Save outmost loop frequency for LRG frequency threshold 1978 _outer_loop_frequency = _root_loop->outer_loop_freq(); 1979 1980 // force paths ending at uncommon traps to be infrequent 1981 if (!C->do_freq_based_layout()) { 1982 Block_List worklist; 1983 Block* root_blk = get_block(0); 1984 for (uint i = 1; i < root_blk->num_preds(); i++) { 1985 Block *pb = get_block_for_node(root_blk->pred(i)); 1986 if (pb->has_uncommon_code()) { 1987 worklist.push(pb); 1988 } 1989 } 1990 while (worklist.size() > 0) { 1991 Block* uct = worklist.pop(); 1992 uct->_freq = PROB_MIN; 1993 for (uint i = 1; i < uct->num_preds(); i++) { 1994 Block *pb = get_block_for_node(uct->pred(i)); 1995 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) { 1996 worklist.push(pb); 1997 } 1998 } 1999 } 2000 } 2001 2002 #ifdef ASSERT 2003 for (uint i = 0; i < number_of_blocks(); i++) { 2004 Block* b = get_block(i); 2005 assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency"); 2006 } 2007 #endif 2008 2009 #ifndef PRODUCT 2010 if (PrintCFGBlockFreq) { 2011 tty->print_cr("CFG Block Frequencies"); 2012 _root_loop->dump_tree(); 2013 if (Verbose) { 2014 tty->print_cr("PhaseCFG dump"); 2015 dump(); 2016 tty->print_cr("Node dump"); 2017 _root->dump(99999); 2018 } 2019 } 2020 #endif 2021 } 2022 2023 //----------------------------create_loop_tree-------------------------------- 2024 // Create a loop tree from the CFG 2025 CFGLoop* PhaseCFG::create_loop_tree() { 2026 2027 #ifdef ASSERT 2028 assert(get_block(0) == get_root_block(), "first block should be root block"); 2029 for (uint i = 0; i < number_of_blocks(); i++) { 2030 Block* block = get_block(i); 2031 // Check that _loop field are clear...we could clear them if not. 2032 assert(block->_loop == nullptr, "clear _loop expected"); 2033 // Sanity check that the RPO numbering is reflected in the _blocks array. 2034 // It doesn't have to be for the loop tree to be built, but if it is not, 2035 // then the blocks have been reordered since dom graph building...which 2036 // may question the RPO numbering 2037 assert(block->_rpo == i, "unexpected reverse post order number"); 2038 } 2039 #endif 2040 2041 int idct = 0; 2042 CFGLoop* root_loop = new CFGLoop(idct++); 2043 2044 Block_List worklist; 2045 2046 // Assign blocks to loops 2047 for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block 2048 Block* block = get_block(i); 2049 2050 if (block->head()->is_Loop()) { 2051 Block* loop_head = block; 2052 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 2053 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl); 2054 Block* tail = get_block_for_node(tail_n); 2055 2056 // Defensively filter out Loop nodes for non-single-entry loops. 2057 // For all reasonable loops, the head occurs before the tail in RPO. 2058 if (i <= tail->_rpo) { 2059 2060 // The tail and (recursive) predecessors of the tail 2061 // are made members of a new loop. 2062 2063 assert(worklist.size() == 0, "nonempty worklist"); 2064 CFGLoop* nloop = new CFGLoop(idct++); 2065 assert(loop_head->_loop == nullptr, "just checking"); 2066 loop_head->_loop = nloop; 2067 // Add to nloop so push_pred() will skip over inner loops 2068 nloop->add_member(loop_head); 2069 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this); 2070 2071 while (worklist.size() > 0) { 2072 Block* member = worklist.pop(); 2073 if (member != loop_head) { 2074 for (uint j = 1; j < member->num_preds(); j++) { 2075 nloop->push_pred(member, j, worklist, this); 2076 } 2077 } 2078 } 2079 } 2080 } 2081 } 2082 2083 // Create a member list for each loop consisting 2084 // of both blocks and (immediate child) loops. 2085 for (uint i = 0; i < number_of_blocks(); i++) { 2086 Block* block = get_block(i); 2087 CFGLoop* lp = block->_loop; 2088 if (lp == nullptr) { 2089 // Not assigned to a loop. Add it to the method's pseudo loop. 2090 block->_loop = root_loop; 2091 lp = root_loop; 2092 } 2093 if (lp == root_loop || block != lp->head()) { // loop heads are already members 2094 lp->add_member(block); 2095 } 2096 if (lp != root_loop) { 2097 if (lp->parent() == nullptr) { 2098 // Not a nested loop. Make it a child of the method's pseudo loop. 2099 root_loop->add_nested_loop(lp); 2100 } 2101 if (block == lp->head()) { 2102 // Add nested loop to member list of parent loop. 2103 lp->parent()->add_member(lp); 2104 } 2105 } 2106 } 2107 2108 return root_loop; 2109 } 2110 2111 //------------------------------push_pred-------------------------------------- 2112 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) { 2113 Node* pred_n = blk->pred(i); 2114 Block* pred = cfg->get_block_for_node(pred_n); 2115 CFGLoop *pred_loop = pred->_loop; 2116 if (pred_loop == nullptr) { 2117 // Filter out blocks for non-single-entry loops. 2118 // For all reasonable loops, the head occurs before the tail in RPO. 2119 if (pred->_rpo > head()->_rpo) { 2120 pred->_loop = this; 2121 worklist.push(pred); 2122 } 2123 } else if (pred_loop != this) { 2124 // Nested loop. 2125 while (pred_loop->_parent != nullptr && pred_loop->_parent != this) { 2126 pred_loop = pred_loop->_parent; 2127 } 2128 // Make pred's loop be a child 2129 if (pred_loop->_parent == nullptr) { 2130 add_nested_loop(pred_loop); 2131 // Continue with loop entry predecessor. 2132 Block* pred_head = pred_loop->head(); 2133 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 2134 assert(pred_head != head(), "loop head in only one loop"); 2135 push_pred(pred_head, LoopNode::EntryControl, worklist, cfg); 2136 } else { 2137 assert(pred_loop->_parent == this && _parent == nullptr, "just checking"); 2138 } 2139 } 2140 } 2141 2142 //------------------------------add_nested_loop-------------------------------- 2143 // Make cl a child of the current loop in the loop tree. 2144 void CFGLoop::add_nested_loop(CFGLoop* cl) { 2145 assert(_parent == nullptr, "no parent yet"); 2146 assert(cl != this, "not my own parent"); 2147 cl->_parent = this; 2148 CFGLoop* ch = _child; 2149 if (ch == nullptr) { 2150 _child = cl; 2151 } else { 2152 while (ch->_sibling != nullptr) { ch = ch->_sibling; } 2153 ch->_sibling = cl; 2154 } 2155 } 2156 2157 //------------------------------compute_loop_depth----------------------------- 2158 // Store the loop depth in each CFGLoop object. 2159 // Recursively walk the children to do the same for them. 2160 void CFGLoop::compute_loop_depth(int depth) { 2161 _depth = depth; 2162 CFGLoop* ch = _child; 2163 while (ch != nullptr) { 2164 ch->compute_loop_depth(depth + 1); 2165 ch = ch->_sibling; 2166 } 2167 } 2168 2169 //------------------------------compute_freq----------------------------------- 2170 // Compute the frequency of each block and loop, relative to a single entry 2171 // into the dominating loop head. 2172 void CFGLoop::compute_freq() { 2173 // Bottom up traversal of loop tree (visit inner loops first.) 2174 // Set loop head frequency to 1.0, then transitively 2175 // compute frequency for all successors in the loop, 2176 // as well as for each exit edge. Inner loops are 2177 // treated as single blocks with loop exit targets 2178 // as the successor blocks. 2179 2180 // Nested loops first 2181 CFGLoop* ch = _child; 2182 while (ch != nullptr) { 2183 ch->compute_freq(); 2184 ch = ch->_sibling; 2185 } 2186 assert (_members.length() > 0, "no empty loops"); 2187 Block* hd = head(); 2188 hd->_freq = 1.0; 2189 for (int i = 0; i < _members.length(); i++) { 2190 CFGElement* s = _members.at(i); 2191 double freq = s->_freq; 2192 if (s->is_block()) { 2193 Block* b = s->as_Block(); 2194 for (uint j = 0; j < b->_num_succs; j++) { 2195 Block* sb = b->_succs[j]; 2196 update_succ_freq(sb, freq * b->succ_prob(j)); 2197 } 2198 } else { 2199 CFGLoop* lp = s->as_CFGLoop(); 2200 assert(lp->_parent == this, "immediate child"); 2201 for (int k = 0; k < lp->_exits.length(); k++) { 2202 Block* eb = lp->_exits.at(k).get_target(); 2203 double prob = lp->_exits.at(k).get_prob(); 2204 update_succ_freq(eb, freq * prob); 2205 } 2206 } 2207 } 2208 2209 // For all loops other than the outer, "method" loop, 2210 // sum and normalize the exit probability. The "method" loop 2211 // should keep the initial exit probability of 1, so that 2212 // inner blocks do not get erroneously scaled. 2213 if (_depth != 0) { 2214 // Total the exit probabilities for this loop. 2215 double exits_sum = 0.0f; 2216 for (int i = 0; i < _exits.length(); i++) { 2217 exits_sum += _exits.at(i).get_prob(); 2218 } 2219 2220 // Normalize the exit probabilities. Until now, the 2221 // probabilities estimate the possibility of exit per 2222 // a single loop iteration; afterward, they estimate 2223 // the probability of exit per loop entry. 2224 for (int i = 0; i < _exits.length(); i++) { 2225 Block* et = _exits.at(i).get_target(); 2226 float new_prob = 0.0f; 2227 if (_exits.at(i).get_prob() > 0.0f) { 2228 new_prob = _exits.at(i).get_prob() / exits_sum; 2229 } 2230 BlockProbPair bpp(et, new_prob); 2231 _exits.at_put(i, bpp); 2232 } 2233 2234 // Save the total, but guard against unreasonable probability, 2235 // as the value is used to estimate the loop trip count. 2236 // An infinite trip count would blur relative block 2237 // frequencies. 2238 if (exits_sum > 1.0f) exits_sum = 1.0; 2239 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN; 2240 _exit_prob = exits_sum; 2241 } 2242 } 2243 2244 //------------------------------succ_prob------------------------------------- 2245 // Determine the probability of reaching successor 'i' from the receiver block. 2246 float Block::succ_prob(uint i) { 2247 int eidx = end_idx(); 2248 Node *n = get_node(eidx); // Get ending Node 2249 2250 int op = n->Opcode(); 2251 if (n->is_Mach()) { 2252 if (n->is_MachNullCheck()) { 2253 // Can only reach here if called after lcm. The original Op_If is gone, 2254 // so we attempt to infer the probability from one or both of the 2255 // successor blocks. 2256 assert(_num_succs == 2, "expecting 2 successors of a null check"); 2257 // If either successor has only one predecessor, then the 2258 // probability estimate can be derived using the 2259 // relative frequency of the successor and this block. 2260 if (_succs[i]->num_preds() == 2) { 2261 return _succs[i]->_freq / _freq; 2262 } else if (_succs[1-i]->num_preds() == 2) { 2263 return 1 - (_succs[1-i]->_freq / _freq); 2264 } else { 2265 // Estimate using both successor frequencies 2266 float freq = _succs[i]->_freq; 2267 return freq / (freq + _succs[1-i]->_freq); 2268 } 2269 } 2270 op = n->as_Mach()->ideal_Opcode(); 2271 } 2272 2273 2274 // Switch on branch type 2275 switch( op ) { 2276 case Op_CountedLoopEnd: 2277 case Op_If: { 2278 assert (i < 2, "just checking"); 2279 // Conditionals pass on only part of their frequency 2280 float prob = n->as_MachIf()->_prob; 2281 assert(prob >= 0.0 && prob <= 1.0, "out of range probability"); 2282 // If succ[i] is the FALSE branch, invert path info 2283 if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) { 2284 return 1.0f - prob; // not taken 2285 } else { 2286 return prob; // taken 2287 } 2288 } 2289 2290 case Op_Jump: 2291 return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con]; 2292 2293 case Op_Catch: { 2294 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2295 if (ci->_con == CatchProjNode::fall_through_index) { 2296 // Fall-thru path gets the lion's share. 2297 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs; 2298 } else { 2299 // Presume exceptional paths are equally unlikely 2300 return PROB_UNLIKELY_MAG(5); 2301 } 2302 } 2303 2304 case Op_Root: 2305 case Op_Goto: 2306 // Pass frequency straight thru to target 2307 return 1.0f; 2308 2309 case Op_NeverBranch: { 2310 Node* succ = n->as_NeverBranch()->proj_out(0)->unique_ctrl_out(); 2311 if (_succs[i]->head() == succ) { 2312 return 1.0f; 2313 } 2314 return 0.0f; 2315 } 2316 2317 case Op_TailCall: 2318 case Op_TailJump: 2319 case Op_ForwardException: 2320 case Op_Return: 2321 case Op_Halt: 2322 case Op_Rethrow: 2323 // Do not push out freq to root block 2324 return 0.0f; 2325 2326 default: 2327 ShouldNotReachHere(); 2328 } 2329 2330 return 0.0f; 2331 } 2332 2333 //------------------------------num_fall_throughs----------------------------- 2334 // Return the number of fall-through candidates for a block 2335 int Block::num_fall_throughs() { 2336 int eidx = end_idx(); 2337 Node *n = get_node(eidx); // Get ending Node 2338 2339 int op = n->Opcode(); 2340 if (n->is_Mach()) { 2341 if (n->is_MachNullCheck()) { 2342 // In theory, either side can fall-thru, for simplicity sake, 2343 // let's say only the false branch can now. 2344 return 1; 2345 } 2346 op = n->as_Mach()->ideal_Opcode(); 2347 } 2348 2349 // Switch on branch type 2350 switch( op ) { 2351 case Op_CountedLoopEnd: 2352 case Op_If: 2353 return 2; 2354 2355 case Op_Root: 2356 case Op_Goto: 2357 return 1; 2358 2359 case Op_Catch: { 2360 for (uint i = 0; i < _num_succs; i++) { 2361 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2362 if (ci->_con == CatchProjNode::fall_through_index) { 2363 return 1; 2364 } 2365 } 2366 return 0; 2367 } 2368 2369 case Op_Jump: 2370 case Op_NeverBranch: 2371 case Op_TailCall: 2372 case Op_TailJump: 2373 case Op_ForwardException: 2374 case Op_Return: 2375 case Op_Halt: 2376 case Op_Rethrow: 2377 return 0; 2378 2379 default: 2380 ShouldNotReachHere(); 2381 } 2382 2383 return 0; 2384 } 2385 2386 //------------------------------succ_fall_through----------------------------- 2387 // Return true if a specific successor could be fall-through target. 2388 bool Block::succ_fall_through(uint i) { 2389 int eidx = end_idx(); 2390 Node *n = get_node(eidx); // Get ending Node 2391 2392 int op = n->Opcode(); 2393 if (n->is_Mach()) { 2394 if (n->is_MachNullCheck()) { 2395 // In theory, either side can fall-thru, for simplicity sake, 2396 // let's say only the false branch can now. 2397 return get_node(i + eidx + 1)->Opcode() == Op_IfFalse; 2398 } 2399 op = n->as_Mach()->ideal_Opcode(); 2400 } 2401 2402 // Switch on branch type 2403 switch( op ) { 2404 case Op_CountedLoopEnd: 2405 case Op_If: 2406 case Op_Root: 2407 case Op_Goto: 2408 return true; 2409 2410 case Op_Catch: { 2411 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2412 return ci->_con == CatchProjNode::fall_through_index; 2413 } 2414 2415 case Op_Jump: 2416 case Op_NeverBranch: 2417 case Op_TailCall: 2418 case Op_TailJump: 2419 case Op_ForwardException: 2420 case Op_Return: 2421 case Op_Halt: 2422 case Op_Rethrow: 2423 return false; 2424 2425 default: 2426 ShouldNotReachHere(); 2427 } 2428 2429 return false; 2430 } 2431 2432 //------------------------------update_uncommon_branch------------------------ 2433 // Update the probability of a two-branch to be uncommon 2434 void Block::update_uncommon_branch(Block* ub) { 2435 int eidx = end_idx(); 2436 Node *n = get_node(eidx); // Get ending Node 2437 2438 int op = n->as_Mach()->ideal_Opcode(); 2439 2440 assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If"); 2441 assert(num_fall_throughs() == 2, "must be a two way branch block"); 2442 2443 // Which successor is ub? 2444 uint s; 2445 for (s = 0; s <_num_succs; s++) { 2446 if (_succs[s] == ub) break; 2447 } 2448 assert(s < 2, "uncommon successor must be found"); 2449 2450 // If ub is the true path, make the proability small, else 2451 // ub is the false path, and make the probability large 2452 bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse); 2453 2454 // Get existing probability 2455 float p = n->as_MachIf()->_prob; 2456 2457 if (invert) p = 1.0 - p; 2458 if (p > PROB_MIN) { 2459 p = PROB_MIN; 2460 } 2461 if (invert) p = 1.0 - p; 2462 2463 n->as_MachIf()->_prob = p; 2464 } 2465 2466 //------------------------------update_succ_freq------------------------------- 2467 // Update the appropriate frequency associated with block 'b', a successor of 2468 // a block in this loop. 2469 void CFGLoop::update_succ_freq(Block* b, double freq) { 2470 if (b->_loop == this) { 2471 if (b == head()) { 2472 // back branch within the loop 2473 // Do nothing now, the loop carried frequency will be 2474 // adjust later in scale_freq(). 2475 } else { 2476 // simple branch within the loop 2477 b->_freq += freq; 2478 } 2479 } else if (!in_loop_nest(b)) { 2480 // branch is exit from this loop 2481 BlockProbPair bpp(b, freq); 2482 _exits.append(bpp); 2483 } else { 2484 // branch into nested loop 2485 CFGLoop* ch = b->_loop; 2486 ch->_freq += freq; 2487 } 2488 } 2489 2490 //------------------------------in_loop_nest----------------------------------- 2491 // Determine if block b is in the receiver's loop nest. 2492 bool CFGLoop::in_loop_nest(Block* b) { 2493 int depth = _depth; 2494 CFGLoop* b_loop = b->_loop; 2495 int b_depth = b_loop->_depth; 2496 if (depth == b_depth) { 2497 return true; 2498 } 2499 while (b_depth > depth) { 2500 b_loop = b_loop->_parent; 2501 b_depth = b_loop->_depth; 2502 } 2503 return b_loop == this; 2504 } 2505 2506 //------------------------------scale_freq------------------------------------- 2507 // Scale frequency of loops and blocks by trip counts from outer loops 2508 // Do a top down traversal of loop tree (visit outer loops first.) 2509 void CFGLoop::scale_freq() { 2510 double loop_freq = _freq * trip_count(); 2511 _freq = loop_freq; 2512 for (int i = 0; i < _members.length(); i++) { 2513 CFGElement* s = _members.at(i); 2514 double block_freq = s->_freq * loop_freq; 2515 if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY) 2516 block_freq = MIN_BLOCK_FREQUENCY; 2517 s->_freq = block_freq; 2518 } 2519 CFGLoop* ch = _child; 2520 while (ch != nullptr) { 2521 ch->scale_freq(); 2522 ch = ch->_sibling; 2523 } 2524 } 2525 2526 // Frequency of outer loop 2527 double CFGLoop::outer_loop_freq() const { 2528 if (_child != nullptr) { 2529 return _child->_freq; 2530 } 2531 return _freq; 2532 } 2533 2534 #ifndef PRODUCT 2535 //------------------------------dump_tree-------------------------------------- 2536 void CFGLoop::dump_tree() const { 2537 dump(); 2538 if (_child != nullptr) _child->dump_tree(); 2539 if (_sibling != nullptr) _sibling->dump_tree(); 2540 } 2541 2542 //------------------------------dump------------------------------------------- 2543 void CFGLoop::dump() const { 2544 for (int i = 0; i < _depth; i++) tty->print(" "); 2545 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n", 2546 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq); 2547 for (int i = 0; i < _depth; i++) tty->print(" "); 2548 tty->print(" members:"); 2549 int k = 0; 2550 for (int i = 0; i < _members.length(); i++) { 2551 if (k++ >= 6) { 2552 tty->print("\n "); 2553 for (int j = 0; j < _depth+1; j++) tty->print(" "); 2554 k = 0; 2555 } 2556 CFGElement *s = _members.at(i); 2557 if (s->is_block()) { 2558 Block *b = s->as_Block(); 2559 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq); 2560 } else { 2561 CFGLoop* lp = s->as_CFGLoop(); 2562 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq); 2563 } 2564 } 2565 tty->print("\n"); 2566 for (int i = 0; i < _depth; i++) tty->print(" "); 2567 tty->print(" exits: "); 2568 k = 0; 2569 for (int i = 0; i < _exits.length(); i++) { 2570 if (k++ >= 7) { 2571 tty->print("\n "); 2572 for (int j = 0; j < _depth+1; j++) tty->print(" "); 2573 k = 0; 2574 } 2575 Block *blk = _exits.at(i).get_target(); 2576 double prob = _exits.at(i).get_prob(); 2577 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100)); 2578 } 2579 tty->print("\n"); 2580 } 2581 #endif