1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "ci/ciInlineKlass.hpp" 27 #include "ci/ciUtilities.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "ci/ciObjArray.hpp" 30 #include "asm/register.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/c2/barrierSetC2.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/flatArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/convertnode.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/inlinetypenode.hpp" 43 #include "opto/intrinsicnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/parse.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "utilities/bitMap.inline.hpp" 55 #include "utilities/powerOfTwo.hpp" 56 #include "utilities/growableArray.hpp" 57 58 //----------------------------GraphKit----------------------------------------- 59 // Main utility constructor. 60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn) 61 : Phase(Phase::Parser), 62 _env(C->env()), 63 _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()), 64 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 65 { 66 assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled"); 67 _exceptions = jvms->map()->next_exception(); 68 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 69 set_jvms(jvms); 70 #ifdef ASSERT 71 if (_gvn.is_IterGVN() != nullptr) { 72 assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used"); 73 // Save the initial size of _for_igvn worklist for verification (see ~GraphKit) 74 _worklist_size = _gvn.C->igvn_worklist()->size(); 75 } 76 #endif 77 } 78 79 // Private constructor for parser. 80 GraphKit::GraphKit() 81 : Phase(Phase::Parser), 82 _env(C->env()), 83 _gvn(*C->initial_gvn()), 84 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 85 { 86 _exceptions = nullptr; 87 set_map(nullptr); 88 debug_only(_sp = -99); 89 debug_only(set_bci(-99)); 90 } 91 92 93 94 //---------------------------clean_stack--------------------------------------- 95 // Clear away rubbish from the stack area of the JVM state. 96 // This destroys any arguments that may be waiting on the stack. 97 void GraphKit::clean_stack(int from_sp) { 98 SafePointNode* map = this->map(); 99 JVMState* jvms = this->jvms(); 100 int stk_size = jvms->stk_size(); 101 int stkoff = jvms->stkoff(); 102 Node* top = this->top(); 103 for (int i = from_sp; i < stk_size; i++) { 104 if (map->in(stkoff + i) != top) { 105 map->set_req(stkoff + i, top); 106 } 107 } 108 } 109 110 111 //--------------------------------sync_jvms----------------------------------- 112 // Make sure our current jvms agrees with our parse state. 113 JVMState* GraphKit::sync_jvms() const { 114 JVMState* jvms = this->jvms(); 115 jvms->set_bci(bci()); // Record the new bci in the JVMState 116 jvms->set_sp(sp()); // Record the new sp in the JVMState 117 assert(jvms_in_sync(), "jvms is now in sync"); 118 return jvms; 119 } 120 121 //--------------------------------sync_jvms_for_reexecute--------------------- 122 // Make sure our current jvms agrees with our parse state. This version 123 // uses the reexecute_sp for reexecuting bytecodes. 124 JVMState* GraphKit::sync_jvms_for_reexecute() { 125 JVMState* jvms = this->jvms(); 126 jvms->set_bci(bci()); // Record the new bci in the JVMState 127 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 128 return jvms; 129 } 130 131 #ifdef ASSERT 132 bool GraphKit::jvms_in_sync() const { 133 Parse* parse = is_Parse(); 134 if (parse == nullptr) { 135 if (bci() != jvms()->bci()) return false; 136 if (sp() != (int)jvms()->sp()) return false; 137 return true; 138 } 139 if (jvms()->method() != parse->method()) return false; 140 if (jvms()->bci() != parse->bci()) return false; 141 int jvms_sp = jvms()->sp(); 142 if (jvms_sp != parse->sp()) return false; 143 int jvms_depth = jvms()->depth(); 144 if (jvms_depth != parse->depth()) return false; 145 return true; 146 } 147 148 // Local helper checks for special internal merge points 149 // used to accumulate and merge exception states. 150 // They are marked by the region's in(0) edge being the map itself. 151 // Such merge points must never "escape" into the parser at large, 152 // until they have been handed to gvn.transform. 153 static bool is_hidden_merge(Node* reg) { 154 if (reg == nullptr) return false; 155 if (reg->is_Phi()) { 156 reg = reg->in(0); 157 if (reg == nullptr) return false; 158 } 159 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 160 } 161 162 void GraphKit::verify_map() const { 163 if (map() == nullptr) return; // null map is OK 164 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 165 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 166 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 167 } 168 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 170 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 171 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 172 } 173 #endif 174 175 //---------------------------stop_and_kill_map--------------------------------- 176 // Set _map to null, signalling a stop to further bytecode execution. 177 // First smash the current map's control to a constant, to mark it dead. 178 void GraphKit::stop_and_kill_map() { 179 SafePointNode* dead_map = stop(); 180 if (dead_map != nullptr) { 181 dead_map->disconnect_inputs(C); // Mark the map as killed. 182 assert(dead_map->is_killed(), "must be so marked"); 183 } 184 } 185 186 187 //--------------------------------stopped-------------------------------------- 188 // Tell if _map is null, or control is top. 189 bool GraphKit::stopped() { 190 if (map() == nullptr) return true; 191 else if (control() == top()) return true; 192 else return false; 193 } 194 195 196 //-----------------------------has_exception_handler---------------------------------- 197 // Tell if this method or any caller method has exception handlers. 198 bool GraphKit::has_exception_handler() { 199 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 200 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 201 return true; 202 } 203 } 204 return false; 205 } 206 207 //------------------------------save_ex_oop------------------------------------ 208 // Save an exception without blowing stack contents or other JVM state. 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 210 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 211 ex_map->add_req(ex_oop); 212 debug_only(verify_exception_state(ex_map)); 213 } 214 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 216 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 217 Node* ex_oop = ex_map->in(ex_map->req()-1); 218 if (clear_it) ex_map->del_req(ex_map->req()-1); 219 return ex_oop; 220 } 221 222 //-----------------------------saved_ex_oop------------------------------------ 223 // Recover a saved exception from its map. 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 225 return common_saved_ex_oop(ex_map, false); 226 } 227 228 //--------------------------clear_saved_ex_oop--------------------------------- 229 // Erase a previously saved exception from its map. 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 231 return common_saved_ex_oop(ex_map, true); 232 } 233 234 #ifdef ASSERT 235 //---------------------------has_saved_ex_oop---------------------------------- 236 // Erase a previously saved exception from its map. 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 238 return ex_map->req() == ex_map->jvms()->endoff()+1; 239 } 240 #endif 241 242 //-------------------------make_exception_state-------------------------------- 243 // Turn the current JVM state into an exception state, appending the ex_oop. 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 245 sync_jvms(); 246 SafePointNode* ex_map = stop(); // do not manipulate this map any more 247 set_saved_ex_oop(ex_map, ex_oop); 248 return ex_map; 249 } 250 251 252 //--------------------------add_exception_state-------------------------------- 253 // Add an exception to my list of exceptions. 254 void GraphKit::add_exception_state(SafePointNode* ex_map) { 255 if (ex_map == nullptr || ex_map->control() == top()) { 256 return; 257 } 258 #ifdef ASSERT 259 verify_exception_state(ex_map); 260 if (has_exceptions()) { 261 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 262 } 263 #endif 264 265 // If there is already an exception of exactly this type, merge with it. 266 // In particular, null-checks and other low-level exceptions common up here. 267 Node* ex_oop = saved_ex_oop(ex_map); 268 const Type* ex_type = _gvn.type(ex_oop); 269 if (ex_oop == top()) { 270 // No action needed. 271 return; 272 } 273 assert(ex_type->isa_instptr(), "exception must be an instance"); 274 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 275 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 276 // We check sp also because call bytecodes can generate exceptions 277 // both before and after arguments are popped! 278 if (ex_type2 == ex_type 279 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 280 combine_exception_states(ex_map, e2); 281 return; 282 } 283 } 284 285 // No pre-existing exception of the same type. Chain it on the list. 286 push_exception_state(ex_map); 287 } 288 289 //-----------------------add_exception_states_from----------------------------- 290 void GraphKit::add_exception_states_from(JVMState* jvms) { 291 SafePointNode* ex_map = jvms->map()->next_exception(); 292 if (ex_map != nullptr) { 293 jvms->map()->set_next_exception(nullptr); 294 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 295 next_map = ex_map->next_exception(); 296 ex_map->set_next_exception(nullptr); 297 add_exception_state(ex_map); 298 } 299 } 300 } 301 302 //-----------------------transfer_exceptions_into_jvms------------------------- 303 JVMState* GraphKit::transfer_exceptions_into_jvms() { 304 if (map() == nullptr) { 305 // We need a JVMS to carry the exceptions, but the map has gone away. 306 // Create a scratch JVMS, cloned from any of the exception states... 307 if (has_exceptions()) { 308 _map = _exceptions; 309 _map = clone_map(); 310 _map->set_next_exception(nullptr); 311 clear_saved_ex_oop(_map); 312 debug_only(verify_map()); 313 } else { 314 // ...or created from scratch 315 JVMState* jvms = new (C) JVMState(_method, nullptr); 316 jvms->set_bci(_bci); 317 jvms->set_sp(_sp); 318 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 319 set_jvms(jvms); 320 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 321 set_all_memory(top()); 322 while (map()->req() < jvms->endoff()) map()->add_req(top()); 323 } 324 // (This is a kludge, in case you didn't notice.) 325 set_control(top()); 326 } 327 JVMState* jvms = sync_jvms(); 328 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 329 jvms->map()->set_next_exception(_exceptions); 330 _exceptions = nullptr; // done with this set of exceptions 331 return jvms; 332 } 333 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 335 assert(is_hidden_merge(dstphi), "must be a special merge node"); 336 assert(is_hidden_merge(srcphi), "must be a special merge node"); 337 uint limit = srcphi->req(); 338 for (uint i = PhiNode::Input; i < limit; i++) { 339 dstphi->add_req(srcphi->in(i)); 340 } 341 } 342 static inline void add_one_req(Node* dstphi, Node* src) { 343 assert(is_hidden_merge(dstphi), "must be a special merge node"); 344 assert(!is_hidden_merge(src), "must not be a special merge node"); 345 dstphi->add_req(src); 346 } 347 348 //-----------------------combine_exception_states------------------------------ 349 // This helper function combines exception states by building phis on a 350 // specially marked state-merging region. These regions and phis are 351 // untransformed, and can build up gradually. The region is marked by 352 // having a control input of its exception map, rather than null. Such 353 // regions do not appear except in this function, and in use_exception_state. 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 355 if (failing_internal()) { 356 return; // dying anyway... 357 } 358 JVMState* ex_jvms = ex_map->_jvms; 359 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 360 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 361 // TODO 8325632 Re-enable 362 // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 363 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 364 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 365 assert(ex_map->req() == phi_map->req(), "matching maps"); 366 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 367 Node* hidden_merge_mark = root(); 368 Node* region = phi_map->control(); 369 MergeMemNode* phi_mem = phi_map->merged_memory(); 370 MergeMemNode* ex_mem = ex_map->merged_memory(); 371 if (region->in(0) != hidden_merge_mark) { 372 // The control input is not (yet) a specially-marked region in phi_map. 373 // Make it so, and build some phis. 374 region = new RegionNode(2); 375 _gvn.set_type(region, Type::CONTROL); 376 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 377 region->init_req(1, phi_map->control()); 378 phi_map->set_control(region); 379 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 380 record_for_igvn(io_phi); 381 _gvn.set_type(io_phi, Type::ABIO); 382 phi_map->set_i_o(io_phi); 383 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 384 Node* m = mms.memory(); 385 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 386 record_for_igvn(m_phi); 387 _gvn.set_type(m_phi, Type::MEMORY); 388 mms.set_memory(m_phi); 389 } 390 } 391 392 // Either or both of phi_map and ex_map might already be converted into phis. 393 Node* ex_control = ex_map->control(); 394 // if there is special marking on ex_map also, we add multiple edges from src 395 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 396 // how wide was the destination phi_map, originally? 397 uint orig_width = region->req(); 398 399 if (add_multiple) { 400 add_n_reqs(region, ex_control); 401 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 402 } else { 403 // ex_map has no merges, so we just add single edges everywhere 404 add_one_req(region, ex_control); 405 add_one_req(phi_map->i_o(), ex_map->i_o()); 406 } 407 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 408 if (mms.is_empty()) { 409 // get a copy of the base memory, and patch some inputs into it 410 const TypePtr* adr_type = mms.adr_type(C); 411 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 412 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 413 mms.set_memory(phi); 414 // Prepare to append interesting stuff onto the newly sliced phi: 415 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 416 } 417 // Append stuff from ex_map: 418 if (add_multiple) { 419 add_n_reqs(mms.memory(), mms.memory2()); 420 } else { 421 add_one_req(mms.memory(), mms.memory2()); 422 } 423 } 424 uint limit = ex_map->req(); 425 for (uint i = TypeFunc::Parms; i < limit; i++) { 426 // Skip everything in the JVMS after tos. (The ex_oop follows.) 427 if (i == tos) i = ex_jvms->monoff(); 428 Node* src = ex_map->in(i); 429 Node* dst = phi_map->in(i); 430 if (src != dst) { 431 PhiNode* phi; 432 if (dst->in(0) != region) { 433 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 434 record_for_igvn(phi); 435 _gvn.set_type(phi, phi->type()); 436 phi_map->set_req(i, dst); 437 // Prepare to append interesting stuff onto the new phi: 438 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 439 } else { 440 assert(dst->is_Phi(), "nobody else uses a hidden region"); 441 phi = dst->as_Phi(); 442 } 443 if (add_multiple && src->in(0) == ex_control) { 444 // Both are phis. 445 add_n_reqs(dst, src); 446 } else { 447 while (dst->req() < region->req()) add_one_req(dst, src); 448 } 449 const Type* srctype = _gvn.type(src); 450 if (phi->type() != srctype) { 451 const Type* dsttype = phi->type()->meet_speculative(srctype); 452 if (phi->type() != dsttype) { 453 phi->set_type(dsttype); 454 _gvn.set_type(phi, dsttype); 455 } 456 } 457 } 458 } 459 phi_map->merge_replaced_nodes_with(ex_map); 460 } 461 462 //--------------------------use_exception_state-------------------------------- 463 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 464 if (failing_internal()) { stop(); return top(); } 465 Node* region = phi_map->control(); 466 Node* hidden_merge_mark = root(); 467 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 468 Node* ex_oop = clear_saved_ex_oop(phi_map); 469 if (region->in(0) == hidden_merge_mark) { 470 // Special marking for internal ex-states. Process the phis now. 471 region->set_req(0, region); // now it's an ordinary region 472 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 473 // Note: Setting the jvms also sets the bci and sp. 474 set_control(_gvn.transform(region)); 475 uint tos = jvms()->stkoff() + sp(); 476 for (uint i = 1; i < tos; i++) { 477 Node* x = phi_map->in(i); 478 if (x->in(0) == region) { 479 assert(x->is_Phi(), "expected a special phi"); 480 phi_map->set_req(i, _gvn.transform(x)); 481 } 482 } 483 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 484 Node* x = mms.memory(); 485 if (x->in(0) == region) { 486 assert(x->is_Phi(), "nobody else uses a hidden region"); 487 mms.set_memory(_gvn.transform(x)); 488 } 489 } 490 if (ex_oop->in(0) == region) { 491 assert(ex_oop->is_Phi(), "expected a special phi"); 492 ex_oop = _gvn.transform(ex_oop); 493 } 494 } else { 495 set_jvms(phi_map->jvms()); 496 } 497 498 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 499 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 500 return ex_oop; 501 } 502 503 //---------------------------------java_bc------------------------------------- 504 Bytecodes::Code GraphKit::java_bc() const { 505 ciMethod* method = this->method(); 506 int bci = this->bci(); 507 if (method != nullptr && bci != InvocationEntryBci) 508 return method->java_code_at_bci(bci); 509 else 510 return Bytecodes::_illegal; 511 } 512 513 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 514 bool must_throw) { 515 // if the exception capability is set, then we will generate code 516 // to check the JavaThread.should_post_on_exceptions flag to see 517 // if we actually need to report exception events (for this 518 // thread). If we don't need to report exception events, we will 519 // take the normal fast path provided by add_exception_events. If 520 // exception event reporting is enabled for this thread, we will 521 // take the uncommon_trap in the BuildCutout below. 522 523 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 524 Node* jthread = _gvn.transform(new ThreadLocalNode()); 525 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 526 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 527 528 // Test the should_post_on_exceptions_flag vs. 0 529 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 530 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 531 532 // Branch to slow_path if should_post_on_exceptions_flag was true 533 { BuildCutout unless(this, tst, PROB_MAX); 534 // Do not try anything fancy if we're notifying the VM on every throw. 535 // Cf. case Bytecodes::_athrow in parse2.cpp. 536 uncommon_trap(reason, Deoptimization::Action_none, 537 (ciKlass*)nullptr, (char*)nullptr, must_throw); 538 } 539 540 } 541 542 //------------------------------builtin_throw---------------------------------- 543 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 544 builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true); 545 } 546 547 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, 548 ciInstance* ex_obj, 549 bool allow_too_many_traps) { 550 // If this throw happens frequently, an uncommon trap might cause 551 // a performance pothole. If there is a local exception handler, 552 // and if this particular bytecode appears to be deoptimizing often, 553 // let us handle the throw inline, with a preconstructed instance. 554 // Note: If the deopt count has blown up, the uncommon trap 555 // runtime is going to flush this nmethod, not matter what. 556 if (is_builtin_throw_hot(reason)) { 557 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 558 // If the throw is local, we use a pre-existing instance and 559 // punt on the backtrace. This would lead to a missing backtrace 560 // (a repeat of 4292742) if the backtrace object is ever asked 561 // for its backtrace. 562 // Fixing this remaining case of 4292742 requires some flavor of 563 // escape analysis. Leave that for the future. 564 if (env()->jvmti_can_post_on_exceptions()) { 565 // check if we must post exception events, take uncommon trap if so 566 uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/); 567 // here if should_post_on_exceptions is false 568 // continue on with the normal codegen 569 } 570 571 // Cheat with a preallocated exception object. 572 if (C->log() != nullptr) 573 C->log()->elem("hot_throw preallocated='1' reason='%s'", 574 Deoptimization::trap_reason_name(reason)); 575 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 576 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 577 578 // Clear the detail message of the preallocated exception object. 579 // Weblogic sometimes mutates the detail message of exceptions 580 // using reflection. 581 int offset = java_lang_Throwable::get_detailMessage_offset(); 582 const TypePtr* adr_typ = ex_con->add_offset(offset); 583 584 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 585 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 586 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 587 588 if (!method()->has_exception_handlers()) { 589 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 590 // This prevents issues with exception handling and late inlining. 591 set_sp(0); 592 clean_stack(0); 593 } 594 595 add_exception_state(make_exception_state(ex_node)); 596 return; 597 } else if (builtin_throw_too_many_traps(reason, ex_obj)) { 598 // We cannot afford to take too many traps here. Suffer in the interpreter instead. 599 assert(allow_too_many_traps, "not allowed"); 600 if (C->log() != nullptr) { 601 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 602 Deoptimization::trap_reason_name(reason), 603 C->trap_count(reason)); 604 } 605 uncommon_trap(reason, Deoptimization::Action_none, 606 (ciKlass*) nullptr, (char*) nullptr, 607 true /*must_throw*/); 608 return; 609 } 610 } 611 612 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 613 // It won't be much cheaper than bailing to the interp., since we'll 614 // have to pass up all the debug-info, and the runtime will have to 615 // create the stack trace. 616 617 // Usual case: Bail to interpreter. 618 // Reserve the right to recompile if we haven't seen anything yet. 619 620 // "must_throw" prunes the JVM state to include only the stack, if there 621 // are no local exception handlers. This should cut down on register 622 // allocation time and code size, by drastically reducing the number 623 // of in-edges on the call to the uncommon trap. 624 uncommon_trap(reason, Deoptimization::Action_maybe_recompile, 625 (ciKlass*) nullptr, (char*) nullptr, 626 true /*must_throw*/); 627 } 628 629 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) { 630 // If this particular condition has not yet happened at this 631 // bytecode, then use the uncommon trap mechanism, and allow for 632 // a future recompilation if several traps occur here. 633 // If the throw is hot, try to use a more complicated inline mechanism 634 // which keeps execution inside the compiled code. 635 if (ProfileTraps) { 636 if (too_many_traps(reason)) { 637 return true; 638 } 639 // (If there is no MDO at all, assume it is early in 640 // execution, and that any deopts are part of the 641 // startup transient, and don't need to be remembered.) 642 643 // Also, if there is a local exception handler, treat all throws 644 // as hot if there has been at least one in this method. 645 if (C->trap_count(reason) != 0 && 646 method()->method_data()->trap_count(reason) != 0 && 647 has_exception_handler()) { 648 return true; 649 } 650 } 651 return false; 652 } 653 654 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason, 655 ciInstance* ex_obj) { 656 if (is_builtin_throw_hot(reason)) { 657 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 658 return false; // no traps; throws preallocated exception instead 659 } 660 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 661 if (method()->method_data()->trap_recompiled_at(bci(), m) || 662 C->too_many_traps(reason)) { 663 return true; 664 } 665 } 666 return false; 667 } 668 669 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const { 670 // Preallocated exception objects to use when we don't need the backtrace. 671 switch (reason) { 672 case Deoptimization::Reason_null_check: 673 return env()->NullPointerException_instance(); 674 case Deoptimization::Reason_div0_check: 675 return env()->ArithmeticException_instance(); 676 case Deoptimization::Reason_range_check: 677 return env()->ArrayIndexOutOfBoundsException_instance(); 678 case Deoptimization::Reason_class_check: 679 return env()->ClassCastException_instance(); 680 case Deoptimization::Reason_array_check: 681 return env()->ArrayStoreException_instance(); 682 default: 683 return nullptr; 684 } 685 } 686 687 //----------------------------PreserveJVMState--------------------------------- 688 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 689 debug_only(kit->verify_map()); 690 _kit = kit; 691 _map = kit->map(); // preserve the map 692 _sp = kit->sp(); 693 kit->set_map(clone_map ? kit->clone_map() : nullptr); 694 #ifdef ASSERT 695 _bci = kit->bci(); 696 Parse* parser = kit->is_Parse(); 697 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 698 _block = block; 699 #endif 700 } 701 PreserveJVMState::~PreserveJVMState() { 702 GraphKit* kit = _kit; 703 #ifdef ASSERT 704 assert(kit->bci() == _bci, "bci must not shift"); 705 Parse* parser = kit->is_Parse(); 706 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 707 assert(block == _block, "block must not shift"); 708 #endif 709 kit->set_map(_map); 710 kit->set_sp(_sp); 711 } 712 713 714 //-----------------------------BuildCutout------------------------------------- 715 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 716 : PreserveJVMState(kit) 717 { 718 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 719 SafePointNode* outer_map = _map; // preserved map is caller's 720 SafePointNode* inner_map = kit->map(); 721 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 722 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 723 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 724 } 725 BuildCutout::~BuildCutout() { 726 GraphKit* kit = _kit; 727 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 728 } 729 730 //---------------------------PreserveReexecuteState---------------------------- 731 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 732 assert(!kit->stopped(), "must call stopped() before"); 733 _kit = kit; 734 _sp = kit->sp(); 735 _reexecute = kit->jvms()->_reexecute; 736 } 737 PreserveReexecuteState::~PreserveReexecuteState() { 738 if (_kit->stopped()) return; 739 _kit->jvms()->_reexecute = _reexecute; 740 _kit->set_sp(_sp); 741 } 742 743 //------------------------------clone_map-------------------------------------- 744 // Implementation of PreserveJVMState 745 // 746 // Only clone_map(...) here. If this function is only used in the 747 // PreserveJVMState class we may want to get rid of this extra 748 // function eventually and do it all there. 749 750 SafePointNode* GraphKit::clone_map() { 751 if (map() == nullptr) return nullptr; 752 753 // Clone the memory edge first 754 Node* mem = MergeMemNode::make(map()->memory()); 755 gvn().set_type_bottom(mem); 756 757 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 758 JVMState* jvms = this->jvms(); 759 JVMState* clonejvms = jvms->clone_shallow(C); 760 clonemap->set_memory(mem); 761 clonemap->set_jvms(clonejvms); 762 clonejvms->set_map(clonemap); 763 record_for_igvn(clonemap); 764 gvn().set_type_bottom(clonemap); 765 return clonemap; 766 } 767 768 //-----------------------------destruct_map_clone------------------------------ 769 // 770 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 771 // to destruct/free/delete in the exact opposite order as clone_map(). 772 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 773 if (sfp == nullptr) return; 774 775 Node* mem = sfp->memory(); 776 JVMState* jvms = sfp->jvms(); 777 778 if (jvms != nullptr) { 779 delete jvms; 780 } 781 782 remove_for_igvn(sfp); 783 gvn().clear_type(sfp); 784 sfp->destruct(&_gvn); 785 786 if (mem != nullptr) { 787 gvn().clear_type(mem); 788 mem->destruct(&_gvn); 789 } 790 } 791 792 //-----------------------------set_map_clone----------------------------------- 793 void GraphKit::set_map_clone(SafePointNode* m) { 794 _map = m; 795 _map = clone_map(); 796 _map->set_next_exception(nullptr); 797 debug_only(verify_map()); 798 } 799 800 801 //----------------------------kill_dead_locals--------------------------------- 802 // Detect any locals which are known to be dead, and force them to top. 803 void GraphKit::kill_dead_locals() { 804 // Consult the liveness information for the locals. If any 805 // of them are unused, then they can be replaced by top(). This 806 // should help register allocation time and cut down on the size 807 // of the deoptimization information. 808 809 // This call is made from many of the bytecode handling 810 // subroutines called from the Big Switch in do_one_bytecode. 811 // Every bytecode which might include a slow path is responsible 812 // for killing its dead locals. The more consistent we 813 // are about killing deads, the fewer useless phis will be 814 // constructed for them at various merge points. 815 816 // bci can be -1 (InvocationEntryBci). We return the entry 817 // liveness for the method. 818 819 if (method() == nullptr || method()->code_size() == 0) { 820 // We are building a graph for a call to a native method. 821 // All locals are live. 822 return; 823 } 824 825 ResourceMark rm; 826 827 // Consult the liveness information for the locals. If any 828 // of them are unused, then they can be replaced by top(). This 829 // should help register allocation time and cut down on the size 830 // of the deoptimization information. 831 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 832 833 int len = (int)live_locals.size(); 834 assert(len <= jvms()->loc_size(), "too many live locals"); 835 for (int local = 0; local < len; local++) { 836 if (!live_locals.at(local)) { 837 set_local(local, top()); 838 } 839 } 840 } 841 842 #ifdef ASSERT 843 //-------------------------dead_locals_are_killed------------------------------ 844 // Return true if all dead locals are set to top in the map. 845 // Used to assert "clean" debug info at various points. 846 bool GraphKit::dead_locals_are_killed() { 847 if (method() == nullptr || method()->code_size() == 0) { 848 // No locals need to be dead, so all is as it should be. 849 return true; 850 } 851 852 // Make sure somebody called kill_dead_locals upstream. 853 ResourceMark rm; 854 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 855 if (jvms->loc_size() == 0) continue; // no locals to consult 856 SafePointNode* map = jvms->map(); 857 ciMethod* method = jvms->method(); 858 int bci = jvms->bci(); 859 if (jvms == this->jvms()) { 860 bci = this->bci(); // it might not yet be synched 861 } 862 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 863 int len = (int)live_locals.size(); 864 if (!live_locals.is_valid() || len == 0) 865 // This method is trivial, or is poisoned by a breakpoint. 866 return true; 867 assert(len == jvms->loc_size(), "live map consistent with locals map"); 868 for (int local = 0; local < len; local++) { 869 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 870 if (PrintMiscellaneous && (Verbose || WizardMode)) { 871 tty->print_cr("Zombie local %d: ", local); 872 jvms->dump(); 873 } 874 return false; 875 } 876 } 877 } 878 return true; 879 } 880 881 #endif //ASSERT 882 883 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 884 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 885 ciMethod* cur_method = jvms->method(); 886 int cur_bci = jvms->bci(); 887 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 888 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 889 return Interpreter::bytecode_should_reexecute(code) || 890 (is_anewarray && (code == Bytecodes::_multianewarray)); 891 // Reexecute _multianewarray bytecode which was replaced with 892 // sequence of [a]newarray. See Parse::do_multianewarray(). 893 // 894 // Note: interpreter should not have it set since this optimization 895 // is limited by dimensions and guarded by flag so in some cases 896 // multianewarray() runtime calls will be generated and 897 // the bytecode should not be reexecutes (stack will not be reset). 898 } else { 899 return false; 900 } 901 } 902 903 // Helper function for adding JVMState and debug information to node 904 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 905 // Add the safepoint edges to the call (or other safepoint). 906 907 // Make sure dead locals are set to top. This 908 // should help register allocation time and cut down on the size 909 // of the deoptimization information. 910 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 911 912 // Walk the inline list to fill in the correct set of JVMState's 913 // Also fill in the associated edges for each JVMState. 914 915 // If the bytecode needs to be reexecuted we need to put 916 // the arguments back on the stack. 917 const bool should_reexecute = jvms()->should_reexecute(); 918 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 919 920 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 921 // undefined if the bci is different. This is normal for Parse but it 922 // should not happen for LibraryCallKit because only one bci is processed. 923 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 924 "in LibraryCallKit the reexecute bit should not change"); 925 926 // If we are guaranteed to throw, we can prune everything but the 927 // input to the current bytecode. 928 bool can_prune_locals = false; 929 uint stack_slots_not_pruned = 0; 930 int inputs = 0, depth = 0; 931 if (must_throw) { 932 assert(method() == youngest_jvms->method(), "sanity"); 933 if (compute_stack_effects(inputs, depth)) { 934 can_prune_locals = true; 935 stack_slots_not_pruned = inputs; 936 } 937 } 938 939 if (env()->should_retain_local_variables()) { 940 // At any safepoint, this method can get breakpointed, which would 941 // then require an immediate deoptimization. 942 can_prune_locals = false; // do not prune locals 943 stack_slots_not_pruned = 0; 944 } 945 946 // do not scribble on the input jvms 947 JVMState* out_jvms = youngest_jvms->clone_deep(C); 948 call->set_jvms(out_jvms); // Start jvms list for call node 949 950 // For a known set of bytecodes, the interpreter should reexecute them if 951 // deoptimization happens. We set the reexecute state for them here 952 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 953 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 954 #ifdef ASSERT 955 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 956 assert(method() == youngest_jvms->method(), "sanity"); 957 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 958 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 959 #endif // ASSERT 960 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 961 } 962 963 // Presize the call: 964 DEBUG_ONLY(uint non_debug_edges = call->req()); 965 call->add_req_batch(top(), youngest_jvms->debug_depth()); 966 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 967 968 // Set up edges so that the call looks like this: 969 // Call [state:] ctl io mem fptr retadr 970 // [parms:] parm0 ... parmN 971 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 972 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 973 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 974 // Note that caller debug info precedes callee debug info. 975 976 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 977 uint debug_ptr = call->req(); 978 979 // Loop over the map input edges associated with jvms, add them 980 // to the call node, & reset all offsets to match call node array. 981 982 JVMState* callee_jvms = nullptr; 983 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 984 uint debug_end = debug_ptr; 985 uint debug_start = debug_ptr - in_jvms->debug_size(); 986 debug_ptr = debug_start; // back up the ptr 987 988 uint p = debug_start; // walks forward in [debug_start, debug_end) 989 uint j, k, l; 990 SafePointNode* in_map = in_jvms->map(); 991 out_jvms->set_map(call); 992 993 if (can_prune_locals) { 994 assert(in_jvms->method() == out_jvms->method(), "sanity"); 995 // If the current throw can reach an exception handler in this JVMS, 996 // then we must keep everything live that can reach that handler. 997 // As a quick and dirty approximation, we look for any handlers at all. 998 if (in_jvms->method()->has_exception_handlers()) { 999 can_prune_locals = false; 1000 } 1001 } 1002 1003 // Add the Locals 1004 k = in_jvms->locoff(); 1005 l = in_jvms->loc_size(); 1006 out_jvms->set_locoff(p); 1007 if (!can_prune_locals) { 1008 for (j = 0; j < l; j++) { 1009 call->set_req(p++, in_map->in(k + j)); 1010 } 1011 } else { 1012 p += l; // already set to top above by add_req_batch 1013 } 1014 1015 // Add the Expression Stack 1016 k = in_jvms->stkoff(); 1017 l = in_jvms->sp(); 1018 out_jvms->set_stkoff(p); 1019 if (!can_prune_locals) { 1020 for (j = 0; j < l; j++) { 1021 call->set_req(p++, in_map->in(k + j)); 1022 } 1023 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 1024 // Divide stack into {S0,...,S1}, where S0 is set to top. 1025 uint s1 = stack_slots_not_pruned; 1026 stack_slots_not_pruned = 0; // for next iteration 1027 if (s1 > l) s1 = l; 1028 uint s0 = l - s1; 1029 p += s0; // skip the tops preinstalled by add_req_batch 1030 for (j = s0; j < l; j++) 1031 call->set_req(p++, in_map->in(k+j)); 1032 } else { 1033 p += l; // already set to top above by add_req_batch 1034 } 1035 1036 // Add the Monitors 1037 k = in_jvms->monoff(); 1038 l = in_jvms->mon_size(); 1039 out_jvms->set_monoff(p); 1040 for (j = 0; j < l; j++) 1041 call->set_req(p++, in_map->in(k+j)); 1042 1043 // Copy any scalar object fields. 1044 k = in_jvms->scloff(); 1045 l = in_jvms->scl_size(); 1046 out_jvms->set_scloff(p); 1047 for (j = 0; j < l; j++) 1048 call->set_req(p++, in_map->in(k+j)); 1049 1050 // Finish the new jvms. 1051 out_jvms->set_endoff(p); 1052 1053 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1054 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1055 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1056 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1057 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1058 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1059 1060 // Update the two tail pointers in parallel. 1061 callee_jvms = out_jvms; 1062 out_jvms = out_jvms->caller(); 1063 in_jvms = in_jvms->caller(); 1064 } 1065 1066 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1067 1068 // Test the correctness of JVMState::debug_xxx accessors: 1069 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1070 assert(call->jvms()->debug_end() == call->req(), ""); 1071 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1072 } 1073 1074 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1075 Bytecodes::Code code = java_bc(); 1076 if (code == Bytecodes::_wide) { 1077 code = method()->java_code_at_bci(bci() + 1); 1078 } 1079 1080 if (code != Bytecodes::_illegal) { 1081 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1082 } 1083 1084 auto rsize = [&]() { 1085 assert(code != Bytecodes::_illegal, "code is illegal!"); 1086 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1087 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1088 }; 1089 1090 switch (code) { 1091 case Bytecodes::_illegal: 1092 return false; 1093 1094 case Bytecodes::_ldc: 1095 case Bytecodes::_ldc_w: 1096 case Bytecodes::_ldc2_w: 1097 inputs = 0; 1098 break; 1099 1100 case Bytecodes::_dup: inputs = 1; break; 1101 case Bytecodes::_dup_x1: inputs = 2; break; 1102 case Bytecodes::_dup_x2: inputs = 3; break; 1103 case Bytecodes::_dup2: inputs = 2; break; 1104 case Bytecodes::_dup2_x1: inputs = 3; break; 1105 case Bytecodes::_dup2_x2: inputs = 4; break; 1106 case Bytecodes::_swap: inputs = 2; break; 1107 case Bytecodes::_arraylength: inputs = 1; break; 1108 1109 case Bytecodes::_getstatic: 1110 case Bytecodes::_putstatic: 1111 case Bytecodes::_getfield: 1112 case Bytecodes::_putfield: 1113 { 1114 bool ignored_will_link; 1115 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1116 int size = field->type()->size(); 1117 bool is_get = (depth >= 0), is_static = (depth & 1); 1118 inputs = (is_static ? 0 : 1); 1119 if (is_get) { 1120 depth = size - inputs; 1121 } else { 1122 inputs += size; // putxxx pops the value from the stack 1123 depth = - inputs; 1124 } 1125 } 1126 break; 1127 1128 case Bytecodes::_invokevirtual: 1129 case Bytecodes::_invokespecial: 1130 case Bytecodes::_invokestatic: 1131 case Bytecodes::_invokedynamic: 1132 case Bytecodes::_invokeinterface: 1133 { 1134 bool ignored_will_link; 1135 ciSignature* declared_signature = nullptr; 1136 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1137 assert(declared_signature != nullptr, "cannot be null"); 1138 inputs = declared_signature->arg_size_for_bc(code); 1139 int size = declared_signature->return_type()->size(); 1140 depth = size - inputs; 1141 } 1142 break; 1143 1144 case Bytecodes::_multianewarray: 1145 { 1146 ciBytecodeStream iter(method()); 1147 iter.reset_to_bci(bci()); 1148 iter.next(); 1149 inputs = iter.get_dimensions(); 1150 assert(rsize() == 1, ""); 1151 depth = 1 - inputs; 1152 } 1153 break; 1154 1155 case Bytecodes::_ireturn: 1156 case Bytecodes::_lreturn: 1157 case Bytecodes::_freturn: 1158 case Bytecodes::_dreturn: 1159 case Bytecodes::_areturn: 1160 assert(rsize() == -depth, ""); 1161 inputs = -depth; 1162 break; 1163 1164 case Bytecodes::_jsr: 1165 case Bytecodes::_jsr_w: 1166 inputs = 0; 1167 depth = 1; // S.B. depth=1, not zero 1168 break; 1169 1170 default: 1171 // bytecode produces a typed result 1172 inputs = rsize() - depth; 1173 assert(inputs >= 0, ""); 1174 break; 1175 } 1176 1177 #ifdef ASSERT 1178 // spot check 1179 int outputs = depth + inputs; 1180 assert(outputs >= 0, "sanity"); 1181 switch (code) { 1182 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1183 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1184 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1185 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1186 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1187 default: break; 1188 } 1189 #endif //ASSERT 1190 1191 return true; 1192 } 1193 1194 1195 1196 //------------------------------basic_plus_adr--------------------------------- 1197 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1198 // short-circuit a common case 1199 if (offset == intcon(0)) return ptr; 1200 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1201 } 1202 1203 Node* GraphKit::ConvI2L(Node* offset) { 1204 // short-circuit a common case 1205 jint offset_con = find_int_con(offset, Type::OffsetBot); 1206 if (offset_con != Type::OffsetBot) { 1207 return longcon((jlong) offset_con); 1208 } 1209 return _gvn.transform( new ConvI2LNode(offset)); 1210 } 1211 1212 Node* GraphKit::ConvI2UL(Node* offset) { 1213 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1214 if (offset_con != (juint) Type::OffsetBot) { 1215 return longcon((julong) offset_con); 1216 } 1217 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1218 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1219 return _gvn.transform( new AndLNode(conv, mask) ); 1220 } 1221 1222 Node* GraphKit::ConvL2I(Node* offset) { 1223 // short-circuit a common case 1224 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1225 if (offset_con != (jlong)Type::OffsetBot) { 1226 return intcon((int) offset_con); 1227 } 1228 return _gvn.transform( new ConvL2INode(offset)); 1229 } 1230 1231 //-------------------------load_object_klass----------------------------------- 1232 Node* GraphKit::load_object_klass(Node* obj, bool fold_for_arrays) { 1233 // Special-case a fresh allocation to avoid building nodes: 1234 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1235 if (akls != nullptr) return akls; 1236 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1237 return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT, fold_for_arrays)); 1238 } 1239 1240 //-------------------------load_array_length----------------------------------- 1241 Node* GraphKit::load_array_length(Node* array) { 1242 // Special-case a fresh allocation to avoid building nodes: 1243 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1244 Node *alen; 1245 if (alloc == nullptr) { 1246 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1247 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1248 } else { 1249 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1250 } 1251 return alen; 1252 } 1253 1254 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1255 const TypeOopPtr* oop_type, 1256 bool replace_length_in_map) { 1257 Node* length = alloc->Ideal_length(); 1258 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1259 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1260 if (ccast != length) { 1261 // do not transform ccast here, it might convert to top node for 1262 // negative array length and break assumptions in parsing stage. 1263 _gvn.set_type_bottom(ccast); 1264 record_for_igvn(ccast); 1265 if (replace_length_in_map) { 1266 replace_in_map(length, ccast); 1267 } 1268 return ccast; 1269 } 1270 } 1271 return length; 1272 } 1273 1274 //------------------------------do_null_check---------------------------------- 1275 // Helper function to do a null pointer check. Returned value is 1276 // the incoming address with null casted away. You are allowed to use the 1277 // not-null value only if you are control dependent on the test. 1278 #ifndef PRODUCT 1279 extern uint explicit_null_checks_inserted, 1280 explicit_null_checks_elided; 1281 #endif 1282 Node* GraphKit::null_check_common(Node* value, BasicType type, 1283 // optional arguments for variations: 1284 bool assert_null, 1285 Node* *null_control, 1286 bool speculative, 1287 bool is_init_check) { 1288 assert(!assert_null || null_control == nullptr, "not both at once"); 1289 if (stopped()) return top(); 1290 NOT_PRODUCT(explicit_null_checks_inserted++); 1291 1292 if (value->is_InlineType()) { 1293 // Null checking a scalarized but nullable inline type. Check the IsInit 1294 // input instead of the oop input to avoid keeping buffer allocations alive. 1295 InlineTypeNode* vtptr = value->as_InlineType(); 1296 while (vtptr->get_oop()->is_InlineType()) { 1297 vtptr = vtptr->get_oop()->as_InlineType(); 1298 } 1299 null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true); 1300 if (stopped()) { 1301 return top(); 1302 } 1303 if (assert_null) { 1304 // TODO 8284443 Scalarize here (this currently leads to compilation bailouts) 1305 // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass()); 1306 // replace_in_map(value, vtptr); 1307 // return vtptr; 1308 replace_in_map(value, null()); 1309 return null(); 1310 } 1311 bool do_replace_in_map = (null_control == nullptr || (*null_control) == top()); 1312 return cast_not_null(value, do_replace_in_map); 1313 } 1314 1315 // Construct null check 1316 Node *chk = nullptr; 1317 switch(type) { 1318 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1319 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1320 case T_ARRAY : // fall through 1321 type = T_OBJECT; // simplify further tests 1322 case T_OBJECT : { 1323 const Type *t = _gvn.type( value ); 1324 1325 const TypeOopPtr* tp = t->isa_oopptr(); 1326 if (tp != nullptr && !tp->is_loaded() 1327 // Only for do_null_check, not any of its siblings: 1328 && !assert_null && null_control == nullptr) { 1329 // Usually, any field access or invocation on an unloaded oop type 1330 // will simply fail to link, since the statically linked class is 1331 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1332 // the static class is loaded but the sharper oop type is not. 1333 // Rather than checking for this obscure case in lots of places, 1334 // we simply observe that a null check on an unloaded class 1335 // will always be followed by a nonsense operation, so we 1336 // can just issue the uncommon trap here. 1337 // Our access to the unloaded class will only be correct 1338 // after it has been loaded and initialized, which requires 1339 // a trip through the interpreter. 1340 ciKlass* klass = tp->unloaded_klass(); 1341 #ifndef PRODUCT 1342 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1343 #endif 1344 uncommon_trap(Deoptimization::Reason_unloaded, 1345 Deoptimization::Action_reinterpret, 1346 klass, "!loaded"); 1347 return top(); 1348 } 1349 1350 if (assert_null) { 1351 // See if the type is contained in NULL_PTR. 1352 // If so, then the value is already null. 1353 if (t->higher_equal(TypePtr::NULL_PTR)) { 1354 NOT_PRODUCT(explicit_null_checks_elided++); 1355 return value; // Elided null assert quickly! 1356 } 1357 } else { 1358 // See if mixing in the null pointer changes type. 1359 // If so, then the null pointer was not allowed in the original 1360 // type. In other words, "value" was not-null. 1361 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1362 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1363 NOT_PRODUCT(explicit_null_checks_elided++); 1364 return value; // Elided null check quickly! 1365 } 1366 } 1367 chk = new CmpPNode( value, null() ); 1368 break; 1369 } 1370 1371 default: 1372 fatal("unexpected type: %s", type2name(type)); 1373 } 1374 assert(chk != nullptr, "sanity check"); 1375 chk = _gvn.transform(chk); 1376 1377 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1378 BoolNode *btst = new BoolNode( chk, btest); 1379 Node *tst = _gvn.transform( btst ); 1380 1381 //----------- 1382 // if peephole optimizations occurred, a prior test existed. 1383 // If a prior test existed, maybe it dominates as we can avoid this test. 1384 if (tst != btst && type == T_OBJECT) { 1385 // At this point we want to scan up the CFG to see if we can 1386 // find an identical test (and so avoid this test altogether). 1387 Node *cfg = control(); 1388 int depth = 0; 1389 while( depth < 16 ) { // Limit search depth for speed 1390 if( cfg->Opcode() == Op_IfTrue && 1391 cfg->in(0)->in(1) == tst ) { 1392 // Found prior test. Use "cast_not_null" to construct an identical 1393 // CastPP (and hence hash to) as already exists for the prior test. 1394 // Return that casted value. 1395 if (assert_null) { 1396 replace_in_map(value, null()); 1397 return null(); // do not issue the redundant test 1398 } 1399 Node *oldcontrol = control(); 1400 set_control(cfg); 1401 Node *res = cast_not_null(value); 1402 set_control(oldcontrol); 1403 NOT_PRODUCT(explicit_null_checks_elided++); 1404 return res; 1405 } 1406 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1407 if (cfg == nullptr) break; // Quit at region nodes 1408 depth++; 1409 } 1410 } 1411 1412 //----------- 1413 // Branch to failure if null 1414 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1415 Deoptimization::DeoptReason reason; 1416 if (assert_null) { 1417 reason = Deoptimization::reason_null_assert(speculative); 1418 } else if (type == T_OBJECT || is_init_check) { 1419 reason = Deoptimization::reason_null_check(speculative); 1420 } else { 1421 reason = Deoptimization::Reason_div0_check; 1422 } 1423 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1424 // ciMethodData::has_trap_at will return a conservative -1 if any 1425 // must-be-null assertion has failed. This could cause performance 1426 // problems for a method after its first do_null_assert failure. 1427 // Consider using 'Reason_class_check' instead? 1428 1429 // To cause an implicit null check, we set the not-null probability 1430 // to the maximum (PROB_MAX). For an explicit check the probability 1431 // is set to a smaller value. 1432 if (null_control != nullptr || too_many_traps(reason)) { 1433 // probability is less likely 1434 ok_prob = PROB_LIKELY_MAG(3); 1435 } else if (!assert_null && 1436 (ImplicitNullCheckThreshold > 0) && 1437 method() != nullptr && 1438 (method()->method_data()->trap_count(reason) 1439 >= (uint)ImplicitNullCheckThreshold)) { 1440 ok_prob = PROB_LIKELY_MAG(3); 1441 } 1442 1443 if (null_control != nullptr) { 1444 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1445 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1446 set_control( _gvn.transform( new IfTrueNode(iff))); 1447 #ifndef PRODUCT 1448 if (null_true == top()) { 1449 explicit_null_checks_elided++; 1450 } 1451 #endif 1452 (*null_control) = null_true; 1453 } else { 1454 BuildCutout unless(this, tst, ok_prob); 1455 // Check for optimizer eliding test at parse time 1456 if (stopped()) { 1457 // Failure not possible; do not bother making uncommon trap. 1458 NOT_PRODUCT(explicit_null_checks_elided++); 1459 } else if (assert_null) { 1460 uncommon_trap(reason, 1461 Deoptimization::Action_make_not_entrant, 1462 nullptr, "assert_null"); 1463 } else { 1464 replace_in_map(value, zerocon(type)); 1465 builtin_throw(reason); 1466 } 1467 } 1468 1469 // Must throw exception, fall-thru not possible? 1470 if (stopped()) { 1471 return top(); // No result 1472 } 1473 1474 if (assert_null) { 1475 // Cast obj to null on this path. 1476 replace_in_map(value, zerocon(type)); 1477 return zerocon(type); 1478 } 1479 1480 // Cast obj to not-null on this path, if there is no null_control. 1481 // (If there is a null_control, a non-null value may come back to haunt us.) 1482 if (type == T_OBJECT) { 1483 Node* cast = cast_not_null(value, false); 1484 if (null_control == nullptr || (*null_control) == top()) 1485 replace_in_map(value, cast); 1486 value = cast; 1487 } 1488 1489 return value; 1490 } 1491 1492 //------------------------------cast_not_null---------------------------------- 1493 // Cast obj to not-null on this path 1494 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1495 if (obj->is_InlineType()) { 1496 Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map); 1497 vt->as_InlineType()->set_is_init(_gvn); 1498 vt = _gvn.transform(vt); 1499 if (do_replace_in_map) { 1500 replace_in_map(obj, vt); 1501 } 1502 return vt; 1503 } 1504 const Type *t = _gvn.type(obj); 1505 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1506 // Object is already not-null? 1507 if( t == t_not_null ) return obj; 1508 1509 Node* cast = new CastPPNode(control(), obj,t_not_null); 1510 cast = _gvn.transform( cast ); 1511 1512 // Scan for instances of 'obj' in the current JVM mapping. 1513 // These instances are known to be not-null after the test. 1514 if (do_replace_in_map) 1515 replace_in_map(obj, cast); 1516 1517 return cast; // Return casted value 1518 } 1519 1520 Node* GraphKit::cast_to_non_larval(Node* obj) { 1521 const Type* obj_type = gvn().type(obj); 1522 if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) { 1523 return obj; 1524 } 1525 1526 Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass()); 1527 replace_in_map(obj, new_obj); 1528 return new_obj; 1529 } 1530 1531 // Sometimes in intrinsics, we implicitly know an object is not null 1532 // (there's no actual null check) so we can cast it to not null. In 1533 // the course of optimizations, the input to the cast can become null. 1534 // In that case that data path will die and we need the control path 1535 // to become dead as well to keep the graph consistent. So we have to 1536 // add a check for null for which one branch can't be taken. It uses 1537 // an OpaqueNotNull node that will cause the check to be removed after loop 1538 // opts so the test goes away and the compiled code doesn't execute a 1539 // useless check. 1540 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1541 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1542 return value; 1543 } 1544 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1545 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1546 Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst)); 1547 IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1548 _gvn.set_type(iff, iff->Value(&_gvn)); 1549 if (!tst->is_Con()) { 1550 record_for_igvn(iff); 1551 } 1552 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1553 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1554 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1555 C->root()->add_req(halt); 1556 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1557 set_control(if_t); 1558 return cast_not_null(value, do_replace_in_map); 1559 } 1560 1561 1562 //--------------------------replace_in_map------------------------------------- 1563 void GraphKit::replace_in_map(Node* old, Node* neww) { 1564 if (old == neww) { 1565 return; 1566 } 1567 1568 map()->replace_edge(old, neww); 1569 1570 // Note: This operation potentially replaces any edge 1571 // on the map. This includes locals, stack, and monitors 1572 // of the current (innermost) JVM state. 1573 1574 // don't let inconsistent types from profiling escape this 1575 // method 1576 1577 const Type* told = _gvn.type(old); 1578 const Type* tnew = _gvn.type(neww); 1579 1580 if (!tnew->higher_equal(told)) { 1581 return; 1582 } 1583 1584 map()->record_replaced_node(old, neww); 1585 } 1586 1587 1588 //============================================================================= 1589 //--------------------------------memory--------------------------------------- 1590 Node* GraphKit::memory(uint alias_idx) { 1591 MergeMemNode* mem = merged_memory(); 1592 Node* p = mem->memory_at(alias_idx); 1593 assert(p != mem->empty_memory(), "empty"); 1594 _gvn.set_type(p, Type::MEMORY); // must be mapped 1595 return p; 1596 } 1597 1598 //-----------------------------reset_memory------------------------------------ 1599 Node* GraphKit::reset_memory() { 1600 Node* mem = map()->memory(); 1601 // do not use this node for any more parsing! 1602 debug_only( map()->set_memory((Node*)nullptr) ); 1603 return _gvn.transform( mem ); 1604 } 1605 1606 //------------------------------set_all_memory--------------------------------- 1607 void GraphKit::set_all_memory(Node* newmem) { 1608 Node* mergemem = MergeMemNode::make(newmem); 1609 gvn().set_type_bottom(mergemem); 1610 map()->set_memory(mergemem); 1611 } 1612 1613 //------------------------------set_all_memory_call---------------------------- 1614 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1615 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1616 set_all_memory(newmem); 1617 } 1618 1619 //============================================================================= 1620 // 1621 // parser factory methods for MemNodes 1622 // 1623 // These are layered on top of the factory methods in LoadNode and StoreNode, 1624 // and integrate with the parser's memory state and _gvn engine. 1625 // 1626 1627 // factory methods in "int adr_idx" 1628 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1629 MemNode::MemOrd mo, 1630 LoadNode::ControlDependency control_dependency, 1631 bool require_atomic_access, 1632 bool unaligned, 1633 bool mismatched, 1634 bool unsafe, 1635 uint8_t barrier_data) { 1636 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1637 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1638 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1639 debug_only(adr_type = C->get_adr_type(adr_idx)); 1640 Node* mem = memory(adr_idx); 1641 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1642 ld = _gvn.transform(ld); 1643 1644 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1645 // Improve graph before escape analysis and boxing elimination. 1646 record_for_igvn(ld); 1647 if (ld->is_DecodeN()) { 1648 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1649 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1650 // a Phi). Recording such cases is still perfectly sound, but may be 1651 // unnecessary and result in some minor IGVN overhead. 1652 record_for_igvn(ld->in(1)); 1653 } 1654 } 1655 return ld; 1656 } 1657 1658 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1659 MemNode::MemOrd mo, 1660 bool require_atomic_access, 1661 bool unaligned, 1662 bool mismatched, 1663 bool unsafe, 1664 int barrier_data) { 1665 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1666 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1667 const TypePtr* adr_type = nullptr; 1668 debug_only(adr_type = C->get_adr_type(adr_idx)); 1669 Node *mem = memory(adr_idx); 1670 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1671 if (unaligned) { 1672 st->as_Store()->set_unaligned_access(); 1673 } 1674 if (mismatched) { 1675 st->as_Store()->set_mismatched_access(); 1676 } 1677 if (unsafe) { 1678 st->as_Store()->set_unsafe_access(); 1679 } 1680 st->as_Store()->set_barrier_data(barrier_data); 1681 st = _gvn.transform(st); 1682 set_memory(st, adr_idx); 1683 // Back-to-back stores can only remove intermediate store with DU info 1684 // so push on worklist for optimizer. 1685 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1686 record_for_igvn(st); 1687 1688 return st; 1689 } 1690 1691 Node* GraphKit::access_store_at(Node* obj, 1692 Node* adr, 1693 const TypePtr* adr_type, 1694 Node* val, 1695 const Type* val_type, 1696 BasicType bt, 1697 DecoratorSet decorators, 1698 bool safe_for_replace, 1699 const InlineTypeNode* vt) { 1700 // Transformation of a value which could be null pointer (CastPP #null) 1701 // could be delayed during Parse (for example, in adjust_map_after_if()). 1702 // Execute transformation here to avoid barrier generation in such case. 1703 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1704 val = _gvn.makecon(TypePtr::NULL_PTR); 1705 } 1706 1707 if (stopped()) { 1708 return top(); // Dead path ? 1709 } 1710 1711 assert(val != nullptr, "not dead path"); 1712 if (val->is_InlineType()) { 1713 // Store to non-flat field. Buffer the inline type and make sure 1714 // the store is re-executed if the allocation triggers deoptimization. 1715 PreserveReexecuteState preexecs(this); 1716 jvms()->set_should_reexecute(true); 1717 val = val->as_InlineType()->buffer(this, safe_for_replace); 1718 } 1719 1720 C2AccessValuePtr addr(adr, adr_type); 1721 C2AccessValue value(val, val_type); 1722 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt); 1723 if (access.is_raw()) { 1724 return _barrier_set->BarrierSetC2::store_at(access, value); 1725 } else { 1726 return _barrier_set->store_at(access, value); 1727 } 1728 } 1729 1730 Node* GraphKit::access_load_at(Node* obj, // containing obj 1731 Node* adr, // actual address to store val at 1732 const TypePtr* adr_type, 1733 const Type* val_type, 1734 BasicType bt, 1735 DecoratorSet decorators, 1736 Node* ctl) { 1737 if (stopped()) { 1738 return top(); // Dead path ? 1739 } 1740 1741 C2AccessValuePtr addr(adr, adr_type); 1742 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl); 1743 if (access.is_raw()) { 1744 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1745 } else { 1746 return _barrier_set->load_at(access, val_type); 1747 } 1748 } 1749 1750 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1751 const Type* val_type, 1752 BasicType bt, 1753 DecoratorSet decorators) { 1754 if (stopped()) { 1755 return top(); // Dead path ? 1756 } 1757 1758 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1759 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1760 if (access.is_raw()) { 1761 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1762 } else { 1763 return _barrier_set->load_at(access, val_type); 1764 } 1765 } 1766 1767 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1768 Node* adr, 1769 const TypePtr* adr_type, 1770 int alias_idx, 1771 Node* expected_val, 1772 Node* new_val, 1773 const Type* value_type, 1774 BasicType bt, 1775 DecoratorSet decorators) { 1776 C2AccessValuePtr addr(adr, adr_type); 1777 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1778 bt, obj, addr, alias_idx); 1779 if (access.is_raw()) { 1780 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1781 } else { 1782 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1783 } 1784 } 1785 1786 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1787 Node* adr, 1788 const TypePtr* adr_type, 1789 int alias_idx, 1790 Node* expected_val, 1791 Node* new_val, 1792 const Type* value_type, 1793 BasicType bt, 1794 DecoratorSet decorators) { 1795 C2AccessValuePtr addr(adr, adr_type); 1796 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1797 bt, obj, addr, alias_idx); 1798 if (access.is_raw()) { 1799 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1800 } else { 1801 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1802 } 1803 } 1804 1805 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1806 Node* adr, 1807 const TypePtr* adr_type, 1808 int alias_idx, 1809 Node* new_val, 1810 const Type* value_type, 1811 BasicType bt, 1812 DecoratorSet decorators) { 1813 C2AccessValuePtr addr(adr, adr_type); 1814 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1815 bt, obj, addr, alias_idx); 1816 if (access.is_raw()) { 1817 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1818 } else { 1819 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1820 } 1821 } 1822 1823 Node* GraphKit::access_atomic_add_at(Node* obj, 1824 Node* adr, 1825 const TypePtr* adr_type, 1826 int alias_idx, 1827 Node* new_val, 1828 const Type* value_type, 1829 BasicType bt, 1830 DecoratorSet decorators) { 1831 C2AccessValuePtr addr(adr, adr_type); 1832 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1833 if (access.is_raw()) { 1834 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1835 } else { 1836 return _barrier_set->atomic_add_at(access, new_val, value_type); 1837 } 1838 } 1839 1840 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1841 return _barrier_set->clone(this, src, dst, size, is_array); 1842 } 1843 1844 //-------------------------array_element_address------------------------- 1845 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1846 const TypeInt* sizetype, Node* ctrl) { 1847 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 1848 uint shift; 1849 if (arytype->is_flat() && arytype->klass_is_exact()) { 1850 // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different 1851 // value classes at runtime with a potentially different layout. The caller needs to fall back to call 1852 // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that 1853 // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even 1854 // though we don't need the address node in this case and throw it away again. 1855 shift = arytype->flat_log_elem_size(); 1856 } else { 1857 shift = exact_log2(type2aelembytes(elembt)); 1858 } 1859 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1860 1861 // short-circuit a common case (saves lots of confusing waste motion) 1862 jint idx_con = find_int_con(idx, -1); 1863 if (idx_con >= 0) { 1864 intptr_t offset = header + ((intptr_t)idx_con << shift); 1865 return basic_plus_adr(ary, offset); 1866 } 1867 1868 // must be correct type for alignment purposes 1869 Node* base = basic_plus_adr(ary, header); 1870 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1871 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1872 return basic_plus_adr(ary, base, scale); 1873 } 1874 1875 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) { 1876 assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8()); 1877 if (!vk->has_nullable_atomic_layout()) { 1878 // Element does not have a nullable flat layout, cannot be nullable 1879 is_null_free = true; 1880 } 1881 if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) { 1882 // Element does not have a null-free flat layout, cannot be null-free 1883 is_not_null_free = true; 1884 } 1885 if (is_null_free) { 1886 // TODO 8350865 Impossible type 1887 is_not_null_free = false; 1888 } 1889 1890 bool is_exact = is_null_free || is_not_null_free; 1891 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic); 1892 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 1893 arytype = arytype->cast_to_exactness(is_exact); 1894 arytype = arytype->cast_to_not_null_free(is_not_null_free); 1895 return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency)); 1896 } 1897 1898 //-------------------------load_array_element------------------------- 1899 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1900 const Type* elemtype = arytype->elem(); 1901 BasicType elembt = elemtype->array_element_basic_type(); 1902 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1903 if (elembt == T_NARROWOOP) { 1904 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1905 } 1906 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1907 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1908 return ld; 1909 } 1910 1911 //-------------------------set_arguments_for_java_call------------------------- 1912 // Arguments (pre-popped from the stack) are taken from the JVMS. 1913 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) { 1914 PreserveReexecuteState preexecs(this); 1915 if (EnableValhalla) { 1916 // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization. 1917 // At this point, the call hasn't been executed yet, so we will only ever execute the call once. 1918 jvms()->set_should_reexecute(true); 1919 int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc()); 1920 inc_sp(arg_size); 1921 } 1922 // Add the call arguments 1923 const TypeTuple* domain = call->tf()->domain_sig(); 1924 uint nargs = domain->cnt(); 1925 int arg_num = 0; 1926 for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) { 1927 Node* arg = argument(i-TypeFunc::Parms); 1928 const Type* t = domain->field_at(i); 1929 // TODO 8284443 A static call to a mismatched method should still be scalarized 1930 if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) { 1931 // We don't pass inline type arguments by reference but instead pass each field of the inline type 1932 if (!arg->is_InlineType()) { 1933 assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type"); 1934 arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass()); 1935 } 1936 InlineTypeNode* vt = arg->as_InlineType(); 1937 vt->pass_fields(this, call, idx, true, !t->maybe_null()); 1938 // If an inline type argument is passed as fields, attach the Method* to the call site 1939 // to be able to access the extended signature later via attached_method_before_pc(). 1940 // For example, see CompiledMethod::preserve_callee_argument_oops(). 1941 call->set_override_symbolic_info(true); 1942 // Register an evol dependency on the callee method to make sure that this method is deoptimized and 1943 // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched. 1944 C->dependencies()->assert_evol_method(call->method()); 1945 arg_num++; 1946 continue; 1947 } else if (arg->is_InlineType()) { 1948 // Pass inline type argument via oop to callee 1949 arg = arg->as_InlineType()->buffer(this, true); 1950 } 1951 if (t != Type::HALF) { 1952 arg_num++; 1953 } 1954 call->init_req(idx++, arg); 1955 } 1956 } 1957 1958 //---------------------------set_edges_for_java_call--------------------------- 1959 // Connect a newly created call into the current JVMS. 1960 // A return value node (if any) is returned from set_edges_for_java_call. 1961 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1962 1963 // Add the predefined inputs: 1964 call->init_req( TypeFunc::Control, control() ); 1965 call->init_req( TypeFunc::I_O , i_o() ); 1966 call->init_req( TypeFunc::Memory , reset_memory() ); 1967 call->init_req( TypeFunc::FramePtr, frameptr() ); 1968 call->init_req( TypeFunc::ReturnAdr, top() ); 1969 1970 add_safepoint_edges(call, must_throw); 1971 1972 Node* xcall = _gvn.transform(call); 1973 1974 if (xcall == top()) { 1975 set_control(top()); 1976 return; 1977 } 1978 assert(xcall == call, "call identity is stable"); 1979 1980 // Re-use the current map to produce the result. 1981 1982 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1983 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1984 set_all_memory_call(xcall, separate_io_proj); 1985 1986 //return xcall; // no need, caller already has it 1987 } 1988 1989 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1990 if (stopped()) return top(); // maybe the call folded up? 1991 1992 // Note: Since any out-of-line call can produce an exception, 1993 // we always insert an I_O projection from the call into the result. 1994 1995 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 1996 1997 if (separate_io_proj) { 1998 // The caller requested separate projections be used by the fall 1999 // through and exceptional paths, so replace the projections for 2000 // the fall through path. 2001 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 2002 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 2003 } 2004 2005 // Capture the return value, if any. 2006 Node* ret; 2007 if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) { 2008 ret = top(); 2009 } else if (call->tf()->returns_inline_type_as_fields()) { 2010 // Return of multiple values (inline type fields): we create a 2011 // InlineType node, each field is a projection from the call. 2012 ciInlineKlass* vk = call->method()->return_type()->as_inline_klass(); 2013 uint base_input = TypeFunc::Parms; 2014 ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false); 2015 } else { 2016 ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 2017 ciType* t = call->method()->return_type(); 2018 if (t->is_klass()) { 2019 const Type* type = TypeOopPtr::make_from_klass(t->as_klass()); 2020 if (type->is_inlinetypeptr()) { 2021 ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass()); 2022 } 2023 } 2024 } 2025 2026 return ret; 2027 } 2028 2029 //--------------------set_predefined_input_for_runtime_call-------------------- 2030 // Reading and setting the memory state is way conservative here. 2031 // The real problem is that I am not doing real Type analysis on memory, 2032 // so I cannot distinguish card mark stores from other stores. Across a GC 2033 // point the Store Barrier and the card mark memory has to agree. I cannot 2034 // have a card mark store and its barrier split across the GC point from 2035 // either above or below. Here I get that to happen by reading ALL of memory. 2036 // A better answer would be to separate out card marks from other memory. 2037 // For now, return the input memory state, so that it can be reused 2038 // after the call, if this call has restricted memory effects. 2039 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 2040 // Set fixed predefined input arguments 2041 Node* memory = reset_memory(); 2042 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 2043 call->init_req( TypeFunc::Control, control() ); 2044 call->init_req( TypeFunc::I_O, top() ); // does no i/o 2045 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 2046 call->init_req( TypeFunc::FramePtr, frameptr() ); 2047 call->init_req( TypeFunc::ReturnAdr, top() ); 2048 return memory; 2049 } 2050 2051 //-------------------set_predefined_output_for_runtime_call-------------------- 2052 // Set control and memory (not i_o) from the call. 2053 // If keep_mem is not null, use it for the output state, 2054 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 2055 // If hook_mem is null, this call produces no memory effects at all. 2056 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 2057 // then only that memory slice is taken from the call. 2058 // In the last case, we must put an appropriate memory barrier before 2059 // the call, so as to create the correct anti-dependencies on loads 2060 // preceding the call. 2061 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 2062 Node* keep_mem, 2063 const TypePtr* hook_mem) { 2064 // no i/o 2065 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 2066 if (keep_mem) { 2067 // First clone the existing memory state 2068 set_all_memory(keep_mem); 2069 if (hook_mem != nullptr) { 2070 // Make memory for the call 2071 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 2072 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 2073 // We also use hook_mem to extract specific effects from arraycopy stubs. 2074 set_memory(mem, hook_mem); 2075 } 2076 // ...else the call has NO memory effects. 2077 2078 // Make sure the call advertises its memory effects precisely. 2079 // This lets us build accurate anti-dependences in gcm.cpp. 2080 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 2081 "call node must be constructed correctly"); 2082 } else { 2083 assert(hook_mem == nullptr, ""); 2084 // This is not a "slow path" call; all memory comes from the call. 2085 set_all_memory_call(call); 2086 } 2087 } 2088 2089 // Keep track of MergeMems feeding into other MergeMems 2090 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 2091 if (!mem->is_MergeMem()) { 2092 return; 2093 } 2094 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 2095 Node* use = i.get(); 2096 if (use->is_MergeMem()) { 2097 wl.push(use); 2098 } 2099 } 2100 } 2101 2102 // Replace the call with the current state of the kit. 2103 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) { 2104 JVMState* ejvms = nullptr; 2105 if (has_exceptions()) { 2106 ejvms = transfer_exceptions_into_jvms(); 2107 } 2108 2109 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 2110 ReplacedNodes replaced_nodes_exception; 2111 Node* ex_ctl = top(); 2112 2113 SafePointNode* final_state = stop(); 2114 2115 // Find all the needed outputs of this call 2116 CallProjections* callprojs = call->extract_projections(true, do_asserts); 2117 2118 Unique_Node_List wl; 2119 Node* init_mem = call->in(TypeFunc::Memory); 2120 Node* final_mem = final_state->in(TypeFunc::Memory); 2121 Node* final_ctl = final_state->in(TypeFunc::Control); 2122 Node* final_io = final_state->in(TypeFunc::I_O); 2123 2124 // Replace all the old call edges with the edges from the inlining result 2125 if (callprojs->fallthrough_catchproj != nullptr) { 2126 C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl); 2127 } 2128 if (callprojs->fallthrough_memproj != nullptr) { 2129 if (final_mem->is_MergeMem()) { 2130 // Parser's exits MergeMem was not transformed but may be optimized 2131 final_mem = _gvn.transform(final_mem); 2132 } 2133 C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem); 2134 add_mergemem_users_to_worklist(wl, final_mem); 2135 } 2136 if (callprojs->fallthrough_ioproj != nullptr) { 2137 C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io); 2138 } 2139 2140 // Replace the result with the new result if it exists and is used 2141 if (callprojs->resproj[0] != nullptr && result != nullptr) { 2142 // If the inlined code is dead, the result projections for an inline type returned as 2143 // fields have not been replaced. They will go away once the call is replaced by TOP below. 2144 assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()), 2145 "unexpected number of results"); 2146 C->gvn_replace_by(callprojs->resproj[0], result); 2147 } 2148 2149 if (ejvms == nullptr) { 2150 // No exception edges to simply kill off those paths 2151 if (callprojs->catchall_catchproj != nullptr) { 2152 C->gvn_replace_by(callprojs->catchall_catchproj, C->top()); 2153 } 2154 if (callprojs->catchall_memproj != nullptr) { 2155 C->gvn_replace_by(callprojs->catchall_memproj, C->top()); 2156 } 2157 if (callprojs->catchall_ioproj != nullptr) { 2158 C->gvn_replace_by(callprojs->catchall_ioproj, C->top()); 2159 } 2160 // Replace the old exception object with top 2161 if (callprojs->exobj != nullptr) { 2162 C->gvn_replace_by(callprojs->exobj, C->top()); 2163 } 2164 } else { 2165 GraphKit ekit(ejvms); 2166 2167 // Load my combined exception state into the kit, with all phis transformed: 2168 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 2169 replaced_nodes_exception = ex_map->replaced_nodes(); 2170 2171 Node* ex_oop = ekit.use_exception_state(ex_map); 2172 2173 if (callprojs->catchall_catchproj != nullptr) { 2174 C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control()); 2175 ex_ctl = ekit.control(); 2176 } 2177 if (callprojs->catchall_memproj != nullptr) { 2178 Node* ex_mem = ekit.reset_memory(); 2179 C->gvn_replace_by(callprojs->catchall_memproj, ex_mem); 2180 add_mergemem_users_to_worklist(wl, ex_mem); 2181 } 2182 if (callprojs->catchall_ioproj != nullptr) { 2183 C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o()); 2184 } 2185 2186 // Replace the old exception object with the newly created one 2187 if (callprojs->exobj != nullptr) { 2188 C->gvn_replace_by(callprojs->exobj, ex_oop); 2189 } 2190 } 2191 2192 // Disconnect the call from the graph 2193 call->disconnect_inputs(C); 2194 C->gvn_replace_by(call, C->top()); 2195 2196 // Clean up any MergeMems that feed other MergeMems since the 2197 // optimizer doesn't like that. 2198 while (wl.size() > 0) { 2199 _gvn.transform(wl.pop()); 2200 } 2201 2202 if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2203 replaced_nodes.apply(C, final_ctl); 2204 } 2205 if (!ex_ctl->is_top() && do_replaced_nodes) { 2206 replaced_nodes_exception.apply(C, ex_ctl); 2207 } 2208 } 2209 2210 2211 //------------------------------increment_counter------------------------------ 2212 // for statistics: increment a VM counter by 1 2213 2214 void GraphKit::increment_counter(address counter_addr) { 2215 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2216 increment_counter(adr1); 2217 } 2218 2219 void GraphKit::increment_counter(Node* counter_addr) { 2220 Node* ctrl = control(); 2221 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered); 2222 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2223 store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered); 2224 } 2225 2226 2227 //------------------------------uncommon_trap---------------------------------- 2228 // Bail out to the interpreter in mid-method. Implemented by calling the 2229 // uncommon_trap blob. This helper function inserts a runtime call with the 2230 // right debug info. 2231 Node* GraphKit::uncommon_trap(int trap_request, 2232 ciKlass* klass, const char* comment, 2233 bool must_throw, 2234 bool keep_exact_action) { 2235 if (failing_internal()) { 2236 stop(); 2237 } 2238 if (stopped()) return nullptr; // trap reachable? 2239 2240 // Note: If ProfileTraps is true, and if a deopt. actually 2241 // occurs here, the runtime will make sure an MDO exists. There is 2242 // no need to call method()->ensure_method_data() at this point. 2243 2244 // Set the stack pointer to the right value for reexecution: 2245 set_sp(reexecute_sp()); 2246 2247 #ifdef ASSERT 2248 if (!must_throw) { 2249 // Make sure the stack has at least enough depth to execute 2250 // the current bytecode. 2251 int inputs, ignored_depth; 2252 if (compute_stack_effects(inputs, ignored_depth)) { 2253 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2254 Bytecodes::name(java_bc()), sp(), inputs); 2255 } 2256 } 2257 #endif 2258 2259 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2260 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2261 2262 switch (action) { 2263 case Deoptimization::Action_maybe_recompile: 2264 case Deoptimization::Action_reinterpret: 2265 // Temporary fix for 6529811 to allow virtual calls to be sure they 2266 // get the chance to go from mono->bi->mega 2267 if (!keep_exact_action && 2268 Deoptimization::trap_request_index(trap_request) < 0 && 2269 too_many_recompiles(reason)) { 2270 // This BCI is causing too many recompilations. 2271 if (C->log() != nullptr) { 2272 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2273 Deoptimization::trap_reason_name(reason), 2274 Deoptimization::trap_action_name(action)); 2275 } 2276 action = Deoptimization::Action_none; 2277 trap_request = Deoptimization::make_trap_request(reason, action); 2278 } else { 2279 C->set_trap_can_recompile(true); 2280 } 2281 break; 2282 case Deoptimization::Action_make_not_entrant: 2283 C->set_trap_can_recompile(true); 2284 break; 2285 case Deoptimization::Action_none: 2286 case Deoptimization::Action_make_not_compilable: 2287 break; 2288 default: 2289 #ifdef ASSERT 2290 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2291 #endif 2292 break; 2293 } 2294 2295 if (TraceOptoParse) { 2296 char buf[100]; 2297 tty->print_cr("Uncommon trap %s at bci:%d", 2298 Deoptimization::format_trap_request(buf, sizeof(buf), 2299 trap_request), bci()); 2300 } 2301 2302 CompileLog* log = C->log(); 2303 if (log != nullptr) { 2304 int kid = (klass == nullptr)? -1: log->identify(klass); 2305 log->begin_elem("uncommon_trap bci='%d'", bci()); 2306 char buf[100]; 2307 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2308 trap_request)); 2309 if (kid >= 0) log->print(" klass='%d'", kid); 2310 if (comment != nullptr) log->print(" comment='%s'", comment); 2311 log->end_elem(); 2312 } 2313 2314 // Make sure any guarding test views this path as very unlikely 2315 Node *i0 = control()->in(0); 2316 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2317 IfNode *iff = i0->as_If(); 2318 float f = iff->_prob; // Get prob 2319 if (control()->Opcode() == Op_IfTrue) { 2320 if (f > PROB_UNLIKELY_MAG(4)) 2321 iff->_prob = PROB_MIN; 2322 } else { 2323 if (f < PROB_LIKELY_MAG(4)) 2324 iff->_prob = PROB_MAX; 2325 } 2326 } 2327 2328 // Clear out dead values from the debug info. 2329 kill_dead_locals(); 2330 2331 // Now insert the uncommon trap subroutine call 2332 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2333 const TypePtr* no_memory_effects = nullptr; 2334 // Pass the index of the class to be loaded 2335 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2336 (must_throw ? RC_MUST_THROW : 0), 2337 OptoRuntime::uncommon_trap_Type(), 2338 call_addr, "uncommon_trap", no_memory_effects, 2339 intcon(trap_request)); 2340 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2341 "must extract request correctly from the graph"); 2342 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2343 2344 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2345 // The debug info is the only real input to this call. 2346 2347 // Halt-and-catch fire here. The above call should never return! 2348 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2349 PRODUCT_ONLY(COMMA /*reachable*/false)); 2350 _gvn.set_type_bottom(halt); 2351 root()->add_req(halt); 2352 2353 stop_and_kill_map(); 2354 return call; 2355 } 2356 2357 2358 //--------------------------just_allocated_object------------------------------ 2359 // Report the object that was just allocated. 2360 // It must be the case that there are no intervening safepoints. 2361 // We use this to determine if an object is so "fresh" that 2362 // it does not require card marks. 2363 Node* GraphKit::just_allocated_object(Node* current_control) { 2364 Node* ctrl = current_control; 2365 // Object::<init> is invoked after allocation, most of invoke nodes 2366 // will be reduced, but a region node is kept in parse time, we check 2367 // the pattern and skip the region node if it degraded to a copy. 2368 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2369 ctrl->as_Region()->is_copy()) { 2370 ctrl = ctrl->as_Region()->is_copy(); 2371 } 2372 if (C->recent_alloc_ctl() == ctrl) { 2373 return C->recent_alloc_obj(); 2374 } 2375 return nullptr; 2376 } 2377 2378 2379 /** 2380 * Record profiling data exact_kls for Node n with the type system so 2381 * that it can propagate it (speculation) 2382 * 2383 * @param n node that the type applies to 2384 * @param exact_kls type from profiling 2385 * @param maybe_null did profiling see null? 2386 * 2387 * @return node with improved type 2388 */ 2389 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2390 const Type* current_type = _gvn.type(n); 2391 assert(UseTypeSpeculation, "type speculation must be on"); 2392 2393 const TypePtr* speculative = current_type->speculative(); 2394 2395 // Should the klass from the profile be recorded in the speculative type? 2396 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2397 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2398 const TypeOopPtr* xtype = tklass->as_instance_type(); 2399 assert(xtype->klass_is_exact(), "Should be exact"); 2400 // Any reason to believe n is not null (from this profiling or a previous one)? 2401 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2402 const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2403 // record the new speculative type's depth 2404 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2405 speculative = speculative->with_inline_depth(jvms()->depth()); 2406 } else if (current_type->would_improve_ptr(ptr_kind)) { 2407 // Profiling report that null was never seen so we can change the 2408 // speculative type to non null ptr. 2409 if (ptr_kind == ProfileAlwaysNull) { 2410 speculative = TypePtr::NULL_PTR; 2411 } else { 2412 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2413 const TypePtr* ptr = TypePtr::NOTNULL; 2414 if (speculative != nullptr) { 2415 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2416 } else { 2417 speculative = ptr; 2418 } 2419 } 2420 } 2421 2422 if (speculative != current_type->speculative()) { 2423 // Build a type with a speculative type (what we think we know 2424 // about the type but will need a guard when we use it) 2425 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); 2426 // We're changing the type, we need a new CheckCast node to carry 2427 // the new type. The new type depends on the control: what 2428 // profiling tells us is only valid from here as far as we can 2429 // tell. 2430 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2431 cast = _gvn.transform(cast); 2432 replace_in_map(n, cast); 2433 n = cast; 2434 } 2435 2436 return n; 2437 } 2438 2439 /** 2440 * Record profiling data from receiver profiling at an invoke with the 2441 * type system so that it can propagate it (speculation) 2442 * 2443 * @param n receiver node 2444 * 2445 * @return node with improved type 2446 */ 2447 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2448 if (!UseTypeSpeculation) { 2449 return n; 2450 } 2451 ciKlass* exact_kls = profile_has_unique_klass(); 2452 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2453 if ((java_bc() == Bytecodes::_checkcast || 2454 java_bc() == Bytecodes::_instanceof || 2455 java_bc() == Bytecodes::_aastore) && 2456 method()->method_data()->is_mature()) { 2457 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2458 if (data != nullptr) { 2459 if (java_bc() == Bytecodes::_aastore) { 2460 ciKlass* array_type = nullptr; 2461 ciKlass* element_type = nullptr; 2462 ProfilePtrKind element_ptr = ProfileMaybeNull; 2463 bool flat_array = true; 2464 bool null_free_array = true; 2465 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 2466 exact_kls = element_type; 2467 ptr_kind = element_ptr; 2468 } else { 2469 if (!data->as_BitData()->null_seen()) { 2470 ptr_kind = ProfileNeverNull; 2471 } else { 2472 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2473 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2474 uint i = 0; 2475 for (; i < call->row_limit(); i++) { 2476 ciKlass* receiver = call->receiver(i); 2477 if (receiver != nullptr) { 2478 break; 2479 } 2480 } 2481 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2482 } 2483 } 2484 } 2485 } 2486 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2487 } 2488 2489 /** 2490 * Record profiling data from argument profiling at an invoke with the 2491 * type system so that it can propagate it (speculation) 2492 * 2493 * @param dest_method target method for the call 2494 * @param bc what invoke bytecode is this? 2495 */ 2496 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2497 if (!UseTypeSpeculation) { 2498 return; 2499 } 2500 const TypeFunc* tf = TypeFunc::make(dest_method); 2501 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2502 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2503 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2504 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2505 if (is_reference_type(targ->basic_type())) { 2506 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2507 ciKlass* better_type = nullptr; 2508 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2509 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2510 } 2511 i++; 2512 } 2513 } 2514 } 2515 2516 /** 2517 * Record profiling data from parameter profiling at an invoke with 2518 * the type system so that it can propagate it (speculation) 2519 */ 2520 void GraphKit::record_profiled_parameters_for_speculation() { 2521 if (!UseTypeSpeculation) { 2522 return; 2523 } 2524 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2525 if (_gvn.type(local(i))->isa_oopptr()) { 2526 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2527 ciKlass* better_type = nullptr; 2528 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2529 record_profile_for_speculation(local(i), better_type, ptr_kind); 2530 } 2531 j++; 2532 } 2533 } 2534 } 2535 2536 /** 2537 * Record profiling data from return value profiling at an invoke with 2538 * the type system so that it can propagate it (speculation) 2539 */ 2540 void GraphKit::record_profiled_return_for_speculation() { 2541 if (!UseTypeSpeculation) { 2542 return; 2543 } 2544 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2545 ciKlass* better_type = nullptr; 2546 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2547 // If profiling reports a single type for the return value, 2548 // feed it to the type system so it can propagate it as a 2549 // speculative type 2550 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2551 } 2552 } 2553 2554 2555 //============================================================================= 2556 // Generate a fast path/slow path idiom. Graph looks like: 2557 // [foo] indicates that 'foo' is a parameter 2558 // 2559 // [in] null 2560 // \ / 2561 // CmpP 2562 // Bool ne 2563 // If 2564 // / \ 2565 // True False-<2> 2566 // / | 2567 // / cast_not_null 2568 // Load | | ^ 2569 // [fast_test] | | 2570 // gvn to opt_test | | 2571 // / \ | <1> 2572 // True False | 2573 // | \\ | 2574 // [slow_call] \[fast_result] 2575 // Ctl Val \ \ 2576 // | \ \ 2577 // Catch <1> \ \ 2578 // / \ ^ \ \ 2579 // Ex No_Ex | \ \ 2580 // | \ \ | \ <2> \ 2581 // ... \ [slow_res] | | \ [null_result] 2582 // \ \--+--+--- | | 2583 // \ | / \ | / 2584 // --------Region Phi 2585 // 2586 //============================================================================= 2587 // Code is structured as a series of driver functions all called 'do_XXX' that 2588 // call a set of helper functions. Helper functions first, then drivers. 2589 2590 //------------------------------null_check_oop--------------------------------- 2591 // Null check oop. Set null-path control into Region in slot 3. 2592 // Make a cast-not-nullness use the other not-null control. Return cast. 2593 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2594 bool never_see_null, 2595 bool safe_for_replace, 2596 bool speculative) { 2597 // Initial null check taken path 2598 (*null_control) = top(); 2599 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2600 2601 // Generate uncommon_trap: 2602 if (never_see_null && (*null_control) != top()) { 2603 // If we see an unexpected null at a check-cast we record it and force a 2604 // recompile; the offending check-cast will be compiled to handle nulls. 2605 // If we see more than one offending BCI, then all checkcasts in the 2606 // method will be compiled to handle nulls. 2607 PreserveJVMState pjvms(this); 2608 set_control(*null_control); 2609 replace_in_map(value, null()); 2610 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2611 uncommon_trap(reason, 2612 Deoptimization::Action_make_not_entrant); 2613 (*null_control) = top(); // null path is dead 2614 } 2615 if ((*null_control) == top() && safe_for_replace) { 2616 replace_in_map(value, cast); 2617 } 2618 2619 // Cast away null-ness on the result 2620 return cast; 2621 } 2622 2623 //------------------------------opt_iff---------------------------------------- 2624 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2625 // Return slow-path control. 2626 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2627 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2628 2629 // Fast path taken; set region slot 2 2630 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2631 region->init_req(2,fast_taken); // Capture fast-control 2632 2633 // Fast path not-taken, i.e. slow path 2634 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2635 return slow_taken; 2636 } 2637 2638 //-----------------------------make_runtime_call------------------------------- 2639 Node* GraphKit::make_runtime_call(int flags, 2640 const TypeFunc* call_type, address call_addr, 2641 const char* call_name, 2642 const TypePtr* adr_type, 2643 // The following parms are all optional. 2644 // The first null ends the list. 2645 Node* parm0, Node* parm1, 2646 Node* parm2, Node* parm3, 2647 Node* parm4, Node* parm5, 2648 Node* parm6, Node* parm7) { 2649 assert(call_addr != nullptr, "must not call null targets"); 2650 2651 // Slow-path call 2652 bool is_leaf = !(flags & RC_NO_LEAF); 2653 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2654 if (call_name == nullptr) { 2655 assert(!is_leaf, "must supply name for leaf"); 2656 call_name = OptoRuntime::stub_name(call_addr); 2657 } 2658 CallNode* call; 2659 if (!is_leaf) { 2660 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2661 } else if (flags & RC_NO_FP) { 2662 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2663 } else if (flags & RC_VECTOR){ 2664 uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2665 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2666 } else { 2667 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2668 } 2669 2670 // The following is similar to set_edges_for_java_call, 2671 // except that the memory effects of the call are restricted to AliasIdxRaw. 2672 2673 // Slow path call has no side-effects, uses few values 2674 bool wide_in = !(flags & RC_NARROW_MEM); 2675 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2676 2677 Node* prev_mem = nullptr; 2678 if (wide_in) { 2679 prev_mem = set_predefined_input_for_runtime_call(call); 2680 } else { 2681 assert(!wide_out, "narrow in => narrow out"); 2682 Node* narrow_mem = memory(adr_type); 2683 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2684 } 2685 2686 // Hook each parm in order. Stop looking at the first null. 2687 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2688 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2689 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2690 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2691 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2692 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2693 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2694 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2695 /* close each nested if ===> */ } } } } } } } } 2696 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 2697 2698 if (!is_leaf) { 2699 // Non-leaves can block and take safepoints: 2700 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2701 } 2702 // Non-leaves can throw exceptions: 2703 if (has_io) { 2704 call->set_req(TypeFunc::I_O, i_o()); 2705 } 2706 2707 if (flags & RC_UNCOMMON) { 2708 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2709 // (An "if" probability corresponds roughly to an unconditional count. 2710 // Sort of.) 2711 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2712 } 2713 2714 Node* c = _gvn.transform(call); 2715 assert(c == call, "cannot disappear"); 2716 2717 if (wide_out) { 2718 // Slow path call has full side-effects. 2719 set_predefined_output_for_runtime_call(call); 2720 } else { 2721 // Slow path call has few side-effects, and/or sets few values. 2722 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2723 } 2724 2725 if (has_io) { 2726 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2727 } 2728 return call; 2729 2730 } 2731 2732 // i2b 2733 Node* GraphKit::sign_extend_byte(Node* in) { 2734 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2735 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2736 } 2737 2738 // i2s 2739 Node* GraphKit::sign_extend_short(Node* in) { 2740 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2741 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2742 } 2743 2744 2745 //------------------------------merge_memory----------------------------------- 2746 // Merge memory from one path into the current memory state. 2747 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2748 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2749 Node* old_slice = mms.force_memory(); 2750 Node* new_slice = mms.memory2(); 2751 if (old_slice != new_slice) { 2752 PhiNode* phi; 2753 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2754 if (mms.is_empty()) { 2755 // clone base memory Phi's inputs for this memory slice 2756 assert(old_slice == mms.base_memory(), "sanity"); 2757 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2758 _gvn.set_type(phi, Type::MEMORY); 2759 for (uint i = 1; i < phi->req(); i++) { 2760 phi->init_req(i, old_slice->in(i)); 2761 } 2762 } else { 2763 phi = old_slice->as_Phi(); // Phi was generated already 2764 } 2765 } else { 2766 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2767 _gvn.set_type(phi, Type::MEMORY); 2768 } 2769 phi->set_req(new_path, new_slice); 2770 mms.set_memory(phi); 2771 } 2772 } 2773 } 2774 2775 //------------------------------make_slow_call_ex------------------------------ 2776 // Make the exception handler hookups for the slow call 2777 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2778 if (stopped()) return; 2779 2780 // Make a catch node with just two handlers: fall-through and catch-all 2781 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2782 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2783 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2784 _gvn.set_type_bottom(norm); 2785 C->record_for_igvn(norm); 2786 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2787 2788 { PreserveJVMState pjvms(this); 2789 set_control(excp); 2790 set_i_o(i_o); 2791 2792 if (excp != top()) { 2793 if (deoptimize) { 2794 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2795 uncommon_trap(Deoptimization::Reason_unhandled, 2796 Deoptimization::Action_none); 2797 } else { 2798 // Create an exception state also. 2799 // Use an exact type if the caller has a specific exception. 2800 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2801 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2802 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2803 } 2804 } 2805 } 2806 2807 // Get the no-exception control from the CatchNode. 2808 set_control(norm); 2809 } 2810 2811 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2812 Node* cmp = nullptr; 2813 switch(bt) { 2814 case T_INT: cmp = new CmpINode(in1, in2); break; 2815 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2816 default: fatal("unexpected comparison type %s", type2name(bt)); 2817 } 2818 cmp = gvn.transform(cmp); 2819 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2820 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2821 gvn.transform(iff); 2822 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2823 return iff; 2824 } 2825 2826 //-------------------------------gen_subtype_check----------------------------- 2827 // Generate a subtyping check. Takes as input the subtype and supertype. 2828 // Returns 2 values: sets the default control() to the true path and returns 2829 // the false path. Only reads invariant memory; sets no (visible) memory. 2830 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2831 // but that's not exposed to the optimizer. This call also doesn't take in an 2832 // Object; if you wish to check an Object you need to load the Object's class 2833 // prior to coming here. 2834 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2835 ciMethod* method, int bci) { 2836 Compile* C = gvn.C; 2837 if ((*ctrl)->is_top()) { 2838 return C->top(); 2839 } 2840 2841 // Fast check for identical types, perhaps identical constants. 2842 // The types can even be identical non-constants, in cases 2843 // involving Array.newInstance, Object.clone, etc. 2844 if (subklass == superklass) 2845 return C->top(); // false path is dead; no test needed. 2846 2847 if (gvn.type(superklass)->singleton()) { 2848 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2849 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2850 2851 // In the common case of an exact superklass, try to fold up the 2852 // test before generating code. You may ask, why not just generate 2853 // the code and then let it fold up? The answer is that the generated 2854 // code will necessarily include null checks, which do not always 2855 // completely fold away. If they are also needless, then they turn 2856 // into a performance loss. Example: 2857 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2858 // Here, the type of 'fa' is often exact, so the store check 2859 // of fa[1]=x will fold up, without testing the nullness of x. 2860 // 2861 // At macro expansion, we would have already folded the SubTypeCheckNode 2862 // being expanded here because we always perform the static sub type 2863 // check in SubTypeCheckNode::sub() regardless of whether 2864 // StressReflectiveCode is set or not. We can therefore skip this 2865 // static check when StressReflectiveCode is on. 2866 switch (C->static_subtype_check(superk, subk)) { 2867 case Compile::SSC_always_false: 2868 { 2869 Node* always_fail = *ctrl; 2870 *ctrl = gvn.C->top(); 2871 return always_fail; 2872 } 2873 case Compile::SSC_always_true: 2874 return C->top(); 2875 case Compile::SSC_easy_test: 2876 { 2877 // Just do a direct pointer compare and be done. 2878 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2879 *ctrl = gvn.transform(new IfTrueNode(iff)); 2880 return gvn.transform(new IfFalseNode(iff)); 2881 } 2882 case Compile::SSC_full_test: 2883 break; 2884 default: 2885 ShouldNotReachHere(); 2886 } 2887 } 2888 2889 // %%% Possible further optimization: Even if the superklass is not exact, 2890 // if the subklass is the unique subtype of the superklass, the check 2891 // will always succeed. We could leave a dependency behind to ensure this. 2892 2893 // First load the super-klass's check-offset 2894 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2895 Node* m = C->immutable_memory(); 2896 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2897 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2898 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2899 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2900 bool might_be_cache = (chk_off_con == cacheoff_con); 2901 2902 // Load from the sub-klass's super-class display list, or a 1-word cache of 2903 // the secondary superclass list, or a failing value with a sentinel offset 2904 // if the super-klass is an interface or exceptionally deep in the Java 2905 // hierarchy and we have to scan the secondary superclass list the hard way. 2906 // Worst-case type is a little odd: null is allowed as a result (usually 2907 // klass loads can never produce a null). 2908 Node *chk_off_X = chk_off; 2909 #ifdef _LP64 2910 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2911 #endif 2912 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2913 // For some types like interfaces the following loadKlass is from a 1-word 2914 // cache which is mutable so can't use immutable memory. Other 2915 // types load from the super-class display table which is immutable. 2916 Node *kmem = C->immutable_memory(); 2917 // secondary_super_cache is not immutable but can be treated as such because: 2918 // - no ideal node writes to it in a way that could cause an 2919 // incorrect/missed optimization of the following Load. 2920 // - it's a cache so, worse case, not reading the latest value 2921 // wouldn't cause incorrect execution 2922 if (might_be_cache && mem != nullptr) { 2923 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2924 } 2925 Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2926 2927 // Compile speed common case: ARE a subtype and we canNOT fail 2928 if (superklass == nkls) { 2929 return C->top(); // false path is dead; no test needed. 2930 } 2931 2932 // Gather the various success & failures here 2933 RegionNode* r_not_subtype = new RegionNode(3); 2934 gvn.record_for_igvn(r_not_subtype); 2935 RegionNode* r_ok_subtype = new RegionNode(4); 2936 gvn.record_for_igvn(r_ok_subtype); 2937 2938 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 2939 // SubTypeCheck node 2940 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 2941 ciCallProfile profile = method->call_profile_at_bci(bci); 2942 float total_prob = 0; 2943 for (int i = 0; profile.has_receiver(i); ++i) { 2944 float prob = profile.receiver_prob(i); 2945 total_prob += prob; 2946 } 2947 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 2948 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2949 for (int i = 0; profile.has_receiver(i); ++i) { 2950 ciKlass* klass = profile.receiver(i); 2951 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 2952 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 2953 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 2954 continue; 2955 } 2956 float prob = profile.receiver_prob(i); 2957 ConNode* klass_node = gvn.makecon(klass_t); 2958 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 2959 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 2960 2961 if (result == Compile::SSC_always_true) { 2962 r_ok_subtype->add_req(iftrue); 2963 } else { 2964 assert(result == Compile::SSC_always_false, ""); 2965 r_not_subtype->add_req(iftrue); 2966 } 2967 *ctrl = gvn.transform(new IfFalseNode(iff)); 2968 } 2969 } 2970 } 2971 2972 // See if we get an immediate positive hit. Happens roughly 83% of the 2973 // time. Test to see if the value loaded just previously from the subklass 2974 // is exactly the superklass. 2975 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2976 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 2977 *ctrl = gvn.transform(new IfFalseNode(iff1)); 2978 2979 // Compile speed common case: Check for being deterministic right now. If 2980 // chk_off is a constant and not equal to cacheoff then we are NOT a 2981 // subklass. In this case we need exactly the 1 test above and we can 2982 // return those results immediately. 2983 if (!might_be_cache) { 2984 Node* not_subtype_ctrl = *ctrl; 2985 *ctrl = iftrue1; // We need exactly the 1 test above 2986 PhaseIterGVN* igvn = gvn.is_IterGVN(); 2987 if (igvn != nullptr) { 2988 igvn->remove_globally_dead_node(r_ok_subtype); 2989 igvn->remove_globally_dead_node(r_not_subtype); 2990 } 2991 return not_subtype_ctrl; 2992 } 2993 2994 r_ok_subtype->init_req(1, iftrue1); 2995 2996 // Check for immediate negative hit. Happens roughly 11% of the time (which 2997 // is roughly 63% of the remaining cases). Test to see if the loaded 2998 // check-offset points into the subklass display list or the 1-element 2999 // cache. If it points to the display (and NOT the cache) and the display 3000 // missed then it's not a subtype. 3001 Node *cacheoff = gvn.intcon(cacheoff_con); 3002 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 3003 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 3004 *ctrl = gvn.transform(new IfFalseNode(iff2)); 3005 3006 // Check for self. Very rare to get here, but it is taken 1/3 the time. 3007 // No performance impact (too rare) but allows sharing of secondary arrays 3008 // which has some footprint reduction. 3009 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 3010 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 3011 *ctrl = gvn.transform(new IfFalseNode(iff3)); 3012 3013 // -- Roads not taken here: -- 3014 // We could also have chosen to perform the self-check at the beginning 3015 // of this code sequence, as the assembler does. This would not pay off 3016 // the same way, since the optimizer, unlike the assembler, can perform 3017 // static type analysis to fold away many successful self-checks. 3018 // Non-foldable self checks work better here in second position, because 3019 // the initial primary superclass check subsumes a self-check for most 3020 // types. An exception would be a secondary type like array-of-interface, 3021 // which does not appear in its own primary supertype display. 3022 // Finally, we could have chosen to move the self-check into the 3023 // PartialSubtypeCheckNode, and from there out-of-line in a platform 3024 // dependent manner. But it is worthwhile to have the check here, 3025 // where it can be perhaps be optimized. The cost in code space is 3026 // small (register compare, branch). 3027 3028 // Now do a linear scan of the secondary super-klass array. Again, no real 3029 // performance impact (too rare) but it's gotta be done. 3030 // Since the code is rarely used, there is no penalty for moving it 3031 // out of line, and it can only improve I-cache density. 3032 // The decision to inline or out-of-line this final check is platform 3033 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 3034 Node* psc = gvn.transform( 3035 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 3036 3037 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 3038 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 3039 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 3040 3041 // Return false path; set default control to true path. 3042 *ctrl = gvn.transform(r_ok_subtype); 3043 return gvn.transform(r_not_subtype); 3044 } 3045 3046 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 3047 const Type* sub_t = _gvn.type(obj_or_subklass); 3048 if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) { 3049 sub_t = TypeKlassPtr::make(sub_t->inline_klass()); 3050 obj_or_subklass = makecon(sub_t); 3051 } 3052 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 3053 if (expand_subtype_check) { 3054 MergeMemNode* mem = merged_memory(); 3055 Node* ctrl = control(); 3056 Node* subklass = obj_or_subklass; 3057 if (!sub_t->isa_klassptr()) { 3058 subklass = load_object_klass(obj_or_subklass); 3059 } 3060 3061 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 3062 set_control(ctrl); 3063 return n; 3064 } 3065 3066 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 3067 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 3068 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 3069 set_control(_gvn.transform(new IfTrueNode(iff))); 3070 return _gvn.transform(new IfFalseNode(iff)); 3071 } 3072 3073 // Profile-driven exact type check: 3074 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 3075 float prob, Node* *casted_receiver) { 3076 assert(!klass->is_interface(), "no exact type check on interfaces"); 3077 Node* fail = top(); 3078 const Type* rec_t = _gvn.type(receiver); 3079 if (rec_t->is_inlinetypeptr()) { 3080 if (klass->equals(rec_t->inline_klass())) { 3081 (*casted_receiver) = receiver; // Always passes 3082 } else { 3083 (*casted_receiver) = top(); // Always fails 3084 fail = control(); 3085 set_control(top()); 3086 } 3087 return fail; 3088 } 3089 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 3090 Node* recv_klass = load_object_klass(receiver); 3091 fail = type_check(recv_klass, tklass, prob); 3092 3093 if (!stopped()) { 3094 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3095 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 3096 assert(recv_xtype->klass_is_exact(), ""); 3097 3098 if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts 3099 // Subsume downstream occurrences of receiver with a cast to 3100 // recv_xtype, since now we know what the type will be. 3101 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 3102 Node* res = _gvn.transform(cast); 3103 if (recv_xtype->is_inlinetypeptr()) { 3104 assert(!gvn().type(res)->maybe_null(), "receiver should never be null"); 3105 res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass()); 3106 } 3107 (*casted_receiver) = res; 3108 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 3109 // (User must make the replace_in_map call.) 3110 } 3111 } 3112 3113 return fail; 3114 } 3115 3116 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass, 3117 float prob) { 3118 Node* want_klass = makecon(tklass); 3119 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 3120 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3121 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 3122 set_control(_gvn.transform(new IfTrueNode (iff))); 3123 Node* fail = _gvn.transform(new IfFalseNode(iff)); 3124 return fail; 3125 } 3126 3127 //------------------------------subtype_check_receiver------------------------- 3128 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 3129 Node** casted_receiver) { 3130 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 3131 Node* want_klass = makecon(tklass); 3132 3133 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 3134 3135 // Ignore interface type information until interface types are properly tracked. 3136 if (!stopped() && !klass->is_interface()) { 3137 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3138 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 3139 if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts 3140 Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type)); 3141 if (recv_type->is_inlinetypeptr()) { 3142 cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass()); 3143 } 3144 (*casted_receiver) = cast; 3145 } 3146 } 3147 3148 return slow_ctl; 3149 } 3150 3151 //------------------------------seems_never_null------------------------------- 3152 // Use null_seen information if it is available from the profile. 3153 // If we see an unexpected null at a type check we record it and force a 3154 // recompile; the offending check will be recompiled to handle nulls. 3155 // If we see several offending BCIs, then all checks in the 3156 // method will be recompiled. 3157 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 3158 speculating = !_gvn.type(obj)->speculative_maybe_null(); 3159 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 3160 if (UncommonNullCast // Cutout for this technique 3161 && obj != null() // And not the -Xcomp stupid case? 3162 && !too_many_traps(reason) 3163 ) { 3164 if (speculating) { 3165 return true; 3166 } 3167 if (data == nullptr) 3168 // Edge case: no mature data. Be optimistic here. 3169 return true; 3170 // If the profile has not seen a null, assume it won't happen. 3171 assert(java_bc() == Bytecodes::_checkcast || 3172 java_bc() == Bytecodes::_instanceof || 3173 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3174 return !data->as_BitData()->null_seen(); 3175 } 3176 speculating = false; 3177 return false; 3178 } 3179 3180 void GraphKit::guard_klass_being_initialized(Node* klass) { 3181 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3182 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3183 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3184 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3185 T_BYTE, MemNode::acquire); 3186 init_state = _gvn.transform(init_state); 3187 3188 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3189 3190 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3191 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3192 3193 { BuildCutout unless(this, tst, PROB_MAX); 3194 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3195 } 3196 } 3197 3198 void GraphKit::guard_init_thread(Node* klass) { 3199 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3200 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3201 3202 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3203 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3204 T_ADDRESS, MemNode::unordered); 3205 init_thread = _gvn.transform(init_thread); 3206 3207 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3208 3209 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3210 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3211 3212 { BuildCutout unless(this, tst, PROB_MAX); 3213 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3214 } 3215 } 3216 3217 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3218 if (ik->is_being_initialized()) { 3219 if (C->needs_clinit_barrier(ik, context)) { 3220 Node* klass = makecon(TypeKlassPtr::make(ik)); 3221 guard_klass_being_initialized(klass); 3222 guard_init_thread(klass); 3223 insert_mem_bar(Op_MemBarCPUOrder); 3224 } 3225 } else if (ik->is_initialized()) { 3226 return; // no barrier needed 3227 } else { 3228 uncommon_trap(Deoptimization::Reason_uninitialized, 3229 Deoptimization::Action_reinterpret, 3230 nullptr); 3231 } 3232 } 3233 3234 //------------------------maybe_cast_profiled_receiver------------------------- 3235 // If the profile has seen exactly one type, narrow to exactly that type. 3236 // Subsequent type checks will always fold up. 3237 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3238 const TypeKlassPtr* require_klass, 3239 ciKlass* spec_klass, 3240 bool safe_for_replace) { 3241 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3242 3243 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3244 3245 // Make sure we haven't already deoptimized from this tactic. 3246 if (too_many_traps_or_recompiles(reason)) 3247 return nullptr; 3248 3249 // (No, this isn't a call, but it's enough like a virtual call 3250 // to use the same ciMethod accessor to get the profile info...) 3251 // If we have a speculative type use it instead of profiling (which 3252 // may not help us) 3253 ciKlass* exact_kls = spec_klass; 3254 if (exact_kls == nullptr) { 3255 if (java_bc() == Bytecodes::_aastore) { 3256 ciKlass* array_type = nullptr; 3257 ciKlass* element_type = nullptr; 3258 ProfilePtrKind element_ptr = ProfileMaybeNull; 3259 bool flat_array = true; 3260 bool null_free_array = true; 3261 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 3262 exact_kls = element_type; 3263 } else { 3264 exact_kls = profile_has_unique_klass(); 3265 } 3266 } 3267 if (exact_kls != nullptr) {// no cast failures here 3268 if (require_klass == nullptr || 3269 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3270 // If we narrow the type to match what the type profile sees or 3271 // the speculative type, we can then remove the rest of the 3272 // cast. 3273 // This is a win, even if the exact_kls is very specific, 3274 // because downstream operations, such as method calls, 3275 // will often benefit from the sharper type. 3276 Node* exact_obj = not_null_obj; // will get updated in place... 3277 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3278 &exact_obj); 3279 { PreserveJVMState pjvms(this); 3280 set_control(slow_ctl); 3281 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3282 } 3283 if (safe_for_replace) { 3284 replace_in_map(not_null_obj, exact_obj); 3285 } 3286 return exact_obj; 3287 } 3288 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3289 } 3290 3291 return nullptr; 3292 } 3293 3294 /** 3295 * Cast obj to type and emit guard unless we had too many traps here 3296 * already 3297 * 3298 * @param obj node being casted 3299 * @param type type to cast the node to 3300 * @param not_null true if we know node cannot be null 3301 */ 3302 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3303 ciKlass* type, 3304 bool not_null) { 3305 if (stopped()) { 3306 return obj; 3307 } 3308 3309 // type is null if profiling tells us this object is always null 3310 if (type != nullptr) { 3311 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3312 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3313 3314 if (!too_many_traps_or_recompiles(null_reason) && 3315 !too_many_traps_or_recompiles(class_reason)) { 3316 Node* not_null_obj = nullptr; 3317 // not_null is true if we know the object is not null and 3318 // there's no need for a null check 3319 if (!not_null) { 3320 Node* null_ctl = top(); 3321 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3322 assert(null_ctl->is_top(), "no null control here"); 3323 } else { 3324 not_null_obj = obj; 3325 } 3326 3327 Node* exact_obj = not_null_obj; 3328 ciKlass* exact_kls = type; 3329 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3330 &exact_obj); 3331 { 3332 PreserveJVMState pjvms(this); 3333 set_control(slow_ctl); 3334 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3335 } 3336 replace_in_map(not_null_obj, exact_obj); 3337 obj = exact_obj; 3338 } 3339 } else { 3340 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3341 Node* exact_obj = null_assert(obj); 3342 replace_in_map(obj, exact_obj); 3343 obj = exact_obj; 3344 } 3345 } 3346 return obj; 3347 } 3348 3349 //-------------------------------gen_instanceof-------------------------------- 3350 // Generate an instance-of idiom. Used by both the instance-of bytecode 3351 // and the reflective instance-of call. 3352 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3353 kill_dead_locals(); // Benefit all the uncommon traps 3354 assert( !stopped(), "dead parse path should be checked in callers" ); 3355 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3356 "must check for not-null not-dead klass in callers"); 3357 3358 // Make the merge point 3359 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3360 RegionNode* region = new RegionNode(PATH_LIMIT); 3361 Node* phi = new PhiNode(region, TypeInt::BOOL); 3362 C->set_has_split_ifs(true); // Has chance for split-if optimization 3363 3364 ciProfileData* data = nullptr; 3365 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3366 data = method()->method_data()->bci_to_data(bci()); 3367 } 3368 bool speculative_not_null = false; 3369 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3370 && seems_never_null(obj, data, speculative_not_null)); 3371 3372 // Null check; get casted pointer; set region slot 3 3373 Node* null_ctl = top(); 3374 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3375 3376 // If not_null_obj is dead, only null-path is taken 3377 if (stopped()) { // Doing instance-of on a null? 3378 set_control(null_ctl); 3379 return intcon(0); 3380 } 3381 region->init_req(_null_path, null_ctl); 3382 phi ->init_req(_null_path, intcon(0)); // Set null path value 3383 if (null_ctl == top()) { 3384 // Do this eagerly, so that pattern matches like is_diamond_phi 3385 // will work even during parsing. 3386 assert(_null_path == PATH_LIMIT-1, "delete last"); 3387 region->del_req(_null_path); 3388 phi ->del_req(_null_path); 3389 } 3390 3391 // Do we know the type check always succeed? 3392 bool known_statically = false; 3393 if (_gvn.type(superklass)->singleton()) { 3394 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3395 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3396 if (subk != nullptr && subk->is_loaded()) { 3397 int static_res = C->static_subtype_check(superk, subk); 3398 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3399 } 3400 } 3401 3402 if (!known_statically) { 3403 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3404 // We may not have profiling here or it may not help us. If we 3405 // have a speculative type use it to perform an exact cast. 3406 ciKlass* spec_obj_type = obj_type->speculative_type(); 3407 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3408 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3409 if (stopped()) { // Profile disagrees with this path. 3410 set_control(null_ctl); // Null is the only remaining possibility. 3411 return intcon(0); 3412 } 3413 if (cast_obj != nullptr) { 3414 not_null_obj = cast_obj; 3415 } 3416 } 3417 } 3418 3419 // Generate the subtype check 3420 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3421 3422 // Plug in the success path to the general merge in slot 1. 3423 region->init_req(_obj_path, control()); 3424 phi ->init_req(_obj_path, intcon(1)); 3425 3426 // Plug in the failing path to the general merge in slot 2. 3427 region->init_req(_fail_path, not_subtype_ctrl); 3428 phi ->init_req(_fail_path, intcon(0)); 3429 3430 // Return final merged results 3431 set_control( _gvn.transform(region) ); 3432 record_for_igvn(region); 3433 3434 // If we know the type check always succeeds then we don't use the 3435 // profiling data at this bytecode. Don't lose it, feed it to the 3436 // type system as a speculative type. 3437 if (safe_for_replace) { 3438 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3439 replace_in_map(obj, casted_obj); 3440 } 3441 3442 return _gvn.transform(phi); 3443 } 3444 3445 //-------------------------------gen_checkcast--------------------------------- 3446 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3447 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3448 // uncommon-trap paths work. Adjust stack after this call. 3449 // If failure_control is supplied and not null, it is filled in with 3450 // the control edge for the cast failure. Otherwise, an appropriate 3451 // uncommon trap or exception is thrown. 3452 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) { 3453 kill_dead_locals(); // Benefit all the uncommon traps 3454 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3455 const Type* obj_type = _gvn.type(obj); 3456 if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) { 3457 // Special case: larval inline objects must not be scalarized. They are also generally not 3458 // allowed to participate in most operations except as the first operand of putfield, or as an 3459 // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being 3460 // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize 3461 // value objects in all other places. This special case comes from the limitation of the Java 3462 // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete 3463 // value type. We must do this first because C->static_subtype_check may do nothing when 3464 // StressReflectiveCode is set. 3465 return obj; 3466 } 3467 3468 // Else it must be a non-larval object 3469 obj = cast_to_non_larval(obj); 3470 3471 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3472 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3473 bool safe_for_replace = (failure_control == nullptr); 3474 assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer"); 3475 3476 // Fast cutout: Check the case that the cast is vacuously true. 3477 // This detects the common cases where the test will short-circuit 3478 // away completely. We do this before we perform the null check, 3479 // because if the test is going to turn into zero code, we don't 3480 // want a residual null check left around. (Causes a slowdown, 3481 // for example, in some objArray manipulations, such as a[i]=a[j].) 3482 if (improved_klass_ptr_type->singleton()) { 3483 const TypeKlassPtr* kptr = nullptr; 3484 if (obj_type->isa_oop_ptr()) { 3485 kptr = obj_type->is_oopptr()->as_klass_type(); 3486 } else if (obj->is_InlineType()) { 3487 ciInlineKlass* vk = obj_type->inline_klass(); 3488 kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0)); 3489 } 3490 3491 if (kptr != nullptr) { 3492 switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) { 3493 case Compile::SSC_always_true: 3494 // If we know the type check always succeed then we don't use 3495 // the profiling data at this bytecode. Don't lose it, feed it 3496 // to the type system as a speculative type. 3497 obj = record_profiled_receiver_for_speculation(obj); 3498 if (null_free) { 3499 assert(safe_for_replace, "must be"); 3500 obj = null_check(obj); 3501 } 3502 assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized"); 3503 return obj; 3504 case Compile::SSC_always_false: 3505 if (null_free) { 3506 assert(safe_for_replace, "must be"); 3507 obj = null_check(obj); 3508 } 3509 // It needs a null check because a null will *pass* the cast check. 3510 if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) { 3511 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3512 Deoptimization::DeoptReason reason = is_aastore ? 3513 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3514 builtin_throw(reason); 3515 return top(); 3516 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3517 return null_assert(obj); 3518 } 3519 break; // Fall through to full check 3520 default: 3521 break; 3522 } 3523 } 3524 } 3525 3526 ciProfileData* data = nullptr; 3527 if (failure_control == nullptr) { // use MDO in regular case only 3528 assert(java_bc() == Bytecodes::_aastore || 3529 java_bc() == Bytecodes::_checkcast, 3530 "interpreter profiles type checks only for these BCs"); 3531 if (method()->method_data()->is_mature()) { 3532 data = method()->method_data()->bci_to_data(bci()); 3533 } 3534 } 3535 3536 // Make the merge point 3537 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3538 RegionNode* region = new RegionNode(PATH_LIMIT); 3539 Node* phi = new PhiNode(region, toop); 3540 _gvn.set_type(region, Type::CONTROL); 3541 _gvn.set_type(phi, toop); 3542 3543 C->set_has_split_ifs(true); // Has chance for split-if optimization 3544 3545 // Use null-cast information if it is available 3546 bool speculative_not_null = false; 3547 bool never_see_null = ((failure_control == nullptr) // regular case only 3548 && seems_never_null(obj, data, speculative_not_null)); 3549 3550 if (obj->is_InlineType()) { 3551 // Re-execute if buffering during triggers deoptimization 3552 PreserveReexecuteState preexecs(this); 3553 jvms()->set_should_reexecute(true); 3554 obj = obj->as_InlineType()->buffer(this, safe_for_replace); 3555 } 3556 3557 // Null check; get casted pointer; set region slot 3 3558 Node* null_ctl = top(); 3559 Node* not_null_obj = nullptr; 3560 if (null_free) { 3561 assert(safe_for_replace, "must be"); 3562 not_null_obj = null_check(obj); 3563 } else { 3564 not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3565 } 3566 3567 // If not_null_obj is dead, only null-path is taken 3568 if (stopped()) { // Doing instance-of on a null? 3569 set_control(null_ctl); 3570 if (toop->is_inlinetypeptr()) { 3571 return InlineTypeNode::make_null(_gvn, toop->inline_klass()); 3572 } 3573 return null(); 3574 } 3575 region->init_req(_null_path, null_ctl); 3576 phi ->init_req(_null_path, null()); // Set null path value 3577 if (null_ctl == top()) { 3578 // Do this eagerly, so that pattern matches like is_diamond_phi 3579 // will work even during parsing. 3580 assert(_null_path == PATH_LIMIT-1, "delete last"); 3581 region->del_req(_null_path); 3582 phi ->del_req(_null_path); 3583 } 3584 3585 Node* cast_obj = nullptr; 3586 if (improved_klass_ptr_type->klass_is_exact()) { 3587 // The following optimization tries to statically cast the speculative type of the object 3588 // (for example obtained during profiling) to the type of the superklass and then do a 3589 // dynamic check that the type of the object is what we expect. To work correctly 3590 // for checkcast and aastore the type of superklass should be exact. 3591 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3592 // We may not have profiling here or it may not help us. If we have 3593 // a speculative type use it to perform an exact cast. 3594 ciKlass* spec_obj_type = obj_type->speculative_type(); 3595 if (spec_obj_type != nullptr || data != nullptr) { 3596 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3597 if (cast_obj != nullptr) { 3598 if (failure_control != nullptr) // failure is now impossible 3599 (*failure_control) = top(); 3600 // adjust the type of the phi to the exact klass: 3601 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3602 } 3603 } 3604 } 3605 3606 if (cast_obj == nullptr) { 3607 // Generate the subtype check 3608 Node* improved_superklass = superklass; 3609 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3610 // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up. 3611 // The other non-constant cases cannot be improved with a cast node here since they could be folded to top. 3612 // Additionally, the benefit would only be minor in non-constant cases. 3613 improved_superklass = makecon(improved_klass_ptr_type); 3614 } 3615 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3616 // Plug in success path into the merge 3617 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3618 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3619 if (failure_control == nullptr) { 3620 if (not_subtype_ctrl != top()) { // If failure is possible 3621 PreserveJVMState pjvms(this); 3622 set_control(not_subtype_ctrl); 3623 Node* obj_klass = nullptr; 3624 if (not_null_obj->is_InlineType()) { 3625 obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass())); 3626 } else { 3627 obj_klass = load_object_klass(not_null_obj); 3628 } 3629 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3630 Deoptimization::DeoptReason reason = is_aastore ? 3631 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3632 builtin_throw(reason); 3633 } 3634 } else { 3635 (*failure_control) = not_subtype_ctrl; 3636 } 3637 } 3638 3639 region->init_req(_obj_path, control()); 3640 phi ->init_req(_obj_path, cast_obj); 3641 3642 // A merge of null or Casted-NotNull obj 3643 Node* res = _gvn.transform(phi); 3644 3645 // Note I do NOT always 'replace_in_map(obj,result)' here. 3646 // if( tk->klass()->can_be_primary_super() ) 3647 // This means that if I successfully store an Object into an array-of-String 3648 // I 'forget' that the Object is really now known to be a String. I have to 3649 // do this because we don't have true union types for interfaces - if I store 3650 // a Baz into an array-of-Interface and then tell the optimizer it's an 3651 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3652 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3653 // replace_in_map( obj, res ); 3654 3655 // Return final merged results 3656 set_control( _gvn.transform(region) ); 3657 record_for_igvn(region); 3658 3659 bool not_inline = !toop->can_be_inline_type(); 3660 bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array()); 3661 if (EnableValhalla && (not_inline || not_flat_in_array)) { 3662 // Check if obj has been loaded from an array 3663 obj = obj->isa_DecodeN() ? obj->in(1) : obj; 3664 Node* array = nullptr; 3665 if (obj->isa_Load()) { 3666 Node* address = obj->in(MemNode::Address); 3667 if (address->isa_AddP()) { 3668 array = address->as_AddP()->in(AddPNode::Base); 3669 } 3670 } else if (obj->is_Phi()) { 3671 Node* region = obj->in(0); 3672 // TODO make this more robust (see JDK-8231346) 3673 if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) { 3674 IfNode* iff = region->in(2)->in(0)->isa_If(); 3675 if (iff != nullptr) { 3676 iff->is_flat_array_check(&_gvn, &array); 3677 } 3678 } 3679 } 3680 if (array != nullptr) { 3681 const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr(); 3682 if (ary_t != nullptr) { 3683 if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) { 3684 // Casting array element to a non-inline-type, mark array as not null-free. 3685 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free())); 3686 replace_in_map(array, cast); 3687 array = cast; 3688 } 3689 if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) { 3690 // Casting array element to a non-flat-in-array type, mark array as not flat. 3691 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat())); 3692 replace_in_map(array, cast); 3693 array = cast; 3694 } 3695 } 3696 } 3697 } 3698 3699 if (!stopped() && !res->is_InlineType()) { 3700 res = record_profiled_receiver_for_speculation(res); 3701 if (toop->is_inlinetypeptr() && !maybe_larval) { 3702 Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass()); 3703 res = vt; 3704 if (safe_for_replace) { 3705 replace_in_map(obj, vt); 3706 replace_in_map(not_null_obj, vt); 3707 replace_in_map(res, vt); 3708 } 3709 } 3710 } 3711 return res; 3712 } 3713 3714 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) { 3715 // Load markword 3716 Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3717 Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3718 if (check_lock) { 3719 // Check if obj is locked 3720 Node* locked_bit = MakeConX(markWord::unlocked_value); 3721 locked_bit = _gvn.transform(new AndXNode(locked_bit, mark)); 3722 Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 3723 Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3724 IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN); 3725 _gvn.transform(iff); 3726 Node* locked_region = new RegionNode(3); 3727 Node* mark_phi = new PhiNode(locked_region, TypeX_X); 3728 3729 // Unlocked: Use bits from mark word 3730 locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff))); 3731 mark_phi->init_req(1, mark); 3732 3733 // Locked: Load prototype header from klass 3734 set_control(_gvn.transform(new IfFalseNode(iff))); 3735 // Make loads control dependent to make sure they are only executed if array is locked 3736 Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 3737 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 3738 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 3739 Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 3740 3741 locked_region->init_req(2, control()); 3742 mark_phi->init_req(2, proto); 3743 set_control(_gvn.transform(locked_region)); 3744 record_for_igvn(locked_region); 3745 3746 mark = mark_phi; 3747 } 3748 3749 // Now check if mark word bits are set 3750 Node* mask = MakeConX(mask_val); 3751 Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask)); 3752 record_for_igvn(masked); // Give it a chance to be optimized out by IGVN 3753 Node* cmp = _gvn.transform(new CmpXNode(masked, mask)); 3754 return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne)); 3755 } 3756 3757 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) { 3758 return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false); 3759 } 3760 3761 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) { 3762 // We can't use immutable memory here because the mark word is mutable. 3763 // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the 3764 // check is moved out of loops (mainly to enable loop unswitching). 3765 Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass)); 3766 record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN 3767 return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne)); 3768 } 3769 3770 Node* GraphKit::null_free_array_test(Node* array, bool null_free) { 3771 return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free); 3772 } 3773 3774 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) { 3775 assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat"); 3776 3777 // TODO 8350865 Add a stress flag to always access atomic if layout exists? 3778 if (!vk->has_non_atomic_layout()) { 3779 return intcon(1); // Always atomic 3780 } else if (!vk->has_atomic_layout()) { 3781 return intcon(0); // Never atomic 3782 } 3783 3784 // TODO 8350865 Don't fold this klass load because atomicity is currently not included in the typesystem 3785 Node* array_klass = load_object_klass(array, /* fold_for_arrays = */ false); 3786 int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset()); 3787 Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset); 3788 Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered); 3789 Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT))); 3790 return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3791 } 3792 3793 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null 3794 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) { 3795 RegionNode* region = new RegionNode(3); 3796 Node* null_ctl = top(); 3797 null_check_oop(val, &null_ctl); 3798 if (null_ctl != top()) { 3799 PreserveJVMState pjvms(this); 3800 set_control(null_ctl); 3801 { 3802 // Deoptimize if null-free array 3803 BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX); 3804 inc_sp(nargs); 3805 uncommon_trap(Deoptimization::Reason_null_check, 3806 Deoptimization::Action_none); 3807 } 3808 region->init_req(1, control()); 3809 } 3810 region->init_req(2, control()); 3811 set_control(_gvn.transform(region)); 3812 record_for_igvn(region); 3813 if (_gvn.type(val) == TypePtr::NULL_PTR) { 3814 // Since we were just successfully storing null, the array can't be null free. 3815 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 3816 ary_t = ary_t->cast_to_not_null_free(); 3817 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 3818 if (safe_for_replace) { 3819 replace_in_map(ary, cast); 3820 } 3821 ary = cast; 3822 } 3823 return ary; 3824 } 3825 3826 //------------------------------next_monitor----------------------------------- 3827 // What number should be given to the next monitor? 3828 int GraphKit::next_monitor() { 3829 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3830 int next = current + C->sync_stack_slots(); 3831 // Keep the toplevel high water mark current: 3832 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3833 return current; 3834 } 3835 3836 //------------------------------insert_mem_bar--------------------------------- 3837 // Memory barrier to avoid floating things around 3838 // The membar serves as a pinch point between both control and all memory slices. 3839 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3840 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3841 mb->init_req(TypeFunc::Control, control()); 3842 mb->init_req(TypeFunc::Memory, reset_memory()); 3843 Node* membar = _gvn.transform(mb); 3844 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3845 set_all_memory_call(membar); 3846 return membar; 3847 } 3848 3849 //-------------------------insert_mem_bar_volatile---------------------------- 3850 // Memory barrier to avoid floating things around 3851 // The membar serves as a pinch point between both control and memory(alias_idx). 3852 // If you want to make a pinch point on all memory slices, do not use this 3853 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3854 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3855 // When Parse::do_put_xxx updates a volatile field, it appends a series 3856 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3857 // The first membar is on the same memory slice as the field store opcode. 3858 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3859 // All the other membars (for other volatile slices, including AliasIdxBot, 3860 // which stands for all unknown volatile slices) are control-dependent 3861 // on the first membar. This prevents later volatile loads or stores 3862 // from sliding up past the just-emitted store. 3863 3864 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3865 mb->set_req(TypeFunc::Control,control()); 3866 if (alias_idx == Compile::AliasIdxBot) { 3867 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3868 } else { 3869 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3870 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3871 } 3872 Node* membar = _gvn.transform(mb); 3873 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3874 if (alias_idx == Compile::AliasIdxBot) { 3875 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3876 } else { 3877 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3878 } 3879 return membar; 3880 } 3881 3882 //------------------------------shared_lock------------------------------------ 3883 // Emit locking code. 3884 FastLockNode* GraphKit::shared_lock(Node* obj) { 3885 // bci is either a monitorenter bc or InvocationEntryBci 3886 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3887 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3888 3889 if( !GenerateSynchronizationCode ) 3890 return nullptr; // Not locking things? 3891 3892 if (stopped()) // Dead monitor? 3893 return nullptr; 3894 3895 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3896 3897 // Box the stack location 3898 Node* box = new BoxLockNode(next_monitor()); 3899 // Check for bailout after new BoxLockNode 3900 if (failing()) { return nullptr; } 3901 box = _gvn.transform(box); 3902 Node* mem = reset_memory(); 3903 3904 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3905 3906 // Add monitor to debug info for the slow path. If we block inside the 3907 // slow path and de-opt, we need the monitor hanging around 3908 map()->push_monitor( flock ); 3909 3910 const TypeFunc *tf = LockNode::lock_type(); 3911 LockNode *lock = new LockNode(C, tf); 3912 3913 lock->init_req( TypeFunc::Control, control() ); 3914 lock->init_req( TypeFunc::Memory , mem ); 3915 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3916 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3917 lock->init_req( TypeFunc::ReturnAdr, top() ); 3918 3919 lock->init_req(TypeFunc::Parms + 0, obj); 3920 lock->init_req(TypeFunc::Parms + 1, box); 3921 lock->init_req(TypeFunc::Parms + 2, flock); 3922 add_safepoint_edges(lock); 3923 3924 lock = _gvn.transform( lock )->as_Lock(); 3925 3926 // lock has no side-effects, sets few values 3927 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3928 3929 insert_mem_bar(Op_MemBarAcquireLock); 3930 3931 // Add this to the worklist so that the lock can be eliminated 3932 record_for_igvn(lock); 3933 3934 #ifndef PRODUCT 3935 if (PrintLockStatistics) { 3936 // Update the counter for this lock. Don't bother using an atomic 3937 // operation since we don't require absolute accuracy. 3938 lock->create_lock_counter(map()->jvms()); 3939 increment_counter(lock->counter()->addr()); 3940 } 3941 #endif 3942 3943 return flock; 3944 } 3945 3946 3947 //------------------------------shared_unlock---------------------------------- 3948 // Emit unlocking code. 3949 void GraphKit::shared_unlock(Node* box, Node* obj) { 3950 // bci is either a monitorenter bc or InvocationEntryBci 3951 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3952 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3953 3954 if( !GenerateSynchronizationCode ) 3955 return; 3956 if (stopped()) { // Dead monitor? 3957 map()->pop_monitor(); // Kill monitor from debug info 3958 return; 3959 } 3960 assert(!obj->is_InlineType(), "should not unlock on inline type"); 3961 3962 // Memory barrier to avoid floating things down past the locked region 3963 insert_mem_bar(Op_MemBarReleaseLock); 3964 3965 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3966 UnlockNode *unlock = new UnlockNode(C, tf); 3967 #ifdef ASSERT 3968 unlock->set_dbg_jvms(sync_jvms()); 3969 #endif 3970 uint raw_idx = Compile::AliasIdxRaw; 3971 unlock->init_req( TypeFunc::Control, control() ); 3972 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3973 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3974 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3975 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3976 3977 unlock->init_req(TypeFunc::Parms + 0, obj); 3978 unlock->init_req(TypeFunc::Parms + 1, box); 3979 unlock = _gvn.transform(unlock)->as_Unlock(); 3980 3981 Node* mem = reset_memory(); 3982 3983 // unlock has no side-effects, sets few values 3984 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3985 3986 // Kill monitor from debug info 3987 map()->pop_monitor( ); 3988 } 3989 3990 //-------------------------------get_layout_helper----------------------------- 3991 // If the given klass is a constant or known to be an array, 3992 // fetch the constant layout helper value into constant_value 3993 // and return null. Otherwise, load the non-constant 3994 // layout helper value, and return the node which represents it. 3995 // This two-faced routine is useful because allocation sites 3996 // almost always feature constant types. 3997 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3998 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 3999 if (!StressReflectiveCode && klass_t != nullptr) { 4000 bool xklass = klass_t->klass_is_exact(); 4001 bool can_be_flat = false; 4002 const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr(); 4003 if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) { 4004 // Don't constant fold if the runtime type might be a flat array but the static type is not. 4005 const TypeOopPtr* elem = ary_type->elem()->make_oopptr(); 4006 can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array()); 4007 } 4008 if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) { 4009 jint lhelper; 4010 if (klass_t->is_flat()) { 4011 lhelper = ary_type->flat_layout_helper(); 4012 } else if (klass_t->isa_aryklassptr()) { 4013 BasicType elem = ary_type->elem()->array_element_basic_type(); 4014 if (is_reference_type(elem, true)) { 4015 elem = T_OBJECT; 4016 } 4017 lhelper = Klass::array_layout_helper(elem); 4018 } else { 4019 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 4020 } 4021 if (lhelper != Klass::_lh_neutral_value) { 4022 constant_value = lhelper; 4023 return (Node*) nullptr; 4024 } 4025 } 4026 } 4027 constant_value = Klass::_lh_neutral_value; // put in a known value 4028 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 4029 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 4030 } 4031 4032 // We just put in an allocate/initialize with a big raw-memory effect. 4033 // Hook selected additional alias categories on the initialization. 4034 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 4035 MergeMemNode* init_in_merge, 4036 Node* init_out_raw) { 4037 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 4038 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 4039 4040 Node* prevmem = kit.memory(alias_idx); 4041 init_in_merge->set_memory_at(alias_idx, prevmem); 4042 if (init_out_raw != nullptr) { 4043 kit.set_memory(init_out_raw, alias_idx); 4044 } 4045 } 4046 4047 //---------------------------set_output_for_allocation------------------------- 4048 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 4049 const TypeOopPtr* oop_type, 4050 bool deoptimize_on_exception) { 4051 int rawidx = Compile::AliasIdxRaw; 4052 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 4053 add_safepoint_edges(alloc); 4054 Node* allocx = _gvn.transform(alloc); 4055 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 4056 // create memory projection for i_o 4057 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 4058 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 4059 4060 // create a memory projection as for the normal control path 4061 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 4062 set_memory(malloc, rawidx); 4063 4064 // a normal slow-call doesn't change i_o, but an allocation does 4065 // we create a separate i_o projection for the normal control path 4066 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 4067 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 4068 4069 // put in an initialization barrier 4070 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 4071 rawoop)->as_Initialize(); 4072 assert(alloc->initialization() == init, "2-way macro link must work"); 4073 assert(init ->allocation() == alloc, "2-way macro link must work"); 4074 { 4075 // Extract memory strands which may participate in the new object's 4076 // initialization, and source them from the new InitializeNode. 4077 // This will allow us to observe initializations when they occur, 4078 // and link them properly (as a group) to the InitializeNode. 4079 assert(init->in(InitializeNode::Memory) == malloc, ""); 4080 MergeMemNode* minit_in = MergeMemNode::make(malloc); 4081 init->set_req(InitializeNode::Memory, minit_in); 4082 record_for_igvn(minit_in); // fold it up later, if possible 4083 _gvn.set_type(minit_in, Type::MEMORY); 4084 Node* minit_out = memory(rawidx); 4085 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 4086 // Add an edge in the MergeMem for the header fields so an access 4087 // to one of those has correct memory state 4088 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 4089 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 4090 if (oop_type->isa_aryptr()) { 4091 const TypeAryPtr* arytype = oop_type->is_aryptr(); 4092 if (arytype->is_flat()) { 4093 // Initially all flat array accesses share a single slice 4094 // but that changes after parsing. Prepare the memory graph so 4095 // it can optimize flat array accesses properly once they 4096 // don't share a single slice. 4097 assert(C->flat_accesses_share_alias(), "should be set at parse time"); 4098 C->set_flat_accesses_share_alias(false); 4099 ciInlineKlass* vk = arytype->elem()->inline_klass(); 4100 for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { 4101 ciField* field = vk->nonstatic_field_at(i); 4102 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4103 continue; // do not bother to track really large numbers of fields 4104 int off_in_vt = field->offset_in_bytes() - vk->payload_offset(); 4105 const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot); 4106 int fieldidx = C->get_alias_index(adr_type, true); 4107 // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node 4108 // can result in per flat array field Phis to be created which confuses the logic of 4109 // Compile::adjust_flat_array_access_aliases(). 4110 hook_memory_on_init(*this, fieldidx, minit_in, nullptr); 4111 } 4112 C->set_flat_accesses_share_alias(true); 4113 hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out); 4114 } else { 4115 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 4116 int elemidx = C->get_alias_index(telemref); 4117 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 4118 } 4119 } else if (oop_type->isa_instptr()) { 4120 set_memory(minit_out, C->get_alias_index(oop_type)); // mark word 4121 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 4122 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 4123 ciField* field = ik->nonstatic_field_at(i); 4124 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4125 continue; // do not bother to track really large numbers of fields 4126 // Find (or create) the alias category for this field: 4127 int fieldidx = C->alias_type(field)->index(); 4128 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 4129 } 4130 } 4131 } 4132 4133 // Cast raw oop to the real thing... 4134 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 4135 javaoop = _gvn.transform(javaoop); 4136 C->set_recent_alloc(control(), javaoop); 4137 assert(just_allocated_object(control()) == javaoop, "just allocated"); 4138 4139 #ifdef ASSERT 4140 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 4141 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 4142 "Ideal_allocation works"); 4143 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 4144 "Ideal_allocation works"); 4145 if (alloc->is_AllocateArray()) { 4146 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 4147 "Ideal_allocation works"); 4148 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 4149 "Ideal_allocation works"); 4150 } else { 4151 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 4152 } 4153 } 4154 #endif //ASSERT 4155 4156 return javaoop; 4157 } 4158 4159 //---------------------------new_instance-------------------------------------- 4160 // This routine takes a klass_node which may be constant (for a static type) 4161 // or may be non-constant (for reflective code). It will work equally well 4162 // for either, and the graph will fold nicely if the optimizer later reduces 4163 // the type to a constant. 4164 // The optional arguments are for specialized use by intrinsics: 4165 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 4166 // - If 'return_size_val', report the total object size to the caller. 4167 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4168 Node* GraphKit::new_instance(Node* klass_node, 4169 Node* extra_slow_test, 4170 Node* *return_size_val, 4171 bool deoptimize_on_exception, 4172 InlineTypeNode* inline_type_node) { 4173 // Compute size in doublewords 4174 // The size is always an integral number of doublewords, represented 4175 // as a positive bytewise size stored in the klass's layout_helper. 4176 // The layout_helper also encodes (in a low bit) the need for a slow path. 4177 jint layout_con = Klass::_lh_neutral_value; 4178 Node* layout_val = get_layout_helper(klass_node, layout_con); 4179 bool layout_is_con = (layout_val == nullptr); 4180 4181 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 4182 // Generate the initial go-slow test. It's either ALWAYS (return a 4183 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 4184 // case) a computed value derived from the layout_helper. 4185 Node* initial_slow_test = nullptr; 4186 if (layout_is_con) { 4187 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4188 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 4189 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 4190 } else { // reflective case 4191 // This reflective path is used by Unsafe.allocateInstance. 4192 // (It may be stress-tested by specifying StressReflectiveCode.) 4193 // Basically, we want to get into the VM is there's an illegal argument. 4194 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 4195 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 4196 if (extra_slow_test != intcon(0)) { 4197 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 4198 } 4199 // (Macro-expander will further convert this to a Bool, if necessary.) 4200 } 4201 4202 // Find the size in bytes. This is easy; it's the layout_helper. 4203 // The size value must be valid even if the slow path is taken. 4204 Node* size = nullptr; 4205 if (layout_is_con) { 4206 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 4207 } else { // reflective case 4208 // This reflective path is used by clone and Unsafe.allocateInstance. 4209 size = ConvI2X(layout_val); 4210 4211 // Clear the low bits to extract layout_helper_size_in_bytes: 4212 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 4213 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 4214 size = _gvn.transform( new AndXNode(size, mask) ); 4215 } 4216 if (return_size_val != nullptr) { 4217 (*return_size_val) = size; 4218 } 4219 4220 // This is a precise notnull oop of the klass. 4221 // (Actually, it need not be precise if this is a reflective allocation.) 4222 // It's what we cast the result to. 4223 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 4224 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 4225 const TypeOopPtr* oop_type = tklass->as_instance_type(); 4226 4227 // Now generate allocation code 4228 4229 // The entire memory state is needed for slow path of the allocation 4230 // since GC and deoptimization can happen. 4231 Node *mem = reset_memory(); 4232 set_all_memory(mem); // Create new memory state 4233 4234 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 4235 control(), mem, i_o(), 4236 size, klass_node, 4237 initial_slow_test, inline_type_node); 4238 4239 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 4240 } 4241 4242 //-------------------------------new_array------------------------------------- 4243 // helper for newarray and anewarray 4244 // The 'length' parameter is (obviously) the length of the array. 4245 // The optional arguments are for specialized use by intrinsics: 4246 // - If 'return_size_val', report the non-padded array size (sum of header size 4247 // and array body) to the caller. 4248 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4249 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 4250 Node* length, // number of array elements 4251 int nargs, // number of arguments to push back for uncommon trap 4252 Node* *return_size_val, 4253 bool deoptimize_on_exception, 4254 Node* init_val) { 4255 jint layout_con = Klass::_lh_neutral_value; 4256 Node* layout_val = get_layout_helper(klass_node, layout_con); 4257 bool layout_is_con = (layout_val == nullptr); 4258 4259 if (!layout_is_con && !StressReflectiveCode && 4260 !too_many_traps(Deoptimization::Reason_class_check)) { 4261 // This is a reflective array creation site. 4262 // Optimistically assume that it is a subtype of Object[], 4263 // so that we can fold up all the address arithmetic. 4264 layout_con = Klass::array_layout_helper(T_OBJECT); 4265 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 4266 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 4267 { BuildCutout unless(this, bol_lh, PROB_MAX); 4268 inc_sp(nargs); 4269 uncommon_trap(Deoptimization::Reason_class_check, 4270 Deoptimization::Action_maybe_recompile); 4271 } 4272 layout_val = nullptr; 4273 layout_is_con = true; 4274 } 4275 4276 // Generate the initial go-slow test. Make sure we do not overflow 4277 // if length is huge (near 2Gig) or negative! We do not need 4278 // exact double-words here, just a close approximation of needed 4279 // double-words. We can't add any offset or rounding bits, lest we 4280 // take a size -1 of bytes and make it positive. Use an unsigned 4281 // compare, so negative sizes look hugely positive. 4282 int fast_size_limit = FastAllocateSizeLimit; 4283 if (layout_is_con) { 4284 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4285 // Increase the size limit if we have exact knowledge of array type. 4286 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 4287 fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0); 4288 } 4289 4290 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 4291 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 4292 4293 // --- Size Computation --- 4294 // array_size = round_to_heap(array_header + (length << elem_shift)); 4295 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 4296 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 4297 // The rounding mask is strength-reduced, if possible. 4298 int round_mask = MinObjAlignmentInBytes - 1; 4299 Node* header_size = nullptr; 4300 // (T_BYTE has the weakest alignment and size restrictions...) 4301 if (layout_is_con) { 4302 int hsize = Klass::layout_helper_header_size(layout_con); 4303 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4304 bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con); 4305 if ((round_mask & ~right_n_bits(eshift)) == 0) 4306 round_mask = 0; // strength-reduce it if it goes away completely 4307 assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 4308 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 4309 assert(header_size_min <= hsize, "generic minimum is smallest"); 4310 header_size = intcon(hsize); 4311 } else { 4312 Node* hss = intcon(Klass::_lh_header_size_shift); 4313 Node* hsm = intcon(Klass::_lh_header_size_mask); 4314 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 4315 header_size = _gvn.transform(new AndINode(header_size, hsm)); 4316 } 4317 4318 Node* elem_shift = nullptr; 4319 if (layout_is_con) { 4320 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4321 if (eshift != 0) 4322 elem_shift = intcon(eshift); 4323 } else { 4324 // There is no need to mask or shift this value. 4325 // The semantics of LShiftINode include an implicit mask to 0x1F. 4326 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 4327 elem_shift = layout_val; 4328 } 4329 4330 // Transition to native address size for all offset calculations: 4331 Node* lengthx = ConvI2X(length); 4332 Node* headerx = ConvI2X(header_size); 4333 #ifdef _LP64 4334 { const TypeInt* tilen = _gvn.find_int_type(length); 4335 if (tilen != nullptr && tilen->_lo < 0) { 4336 // Add a manual constraint to a positive range. Cf. array_element_address. 4337 jint size_max = fast_size_limit; 4338 if (size_max > tilen->_hi) size_max = tilen->_hi; 4339 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 4340 4341 // Only do a narrow I2L conversion if the range check passed. 4342 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 4343 _gvn.transform(iff); 4344 RegionNode* region = new RegionNode(3); 4345 _gvn.set_type(region, Type::CONTROL); 4346 lengthx = new PhiNode(region, TypeLong::LONG); 4347 _gvn.set_type(lengthx, TypeLong::LONG); 4348 4349 // Range check passed. Use ConvI2L node with narrow type. 4350 Node* passed = IfFalse(iff); 4351 region->init_req(1, passed); 4352 // Make I2L conversion control dependent to prevent it from 4353 // floating above the range check during loop optimizations. 4354 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 4355 4356 // Range check failed. Use ConvI2L with wide type because length may be invalid. 4357 region->init_req(2, IfTrue(iff)); 4358 lengthx->init_req(2, ConvI2X(length)); 4359 4360 set_control(region); 4361 record_for_igvn(region); 4362 record_for_igvn(lengthx); 4363 } 4364 } 4365 #endif 4366 4367 // Combine header size and body size for the array copy part, then align (if 4368 // necessary) for the allocation part. This computation cannot overflow, 4369 // because it is used only in two places, one where the length is sharply 4370 // limited, and the other after a successful allocation. 4371 Node* abody = lengthx; 4372 if (elem_shift != nullptr) { 4373 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 4374 } 4375 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 4376 4377 if (return_size_val != nullptr) { 4378 // This is the size 4379 (*return_size_val) = non_rounded_size; 4380 } 4381 4382 Node* size = non_rounded_size; 4383 if (round_mask != 0) { 4384 Node* mask1 = MakeConX(round_mask); 4385 size = _gvn.transform(new AddXNode(size, mask1)); 4386 Node* mask2 = MakeConX(~round_mask); 4387 size = _gvn.transform(new AndXNode(size, mask2)); 4388 } 4389 // else if round_mask == 0, the size computation is self-rounding 4390 4391 // Now generate allocation code 4392 4393 // The entire memory state is needed for slow path of the allocation 4394 // since GC and deoptimization can happen. 4395 Node *mem = reset_memory(); 4396 set_all_memory(mem); // Create new memory state 4397 4398 if (initial_slow_test->is_Bool()) { 4399 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 4400 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 4401 } 4402 4403 const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr(); 4404 const TypeOopPtr* ary_type = ary_klass->as_instance_type(); 4405 4406 Node* raw_init_value = nullptr; 4407 if (init_val != nullptr) { 4408 // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays 4409 if (ary_type->is_flat()) { 4410 initial_slow_test = intcon(1); 4411 } 4412 4413 if (UseCompressedOops) { 4414 // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops 4415 init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop())); 4416 Node* lower = _gvn.transform(new CastP2XNode(control(), init_val)); 4417 Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32))); 4418 raw_init_value = _gvn.transform(new OrLNode(lower, upper)); 4419 } else { 4420 raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val)); 4421 } 4422 } 4423 4424 Node* valid_length_test = _gvn.intcon(1); 4425 if (ary_type->isa_aryptr()) { 4426 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 4427 jint max = TypeAryPtr::max_array_length(bt); 4428 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 4429 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 4430 } 4431 4432 // Create the AllocateArrayNode and its result projections 4433 AllocateArrayNode* alloc 4434 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 4435 control(), mem, i_o(), 4436 size, klass_node, 4437 initial_slow_test, 4438 length, valid_length_test, 4439 init_val, raw_init_value); 4440 // Cast to correct type. Note that the klass_node may be constant or not, 4441 // and in the latter case the actual array type will be inexact also. 4442 // (This happens via a non-constant argument to inline_native_newArray.) 4443 // In any case, the value of klass_node provides the desired array type. 4444 const TypeInt* length_type = _gvn.find_int_type(length); 4445 if (ary_type->isa_aryptr() && length_type != nullptr) { 4446 // Try to get a better type than POS for the size 4447 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4448 } 4449 4450 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 4451 4452 array_ideal_length(alloc, ary_type, true); 4453 return javaoop; 4454 } 4455 4456 // The following "Ideal_foo" functions are placed here because they recognize 4457 // the graph shapes created by the functions immediately above. 4458 4459 //---------------------------Ideal_allocation---------------------------------- 4460 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 4461 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 4462 if (ptr == nullptr) { // reduce dumb test in callers 4463 return nullptr; 4464 } 4465 4466 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4467 ptr = bs->step_over_gc_barrier(ptr); 4468 4469 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 4470 ptr = ptr->in(1); 4471 if (ptr == nullptr) return nullptr; 4472 } 4473 // Return null for allocations with several casts: 4474 // j.l.reflect.Array.newInstance(jobject, jint) 4475 // Object.clone() 4476 // to keep more precise type from last cast. 4477 if (ptr->is_Proj()) { 4478 Node* allo = ptr->in(0); 4479 if (allo != nullptr && allo->is_Allocate()) { 4480 return allo->as_Allocate(); 4481 } 4482 } 4483 // Report failure to match. 4484 return nullptr; 4485 } 4486 4487 // Fancy version which also strips off an offset (and reports it to caller). 4488 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4489 intptr_t& offset) { 4490 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4491 if (base == nullptr) return nullptr; 4492 return Ideal_allocation(base); 4493 } 4494 4495 // Trace Initialize <- Proj[Parm] <- Allocate 4496 AllocateNode* InitializeNode::allocation() { 4497 Node* rawoop = in(InitializeNode::RawAddress); 4498 if (rawoop->is_Proj()) { 4499 Node* alloc = rawoop->in(0); 4500 if (alloc->is_Allocate()) { 4501 return alloc->as_Allocate(); 4502 } 4503 } 4504 return nullptr; 4505 } 4506 4507 // Trace Allocate -> Proj[Parm] -> Initialize 4508 InitializeNode* AllocateNode::initialization() { 4509 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4510 if (rawoop == nullptr) return nullptr; 4511 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4512 Node* init = rawoop->fast_out(i); 4513 if (init->is_Initialize()) { 4514 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4515 return init->as_Initialize(); 4516 } 4517 } 4518 return nullptr; 4519 } 4520 4521 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4522 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4523 // Too many traps seen? 4524 if (too_many_traps(reason)) { 4525 #ifdef ASSERT 4526 if (TraceLoopPredicate) { 4527 int tc = C->trap_count(reason); 4528 tty->print("too many traps=%s tcount=%d in ", 4529 Deoptimization::trap_reason_name(reason), tc); 4530 method()->print(); // which method has too many predicate traps 4531 tty->cr(); 4532 } 4533 #endif 4534 // We cannot afford to take more traps here, 4535 // do not generate Parse Predicate. 4536 return; 4537 } 4538 4539 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4540 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4541 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4542 { 4543 PreserveJVMState pjvms(this); 4544 set_control(if_false); 4545 inc_sp(nargs); 4546 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4547 } 4548 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4549 set_control(if_true); 4550 } 4551 4552 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4553 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4554 void GraphKit::add_parse_predicates(int nargs) { 4555 if (UseLoopPredicate) { 4556 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4557 if (UseProfiledLoopPredicate) { 4558 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4559 } 4560 } 4561 add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs); 4562 // Loop Limit Check Predicate should be near the loop. 4563 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4564 } 4565 4566 void GraphKit::sync_kit(IdealKit& ideal) { 4567 set_all_memory(ideal.merged_memory()); 4568 set_i_o(ideal.i_o()); 4569 set_control(ideal.ctrl()); 4570 } 4571 4572 void GraphKit::final_sync(IdealKit& ideal) { 4573 // Final sync IdealKit and graphKit. 4574 sync_kit(ideal); 4575 } 4576 4577 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4578 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4579 Node* coder = load_String_coder(str, set_ctrl); 4580 // Divide length by 2 if coder is UTF16 4581 return _gvn.transform(new RShiftINode(len, coder)); 4582 } 4583 4584 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4585 int value_offset = java_lang_String::value_offset(); 4586 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4587 false, nullptr, Type::Offset(0)); 4588 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4589 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4590 TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true), 4591 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); 4592 Node* p = basic_plus_adr(str, str, value_offset); 4593 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4594 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4595 return load; 4596 } 4597 4598 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4599 if (!CompactStrings) { 4600 return intcon(java_lang_String::CODER_UTF16); 4601 } 4602 int coder_offset = java_lang_String::coder_offset(); 4603 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4604 false, nullptr, Type::Offset(0)); 4605 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4606 4607 Node* p = basic_plus_adr(str, str, coder_offset); 4608 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4609 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4610 return load; 4611 } 4612 4613 void GraphKit::store_String_value(Node* str, Node* value) { 4614 int value_offset = java_lang_String::value_offset(); 4615 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4616 false, nullptr, Type::Offset(0)); 4617 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4618 4619 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4620 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4621 } 4622 4623 void GraphKit::store_String_coder(Node* str, Node* value) { 4624 int coder_offset = java_lang_String::coder_offset(); 4625 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4626 false, nullptr, Type::Offset(0)); 4627 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4628 4629 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4630 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4631 } 4632 4633 // Capture src and dst memory state with a MergeMemNode 4634 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4635 if (src_type == dst_type) { 4636 // Types are equal, we don't need a MergeMemNode 4637 return memory(src_type); 4638 } 4639 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4640 record_for_igvn(merge); // fold it up later, if possible 4641 int src_idx = C->get_alias_index(src_type); 4642 int dst_idx = C->get_alias_index(dst_type); 4643 merge->set_memory_at(src_idx, memory(src_idx)); 4644 merge->set_memory_at(dst_idx, memory(dst_idx)); 4645 return merge; 4646 } 4647 4648 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4649 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4650 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4651 // If input and output memory types differ, capture both states to preserve 4652 // the dependency between preceding and subsequent loads/stores. 4653 // For example, the following program: 4654 // StoreB 4655 // compress_string 4656 // LoadB 4657 // has this memory graph (use->def): 4658 // LoadB -> compress_string -> CharMem 4659 // ... -> StoreB -> ByteMem 4660 // The intrinsic hides the dependency between LoadB and StoreB, causing 4661 // the load to read from memory not containing the result of the StoreB. 4662 // The correct memory graph should look like this: 4663 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4664 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4665 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4666 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4667 set_memory(res_mem, TypeAryPtr::BYTES); 4668 return str; 4669 } 4670 4671 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4672 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4673 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4674 // Capture src and dst memory (see comment in 'compress_string'). 4675 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4676 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4677 set_memory(_gvn.transform(str), dst_type); 4678 } 4679 4680 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4681 /** 4682 * int i_char = start; 4683 * for (int i_byte = 0; i_byte < count; i_byte++) { 4684 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4685 * } 4686 */ 4687 add_parse_predicates(); 4688 C->set_has_loops(true); 4689 4690 RegionNode* head = new RegionNode(3); 4691 head->init_req(1, control()); 4692 gvn().set_type(head, Type::CONTROL); 4693 record_for_igvn(head); 4694 4695 Node* i_byte = new PhiNode(head, TypeInt::INT); 4696 i_byte->init_req(1, intcon(0)); 4697 gvn().set_type(i_byte, TypeInt::INT); 4698 record_for_igvn(i_byte); 4699 4700 Node* i_char = new PhiNode(head, TypeInt::INT); 4701 i_char->init_req(1, start); 4702 gvn().set_type(i_char, TypeInt::INT); 4703 record_for_igvn(i_char); 4704 4705 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4706 gvn().set_type(mem, Type::MEMORY); 4707 record_for_igvn(mem); 4708 set_control(head); 4709 set_memory(mem, TypeAryPtr::BYTES); 4710 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4711 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4712 AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false, 4713 false, true /* mismatched */); 4714 4715 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4716 head->init_req(2, IfTrue(iff)); 4717 mem->init_req(2, st); 4718 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4719 i_char->init_req(2, AddI(i_char, intcon(2))); 4720 4721 set_control(IfFalse(iff)); 4722 set_memory(st, TypeAryPtr::BYTES); 4723 } 4724 4725 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4726 if (!field->is_constant()) { 4727 return nullptr; // Field not marked as constant. 4728 } 4729 ciInstance* holder = nullptr; 4730 if (!field->is_static()) { 4731 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4732 if (const_oop != nullptr && const_oop->is_instance()) { 4733 holder = const_oop->as_instance(); 4734 } 4735 } 4736 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4737 /*is_unsigned_load=*/false); 4738 if (con_type != nullptr) { 4739 Node* con = makecon(con_type); 4740 if (field->type()->is_inlinetype()) { 4741 con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass()); 4742 } else if (con_type->is_inlinetypeptr()) { 4743 con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass()); 4744 } 4745 return con; 4746 } 4747 return nullptr; 4748 } 4749 4750 //---------------------------load_mirror_from_klass---------------------------- 4751 // Given a klass oop, load its java mirror (a java.lang.Class oop). 4752 Node* GraphKit::load_mirror_from_klass(Node* klass) { 4753 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 4754 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4755 // mirror = ((OopHandle)mirror)->resolve(); 4756 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 4757 } 4758 4759 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4760 const Type* obj_type = obj->bottom_type(); 4761 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4762 if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4763 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4764 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4765 obj = casted_obj; 4766 } 4767 if (sig_type->is_inlinetypeptr()) { 4768 obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass()); 4769 } 4770 return obj; 4771 }