1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "ci/ciInlineKlass.hpp" 27 #include "ci/ciUtilities.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "ci/ciObjArray.hpp" 30 #include "asm/register.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/c2/barrierSetC2.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/flatArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/convertnode.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/inlinetypenode.hpp" 43 #include "opto/intrinsicnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/parse.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "utilities/bitMap.inline.hpp" 55 #include "utilities/powerOfTwo.hpp" 56 #include "utilities/growableArray.hpp" 57 58 //----------------------------GraphKit----------------------------------------- 59 // Main utility constructor. 60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn) 61 : Phase(Phase::Parser), 62 _env(C->env()), 63 _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()), 64 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 65 { 66 assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled"); 67 _exceptions = jvms->map()->next_exception(); 68 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 69 set_jvms(jvms); 70 #ifdef ASSERT 71 if (_gvn.is_IterGVN() != nullptr) { 72 assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used"); 73 // Save the initial size of _for_igvn worklist for verification (see ~GraphKit) 74 _worklist_size = _gvn.C->igvn_worklist()->size(); 75 } 76 #endif 77 } 78 79 // Private constructor for parser. 80 GraphKit::GraphKit() 81 : Phase(Phase::Parser), 82 _env(C->env()), 83 _gvn(*C->initial_gvn()), 84 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 85 { 86 _exceptions = nullptr; 87 set_map(nullptr); 88 debug_only(_sp = -99); 89 debug_only(set_bci(-99)); 90 } 91 92 93 94 //---------------------------clean_stack--------------------------------------- 95 // Clear away rubbish from the stack area of the JVM state. 96 // This destroys any arguments that may be waiting on the stack. 97 void GraphKit::clean_stack(int from_sp) { 98 SafePointNode* map = this->map(); 99 JVMState* jvms = this->jvms(); 100 int stk_size = jvms->stk_size(); 101 int stkoff = jvms->stkoff(); 102 Node* top = this->top(); 103 for (int i = from_sp; i < stk_size; i++) { 104 if (map->in(stkoff + i) != top) { 105 map->set_req(stkoff + i, top); 106 } 107 } 108 } 109 110 111 //--------------------------------sync_jvms----------------------------------- 112 // Make sure our current jvms agrees with our parse state. 113 JVMState* GraphKit::sync_jvms() const { 114 JVMState* jvms = this->jvms(); 115 jvms->set_bci(bci()); // Record the new bci in the JVMState 116 jvms->set_sp(sp()); // Record the new sp in the JVMState 117 assert(jvms_in_sync(), "jvms is now in sync"); 118 return jvms; 119 } 120 121 //--------------------------------sync_jvms_for_reexecute--------------------- 122 // Make sure our current jvms agrees with our parse state. This version 123 // uses the reexecute_sp for reexecuting bytecodes. 124 JVMState* GraphKit::sync_jvms_for_reexecute() { 125 JVMState* jvms = this->jvms(); 126 jvms->set_bci(bci()); // Record the new bci in the JVMState 127 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 128 return jvms; 129 } 130 131 #ifdef ASSERT 132 bool GraphKit::jvms_in_sync() const { 133 Parse* parse = is_Parse(); 134 if (parse == nullptr) { 135 if (bci() != jvms()->bci()) return false; 136 if (sp() != (int)jvms()->sp()) return false; 137 return true; 138 } 139 if (jvms()->method() != parse->method()) return false; 140 if (jvms()->bci() != parse->bci()) return false; 141 int jvms_sp = jvms()->sp(); 142 if (jvms_sp != parse->sp()) return false; 143 int jvms_depth = jvms()->depth(); 144 if (jvms_depth != parse->depth()) return false; 145 return true; 146 } 147 148 // Local helper checks for special internal merge points 149 // used to accumulate and merge exception states. 150 // They are marked by the region's in(0) edge being the map itself. 151 // Such merge points must never "escape" into the parser at large, 152 // until they have been handed to gvn.transform. 153 static bool is_hidden_merge(Node* reg) { 154 if (reg == nullptr) return false; 155 if (reg->is_Phi()) { 156 reg = reg->in(0); 157 if (reg == nullptr) return false; 158 } 159 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 160 } 161 162 void GraphKit::verify_map() const { 163 if (map() == nullptr) return; // null map is OK 164 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 165 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 166 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 167 } 168 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 170 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 171 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 172 } 173 #endif 174 175 //---------------------------stop_and_kill_map--------------------------------- 176 // Set _map to null, signalling a stop to further bytecode execution. 177 // First smash the current map's control to a constant, to mark it dead. 178 void GraphKit::stop_and_kill_map() { 179 SafePointNode* dead_map = stop(); 180 if (dead_map != nullptr) { 181 dead_map->disconnect_inputs(C); // Mark the map as killed. 182 assert(dead_map->is_killed(), "must be so marked"); 183 } 184 } 185 186 187 //--------------------------------stopped-------------------------------------- 188 // Tell if _map is null, or control is top. 189 bool GraphKit::stopped() { 190 if (map() == nullptr) return true; 191 else if (control() == top()) return true; 192 else return false; 193 } 194 195 196 //-----------------------------has_exception_handler---------------------------------- 197 // Tell if this method or any caller method has exception handlers. 198 bool GraphKit::has_exception_handler() { 199 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 200 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 201 return true; 202 } 203 } 204 return false; 205 } 206 207 //------------------------------save_ex_oop------------------------------------ 208 // Save an exception without blowing stack contents or other JVM state. 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 210 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 211 ex_map->add_req(ex_oop); 212 debug_only(verify_exception_state(ex_map)); 213 } 214 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 216 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 217 Node* ex_oop = ex_map->in(ex_map->req()-1); 218 if (clear_it) ex_map->del_req(ex_map->req()-1); 219 return ex_oop; 220 } 221 222 //-----------------------------saved_ex_oop------------------------------------ 223 // Recover a saved exception from its map. 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 225 return common_saved_ex_oop(ex_map, false); 226 } 227 228 //--------------------------clear_saved_ex_oop--------------------------------- 229 // Erase a previously saved exception from its map. 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 231 return common_saved_ex_oop(ex_map, true); 232 } 233 234 #ifdef ASSERT 235 //---------------------------has_saved_ex_oop---------------------------------- 236 // Erase a previously saved exception from its map. 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 238 return ex_map->req() == ex_map->jvms()->endoff()+1; 239 } 240 #endif 241 242 //-------------------------make_exception_state-------------------------------- 243 // Turn the current JVM state into an exception state, appending the ex_oop. 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 245 sync_jvms(); 246 SafePointNode* ex_map = stop(); // do not manipulate this map any more 247 set_saved_ex_oop(ex_map, ex_oop); 248 return ex_map; 249 } 250 251 252 //--------------------------add_exception_state-------------------------------- 253 // Add an exception to my list of exceptions. 254 void GraphKit::add_exception_state(SafePointNode* ex_map) { 255 if (ex_map == nullptr || ex_map->control() == top()) { 256 return; 257 } 258 #ifdef ASSERT 259 verify_exception_state(ex_map); 260 if (has_exceptions()) { 261 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 262 } 263 #endif 264 265 // If there is already an exception of exactly this type, merge with it. 266 // In particular, null-checks and other low-level exceptions common up here. 267 Node* ex_oop = saved_ex_oop(ex_map); 268 const Type* ex_type = _gvn.type(ex_oop); 269 if (ex_oop == top()) { 270 // No action needed. 271 return; 272 } 273 assert(ex_type->isa_instptr(), "exception must be an instance"); 274 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 275 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 276 // We check sp also because call bytecodes can generate exceptions 277 // both before and after arguments are popped! 278 if (ex_type2 == ex_type 279 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 280 combine_exception_states(ex_map, e2); 281 return; 282 } 283 } 284 285 // No pre-existing exception of the same type. Chain it on the list. 286 push_exception_state(ex_map); 287 } 288 289 //-----------------------add_exception_states_from----------------------------- 290 void GraphKit::add_exception_states_from(JVMState* jvms) { 291 SafePointNode* ex_map = jvms->map()->next_exception(); 292 if (ex_map != nullptr) { 293 jvms->map()->set_next_exception(nullptr); 294 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 295 next_map = ex_map->next_exception(); 296 ex_map->set_next_exception(nullptr); 297 add_exception_state(ex_map); 298 } 299 } 300 } 301 302 //-----------------------transfer_exceptions_into_jvms------------------------- 303 JVMState* GraphKit::transfer_exceptions_into_jvms() { 304 if (map() == nullptr) { 305 // We need a JVMS to carry the exceptions, but the map has gone away. 306 // Create a scratch JVMS, cloned from any of the exception states... 307 if (has_exceptions()) { 308 _map = _exceptions; 309 _map = clone_map(); 310 _map->set_next_exception(nullptr); 311 clear_saved_ex_oop(_map); 312 debug_only(verify_map()); 313 } else { 314 // ...or created from scratch 315 JVMState* jvms = new (C) JVMState(_method, nullptr); 316 jvms->set_bci(_bci); 317 jvms->set_sp(_sp); 318 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 319 set_jvms(jvms); 320 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 321 set_all_memory(top()); 322 while (map()->req() < jvms->endoff()) map()->add_req(top()); 323 } 324 // (This is a kludge, in case you didn't notice.) 325 set_control(top()); 326 } 327 JVMState* jvms = sync_jvms(); 328 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 329 jvms->map()->set_next_exception(_exceptions); 330 _exceptions = nullptr; // done with this set of exceptions 331 return jvms; 332 } 333 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 335 assert(is_hidden_merge(dstphi), "must be a special merge node"); 336 assert(is_hidden_merge(srcphi), "must be a special merge node"); 337 uint limit = srcphi->req(); 338 for (uint i = PhiNode::Input; i < limit; i++) { 339 dstphi->add_req(srcphi->in(i)); 340 } 341 } 342 static inline void add_one_req(Node* dstphi, Node* src) { 343 assert(is_hidden_merge(dstphi), "must be a special merge node"); 344 assert(!is_hidden_merge(src), "must not be a special merge node"); 345 dstphi->add_req(src); 346 } 347 348 //-----------------------combine_exception_states------------------------------ 349 // This helper function combines exception states by building phis on a 350 // specially marked state-merging region. These regions and phis are 351 // untransformed, and can build up gradually. The region is marked by 352 // having a control input of its exception map, rather than null. Such 353 // regions do not appear except in this function, and in use_exception_state. 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 355 if (failing_internal()) { 356 return; // dying anyway... 357 } 358 JVMState* ex_jvms = ex_map->_jvms; 359 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 360 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 361 // TODO 8325632 Re-enable 362 // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 363 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 364 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 365 assert(ex_map->req() == phi_map->req(), "matching maps"); 366 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 367 Node* hidden_merge_mark = root(); 368 Node* region = phi_map->control(); 369 MergeMemNode* phi_mem = phi_map->merged_memory(); 370 MergeMemNode* ex_mem = ex_map->merged_memory(); 371 if (region->in(0) != hidden_merge_mark) { 372 // The control input is not (yet) a specially-marked region in phi_map. 373 // Make it so, and build some phis. 374 region = new RegionNode(2); 375 _gvn.set_type(region, Type::CONTROL); 376 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 377 region->init_req(1, phi_map->control()); 378 phi_map->set_control(region); 379 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 380 record_for_igvn(io_phi); 381 _gvn.set_type(io_phi, Type::ABIO); 382 phi_map->set_i_o(io_phi); 383 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 384 Node* m = mms.memory(); 385 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 386 record_for_igvn(m_phi); 387 _gvn.set_type(m_phi, Type::MEMORY); 388 mms.set_memory(m_phi); 389 } 390 } 391 392 // Either or both of phi_map and ex_map might already be converted into phis. 393 Node* ex_control = ex_map->control(); 394 // if there is special marking on ex_map also, we add multiple edges from src 395 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 396 // how wide was the destination phi_map, originally? 397 uint orig_width = region->req(); 398 399 if (add_multiple) { 400 add_n_reqs(region, ex_control); 401 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 402 } else { 403 // ex_map has no merges, so we just add single edges everywhere 404 add_one_req(region, ex_control); 405 add_one_req(phi_map->i_o(), ex_map->i_o()); 406 } 407 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 408 if (mms.is_empty()) { 409 // get a copy of the base memory, and patch some inputs into it 410 const TypePtr* adr_type = mms.adr_type(C); 411 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 412 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 413 mms.set_memory(phi); 414 // Prepare to append interesting stuff onto the newly sliced phi: 415 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 416 } 417 // Append stuff from ex_map: 418 if (add_multiple) { 419 add_n_reqs(mms.memory(), mms.memory2()); 420 } else { 421 add_one_req(mms.memory(), mms.memory2()); 422 } 423 } 424 uint limit = ex_map->req(); 425 for (uint i = TypeFunc::Parms; i < limit; i++) { 426 // Skip everything in the JVMS after tos. (The ex_oop follows.) 427 if (i == tos) i = ex_jvms->monoff(); 428 Node* src = ex_map->in(i); 429 Node* dst = phi_map->in(i); 430 if (src != dst) { 431 PhiNode* phi; 432 if (dst->in(0) != region) { 433 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 434 record_for_igvn(phi); 435 _gvn.set_type(phi, phi->type()); 436 phi_map->set_req(i, dst); 437 // Prepare to append interesting stuff onto the new phi: 438 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 439 } else { 440 assert(dst->is_Phi(), "nobody else uses a hidden region"); 441 phi = dst->as_Phi(); 442 } 443 if (add_multiple && src->in(0) == ex_control) { 444 // Both are phis. 445 add_n_reqs(dst, src); 446 } else { 447 while (dst->req() < region->req()) add_one_req(dst, src); 448 } 449 const Type* srctype = _gvn.type(src); 450 if (phi->type() != srctype) { 451 const Type* dsttype = phi->type()->meet_speculative(srctype); 452 if (phi->type() != dsttype) { 453 phi->set_type(dsttype); 454 _gvn.set_type(phi, dsttype); 455 } 456 } 457 } 458 } 459 phi_map->merge_replaced_nodes_with(ex_map); 460 } 461 462 //--------------------------use_exception_state-------------------------------- 463 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 464 if (failing_internal()) { stop(); return top(); } 465 Node* region = phi_map->control(); 466 Node* hidden_merge_mark = root(); 467 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 468 Node* ex_oop = clear_saved_ex_oop(phi_map); 469 if (region->in(0) == hidden_merge_mark) { 470 // Special marking for internal ex-states. Process the phis now. 471 region->set_req(0, region); // now it's an ordinary region 472 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 473 // Note: Setting the jvms also sets the bci and sp. 474 set_control(_gvn.transform(region)); 475 uint tos = jvms()->stkoff() + sp(); 476 for (uint i = 1; i < tos; i++) { 477 Node* x = phi_map->in(i); 478 if (x->in(0) == region) { 479 assert(x->is_Phi(), "expected a special phi"); 480 phi_map->set_req(i, _gvn.transform(x)); 481 } 482 } 483 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 484 Node* x = mms.memory(); 485 if (x->in(0) == region) { 486 assert(x->is_Phi(), "nobody else uses a hidden region"); 487 mms.set_memory(_gvn.transform(x)); 488 } 489 } 490 if (ex_oop->in(0) == region) { 491 assert(ex_oop->is_Phi(), "expected a special phi"); 492 ex_oop = _gvn.transform(ex_oop); 493 } 494 } else { 495 set_jvms(phi_map->jvms()); 496 } 497 498 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 499 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 500 return ex_oop; 501 } 502 503 //---------------------------------java_bc------------------------------------- 504 Bytecodes::Code GraphKit::java_bc() const { 505 ciMethod* method = this->method(); 506 int bci = this->bci(); 507 if (method != nullptr && bci != InvocationEntryBci) 508 return method->java_code_at_bci(bci); 509 else 510 return Bytecodes::_illegal; 511 } 512 513 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 514 bool must_throw) { 515 // if the exception capability is set, then we will generate code 516 // to check the JavaThread.should_post_on_exceptions flag to see 517 // if we actually need to report exception events (for this 518 // thread). If we don't need to report exception events, we will 519 // take the normal fast path provided by add_exception_events. If 520 // exception event reporting is enabled for this thread, we will 521 // take the uncommon_trap in the BuildCutout below. 522 523 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 524 Node* jthread = _gvn.transform(new ThreadLocalNode()); 525 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 526 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 527 528 // Test the should_post_on_exceptions_flag vs. 0 529 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 530 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 531 532 // Branch to slow_path if should_post_on_exceptions_flag was true 533 { BuildCutout unless(this, tst, PROB_MAX); 534 // Do not try anything fancy if we're notifying the VM on every throw. 535 // Cf. case Bytecodes::_athrow in parse2.cpp. 536 uncommon_trap(reason, Deoptimization::Action_none, 537 (ciKlass*)nullptr, (char*)nullptr, must_throw); 538 } 539 540 } 541 542 //------------------------------builtin_throw---------------------------------- 543 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 544 builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true); 545 } 546 547 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, 548 ciInstance* ex_obj, 549 bool allow_too_many_traps) { 550 // If this throw happens frequently, an uncommon trap might cause 551 // a performance pothole. If there is a local exception handler, 552 // and if this particular bytecode appears to be deoptimizing often, 553 // let us handle the throw inline, with a preconstructed instance. 554 // Note: If the deopt count has blown up, the uncommon trap 555 // runtime is going to flush this nmethod, not matter what. 556 if (is_builtin_throw_hot(reason)) { 557 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 558 // If the throw is local, we use a pre-existing instance and 559 // punt on the backtrace. This would lead to a missing backtrace 560 // (a repeat of 4292742) if the backtrace object is ever asked 561 // for its backtrace. 562 // Fixing this remaining case of 4292742 requires some flavor of 563 // escape analysis. Leave that for the future. 564 if (env()->jvmti_can_post_on_exceptions()) { 565 // check if we must post exception events, take uncommon trap if so 566 uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/); 567 // here if should_post_on_exceptions is false 568 // continue on with the normal codegen 569 } 570 571 // Cheat with a preallocated exception object. 572 if (C->log() != nullptr) 573 C->log()->elem("hot_throw preallocated='1' reason='%s'", 574 Deoptimization::trap_reason_name(reason)); 575 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 576 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 577 578 // Clear the detail message of the preallocated exception object. 579 // Weblogic sometimes mutates the detail message of exceptions 580 // using reflection. 581 int offset = java_lang_Throwable::get_detailMessage_offset(); 582 const TypePtr* adr_typ = ex_con->add_offset(offset); 583 584 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 585 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 586 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 587 588 if (!method()->has_exception_handlers()) { 589 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 590 // This prevents issues with exception handling and late inlining. 591 set_sp(0); 592 clean_stack(0); 593 } 594 595 add_exception_state(make_exception_state(ex_node)); 596 return; 597 } else if (builtin_throw_too_many_traps(reason, ex_obj)) { 598 // We cannot afford to take too many traps here. Suffer in the interpreter instead. 599 assert(allow_too_many_traps, "not allowed"); 600 if (C->log() != nullptr) { 601 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 602 Deoptimization::trap_reason_name(reason), 603 C->trap_count(reason)); 604 } 605 uncommon_trap(reason, Deoptimization::Action_none, 606 (ciKlass*) nullptr, (char*) nullptr, 607 true /*must_throw*/); 608 return; 609 } 610 } 611 612 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 613 // It won't be much cheaper than bailing to the interp., since we'll 614 // have to pass up all the debug-info, and the runtime will have to 615 // create the stack trace. 616 617 // Usual case: Bail to interpreter. 618 // Reserve the right to recompile if we haven't seen anything yet. 619 620 // "must_throw" prunes the JVM state to include only the stack, if there 621 // are no local exception handlers. This should cut down on register 622 // allocation time and code size, by drastically reducing the number 623 // of in-edges on the call to the uncommon trap. 624 uncommon_trap(reason, Deoptimization::Action_maybe_recompile, 625 (ciKlass*) nullptr, (char*) nullptr, 626 true /*must_throw*/); 627 } 628 629 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) { 630 // If this particular condition has not yet happened at this 631 // bytecode, then use the uncommon trap mechanism, and allow for 632 // a future recompilation if several traps occur here. 633 // If the throw is hot, try to use a more complicated inline mechanism 634 // which keeps execution inside the compiled code. 635 if (ProfileTraps) { 636 if (too_many_traps(reason)) { 637 return true; 638 } 639 // (If there is no MDO at all, assume it is early in 640 // execution, and that any deopts are part of the 641 // startup transient, and don't need to be remembered.) 642 643 // Also, if there is a local exception handler, treat all throws 644 // as hot if there has been at least one in this method. 645 if (C->trap_count(reason) != 0 && 646 method()->method_data()->trap_count(reason) != 0 && 647 has_exception_handler()) { 648 return true; 649 } 650 } 651 return false; 652 } 653 654 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason, 655 ciInstance* ex_obj) { 656 if (is_builtin_throw_hot(reason)) { 657 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 658 return false; // no traps; throws preallocated exception instead 659 } 660 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 661 if (method()->method_data()->trap_recompiled_at(bci(), m) || 662 C->too_many_traps(reason)) { 663 return true; 664 } 665 } 666 return false; 667 } 668 669 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const { 670 // Preallocated exception objects to use when we don't need the backtrace. 671 switch (reason) { 672 case Deoptimization::Reason_null_check: 673 return env()->NullPointerException_instance(); 674 case Deoptimization::Reason_div0_check: 675 return env()->ArithmeticException_instance(); 676 case Deoptimization::Reason_range_check: 677 return env()->ArrayIndexOutOfBoundsException_instance(); 678 case Deoptimization::Reason_class_check: 679 return env()->ClassCastException_instance(); 680 case Deoptimization::Reason_array_check: 681 return env()->ArrayStoreException_instance(); 682 default: 683 return nullptr; 684 } 685 } 686 687 //----------------------------PreserveJVMState--------------------------------- 688 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 689 debug_only(kit->verify_map()); 690 _kit = kit; 691 _map = kit->map(); // preserve the map 692 _sp = kit->sp(); 693 kit->set_map(clone_map ? kit->clone_map() : nullptr); 694 #ifdef ASSERT 695 _bci = kit->bci(); 696 Parse* parser = kit->is_Parse(); 697 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 698 _block = block; 699 #endif 700 } 701 PreserveJVMState::~PreserveJVMState() { 702 GraphKit* kit = _kit; 703 #ifdef ASSERT 704 assert(kit->bci() == _bci, "bci must not shift"); 705 Parse* parser = kit->is_Parse(); 706 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 707 assert(block == _block, "block must not shift"); 708 #endif 709 kit->set_map(_map); 710 kit->set_sp(_sp); 711 } 712 713 714 //-----------------------------BuildCutout------------------------------------- 715 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 716 : PreserveJVMState(kit) 717 { 718 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 719 SafePointNode* outer_map = _map; // preserved map is caller's 720 SafePointNode* inner_map = kit->map(); 721 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 722 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 723 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 724 } 725 BuildCutout::~BuildCutout() { 726 GraphKit* kit = _kit; 727 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 728 } 729 730 //---------------------------PreserveReexecuteState---------------------------- 731 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 732 assert(!kit->stopped(), "must call stopped() before"); 733 _kit = kit; 734 _sp = kit->sp(); 735 _reexecute = kit->jvms()->_reexecute; 736 } 737 PreserveReexecuteState::~PreserveReexecuteState() { 738 if (_kit->stopped()) return; 739 _kit->jvms()->_reexecute = _reexecute; 740 _kit->set_sp(_sp); 741 } 742 743 //------------------------------clone_map-------------------------------------- 744 // Implementation of PreserveJVMState 745 // 746 // Only clone_map(...) here. If this function is only used in the 747 // PreserveJVMState class we may want to get rid of this extra 748 // function eventually and do it all there. 749 750 SafePointNode* GraphKit::clone_map() { 751 if (map() == nullptr) return nullptr; 752 753 // Clone the memory edge first 754 Node* mem = MergeMemNode::make(map()->memory()); 755 gvn().set_type_bottom(mem); 756 757 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 758 JVMState* jvms = this->jvms(); 759 JVMState* clonejvms = jvms->clone_shallow(C); 760 clonemap->set_memory(mem); 761 clonemap->set_jvms(clonejvms); 762 clonejvms->set_map(clonemap); 763 record_for_igvn(clonemap); 764 gvn().set_type_bottom(clonemap); 765 return clonemap; 766 } 767 768 //-----------------------------destruct_map_clone------------------------------ 769 // 770 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 771 // to destruct/free/delete in the exact opposite order as clone_map(). 772 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 773 if (sfp == nullptr) return; 774 775 Node* mem = sfp->memory(); 776 JVMState* jvms = sfp->jvms(); 777 778 if (jvms != nullptr) { 779 delete jvms; 780 } 781 782 remove_for_igvn(sfp); 783 gvn().clear_type(sfp); 784 sfp->destruct(&_gvn); 785 786 if (mem != nullptr) { 787 gvn().clear_type(mem); 788 mem->destruct(&_gvn); 789 } 790 } 791 792 //-----------------------------set_map_clone----------------------------------- 793 void GraphKit::set_map_clone(SafePointNode* m) { 794 _map = m; 795 _map = clone_map(); 796 _map->set_next_exception(nullptr); 797 debug_only(verify_map()); 798 } 799 800 801 //----------------------------kill_dead_locals--------------------------------- 802 // Detect any locals which are known to be dead, and force them to top. 803 void GraphKit::kill_dead_locals() { 804 // Consult the liveness information for the locals. If any 805 // of them are unused, then they can be replaced by top(). This 806 // should help register allocation time and cut down on the size 807 // of the deoptimization information. 808 809 // This call is made from many of the bytecode handling 810 // subroutines called from the Big Switch in do_one_bytecode. 811 // Every bytecode which might include a slow path is responsible 812 // for killing its dead locals. The more consistent we 813 // are about killing deads, the fewer useless phis will be 814 // constructed for them at various merge points. 815 816 // bci can be -1 (InvocationEntryBci). We return the entry 817 // liveness for the method. 818 819 if (method() == nullptr || method()->code_size() == 0) { 820 // We are building a graph for a call to a native method. 821 // All locals are live. 822 return; 823 } 824 825 ResourceMark rm; 826 827 // Consult the liveness information for the locals. If any 828 // of them are unused, then they can be replaced by top(). This 829 // should help register allocation time and cut down on the size 830 // of the deoptimization information. 831 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 832 833 int len = (int)live_locals.size(); 834 assert(len <= jvms()->loc_size(), "too many live locals"); 835 for (int local = 0; local < len; local++) { 836 if (!live_locals.at(local)) { 837 set_local(local, top()); 838 } 839 } 840 } 841 842 #ifdef ASSERT 843 //-------------------------dead_locals_are_killed------------------------------ 844 // Return true if all dead locals are set to top in the map. 845 // Used to assert "clean" debug info at various points. 846 bool GraphKit::dead_locals_are_killed() { 847 if (method() == nullptr || method()->code_size() == 0) { 848 // No locals need to be dead, so all is as it should be. 849 return true; 850 } 851 852 // Make sure somebody called kill_dead_locals upstream. 853 ResourceMark rm; 854 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 855 if (jvms->loc_size() == 0) continue; // no locals to consult 856 SafePointNode* map = jvms->map(); 857 ciMethod* method = jvms->method(); 858 int bci = jvms->bci(); 859 if (jvms == this->jvms()) { 860 bci = this->bci(); // it might not yet be synched 861 } 862 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 863 int len = (int)live_locals.size(); 864 if (!live_locals.is_valid() || len == 0) 865 // This method is trivial, or is poisoned by a breakpoint. 866 return true; 867 assert(len == jvms->loc_size(), "live map consistent with locals map"); 868 for (int local = 0; local < len; local++) { 869 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 870 if (PrintMiscellaneous && (Verbose || WizardMode)) { 871 tty->print_cr("Zombie local %d: ", local); 872 jvms->dump(); 873 } 874 return false; 875 } 876 } 877 } 878 return true; 879 } 880 881 #endif //ASSERT 882 883 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 884 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 885 ciMethod* cur_method = jvms->method(); 886 int cur_bci = jvms->bci(); 887 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 888 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 889 return Interpreter::bytecode_should_reexecute(code) || 890 (is_anewarray && (code == Bytecodes::_multianewarray)); 891 // Reexecute _multianewarray bytecode which was replaced with 892 // sequence of [a]newarray. See Parse::do_multianewarray(). 893 // 894 // Note: interpreter should not have it set since this optimization 895 // is limited by dimensions and guarded by flag so in some cases 896 // multianewarray() runtime calls will be generated and 897 // the bytecode should not be reexecutes (stack will not be reset). 898 } else { 899 return false; 900 } 901 } 902 903 // Helper function for adding JVMState and debug information to node 904 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 905 // Add the safepoint edges to the call (or other safepoint). 906 907 // Make sure dead locals are set to top. This 908 // should help register allocation time and cut down on the size 909 // of the deoptimization information. 910 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 911 912 // Walk the inline list to fill in the correct set of JVMState's 913 // Also fill in the associated edges for each JVMState. 914 915 // If the bytecode needs to be reexecuted we need to put 916 // the arguments back on the stack. 917 const bool should_reexecute = jvms()->should_reexecute(); 918 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 919 920 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 921 // undefined if the bci is different. This is normal for Parse but it 922 // should not happen for LibraryCallKit because only one bci is processed. 923 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 924 "in LibraryCallKit the reexecute bit should not change"); 925 926 // If we are guaranteed to throw, we can prune everything but the 927 // input to the current bytecode. 928 bool can_prune_locals = false; 929 uint stack_slots_not_pruned = 0; 930 int inputs = 0, depth = 0; 931 if (must_throw) { 932 assert(method() == youngest_jvms->method(), "sanity"); 933 if (compute_stack_effects(inputs, depth)) { 934 can_prune_locals = true; 935 stack_slots_not_pruned = inputs; 936 } 937 } 938 939 if (env()->should_retain_local_variables()) { 940 // At any safepoint, this method can get breakpointed, which would 941 // then require an immediate deoptimization. 942 can_prune_locals = false; // do not prune locals 943 stack_slots_not_pruned = 0; 944 } 945 946 // do not scribble on the input jvms 947 JVMState* out_jvms = youngest_jvms->clone_deep(C); 948 call->set_jvms(out_jvms); // Start jvms list for call node 949 950 // For a known set of bytecodes, the interpreter should reexecute them if 951 // deoptimization happens. We set the reexecute state for them here 952 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 953 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 954 #ifdef ASSERT 955 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 956 assert(method() == youngest_jvms->method(), "sanity"); 957 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 958 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 959 #endif // ASSERT 960 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 961 } 962 963 // Presize the call: 964 DEBUG_ONLY(uint non_debug_edges = call->req()); 965 call->add_req_batch(top(), youngest_jvms->debug_depth()); 966 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 967 968 // Set up edges so that the call looks like this: 969 // Call [state:] ctl io mem fptr retadr 970 // [parms:] parm0 ... parmN 971 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 972 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 973 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 974 // Note that caller debug info precedes callee debug info. 975 976 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 977 uint debug_ptr = call->req(); 978 979 // Loop over the map input edges associated with jvms, add them 980 // to the call node, & reset all offsets to match call node array. 981 982 JVMState* callee_jvms = nullptr; 983 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 984 uint debug_end = debug_ptr; 985 uint debug_start = debug_ptr - in_jvms->debug_size(); 986 debug_ptr = debug_start; // back up the ptr 987 988 uint p = debug_start; // walks forward in [debug_start, debug_end) 989 uint j, k, l; 990 SafePointNode* in_map = in_jvms->map(); 991 out_jvms->set_map(call); 992 993 if (can_prune_locals) { 994 assert(in_jvms->method() == out_jvms->method(), "sanity"); 995 // If the current throw can reach an exception handler in this JVMS, 996 // then we must keep everything live that can reach that handler. 997 // As a quick and dirty approximation, we look for any handlers at all. 998 if (in_jvms->method()->has_exception_handlers()) { 999 can_prune_locals = false; 1000 } 1001 } 1002 1003 // Add the Locals 1004 k = in_jvms->locoff(); 1005 l = in_jvms->loc_size(); 1006 out_jvms->set_locoff(p); 1007 if (!can_prune_locals) { 1008 for (j = 0; j < l; j++) { 1009 call->set_req(p++, in_map->in(k + j)); 1010 } 1011 } else { 1012 p += l; // already set to top above by add_req_batch 1013 } 1014 1015 // Add the Expression Stack 1016 k = in_jvms->stkoff(); 1017 l = in_jvms->sp(); 1018 out_jvms->set_stkoff(p); 1019 if (!can_prune_locals) { 1020 for (j = 0; j < l; j++) { 1021 call->set_req(p++, in_map->in(k + j)); 1022 } 1023 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 1024 // Divide stack into {S0,...,S1}, where S0 is set to top. 1025 uint s1 = stack_slots_not_pruned; 1026 stack_slots_not_pruned = 0; // for next iteration 1027 if (s1 > l) s1 = l; 1028 uint s0 = l - s1; 1029 p += s0; // skip the tops preinstalled by add_req_batch 1030 for (j = s0; j < l; j++) 1031 call->set_req(p++, in_map->in(k+j)); 1032 } else { 1033 p += l; // already set to top above by add_req_batch 1034 } 1035 1036 // Add the Monitors 1037 k = in_jvms->monoff(); 1038 l = in_jvms->mon_size(); 1039 out_jvms->set_monoff(p); 1040 for (j = 0; j < l; j++) 1041 call->set_req(p++, in_map->in(k+j)); 1042 1043 // Copy any scalar object fields. 1044 k = in_jvms->scloff(); 1045 l = in_jvms->scl_size(); 1046 out_jvms->set_scloff(p); 1047 for (j = 0; j < l; j++) 1048 call->set_req(p++, in_map->in(k+j)); 1049 1050 // Finish the new jvms. 1051 out_jvms->set_endoff(p); 1052 1053 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1054 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1055 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1056 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1057 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1058 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1059 1060 // Update the two tail pointers in parallel. 1061 callee_jvms = out_jvms; 1062 out_jvms = out_jvms->caller(); 1063 in_jvms = in_jvms->caller(); 1064 } 1065 1066 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1067 1068 // Test the correctness of JVMState::debug_xxx accessors: 1069 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1070 assert(call->jvms()->debug_end() == call->req(), ""); 1071 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1072 } 1073 1074 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1075 Bytecodes::Code code = java_bc(); 1076 if (code == Bytecodes::_wide) { 1077 code = method()->java_code_at_bci(bci() + 1); 1078 } 1079 1080 if (code != Bytecodes::_illegal) { 1081 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1082 } 1083 1084 auto rsize = [&]() { 1085 assert(code != Bytecodes::_illegal, "code is illegal!"); 1086 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1087 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1088 }; 1089 1090 switch (code) { 1091 case Bytecodes::_illegal: 1092 return false; 1093 1094 case Bytecodes::_ldc: 1095 case Bytecodes::_ldc_w: 1096 case Bytecodes::_ldc2_w: 1097 inputs = 0; 1098 break; 1099 1100 case Bytecodes::_dup: inputs = 1; break; 1101 case Bytecodes::_dup_x1: inputs = 2; break; 1102 case Bytecodes::_dup_x2: inputs = 3; break; 1103 case Bytecodes::_dup2: inputs = 2; break; 1104 case Bytecodes::_dup2_x1: inputs = 3; break; 1105 case Bytecodes::_dup2_x2: inputs = 4; break; 1106 case Bytecodes::_swap: inputs = 2; break; 1107 case Bytecodes::_arraylength: inputs = 1; break; 1108 1109 case Bytecodes::_getstatic: 1110 case Bytecodes::_putstatic: 1111 case Bytecodes::_getfield: 1112 case Bytecodes::_putfield: 1113 { 1114 bool ignored_will_link; 1115 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1116 int size = field->type()->size(); 1117 bool is_get = (depth >= 0), is_static = (depth & 1); 1118 inputs = (is_static ? 0 : 1); 1119 if (is_get) { 1120 depth = size - inputs; 1121 } else { 1122 inputs += size; // putxxx pops the value from the stack 1123 depth = - inputs; 1124 } 1125 } 1126 break; 1127 1128 case Bytecodes::_invokevirtual: 1129 case Bytecodes::_invokespecial: 1130 case Bytecodes::_invokestatic: 1131 case Bytecodes::_invokedynamic: 1132 case Bytecodes::_invokeinterface: 1133 { 1134 bool ignored_will_link; 1135 ciSignature* declared_signature = nullptr; 1136 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1137 assert(declared_signature != nullptr, "cannot be null"); 1138 inputs = declared_signature->arg_size_for_bc(code); 1139 int size = declared_signature->return_type()->size(); 1140 depth = size - inputs; 1141 } 1142 break; 1143 1144 case Bytecodes::_multianewarray: 1145 { 1146 ciBytecodeStream iter(method()); 1147 iter.reset_to_bci(bci()); 1148 iter.next(); 1149 inputs = iter.get_dimensions(); 1150 assert(rsize() == 1, ""); 1151 depth = 1 - inputs; 1152 } 1153 break; 1154 1155 case Bytecodes::_ireturn: 1156 case Bytecodes::_lreturn: 1157 case Bytecodes::_freturn: 1158 case Bytecodes::_dreturn: 1159 case Bytecodes::_areturn: 1160 assert(rsize() == -depth, ""); 1161 inputs = -depth; 1162 break; 1163 1164 case Bytecodes::_jsr: 1165 case Bytecodes::_jsr_w: 1166 inputs = 0; 1167 depth = 1; // S.B. depth=1, not zero 1168 break; 1169 1170 default: 1171 // bytecode produces a typed result 1172 inputs = rsize() - depth; 1173 assert(inputs >= 0, ""); 1174 break; 1175 } 1176 1177 #ifdef ASSERT 1178 // spot check 1179 int outputs = depth + inputs; 1180 assert(outputs >= 0, "sanity"); 1181 switch (code) { 1182 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1183 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1184 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1185 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1186 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1187 default: break; 1188 } 1189 #endif //ASSERT 1190 1191 return true; 1192 } 1193 1194 1195 1196 //------------------------------basic_plus_adr--------------------------------- 1197 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1198 // short-circuit a common case 1199 if (offset == intcon(0)) return ptr; 1200 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1201 } 1202 1203 Node* GraphKit::ConvI2L(Node* offset) { 1204 // short-circuit a common case 1205 jint offset_con = find_int_con(offset, Type::OffsetBot); 1206 if (offset_con != Type::OffsetBot) { 1207 return longcon((jlong) offset_con); 1208 } 1209 return _gvn.transform( new ConvI2LNode(offset)); 1210 } 1211 1212 Node* GraphKit::ConvI2UL(Node* offset) { 1213 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1214 if (offset_con != (juint) Type::OffsetBot) { 1215 return longcon((julong) offset_con); 1216 } 1217 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1218 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1219 return _gvn.transform( new AndLNode(conv, mask) ); 1220 } 1221 1222 Node* GraphKit::ConvL2I(Node* offset) { 1223 // short-circuit a common case 1224 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1225 if (offset_con != (jlong)Type::OffsetBot) { 1226 return intcon((int) offset_con); 1227 } 1228 return _gvn.transform( new ConvL2INode(offset)); 1229 } 1230 1231 //-------------------------load_object_klass----------------------------------- 1232 Node* GraphKit::load_object_klass(Node* obj, bool fold_for_arrays) { 1233 // Special-case a fresh allocation to avoid building nodes: 1234 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1235 if (akls != nullptr) return akls; 1236 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1237 return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT, fold_for_arrays)); 1238 } 1239 1240 //-------------------------load_array_length----------------------------------- 1241 Node* GraphKit::load_array_length(Node* array) { 1242 // Special-case a fresh allocation to avoid building nodes: 1243 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1244 Node *alen; 1245 if (alloc == nullptr) { 1246 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1247 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1248 } else { 1249 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1250 } 1251 return alen; 1252 } 1253 1254 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1255 const TypeOopPtr* oop_type, 1256 bool replace_length_in_map) { 1257 Node* length = alloc->Ideal_length(); 1258 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1259 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1260 if (ccast != length) { 1261 // do not transform ccast here, it might convert to top node for 1262 // negative array length and break assumptions in parsing stage. 1263 _gvn.set_type_bottom(ccast); 1264 record_for_igvn(ccast); 1265 if (replace_length_in_map) { 1266 replace_in_map(length, ccast); 1267 } 1268 return ccast; 1269 } 1270 } 1271 return length; 1272 } 1273 1274 //------------------------------do_null_check---------------------------------- 1275 // Helper function to do a null pointer check. Returned value is 1276 // the incoming address with null casted away. You are allowed to use the 1277 // not-null value only if you are control dependent on the test. 1278 #ifndef PRODUCT 1279 extern uint explicit_null_checks_inserted, 1280 explicit_null_checks_elided; 1281 #endif 1282 Node* GraphKit::null_check_common(Node* value, BasicType type, 1283 // optional arguments for variations: 1284 bool assert_null, 1285 Node* *null_control, 1286 bool speculative, 1287 bool is_init_check) { 1288 assert(!assert_null || null_control == nullptr, "not both at once"); 1289 if (stopped()) return top(); 1290 NOT_PRODUCT(explicit_null_checks_inserted++); 1291 1292 if (value->is_InlineType()) { 1293 // Null checking a scalarized but nullable inline type. Check the IsInit 1294 // input instead of the oop input to avoid keeping buffer allocations alive. 1295 InlineTypeNode* vtptr = value->as_InlineType(); 1296 while (vtptr->get_oop()->is_InlineType()) { 1297 vtptr = vtptr->get_oop()->as_InlineType(); 1298 } 1299 null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true); 1300 if (stopped()) { 1301 return top(); 1302 } 1303 if (assert_null) { 1304 // TODO 8284443 Scalarize here (this currently leads to compilation bailouts) 1305 // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass()); 1306 // replace_in_map(value, vtptr); 1307 // return vtptr; 1308 replace_in_map(value, null()); 1309 return null(); 1310 } 1311 bool do_replace_in_map = (null_control == nullptr || (*null_control) == top()); 1312 return cast_not_null(value, do_replace_in_map); 1313 } 1314 1315 // Construct null check 1316 Node *chk = nullptr; 1317 switch(type) { 1318 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1319 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1320 case T_ARRAY : // fall through 1321 type = T_OBJECT; // simplify further tests 1322 case T_OBJECT : { 1323 const Type *t = _gvn.type( value ); 1324 1325 const TypeOopPtr* tp = t->isa_oopptr(); 1326 if (tp != nullptr && !tp->is_loaded() 1327 // Only for do_null_check, not any of its siblings: 1328 && !assert_null && null_control == nullptr) { 1329 // Usually, any field access or invocation on an unloaded oop type 1330 // will simply fail to link, since the statically linked class is 1331 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1332 // the static class is loaded but the sharper oop type is not. 1333 // Rather than checking for this obscure case in lots of places, 1334 // we simply observe that a null check on an unloaded class 1335 // will always be followed by a nonsense operation, so we 1336 // can just issue the uncommon trap here. 1337 // Our access to the unloaded class will only be correct 1338 // after it has been loaded and initialized, which requires 1339 // a trip through the interpreter. 1340 ciKlass* klass = tp->unloaded_klass(); 1341 #ifndef PRODUCT 1342 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1343 #endif 1344 uncommon_trap(Deoptimization::Reason_unloaded, 1345 Deoptimization::Action_reinterpret, 1346 klass, "!loaded"); 1347 return top(); 1348 } 1349 1350 if (assert_null) { 1351 // See if the type is contained in NULL_PTR. 1352 // If so, then the value is already null. 1353 if (t->higher_equal(TypePtr::NULL_PTR)) { 1354 NOT_PRODUCT(explicit_null_checks_elided++); 1355 return value; // Elided null assert quickly! 1356 } 1357 } else { 1358 // See if mixing in the null pointer changes type. 1359 // If so, then the null pointer was not allowed in the original 1360 // type. In other words, "value" was not-null. 1361 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1362 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1363 NOT_PRODUCT(explicit_null_checks_elided++); 1364 return value; // Elided null check quickly! 1365 } 1366 } 1367 chk = new CmpPNode( value, null() ); 1368 break; 1369 } 1370 1371 default: 1372 fatal("unexpected type: %s", type2name(type)); 1373 } 1374 assert(chk != nullptr, "sanity check"); 1375 chk = _gvn.transform(chk); 1376 1377 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1378 BoolNode *btst = new BoolNode( chk, btest); 1379 Node *tst = _gvn.transform( btst ); 1380 1381 //----------- 1382 // if peephole optimizations occurred, a prior test existed. 1383 // If a prior test existed, maybe it dominates as we can avoid this test. 1384 if (tst != btst && type == T_OBJECT) { 1385 // At this point we want to scan up the CFG to see if we can 1386 // find an identical test (and so avoid this test altogether). 1387 Node *cfg = control(); 1388 int depth = 0; 1389 while( depth < 16 ) { // Limit search depth for speed 1390 if( cfg->Opcode() == Op_IfTrue && 1391 cfg->in(0)->in(1) == tst ) { 1392 // Found prior test. Use "cast_not_null" to construct an identical 1393 // CastPP (and hence hash to) as already exists for the prior test. 1394 // Return that casted value. 1395 if (assert_null) { 1396 replace_in_map(value, null()); 1397 return null(); // do not issue the redundant test 1398 } 1399 Node *oldcontrol = control(); 1400 set_control(cfg); 1401 Node *res = cast_not_null(value); 1402 set_control(oldcontrol); 1403 NOT_PRODUCT(explicit_null_checks_elided++); 1404 return res; 1405 } 1406 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1407 if (cfg == nullptr) break; // Quit at region nodes 1408 depth++; 1409 } 1410 } 1411 1412 //----------- 1413 // Branch to failure if null 1414 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1415 Deoptimization::DeoptReason reason; 1416 if (assert_null) { 1417 reason = Deoptimization::reason_null_assert(speculative); 1418 } else if (type == T_OBJECT || is_init_check) { 1419 reason = Deoptimization::reason_null_check(speculative); 1420 } else { 1421 reason = Deoptimization::Reason_div0_check; 1422 } 1423 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1424 // ciMethodData::has_trap_at will return a conservative -1 if any 1425 // must-be-null assertion has failed. This could cause performance 1426 // problems for a method after its first do_null_assert failure. 1427 // Consider using 'Reason_class_check' instead? 1428 1429 // To cause an implicit null check, we set the not-null probability 1430 // to the maximum (PROB_MAX). For an explicit check the probability 1431 // is set to a smaller value. 1432 if (null_control != nullptr || too_many_traps(reason)) { 1433 // probability is less likely 1434 ok_prob = PROB_LIKELY_MAG(3); 1435 } else if (!assert_null && 1436 (ImplicitNullCheckThreshold > 0) && 1437 method() != nullptr && 1438 (method()->method_data()->trap_count(reason) 1439 >= (uint)ImplicitNullCheckThreshold)) { 1440 ok_prob = PROB_LIKELY_MAG(3); 1441 } 1442 1443 if (null_control != nullptr) { 1444 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1445 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1446 set_control( _gvn.transform( new IfTrueNode(iff))); 1447 #ifndef PRODUCT 1448 if (null_true == top()) { 1449 explicit_null_checks_elided++; 1450 } 1451 #endif 1452 (*null_control) = null_true; 1453 } else { 1454 BuildCutout unless(this, tst, ok_prob); 1455 // Check for optimizer eliding test at parse time 1456 if (stopped()) { 1457 // Failure not possible; do not bother making uncommon trap. 1458 NOT_PRODUCT(explicit_null_checks_elided++); 1459 } else if (assert_null) { 1460 uncommon_trap(reason, 1461 Deoptimization::Action_make_not_entrant, 1462 nullptr, "assert_null"); 1463 } else { 1464 replace_in_map(value, zerocon(type)); 1465 builtin_throw(reason); 1466 } 1467 } 1468 1469 // Must throw exception, fall-thru not possible? 1470 if (stopped()) { 1471 return top(); // No result 1472 } 1473 1474 if (assert_null) { 1475 // Cast obj to null on this path. 1476 replace_in_map(value, zerocon(type)); 1477 return zerocon(type); 1478 } 1479 1480 // Cast obj to not-null on this path, if there is no null_control. 1481 // (If there is a null_control, a non-null value may come back to haunt us.) 1482 if (type == T_OBJECT) { 1483 Node* cast = cast_not_null(value, false); 1484 if (null_control == nullptr || (*null_control) == top()) 1485 replace_in_map(value, cast); 1486 value = cast; 1487 } 1488 1489 return value; 1490 } 1491 1492 //------------------------------cast_not_null---------------------------------- 1493 // Cast obj to not-null on this path 1494 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1495 if (obj->is_InlineType()) { 1496 Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map); 1497 vt->as_InlineType()->set_is_init(_gvn); 1498 vt = _gvn.transform(vt); 1499 if (do_replace_in_map) { 1500 replace_in_map(obj, vt); 1501 } 1502 return vt; 1503 } 1504 const Type *t = _gvn.type(obj); 1505 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1506 // Object is already not-null? 1507 if( t == t_not_null ) return obj; 1508 1509 Node* cast = new CastPPNode(control(), obj,t_not_null); 1510 cast = _gvn.transform( cast ); 1511 1512 // Scan for instances of 'obj' in the current JVM mapping. 1513 // These instances are known to be not-null after the test. 1514 if (do_replace_in_map) 1515 replace_in_map(obj, cast); 1516 1517 return cast; // Return casted value 1518 } 1519 1520 Node* GraphKit::cast_to_non_larval(Node* obj) { 1521 const Type* obj_type = gvn().type(obj); 1522 if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) { 1523 return obj; 1524 } 1525 1526 Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass()); 1527 replace_in_map(obj, new_obj); 1528 return new_obj; 1529 } 1530 1531 // Sometimes in intrinsics, we implicitly know an object is not null 1532 // (there's no actual null check) so we can cast it to not null. In 1533 // the course of optimizations, the input to the cast can become null. 1534 // In that case that data path will die and we need the control path 1535 // to become dead as well to keep the graph consistent. So we have to 1536 // add a check for null for which one branch can't be taken. It uses 1537 // an OpaqueNotNull node that will cause the check to be removed after loop 1538 // opts so the test goes away and the compiled code doesn't execute a 1539 // useless check. 1540 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1541 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1542 return value; 1543 } 1544 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1545 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1546 Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst)); 1547 IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1548 _gvn.set_type(iff, iff->Value(&_gvn)); 1549 if (!tst->is_Con()) { 1550 record_for_igvn(iff); 1551 } 1552 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1553 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1554 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1555 C->root()->add_req(halt); 1556 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1557 set_control(if_t); 1558 return cast_not_null(value, do_replace_in_map); 1559 } 1560 1561 1562 //--------------------------replace_in_map------------------------------------- 1563 void GraphKit::replace_in_map(Node* old, Node* neww) { 1564 if (old == neww) { 1565 return; 1566 } 1567 1568 map()->replace_edge(old, neww); 1569 1570 // Note: This operation potentially replaces any edge 1571 // on the map. This includes locals, stack, and monitors 1572 // of the current (innermost) JVM state. 1573 1574 // don't let inconsistent types from profiling escape this 1575 // method 1576 1577 const Type* told = _gvn.type(old); 1578 const Type* tnew = _gvn.type(neww); 1579 1580 if (!tnew->higher_equal(told)) { 1581 return; 1582 } 1583 1584 map()->record_replaced_node(old, neww); 1585 } 1586 1587 1588 //============================================================================= 1589 //--------------------------------memory--------------------------------------- 1590 Node* GraphKit::memory(uint alias_idx) { 1591 MergeMemNode* mem = merged_memory(); 1592 Node* p = mem->memory_at(alias_idx); 1593 assert(p != mem->empty_memory(), "empty"); 1594 _gvn.set_type(p, Type::MEMORY); // must be mapped 1595 return p; 1596 } 1597 1598 //-----------------------------reset_memory------------------------------------ 1599 Node* GraphKit::reset_memory() { 1600 Node* mem = map()->memory(); 1601 // do not use this node for any more parsing! 1602 debug_only( map()->set_memory((Node*)nullptr) ); 1603 return _gvn.transform( mem ); 1604 } 1605 1606 //------------------------------set_all_memory--------------------------------- 1607 void GraphKit::set_all_memory(Node* newmem) { 1608 Node* mergemem = MergeMemNode::make(newmem); 1609 gvn().set_type_bottom(mergemem); 1610 map()->set_memory(mergemem); 1611 } 1612 1613 //------------------------------set_all_memory_call---------------------------- 1614 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1615 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1616 set_all_memory(newmem); 1617 } 1618 1619 //============================================================================= 1620 // 1621 // parser factory methods for MemNodes 1622 // 1623 // These are layered on top of the factory methods in LoadNode and StoreNode, 1624 // and integrate with the parser's memory state and _gvn engine. 1625 // 1626 1627 // factory methods in "int adr_idx" 1628 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1629 MemNode::MemOrd mo, 1630 LoadNode::ControlDependency control_dependency, 1631 bool require_atomic_access, 1632 bool unaligned, 1633 bool mismatched, 1634 bool unsafe, 1635 uint8_t barrier_data) { 1636 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1637 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1638 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1639 debug_only(adr_type = C->get_adr_type(adr_idx)); 1640 Node* mem = memory(adr_idx); 1641 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1642 ld = _gvn.transform(ld); 1643 1644 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1645 // Improve graph before escape analysis and boxing elimination. 1646 record_for_igvn(ld); 1647 if (ld->is_DecodeN()) { 1648 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1649 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1650 // a Phi). Recording such cases is still perfectly sound, but may be 1651 // unnecessary and result in some minor IGVN overhead. 1652 record_for_igvn(ld->in(1)); 1653 } 1654 } 1655 return ld; 1656 } 1657 1658 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1659 MemNode::MemOrd mo, 1660 bool require_atomic_access, 1661 bool unaligned, 1662 bool mismatched, 1663 bool unsafe, 1664 int barrier_data) { 1665 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1666 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1667 const TypePtr* adr_type = nullptr; 1668 debug_only(adr_type = C->get_adr_type(adr_idx)); 1669 Node *mem = memory(adr_idx); 1670 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1671 if (unaligned) { 1672 st->as_Store()->set_unaligned_access(); 1673 } 1674 if (mismatched) { 1675 st->as_Store()->set_mismatched_access(); 1676 } 1677 if (unsafe) { 1678 st->as_Store()->set_unsafe_access(); 1679 } 1680 st->as_Store()->set_barrier_data(barrier_data); 1681 st = _gvn.transform(st); 1682 set_memory(st, adr_idx); 1683 // Back-to-back stores can only remove intermediate store with DU info 1684 // so push on worklist for optimizer. 1685 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1686 record_for_igvn(st); 1687 1688 return st; 1689 } 1690 1691 Node* GraphKit::access_store_at(Node* obj, 1692 Node* adr, 1693 const TypePtr* adr_type, 1694 Node* val, 1695 const Type* val_type, 1696 BasicType bt, 1697 DecoratorSet decorators, 1698 bool safe_for_replace, 1699 const InlineTypeNode* vt) { 1700 // Transformation of a value which could be null pointer (CastPP #null) 1701 // could be delayed during Parse (for example, in adjust_map_after_if()). 1702 // Execute transformation here to avoid barrier generation in such case. 1703 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1704 val = _gvn.makecon(TypePtr::NULL_PTR); 1705 } 1706 1707 if (stopped()) { 1708 return top(); // Dead path ? 1709 } 1710 1711 assert(val != nullptr, "not dead path"); 1712 if (val->is_InlineType()) { 1713 // Store to non-flat field. Buffer the inline type and make sure 1714 // the store is re-executed if the allocation triggers deoptimization. 1715 PreserveReexecuteState preexecs(this); 1716 jvms()->set_should_reexecute(true); 1717 val = val->as_InlineType()->buffer(this, safe_for_replace); 1718 } 1719 1720 C2AccessValuePtr addr(adr, adr_type); 1721 C2AccessValue value(val, val_type); 1722 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt); 1723 if (access.is_raw()) { 1724 return _barrier_set->BarrierSetC2::store_at(access, value); 1725 } else { 1726 return _barrier_set->store_at(access, value); 1727 } 1728 } 1729 1730 Node* GraphKit::access_load_at(Node* obj, // containing obj 1731 Node* adr, // actual address to store val at 1732 const TypePtr* adr_type, 1733 const Type* val_type, 1734 BasicType bt, 1735 DecoratorSet decorators, 1736 Node* ctl) { 1737 if (stopped()) { 1738 return top(); // Dead path ? 1739 } 1740 1741 C2AccessValuePtr addr(adr, adr_type); 1742 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl); 1743 if (access.is_raw()) { 1744 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1745 } else { 1746 return _barrier_set->load_at(access, val_type); 1747 } 1748 } 1749 1750 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1751 const Type* val_type, 1752 BasicType bt, 1753 DecoratorSet decorators) { 1754 if (stopped()) { 1755 return top(); // Dead path ? 1756 } 1757 1758 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1759 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1760 if (access.is_raw()) { 1761 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1762 } else { 1763 return _barrier_set->load_at(access, val_type); 1764 } 1765 } 1766 1767 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1768 Node* adr, 1769 const TypePtr* adr_type, 1770 int alias_idx, 1771 Node* expected_val, 1772 Node* new_val, 1773 const Type* value_type, 1774 BasicType bt, 1775 DecoratorSet decorators) { 1776 C2AccessValuePtr addr(adr, adr_type); 1777 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1778 bt, obj, addr, alias_idx); 1779 if (access.is_raw()) { 1780 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1781 } else { 1782 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1783 } 1784 } 1785 1786 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1787 Node* adr, 1788 const TypePtr* adr_type, 1789 int alias_idx, 1790 Node* expected_val, 1791 Node* new_val, 1792 const Type* value_type, 1793 BasicType bt, 1794 DecoratorSet decorators) { 1795 C2AccessValuePtr addr(adr, adr_type); 1796 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1797 bt, obj, addr, alias_idx); 1798 if (access.is_raw()) { 1799 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1800 } else { 1801 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1802 } 1803 } 1804 1805 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1806 Node* adr, 1807 const TypePtr* adr_type, 1808 int alias_idx, 1809 Node* new_val, 1810 const Type* value_type, 1811 BasicType bt, 1812 DecoratorSet decorators) { 1813 C2AccessValuePtr addr(adr, adr_type); 1814 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1815 bt, obj, addr, alias_idx); 1816 if (access.is_raw()) { 1817 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1818 } else { 1819 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1820 } 1821 } 1822 1823 Node* GraphKit::access_atomic_add_at(Node* obj, 1824 Node* adr, 1825 const TypePtr* adr_type, 1826 int alias_idx, 1827 Node* new_val, 1828 const Type* value_type, 1829 BasicType bt, 1830 DecoratorSet decorators) { 1831 C2AccessValuePtr addr(adr, adr_type); 1832 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1833 if (access.is_raw()) { 1834 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1835 } else { 1836 return _barrier_set->atomic_add_at(access, new_val, value_type); 1837 } 1838 } 1839 1840 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1841 return _barrier_set->clone(this, src, dst, size, is_array); 1842 } 1843 1844 //-------------------------array_element_address------------------------- 1845 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1846 const TypeInt* sizetype, Node* ctrl) { 1847 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 1848 uint shift; 1849 if (arytype->is_flat() && arytype->klass_is_exact()) { 1850 // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different 1851 // value classes at runtime with a potentially different layout. The caller needs to fall back to call 1852 // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that 1853 // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even 1854 // though we don't need the address node in this case and throw it away again. 1855 shift = arytype->flat_log_elem_size(); 1856 } else { 1857 shift = exact_log2(type2aelembytes(elembt)); 1858 } 1859 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1860 1861 // short-circuit a common case (saves lots of confusing waste motion) 1862 jint idx_con = find_int_con(idx, -1); 1863 if (idx_con >= 0) { 1864 intptr_t offset = header + ((intptr_t)idx_con << shift); 1865 return basic_plus_adr(ary, offset); 1866 } 1867 1868 // must be correct type for alignment purposes 1869 Node* base = basic_plus_adr(ary, header); 1870 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1871 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1872 return basic_plus_adr(ary, base, scale); 1873 } 1874 1875 Node* GraphKit::flat_array_element_address(Node*& array, Node* idx, ciInlineKlass* vk, bool is_null_free, 1876 bool is_not_null_free, bool is_atomic) { 1877 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic); 1878 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 1879 arytype = arytype->cast_to_exactness(true); 1880 arytype = arytype->cast_to_not_null_free(is_not_null_free); 1881 array = _gvn.transform(new CheckCastPPNode(control(), array, arytype)); 1882 return array_element_address(array, idx, T_FLAT_ELEMENT, arytype->size(), control()); 1883 } 1884 1885 //-------------------------load_array_element------------------------- 1886 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1887 const Type* elemtype = arytype->elem(); 1888 BasicType elembt = elemtype->array_element_basic_type(); 1889 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1890 if (elembt == T_NARROWOOP) { 1891 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1892 } 1893 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1894 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1895 return ld; 1896 } 1897 1898 //-------------------------set_arguments_for_java_call------------------------- 1899 // Arguments (pre-popped from the stack) are taken from the JVMS. 1900 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) { 1901 PreserveReexecuteState preexecs(this); 1902 if (EnableValhalla) { 1903 // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization. 1904 // At this point, the call hasn't been executed yet, so we will only ever execute the call once. 1905 jvms()->set_should_reexecute(true); 1906 int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc()); 1907 inc_sp(arg_size); 1908 } 1909 // Add the call arguments 1910 const TypeTuple* domain = call->tf()->domain_sig(); 1911 uint nargs = domain->cnt(); 1912 int arg_num = 0; 1913 for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) { 1914 Node* arg = argument(i-TypeFunc::Parms); 1915 const Type* t = domain->field_at(i); 1916 // TODO 8284443 A static call to a mismatched method should still be scalarized 1917 if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) { 1918 // We don't pass inline type arguments by reference but instead pass each field of the inline type 1919 if (!arg->is_InlineType()) { 1920 assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type"); 1921 arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass()); 1922 } 1923 InlineTypeNode* vt = arg->as_InlineType(); 1924 vt->pass_fields(this, call, idx, true, !t->maybe_null()); 1925 // If an inline type argument is passed as fields, attach the Method* to the call site 1926 // to be able to access the extended signature later via attached_method_before_pc(). 1927 // For example, see CompiledMethod::preserve_callee_argument_oops(). 1928 call->set_override_symbolic_info(true); 1929 // Register an evol dependency on the callee method to make sure that this method is deoptimized and 1930 // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched. 1931 C->dependencies()->assert_evol_method(call->method()); 1932 arg_num++; 1933 continue; 1934 } else if (arg->is_InlineType()) { 1935 // Pass inline type argument via oop to callee 1936 arg = arg->as_InlineType()->buffer(this, true); 1937 } 1938 if (t != Type::HALF) { 1939 arg_num++; 1940 } 1941 call->init_req(idx++, arg); 1942 } 1943 } 1944 1945 //---------------------------set_edges_for_java_call--------------------------- 1946 // Connect a newly created call into the current JVMS. 1947 // A return value node (if any) is returned from set_edges_for_java_call. 1948 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1949 1950 // Add the predefined inputs: 1951 call->init_req( TypeFunc::Control, control() ); 1952 call->init_req( TypeFunc::I_O , i_o() ); 1953 call->init_req( TypeFunc::Memory , reset_memory() ); 1954 call->init_req( TypeFunc::FramePtr, frameptr() ); 1955 call->init_req( TypeFunc::ReturnAdr, top() ); 1956 1957 add_safepoint_edges(call, must_throw); 1958 1959 Node* xcall = _gvn.transform(call); 1960 1961 if (xcall == top()) { 1962 set_control(top()); 1963 return; 1964 } 1965 assert(xcall == call, "call identity is stable"); 1966 1967 // Re-use the current map to produce the result. 1968 1969 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1970 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1971 set_all_memory_call(xcall, separate_io_proj); 1972 1973 //return xcall; // no need, caller already has it 1974 } 1975 1976 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1977 if (stopped()) return top(); // maybe the call folded up? 1978 1979 // Note: Since any out-of-line call can produce an exception, 1980 // we always insert an I_O projection from the call into the result. 1981 1982 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 1983 1984 if (separate_io_proj) { 1985 // The caller requested separate projections be used by the fall 1986 // through and exceptional paths, so replace the projections for 1987 // the fall through path. 1988 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1989 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1990 } 1991 1992 // Capture the return value, if any. 1993 Node* ret; 1994 if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) { 1995 ret = top(); 1996 } else if (call->tf()->returns_inline_type_as_fields()) { 1997 // Return of multiple values (inline type fields): we create a 1998 // InlineType node, each field is a projection from the call. 1999 ciInlineKlass* vk = call->method()->return_type()->as_inline_klass(); 2000 uint base_input = TypeFunc::Parms; 2001 ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false); 2002 } else { 2003 ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 2004 ciType* t = call->method()->return_type(); 2005 if (t->is_klass()) { 2006 const Type* type = TypeOopPtr::make_from_klass(t->as_klass()); 2007 if (type->is_inlinetypeptr()) { 2008 ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass()); 2009 } 2010 } 2011 } 2012 2013 return ret; 2014 } 2015 2016 //--------------------set_predefined_input_for_runtime_call-------------------- 2017 // Reading and setting the memory state is way conservative here. 2018 // The real problem is that I am not doing real Type analysis on memory, 2019 // so I cannot distinguish card mark stores from other stores. Across a GC 2020 // point the Store Barrier and the card mark memory has to agree. I cannot 2021 // have a card mark store and its barrier split across the GC point from 2022 // either above or below. Here I get that to happen by reading ALL of memory. 2023 // A better answer would be to separate out card marks from other memory. 2024 // For now, return the input memory state, so that it can be reused 2025 // after the call, if this call has restricted memory effects. 2026 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 2027 // Set fixed predefined input arguments 2028 Node* memory = reset_memory(); 2029 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 2030 call->init_req( TypeFunc::Control, control() ); 2031 call->init_req( TypeFunc::I_O, top() ); // does no i/o 2032 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 2033 call->init_req( TypeFunc::FramePtr, frameptr() ); 2034 call->init_req( TypeFunc::ReturnAdr, top() ); 2035 return memory; 2036 } 2037 2038 //-------------------set_predefined_output_for_runtime_call-------------------- 2039 // Set control and memory (not i_o) from the call. 2040 // If keep_mem is not null, use it for the output state, 2041 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 2042 // If hook_mem is null, this call produces no memory effects at all. 2043 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 2044 // then only that memory slice is taken from the call. 2045 // In the last case, we must put an appropriate memory barrier before 2046 // the call, so as to create the correct anti-dependencies on loads 2047 // preceding the call. 2048 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 2049 Node* keep_mem, 2050 const TypePtr* hook_mem) { 2051 // no i/o 2052 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 2053 if (keep_mem) { 2054 // First clone the existing memory state 2055 set_all_memory(keep_mem); 2056 if (hook_mem != nullptr) { 2057 // Make memory for the call 2058 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 2059 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 2060 // We also use hook_mem to extract specific effects from arraycopy stubs. 2061 set_memory(mem, hook_mem); 2062 } 2063 // ...else the call has NO memory effects. 2064 2065 // Make sure the call advertises its memory effects precisely. 2066 // This lets us build accurate anti-dependences in gcm.cpp. 2067 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 2068 "call node must be constructed correctly"); 2069 } else { 2070 assert(hook_mem == nullptr, ""); 2071 // This is not a "slow path" call; all memory comes from the call. 2072 set_all_memory_call(call); 2073 } 2074 } 2075 2076 // Keep track of MergeMems feeding into other MergeMems 2077 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 2078 if (!mem->is_MergeMem()) { 2079 return; 2080 } 2081 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 2082 Node* use = i.get(); 2083 if (use->is_MergeMem()) { 2084 wl.push(use); 2085 } 2086 } 2087 } 2088 2089 // Replace the call with the current state of the kit. 2090 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) { 2091 JVMState* ejvms = nullptr; 2092 if (has_exceptions()) { 2093 ejvms = transfer_exceptions_into_jvms(); 2094 } 2095 2096 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 2097 ReplacedNodes replaced_nodes_exception; 2098 Node* ex_ctl = top(); 2099 2100 SafePointNode* final_state = stop(); 2101 2102 // Find all the needed outputs of this call 2103 CallProjections* callprojs = call->extract_projections(true, do_asserts); 2104 2105 Unique_Node_List wl; 2106 Node* init_mem = call->in(TypeFunc::Memory); 2107 Node* final_mem = final_state->in(TypeFunc::Memory); 2108 Node* final_ctl = final_state->in(TypeFunc::Control); 2109 Node* final_io = final_state->in(TypeFunc::I_O); 2110 2111 // Replace all the old call edges with the edges from the inlining result 2112 if (callprojs->fallthrough_catchproj != nullptr) { 2113 C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl); 2114 } 2115 if (callprojs->fallthrough_memproj != nullptr) { 2116 if (final_mem->is_MergeMem()) { 2117 // Parser's exits MergeMem was not transformed but may be optimized 2118 final_mem = _gvn.transform(final_mem); 2119 } 2120 C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem); 2121 add_mergemem_users_to_worklist(wl, final_mem); 2122 } 2123 if (callprojs->fallthrough_ioproj != nullptr) { 2124 C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io); 2125 } 2126 2127 // Replace the result with the new result if it exists and is used 2128 if (callprojs->resproj[0] != nullptr && result != nullptr) { 2129 // If the inlined code is dead, the result projections for an inline type returned as 2130 // fields have not been replaced. They will go away once the call is replaced by TOP below. 2131 assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()), 2132 "unexpected number of results"); 2133 C->gvn_replace_by(callprojs->resproj[0], result); 2134 } 2135 2136 if (ejvms == nullptr) { 2137 // No exception edges to simply kill off those paths 2138 if (callprojs->catchall_catchproj != nullptr) { 2139 C->gvn_replace_by(callprojs->catchall_catchproj, C->top()); 2140 } 2141 if (callprojs->catchall_memproj != nullptr) { 2142 C->gvn_replace_by(callprojs->catchall_memproj, C->top()); 2143 } 2144 if (callprojs->catchall_ioproj != nullptr) { 2145 C->gvn_replace_by(callprojs->catchall_ioproj, C->top()); 2146 } 2147 // Replace the old exception object with top 2148 if (callprojs->exobj != nullptr) { 2149 C->gvn_replace_by(callprojs->exobj, C->top()); 2150 } 2151 } else { 2152 GraphKit ekit(ejvms); 2153 2154 // Load my combined exception state into the kit, with all phis transformed: 2155 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 2156 replaced_nodes_exception = ex_map->replaced_nodes(); 2157 2158 Node* ex_oop = ekit.use_exception_state(ex_map); 2159 2160 if (callprojs->catchall_catchproj != nullptr) { 2161 C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control()); 2162 ex_ctl = ekit.control(); 2163 } 2164 if (callprojs->catchall_memproj != nullptr) { 2165 Node* ex_mem = ekit.reset_memory(); 2166 C->gvn_replace_by(callprojs->catchall_memproj, ex_mem); 2167 add_mergemem_users_to_worklist(wl, ex_mem); 2168 } 2169 if (callprojs->catchall_ioproj != nullptr) { 2170 C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o()); 2171 } 2172 2173 // Replace the old exception object with the newly created one 2174 if (callprojs->exobj != nullptr) { 2175 C->gvn_replace_by(callprojs->exobj, ex_oop); 2176 } 2177 } 2178 2179 // Disconnect the call from the graph 2180 call->disconnect_inputs(C); 2181 C->gvn_replace_by(call, C->top()); 2182 2183 // Clean up any MergeMems that feed other MergeMems since the 2184 // optimizer doesn't like that. 2185 while (wl.size() > 0) { 2186 _gvn.transform(wl.pop()); 2187 } 2188 2189 if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2190 replaced_nodes.apply(C, final_ctl); 2191 } 2192 if (!ex_ctl->is_top() && do_replaced_nodes) { 2193 replaced_nodes_exception.apply(C, ex_ctl); 2194 } 2195 } 2196 2197 2198 //------------------------------increment_counter------------------------------ 2199 // for statistics: increment a VM counter by 1 2200 2201 void GraphKit::increment_counter(address counter_addr) { 2202 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2203 increment_counter(adr1); 2204 } 2205 2206 void GraphKit::increment_counter(Node* counter_addr) { 2207 Node* ctrl = control(); 2208 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered); 2209 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2210 store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered); 2211 } 2212 2213 2214 //------------------------------uncommon_trap---------------------------------- 2215 // Bail out to the interpreter in mid-method. Implemented by calling the 2216 // uncommon_trap blob. This helper function inserts a runtime call with the 2217 // right debug info. 2218 Node* GraphKit::uncommon_trap(int trap_request, 2219 ciKlass* klass, const char* comment, 2220 bool must_throw, 2221 bool keep_exact_action) { 2222 if (failing_internal()) { 2223 stop(); 2224 } 2225 if (stopped()) return nullptr; // trap reachable? 2226 2227 // Note: If ProfileTraps is true, and if a deopt. actually 2228 // occurs here, the runtime will make sure an MDO exists. There is 2229 // no need to call method()->ensure_method_data() at this point. 2230 2231 // Set the stack pointer to the right value for reexecution: 2232 set_sp(reexecute_sp()); 2233 2234 #ifdef ASSERT 2235 if (!must_throw) { 2236 // Make sure the stack has at least enough depth to execute 2237 // the current bytecode. 2238 int inputs, ignored_depth; 2239 if (compute_stack_effects(inputs, ignored_depth)) { 2240 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2241 Bytecodes::name(java_bc()), sp(), inputs); 2242 } 2243 } 2244 #endif 2245 2246 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2247 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2248 2249 switch (action) { 2250 case Deoptimization::Action_maybe_recompile: 2251 case Deoptimization::Action_reinterpret: 2252 // Temporary fix for 6529811 to allow virtual calls to be sure they 2253 // get the chance to go from mono->bi->mega 2254 if (!keep_exact_action && 2255 Deoptimization::trap_request_index(trap_request) < 0 && 2256 too_many_recompiles(reason)) { 2257 // This BCI is causing too many recompilations. 2258 if (C->log() != nullptr) { 2259 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2260 Deoptimization::trap_reason_name(reason), 2261 Deoptimization::trap_action_name(action)); 2262 } 2263 action = Deoptimization::Action_none; 2264 trap_request = Deoptimization::make_trap_request(reason, action); 2265 } else { 2266 C->set_trap_can_recompile(true); 2267 } 2268 break; 2269 case Deoptimization::Action_make_not_entrant: 2270 C->set_trap_can_recompile(true); 2271 break; 2272 case Deoptimization::Action_none: 2273 case Deoptimization::Action_make_not_compilable: 2274 break; 2275 default: 2276 #ifdef ASSERT 2277 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2278 #endif 2279 break; 2280 } 2281 2282 if (TraceOptoParse) { 2283 char buf[100]; 2284 tty->print_cr("Uncommon trap %s at bci:%d", 2285 Deoptimization::format_trap_request(buf, sizeof(buf), 2286 trap_request), bci()); 2287 } 2288 2289 CompileLog* log = C->log(); 2290 if (log != nullptr) { 2291 int kid = (klass == nullptr)? -1: log->identify(klass); 2292 log->begin_elem("uncommon_trap bci='%d'", bci()); 2293 char buf[100]; 2294 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2295 trap_request)); 2296 if (kid >= 0) log->print(" klass='%d'", kid); 2297 if (comment != nullptr) log->print(" comment='%s'", comment); 2298 log->end_elem(); 2299 } 2300 2301 // Make sure any guarding test views this path as very unlikely 2302 Node *i0 = control()->in(0); 2303 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2304 IfNode *iff = i0->as_If(); 2305 float f = iff->_prob; // Get prob 2306 if (control()->Opcode() == Op_IfTrue) { 2307 if (f > PROB_UNLIKELY_MAG(4)) 2308 iff->_prob = PROB_MIN; 2309 } else { 2310 if (f < PROB_LIKELY_MAG(4)) 2311 iff->_prob = PROB_MAX; 2312 } 2313 } 2314 2315 // Clear out dead values from the debug info. 2316 kill_dead_locals(); 2317 2318 // Now insert the uncommon trap subroutine call 2319 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2320 const TypePtr* no_memory_effects = nullptr; 2321 // Pass the index of the class to be loaded 2322 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2323 (must_throw ? RC_MUST_THROW : 0), 2324 OptoRuntime::uncommon_trap_Type(), 2325 call_addr, "uncommon_trap", no_memory_effects, 2326 intcon(trap_request)); 2327 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2328 "must extract request correctly from the graph"); 2329 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2330 2331 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2332 // The debug info is the only real input to this call. 2333 2334 // Halt-and-catch fire here. The above call should never return! 2335 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2336 PRODUCT_ONLY(COMMA /*reachable*/false)); 2337 _gvn.set_type_bottom(halt); 2338 root()->add_req(halt); 2339 2340 stop_and_kill_map(); 2341 return call; 2342 } 2343 2344 2345 //--------------------------just_allocated_object------------------------------ 2346 // Report the object that was just allocated. 2347 // It must be the case that there are no intervening safepoints. 2348 // We use this to determine if an object is so "fresh" that 2349 // it does not require card marks. 2350 Node* GraphKit::just_allocated_object(Node* current_control) { 2351 Node* ctrl = current_control; 2352 // Object::<init> is invoked after allocation, most of invoke nodes 2353 // will be reduced, but a region node is kept in parse time, we check 2354 // the pattern and skip the region node if it degraded to a copy. 2355 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2356 ctrl->as_Region()->is_copy()) { 2357 ctrl = ctrl->as_Region()->is_copy(); 2358 } 2359 if (C->recent_alloc_ctl() == ctrl) { 2360 return C->recent_alloc_obj(); 2361 } 2362 return nullptr; 2363 } 2364 2365 2366 /** 2367 * Record profiling data exact_kls for Node n with the type system so 2368 * that it can propagate it (speculation) 2369 * 2370 * @param n node that the type applies to 2371 * @param exact_kls type from profiling 2372 * @param maybe_null did profiling see null? 2373 * 2374 * @return node with improved type 2375 */ 2376 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2377 const Type* current_type = _gvn.type(n); 2378 assert(UseTypeSpeculation, "type speculation must be on"); 2379 2380 const TypePtr* speculative = current_type->speculative(); 2381 2382 // Should the klass from the profile be recorded in the speculative type? 2383 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2384 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2385 const TypeOopPtr* xtype = tklass->as_instance_type(); 2386 assert(xtype->klass_is_exact(), "Should be exact"); 2387 // Any reason to believe n is not null (from this profiling or a previous one)? 2388 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2389 const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2390 // record the new speculative type's depth 2391 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2392 speculative = speculative->with_inline_depth(jvms()->depth()); 2393 } else if (current_type->would_improve_ptr(ptr_kind)) { 2394 // Profiling report that null was never seen so we can change the 2395 // speculative type to non null ptr. 2396 if (ptr_kind == ProfileAlwaysNull) { 2397 speculative = TypePtr::NULL_PTR; 2398 } else { 2399 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2400 const TypePtr* ptr = TypePtr::NOTNULL; 2401 if (speculative != nullptr) { 2402 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2403 } else { 2404 speculative = ptr; 2405 } 2406 } 2407 } 2408 2409 if (speculative != current_type->speculative()) { 2410 // Build a type with a speculative type (what we think we know 2411 // about the type but will need a guard when we use it) 2412 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); 2413 // We're changing the type, we need a new CheckCast node to carry 2414 // the new type. The new type depends on the control: what 2415 // profiling tells us is only valid from here as far as we can 2416 // tell. 2417 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2418 cast = _gvn.transform(cast); 2419 replace_in_map(n, cast); 2420 n = cast; 2421 } 2422 2423 return n; 2424 } 2425 2426 /** 2427 * Record profiling data from receiver profiling at an invoke with the 2428 * type system so that it can propagate it (speculation) 2429 * 2430 * @param n receiver node 2431 * 2432 * @return node with improved type 2433 */ 2434 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2435 if (!UseTypeSpeculation) { 2436 return n; 2437 } 2438 ciKlass* exact_kls = profile_has_unique_klass(); 2439 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2440 if ((java_bc() == Bytecodes::_checkcast || 2441 java_bc() == Bytecodes::_instanceof || 2442 java_bc() == Bytecodes::_aastore) && 2443 method()->method_data()->is_mature()) { 2444 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2445 if (data != nullptr) { 2446 if (java_bc() == Bytecodes::_aastore) { 2447 ciKlass* array_type = nullptr; 2448 ciKlass* element_type = nullptr; 2449 ProfilePtrKind element_ptr = ProfileMaybeNull; 2450 bool flat_array = true; 2451 bool null_free_array = true; 2452 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 2453 exact_kls = element_type; 2454 ptr_kind = element_ptr; 2455 } else { 2456 if (!data->as_BitData()->null_seen()) { 2457 ptr_kind = ProfileNeverNull; 2458 } else { 2459 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2460 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2461 uint i = 0; 2462 for (; i < call->row_limit(); i++) { 2463 ciKlass* receiver = call->receiver(i); 2464 if (receiver != nullptr) { 2465 break; 2466 } 2467 } 2468 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2469 } 2470 } 2471 } 2472 } 2473 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2474 } 2475 2476 /** 2477 * Record profiling data from argument profiling at an invoke with the 2478 * type system so that it can propagate it (speculation) 2479 * 2480 * @param dest_method target method for the call 2481 * @param bc what invoke bytecode is this? 2482 */ 2483 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2484 if (!UseTypeSpeculation) { 2485 return; 2486 } 2487 const TypeFunc* tf = TypeFunc::make(dest_method); 2488 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2489 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2490 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2491 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2492 if (is_reference_type(targ->basic_type())) { 2493 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2494 ciKlass* better_type = nullptr; 2495 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2496 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2497 } 2498 i++; 2499 } 2500 } 2501 } 2502 2503 /** 2504 * Record profiling data from parameter profiling at an invoke with 2505 * the type system so that it can propagate it (speculation) 2506 */ 2507 void GraphKit::record_profiled_parameters_for_speculation() { 2508 if (!UseTypeSpeculation) { 2509 return; 2510 } 2511 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2512 if (_gvn.type(local(i))->isa_oopptr()) { 2513 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2514 ciKlass* better_type = nullptr; 2515 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2516 record_profile_for_speculation(local(i), better_type, ptr_kind); 2517 } 2518 j++; 2519 } 2520 } 2521 } 2522 2523 /** 2524 * Record profiling data from return value profiling at an invoke with 2525 * the type system so that it can propagate it (speculation) 2526 */ 2527 void GraphKit::record_profiled_return_for_speculation() { 2528 if (!UseTypeSpeculation) { 2529 return; 2530 } 2531 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2532 ciKlass* better_type = nullptr; 2533 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2534 // If profiling reports a single type for the return value, 2535 // feed it to the type system so it can propagate it as a 2536 // speculative type 2537 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2538 } 2539 } 2540 2541 2542 //============================================================================= 2543 // Generate a fast path/slow path idiom. Graph looks like: 2544 // [foo] indicates that 'foo' is a parameter 2545 // 2546 // [in] null 2547 // \ / 2548 // CmpP 2549 // Bool ne 2550 // If 2551 // / \ 2552 // True False-<2> 2553 // / | 2554 // / cast_not_null 2555 // Load | | ^ 2556 // [fast_test] | | 2557 // gvn to opt_test | | 2558 // / \ | <1> 2559 // True False | 2560 // | \\ | 2561 // [slow_call] \[fast_result] 2562 // Ctl Val \ \ 2563 // | \ \ 2564 // Catch <1> \ \ 2565 // / \ ^ \ \ 2566 // Ex No_Ex | \ \ 2567 // | \ \ | \ <2> \ 2568 // ... \ [slow_res] | | \ [null_result] 2569 // \ \--+--+--- | | 2570 // \ | / \ | / 2571 // --------Region Phi 2572 // 2573 //============================================================================= 2574 // Code is structured as a series of driver functions all called 'do_XXX' that 2575 // call a set of helper functions. Helper functions first, then drivers. 2576 2577 //------------------------------null_check_oop--------------------------------- 2578 // Null check oop. Set null-path control into Region in slot 3. 2579 // Make a cast-not-nullness use the other not-null control. Return cast. 2580 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2581 bool never_see_null, 2582 bool safe_for_replace, 2583 bool speculative) { 2584 // Initial null check taken path 2585 (*null_control) = top(); 2586 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2587 2588 // Generate uncommon_trap: 2589 if (never_see_null && (*null_control) != top()) { 2590 // If we see an unexpected null at a check-cast we record it and force a 2591 // recompile; the offending check-cast will be compiled to handle nulls. 2592 // If we see more than one offending BCI, then all checkcasts in the 2593 // method will be compiled to handle nulls. 2594 PreserveJVMState pjvms(this); 2595 set_control(*null_control); 2596 replace_in_map(value, null()); 2597 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2598 uncommon_trap(reason, 2599 Deoptimization::Action_make_not_entrant); 2600 (*null_control) = top(); // null path is dead 2601 } 2602 if ((*null_control) == top() && safe_for_replace) { 2603 replace_in_map(value, cast); 2604 } 2605 2606 // Cast away null-ness on the result 2607 return cast; 2608 } 2609 2610 //------------------------------opt_iff---------------------------------------- 2611 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2612 // Return slow-path control. 2613 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2614 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2615 2616 // Fast path taken; set region slot 2 2617 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2618 region->init_req(2,fast_taken); // Capture fast-control 2619 2620 // Fast path not-taken, i.e. slow path 2621 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2622 return slow_taken; 2623 } 2624 2625 //-----------------------------make_runtime_call------------------------------- 2626 Node* GraphKit::make_runtime_call(int flags, 2627 const TypeFunc* call_type, address call_addr, 2628 const char* call_name, 2629 const TypePtr* adr_type, 2630 // The following parms are all optional. 2631 // The first null ends the list. 2632 Node* parm0, Node* parm1, 2633 Node* parm2, Node* parm3, 2634 Node* parm4, Node* parm5, 2635 Node* parm6, Node* parm7) { 2636 assert(call_addr != nullptr, "must not call null targets"); 2637 2638 // Slow-path call 2639 bool is_leaf = !(flags & RC_NO_LEAF); 2640 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2641 if (call_name == nullptr) { 2642 assert(!is_leaf, "must supply name for leaf"); 2643 call_name = OptoRuntime::stub_name(call_addr); 2644 } 2645 CallNode* call; 2646 if (!is_leaf) { 2647 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2648 } else if (flags & RC_NO_FP) { 2649 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2650 } else if (flags & RC_VECTOR){ 2651 uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2652 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2653 } else { 2654 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2655 } 2656 2657 // The following is similar to set_edges_for_java_call, 2658 // except that the memory effects of the call are restricted to AliasIdxRaw. 2659 2660 // Slow path call has no side-effects, uses few values 2661 bool wide_in = !(flags & RC_NARROW_MEM); 2662 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2663 2664 Node* prev_mem = nullptr; 2665 if (wide_in) { 2666 prev_mem = set_predefined_input_for_runtime_call(call); 2667 } else { 2668 assert(!wide_out, "narrow in => narrow out"); 2669 Node* narrow_mem = memory(adr_type); 2670 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2671 } 2672 2673 // Hook each parm in order. Stop looking at the first null. 2674 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2675 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2676 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2677 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2678 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2679 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2680 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2681 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2682 /* close each nested if ===> */ } } } } } } } } 2683 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 2684 2685 if (!is_leaf) { 2686 // Non-leaves can block and take safepoints: 2687 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2688 } 2689 // Non-leaves can throw exceptions: 2690 if (has_io) { 2691 call->set_req(TypeFunc::I_O, i_o()); 2692 } 2693 2694 if (flags & RC_UNCOMMON) { 2695 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2696 // (An "if" probability corresponds roughly to an unconditional count. 2697 // Sort of.) 2698 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2699 } 2700 2701 Node* c = _gvn.transform(call); 2702 assert(c == call, "cannot disappear"); 2703 2704 if (wide_out) { 2705 // Slow path call has full side-effects. 2706 set_predefined_output_for_runtime_call(call); 2707 } else { 2708 // Slow path call has few side-effects, and/or sets few values. 2709 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2710 } 2711 2712 if (has_io) { 2713 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2714 } 2715 return call; 2716 2717 } 2718 2719 // i2b 2720 Node* GraphKit::sign_extend_byte(Node* in) { 2721 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2722 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2723 } 2724 2725 // i2s 2726 Node* GraphKit::sign_extend_short(Node* in) { 2727 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2728 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2729 } 2730 2731 2732 //------------------------------merge_memory----------------------------------- 2733 // Merge memory from one path into the current memory state. 2734 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2735 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2736 Node* old_slice = mms.force_memory(); 2737 Node* new_slice = mms.memory2(); 2738 if (old_slice != new_slice) { 2739 PhiNode* phi; 2740 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2741 if (mms.is_empty()) { 2742 // clone base memory Phi's inputs for this memory slice 2743 assert(old_slice == mms.base_memory(), "sanity"); 2744 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2745 _gvn.set_type(phi, Type::MEMORY); 2746 for (uint i = 1; i < phi->req(); i++) { 2747 phi->init_req(i, old_slice->in(i)); 2748 } 2749 } else { 2750 phi = old_slice->as_Phi(); // Phi was generated already 2751 } 2752 } else { 2753 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2754 _gvn.set_type(phi, Type::MEMORY); 2755 } 2756 phi->set_req(new_path, new_slice); 2757 mms.set_memory(phi); 2758 } 2759 } 2760 } 2761 2762 //------------------------------make_slow_call_ex------------------------------ 2763 // Make the exception handler hookups for the slow call 2764 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2765 if (stopped()) return; 2766 2767 // Make a catch node with just two handlers: fall-through and catch-all 2768 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2769 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2770 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2771 _gvn.set_type_bottom(norm); 2772 C->record_for_igvn(norm); 2773 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2774 2775 { PreserveJVMState pjvms(this); 2776 set_control(excp); 2777 set_i_o(i_o); 2778 2779 if (excp != top()) { 2780 if (deoptimize) { 2781 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2782 uncommon_trap(Deoptimization::Reason_unhandled, 2783 Deoptimization::Action_none); 2784 } else { 2785 // Create an exception state also. 2786 // Use an exact type if the caller has a specific exception. 2787 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2788 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2789 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2790 } 2791 } 2792 } 2793 2794 // Get the no-exception control from the CatchNode. 2795 set_control(norm); 2796 } 2797 2798 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2799 Node* cmp = nullptr; 2800 switch(bt) { 2801 case T_INT: cmp = new CmpINode(in1, in2); break; 2802 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2803 default: fatal("unexpected comparison type %s", type2name(bt)); 2804 } 2805 cmp = gvn.transform(cmp); 2806 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2807 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2808 gvn.transform(iff); 2809 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2810 return iff; 2811 } 2812 2813 //-------------------------------gen_subtype_check----------------------------- 2814 // Generate a subtyping check. Takes as input the subtype and supertype. 2815 // Returns 2 values: sets the default control() to the true path and returns 2816 // the false path. Only reads invariant memory; sets no (visible) memory. 2817 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2818 // but that's not exposed to the optimizer. This call also doesn't take in an 2819 // Object; if you wish to check an Object you need to load the Object's class 2820 // prior to coming here. 2821 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2822 ciMethod* method, int bci) { 2823 Compile* C = gvn.C; 2824 if ((*ctrl)->is_top()) { 2825 return C->top(); 2826 } 2827 2828 // Fast check for identical types, perhaps identical constants. 2829 // The types can even be identical non-constants, in cases 2830 // involving Array.newInstance, Object.clone, etc. 2831 if (subklass == superklass) 2832 return C->top(); // false path is dead; no test needed. 2833 2834 if (gvn.type(superklass)->singleton()) { 2835 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2836 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2837 2838 // In the common case of an exact superklass, try to fold up the 2839 // test before generating code. You may ask, why not just generate 2840 // the code and then let it fold up? The answer is that the generated 2841 // code will necessarily include null checks, which do not always 2842 // completely fold away. If they are also needless, then they turn 2843 // into a performance loss. Example: 2844 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2845 // Here, the type of 'fa' is often exact, so the store check 2846 // of fa[1]=x will fold up, without testing the nullness of x. 2847 // 2848 // At macro expansion, we would have already folded the SubTypeCheckNode 2849 // being expanded here because we always perform the static sub type 2850 // check in SubTypeCheckNode::sub() regardless of whether 2851 // StressReflectiveCode is set or not. We can therefore skip this 2852 // static check when StressReflectiveCode is on. 2853 switch (C->static_subtype_check(superk, subk)) { 2854 case Compile::SSC_always_false: 2855 { 2856 Node* always_fail = *ctrl; 2857 *ctrl = gvn.C->top(); 2858 return always_fail; 2859 } 2860 case Compile::SSC_always_true: 2861 return C->top(); 2862 case Compile::SSC_easy_test: 2863 { 2864 // Just do a direct pointer compare and be done. 2865 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2866 *ctrl = gvn.transform(new IfTrueNode(iff)); 2867 return gvn.transform(new IfFalseNode(iff)); 2868 } 2869 case Compile::SSC_full_test: 2870 break; 2871 default: 2872 ShouldNotReachHere(); 2873 } 2874 } 2875 2876 // %%% Possible further optimization: Even if the superklass is not exact, 2877 // if the subklass is the unique subtype of the superklass, the check 2878 // will always succeed. We could leave a dependency behind to ensure this. 2879 2880 // First load the super-klass's check-offset 2881 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2882 Node* m = C->immutable_memory(); 2883 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2884 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2885 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2886 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2887 bool might_be_cache = (chk_off_con == cacheoff_con); 2888 2889 // Load from the sub-klass's super-class display list, or a 1-word cache of 2890 // the secondary superclass list, or a failing value with a sentinel offset 2891 // if the super-klass is an interface or exceptionally deep in the Java 2892 // hierarchy and we have to scan the secondary superclass list the hard way. 2893 // Worst-case type is a little odd: null is allowed as a result (usually 2894 // klass loads can never produce a null). 2895 Node *chk_off_X = chk_off; 2896 #ifdef _LP64 2897 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2898 #endif 2899 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2900 // For some types like interfaces the following loadKlass is from a 1-word 2901 // cache which is mutable so can't use immutable memory. Other 2902 // types load from the super-class display table which is immutable. 2903 Node *kmem = C->immutable_memory(); 2904 // secondary_super_cache is not immutable but can be treated as such because: 2905 // - no ideal node writes to it in a way that could cause an 2906 // incorrect/missed optimization of the following Load. 2907 // - it's a cache so, worse case, not reading the latest value 2908 // wouldn't cause incorrect execution 2909 if (might_be_cache && mem != nullptr) { 2910 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2911 } 2912 Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2913 2914 // Compile speed common case: ARE a subtype and we canNOT fail 2915 if (superklass == nkls) { 2916 return C->top(); // false path is dead; no test needed. 2917 } 2918 2919 // Gather the various success & failures here 2920 RegionNode* r_not_subtype = new RegionNode(3); 2921 gvn.record_for_igvn(r_not_subtype); 2922 RegionNode* r_ok_subtype = new RegionNode(4); 2923 gvn.record_for_igvn(r_ok_subtype); 2924 2925 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 2926 // SubTypeCheck node 2927 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 2928 ciCallProfile profile = method->call_profile_at_bci(bci); 2929 float total_prob = 0; 2930 for (int i = 0; profile.has_receiver(i); ++i) { 2931 float prob = profile.receiver_prob(i); 2932 total_prob += prob; 2933 } 2934 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 2935 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2936 for (int i = 0; profile.has_receiver(i); ++i) { 2937 ciKlass* klass = profile.receiver(i); 2938 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 2939 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 2940 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 2941 continue; 2942 } 2943 float prob = profile.receiver_prob(i); 2944 ConNode* klass_node = gvn.makecon(klass_t); 2945 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 2946 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 2947 2948 if (result == Compile::SSC_always_true) { 2949 r_ok_subtype->add_req(iftrue); 2950 } else { 2951 assert(result == Compile::SSC_always_false, ""); 2952 r_not_subtype->add_req(iftrue); 2953 } 2954 *ctrl = gvn.transform(new IfFalseNode(iff)); 2955 } 2956 } 2957 } 2958 2959 // See if we get an immediate positive hit. Happens roughly 83% of the 2960 // time. Test to see if the value loaded just previously from the subklass 2961 // is exactly the superklass. 2962 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2963 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 2964 *ctrl = gvn.transform(new IfFalseNode(iff1)); 2965 2966 // Compile speed common case: Check for being deterministic right now. If 2967 // chk_off is a constant and not equal to cacheoff then we are NOT a 2968 // subklass. In this case we need exactly the 1 test above and we can 2969 // return those results immediately. 2970 if (!might_be_cache) { 2971 Node* not_subtype_ctrl = *ctrl; 2972 *ctrl = iftrue1; // We need exactly the 1 test above 2973 PhaseIterGVN* igvn = gvn.is_IterGVN(); 2974 if (igvn != nullptr) { 2975 igvn->remove_globally_dead_node(r_ok_subtype); 2976 igvn->remove_globally_dead_node(r_not_subtype); 2977 } 2978 return not_subtype_ctrl; 2979 } 2980 2981 r_ok_subtype->init_req(1, iftrue1); 2982 2983 // Check for immediate negative hit. Happens roughly 11% of the time (which 2984 // is roughly 63% of the remaining cases). Test to see if the loaded 2985 // check-offset points into the subklass display list or the 1-element 2986 // cache. If it points to the display (and NOT the cache) and the display 2987 // missed then it's not a subtype. 2988 Node *cacheoff = gvn.intcon(cacheoff_con); 2989 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2990 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 2991 *ctrl = gvn.transform(new IfFalseNode(iff2)); 2992 2993 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2994 // No performance impact (too rare) but allows sharing of secondary arrays 2995 // which has some footprint reduction. 2996 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2997 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 2998 *ctrl = gvn.transform(new IfFalseNode(iff3)); 2999 3000 // -- Roads not taken here: -- 3001 // We could also have chosen to perform the self-check at the beginning 3002 // of this code sequence, as the assembler does. This would not pay off 3003 // the same way, since the optimizer, unlike the assembler, can perform 3004 // static type analysis to fold away many successful self-checks. 3005 // Non-foldable self checks work better here in second position, because 3006 // the initial primary superclass check subsumes a self-check for most 3007 // types. An exception would be a secondary type like array-of-interface, 3008 // which does not appear in its own primary supertype display. 3009 // Finally, we could have chosen to move the self-check into the 3010 // PartialSubtypeCheckNode, and from there out-of-line in a platform 3011 // dependent manner. But it is worthwhile to have the check here, 3012 // where it can be perhaps be optimized. The cost in code space is 3013 // small (register compare, branch). 3014 3015 // Now do a linear scan of the secondary super-klass array. Again, no real 3016 // performance impact (too rare) but it's gotta be done. 3017 // Since the code is rarely used, there is no penalty for moving it 3018 // out of line, and it can only improve I-cache density. 3019 // The decision to inline or out-of-line this final check is platform 3020 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 3021 Node* psc = gvn.transform( 3022 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 3023 3024 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 3025 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 3026 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 3027 3028 // Return false path; set default control to true path. 3029 *ctrl = gvn.transform(r_ok_subtype); 3030 return gvn.transform(r_not_subtype); 3031 } 3032 3033 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 3034 const Type* sub_t = _gvn.type(obj_or_subklass); 3035 if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) { 3036 sub_t = TypeKlassPtr::make(sub_t->inline_klass()); 3037 obj_or_subklass = makecon(sub_t); 3038 } 3039 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 3040 if (expand_subtype_check) { 3041 MergeMemNode* mem = merged_memory(); 3042 Node* ctrl = control(); 3043 Node* subklass = obj_or_subklass; 3044 if (!sub_t->isa_klassptr()) { 3045 subklass = load_object_klass(obj_or_subklass); 3046 } 3047 3048 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 3049 set_control(ctrl); 3050 return n; 3051 } 3052 3053 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 3054 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 3055 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 3056 set_control(_gvn.transform(new IfTrueNode(iff))); 3057 return _gvn.transform(new IfFalseNode(iff)); 3058 } 3059 3060 // Profile-driven exact type check: 3061 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 3062 float prob, Node* *casted_receiver) { 3063 assert(!klass->is_interface(), "no exact type check on interfaces"); 3064 Node* fail = top(); 3065 const Type* rec_t = _gvn.type(receiver); 3066 if (rec_t->is_inlinetypeptr()) { 3067 if (klass->equals(rec_t->inline_klass())) { 3068 (*casted_receiver) = receiver; // Always passes 3069 } else { 3070 (*casted_receiver) = top(); // Always fails 3071 fail = control(); 3072 set_control(top()); 3073 } 3074 return fail; 3075 } 3076 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 3077 Node* recv_klass = load_object_klass(receiver); 3078 fail = type_check(recv_klass, tklass, prob); 3079 3080 if (!stopped()) { 3081 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3082 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 3083 assert(recv_xtype->klass_is_exact(), ""); 3084 3085 if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts 3086 // Subsume downstream occurrences of receiver with a cast to 3087 // recv_xtype, since now we know what the type will be. 3088 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 3089 Node* res = _gvn.transform(cast); 3090 if (recv_xtype->is_inlinetypeptr()) { 3091 assert(!gvn().type(res)->maybe_null(), "receiver should never be null"); 3092 res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass()); 3093 } 3094 (*casted_receiver) = res; 3095 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 3096 // (User must make the replace_in_map call.) 3097 } 3098 } 3099 3100 return fail; 3101 } 3102 3103 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass, 3104 float prob) { 3105 Node* want_klass = makecon(tklass); 3106 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 3107 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3108 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 3109 set_control(_gvn.transform(new IfTrueNode (iff))); 3110 Node* fail = _gvn.transform(new IfFalseNode(iff)); 3111 return fail; 3112 } 3113 3114 //------------------------------subtype_check_receiver------------------------- 3115 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 3116 Node** casted_receiver) { 3117 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 3118 Node* want_klass = makecon(tklass); 3119 3120 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 3121 3122 // Ignore interface type information until interface types are properly tracked. 3123 if (!stopped() && !klass->is_interface()) { 3124 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3125 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 3126 if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts 3127 Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type)); 3128 if (recv_type->is_inlinetypeptr()) { 3129 cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass()); 3130 } 3131 (*casted_receiver) = cast; 3132 } 3133 } 3134 3135 return slow_ctl; 3136 } 3137 3138 //------------------------------seems_never_null------------------------------- 3139 // Use null_seen information if it is available from the profile. 3140 // If we see an unexpected null at a type check we record it and force a 3141 // recompile; the offending check will be recompiled to handle nulls. 3142 // If we see several offending BCIs, then all checks in the 3143 // method will be recompiled. 3144 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 3145 speculating = !_gvn.type(obj)->speculative_maybe_null(); 3146 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 3147 if (UncommonNullCast // Cutout for this technique 3148 && obj != null() // And not the -Xcomp stupid case? 3149 && !too_many_traps(reason) 3150 ) { 3151 if (speculating) { 3152 return true; 3153 } 3154 if (data == nullptr) 3155 // Edge case: no mature data. Be optimistic here. 3156 return true; 3157 // If the profile has not seen a null, assume it won't happen. 3158 assert(java_bc() == Bytecodes::_checkcast || 3159 java_bc() == Bytecodes::_instanceof || 3160 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3161 return !data->as_BitData()->null_seen(); 3162 } 3163 speculating = false; 3164 return false; 3165 } 3166 3167 void GraphKit::guard_klass_being_initialized(Node* klass) { 3168 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3169 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3170 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3171 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3172 T_BYTE, MemNode::acquire); 3173 init_state = _gvn.transform(init_state); 3174 3175 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3176 3177 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3178 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3179 3180 { BuildCutout unless(this, tst, PROB_MAX); 3181 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3182 } 3183 } 3184 3185 void GraphKit::guard_init_thread(Node* klass) { 3186 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3187 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3188 3189 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3190 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3191 T_ADDRESS, MemNode::unordered); 3192 init_thread = _gvn.transform(init_thread); 3193 3194 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3195 3196 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3197 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3198 3199 { BuildCutout unless(this, tst, PROB_MAX); 3200 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3201 } 3202 } 3203 3204 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3205 if (ik->is_being_initialized()) { 3206 if (C->needs_clinit_barrier(ik, context)) { 3207 Node* klass = makecon(TypeKlassPtr::make(ik)); 3208 guard_klass_being_initialized(klass); 3209 guard_init_thread(klass); 3210 insert_mem_bar(Op_MemBarCPUOrder); 3211 } 3212 } else if (ik->is_initialized()) { 3213 return; // no barrier needed 3214 } else { 3215 uncommon_trap(Deoptimization::Reason_uninitialized, 3216 Deoptimization::Action_reinterpret, 3217 nullptr); 3218 } 3219 } 3220 3221 //------------------------maybe_cast_profiled_receiver------------------------- 3222 // If the profile has seen exactly one type, narrow to exactly that type. 3223 // Subsequent type checks will always fold up. 3224 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3225 const TypeKlassPtr* require_klass, 3226 ciKlass* spec_klass, 3227 bool safe_for_replace) { 3228 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3229 3230 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3231 3232 // Make sure we haven't already deoptimized from this tactic. 3233 if (too_many_traps_or_recompiles(reason)) 3234 return nullptr; 3235 3236 // (No, this isn't a call, but it's enough like a virtual call 3237 // to use the same ciMethod accessor to get the profile info...) 3238 // If we have a speculative type use it instead of profiling (which 3239 // may not help us) 3240 ciKlass* exact_kls = spec_klass; 3241 if (exact_kls == nullptr) { 3242 if (java_bc() == Bytecodes::_aastore) { 3243 ciKlass* array_type = nullptr; 3244 ciKlass* element_type = nullptr; 3245 ProfilePtrKind element_ptr = ProfileMaybeNull; 3246 bool flat_array = true; 3247 bool null_free_array = true; 3248 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 3249 exact_kls = element_type; 3250 } else { 3251 exact_kls = profile_has_unique_klass(); 3252 } 3253 } 3254 if (exact_kls != nullptr) {// no cast failures here 3255 if (require_klass == nullptr || 3256 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3257 // If we narrow the type to match what the type profile sees or 3258 // the speculative type, we can then remove the rest of the 3259 // cast. 3260 // This is a win, even if the exact_kls is very specific, 3261 // because downstream operations, such as method calls, 3262 // will often benefit from the sharper type. 3263 Node* exact_obj = not_null_obj; // will get updated in place... 3264 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3265 &exact_obj); 3266 { PreserveJVMState pjvms(this); 3267 set_control(slow_ctl); 3268 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3269 } 3270 if (safe_for_replace) { 3271 replace_in_map(not_null_obj, exact_obj); 3272 } 3273 return exact_obj; 3274 } 3275 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3276 } 3277 3278 return nullptr; 3279 } 3280 3281 /** 3282 * Cast obj to type and emit guard unless we had too many traps here 3283 * already 3284 * 3285 * @param obj node being casted 3286 * @param type type to cast the node to 3287 * @param not_null true if we know node cannot be null 3288 */ 3289 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3290 ciKlass* type, 3291 bool not_null) { 3292 if (stopped()) { 3293 return obj; 3294 } 3295 3296 // type is null if profiling tells us this object is always null 3297 if (type != nullptr) { 3298 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3299 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3300 3301 if (!too_many_traps_or_recompiles(null_reason) && 3302 !too_many_traps_or_recompiles(class_reason)) { 3303 Node* not_null_obj = nullptr; 3304 // not_null is true if we know the object is not null and 3305 // there's no need for a null check 3306 if (!not_null) { 3307 Node* null_ctl = top(); 3308 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3309 assert(null_ctl->is_top(), "no null control here"); 3310 } else { 3311 not_null_obj = obj; 3312 } 3313 3314 Node* exact_obj = not_null_obj; 3315 ciKlass* exact_kls = type; 3316 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3317 &exact_obj); 3318 { 3319 PreserveJVMState pjvms(this); 3320 set_control(slow_ctl); 3321 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3322 } 3323 replace_in_map(not_null_obj, exact_obj); 3324 obj = exact_obj; 3325 } 3326 } else { 3327 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3328 Node* exact_obj = null_assert(obj); 3329 replace_in_map(obj, exact_obj); 3330 obj = exact_obj; 3331 } 3332 } 3333 return obj; 3334 } 3335 3336 //-------------------------------gen_instanceof-------------------------------- 3337 // Generate an instance-of idiom. Used by both the instance-of bytecode 3338 // and the reflective instance-of call. 3339 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3340 kill_dead_locals(); // Benefit all the uncommon traps 3341 assert( !stopped(), "dead parse path should be checked in callers" ); 3342 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3343 "must check for not-null not-dead klass in callers"); 3344 3345 // Make the merge point 3346 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3347 RegionNode* region = new RegionNode(PATH_LIMIT); 3348 Node* phi = new PhiNode(region, TypeInt::BOOL); 3349 C->set_has_split_ifs(true); // Has chance for split-if optimization 3350 3351 ciProfileData* data = nullptr; 3352 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3353 data = method()->method_data()->bci_to_data(bci()); 3354 } 3355 bool speculative_not_null = false; 3356 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3357 && seems_never_null(obj, data, speculative_not_null)); 3358 3359 // Null check; get casted pointer; set region slot 3 3360 Node* null_ctl = top(); 3361 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3362 3363 // If not_null_obj is dead, only null-path is taken 3364 if (stopped()) { // Doing instance-of on a null? 3365 set_control(null_ctl); 3366 return intcon(0); 3367 } 3368 region->init_req(_null_path, null_ctl); 3369 phi ->init_req(_null_path, intcon(0)); // Set null path value 3370 if (null_ctl == top()) { 3371 // Do this eagerly, so that pattern matches like is_diamond_phi 3372 // will work even during parsing. 3373 assert(_null_path == PATH_LIMIT-1, "delete last"); 3374 region->del_req(_null_path); 3375 phi ->del_req(_null_path); 3376 } 3377 3378 // Do we know the type check always succeed? 3379 bool known_statically = false; 3380 if (_gvn.type(superklass)->singleton()) { 3381 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3382 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3383 if (subk != nullptr && subk->is_loaded()) { 3384 int static_res = C->static_subtype_check(superk, subk); 3385 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3386 } 3387 } 3388 3389 if (!known_statically) { 3390 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3391 // We may not have profiling here or it may not help us. If we 3392 // have a speculative type use it to perform an exact cast. 3393 ciKlass* spec_obj_type = obj_type->speculative_type(); 3394 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3395 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3396 if (stopped()) { // Profile disagrees with this path. 3397 set_control(null_ctl); // Null is the only remaining possibility. 3398 return intcon(0); 3399 } 3400 if (cast_obj != nullptr) { 3401 not_null_obj = cast_obj; 3402 } 3403 } 3404 } 3405 3406 // Generate the subtype check 3407 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3408 3409 // Plug in the success path to the general merge in slot 1. 3410 region->init_req(_obj_path, control()); 3411 phi ->init_req(_obj_path, intcon(1)); 3412 3413 // Plug in the failing path to the general merge in slot 2. 3414 region->init_req(_fail_path, not_subtype_ctrl); 3415 phi ->init_req(_fail_path, intcon(0)); 3416 3417 // Return final merged results 3418 set_control( _gvn.transform(region) ); 3419 record_for_igvn(region); 3420 3421 // If we know the type check always succeeds then we don't use the 3422 // profiling data at this bytecode. Don't lose it, feed it to the 3423 // type system as a speculative type. 3424 if (safe_for_replace) { 3425 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3426 replace_in_map(obj, casted_obj); 3427 } 3428 3429 return _gvn.transform(phi); 3430 } 3431 3432 //-------------------------------gen_checkcast--------------------------------- 3433 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3434 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3435 // uncommon-trap paths work. Adjust stack after this call. 3436 // If failure_control is supplied and not null, it is filled in with 3437 // the control edge for the cast failure. Otherwise, an appropriate 3438 // uncommon trap or exception is thrown. 3439 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) { 3440 kill_dead_locals(); // Benefit all the uncommon traps 3441 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3442 const Type* obj_type = _gvn.type(obj); 3443 if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) { 3444 // Special case: larval inline objects must not be scalarized. They are also generally not 3445 // allowed to participate in most operations except as the first operand of putfield, or as an 3446 // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being 3447 // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize 3448 // value objects in all other places. This special case comes from the limitation of the Java 3449 // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete 3450 // value type. We must do this first because C->static_subtype_check may do nothing when 3451 // StressReflectiveCode is set. 3452 return obj; 3453 } 3454 3455 // Else it must be a non-larval object 3456 obj = cast_to_non_larval(obj); 3457 3458 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3459 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3460 bool safe_for_replace = (failure_control == nullptr); 3461 assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer"); 3462 3463 // Fast cutout: Check the case that the cast is vacuously true. 3464 // This detects the common cases where the test will short-circuit 3465 // away completely. We do this before we perform the null check, 3466 // because if the test is going to turn into zero code, we don't 3467 // want a residual null check left around. (Causes a slowdown, 3468 // for example, in some objArray manipulations, such as a[i]=a[j].) 3469 if (improved_klass_ptr_type->singleton()) { 3470 const TypeKlassPtr* kptr = nullptr; 3471 if (obj_type->isa_oop_ptr()) { 3472 kptr = obj_type->is_oopptr()->as_klass_type(); 3473 } else if (obj->is_InlineType()) { 3474 ciInlineKlass* vk = obj_type->inline_klass(); 3475 kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0)); 3476 } 3477 3478 if (kptr != nullptr) { 3479 switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) { 3480 case Compile::SSC_always_true: 3481 // If we know the type check always succeed then we don't use 3482 // the profiling data at this bytecode. Don't lose it, feed it 3483 // to the type system as a speculative type. 3484 obj = record_profiled_receiver_for_speculation(obj); 3485 if (null_free) { 3486 assert(safe_for_replace, "must be"); 3487 obj = null_check(obj); 3488 } 3489 assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized"); 3490 return obj; 3491 case Compile::SSC_always_false: 3492 if (null_free) { 3493 assert(safe_for_replace, "must be"); 3494 obj = null_check(obj); 3495 } 3496 // It needs a null check because a null will *pass* the cast check. 3497 if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) { 3498 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3499 Deoptimization::DeoptReason reason = is_aastore ? 3500 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3501 builtin_throw(reason); 3502 return top(); 3503 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3504 return null_assert(obj); 3505 } 3506 break; // Fall through to full check 3507 default: 3508 break; 3509 } 3510 } 3511 } 3512 3513 ciProfileData* data = nullptr; 3514 if (failure_control == nullptr) { // use MDO in regular case only 3515 assert(java_bc() == Bytecodes::_aastore || 3516 java_bc() == Bytecodes::_checkcast, 3517 "interpreter profiles type checks only for these BCs"); 3518 if (method()->method_data()->is_mature()) { 3519 data = method()->method_data()->bci_to_data(bci()); 3520 } 3521 } 3522 3523 // Make the merge point 3524 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3525 RegionNode* region = new RegionNode(PATH_LIMIT); 3526 Node* phi = new PhiNode(region, toop); 3527 _gvn.set_type(region, Type::CONTROL); 3528 _gvn.set_type(phi, toop); 3529 3530 C->set_has_split_ifs(true); // Has chance for split-if optimization 3531 3532 // Use null-cast information if it is available 3533 bool speculative_not_null = false; 3534 bool never_see_null = ((failure_control == nullptr) // regular case only 3535 && seems_never_null(obj, data, speculative_not_null)); 3536 3537 if (obj->is_InlineType()) { 3538 // Re-execute if buffering during triggers deoptimization 3539 PreserveReexecuteState preexecs(this); 3540 jvms()->set_should_reexecute(true); 3541 obj = obj->as_InlineType()->buffer(this, safe_for_replace); 3542 } 3543 3544 // Null check; get casted pointer; set region slot 3 3545 Node* null_ctl = top(); 3546 Node* not_null_obj = nullptr; 3547 if (null_free) { 3548 assert(safe_for_replace, "must be"); 3549 not_null_obj = null_check(obj); 3550 } else { 3551 not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3552 } 3553 3554 // If not_null_obj is dead, only null-path is taken 3555 if (stopped()) { // Doing instance-of on a null? 3556 set_control(null_ctl); 3557 if (toop->is_inlinetypeptr()) { 3558 return InlineTypeNode::make_null(_gvn, toop->inline_klass()); 3559 } 3560 return null(); 3561 } 3562 region->init_req(_null_path, null_ctl); 3563 phi ->init_req(_null_path, null()); // Set null path value 3564 if (null_ctl == top()) { 3565 // Do this eagerly, so that pattern matches like is_diamond_phi 3566 // will work even during parsing. 3567 assert(_null_path == PATH_LIMIT-1, "delete last"); 3568 region->del_req(_null_path); 3569 phi ->del_req(_null_path); 3570 } 3571 3572 Node* cast_obj = nullptr; 3573 if (improved_klass_ptr_type->klass_is_exact()) { 3574 // The following optimization tries to statically cast the speculative type of the object 3575 // (for example obtained during profiling) to the type of the superklass and then do a 3576 // dynamic check that the type of the object is what we expect. To work correctly 3577 // for checkcast and aastore the type of superklass should be exact. 3578 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3579 // We may not have profiling here or it may not help us. If we have 3580 // a speculative type use it to perform an exact cast. 3581 ciKlass* spec_obj_type = obj_type->speculative_type(); 3582 if (spec_obj_type != nullptr || data != nullptr) { 3583 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3584 if (cast_obj != nullptr) { 3585 if (failure_control != nullptr) // failure is now impossible 3586 (*failure_control) = top(); 3587 // adjust the type of the phi to the exact klass: 3588 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3589 } 3590 } 3591 } 3592 3593 if (cast_obj == nullptr) { 3594 // Generate the subtype check 3595 Node* improved_superklass = superklass; 3596 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3597 // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up. 3598 // The other non-constant cases cannot be improved with a cast node here since they could be folded to top. 3599 // Additionally, the benefit would only be minor in non-constant cases. 3600 improved_superklass = makecon(improved_klass_ptr_type); 3601 } 3602 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3603 // Plug in success path into the merge 3604 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3605 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3606 if (failure_control == nullptr) { 3607 if (not_subtype_ctrl != top()) { // If failure is possible 3608 PreserveJVMState pjvms(this); 3609 set_control(not_subtype_ctrl); 3610 Node* obj_klass = nullptr; 3611 if (not_null_obj->is_InlineType()) { 3612 obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass())); 3613 } else { 3614 obj_klass = load_object_klass(not_null_obj); 3615 } 3616 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3617 Deoptimization::DeoptReason reason = is_aastore ? 3618 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3619 builtin_throw(reason); 3620 } 3621 } else { 3622 (*failure_control) = not_subtype_ctrl; 3623 } 3624 } 3625 3626 region->init_req(_obj_path, control()); 3627 phi ->init_req(_obj_path, cast_obj); 3628 3629 // A merge of null or Casted-NotNull obj 3630 Node* res = _gvn.transform(phi); 3631 3632 // Note I do NOT always 'replace_in_map(obj,result)' here. 3633 // if( tk->klass()->can_be_primary_super() ) 3634 // This means that if I successfully store an Object into an array-of-String 3635 // I 'forget' that the Object is really now known to be a String. I have to 3636 // do this because we don't have true union types for interfaces - if I store 3637 // a Baz into an array-of-Interface and then tell the optimizer it's an 3638 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3639 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3640 // replace_in_map( obj, res ); 3641 3642 // Return final merged results 3643 set_control( _gvn.transform(region) ); 3644 record_for_igvn(region); 3645 3646 bool not_inline = !toop->can_be_inline_type(); 3647 bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array()); 3648 if (EnableValhalla && (not_inline || not_flat_in_array)) { 3649 // Check if obj has been loaded from an array 3650 obj = obj->isa_DecodeN() ? obj->in(1) : obj; 3651 Node* array = nullptr; 3652 if (obj->isa_Load()) { 3653 Node* address = obj->in(MemNode::Address); 3654 if (address->isa_AddP()) { 3655 array = address->as_AddP()->in(AddPNode::Base); 3656 } 3657 } else if (obj->is_Phi()) { 3658 Node* region = obj->in(0); 3659 // TODO make this more robust (see JDK-8231346) 3660 if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) { 3661 IfNode* iff = region->in(2)->in(0)->isa_If(); 3662 if (iff != nullptr) { 3663 iff->is_flat_array_check(&_gvn, &array); 3664 } 3665 } 3666 } 3667 if (array != nullptr) { 3668 const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr(); 3669 if (ary_t != nullptr) { 3670 if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) { 3671 // Casting array element to a non-inline-type, mark array as not null-free. 3672 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free())); 3673 replace_in_map(array, cast); 3674 array = cast; 3675 } 3676 if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) { 3677 // Casting array element to a non-flat-in-array type, mark array as not flat. 3678 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat())); 3679 replace_in_map(array, cast); 3680 array = cast; 3681 } 3682 } 3683 } 3684 } 3685 3686 if (!stopped() && !res->is_InlineType()) { 3687 res = record_profiled_receiver_for_speculation(res); 3688 if (toop->is_inlinetypeptr() && !maybe_larval) { 3689 Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass()); 3690 res = vt; 3691 if (safe_for_replace) { 3692 replace_in_map(obj, vt); 3693 replace_in_map(not_null_obj, vt); 3694 replace_in_map(res, vt); 3695 } 3696 } 3697 } 3698 return res; 3699 } 3700 3701 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) { 3702 // Load markword 3703 Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3704 Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3705 if (check_lock) { 3706 // Check if obj is locked 3707 Node* locked_bit = MakeConX(markWord::unlocked_value); 3708 locked_bit = _gvn.transform(new AndXNode(locked_bit, mark)); 3709 Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 3710 Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3711 IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN); 3712 _gvn.transform(iff); 3713 Node* locked_region = new RegionNode(3); 3714 Node* mark_phi = new PhiNode(locked_region, TypeX_X); 3715 3716 // Unlocked: Use bits from mark word 3717 locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff))); 3718 mark_phi->init_req(1, mark); 3719 3720 // Locked: Load prototype header from klass 3721 set_control(_gvn.transform(new IfFalseNode(iff))); 3722 // Make loads control dependent to make sure they are only executed if array is locked 3723 Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 3724 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 3725 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 3726 Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 3727 3728 locked_region->init_req(2, control()); 3729 mark_phi->init_req(2, proto); 3730 set_control(_gvn.transform(locked_region)); 3731 record_for_igvn(locked_region); 3732 3733 mark = mark_phi; 3734 } 3735 3736 // Now check if mark word bits are set 3737 Node* mask = MakeConX(mask_val); 3738 Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask)); 3739 record_for_igvn(masked); // Give it a chance to be optimized out by IGVN 3740 Node* cmp = _gvn.transform(new CmpXNode(masked, mask)); 3741 return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne)); 3742 } 3743 3744 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) { 3745 return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false); 3746 } 3747 3748 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) { 3749 // We can't use immutable memory here because the mark word is mutable. 3750 // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the 3751 // check is moved out of loops (mainly to enable loop unswitching). 3752 Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass)); 3753 record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN 3754 return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne)); 3755 } 3756 3757 Node* GraphKit::null_free_array_test(Node* array, bool null_free) { 3758 return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free); 3759 } 3760 3761 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) { 3762 assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat"); 3763 3764 // TODO 8350865 Add a stress flag to always access atomic if layout exists? 3765 if (!vk->has_non_atomic_layout()) { 3766 return intcon(1); // Always atomic 3767 } else if (!vk->has_atomic_layout()) { 3768 return intcon(0); // Never atomic 3769 } 3770 3771 // TODO 8350865 Don't fold this klass load because atomicity is currently not included in the typesystem 3772 Node* array_klass = load_object_klass(array, /* fold_for_arrays = */ false); 3773 int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset()); 3774 Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset); 3775 Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered); 3776 Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT))); 3777 return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3778 } 3779 3780 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null 3781 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) { 3782 RegionNode* region = new RegionNode(3); 3783 Node* null_ctl = top(); 3784 null_check_oop(val, &null_ctl); 3785 if (null_ctl != top()) { 3786 PreserveJVMState pjvms(this); 3787 set_control(null_ctl); 3788 { 3789 // Deoptimize if null-free array 3790 BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX); 3791 inc_sp(nargs); 3792 uncommon_trap(Deoptimization::Reason_null_check, 3793 Deoptimization::Action_none); 3794 } 3795 region->init_req(1, control()); 3796 } 3797 region->init_req(2, control()); 3798 set_control(_gvn.transform(region)); 3799 record_for_igvn(region); 3800 if (_gvn.type(val) == TypePtr::NULL_PTR) { 3801 // Since we were just successfully storing null, the array can't be null free. 3802 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 3803 ary_t = ary_t->cast_to_not_null_free(); 3804 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 3805 if (safe_for_replace) { 3806 replace_in_map(ary, cast); 3807 } 3808 ary = cast; 3809 } 3810 return ary; 3811 } 3812 3813 //------------------------------next_monitor----------------------------------- 3814 // What number should be given to the next monitor? 3815 int GraphKit::next_monitor() { 3816 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3817 int next = current + C->sync_stack_slots(); 3818 // Keep the toplevel high water mark current: 3819 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3820 return current; 3821 } 3822 3823 //------------------------------insert_mem_bar--------------------------------- 3824 // Memory barrier to avoid floating things around 3825 // The membar serves as a pinch point between both control and all memory slices. 3826 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3827 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3828 mb->init_req(TypeFunc::Control, control()); 3829 mb->init_req(TypeFunc::Memory, reset_memory()); 3830 Node* membar = _gvn.transform(mb); 3831 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3832 set_all_memory_call(membar); 3833 return membar; 3834 } 3835 3836 //-------------------------insert_mem_bar_volatile---------------------------- 3837 // Memory barrier to avoid floating things around 3838 // The membar serves as a pinch point between both control and memory(alias_idx). 3839 // If you want to make a pinch point on all memory slices, do not use this 3840 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3841 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3842 // When Parse::do_put_xxx updates a volatile field, it appends a series 3843 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3844 // The first membar is on the same memory slice as the field store opcode. 3845 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3846 // All the other membars (for other volatile slices, including AliasIdxBot, 3847 // which stands for all unknown volatile slices) are control-dependent 3848 // on the first membar. This prevents later volatile loads or stores 3849 // from sliding up past the just-emitted store. 3850 3851 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3852 mb->set_req(TypeFunc::Control,control()); 3853 if (alias_idx == Compile::AliasIdxBot) { 3854 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3855 } else { 3856 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3857 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3858 } 3859 Node* membar = _gvn.transform(mb); 3860 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3861 if (alias_idx == Compile::AliasIdxBot) { 3862 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3863 } else { 3864 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3865 } 3866 return membar; 3867 } 3868 3869 //------------------------------shared_lock------------------------------------ 3870 // Emit locking code. 3871 FastLockNode* GraphKit::shared_lock(Node* obj) { 3872 // bci is either a monitorenter bc or InvocationEntryBci 3873 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3874 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3875 3876 if( !GenerateSynchronizationCode ) 3877 return nullptr; // Not locking things? 3878 3879 if (stopped()) // Dead monitor? 3880 return nullptr; 3881 3882 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3883 3884 // Box the stack location 3885 Node* box = new BoxLockNode(next_monitor()); 3886 // Check for bailout after new BoxLockNode 3887 if (failing()) { return nullptr; } 3888 box = _gvn.transform(box); 3889 Node* mem = reset_memory(); 3890 3891 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3892 3893 // Add monitor to debug info for the slow path. If we block inside the 3894 // slow path and de-opt, we need the monitor hanging around 3895 map()->push_monitor( flock ); 3896 3897 const TypeFunc *tf = LockNode::lock_type(); 3898 LockNode *lock = new LockNode(C, tf); 3899 3900 lock->init_req( TypeFunc::Control, control() ); 3901 lock->init_req( TypeFunc::Memory , mem ); 3902 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3903 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3904 lock->init_req( TypeFunc::ReturnAdr, top() ); 3905 3906 lock->init_req(TypeFunc::Parms + 0, obj); 3907 lock->init_req(TypeFunc::Parms + 1, box); 3908 lock->init_req(TypeFunc::Parms + 2, flock); 3909 add_safepoint_edges(lock); 3910 3911 lock = _gvn.transform( lock )->as_Lock(); 3912 3913 // lock has no side-effects, sets few values 3914 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3915 3916 insert_mem_bar(Op_MemBarAcquireLock); 3917 3918 // Add this to the worklist so that the lock can be eliminated 3919 record_for_igvn(lock); 3920 3921 #ifndef PRODUCT 3922 if (PrintLockStatistics) { 3923 // Update the counter for this lock. Don't bother using an atomic 3924 // operation since we don't require absolute accuracy. 3925 lock->create_lock_counter(map()->jvms()); 3926 increment_counter(lock->counter()->addr()); 3927 } 3928 #endif 3929 3930 return flock; 3931 } 3932 3933 3934 //------------------------------shared_unlock---------------------------------- 3935 // Emit unlocking code. 3936 void GraphKit::shared_unlock(Node* box, Node* obj) { 3937 // bci is either a monitorenter bc or InvocationEntryBci 3938 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3939 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3940 3941 if( !GenerateSynchronizationCode ) 3942 return; 3943 if (stopped()) { // Dead monitor? 3944 map()->pop_monitor(); // Kill monitor from debug info 3945 return; 3946 } 3947 assert(!obj->is_InlineType(), "should not unlock on inline type"); 3948 3949 // Memory barrier to avoid floating things down past the locked region 3950 insert_mem_bar(Op_MemBarReleaseLock); 3951 3952 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3953 UnlockNode *unlock = new UnlockNode(C, tf); 3954 #ifdef ASSERT 3955 unlock->set_dbg_jvms(sync_jvms()); 3956 #endif 3957 uint raw_idx = Compile::AliasIdxRaw; 3958 unlock->init_req( TypeFunc::Control, control() ); 3959 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3960 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3961 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3962 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3963 3964 unlock->init_req(TypeFunc::Parms + 0, obj); 3965 unlock->init_req(TypeFunc::Parms + 1, box); 3966 unlock = _gvn.transform(unlock)->as_Unlock(); 3967 3968 Node* mem = reset_memory(); 3969 3970 // unlock has no side-effects, sets few values 3971 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3972 3973 // Kill monitor from debug info 3974 map()->pop_monitor( ); 3975 } 3976 3977 //-------------------------------get_layout_helper----------------------------- 3978 // If the given klass is a constant or known to be an array, 3979 // fetch the constant layout helper value into constant_value 3980 // and return null. Otherwise, load the non-constant 3981 // layout helper value, and return the node which represents it. 3982 // This two-faced routine is useful because allocation sites 3983 // almost always feature constant types. 3984 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3985 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 3986 if (!StressReflectiveCode && klass_t != nullptr) { 3987 bool xklass = klass_t->klass_is_exact(); 3988 bool can_be_flat = false; 3989 const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr(); 3990 if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) { 3991 // Don't constant fold if the runtime type might be a flat array but the static type is not. 3992 const TypeOopPtr* elem = ary_type->elem()->make_oopptr(); 3993 can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array()); 3994 } 3995 if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) { 3996 jint lhelper; 3997 if (klass_t->is_flat()) { 3998 lhelper = ary_type->flat_layout_helper(); 3999 } else if (klass_t->isa_aryklassptr()) { 4000 BasicType elem = ary_type->elem()->array_element_basic_type(); 4001 if (is_reference_type(elem, true)) { 4002 elem = T_OBJECT; 4003 } 4004 lhelper = Klass::array_layout_helper(elem); 4005 } else { 4006 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 4007 } 4008 if (lhelper != Klass::_lh_neutral_value) { 4009 constant_value = lhelper; 4010 return (Node*) nullptr; 4011 } 4012 } 4013 } 4014 constant_value = Klass::_lh_neutral_value; // put in a known value 4015 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 4016 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 4017 } 4018 4019 // We just put in an allocate/initialize with a big raw-memory effect. 4020 // Hook selected additional alias categories on the initialization. 4021 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 4022 MergeMemNode* init_in_merge, 4023 Node* init_out_raw) { 4024 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 4025 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 4026 4027 Node* prevmem = kit.memory(alias_idx); 4028 init_in_merge->set_memory_at(alias_idx, prevmem); 4029 if (init_out_raw != nullptr) { 4030 kit.set_memory(init_out_raw, alias_idx); 4031 } 4032 } 4033 4034 //---------------------------set_output_for_allocation------------------------- 4035 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 4036 const TypeOopPtr* oop_type, 4037 bool deoptimize_on_exception) { 4038 int rawidx = Compile::AliasIdxRaw; 4039 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 4040 add_safepoint_edges(alloc); 4041 Node* allocx = _gvn.transform(alloc); 4042 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 4043 // create memory projection for i_o 4044 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 4045 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 4046 4047 // create a memory projection as for the normal control path 4048 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 4049 set_memory(malloc, rawidx); 4050 4051 // a normal slow-call doesn't change i_o, but an allocation does 4052 // we create a separate i_o projection for the normal control path 4053 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 4054 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 4055 4056 // put in an initialization barrier 4057 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 4058 rawoop)->as_Initialize(); 4059 assert(alloc->initialization() == init, "2-way macro link must work"); 4060 assert(init ->allocation() == alloc, "2-way macro link must work"); 4061 { 4062 // Extract memory strands which may participate in the new object's 4063 // initialization, and source them from the new InitializeNode. 4064 // This will allow us to observe initializations when they occur, 4065 // and link them properly (as a group) to the InitializeNode. 4066 assert(init->in(InitializeNode::Memory) == malloc, ""); 4067 MergeMemNode* minit_in = MergeMemNode::make(malloc); 4068 init->set_req(InitializeNode::Memory, minit_in); 4069 record_for_igvn(minit_in); // fold it up later, if possible 4070 _gvn.set_type(minit_in, Type::MEMORY); 4071 Node* minit_out = memory(rawidx); 4072 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 4073 // Add an edge in the MergeMem for the header fields so an access 4074 // to one of those has correct memory state 4075 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 4076 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 4077 if (oop_type->isa_aryptr()) { 4078 const TypeAryPtr* arytype = oop_type->is_aryptr(); 4079 if (arytype->is_flat()) { 4080 // Initially all flat array accesses share a single slice 4081 // but that changes after parsing. Prepare the memory graph so 4082 // it can optimize flat array accesses properly once they 4083 // don't share a single slice. 4084 assert(C->flat_accesses_share_alias(), "should be set at parse time"); 4085 C->set_flat_accesses_share_alias(false); 4086 ciInlineKlass* vk = arytype->elem()->inline_klass(); 4087 for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { 4088 ciField* field = vk->nonstatic_field_at(i); 4089 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4090 continue; // do not bother to track really large numbers of fields 4091 int off_in_vt = field->offset_in_bytes() - vk->payload_offset(); 4092 const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot); 4093 int fieldidx = C->get_alias_index(adr_type, true); 4094 // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node 4095 // can result in per flat array field Phis to be created which confuses the logic of 4096 // Compile::adjust_flat_array_access_aliases(). 4097 hook_memory_on_init(*this, fieldidx, minit_in, nullptr); 4098 } 4099 C->set_flat_accesses_share_alias(true); 4100 hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out); 4101 } else { 4102 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 4103 int elemidx = C->get_alias_index(telemref); 4104 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 4105 } 4106 } else if (oop_type->isa_instptr()) { 4107 set_memory(minit_out, C->get_alias_index(oop_type)); // mark word 4108 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 4109 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 4110 ciField* field = ik->nonstatic_field_at(i); 4111 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4112 continue; // do not bother to track really large numbers of fields 4113 // Find (or create) the alias category for this field: 4114 int fieldidx = C->alias_type(field)->index(); 4115 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 4116 } 4117 } 4118 } 4119 4120 // Cast raw oop to the real thing... 4121 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 4122 javaoop = _gvn.transform(javaoop); 4123 C->set_recent_alloc(control(), javaoop); 4124 assert(just_allocated_object(control()) == javaoop, "just allocated"); 4125 4126 #ifdef ASSERT 4127 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 4128 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 4129 "Ideal_allocation works"); 4130 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 4131 "Ideal_allocation works"); 4132 if (alloc->is_AllocateArray()) { 4133 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 4134 "Ideal_allocation works"); 4135 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 4136 "Ideal_allocation works"); 4137 } else { 4138 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 4139 } 4140 } 4141 #endif //ASSERT 4142 4143 return javaoop; 4144 } 4145 4146 //---------------------------new_instance-------------------------------------- 4147 // This routine takes a klass_node which may be constant (for a static type) 4148 // or may be non-constant (for reflective code). It will work equally well 4149 // for either, and the graph will fold nicely if the optimizer later reduces 4150 // the type to a constant. 4151 // The optional arguments are for specialized use by intrinsics: 4152 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 4153 // - If 'return_size_val', report the total object size to the caller. 4154 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4155 Node* GraphKit::new_instance(Node* klass_node, 4156 Node* extra_slow_test, 4157 Node* *return_size_val, 4158 bool deoptimize_on_exception, 4159 InlineTypeNode* inline_type_node) { 4160 // Compute size in doublewords 4161 // The size is always an integral number of doublewords, represented 4162 // as a positive bytewise size stored in the klass's layout_helper. 4163 // The layout_helper also encodes (in a low bit) the need for a slow path. 4164 jint layout_con = Klass::_lh_neutral_value; 4165 Node* layout_val = get_layout_helper(klass_node, layout_con); 4166 bool layout_is_con = (layout_val == nullptr); 4167 4168 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 4169 // Generate the initial go-slow test. It's either ALWAYS (return a 4170 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 4171 // case) a computed value derived from the layout_helper. 4172 Node* initial_slow_test = nullptr; 4173 if (layout_is_con) { 4174 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4175 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 4176 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 4177 } else { // reflective case 4178 // This reflective path is used by Unsafe.allocateInstance. 4179 // (It may be stress-tested by specifying StressReflectiveCode.) 4180 // Basically, we want to get into the VM is there's an illegal argument. 4181 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 4182 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 4183 if (extra_slow_test != intcon(0)) { 4184 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 4185 } 4186 // (Macro-expander will further convert this to a Bool, if necessary.) 4187 } 4188 4189 // Find the size in bytes. This is easy; it's the layout_helper. 4190 // The size value must be valid even if the slow path is taken. 4191 Node* size = nullptr; 4192 if (layout_is_con) { 4193 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 4194 } else { // reflective case 4195 // This reflective path is used by clone and Unsafe.allocateInstance. 4196 size = ConvI2X(layout_val); 4197 4198 // Clear the low bits to extract layout_helper_size_in_bytes: 4199 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 4200 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 4201 size = _gvn.transform( new AndXNode(size, mask) ); 4202 } 4203 if (return_size_val != nullptr) { 4204 (*return_size_val) = size; 4205 } 4206 4207 // This is a precise notnull oop of the klass. 4208 // (Actually, it need not be precise if this is a reflective allocation.) 4209 // It's what we cast the result to. 4210 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 4211 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 4212 const TypeOopPtr* oop_type = tklass->as_instance_type(); 4213 4214 // Now generate allocation code 4215 4216 // The entire memory state is needed for slow path of the allocation 4217 // since GC and deoptimization can happen. 4218 Node *mem = reset_memory(); 4219 set_all_memory(mem); // Create new memory state 4220 4221 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 4222 control(), mem, i_o(), 4223 size, klass_node, 4224 initial_slow_test, inline_type_node); 4225 4226 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 4227 } 4228 4229 //-------------------------------new_array------------------------------------- 4230 // helper for newarray and anewarray 4231 // The 'length' parameter is (obviously) the length of the array. 4232 // The optional arguments are for specialized use by intrinsics: 4233 // - If 'return_size_val', report the non-padded array size (sum of header size 4234 // and array body) to the caller. 4235 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4236 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 4237 Node* length, // number of array elements 4238 int nargs, // number of arguments to push back for uncommon trap 4239 Node* *return_size_val, 4240 bool deoptimize_on_exception, 4241 Node* init_val) { 4242 jint layout_con = Klass::_lh_neutral_value; 4243 Node* layout_val = get_layout_helper(klass_node, layout_con); 4244 bool layout_is_con = (layout_val == nullptr); 4245 4246 if (!layout_is_con && !StressReflectiveCode && 4247 !too_many_traps(Deoptimization::Reason_class_check)) { 4248 // This is a reflective array creation site. 4249 // Optimistically assume that it is a subtype of Object[], 4250 // so that we can fold up all the address arithmetic. 4251 layout_con = Klass::array_layout_helper(T_OBJECT); 4252 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 4253 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 4254 { BuildCutout unless(this, bol_lh, PROB_MAX); 4255 inc_sp(nargs); 4256 uncommon_trap(Deoptimization::Reason_class_check, 4257 Deoptimization::Action_maybe_recompile); 4258 } 4259 layout_val = nullptr; 4260 layout_is_con = true; 4261 } 4262 4263 // Generate the initial go-slow test. Make sure we do not overflow 4264 // if length is huge (near 2Gig) or negative! We do not need 4265 // exact double-words here, just a close approximation of needed 4266 // double-words. We can't add any offset or rounding bits, lest we 4267 // take a size -1 of bytes and make it positive. Use an unsigned 4268 // compare, so negative sizes look hugely positive. 4269 int fast_size_limit = FastAllocateSizeLimit; 4270 if (layout_is_con) { 4271 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4272 // Increase the size limit if we have exact knowledge of array type. 4273 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 4274 fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0); 4275 } 4276 4277 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 4278 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 4279 4280 // --- Size Computation --- 4281 // array_size = round_to_heap(array_header + (length << elem_shift)); 4282 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 4283 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 4284 // The rounding mask is strength-reduced, if possible. 4285 int round_mask = MinObjAlignmentInBytes - 1; 4286 Node* header_size = nullptr; 4287 // (T_BYTE has the weakest alignment and size restrictions...) 4288 if (layout_is_con) { 4289 int hsize = Klass::layout_helper_header_size(layout_con); 4290 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4291 bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con); 4292 if ((round_mask & ~right_n_bits(eshift)) == 0) 4293 round_mask = 0; // strength-reduce it if it goes away completely 4294 assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 4295 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 4296 assert(header_size_min <= hsize, "generic minimum is smallest"); 4297 header_size = intcon(hsize); 4298 } else { 4299 Node* hss = intcon(Klass::_lh_header_size_shift); 4300 Node* hsm = intcon(Klass::_lh_header_size_mask); 4301 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 4302 header_size = _gvn.transform(new AndINode(header_size, hsm)); 4303 } 4304 4305 Node* elem_shift = nullptr; 4306 if (layout_is_con) { 4307 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4308 if (eshift != 0) 4309 elem_shift = intcon(eshift); 4310 } else { 4311 // There is no need to mask or shift this value. 4312 // The semantics of LShiftINode include an implicit mask to 0x1F. 4313 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 4314 elem_shift = layout_val; 4315 } 4316 4317 // Transition to native address size for all offset calculations: 4318 Node* lengthx = ConvI2X(length); 4319 Node* headerx = ConvI2X(header_size); 4320 #ifdef _LP64 4321 { const TypeInt* tilen = _gvn.find_int_type(length); 4322 if (tilen != nullptr && tilen->_lo < 0) { 4323 // Add a manual constraint to a positive range. Cf. array_element_address. 4324 jint size_max = fast_size_limit; 4325 if (size_max > tilen->_hi) size_max = tilen->_hi; 4326 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 4327 4328 // Only do a narrow I2L conversion if the range check passed. 4329 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 4330 _gvn.transform(iff); 4331 RegionNode* region = new RegionNode(3); 4332 _gvn.set_type(region, Type::CONTROL); 4333 lengthx = new PhiNode(region, TypeLong::LONG); 4334 _gvn.set_type(lengthx, TypeLong::LONG); 4335 4336 // Range check passed. Use ConvI2L node with narrow type. 4337 Node* passed = IfFalse(iff); 4338 region->init_req(1, passed); 4339 // Make I2L conversion control dependent to prevent it from 4340 // floating above the range check during loop optimizations. 4341 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 4342 4343 // Range check failed. Use ConvI2L with wide type because length may be invalid. 4344 region->init_req(2, IfTrue(iff)); 4345 lengthx->init_req(2, ConvI2X(length)); 4346 4347 set_control(region); 4348 record_for_igvn(region); 4349 record_for_igvn(lengthx); 4350 } 4351 } 4352 #endif 4353 4354 // Combine header size and body size for the array copy part, then align (if 4355 // necessary) for the allocation part. This computation cannot overflow, 4356 // because it is used only in two places, one where the length is sharply 4357 // limited, and the other after a successful allocation. 4358 Node* abody = lengthx; 4359 if (elem_shift != nullptr) { 4360 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 4361 } 4362 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 4363 4364 if (return_size_val != nullptr) { 4365 // This is the size 4366 (*return_size_val) = non_rounded_size; 4367 } 4368 4369 Node* size = non_rounded_size; 4370 if (round_mask != 0) { 4371 Node* mask1 = MakeConX(round_mask); 4372 size = _gvn.transform(new AddXNode(size, mask1)); 4373 Node* mask2 = MakeConX(~round_mask); 4374 size = _gvn.transform(new AndXNode(size, mask2)); 4375 } 4376 // else if round_mask == 0, the size computation is self-rounding 4377 4378 // Now generate allocation code 4379 4380 // The entire memory state is needed for slow path of the allocation 4381 // since GC and deoptimization can happen. 4382 Node *mem = reset_memory(); 4383 set_all_memory(mem); // Create new memory state 4384 4385 if (initial_slow_test->is_Bool()) { 4386 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 4387 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 4388 } 4389 4390 const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr(); 4391 const TypeOopPtr* ary_type = ary_klass->as_instance_type(); 4392 4393 Node* raw_init_value = nullptr; 4394 if (init_val != nullptr) { 4395 // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays 4396 if (ary_type->is_flat()) { 4397 initial_slow_test = intcon(1); 4398 } 4399 4400 if (UseCompressedOops) { 4401 // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops 4402 init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop())); 4403 Node* lower = _gvn.transform(new CastP2XNode(control(), init_val)); 4404 Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32))); 4405 raw_init_value = _gvn.transform(new OrLNode(lower, upper)); 4406 } else { 4407 raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val)); 4408 } 4409 } 4410 4411 Node* valid_length_test = _gvn.intcon(1); 4412 if (ary_type->isa_aryptr()) { 4413 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 4414 jint max = TypeAryPtr::max_array_length(bt); 4415 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 4416 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 4417 } 4418 4419 // Create the AllocateArrayNode and its result projections 4420 AllocateArrayNode* alloc 4421 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 4422 control(), mem, i_o(), 4423 size, klass_node, 4424 initial_slow_test, 4425 length, valid_length_test, 4426 init_val, raw_init_value); 4427 // Cast to correct type. Note that the klass_node may be constant or not, 4428 // and in the latter case the actual array type will be inexact also. 4429 // (This happens via a non-constant argument to inline_native_newArray.) 4430 // In any case, the value of klass_node provides the desired array type. 4431 const TypeInt* length_type = _gvn.find_int_type(length); 4432 if (ary_type->isa_aryptr() && length_type != nullptr) { 4433 // Try to get a better type than POS for the size 4434 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4435 } 4436 4437 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 4438 4439 array_ideal_length(alloc, ary_type, true); 4440 return javaoop; 4441 } 4442 4443 // The following "Ideal_foo" functions are placed here because they recognize 4444 // the graph shapes created by the functions immediately above. 4445 4446 //---------------------------Ideal_allocation---------------------------------- 4447 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 4448 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 4449 if (ptr == nullptr) { // reduce dumb test in callers 4450 return nullptr; 4451 } 4452 4453 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4454 ptr = bs->step_over_gc_barrier(ptr); 4455 4456 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 4457 ptr = ptr->in(1); 4458 if (ptr == nullptr) return nullptr; 4459 } 4460 // Return null for allocations with several casts: 4461 // j.l.reflect.Array.newInstance(jobject, jint) 4462 // Object.clone() 4463 // to keep more precise type from last cast. 4464 if (ptr->is_Proj()) { 4465 Node* allo = ptr->in(0); 4466 if (allo != nullptr && allo->is_Allocate()) { 4467 return allo->as_Allocate(); 4468 } 4469 } 4470 // Report failure to match. 4471 return nullptr; 4472 } 4473 4474 // Fancy version which also strips off an offset (and reports it to caller). 4475 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4476 intptr_t& offset) { 4477 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4478 if (base == nullptr) return nullptr; 4479 return Ideal_allocation(base); 4480 } 4481 4482 // Trace Initialize <- Proj[Parm] <- Allocate 4483 AllocateNode* InitializeNode::allocation() { 4484 Node* rawoop = in(InitializeNode::RawAddress); 4485 if (rawoop->is_Proj()) { 4486 Node* alloc = rawoop->in(0); 4487 if (alloc->is_Allocate()) { 4488 return alloc->as_Allocate(); 4489 } 4490 } 4491 return nullptr; 4492 } 4493 4494 // Trace Allocate -> Proj[Parm] -> Initialize 4495 InitializeNode* AllocateNode::initialization() { 4496 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4497 if (rawoop == nullptr) return nullptr; 4498 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4499 Node* init = rawoop->fast_out(i); 4500 if (init->is_Initialize()) { 4501 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4502 return init->as_Initialize(); 4503 } 4504 } 4505 return nullptr; 4506 } 4507 4508 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4509 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4510 // Too many traps seen? 4511 if (too_many_traps(reason)) { 4512 #ifdef ASSERT 4513 if (TraceLoopPredicate) { 4514 int tc = C->trap_count(reason); 4515 tty->print("too many traps=%s tcount=%d in ", 4516 Deoptimization::trap_reason_name(reason), tc); 4517 method()->print(); // which method has too many predicate traps 4518 tty->cr(); 4519 } 4520 #endif 4521 // We cannot afford to take more traps here, 4522 // do not generate Parse Predicate. 4523 return; 4524 } 4525 4526 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4527 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4528 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4529 { 4530 PreserveJVMState pjvms(this); 4531 set_control(if_false); 4532 inc_sp(nargs); 4533 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4534 } 4535 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4536 set_control(if_true); 4537 } 4538 4539 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4540 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4541 void GraphKit::add_parse_predicates(int nargs) { 4542 if (UseLoopPredicate) { 4543 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4544 if (UseProfiledLoopPredicate) { 4545 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4546 } 4547 } 4548 add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs); 4549 // Loop Limit Check Predicate should be near the loop. 4550 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4551 } 4552 4553 void GraphKit::sync_kit(IdealKit& ideal) { 4554 set_all_memory(ideal.merged_memory()); 4555 set_i_o(ideal.i_o()); 4556 set_control(ideal.ctrl()); 4557 } 4558 4559 void GraphKit::final_sync(IdealKit& ideal) { 4560 // Final sync IdealKit and graphKit. 4561 sync_kit(ideal); 4562 } 4563 4564 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4565 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4566 Node* coder = load_String_coder(str, set_ctrl); 4567 // Divide length by 2 if coder is UTF16 4568 return _gvn.transform(new RShiftINode(len, coder)); 4569 } 4570 4571 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4572 int value_offset = java_lang_String::value_offset(); 4573 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4574 false, nullptr, Type::Offset(0)); 4575 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4576 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4577 TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true), 4578 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); 4579 Node* p = basic_plus_adr(str, str, value_offset); 4580 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4581 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4582 return load; 4583 } 4584 4585 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4586 if (!CompactStrings) { 4587 return intcon(java_lang_String::CODER_UTF16); 4588 } 4589 int coder_offset = java_lang_String::coder_offset(); 4590 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4591 false, nullptr, Type::Offset(0)); 4592 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4593 4594 Node* p = basic_plus_adr(str, str, coder_offset); 4595 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4596 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4597 return load; 4598 } 4599 4600 void GraphKit::store_String_value(Node* str, Node* value) { 4601 int value_offset = java_lang_String::value_offset(); 4602 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4603 false, nullptr, Type::Offset(0)); 4604 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4605 4606 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4607 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4608 } 4609 4610 void GraphKit::store_String_coder(Node* str, Node* value) { 4611 int coder_offset = java_lang_String::coder_offset(); 4612 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4613 false, nullptr, Type::Offset(0)); 4614 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4615 4616 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4617 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4618 } 4619 4620 // Capture src and dst memory state with a MergeMemNode 4621 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4622 if (src_type == dst_type) { 4623 // Types are equal, we don't need a MergeMemNode 4624 return memory(src_type); 4625 } 4626 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4627 record_for_igvn(merge); // fold it up later, if possible 4628 int src_idx = C->get_alias_index(src_type); 4629 int dst_idx = C->get_alias_index(dst_type); 4630 merge->set_memory_at(src_idx, memory(src_idx)); 4631 merge->set_memory_at(dst_idx, memory(dst_idx)); 4632 return merge; 4633 } 4634 4635 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4636 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4637 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4638 // If input and output memory types differ, capture both states to preserve 4639 // the dependency between preceding and subsequent loads/stores. 4640 // For example, the following program: 4641 // StoreB 4642 // compress_string 4643 // LoadB 4644 // has this memory graph (use->def): 4645 // LoadB -> compress_string -> CharMem 4646 // ... -> StoreB -> ByteMem 4647 // The intrinsic hides the dependency between LoadB and StoreB, causing 4648 // the load to read from memory not containing the result of the StoreB. 4649 // The correct memory graph should look like this: 4650 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4651 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4652 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4653 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4654 set_memory(res_mem, TypeAryPtr::BYTES); 4655 return str; 4656 } 4657 4658 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4659 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4660 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4661 // Capture src and dst memory (see comment in 'compress_string'). 4662 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4663 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4664 set_memory(_gvn.transform(str), dst_type); 4665 } 4666 4667 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4668 /** 4669 * int i_char = start; 4670 * for (int i_byte = 0; i_byte < count; i_byte++) { 4671 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4672 * } 4673 */ 4674 add_parse_predicates(); 4675 C->set_has_loops(true); 4676 4677 RegionNode* head = new RegionNode(3); 4678 head->init_req(1, control()); 4679 gvn().set_type(head, Type::CONTROL); 4680 record_for_igvn(head); 4681 4682 Node* i_byte = new PhiNode(head, TypeInt::INT); 4683 i_byte->init_req(1, intcon(0)); 4684 gvn().set_type(i_byte, TypeInt::INT); 4685 record_for_igvn(i_byte); 4686 4687 Node* i_char = new PhiNode(head, TypeInt::INT); 4688 i_char->init_req(1, start); 4689 gvn().set_type(i_char, TypeInt::INT); 4690 record_for_igvn(i_char); 4691 4692 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4693 gvn().set_type(mem, Type::MEMORY); 4694 record_for_igvn(mem); 4695 set_control(head); 4696 set_memory(mem, TypeAryPtr::BYTES); 4697 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4698 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4699 AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false, 4700 false, true /* mismatched */); 4701 4702 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4703 head->init_req(2, IfTrue(iff)); 4704 mem->init_req(2, st); 4705 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4706 i_char->init_req(2, AddI(i_char, intcon(2))); 4707 4708 set_control(IfFalse(iff)); 4709 set_memory(st, TypeAryPtr::BYTES); 4710 } 4711 4712 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4713 if (!field->is_constant()) { 4714 return nullptr; // Field not marked as constant. 4715 } 4716 ciInstance* holder = nullptr; 4717 if (!field->is_static()) { 4718 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4719 if (const_oop != nullptr && const_oop->is_instance()) { 4720 holder = const_oop->as_instance(); 4721 } 4722 } 4723 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4724 /*is_unsigned_load=*/false); 4725 if (con_type != nullptr) { 4726 Node* con = makecon(con_type); 4727 if (field->type()->is_inlinetype()) { 4728 con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass()); 4729 } else if (con_type->is_inlinetypeptr()) { 4730 con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass()); 4731 } 4732 return con; 4733 } 4734 return nullptr; 4735 } 4736 4737 //---------------------------load_mirror_from_klass---------------------------- 4738 // Given a klass oop, load its java mirror (a java.lang.Class oop). 4739 Node* GraphKit::load_mirror_from_klass(Node* klass) { 4740 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 4741 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4742 // mirror = ((OopHandle)mirror)->resolve(); 4743 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 4744 } 4745 4746 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4747 const Type* obj_type = obj->bottom_type(); 4748 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4749 if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4750 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4751 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4752 obj = casted_obj; 4753 } 4754 if (sig_type->is_inlinetypeptr()) { 4755 obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass()); 4756 } 4757 return obj; 4758 }