1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_exception_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_exception_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing_internal()) {
 356     return;  // dying anyway...
 357   }
 358   JVMState* ex_jvms = ex_map->_jvms;
 359   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 360   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 361   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 362   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 363   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 364   assert(ex_map->req() == phi_map->req(), "matching maps");
 365   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 366   Node*         hidden_merge_mark = root();
 367   Node*         region  = phi_map->control();
 368   MergeMemNode* phi_mem = phi_map->merged_memory();
 369   MergeMemNode* ex_mem  = ex_map->merged_memory();
 370   if (region->in(0) != hidden_merge_mark) {
 371     // The control input is not (yet) a specially-marked region in phi_map.
 372     // Make it so, and build some phis.
 373     region = new RegionNode(2);
 374     _gvn.set_type(region, Type::CONTROL);
 375     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 376     region->init_req(1, phi_map->control());
 377     phi_map->set_control(region);
 378     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 379     record_for_igvn(io_phi);
 380     _gvn.set_type(io_phi, Type::ABIO);
 381     phi_map->set_i_o(io_phi);
 382     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 383       Node* m = mms.memory();
 384       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 385       record_for_igvn(m_phi);
 386       _gvn.set_type(m_phi, Type::MEMORY);
 387       mms.set_memory(m_phi);
 388     }
 389   }
 390 
 391   // Either or both of phi_map and ex_map might already be converted into phis.
 392   Node* ex_control = ex_map->control();
 393   // if there is special marking on ex_map also, we add multiple edges from src
 394   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 395   // how wide was the destination phi_map, originally?
 396   uint orig_width = region->req();
 397 
 398   if (add_multiple) {
 399     add_n_reqs(region, ex_control);
 400     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 401   } else {
 402     // ex_map has no merges, so we just add single edges everywhere
 403     add_one_req(region, ex_control);
 404     add_one_req(phi_map->i_o(), ex_map->i_o());
 405   }
 406   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 407     if (mms.is_empty()) {
 408       // get a copy of the base memory, and patch some inputs into it
 409       const TypePtr* adr_type = mms.adr_type(C);
 410       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 411       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 412       mms.set_memory(phi);
 413       // Prepare to append interesting stuff onto the newly sliced phi:
 414       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 415     }
 416     // Append stuff from ex_map:
 417     if (add_multiple) {
 418       add_n_reqs(mms.memory(), mms.memory2());
 419     } else {
 420       add_one_req(mms.memory(), mms.memory2());
 421     }
 422   }
 423   uint limit = ex_map->req();
 424   for (uint i = TypeFunc::Parms; i < limit; i++) {
 425     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 426     if (i == tos)  i = ex_jvms->monoff();
 427     Node* src = ex_map->in(i);
 428     Node* dst = phi_map->in(i);
 429     if (src != dst) {
 430       PhiNode* phi;
 431       if (dst->in(0) != region) {
 432         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 433         record_for_igvn(phi);
 434         _gvn.set_type(phi, phi->type());
 435         phi_map->set_req(i, dst);
 436         // Prepare to append interesting stuff onto the new phi:
 437         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 438       } else {
 439         assert(dst->is_Phi(), "nobody else uses a hidden region");
 440         phi = dst->as_Phi();
 441       }
 442       if (add_multiple && src->in(0) == ex_control) {
 443         // Both are phis.
 444         add_n_reqs(dst, src);
 445       } else {
 446         while (dst->req() < region->req())  add_one_req(dst, src);
 447       }
 448       const Type* srctype = _gvn.type(src);
 449       if (phi->type() != srctype) {
 450         const Type* dsttype = phi->type()->meet_speculative(srctype);
 451         if (phi->type() != dsttype) {
 452           phi->set_type(dsttype);
 453           _gvn.set_type(phi, dsttype);
 454         }
 455       }
 456     }
 457   }
 458   phi_map->merge_replaced_nodes_with(ex_map);
 459 }
 460 
 461 //--------------------------use_exception_state--------------------------------
 462 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 463   if (failing_internal()) { stop(); return top(); }
 464   Node* region = phi_map->control();
 465   Node* hidden_merge_mark = root();
 466   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 467   Node* ex_oop = clear_saved_ex_oop(phi_map);
 468   if (region->in(0) == hidden_merge_mark) {
 469     // Special marking for internal ex-states.  Process the phis now.
 470     region->set_req(0, region);  // now it's an ordinary region
 471     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 472     // Note: Setting the jvms also sets the bci and sp.
 473     set_control(_gvn.transform(region));
 474     uint tos = jvms()->stkoff() + sp();
 475     for (uint i = 1; i < tos; i++) {
 476       Node* x = phi_map->in(i);
 477       if (x->in(0) == region) {
 478         assert(x->is_Phi(), "expected a special phi");
 479         phi_map->set_req(i, _gvn.transform(x));
 480       }
 481     }
 482     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 483       Node* x = mms.memory();
 484       if (x->in(0) == region) {
 485         assert(x->is_Phi(), "nobody else uses a hidden region");
 486         mms.set_memory(_gvn.transform(x));
 487       }
 488     }
 489     if (ex_oop->in(0) == region) {
 490       assert(ex_oop->is_Phi(), "expected a special phi");
 491       ex_oop = _gvn.transform(ex_oop);
 492     }
 493   } else {
 494     set_jvms(phi_map->jvms());
 495   }
 496 
 497   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 498   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 499   return ex_oop;
 500 }
 501 
 502 //---------------------------------java_bc-------------------------------------
 503 Bytecodes::Code GraphKit::java_bc() const {
 504   ciMethod* method = this->method();
 505   int       bci    = this->bci();
 506   if (method != nullptr && bci != InvocationEntryBci)
 507     return method->java_code_at_bci(bci);
 508   else
 509     return Bytecodes::_illegal;
 510 }
 511 
 512 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 513                                                           bool must_throw) {
 514     // if the exception capability is set, then we will generate code
 515     // to check the JavaThread.should_post_on_exceptions flag to see
 516     // if we actually need to report exception events (for this
 517     // thread).  If we don't need to report exception events, we will
 518     // take the normal fast path provided by add_exception_events.  If
 519     // exception event reporting is enabled for this thread, we will
 520     // take the uncommon_trap in the BuildCutout below.
 521 
 522     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 523     Node* jthread = _gvn.transform(new ThreadLocalNode());
 524     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 525     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
 526 
 527     // Test the should_post_on_exceptions_flag vs. 0
 528     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 529     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 530 
 531     // Branch to slow_path if should_post_on_exceptions_flag was true
 532     { BuildCutout unless(this, tst, PROB_MAX);
 533       // Do not try anything fancy if we're notifying the VM on every throw.
 534       // Cf. case Bytecodes::_athrow in parse2.cpp.
 535       uncommon_trap(reason, Deoptimization::Action_none,
 536                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 537     }
 538 
 539 }
 540 
 541 //------------------------------builtin_throw----------------------------------
 542 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 543   bool must_throw = true;
 544 
 545   // If this particular condition has not yet happened at this
 546   // bytecode, then use the uncommon trap mechanism, and allow for
 547   // a future recompilation if several traps occur here.
 548   // If the throw is hot, try to use a more complicated inline mechanism
 549   // which keeps execution inside the compiled code.
 550   bool treat_throw_as_hot = false;
 551   ciMethodData* md = method()->method_data();
 552 
 553   if (ProfileTraps) {
 554     if (too_many_traps(reason)) {
 555       treat_throw_as_hot = true;
 556     }
 557     // (If there is no MDO at all, assume it is early in
 558     // execution, and that any deopts are part of the
 559     // startup transient, and don't need to be remembered.)
 560 
 561     // Also, if there is a local exception handler, treat all throws
 562     // as hot if there has been at least one in this method.
 563     if (C->trap_count(reason) != 0
 564         && method()->method_data()->trap_count(reason) != 0
 565         && has_exception_handler()) {
 566         treat_throw_as_hot = true;
 567     }
 568   }
 569 
 570   // If this throw happens frequently, an uncommon trap might cause
 571   // a performance pothole.  If there is a local exception handler,
 572   // and if this particular bytecode appears to be deoptimizing often,
 573   // let us handle the throw inline, with a preconstructed instance.
 574   // Note:   If the deopt count has blown up, the uncommon trap
 575   // runtime is going to flush this nmethod, not matter what.
 576   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 577     // If the throw is local, we use a pre-existing instance and
 578     // punt on the backtrace.  This would lead to a missing backtrace
 579     // (a repeat of 4292742) if the backtrace object is ever asked
 580     // for its backtrace.
 581     // Fixing this remaining case of 4292742 requires some flavor of
 582     // escape analysis.  Leave that for the future.
 583     ciInstance* ex_obj = nullptr;
 584     switch (reason) {
 585     case Deoptimization::Reason_null_check:
 586       ex_obj = env()->NullPointerException_instance();
 587       break;
 588     case Deoptimization::Reason_div0_check:
 589       ex_obj = env()->ArithmeticException_instance();
 590       break;
 591     case Deoptimization::Reason_range_check:
 592       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 593       break;
 594     case Deoptimization::Reason_class_check:
 595       ex_obj = env()->ClassCastException_instance();
 596       break;
 597     case Deoptimization::Reason_array_check:
 598       ex_obj = env()->ArrayStoreException_instance();
 599       break;
 600     default:
 601       break;
 602     }
 603     // If we have a preconstructed exception object, use it.
 604     if (ex_obj != nullptr) {
 605       if (env()->jvmti_can_post_on_exceptions()) {
 606         // check if we must post exception events, take uncommon trap if so
 607         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 608         // here if should_post_on_exceptions is false
 609         // continue on with the normal codegen
 610       }
 611 
 612       // Cheat with a preallocated exception object.
 613       if (C->log() != nullptr)
 614         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 615                        Deoptimization::trap_reason_name(reason));
 616       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 617       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 618 
 619       // Clear the detail message of the preallocated exception object.
 620       // Weblogic sometimes mutates the detail message of exceptions
 621       // using reflection.
 622       int offset = java_lang_Throwable::get_detailMessage_offset();
 623       const TypePtr* adr_typ = ex_con->add_offset(offset);
 624 
 625       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 626       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 627       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 628 
 629       if (!method()->has_exception_handlers()) {
 630         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 631         // This prevents issues with exception handling and late inlining.
 632         set_sp(0);
 633         clean_stack(0);
 634       }
 635 
 636       add_exception_state(make_exception_state(ex_node));
 637       return;
 638     }
 639   }
 640 
 641   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 642   // It won't be much cheaper than bailing to the interp., since we'll
 643   // have to pass up all the debug-info, and the runtime will have to
 644   // create the stack trace.
 645 
 646   // Usual case:  Bail to interpreter.
 647   // Reserve the right to recompile if we haven't seen anything yet.
 648 
 649   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 650   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 651   if (treat_throw_as_hot
 652       && (method()->method_data()->trap_recompiled_at(bci(), m)
 653           || C->too_many_traps(reason))) {
 654     // We cannot afford to take more traps here.  Suffer in the interpreter.
 655     if (C->log() != nullptr)
 656       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 657                      Deoptimization::trap_reason_name(reason),
 658                      C->trap_count(reason));
 659     action = Deoptimization::Action_none;
 660   }
 661 
 662   // "must_throw" prunes the JVM state to include only the stack, if there
 663   // are no local exception handlers.  This should cut down on register
 664   // allocation time and code size, by drastically reducing the number
 665   // of in-edges on the call to the uncommon trap.
 666 
 667   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 668 }
 669 
 670 
 671 //----------------------------PreserveJVMState---------------------------------
 672 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 673   debug_only(kit->verify_map());
 674   _kit    = kit;
 675   _map    = kit->map();   // preserve the map
 676   _sp     = kit->sp();
 677   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 678 #ifdef ASSERT
 679   _bci    = kit->bci();
 680   Parse* parser = kit->is_Parse();
 681   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 682   _block  = block;
 683 #endif
 684 }
 685 PreserveJVMState::~PreserveJVMState() {
 686   GraphKit* kit = _kit;
 687 #ifdef ASSERT
 688   assert(kit->bci() == _bci, "bci must not shift");
 689   Parse* parser = kit->is_Parse();
 690   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 691   assert(block == _block,    "block must not shift");
 692 #endif
 693   kit->set_map(_map);
 694   kit->set_sp(_sp);
 695 }
 696 
 697 
 698 //-----------------------------BuildCutout-------------------------------------
 699 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 700   : PreserveJVMState(kit)
 701 {
 702   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 703   SafePointNode* outer_map = _map;   // preserved map is caller's
 704   SafePointNode* inner_map = kit->map();
 705   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 706   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 707   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 708 }
 709 BuildCutout::~BuildCutout() {
 710   GraphKit* kit = _kit;
 711   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 712 }
 713 
 714 //---------------------------PreserveReexecuteState----------------------------
 715 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 716   assert(!kit->stopped(), "must call stopped() before");
 717   _kit    =    kit;
 718   _sp     =    kit->sp();
 719   _reexecute = kit->jvms()->_reexecute;
 720 }
 721 PreserveReexecuteState::~PreserveReexecuteState() {
 722   if (_kit->stopped()) return;
 723   _kit->jvms()->_reexecute = _reexecute;
 724   _kit->set_sp(_sp);
 725 }
 726 
 727 //------------------------------clone_map--------------------------------------
 728 // Implementation of PreserveJVMState
 729 //
 730 // Only clone_map(...) here. If this function is only used in the
 731 // PreserveJVMState class we may want to get rid of this extra
 732 // function eventually and do it all there.
 733 
 734 SafePointNode* GraphKit::clone_map() {
 735   if (map() == nullptr)  return nullptr;
 736 
 737   // Clone the memory edge first
 738   Node* mem = MergeMemNode::make(map()->memory());
 739   gvn().set_type_bottom(mem);
 740 
 741   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 742   JVMState* jvms = this->jvms();
 743   JVMState* clonejvms = jvms->clone_shallow(C);
 744   clonemap->set_memory(mem);
 745   clonemap->set_jvms(clonejvms);
 746   clonejvms->set_map(clonemap);
 747   record_for_igvn(clonemap);
 748   gvn().set_type_bottom(clonemap);
 749   return clonemap;
 750 }
 751 
 752 //-----------------------------destruct_map_clone------------------------------
 753 //
 754 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 755 // to destruct/free/delete in the exact opposite order as clone_map().
 756 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 757   if (sfp == nullptr) return;
 758 
 759   Node* mem = sfp->memory();
 760   JVMState* jvms = sfp->jvms();
 761 
 762   if (jvms != nullptr) {
 763     delete jvms;
 764   }
 765 
 766   remove_for_igvn(sfp);
 767   gvn().clear_type(sfp);
 768   sfp->destruct(&_gvn);
 769 
 770   if (mem != nullptr) {
 771     gvn().clear_type(mem);
 772     mem->destruct(&_gvn);
 773   }
 774 }
 775 
 776 //-----------------------------set_map_clone-----------------------------------
 777 void GraphKit::set_map_clone(SafePointNode* m) {
 778   _map = m;
 779   _map = clone_map();
 780   _map->set_next_exception(nullptr);
 781   debug_only(verify_map());
 782 }
 783 
 784 
 785 //----------------------------kill_dead_locals---------------------------------
 786 // Detect any locals which are known to be dead, and force them to top.
 787 void GraphKit::kill_dead_locals() {
 788   // Consult the liveness information for the locals.  If any
 789   // of them are unused, then they can be replaced by top().  This
 790   // should help register allocation time and cut down on the size
 791   // of the deoptimization information.
 792 
 793   // This call is made from many of the bytecode handling
 794   // subroutines called from the Big Switch in do_one_bytecode.
 795   // Every bytecode which might include a slow path is responsible
 796   // for killing its dead locals.  The more consistent we
 797   // are about killing deads, the fewer useless phis will be
 798   // constructed for them at various merge points.
 799 
 800   // bci can be -1 (InvocationEntryBci).  We return the entry
 801   // liveness for the method.
 802 
 803   if (method() == nullptr || method()->code_size() == 0) {
 804     // We are building a graph for a call to a native method.
 805     // All locals are live.
 806     return;
 807   }
 808 
 809   ResourceMark rm;
 810 
 811   // Consult the liveness information for the locals.  If any
 812   // of them are unused, then they can be replaced by top().  This
 813   // should help register allocation time and cut down on the size
 814   // of the deoptimization information.
 815   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 816 
 817   int len = (int)live_locals.size();
 818   assert(len <= jvms()->loc_size(), "too many live locals");
 819   for (int local = 0; local < len; local++) {
 820     if (!live_locals.at(local)) {
 821       set_local(local, top());
 822     }
 823   }
 824 }
 825 
 826 #ifdef ASSERT
 827 //-------------------------dead_locals_are_killed------------------------------
 828 // Return true if all dead locals are set to top in the map.
 829 // Used to assert "clean" debug info at various points.
 830 bool GraphKit::dead_locals_are_killed() {
 831   if (method() == nullptr || method()->code_size() == 0) {
 832     // No locals need to be dead, so all is as it should be.
 833     return true;
 834   }
 835 
 836   // Make sure somebody called kill_dead_locals upstream.
 837   ResourceMark rm;
 838   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 839     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 840     SafePointNode* map = jvms->map();
 841     ciMethod* method = jvms->method();
 842     int       bci    = jvms->bci();
 843     if (jvms == this->jvms()) {
 844       bci = this->bci();  // it might not yet be synched
 845     }
 846     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 847     int len = (int)live_locals.size();
 848     if (!live_locals.is_valid() || len == 0)
 849       // This method is trivial, or is poisoned by a breakpoint.
 850       return true;
 851     assert(len == jvms->loc_size(), "live map consistent with locals map");
 852     for (int local = 0; local < len; local++) {
 853       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 854         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 855           tty->print_cr("Zombie local %d: ", local);
 856           jvms->dump();
 857         }
 858         return false;
 859       }
 860     }
 861   }
 862   return true;
 863 }
 864 
 865 #endif //ASSERT
 866 
 867 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 868 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 869   ciMethod* cur_method = jvms->method();
 870   int       cur_bci   = jvms->bci();
 871   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 872     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 873     return Interpreter::bytecode_should_reexecute(code) ||
 874            (is_anewarray && (code == Bytecodes::_multianewarray));
 875     // Reexecute _multianewarray bytecode which was replaced with
 876     // sequence of [a]newarray. See Parse::do_multianewarray().
 877     //
 878     // Note: interpreter should not have it set since this optimization
 879     // is limited by dimensions and guarded by flag so in some cases
 880     // multianewarray() runtime calls will be generated and
 881     // the bytecode should not be reexecutes (stack will not be reset).
 882   } else {
 883     return false;
 884   }
 885 }
 886 
 887 // Helper function for adding JVMState and debug information to node
 888 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 889   // Add the safepoint edges to the call (or other safepoint).
 890 
 891   // Make sure dead locals are set to top.  This
 892   // should help register allocation time and cut down on the size
 893   // of the deoptimization information.
 894   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 895 
 896   // Walk the inline list to fill in the correct set of JVMState's
 897   // Also fill in the associated edges for each JVMState.
 898 
 899   // If the bytecode needs to be reexecuted we need to put
 900   // the arguments back on the stack.
 901   const bool should_reexecute = jvms()->should_reexecute();
 902   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 903 
 904   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 905   // undefined if the bci is different.  This is normal for Parse but it
 906   // should not happen for LibraryCallKit because only one bci is processed.
 907   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 908          "in LibraryCallKit the reexecute bit should not change");
 909 
 910   // If we are guaranteed to throw, we can prune everything but the
 911   // input to the current bytecode.
 912   bool can_prune_locals = false;
 913   uint stack_slots_not_pruned = 0;
 914   int inputs = 0, depth = 0;
 915   if (must_throw) {
 916     assert(method() == youngest_jvms->method(), "sanity");
 917     if (compute_stack_effects(inputs, depth)) {
 918       can_prune_locals = true;
 919       stack_slots_not_pruned = inputs;
 920     }
 921   }
 922 
 923   if (env()->should_retain_local_variables()) {
 924     // At any safepoint, this method can get breakpointed, which would
 925     // then require an immediate deoptimization.
 926     can_prune_locals = false;  // do not prune locals
 927     stack_slots_not_pruned = 0;
 928   }
 929 
 930   // do not scribble on the input jvms
 931   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 932   call->set_jvms(out_jvms); // Start jvms list for call node
 933 
 934   // For a known set of bytecodes, the interpreter should reexecute them if
 935   // deoptimization happens. We set the reexecute state for them here
 936   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 937       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 938 #ifdef ASSERT
 939     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 940     assert(method() == youngest_jvms->method(), "sanity");
 941     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 942     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 943 #endif // ASSERT
 944     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 945   }
 946 
 947   // Presize the call:
 948   DEBUG_ONLY(uint non_debug_edges = call->req());
 949   call->add_req_batch(top(), youngest_jvms->debug_depth());
 950   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 951 
 952   // Set up edges so that the call looks like this:
 953   //  Call [state:] ctl io mem fptr retadr
 954   //       [parms:] parm0 ... parmN
 955   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 957   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   // Note that caller debug info precedes callee debug info.
 959 
 960   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 961   uint debug_ptr = call->req();
 962 
 963   // Loop over the map input edges associated with jvms, add them
 964   // to the call node, & reset all offsets to match call node array.
 965 
 966   JVMState* callee_jvms = nullptr;
 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++) {
 993         Node* val = in_map->in(k + j);
 994         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 995         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 996             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 997             val->bottom_type()->is_inlinetypeptr()) {
 998           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 999         }
1000         call->set_req(p++, val);
1001       }
1002     } else {
1003       p += l;  // already set to top above by add_req_batch
1004     }
1005 
1006     // Add the Expression Stack
1007     k = in_jvms->stkoff();
1008     l = in_jvms->sp();
1009     out_jvms->set_stkoff(p);
1010     if (!can_prune_locals) {
1011       for (j = 0; j < l; j++) {
1012         Node* val = in_map->in(k + j);
1013         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1014         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1015             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1016             val->bottom_type()->is_inlinetypeptr()) {
1017           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1018         }
1019         call->set_req(p++, val);
1020       }
1021     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1022       // Divide stack into {S0,...,S1}, where S0 is set to top.
1023       uint s1 = stack_slots_not_pruned;
1024       stack_slots_not_pruned = 0;  // for next iteration
1025       if (s1 > l)  s1 = l;
1026       uint s0 = l - s1;
1027       p += s0;  // skip the tops preinstalled by add_req_batch
1028       for (j = s0; j < l; j++)
1029         call->set_req(p++, in_map->in(k+j));
1030     } else {
1031       p += l;  // already set to top above by add_req_batch
1032     }
1033 
1034     // Add the Monitors
1035     k = in_jvms->monoff();
1036     l = in_jvms->mon_size();
1037     out_jvms->set_monoff(p);
1038     for (j = 0; j < l; j++)
1039       call->set_req(p++, in_map->in(k+j));
1040 
1041     // Copy any scalar object fields.
1042     k = in_jvms->scloff();
1043     l = in_jvms->scl_size();
1044     out_jvms->set_scloff(p);
1045     for (j = 0; j < l; j++)
1046       call->set_req(p++, in_map->in(k+j));
1047 
1048     // Finish the new jvms.
1049     out_jvms->set_endoff(p);
1050 
1051     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1052     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1053     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1054     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1055     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1056     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1057 
1058     // Update the two tail pointers in parallel.
1059     callee_jvms = out_jvms;
1060     out_jvms = out_jvms->caller();
1061     in_jvms  = in_jvms->caller();
1062   }
1063 
1064   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1065 
1066   // Test the correctness of JVMState::debug_xxx accessors:
1067   assert(call->jvms()->debug_start() == non_debug_edges, "");
1068   assert(call->jvms()->debug_end()   == call->req(), "");
1069   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1070 }
1071 
1072 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1073   Bytecodes::Code code = java_bc();
1074   if (code == Bytecodes::_wide) {
1075     code = method()->java_code_at_bci(bci() + 1);
1076   }
1077 
1078   if (code != Bytecodes::_illegal) {
1079     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1080   }
1081 
1082   auto rsize = [&]() {
1083     assert(code != Bytecodes::_illegal, "code is illegal!");
1084     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1085     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1086   };
1087 
1088   switch (code) {
1089   case Bytecodes::_illegal:
1090     return false;
1091 
1092   case Bytecodes::_ldc:
1093   case Bytecodes::_ldc_w:
1094   case Bytecodes::_ldc2_w:
1095     inputs = 0;
1096     break;
1097 
1098   case Bytecodes::_dup:         inputs = 1;  break;
1099   case Bytecodes::_dup_x1:      inputs = 2;  break;
1100   case Bytecodes::_dup_x2:      inputs = 3;  break;
1101   case Bytecodes::_dup2:        inputs = 2;  break;
1102   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1103   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1104   case Bytecodes::_swap:        inputs = 2;  break;
1105   case Bytecodes::_arraylength: inputs = 1;  break;
1106 
1107   case Bytecodes::_getstatic:
1108   case Bytecodes::_putstatic:
1109   case Bytecodes::_getfield:
1110   case Bytecodes::_putfield:
1111     {
1112       bool ignored_will_link;
1113       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1114       int      size  = field->type()->size();
1115       bool is_get = (depth >= 0), is_static = (depth & 1);
1116       inputs = (is_static ? 0 : 1);
1117       if (is_get) {
1118         depth = size - inputs;
1119       } else {
1120         inputs += size;        // putxxx pops the value from the stack
1121         depth = - inputs;
1122       }
1123     }
1124     break;
1125 
1126   case Bytecodes::_invokevirtual:
1127   case Bytecodes::_invokespecial:
1128   case Bytecodes::_invokestatic:
1129   case Bytecodes::_invokedynamic:
1130   case Bytecodes::_invokeinterface:
1131     {
1132       bool ignored_will_link;
1133       ciSignature* declared_signature = nullptr;
1134       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1135       assert(declared_signature != nullptr, "cannot be null");
1136       inputs   = declared_signature->arg_size_for_bc(code);
1137       int size = declared_signature->return_type()->size();
1138       depth = size - inputs;
1139     }
1140     break;
1141 
1142   case Bytecodes::_multianewarray:
1143     {
1144       ciBytecodeStream iter(method());
1145       iter.reset_to_bci(bci());
1146       iter.next();
1147       inputs = iter.get_dimensions();
1148       assert(rsize() == 1, "");
1149       depth = 1 - inputs;
1150     }
1151     break;
1152 
1153   case Bytecodes::_ireturn:
1154   case Bytecodes::_lreturn:
1155   case Bytecodes::_freturn:
1156   case Bytecodes::_dreturn:
1157   case Bytecodes::_areturn:
1158     assert(rsize() == -depth, "");
1159     inputs = -depth;
1160     break;
1161 
1162   case Bytecodes::_jsr:
1163   case Bytecodes::_jsr_w:
1164     inputs = 0;
1165     depth  = 1;                  // S.B. depth=1, not zero
1166     break;
1167 
1168   default:
1169     // bytecode produces a typed result
1170     inputs = rsize() - depth;
1171     assert(inputs >= 0, "");
1172     break;
1173   }
1174 
1175 #ifdef ASSERT
1176   // spot check
1177   int outputs = depth + inputs;
1178   assert(outputs >= 0, "sanity");
1179   switch (code) {
1180   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1181   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1182   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1183   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1184   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1185   default:                    break;
1186   }
1187 #endif //ASSERT
1188 
1189   return true;
1190 }
1191 
1192 
1193 
1194 //------------------------------basic_plus_adr---------------------------------
1195 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1196   // short-circuit a common case
1197   if (offset == intcon(0))  return ptr;
1198   return _gvn.transform( new AddPNode(base, ptr, offset) );
1199 }
1200 
1201 Node* GraphKit::ConvI2L(Node* offset) {
1202   // short-circuit a common case
1203   jint offset_con = find_int_con(offset, Type::OffsetBot);
1204   if (offset_con != Type::OffsetBot) {
1205     return longcon((jlong) offset_con);
1206   }
1207   return _gvn.transform( new ConvI2LNode(offset));
1208 }
1209 
1210 Node* GraphKit::ConvI2UL(Node* offset) {
1211   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1212   if (offset_con != (juint) Type::OffsetBot) {
1213     return longcon((julong) offset_con);
1214   }
1215   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1216   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1217   return _gvn.transform( new AndLNode(conv, mask) );
1218 }
1219 
1220 Node* GraphKit::ConvL2I(Node* offset) {
1221   // short-circuit a common case
1222   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1223   if (offset_con != (jlong)Type::OffsetBot) {
1224     return intcon((int) offset_con);
1225   }
1226   return _gvn.transform( new ConvL2INode(offset));
1227 }
1228 
1229 //-------------------------load_object_klass-----------------------------------
1230 Node* GraphKit::load_object_klass(Node* obj) {
1231   // Special-case a fresh allocation to avoid building nodes:
1232   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1233   if (akls != nullptr)  return akls;
1234   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1235   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1236 }
1237 
1238 //-------------------------load_array_length-----------------------------------
1239 Node* GraphKit::load_array_length(Node* array) {
1240   // Special-case a fresh allocation to avoid building nodes:
1241   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1242   Node *alen;
1243   if (alloc == nullptr) {
1244     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1245     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1246   } else {
1247     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1248   }
1249   return alen;
1250 }
1251 
1252 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1253                                    const TypeOopPtr* oop_type,
1254                                    bool replace_length_in_map) {
1255   Node* length = alloc->Ideal_length();
1256   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1257     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1258     if (ccast != length) {
1259       // do not transform ccast here, it might convert to top node for
1260       // negative array length and break assumptions in parsing stage.
1261       _gvn.set_type_bottom(ccast);
1262       record_for_igvn(ccast);
1263       if (replace_length_in_map) {
1264         replace_in_map(length, ccast);
1265       }
1266       return ccast;
1267     }
1268   }
1269   return length;
1270 }
1271 
1272 //------------------------------do_null_check----------------------------------
1273 // Helper function to do a null pointer check.  Returned value is
1274 // the incoming address with null casted away.  You are allowed to use the
1275 // not-null value only if you are control dependent on the test.
1276 #ifndef PRODUCT
1277 extern uint explicit_null_checks_inserted,
1278             explicit_null_checks_elided;
1279 #endif
1280 Node* GraphKit::null_check_common(Node* value, BasicType type,
1281                                   // optional arguments for variations:
1282                                   bool assert_null,
1283                                   Node* *null_control,
1284                                   bool speculative,
1285                                   bool is_init_check) {
1286   assert(!assert_null || null_control == nullptr, "not both at once");
1287   if (stopped())  return top();
1288   NOT_PRODUCT(explicit_null_checks_inserted++);
1289 
1290   if (value->is_InlineType()) {
1291     // Null checking a scalarized but nullable inline type. Check the IsInit
1292     // input instead of the oop input to avoid keeping buffer allocations alive.
1293     InlineTypeNode* vtptr = value->as_InlineType();
1294     while (vtptr->get_oop()->is_InlineType()) {
1295       vtptr = vtptr->get_oop()->as_InlineType();
1296     }
1297     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1298     if (stopped()) {
1299       return top();
1300     }
1301     if (assert_null) {
1302       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1303       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1304       // replace_in_map(value, vtptr);
1305       // return vtptr;
1306       replace_in_map(value, null());
1307       return null();
1308     }
1309     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1310     return cast_not_null(value, do_replace_in_map);
1311   }
1312 
1313   // Construct null check
1314   Node *chk = nullptr;
1315   switch(type) {
1316     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1317     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1318     case T_ARRAY  : // fall through
1319       type = T_OBJECT;  // simplify further tests
1320     case T_OBJECT : {
1321       const Type *t = _gvn.type( value );
1322 
1323       const TypeOopPtr* tp = t->isa_oopptr();
1324       if (tp != nullptr && !tp->is_loaded()
1325           // Only for do_null_check, not any of its siblings:
1326           && !assert_null && null_control == nullptr) {
1327         // Usually, any field access or invocation on an unloaded oop type
1328         // will simply fail to link, since the statically linked class is
1329         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1330         // the static class is loaded but the sharper oop type is not.
1331         // Rather than checking for this obscure case in lots of places,
1332         // we simply observe that a null check on an unloaded class
1333         // will always be followed by a nonsense operation, so we
1334         // can just issue the uncommon trap here.
1335         // Our access to the unloaded class will only be correct
1336         // after it has been loaded and initialized, which requires
1337         // a trip through the interpreter.
1338         ciKlass* klass = tp->unloaded_klass();
1339 #ifndef PRODUCT
1340         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1341 #endif
1342         uncommon_trap(Deoptimization::Reason_unloaded,
1343                       Deoptimization::Action_reinterpret,
1344                       klass, "!loaded");
1345         return top();
1346       }
1347 
1348       if (assert_null) {
1349         // See if the type is contained in NULL_PTR.
1350         // If so, then the value is already null.
1351         if (t->higher_equal(TypePtr::NULL_PTR)) {
1352           NOT_PRODUCT(explicit_null_checks_elided++);
1353           return value;           // Elided null assert quickly!
1354         }
1355       } else {
1356         // See if mixing in the null pointer changes type.
1357         // If so, then the null pointer was not allowed in the original
1358         // type.  In other words, "value" was not-null.
1359         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1360           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1361           NOT_PRODUCT(explicit_null_checks_elided++);
1362           return value;           // Elided null check quickly!
1363         }
1364       }
1365       chk = new CmpPNode( value, null() );
1366       break;
1367     }
1368 
1369     default:
1370       fatal("unexpected type: %s", type2name(type));
1371   }
1372   assert(chk != nullptr, "sanity check");
1373   chk = _gvn.transform(chk);
1374 
1375   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1376   BoolNode *btst = new BoolNode( chk, btest);
1377   Node   *tst = _gvn.transform( btst );
1378 
1379   //-----------
1380   // if peephole optimizations occurred, a prior test existed.
1381   // If a prior test existed, maybe it dominates as we can avoid this test.
1382   if (tst != btst && type == T_OBJECT) {
1383     // At this point we want to scan up the CFG to see if we can
1384     // find an identical test (and so avoid this test altogether).
1385     Node *cfg = control();
1386     int depth = 0;
1387     while( depth < 16 ) {       // Limit search depth for speed
1388       if( cfg->Opcode() == Op_IfTrue &&
1389           cfg->in(0)->in(1) == tst ) {
1390         // Found prior test.  Use "cast_not_null" to construct an identical
1391         // CastPP (and hence hash to) as already exists for the prior test.
1392         // Return that casted value.
1393         if (assert_null) {
1394           replace_in_map(value, null());
1395           return null();  // do not issue the redundant test
1396         }
1397         Node *oldcontrol = control();
1398         set_control(cfg);
1399         Node *res = cast_not_null(value);
1400         set_control(oldcontrol);
1401         NOT_PRODUCT(explicit_null_checks_elided++);
1402         return res;
1403       }
1404       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1405       if (cfg == nullptr)  break;  // Quit at region nodes
1406       depth++;
1407     }
1408   }
1409 
1410   //-----------
1411   // Branch to failure if null
1412   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1413   Deoptimization::DeoptReason reason;
1414   if (assert_null) {
1415     reason = Deoptimization::reason_null_assert(speculative);
1416   } else if (type == T_OBJECT || is_init_check) {
1417     reason = Deoptimization::reason_null_check(speculative);
1418   } else {
1419     reason = Deoptimization::Reason_div0_check;
1420   }
1421   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1422   // ciMethodData::has_trap_at will return a conservative -1 if any
1423   // must-be-null assertion has failed.  This could cause performance
1424   // problems for a method after its first do_null_assert failure.
1425   // Consider using 'Reason_class_check' instead?
1426 
1427   // To cause an implicit null check, we set the not-null probability
1428   // to the maximum (PROB_MAX).  For an explicit check the probability
1429   // is set to a smaller value.
1430   if (null_control != nullptr || too_many_traps(reason)) {
1431     // probability is less likely
1432     ok_prob =  PROB_LIKELY_MAG(3);
1433   } else if (!assert_null &&
1434              (ImplicitNullCheckThreshold > 0) &&
1435              method() != nullptr &&
1436              (method()->method_data()->trap_count(reason)
1437               >= (uint)ImplicitNullCheckThreshold)) {
1438     ok_prob =  PROB_LIKELY_MAG(3);
1439   }
1440 
1441   if (null_control != nullptr) {
1442     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1443     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1444     set_control(      _gvn.transform( new IfTrueNode(iff)));
1445 #ifndef PRODUCT
1446     if (null_true == top()) {
1447       explicit_null_checks_elided++;
1448     }
1449 #endif
1450     (*null_control) = null_true;
1451   } else {
1452     BuildCutout unless(this, tst, ok_prob);
1453     // Check for optimizer eliding test at parse time
1454     if (stopped()) {
1455       // Failure not possible; do not bother making uncommon trap.
1456       NOT_PRODUCT(explicit_null_checks_elided++);
1457     } else if (assert_null) {
1458       uncommon_trap(reason,
1459                     Deoptimization::Action_make_not_entrant,
1460                     nullptr, "assert_null");
1461     } else {
1462       replace_in_map(value, zerocon(type));
1463       builtin_throw(reason);
1464     }
1465   }
1466 
1467   // Must throw exception, fall-thru not possible?
1468   if (stopped()) {
1469     return top();               // No result
1470   }
1471 
1472   if (assert_null) {
1473     // Cast obj to null on this path.
1474     replace_in_map(value, zerocon(type));
1475     return zerocon(type);
1476   }
1477 
1478   // Cast obj to not-null on this path, if there is no null_control.
1479   // (If there is a null_control, a non-null value may come back to haunt us.)
1480   if (type == T_OBJECT) {
1481     Node* cast = cast_not_null(value, false);
1482     if (null_control == nullptr || (*null_control) == top())
1483       replace_in_map(value, cast);
1484     value = cast;
1485   }
1486 
1487   return value;
1488 }
1489 
1490 //------------------------------cast_not_null----------------------------------
1491 // Cast obj to not-null on this path
1492 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1493   if (obj->is_InlineType()) {
1494     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1495     vt->as_InlineType()->set_is_init(_gvn);
1496     vt = _gvn.transform(vt);
1497     if (do_replace_in_map) {
1498       replace_in_map(obj, vt);
1499     }
1500     return vt;
1501   }
1502   const Type *t = _gvn.type(obj);
1503   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1504   // Object is already not-null?
1505   if( t == t_not_null ) return obj;
1506 
1507   Node* cast = new CastPPNode(control(), obj,t_not_null);
1508   cast = _gvn.transform( cast );
1509 
1510   // Scan for instances of 'obj' in the current JVM mapping.
1511   // These instances are known to be not-null after the test.
1512   if (do_replace_in_map)
1513     replace_in_map(obj, cast);
1514 
1515   return cast;                  // Return casted value
1516 }
1517 
1518 // Sometimes in intrinsics, we implicitly know an object is not null
1519 // (there's no actual null check) so we can cast it to not null. In
1520 // the course of optimizations, the input to the cast can become null.
1521 // In that case that data path will die and we need the control path
1522 // to become dead as well to keep the graph consistent. So we have to
1523 // add a check for null for which one branch can't be taken. It uses
1524 // an OpaqueNotNull node that will cause the check to be removed after loop
1525 // opts so the test goes away and the compiled code doesn't execute a
1526 // useless check.
1527 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1528   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1529     return value;
1530   }
1531   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1532   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1533   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1534   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1535   _gvn.set_type(iff, iff->Value(&_gvn));
1536   if (!tst->is_Con()) {
1537     record_for_igvn(iff);
1538   }
1539   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1540   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1541   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1542   C->root()->add_req(halt);
1543   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1544   set_control(if_t);
1545   return cast_not_null(value, do_replace_in_map);
1546 }
1547 
1548 
1549 //--------------------------replace_in_map-------------------------------------
1550 void GraphKit::replace_in_map(Node* old, Node* neww) {
1551   if (old == neww) {
1552     return;
1553   }
1554 
1555   map()->replace_edge(old, neww);
1556 
1557   // Note: This operation potentially replaces any edge
1558   // on the map.  This includes locals, stack, and monitors
1559   // of the current (innermost) JVM state.
1560 
1561   // don't let inconsistent types from profiling escape this
1562   // method
1563 
1564   const Type* told = _gvn.type(old);
1565   const Type* tnew = _gvn.type(neww);
1566 
1567   if (!tnew->higher_equal(told)) {
1568     return;
1569   }
1570 
1571   map()->record_replaced_node(old, neww);
1572 }
1573 
1574 
1575 //=============================================================================
1576 //--------------------------------memory---------------------------------------
1577 Node* GraphKit::memory(uint alias_idx) {
1578   MergeMemNode* mem = merged_memory();
1579   Node* p = mem->memory_at(alias_idx);
1580   assert(p != mem->empty_memory(), "empty");
1581   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1582   return p;
1583 }
1584 
1585 //-----------------------------reset_memory------------------------------------
1586 Node* GraphKit::reset_memory() {
1587   Node* mem = map()->memory();
1588   // do not use this node for any more parsing!
1589   debug_only( map()->set_memory((Node*)nullptr) );
1590   return _gvn.transform( mem );
1591 }
1592 
1593 //------------------------------set_all_memory---------------------------------
1594 void GraphKit::set_all_memory(Node* newmem) {
1595   Node* mergemem = MergeMemNode::make(newmem);
1596   gvn().set_type_bottom(mergemem);
1597   map()->set_memory(mergemem);
1598 }
1599 
1600 //------------------------------set_all_memory_call----------------------------
1601 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1602   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1603   set_all_memory(newmem);
1604 }
1605 
1606 //=============================================================================
1607 //
1608 // parser factory methods for MemNodes
1609 //
1610 // These are layered on top of the factory methods in LoadNode and StoreNode,
1611 // and integrate with the parser's memory state and _gvn engine.
1612 //
1613 
1614 // factory methods in "int adr_idx"
1615 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1616                           MemNode::MemOrd mo,
1617                           LoadNode::ControlDependency control_dependency,
1618                           bool require_atomic_access,
1619                           bool unaligned,
1620                           bool mismatched,
1621                           bool unsafe,
1622                           uint8_t barrier_data) {
1623   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1624   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1625   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1626   debug_only(adr_type = C->get_adr_type(adr_idx));
1627   Node* mem = memory(adr_idx);
1628   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1629   ld = _gvn.transform(ld);
1630 
1631   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1632     // Improve graph before escape analysis and boxing elimination.
1633     record_for_igvn(ld);
1634     if (ld->is_DecodeN()) {
1635       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1636       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1637       // a Phi). Recording such cases is still perfectly sound, but may be
1638       // unnecessary and result in some minor IGVN overhead.
1639       record_for_igvn(ld->in(1));
1640     }
1641   }
1642   return ld;
1643 }
1644 
1645 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1646                                 MemNode::MemOrd mo,
1647                                 bool require_atomic_access,
1648                                 bool unaligned,
1649                                 bool mismatched,
1650                                 bool unsafe,
1651                                 int barrier_data) {
1652   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1653   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1654   const TypePtr* adr_type = nullptr;
1655   debug_only(adr_type = C->get_adr_type(adr_idx));
1656   Node *mem = memory(adr_idx);
1657   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1658   if (unaligned) {
1659     st->as_Store()->set_unaligned_access();
1660   }
1661   if (mismatched) {
1662     st->as_Store()->set_mismatched_access();
1663   }
1664   if (unsafe) {
1665     st->as_Store()->set_unsafe_access();
1666   }
1667   st->as_Store()->set_barrier_data(barrier_data);
1668   st = _gvn.transform(st);
1669   set_memory(st, adr_idx);
1670   // Back-to-back stores can only remove intermediate store with DU info
1671   // so push on worklist for optimizer.
1672   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1673     record_for_igvn(st);
1674 
1675   return st;
1676 }
1677 
1678 Node* GraphKit::access_store_at(Node* obj,
1679                                 Node* adr,
1680                                 const TypePtr* adr_type,
1681                                 Node* val,
1682                                 const Type* val_type,
1683                                 BasicType bt,
1684                                 DecoratorSet decorators,
1685                                 bool safe_for_replace,
1686                                 const InlineTypeNode* vt) {
1687   // Transformation of a value which could be null pointer (CastPP #null)
1688   // could be delayed during Parse (for example, in adjust_map_after_if()).
1689   // Execute transformation here to avoid barrier generation in such case.
1690   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1691     val = _gvn.makecon(TypePtr::NULL_PTR);
1692   }
1693 
1694   if (stopped()) {
1695     return top(); // Dead path ?
1696   }
1697 
1698   assert(val != nullptr, "not dead path");
1699   if (val->is_InlineType()) {
1700     // Store to non-flat field. Buffer the inline type and make sure
1701     // the store is re-executed if the allocation triggers deoptimization.
1702     PreserveReexecuteState preexecs(this);
1703     jvms()->set_should_reexecute(true);
1704     val = val->as_InlineType()->buffer(this, safe_for_replace);
1705   }
1706 
1707   C2AccessValuePtr addr(adr, adr_type);
1708   C2AccessValue value(val, val_type);
1709   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1710   if (access.is_raw()) {
1711     return _barrier_set->BarrierSetC2::store_at(access, value);
1712   } else {
1713     return _barrier_set->store_at(access, value);
1714   }
1715 }
1716 
1717 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1718                                Node* adr,   // actual address to store val at
1719                                const TypePtr* adr_type,
1720                                const Type* val_type,
1721                                BasicType bt,
1722                                DecoratorSet decorators,
1723                                Node* ctl) {
1724   if (stopped()) {
1725     return top(); // Dead path ?
1726   }
1727 
1728   C2AccessValuePtr addr(adr, adr_type);
1729   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1730   if (access.is_raw()) {
1731     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1732   } else {
1733     return _barrier_set->load_at(access, val_type);
1734   }
1735 }
1736 
1737 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1738                             const Type* val_type,
1739                             BasicType bt,
1740                             DecoratorSet decorators) {
1741   if (stopped()) {
1742     return top(); // Dead path ?
1743   }
1744 
1745   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1746   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1747   if (access.is_raw()) {
1748     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1749   } else {
1750     return _barrier_set->load_at(access, val_type);
1751   }
1752 }
1753 
1754 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1755                                              Node* adr,
1756                                              const TypePtr* adr_type,
1757                                              int alias_idx,
1758                                              Node* expected_val,
1759                                              Node* new_val,
1760                                              const Type* value_type,
1761                                              BasicType bt,
1762                                              DecoratorSet decorators) {
1763   C2AccessValuePtr addr(adr, adr_type);
1764   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1765                         bt, obj, addr, alias_idx);
1766   if (access.is_raw()) {
1767     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1768   } else {
1769     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1770   }
1771 }
1772 
1773 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1774                                               Node* adr,
1775                                               const TypePtr* adr_type,
1776                                               int alias_idx,
1777                                               Node* expected_val,
1778                                               Node* new_val,
1779                                               const Type* value_type,
1780                                               BasicType bt,
1781                                               DecoratorSet decorators) {
1782   C2AccessValuePtr addr(adr, adr_type);
1783   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1784                         bt, obj, addr, alias_idx);
1785   if (access.is_raw()) {
1786     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1787   } else {
1788     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1789   }
1790 }
1791 
1792 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1793                                       Node* adr,
1794                                       const TypePtr* adr_type,
1795                                       int alias_idx,
1796                                       Node* new_val,
1797                                       const Type* value_type,
1798                                       BasicType bt,
1799                                       DecoratorSet decorators) {
1800   C2AccessValuePtr addr(adr, adr_type);
1801   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1802                         bt, obj, addr, alias_idx);
1803   if (access.is_raw()) {
1804     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1805   } else {
1806     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1807   }
1808 }
1809 
1810 Node* GraphKit::access_atomic_add_at(Node* obj,
1811                                      Node* adr,
1812                                      const TypePtr* adr_type,
1813                                      int alias_idx,
1814                                      Node* new_val,
1815                                      const Type* value_type,
1816                                      BasicType bt,
1817                                      DecoratorSet decorators) {
1818   C2AccessValuePtr addr(adr, adr_type);
1819   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1820   if (access.is_raw()) {
1821     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1822   } else {
1823     return _barrier_set->atomic_add_at(access, new_val, value_type);
1824   }
1825 }
1826 
1827 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1828   return _barrier_set->clone(this, src, dst, size, is_array);
1829 }
1830 
1831 //-------------------------array_element_address-------------------------
1832 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1833                                       const TypeInt* sizetype, Node* ctrl) {
1834   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1835   uint shift;
1836   if (arytype->is_flat() && arytype->klass_is_exact()) {
1837     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1838     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1839     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1840     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1841     // though we don't need the address node in this case and throw it away again.
1842     shift = arytype->flat_log_elem_size();
1843   } else {
1844     shift = exact_log2(type2aelembytes(elembt));
1845   }
1846   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1847 
1848   // short-circuit a common case (saves lots of confusing waste motion)
1849   jint idx_con = find_int_con(idx, -1);
1850   if (idx_con >= 0) {
1851     intptr_t offset = header + ((intptr_t)idx_con << shift);
1852     return basic_plus_adr(ary, offset);
1853   }
1854 
1855   // must be correct type for alignment purposes
1856   Node* base  = basic_plus_adr(ary, header);
1857   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1858   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1859   return basic_plus_adr(ary, base, scale);
1860 }
1861 
1862 Node* GraphKit::flat_array_element_address(Node*& array, Node* idx, ciInlineKlass* vk, bool is_null_free,
1863                                            bool is_not_null_free, bool is_atomic) {
1864   ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic);
1865   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1866   arytype = arytype->cast_to_exactness(true);
1867   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1868   array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
1869   return array_element_address(array, idx, T_FLAT_ELEMENT, arytype->size(), control());
1870 }
1871 
1872 //-------------------------load_array_element-------------------------
1873 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1874   const Type* elemtype = arytype->elem();
1875   BasicType elembt = elemtype->array_element_basic_type();
1876   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1877   if (elembt == T_NARROWOOP) {
1878     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1879   }
1880   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1881                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1882   return ld;
1883 }
1884 
1885 //-------------------------set_arguments_for_java_call-------------------------
1886 // Arguments (pre-popped from the stack) are taken from the JVMS.
1887 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1888   PreserveReexecuteState preexecs(this);
1889   if (EnableValhalla) {
1890     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1891     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1892     jvms()->set_should_reexecute(true);
1893     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1894     inc_sp(arg_size);
1895   }
1896   // Add the call arguments
1897   const TypeTuple* domain = call->tf()->domain_sig();
1898   uint nargs = domain->cnt();
1899   int arg_num = 0;
1900   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1901     Node* arg = argument(i-TypeFunc::Parms);
1902     const Type* t = domain->field_at(i);
1903     // TODO 8284443 A static call to a mismatched method should still be scalarized
1904     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1905       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1906       if (!arg->is_InlineType()) {
1907         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1908         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1909       }
1910       InlineTypeNode* vt = arg->as_InlineType();
1911       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1912       // If an inline type argument is passed as fields, attach the Method* to the call site
1913       // to be able to access the extended signature later via attached_method_before_pc().
1914       // For example, see CompiledMethod::preserve_callee_argument_oops().
1915       call->set_override_symbolic_info(true);
1916       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1917       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1918       C->dependencies()->assert_evol_method(call->method());
1919       arg_num++;
1920       continue;
1921     } else if (arg->is_InlineType()) {
1922       // Pass inline type argument via oop to callee
1923       InlineTypeNode* inline_type = arg->as_InlineType();
1924       const ciMethod* method = call->method();
1925       ciInstanceKlass* holder = method->holder();
1926       const bool is_receiver = (i == TypeFunc::Parms);
1927       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1928                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1929       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1930       bool must_init_buffer = true;
1931       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1932       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1933       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1934       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1935       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1936       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1937       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1938       // value class constructors which could have more fields to be initialized. Note that we do not need to
1939       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1940       // have not initialized any fields, yet (this is done completely by the other constructor call).
1941       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1942         must_init_buffer = false;
1943       }
1944       arg = inline_type->buffer(this, true, must_init_buffer);
1945     }
1946     if (t != Type::HALF) {
1947       arg_num++;
1948     }
1949     call->init_req(idx++, arg);
1950   }
1951 }
1952 
1953 //---------------------------set_edges_for_java_call---------------------------
1954 // Connect a newly created call into the current JVMS.
1955 // A return value node (if any) is returned from set_edges_for_java_call.
1956 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1957 
1958   // Add the predefined inputs:
1959   call->init_req( TypeFunc::Control, control() );
1960   call->init_req( TypeFunc::I_O    , i_o() );
1961   call->init_req( TypeFunc::Memory , reset_memory() );
1962   call->init_req( TypeFunc::FramePtr, frameptr() );
1963   call->init_req( TypeFunc::ReturnAdr, top() );
1964 
1965   add_safepoint_edges(call, must_throw);
1966 
1967   Node* xcall = _gvn.transform(call);
1968 
1969   if (xcall == top()) {
1970     set_control(top());
1971     return;
1972   }
1973   assert(xcall == call, "call identity is stable");
1974 
1975   // Re-use the current map to produce the result.
1976 
1977   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1978   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1979   set_all_memory_call(xcall, separate_io_proj);
1980 
1981   //return xcall;   // no need, caller already has it
1982 }
1983 
1984 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1985   if (stopped())  return top();  // maybe the call folded up?
1986 
1987   // Note:  Since any out-of-line call can produce an exception,
1988   // we always insert an I_O projection from the call into the result.
1989 
1990   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1991 
1992   if (separate_io_proj) {
1993     // The caller requested separate projections be used by the fall
1994     // through and exceptional paths, so replace the projections for
1995     // the fall through path.
1996     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1997     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1998   }
1999 
2000   // Capture the return value, if any.
2001   Node* ret;
2002   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2003     ret = top();
2004   } else if (call->tf()->returns_inline_type_as_fields()) {
2005     // Return of multiple values (inline type fields): we create a
2006     // InlineType node, each field is a projection from the call.
2007     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2008     uint base_input = TypeFunc::Parms;
2009     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2010   } else {
2011     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2012     ciType* t = call->method()->return_type();
2013     if (t->is_klass()) {
2014       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2015       if (type->is_inlinetypeptr()) {
2016         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2017       }
2018     }
2019   }
2020 
2021   // We just called the constructor on a value type receiver. Reload it from the buffer
2022   ciMethod* method = call->method();
2023   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2024     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2025     if (inline_type_receiver != nullptr) {
2026       assert(inline_type_receiver->is_larval(), "must be larval");
2027       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2028       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2029                                                                inline_type_receiver->bottom_type()->inline_klass());
2030       assert(!reloaded->is_larval(), "should not be larval anymore");
2031       replace_in_map(inline_type_receiver, reloaded);
2032     }
2033   }
2034 
2035   return ret;
2036 }
2037 
2038 //--------------------set_predefined_input_for_runtime_call--------------------
2039 // Reading and setting the memory state is way conservative here.
2040 // The real problem is that I am not doing real Type analysis on memory,
2041 // so I cannot distinguish card mark stores from other stores.  Across a GC
2042 // point the Store Barrier and the card mark memory has to agree.  I cannot
2043 // have a card mark store and its barrier split across the GC point from
2044 // either above or below.  Here I get that to happen by reading ALL of memory.
2045 // A better answer would be to separate out card marks from other memory.
2046 // For now, return the input memory state, so that it can be reused
2047 // after the call, if this call has restricted memory effects.
2048 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2049   // Set fixed predefined input arguments
2050   Node* memory = reset_memory();
2051   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2052   call->init_req( TypeFunc::Control,   control()  );
2053   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2054   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2055   call->init_req( TypeFunc::FramePtr,  frameptr() );
2056   call->init_req( TypeFunc::ReturnAdr, top()      );
2057   return memory;
2058 }
2059 
2060 //-------------------set_predefined_output_for_runtime_call--------------------
2061 // Set control and memory (not i_o) from the call.
2062 // If keep_mem is not null, use it for the output state,
2063 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2064 // If hook_mem is null, this call produces no memory effects at all.
2065 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2066 // then only that memory slice is taken from the call.
2067 // In the last case, we must put an appropriate memory barrier before
2068 // the call, so as to create the correct anti-dependencies on loads
2069 // preceding the call.
2070 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2071                                                       Node* keep_mem,
2072                                                       const TypePtr* hook_mem) {
2073   // no i/o
2074   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2075   if (keep_mem) {
2076     // First clone the existing memory state
2077     set_all_memory(keep_mem);
2078     if (hook_mem != nullptr) {
2079       // Make memory for the call
2080       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2081       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2082       // We also use hook_mem to extract specific effects from arraycopy stubs.
2083       set_memory(mem, hook_mem);
2084     }
2085     // ...else the call has NO memory effects.
2086 
2087     // Make sure the call advertises its memory effects precisely.
2088     // This lets us build accurate anti-dependences in gcm.cpp.
2089     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2090            "call node must be constructed correctly");
2091   } else {
2092     assert(hook_mem == nullptr, "");
2093     // This is not a "slow path" call; all memory comes from the call.
2094     set_all_memory_call(call);
2095   }
2096 }
2097 
2098 // Keep track of MergeMems feeding into other MergeMems
2099 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2100   if (!mem->is_MergeMem()) {
2101     return;
2102   }
2103   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2104     Node* use = i.get();
2105     if (use->is_MergeMem()) {
2106       wl.push(use);
2107     }
2108   }
2109 }
2110 
2111 // Replace the call with the current state of the kit.
2112 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2113   JVMState* ejvms = nullptr;
2114   if (has_exceptions()) {
2115     ejvms = transfer_exceptions_into_jvms();
2116   }
2117 
2118   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2119   ReplacedNodes replaced_nodes_exception;
2120   Node* ex_ctl = top();
2121 
2122   SafePointNode* final_state = stop();
2123 
2124   // Find all the needed outputs of this call
2125   CallProjections* callprojs = call->extract_projections(true, do_asserts);
2126 
2127   Unique_Node_List wl;
2128   Node* init_mem = call->in(TypeFunc::Memory);
2129   Node* final_mem = final_state->in(TypeFunc::Memory);
2130   Node* final_ctl = final_state->in(TypeFunc::Control);
2131   Node* final_io = final_state->in(TypeFunc::I_O);
2132 
2133   // Replace all the old call edges with the edges from the inlining result
2134   if (callprojs->fallthrough_catchproj != nullptr) {
2135     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2136   }
2137   if (callprojs->fallthrough_memproj != nullptr) {
2138     if (final_mem->is_MergeMem()) {
2139       // Parser's exits MergeMem was not transformed but may be optimized
2140       final_mem = _gvn.transform(final_mem);
2141     }
2142     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2143     add_mergemem_users_to_worklist(wl, final_mem);
2144   }
2145   if (callprojs->fallthrough_ioproj != nullptr) {
2146     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2147   }
2148 
2149   // Replace the result with the new result if it exists and is used
2150   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2151     // If the inlined code is dead, the result projections for an inline type returned as
2152     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2153     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2154            "unexpected number of results");
2155     C->gvn_replace_by(callprojs->resproj[0], result);
2156   }
2157 
2158   if (ejvms == nullptr) {
2159     // No exception edges to simply kill off those paths
2160     if (callprojs->catchall_catchproj != nullptr) {
2161       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2162     }
2163     if (callprojs->catchall_memproj != nullptr) {
2164       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2165     }
2166     if (callprojs->catchall_ioproj != nullptr) {
2167       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2168     }
2169     // Replace the old exception object with top
2170     if (callprojs->exobj != nullptr) {
2171       C->gvn_replace_by(callprojs->exobj, C->top());
2172     }
2173   } else {
2174     GraphKit ekit(ejvms);
2175 
2176     // Load my combined exception state into the kit, with all phis transformed:
2177     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2178     replaced_nodes_exception = ex_map->replaced_nodes();
2179 
2180     Node* ex_oop = ekit.use_exception_state(ex_map);
2181 
2182     if (callprojs->catchall_catchproj != nullptr) {
2183       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2184       ex_ctl = ekit.control();
2185     }
2186     if (callprojs->catchall_memproj != nullptr) {
2187       Node* ex_mem = ekit.reset_memory();
2188       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2189       add_mergemem_users_to_worklist(wl, ex_mem);
2190     }
2191     if (callprojs->catchall_ioproj != nullptr) {
2192       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2193     }
2194 
2195     // Replace the old exception object with the newly created one
2196     if (callprojs->exobj != nullptr) {
2197       C->gvn_replace_by(callprojs->exobj, ex_oop);
2198     }
2199   }
2200 
2201   // Disconnect the call from the graph
2202   call->disconnect_inputs(C);
2203   C->gvn_replace_by(call, C->top());
2204 
2205   // Clean up any MergeMems that feed other MergeMems since the
2206   // optimizer doesn't like that.
2207   while (wl.size() > 0) {
2208     _gvn.transform(wl.pop());
2209   }
2210 
2211   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2212     replaced_nodes.apply(C, final_ctl);
2213   }
2214   if (!ex_ctl->is_top() && do_replaced_nodes) {
2215     replaced_nodes_exception.apply(C, ex_ctl);
2216   }
2217 }
2218 
2219 
2220 //------------------------------increment_counter------------------------------
2221 // for statistics: increment a VM counter by 1
2222 
2223 void GraphKit::increment_counter(address counter_addr) {
2224   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2225   increment_counter(adr1);
2226 }
2227 
2228 void GraphKit::increment_counter(Node* counter_addr) {
2229   Node* ctrl = control();
2230   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2231   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2232   store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered);
2233 }
2234 
2235 
2236 //------------------------------uncommon_trap----------------------------------
2237 // Bail out to the interpreter in mid-method.  Implemented by calling the
2238 // uncommon_trap blob.  This helper function inserts a runtime call with the
2239 // right debug info.
2240 Node* GraphKit::uncommon_trap(int trap_request,
2241                              ciKlass* klass, const char* comment,
2242                              bool must_throw,
2243                              bool keep_exact_action) {
2244   if (failing_internal()) {
2245     stop();
2246   }
2247   if (stopped())  return nullptr; // trap reachable?
2248 
2249   // Note:  If ProfileTraps is true, and if a deopt. actually
2250   // occurs here, the runtime will make sure an MDO exists.  There is
2251   // no need to call method()->ensure_method_data() at this point.
2252 
2253   // Set the stack pointer to the right value for reexecution:
2254   set_sp(reexecute_sp());
2255 
2256 #ifdef ASSERT
2257   if (!must_throw) {
2258     // Make sure the stack has at least enough depth to execute
2259     // the current bytecode.
2260     int inputs, ignored_depth;
2261     if (compute_stack_effects(inputs, ignored_depth)) {
2262       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2263              Bytecodes::name(java_bc()), sp(), inputs);
2264     }
2265   }
2266 #endif
2267 
2268   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2269   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2270 
2271   switch (action) {
2272   case Deoptimization::Action_maybe_recompile:
2273   case Deoptimization::Action_reinterpret:
2274     // Temporary fix for 6529811 to allow virtual calls to be sure they
2275     // get the chance to go from mono->bi->mega
2276     if (!keep_exact_action &&
2277         Deoptimization::trap_request_index(trap_request) < 0 &&
2278         too_many_recompiles(reason)) {
2279       // This BCI is causing too many recompilations.
2280       if (C->log() != nullptr) {
2281         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2282                 Deoptimization::trap_reason_name(reason),
2283                 Deoptimization::trap_action_name(action));
2284       }
2285       action = Deoptimization::Action_none;
2286       trap_request = Deoptimization::make_trap_request(reason, action);
2287     } else {
2288       C->set_trap_can_recompile(true);
2289     }
2290     break;
2291   case Deoptimization::Action_make_not_entrant:
2292     C->set_trap_can_recompile(true);
2293     break;
2294   case Deoptimization::Action_none:
2295   case Deoptimization::Action_make_not_compilable:
2296     break;
2297   default:
2298 #ifdef ASSERT
2299     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2300 #endif
2301     break;
2302   }
2303 
2304   if (TraceOptoParse) {
2305     char buf[100];
2306     tty->print_cr("Uncommon trap %s at bci:%d",
2307                   Deoptimization::format_trap_request(buf, sizeof(buf),
2308                                                       trap_request), bci());
2309   }
2310 
2311   CompileLog* log = C->log();
2312   if (log != nullptr) {
2313     int kid = (klass == nullptr)? -1: log->identify(klass);
2314     log->begin_elem("uncommon_trap bci='%d'", bci());
2315     char buf[100];
2316     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2317                                                           trap_request));
2318     if (kid >= 0)         log->print(" klass='%d'", kid);
2319     if (comment != nullptr)  log->print(" comment='%s'", comment);
2320     log->end_elem();
2321   }
2322 
2323   // Make sure any guarding test views this path as very unlikely
2324   Node *i0 = control()->in(0);
2325   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2326     IfNode *iff = i0->as_If();
2327     float f = iff->_prob;   // Get prob
2328     if (control()->Opcode() == Op_IfTrue) {
2329       if (f > PROB_UNLIKELY_MAG(4))
2330         iff->_prob = PROB_MIN;
2331     } else {
2332       if (f < PROB_LIKELY_MAG(4))
2333         iff->_prob = PROB_MAX;
2334     }
2335   }
2336 
2337   // Clear out dead values from the debug info.
2338   kill_dead_locals();
2339 
2340   // Now insert the uncommon trap subroutine call
2341   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2342   const TypePtr* no_memory_effects = nullptr;
2343   // Pass the index of the class to be loaded
2344   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2345                                  (must_throw ? RC_MUST_THROW : 0),
2346                                  OptoRuntime::uncommon_trap_Type(),
2347                                  call_addr, "uncommon_trap", no_memory_effects,
2348                                  intcon(trap_request));
2349   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2350          "must extract request correctly from the graph");
2351   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2352 
2353   call->set_req(TypeFunc::ReturnAdr, returnadr());
2354   // The debug info is the only real input to this call.
2355 
2356   // Halt-and-catch fire here.  The above call should never return!
2357   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2358                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2359   _gvn.set_type_bottom(halt);
2360   root()->add_req(halt);
2361 
2362   stop_and_kill_map();
2363   return call;
2364 }
2365 
2366 
2367 //--------------------------just_allocated_object------------------------------
2368 // Report the object that was just allocated.
2369 // It must be the case that there are no intervening safepoints.
2370 // We use this to determine if an object is so "fresh" that
2371 // it does not require card marks.
2372 Node* GraphKit::just_allocated_object(Node* current_control) {
2373   Node* ctrl = current_control;
2374   // Object::<init> is invoked after allocation, most of invoke nodes
2375   // will be reduced, but a region node is kept in parse time, we check
2376   // the pattern and skip the region node if it degraded to a copy.
2377   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2378       ctrl->as_Region()->is_copy()) {
2379     ctrl = ctrl->as_Region()->is_copy();
2380   }
2381   if (C->recent_alloc_ctl() == ctrl) {
2382    return C->recent_alloc_obj();
2383   }
2384   return nullptr;
2385 }
2386 
2387 
2388 /**
2389  * Record profiling data exact_kls for Node n with the type system so
2390  * that it can propagate it (speculation)
2391  *
2392  * @param n          node that the type applies to
2393  * @param exact_kls  type from profiling
2394  * @param maybe_null did profiling see null?
2395  *
2396  * @return           node with improved type
2397  */
2398 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2399   const Type* current_type = _gvn.type(n);
2400   assert(UseTypeSpeculation, "type speculation must be on");
2401 
2402   const TypePtr* speculative = current_type->speculative();
2403 
2404   // Should the klass from the profile be recorded in the speculative type?
2405   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2406     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2407     const TypeOopPtr* xtype = tklass->as_instance_type();
2408     assert(xtype->klass_is_exact(), "Should be exact");
2409     // Any reason to believe n is not null (from this profiling or a previous one)?
2410     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2411     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2412     // record the new speculative type's depth
2413     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2414     speculative = speculative->with_inline_depth(jvms()->depth());
2415   } else if (current_type->would_improve_ptr(ptr_kind)) {
2416     // Profiling report that null was never seen so we can change the
2417     // speculative type to non null ptr.
2418     if (ptr_kind == ProfileAlwaysNull) {
2419       speculative = TypePtr::NULL_PTR;
2420     } else {
2421       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2422       const TypePtr* ptr = TypePtr::NOTNULL;
2423       if (speculative != nullptr) {
2424         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2425       } else {
2426         speculative = ptr;
2427       }
2428     }
2429   }
2430 
2431   if (speculative != current_type->speculative()) {
2432     // Build a type with a speculative type (what we think we know
2433     // about the type but will need a guard when we use it)
2434     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2435     // We're changing the type, we need a new CheckCast node to carry
2436     // the new type. The new type depends on the control: what
2437     // profiling tells us is only valid from here as far as we can
2438     // tell.
2439     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2440     cast = _gvn.transform(cast);
2441     replace_in_map(n, cast);
2442     n = cast;
2443   }
2444 
2445   return n;
2446 }
2447 
2448 /**
2449  * Record profiling data from receiver profiling at an invoke with the
2450  * type system so that it can propagate it (speculation)
2451  *
2452  * @param n  receiver node
2453  *
2454  * @return   node with improved type
2455  */
2456 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2457   if (!UseTypeSpeculation) {
2458     return n;
2459   }
2460   ciKlass* exact_kls = profile_has_unique_klass();
2461   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2462   if ((java_bc() == Bytecodes::_checkcast ||
2463        java_bc() == Bytecodes::_instanceof ||
2464        java_bc() == Bytecodes::_aastore) &&
2465       method()->method_data()->is_mature()) {
2466     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2467     if (data != nullptr) {
2468       if (java_bc() == Bytecodes::_aastore) {
2469         ciKlass* array_type = nullptr;
2470         ciKlass* element_type = nullptr;
2471         ProfilePtrKind element_ptr = ProfileMaybeNull;
2472         bool flat_array = true;
2473         bool null_free_array = true;
2474         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2475         exact_kls = element_type;
2476         ptr_kind = element_ptr;
2477       } else {
2478         if (!data->as_BitData()->null_seen()) {
2479           ptr_kind = ProfileNeverNull;
2480         } else {
2481           assert(data->is_ReceiverTypeData(), "bad profile data type");
2482           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2483           uint i = 0;
2484           for (; i < call->row_limit(); i++) {
2485             ciKlass* receiver = call->receiver(i);
2486             if (receiver != nullptr) {
2487               break;
2488             }
2489           }
2490           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2491         }
2492       }
2493     }
2494   }
2495   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2496 }
2497 
2498 /**
2499  * Record profiling data from argument profiling at an invoke with the
2500  * type system so that it can propagate it (speculation)
2501  *
2502  * @param dest_method  target method for the call
2503  * @param bc           what invoke bytecode is this?
2504  */
2505 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2506   if (!UseTypeSpeculation) {
2507     return;
2508   }
2509   const TypeFunc* tf    = TypeFunc::make(dest_method);
2510   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2511   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2512   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2513     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2514     if (is_reference_type(targ->basic_type())) {
2515       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2516       ciKlass* better_type = nullptr;
2517       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2518         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2519       }
2520       i++;
2521     }
2522   }
2523 }
2524 
2525 /**
2526  * Record profiling data from parameter profiling at an invoke with
2527  * the type system so that it can propagate it (speculation)
2528  */
2529 void GraphKit::record_profiled_parameters_for_speculation() {
2530   if (!UseTypeSpeculation) {
2531     return;
2532   }
2533   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2534     if (_gvn.type(local(i))->isa_oopptr()) {
2535       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2536       ciKlass* better_type = nullptr;
2537       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2538         record_profile_for_speculation(local(i), better_type, ptr_kind);
2539       }
2540       j++;
2541     }
2542   }
2543 }
2544 
2545 /**
2546  * Record profiling data from return value profiling at an invoke with
2547  * the type system so that it can propagate it (speculation)
2548  */
2549 void GraphKit::record_profiled_return_for_speculation() {
2550   if (!UseTypeSpeculation) {
2551     return;
2552   }
2553   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2554   ciKlass* better_type = nullptr;
2555   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2556     // If profiling reports a single type for the return value,
2557     // feed it to the type system so it can propagate it as a
2558     // speculative type
2559     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2560   }
2561 }
2562 
2563 
2564 //=============================================================================
2565 // Generate a fast path/slow path idiom.  Graph looks like:
2566 // [foo] indicates that 'foo' is a parameter
2567 //
2568 //              [in]     null
2569 //                 \    /
2570 //                  CmpP
2571 //                  Bool ne
2572 //                   If
2573 //                  /  \
2574 //              True    False-<2>
2575 //              / |
2576 //             /  cast_not_null
2577 //           Load  |    |   ^
2578 //        [fast_test]   |   |
2579 // gvn to   opt_test    |   |
2580 //          /    \      |  <1>
2581 //      True     False  |
2582 //        |         \\  |
2583 //   [slow_call]     \[fast_result]
2584 //    Ctl   Val       \      \
2585 //     |               \      \
2586 //    Catch       <1>   \      \
2587 //   /    \        ^     \      \
2588 //  Ex    No_Ex    |      \      \
2589 //  |       \   \  |       \ <2>  \
2590 //  ...      \  [slow_res] |  |    \   [null_result]
2591 //            \         \--+--+---  |  |
2592 //             \           | /    \ | /
2593 //              --------Region     Phi
2594 //
2595 //=============================================================================
2596 // Code is structured as a series of driver functions all called 'do_XXX' that
2597 // call a set of helper functions.  Helper functions first, then drivers.
2598 
2599 //------------------------------null_check_oop---------------------------------
2600 // Null check oop.  Set null-path control into Region in slot 3.
2601 // Make a cast-not-nullness use the other not-null control.  Return cast.
2602 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2603                                bool never_see_null,
2604                                bool safe_for_replace,
2605                                bool speculative) {
2606   // Initial null check taken path
2607   (*null_control) = top();
2608   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2609 
2610   // Generate uncommon_trap:
2611   if (never_see_null && (*null_control) != top()) {
2612     // If we see an unexpected null at a check-cast we record it and force a
2613     // recompile; the offending check-cast will be compiled to handle nulls.
2614     // If we see more than one offending BCI, then all checkcasts in the
2615     // method will be compiled to handle nulls.
2616     PreserveJVMState pjvms(this);
2617     set_control(*null_control);
2618     replace_in_map(value, null());
2619     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2620     uncommon_trap(reason,
2621                   Deoptimization::Action_make_not_entrant);
2622     (*null_control) = top();    // null path is dead
2623   }
2624   if ((*null_control) == top() && safe_for_replace) {
2625     replace_in_map(value, cast);
2626   }
2627 
2628   // Cast away null-ness on the result
2629   return cast;
2630 }
2631 
2632 //------------------------------opt_iff----------------------------------------
2633 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2634 // Return slow-path control.
2635 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2636   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2637 
2638   // Fast path taken; set region slot 2
2639   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2640   region->init_req(2,fast_taken); // Capture fast-control
2641 
2642   // Fast path not-taken, i.e. slow path
2643   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2644   return slow_taken;
2645 }
2646 
2647 //-----------------------------make_runtime_call-------------------------------
2648 Node* GraphKit::make_runtime_call(int flags,
2649                                   const TypeFunc* call_type, address call_addr,
2650                                   const char* call_name,
2651                                   const TypePtr* adr_type,
2652                                   // The following parms are all optional.
2653                                   // The first null ends the list.
2654                                   Node* parm0, Node* parm1,
2655                                   Node* parm2, Node* parm3,
2656                                   Node* parm4, Node* parm5,
2657                                   Node* parm6, Node* parm7) {
2658   assert(call_addr != nullptr, "must not call null targets");
2659 
2660   // Slow-path call
2661   bool is_leaf = !(flags & RC_NO_LEAF);
2662   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2663   if (call_name == nullptr) {
2664     assert(!is_leaf, "must supply name for leaf");
2665     call_name = OptoRuntime::stub_name(call_addr);
2666   }
2667   CallNode* call;
2668   if (!is_leaf) {
2669     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2670   } else if (flags & RC_NO_FP) {
2671     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2672   } else  if (flags & RC_VECTOR){
2673     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2674     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2675   } else {
2676     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2677   }
2678 
2679   // The following is similar to set_edges_for_java_call,
2680   // except that the memory effects of the call are restricted to AliasIdxRaw.
2681 
2682   // Slow path call has no side-effects, uses few values
2683   bool wide_in  = !(flags & RC_NARROW_MEM);
2684   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2685 
2686   Node* prev_mem = nullptr;
2687   if (wide_in) {
2688     prev_mem = set_predefined_input_for_runtime_call(call);
2689   } else {
2690     assert(!wide_out, "narrow in => narrow out");
2691     Node* narrow_mem = memory(adr_type);
2692     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2693   }
2694 
2695   // Hook each parm in order.  Stop looking at the first null.
2696   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2697   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2698   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2699   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2700   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2701   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2702   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2703   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2704   /* close each nested if ===> */  } } } } } } } }
2705   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2706 
2707   if (!is_leaf) {
2708     // Non-leaves can block and take safepoints:
2709     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2710   }
2711   // Non-leaves can throw exceptions:
2712   if (has_io) {
2713     call->set_req(TypeFunc::I_O, i_o());
2714   }
2715 
2716   if (flags & RC_UNCOMMON) {
2717     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2718     // (An "if" probability corresponds roughly to an unconditional count.
2719     // Sort of.)
2720     call->set_cnt(PROB_UNLIKELY_MAG(4));
2721   }
2722 
2723   Node* c = _gvn.transform(call);
2724   assert(c == call, "cannot disappear");
2725 
2726   if (wide_out) {
2727     // Slow path call has full side-effects.
2728     set_predefined_output_for_runtime_call(call);
2729   } else {
2730     // Slow path call has few side-effects, and/or sets few values.
2731     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2732   }
2733 
2734   if (has_io) {
2735     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2736   }
2737   return call;
2738 
2739 }
2740 
2741 // i2b
2742 Node* GraphKit::sign_extend_byte(Node* in) {
2743   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2744   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2745 }
2746 
2747 // i2s
2748 Node* GraphKit::sign_extend_short(Node* in) {
2749   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2750   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2751 }
2752 
2753 
2754 //------------------------------merge_memory-----------------------------------
2755 // Merge memory from one path into the current memory state.
2756 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2757   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2758     Node* old_slice = mms.force_memory();
2759     Node* new_slice = mms.memory2();
2760     if (old_slice != new_slice) {
2761       PhiNode* phi;
2762       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2763         if (mms.is_empty()) {
2764           // clone base memory Phi's inputs for this memory slice
2765           assert(old_slice == mms.base_memory(), "sanity");
2766           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2767           _gvn.set_type(phi, Type::MEMORY);
2768           for (uint i = 1; i < phi->req(); i++) {
2769             phi->init_req(i, old_slice->in(i));
2770           }
2771         } else {
2772           phi = old_slice->as_Phi(); // Phi was generated already
2773         }
2774       } else {
2775         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2776         _gvn.set_type(phi, Type::MEMORY);
2777       }
2778       phi->set_req(new_path, new_slice);
2779       mms.set_memory(phi);
2780     }
2781   }
2782 }
2783 
2784 //------------------------------make_slow_call_ex------------------------------
2785 // Make the exception handler hookups for the slow call
2786 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2787   if (stopped())  return;
2788 
2789   // Make a catch node with just two handlers:  fall-through and catch-all
2790   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2791   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2792   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2793   _gvn.set_type_bottom(norm);
2794   C->record_for_igvn(norm);
2795   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2796 
2797   { PreserveJVMState pjvms(this);
2798     set_control(excp);
2799     set_i_o(i_o);
2800 
2801     if (excp != top()) {
2802       if (deoptimize) {
2803         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2804         uncommon_trap(Deoptimization::Reason_unhandled,
2805                       Deoptimization::Action_none);
2806       } else {
2807         // Create an exception state also.
2808         // Use an exact type if the caller has a specific exception.
2809         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2810         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2811         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2812       }
2813     }
2814   }
2815 
2816   // Get the no-exception control from the CatchNode.
2817   set_control(norm);
2818 }
2819 
2820 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2821   Node* cmp = nullptr;
2822   switch(bt) {
2823   case T_INT: cmp = new CmpINode(in1, in2); break;
2824   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2825   default: fatal("unexpected comparison type %s", type2name(bt));
2826   }
2827   cmp = gvn.transform(cmp);
2828   Node* bol = gvn.transform(new BoolNode(cmp, test));
2829   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2830   gvn.transform(iff);
2831   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2832   return iff;
2833 }
2834 
2835 //-------------------------------gen_subtype_check-----------------------------
2836 // Generate a subtyping check.  Takes as input the subtype and supertype.
2837 // Returns 2 values: sets the default control() to the true path and returns
2838 // the false path.  Only reads invariant memory; sets no (visible) memory.
2839 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2840 // but that's not exposed to the optimizer.  This call also doesn't take in an
2841 // Object; if you wish to check an Object you need to load the Object's class
2842 // prior to coming here.
2843 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2844                                ciMethod* method, int bci) {
2845   Compile* C = gvn.C;
2846   if ((*ctrl)->is_top()) {
2847     return C->top();
2848   }
2849 
2850   // Fast check for identical types, perhaps identical constants.
2851   // The types can even be identical non-constants, in cases
2852   // involving Array.newInstance, Object.clone, etc.
2853   if (subklass == superklass)
2854     return C->top();             // false path is dead; no test needed.
2855 
2856   if (gvn.type(superklass)->singleton()) {
2857     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2858     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2859 
2860     // In the common case of an exact superklass, try to fold up the
2861     // test before generating code.  You may ask, why not just generate
2862     // the code and then let it fold up?  The answer is that the generated
2863     // code will necessarily include null checks, which do not always
2864     // completely fold away.  If they are also needless, then they turn
2865     // into a performance loss.  Example:
2866     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2867     // Here, the type of 'fa' is often exact, so the store check
2868     // of fa[1]=x will fold up, without testing the nullness of x.
2869     //
2870     // At macro expansion, we would have already folded the SubTypeCheckNode
2871     // being expanded here because we always perform the static sub type
2872     // check in SubTypeCheckNode::sub() regardless of whether
2873     // StressReflectiveCode is set or not. We can therefore skip this
2874     // static check when StressReflectiveCode is on.
2875     switch (C->static_subtype_check(superk, subk)) {
2876     case Compile::SSC_always_false:
2877       {
2878         Node* always_fail = *ctrl;
2879         *ctrl = gvn.C->top();
2880         return always_fail;
2881       }
2882     case Compile::SSC_always_true:
2883       return C->top();
2884     case Compile::SSC_easy_test:
2885       {
2886         // Just do a direct pointer compare and be done.
2887         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2888         *ctrl = gvn.transform(new IfTrueNode(iff));
2889         return gvn.transform(new IfFalseNode(iff));
2890       }
2891     case Compile::SSC_full_test:
2892       break;
2893     default:
2894       ShouldNotReachHere();
2895     }
2896   }
2897 
2898   // %%% Possible further optimization:  Even if the superklass is not exact,
2899   // if the subklass is the unique subtype of the superklass, the check
2900   // will always succeed.  We could leave a dependency behind to ensure this.
2901 
2902   // First load the super-klass's check-offset
2903   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2904   Node* m = C->immutable_memory();
2905   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2906   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2907   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2908   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2909   bool might_be_cache = (chk_off_con == cacheoff_con);
2910 
2911   // Load from the sub-klass's super-class display list, or a 1-word cache of
2912   // the secondary superclass list, or a failing value with a sentinel offset
2913   // if the super-klass is an interface or exceptionally deep in the Java
2914   // hierarchy and we have to scan the secondary superclass list the hard way.
2915   // Worst-case type is a little odd: null is allowed as a result (usually
2916   // klass loads can never produce a null).
2917   Node *chk_off_X = chk_off;
2918 #ifdef _LP64
2919   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2920 #endif
2921   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2922   // For some types like interfaces the following loadKlass is from a 1-word
2923   // cache which is mutable so can't use immutable memory.  Other
2924   // types load from the super-class display table which is immutable.
2925   Node *kmem = C->immutable_memory();
2926   // secondary_super_cache is not immutable but can be treated as such because:
2927   // - no ideal node writes to it in a way that could cause an
2928   //   incorrect/missed optimization of the following Load.
2929   // - it's a cache so, worse case, not reading the latest value
2930   //   wouldn't cause incorrect execution
2931   if (might_be_cache && mem != nullptr) {
2932     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2933   }
2934   Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2935 
2936   // Compile speed common case: ARE a subtype and we canNOT fail
2937   if (superklass == nkls) {
2938     return C->top();             // false path is dead; no test needed.
2939   }
2940 
2941   // Gather the various success & failures here
2942   RegionNode* r_not_subtype = new RegionNode(3);
2943   gvn.record_for_igvn(r_not_subtype);
2944   RegionNode* r_ok_subtype = new RegionNode(4);
2945   gvn.record_for_igvn(r_ok_subtype);
2946 
2947   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2948   // SubTypeCheck node
2949   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2950     ciCallProfile profile = method->call_profile_at_bci(bci);
2951     float total_prob = 0;
2952     for (int i = 0; profile.has_receiver(i); ++i) {
2953       float prob = profile.receiver_prob(i);
2954       total_prob += prob;
2955     }
2956     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2957       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2958       for (int i = 0; profile.has_receiver(i); ++i) {
2959         ciKlass* klass = profile.receiver(i);
2960         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2961         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2962         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2963           continue;
2964         }
2965         float prob = profile.receiver_prob(i);
2966         ConNode* klass_node = gvn.makecon(klass_t);
2967         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2968         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2969 
2970         if (result == Compile::SSC_always_true) {
2971           r_ok_subtype->add_req(iftrue);
2972         } else {
2973           assert(result == Compile::SSC_always_false, "");
2974           r_not_subtype->add_req(iftrue);
2975         }
2976         *ctrl = gvn.transform(new IfFalseNode(iff));
2977       }
2978     }
2979   }
2980 
2981   // See if we get an immediate positive hit.  Happens roughly 83% of the
2982   // time.  Test to see if the value loaded just previously from the subklass
2983   // is exactly the superklass.
2984   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2985   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2986   *ctrl = gvn.transform(new IfFalseNode(iff1));
2987 
2988   // Compile speed common case: Check for being deterministic right now.  If
2989   // chk_off is a constant and not equal to cacheoff then we are NOT a
2990   // subklass.  In this case we need exactly the 1 test above and we can
2991   // return those results immediately.
2992   if (!might_be_cache) {
2993     Node* not_subtype_ctrl = *ctrl;
2994     *ctrl = iftrue1; // We need exactly the 1 test above
2995     PhaseIterGVN* igvn = gvn.is_IterGVN();
2996     if (igvn != nullptr) {
2997       igvn->remove_globally_dead_node(r_ok_subtype);
2998       igvn->remove_globally_dead_node(r_not_subtype);
2999     }
3000     return not_subtype_ctrl;
3001   }
3002 
3003   r_ok_subtype->init_req(1, iftrue1);
3004 
3005   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3006   // is roughly 63% of the remaining cases).  Test to see if the loaded
3007   // check-offset points into the subklass display list or the 1-element
3008   // cache.  If it points to the display (and NOT the cache) and the display
3009   // missed then it's not a subtype.
3010   Node *cacheoff = gvn.intcon(cacheoff_con);
3011   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3012   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3013   *ctrl = gvn.transform(new IfFalseNode(iff2));
3014 
3015   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3016   // No performance impact (too rare) but allows sharing of secondary arrays
3017   // which has some footprint reduction.
3018   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3019   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3020   *ctrl = gvn.transform(new IfFalseNode(iff3));
3021 
3022   // -- Roads not taken here: --
3023   // We could also have chosen to perform the self-check at the beginning
3024   // of this code sequence, as the assembler does.  This would not pay off
3025   // the same way, since the optimizer, unlike the assembler, can perform
3026   // static type analysis to fold away many successful self-checks.
3027   // Non-foldable self checks work better here in second position, because
3028   // the initial primary superclass check subsumes a self-check for most
3029   // types.  An exception would be a secondary type like array-of-interface,
3030   // which does not appear in its own primary supertype display.
3031   // Finally, we could have chosen to move the self-check into the
3032   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3033   // dependent manner.  But it is worthwhile to have the check here,
3034   // where it can be perhaps be optimized.  The cost in code space is
3035   // small (register compare, branch).
3036 
3037   // Now do a linear scan of the secondary super-klass array.  Again, no real
3038   // performance impact (too rare) but it's gotta be done.
3039   // Since the code is rarely used, there is no penalty for moving it
3040   // out of line, and it can only improve I-cache density.
3041   // The decision to inline or out-of-line this final check is platform
3042   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3043   Node* psc = gvn.transform(
3044     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3045 
3046   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3047   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3048   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3049 
3050   // Return false path; set default control to true path.
3051   *ctrl = gvn.transform(r_ok_subtype);
3052   return gvn.transform(r_not_subtype);
3053 }
3054 
3055 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3056   const Type* sub_t = _gvn.type(obj_or_subklass);
3057   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3058     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3059     obj_or_subklass = makecon(sub_t);
3060   }
3061   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3062   if (expand_subtype_check) {
3063     MergeMemNode* mem = merged_memory();
3064     Node* ctrl = control();
3065     Node* subklass = obj_or_subklass;
3066     if (!sub_t->isa_klassptr()) {
3067       subklass = load_object_klass(obj_or_subklass);
3068     }
3069 
3070     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3071     set_control(ctrl);
3072     return n;
3073   }
3074 
3075   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3076   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3077   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3078   set_control(_gvn.transform(new IfTrueNode(iff)));
3079   return _gvn.transform(new IfFalseNode(iff));
3080 }
3081 
3082 // Profile-driven exact type check:
3083 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3084                                     float prob, Node* *casted_receiver) {
3085   assert(!klass->is_interface(), "no exact type check on interfaces");
3086   Node* fail = top();
3087   const Type* rec_t = _gvn.type(receiver);
3088   if (rec_t->is_inlinetypeptr()) {
3089     if (klass->equals(rec_t->inline_klass())) {
3090       (*casted_receiver) = receiver; // Always passes
3091     } else {
3092       (*casted_receiver) = top();    // Always fails
3093       fail = control();
3094       set_control(top());
3095     }
3096     return fail;
3097   }
3098   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3099   Node* recv_klass = load_object_klass(receiver);
3100   fail = type_check(recv_klass, tklass, prob);
3101 
3102   if (!stopped()) {
3103     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3104     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3105     assert(recv_xtype->klass_is_exact(), "");
3106 
3107     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3108       // Subsume downstream occurrences of receiver with a cast to
3109       // recv_xtype, since now we know what the type will be.
3110       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3111       Node* res = _gvn.transform(cast);
3112       if (recv_xtype->is_inlinetypeptr()) {
3113         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3114         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3115       }
3116       (*casted_receiver) = res;
3117       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3118       // (User must make the replace_in_map call.)
3119     }
3120   }
3121 
3122   return fail;
3123 }
3124 
3125 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3126                            float prob) {
3127   Node* want_klass = makecon(tklass);
3128   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3129   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3130   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3131   set_control(_gvn.transform(new IfTrueNode (iff)));
3132   Node* fail = _gvn.transform(new IfFalseNode(iff));
3133   return fail;
3134 }
3135 
3136 //------------------------------subtype_check_receiver-------------------------
3137 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3138                                        Node** casted_receiver) {
3139   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3140   Node* want_klass = makecon(tklass);
3141 
3142   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3143 
3144   // Ignore interface type information until interface types are properly tracked.
3145   if (!stopped() && !klass->is_interface()) {
3146     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3147     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3148     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3149       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3150       if (recv_type->is_inlinetypeptr()) {
3151         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3152       }
3153       (*casted_receiver) = cast;
3154     }
3155   }
3156 
3157   return slow_ctl;
3158 }
3159 
3160 //------------------------------seems_never_null-------------------------------
3161 // Use null_seen information if it is available from the profile.
3162 // If we see an unexpected null at a type check we record it and force a
3163 // recompile; the offending check will be recompiled to handle nulls.
3164 // If we see several offending BCIs, then all checks in the
3165 // method will be recompiled.
3166 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3167   speculating = !_gvn.type(obj)->speculative_maybe_null();
3168   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3169   if (UncommonNullCast               // Cutout for this technique
3170       && obj != null()               // And not the -Xcomp stupid case?
3171       && !too_many_traps(reason)
3172       ) {
3173     if (speculating) {
3174       return true;
3175     }
3176     if (data == nullptr)
3177       // Edge case:  no mature data.  Be optimistic here.
3178       return true;
3179     // If the profile has not seen a null, assume it won't happen.
3180     assert(java_bc() == Bytecodes::_checkcast ||
3181            java_bc() == Bytecodes::_instanceof ||
3182            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3183     return !data->as_BitData()->null_seen();
3184   }
3185   speculating = false;
3186   return false;
3187 }
3188 
3189 void GraphKit::guard_klass_being_initialized(Node* klass) {
3190   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3191   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3192   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3193                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3194                                     T_BYTE, MemNode::acquire);
3195   init_state = _gvn.transform(init_state);
3196 
3197   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3198 
3199   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3200   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3201 
3202   { BuildCutout unless(this, tst, PROB_MAX);
3203     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3204   }
3205 }
3206 
3207 void GraphKit::guard_init_thread(Node* klass) {
3208   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3209   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3210 
3211   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3212                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3213                                      T_ADDRESS, MemNode::unordered);
3214   init_thread = _gvn.transform(init_thread);
3215 
3216   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3217 
3218   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3219   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3220 
3221   { BuildCutout unless(this, tst, PROB_MAX);
3222     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3223   }
3224 }
3225 
3226 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3227   if (ik->is_being_initialized()) {
3228     if (C->needs_clinit_barrier(ik, context)) {
3229       Node* klass = makecon(TypeKlassPtr::make(ik));
3230       guard_klass_being_initialized(klass);
3231       guard_init_thread(klass);
3232       insert_mem_bar(Op_MemBarCPUOrder);
3233     }
3234   } else if (ik->is_initialized()) {
3235     return; // no barrier needed
3236   } else {
3237     uncommon_trap(Deoptimization::Reason_uninitialized,
3238                   Deoptimization::Action_reinterpret,
3239                   nullptr);
3240   }
3241 }
3242 
3243 //------------------------maybe_cast_profiled_receiver-------------------------
3244 // If the profile has seen exactly one type, narrow to exactly that type.
3245 // Subsequent type checks will always fold up.
3246 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3247                                              const TypeKlassPtr* require_klass,
3248                                              ciKlass* spec_klass,
3249                                              bool safe_for_replace) {
3250   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3251 
3252   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3253 
3254   // Make sure we haven't already deoptimized from this tactic.
3255   if (too_many_traps_or_recompiles(reason))
3256     return nullptr;
3257 
3258   // (No, this isn't a call, but it's enough like a virtual call
3259   // to use the same ciMethod accessor to get the profile info...)
3260   // If we have a speculative type use it instead of profiling (which
3261   // may not help us)
3262   ciKlass* exact_kls = spec_klass;
3263   if (exact_kls == nullptr) {
3264     if (java_bc() == Bytecodes::_aastore) {
3265       ciKlass* array_type = nullptr;
3266       ciKlass* element_type = nullptr;
3267       ProfilePtrKind element_ptr = ProfileMaybeNull;
3268       bool flat_array = true;
3269       bool null_free_array = true;
3270       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3271       exact_kls = element_type;
3272     } else {
3273       exact_kls = profile_has_unique_klass();
3274     }
3275   }
3276   if (exact_kls != nullptr) {// no cast failures here
3277     if (require_klass == nullptr ||
3278         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3279       // If we narrow the type to match what the type profile sees or
3280       // the speculative type, we can then remove the rest of the
3281       // cast.
3282       // This is a win, even if the exact_kls is very specific,
3283       // because downstream operations, such as method calls,
3284       // will often benefit from the sharper type.
3285       Node* exact_obj = not_null_obj; // will get updated in place...
3286       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3287                                             &exact_obj);
3288       { PreserveJVMState pjvms(this);
3289         set_control(slow_ctl);
3290         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3291       }
3292       if (safe_for_replace) {
3293         replace_in_map(not_null_obj, exact_obj);
3294       }
3295       return exact_obj;
3296     }
3297     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3298   }
3299 
3300   return nullptr;
3301 }
3302 
3303 /**
3304  * Cast obj to type and emit guard unless we had too many traps here
3305  * already
3306  *
3307  * @param obj       node being casted
3308  * @param type      type to cast the node to
3309  * @param not_null  true if we know node cannot be null
3310  */
3311 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3312                                         ciKlass* type,
3313                                         bool not_null) {
3314   if (stopped()) {
3315     return obj;
3316   }
3317 
3318   // type is null if profiling tells us this object is always null
3319   if (type != nullptr) {
3320     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3321     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3322 
3323     if (!too_many_traps_or_recompiles(null_reason) &&
3324         !too_many_traps_or_recompiles(class_reason)) {
3325       Node* not_null_obj = nullptr;
3326       // not_null is true if we know the object is not null and
3327       // there's no need for a null check
3328       if (!not_null) {
3329         Node* null_ctl = top();
3330         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3331         assert(null_ctl->is_top(), "no null control here");
3332       } else {
3333         not_null_obj = obj;
3334       }
3335 
3336       Node* exact_obj = not_null_obj;
3337       ciKlass* exact_kls = type;
3338       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3339                                             &exact_obj);
3340       {
3341         PreserveJVMState pjvms(this);
3342         set_control(slow_ctl);
3343         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3344       }
3345       replace_in_map(not_null_obj, exact_obj);
3346       obj = exact_obj;
3347     }
3348   } else {
3349     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3350       Node* exact_obj = null_assert(obj);
3351       replace_in_map(obj, exact_obj);
3352       obj = exact_obj;
3353     }
3354   }
3355   return obj;
3356 }
3357 
3358 //-------------------------------gen_instanceof--------------------------------
3359 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3360 // and the reflective instance-of call.
3361 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3362   kill_dead_locals();           // Benefit all the uncommon traps
3363   assert( !stopped(), "dead parse path should be checked in callers" );
3364   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3365          "must check for not-null not-dead klass in callers");
3366 
3367   // Make the merge point
3368   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3369   RegionNode* region = new RegionNode(PATH_LIMIT);
3370   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3371   C->set_has_split_ifs(true); // Has chance for split-if optimization
3372 
3373   ciProfileData* data = nullptr;
3374   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3375     data = method()->method_data()->bci_to_data(bci());
3376   }
3377   bool speculative_not_null = false;
3378   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3379                          && seems_never_null(obj, data, speculative_not_null));
3380 
3381   // Null check; get casted pointer; set region slot 3
3382   Node* null_ctl = top();
3383   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3384 
3385   // If not_null_obj is dead, only null-path is taken
3386   if (stopped()) {              // Doing instance-of on a null?
3387     set_control(null_ctl);
3388     return intcon(0);
3389   }
3390   region->init_req(_null_path, null_ctl);
3391   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3392   if (null_ctl == top()) {
3393     // Do this eagerly, so that pattern matches like is_diamond_phi
3394     // will work even during parsing.
3395     assert(_null_path == PATH_LIMIT-1, "delete last");
3396     region->del_req(_null_path);
3397     phi   ->del_req(_null_path);
3398   }
3399 
3400   // Do we know the type check always succeed?
3401   bool known_statically = false;
3402   if (_gvn.type(superklass)->singleton()) {
3403     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3404     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3405     if (subk != nullptr && subk->is_loaded()) {
3406       int static_res = C->static_subtype_check(superk, subk);
3407       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3408     }
3409   }
3410 
3411   if (!known_statically) {
3412     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3413     // We may not have profiling here or it may not help us. If we
3414     // have a speculative type use it to perform an exact cast.
3415     ciKlass* spec_obj_type = obj_type->speculative_type();
3416     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3417       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3418       if (stopped()) {            // Profile disagrees with this path.
3419         set_control(null_ctl);    // Null is the only remaining possibility.
3420         return intcon(0);
3421       }
3422       if (cast_obj != nullptr) {
3423         not_null_obj = cast_obj;
3424       }
3425     }
3426   }
3427 
3428   // Generate the subtype check
3429   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3430 
3431   // Plug in the success path to the general merge in slot 1.
3432   region->init_req(_obj_path, control());
3433   phi   ->init_req(_obj_path, intcon(1));
3434 
3435   // Plug in the failing path to the general merge in slot 2.
3436   region->init_req(_fail_path, not_subtype_ctrl);
3437   phi   ->init_req(_fail_path, intcon(0));
3438 
3439   // Return final merged results
3440   set_control( _gvn.transform(region) );
3441   record_for_igvn(region);
3442 
3443   // If we know the type check always succeeds then we don't use the
3444   // profiling data at this bytecode. Don't lose it, feed it to the
3445   // type system as a speculative type.
3446   if (safe_for_replace) {
3447     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3448     replace_in_map(obj, casted_obj);
3449   }
3450 
3451   return _gvn.transform(phi);
3452 }
3453 
3454 //-------------------------------gen_checkcast---------------------------------
3455 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3456 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3457 // uncommon-trap paths work.  Adjust stack after this call.
3458 // If failure_control is supplied and not null, it is filled in with
3459 // the control edge for the cast failure.  Otherwise, an appropriate
3460 // uncommon trap or exception is thrown.
3461 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free) {
3462   kill_dead_locals();           // Benefit all the uncommon traps
3463   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3464   const Type* obj_type = _gvn.type(obj);
3465   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3466     // Special case: larval inline objects must not be scalarized. They are also generally not
3467     // allowed to participate in most operations except as the first operand of putfield, or as an
3468     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3469     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3470     // value objects in all other places. This special case comes from the limitation of the Java
3471     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3472     // value type. We must do this first because C->static_subtype_check may do nothing when
3473     // StressReflectiveCode is set.
3474     return obj;
3475   }
3476 
3477   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3478   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3479   bool safe_for_replace = (failure_control == nullptr);
3480   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3481 
3482   // Fast cutout:  Check the case that the cast is vacuously true.
3483   // This detects the common cases where the test will short-circuit
3484   // away completely.  We do this before we perform the null check,
3485   // because if the test is going to turn into zero code, we don't
3486   // want a residual null check left around.  (Causes a slowdown,
3487   // for example, in some objArray manipulations, such as a[i]=a[j].)
3488   if (improved_klass_ptr_type->singleton()) {
3489     const TypeKlassPtr* kptr = nullptr;
3490     if (obj_type->isa_oop_ptr()) {
3491       kptr = obj_type->is_oopptr()->as_klass_type();
3492     } else if (obj->is_InlineType()) {
3493       ciInlineKlass* vk = obj_type->inline_klass();
3494       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3495     }
3496 
3497     if (kptr != nullptr) {
3498       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3499       case Compile::SSC_always_true:
3500         // If we know the type check always succeed then we don't use
3501         // the profiling data at this bytecode. Don't lose it, feed it
3502         // to the type system as a speculative type.
3503         obj = record_profiled_receiver_for_speculation(obj);
3504         if (null_free) {
3505           assert(safe_for_replace, "must be");
3506           obj = null_check(obj);
3507         }
3508         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3509         return obj;
3510       case Compile::SSC_always_false:
3511         if (null_free) {
3512           assert(safe_for_replace, "must be");
3513           obj = null_check(obj);
3514         }
3515         // It needs a null check because a null will *pass* the cast check.
3516         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {
3517           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3518           Deoptimization::DeoptReason reason = is_aastore ?
3519             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3520           builtin_throw(reason);
3521           return top();
3522         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3523           return null_assert(obj);
3524         }
3525         break; // Fall through to full check
3526       default:
3527         break;
3528       }
3529     }
3530   }
3531 
3532   ciProfileData* data = nullptr;
3533   if (failure_control == nullptr) {        // use MDO in regular case only
3534     assert(java_bc() == Bytecodes::_aastore ||
3535            java_bc() == Bytecodes::_checkcast,
3536            "interpreter profiles type checks only for these BCs");
3537     if (method()->method_data()->is_mature()) {
3538       data = method()->method_data()->bci_to_data(bci());
3539     }
3540   }
3541 
3542   // Make the merge point
3543   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3544   RegionNode* region = new RegionNode(PATH_LIMIT);
3545   Node*       phi    = new PhiNode(region, toop);
3546   _gvn.set_type(region, Type::CONTROL);
3547   _gvn.set_type(phi, toop);
3548 
3549   C->set_has_split_ifs(true); // Has chance for split-if optimization
3550 
3551   // Use null-cast information if it is available
3552   bool speculative_not_null = false;
3553   bool never_see_null = ((failure_control == nullptr)  // regular case only
3554                          && seems_never_null(obj, data, speculative_not_null));
3555 
3556   if (obj->is_InlineType()) {
3557     // Re-execute if buffering during triggers deoptimization
3558     PreserveReexecuteState preexecs(this);
3559     jvms()->set_should_reexecute(true);
3560     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3561   }
3562 
3563   // Null check; get casted pointer; set region slot 3
3564   Node* null_ctl = top();
3565   Node* not_null_obj = nullptr;
3566   if (null_free) {
3567     assert(safe_for_replace, "must be");
3568     not_null_obj = null_check(obj);
3569   } else {
3570     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3571   }
3572 
3573   // If not_null_obj is dead, only null-path is taken
3574   if (stopped()) {              // Doing instance-of on a null?
3575     set_control(null_ctl);
3576     if (toop->is_inlinetypeptr()) {
3577       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3578     }
3579     return null();
3580   }
3581   region->init_req(_null_path, null_ctl);
3582   phi   ->init_req(_null_path, null());  // Set null path value
3583   if (null_ctl == top()) {
3584     // Do this eagerly, so that pattern matches like is_diamond_phi
3585     // will work even during parsing.
3586     assert(_null_path == PATH_LIMIT-1, "delete last");
3587     region->del_req(_null_path);
3588     phi   ->del_req(_null_path);
3589   }
3590 
3591   Node* cast_obj = nullptr;
3592   if (improved_klass_ptr_type->klass_is_exact()) {
3593     // The following optimization tries to statically cast the speculative type of the object
3594     // (for example obtained during profiling) to the type of the superklass and then do a
3595     // dynamic check that the type of the object is what we expect. To work correctly
3596     // for checkcast and aastore the type of superklass should be exact.
3597     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3598     // We may not have profiling here or it may not help us. If we have
3599     // a speculative type use it to perform an exact cast.
3600     ciKlass* spec_obj_type = obj_type->speculative_type();
3601     if (spec_obj_type != nullptr || data != nullptr) {
3602       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3603       if (cast_obj != nullptr) {
3604         if (failure_control != nullptr) // failure is now impossible
3605           (*failure_control) = top();
3606         // adjust the type of the phi to the exact klass:
3607         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3608       }
3609     }
3610   }
3611 
3612   if (cast_obj == nullptr) {
3613     // Generate the subtype check
3614     Node* improved_superklass = superklass;
3615     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3616       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3617       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3618       // Additionally, the benefit would only be minor in non-constant cases.
3619       improved_superklass = makecon(improved_klass_ptr_type);
3620     }
3621     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3622     // Plug in success path into the merge
3623     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3624     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3625     if (failure_control == nullptr) {
3626       if (not_subtype_ctrl != top()) { // If failure is possible
3627         PreserveJVMState pjvms(this);
3628         set_control(not_subtype_ctrl);
3629         Node* obj_klass = nullptr;
3630         if (not_null_obj->is_InlineType()) {
3631           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3632         } else {
3633           obj_klass = load_object_klass(not_null_obj);
3634         }
3635         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3636         Deoptimization::DeoptReason reason = is_aastore ?
3637           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3638         builtin_throw(reason);
3639       }
3640     } else {
3641       (*failure_control) = not_subtype_ctrl;
3642     }
3643   }
3644 
3645   region->init_req(_obj_path, control());
3646   phi   ->init_req(_obj_path, cast_obj);
3647 
3648   // A merge of null or Casted-NotNull obj
3649   Node* res = _gvn.transform(phi);
3650 
3651   // Note I do NOT always 'replace_in_map(obj,result)' here.
3652   //  if( tk->klass()->can_be_primary_super()  )
3653     // This means that if I successfully store an Object into an array-of-String
3654     // I 'forget' that the Object is really now known to be a String.  I have to
3655     // do this because we don't have true union types for interfaces - if I store
3656     // a Baz into an array-of-Interface and then tell the optimizer it's an
3657     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3658     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3659   //  replace_in_map( obj, res );
3660 
3661   // Return final merged results
3662   set_control( _gvn.transform(region) );
3663   record_for_igvn(region);
3664 
3665   bool not_inline = !toop->can_be_inline_type();
3666   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3667   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3668     // Check if obj has been loaded from an array
3669     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3670     Node* array = nullptr;
3671     if (obj->isa_Load()) {
3672       Node* address = obj->in(MemNode::Address);
3673       if (address->isa_AddP()) {
3674         array = address->as_AddP()->in(AddPNode::Base);
3675       }
3676     } else if (obj->is_Phi()) {
3677       Node* region = obj->in(0);
3678       // TODO make this more robust (see JDK-8231346)
3679       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3680         IfNode* iff = region->in(2)->in(0)->isa_If();
3681         if (iff != nullptr) {
3682           iff->is_flat_array_check(&_gvn, &array);
3683         }
3684       }
3685     }
3686     if (array != nullptr) {
3687       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3688       if (ary_t != nullptr) {
3689         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3690           // Casting array element to a non-inline-type, mark array as not null-free.
3691           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3692           replace_in_map(array, cast);
3693           array = cast;
3694         }
3695         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3696           // Casting array element to a non-flat-in-array type, mark array as not flat.
3697           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3698           replace_in_map(array, cast);
3699           array = cast;
3700         }
3701       }
3702     }
3703   }
3704 
3705   if (!stopped() && !res->is_InlineType()) {
3706     res = record_profiled_receiver_for_speculation(res);
3707     if (toop->is_inlinetypeptr()) {
3708       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3709       res = vt;
3710       if (safe_for_replace) {
3711         replace_in_map(obj, vt);
3712         replace_in_map(not_null_obj, vt);
3713         replace_in_map(res, vt);
3714       }
3715     }
3716   }
3717   return res;
3718 }
3719 
3720 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3721   // Load markword
3722   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3723   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3724   if (check_lock) {
3725     // Check if obj is locked
3726     Node* locked_bit = MakeConX(markWord::unlocked_value);
3727     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3728     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3729     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3730     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3731     _gvn.transform(iff);
3732     Node* locked_region = new RegionNode(3);
3733     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3734 
3735     // Unlocked: Use bits from mark word
3736     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3737     mark_phi->init_req(1, mark);
3738 
3739     // Locked: Load prototype header from klass
3740     set_control(_gvn.transform(new IfFalseNode(iff)));
3741     // Make loads control dependent to make sure they are only executed if array is locked
3742     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3743     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3744     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3745     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3746 
3747     locked_region->init_req(2, control());
3748     mark_phi->init_req(2, proto);
3749     set_control(_gvn.transform(locked_region));
3750     record_for_igvn(locked_region);
3751 
3752     mark = mark_phi;
3753   }
3754 
3755   // Now check if mark word bits are set
3756   Node* mask = MakeConX(mask_val);
3757   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3758   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3759   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3760   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3761 }
3762 
3763 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3764   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3765 }
3766 
3767 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3768   // We can't use immutable memory here because the mark word is mutable.
3769   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3770   // check is moved out of loops (mainly to enable loop unswitching).
3771   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3772   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3773   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3774 }
3775 
3776 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3777   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3778 }
3779 
3780 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3781   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3782 
3783   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3784   if (!vk->has_non_atomic_layout()) {
3785     return intcon(1); // Always atomic
3786   } else if (!vk->has_atomic_layout()) {
3787     return intcon(0); // Never atomic
3788   }
3789 
3790   Node* array_klass = load_object_klass(array);
3791   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3792   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3793   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3794   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3795   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3796 }
3797 
3798 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3799 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3800   RegionNode* region = new RegionNode(3);
3801   Node* null_ctl = top();
3802   null_check_oop(val, &null_ctl);
3803   if (null_ctl != top()) {
3804     PreserveJVMState pjvms(this);
3805     set_control(null_ctl);
3806     {
3807       // Deoptimize if null-free array
3808       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3809       inc_sp(nargs);
3810       uncommon_trap(Deoptimization::Reason_null_check,
3811                     Deoptimization::Action_none);
3812     }
3813     region->init_req(1, control());
3814   }
3815   region->init_req(2, control());
3816   set_control(_gvn.transform(region));
3817   record_for_igvn(region);
3818   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3819     // Since we were just successfully storing null, the array can't be null free.
3820     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3821     ary_t = ary_t->cast_to_not_null_free();
3822     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3823     if (safe_for_replace) {
3824       replace_in_map(ary, cast);
3825     }
3826     ary = cast;
3827   }
3828   return ary;
3829 }
3830 
3831 //------------------------------next_monitor-----------------------------------
3832 // What number should be given to the next monitor?
3833 int GraphKit::next_monitor() {
3834   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3835   int next = current + C->sync_stack_slots();
3836   // Keep the toplevel high water mark current:
3837   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3838   return current;
3839 }
3840 
3841 //------------------------------insert_mem_bar---------------------------------
3842 // Memory barrier to avoid floating things around
3843 // The membar serves as a pinch point between both control and all memory slices.
3844 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3845   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3846   mb->init_req(TypeFunc::Control, control());
3847   mb->init_req(TypeFunc::Memory,  reset_memory());
3848   Node* membar = _gvn.transform(mb);
3849   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3850   set_all_memory_call(membar);
3851   return membar;
3852 }
3853 
3854 //-------------------------insert_mem_bar_volatile----------------------------
3855 // Memory barrier to avoid floating things around
3856 // The membar serves as a pinch point between both control and memory(alias_idx).
3857 // If you want to make a pinch point on all memory slices, do not use this
3858 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3859 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3860   // When Parse::do_put_xxx updates a volatile field, it appends a series
3861   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3862   // The first membar is on the same memory slice as the field store opcode.
3863   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3864   // All the other membars (for other volatile slices, including AliasIdxBot,
3865   // which stands for all unknown volatile slices) are control-dependent
3866   // on the first membar.  This prevents later volatile loads or stores
3867   // from sliding up past the just-emitted store.
3868 
3869   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3870   mb->set_req(TypeFunc::Control,control());
3871   if (alias_idx == Compile::AliasIdxBot) {
3872     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3873   } else {
3874     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3875     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3876   }
3877   Node* membar = _gvn.transform(mb);
3878   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3879   if (alias_idx == Compile::AliasIdxBot) {
3880     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3881   } else {
3882     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3883   }
3884   return membar;
3885 }
3886 
3887 //------------------------------shared_lock------------------------------------
3888 // Emit locking code.
3889 FastLockNode* GraphKit::shared_lock(Node* obj) {
3890   // bci is either a monitorenter bc or InvocationEntryBci
3891   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3892   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3893 
3894   if( !GenerateSynchronizationCode )
3895     return nullptr;                // Not locking things?
3896 
3897   if (stopped())                // Dead monitor?
3898     return nullptr;
3899 
3900   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3901 
3902   // Box the stack location
3903   Node* box = new BoxLockNode(next_monitor());
3904   // Check for bailout after new BoxLockNode
3905   if (failing()) { return nullptr; }
3906   box = _gvn.transform(box);
3907   Node* mem = reset_memory();
3908 
3909   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3910 
3911   // Add monitor to debug info for the slow path.  If we block inside the
3912   // slow path and de-opt, we need the monitor hanging around
3913   map()->push_monitor( flock );
3914 
3915   const TypeFunc *tf = LockNode::lock_type();
3916   LockNode *lock = new LockNode(C, tf);
3917 
3918   lock->init_req( TypeFunc::Control, control() );
3919   lock->init_req( TypeFunc::Memory , mem );
3920   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3921   lock->init_req( TypeFunc::FramePtr, frameptr() );
3922   lock->init_req( TypeFunc::ReturnAdr, top() );
3923 
3924   lock->init_req(TypeFunc::Parms + 0, obj);
3925   lock->init_req(TypeFunc::Parms + 1, box);
3926   lock->init_req(TypeFunc::Parms + 2, flock);
3927   add_safepoint_edges(lock);
3928 
3929   lock = _gvn.transform( lock )->as_Lock();
3930 
3931   // lock has no side-effects, sets few values
3932   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3933 
3934   insert_mem_bar(Op_MemBarAcquireLock);
3935 
3936   // Add this to the worklist so that the lock can be eliminated
3937   record_for_igvn(lock);
3938 
3939 #ifndef PRODUCT
3940   if (PrintLockStatistics) {
3941     // Update the counter for this lock.  Don't bother using an atomic
3942     // operation since we don't require absolute accuracy.
3943     lock->create_lock_counter(map()->jvms());
3944     increment_counter(lock->counter()->addr());
3945   }
3946 #endif
3947 
3948   return flock;
3949 }
3950 
3951 
3952 //------------------------------shared_unlock----------------------------------
3953 // Emit unlocking code.
3954 void GraphKit::shared_unlock(Node* box, Node* obj) {
3955   // bci is either a monitorenter bc or InvocationEntryBci
3956   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3957   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3958 
3959   if( !GenerateSynchronizationCode )
3960     return;
3961   if (stopped()) {               // Dead monitor?
3962     map()->pop_monitor();        // Kill monitor from debug info
3963     return;
3964   }
3965   assert(!obj->is_InlineType(), "should not unlock on inline type");
3966 
3967   // Memory barrier to avoid floating things down past the locked region
3968   insert_mem_bar(Op_MemBarReleaseLock);
3969 
3970   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3971   UnlockNode *unlock = new UnlockNode(C, tf);
3972 #ifdef ASSERT
3973   unlock->set_dbg_jvms(sync_jvms());
3974 #endif
3975   uint raw_idx = Compile::AliasIdxRaw;
3976   unlock->init_req( TypeFunc::Control, control() );
3977   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3978   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3979   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3980   unlock->init_req( TypeFunc::ReturnAdr, top() );
3981 
3982   unlock->init_req(TypeFunc::Parms + 0, obj);
3983   unlock->init_req(TypeFunc::Parms + 1, box);
3984   unlock = _gvn.transform(unlock)->as_Unlock();
3985 
3986   Node* mem = reset_memory();
3987 
3988   // unlock has no side-effects, sets few values
3989   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3990 
3991   // Kill monitor from debug info
3992   map()->pop_monitor( );
3993 }
3994 
3995 //-------------------------------get_layout_helper-----------------------------
3996 // If the given klass is a constant or known to be an array,
3997 // fetch the constant layout helper value into constant_value
3998 // and return null.  Otherwise, load the non-constant
3999 // layout helper value, and return the node which represents it.
4000 // This two-faced routine is useful because allocation sites
4001 // almost always feature constant types.
4002 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4003   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4004   if (!StressReflectiveCode && klass_t != nullptr) {
4005     bool xklass = klass_t->klass_is_exact();
4006     bool can_be_flat = false;
4007     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4008     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4009       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4010       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4011       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
4012     }
4013     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4014       jint lhelper;
4015       if (klass_t->is_flat()) {
4016         lhelper = ary_type->flat_layout_helper();
4017       } else if (klass_t->isa_aryklassptr()) {
4018         BasicType elem = ary_type->elem()->array_element_basic_type();
4019         if (is_reference_type(elem, true)) {
4020           elem = T_OBJECT;
4021         }
4022         lhelper = Klass::array_layout_helper(elem);
4023       } else {
4024         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4025       }
4026       if (lhelper != Klass::_lh_neutral_value) {
4027         constant_value = lhelper;
4028         return (Node*) nullptr;
4029       }
4030     }
4031   }
4032   constant_value = Klass::_lh_neutral_value;  // put in a known value
4033   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4034   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4035 }
4036 
4037 // We just put in an allocate/initialize with a big raw-memory effect.
4038 // Hook selected additional alias categories on the initialization.
4039 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4040                                 MergeMemNode* init_in_merge,
4041                                 Node* init_out_raw) {
4042   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4043   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4044 
4045   Node* prevmem = kit.memory(alias_idx);
4046   init_in_merge->set_memory_at(alias_idx, prevmem);
4047   if (init_out_raw != nullptr) {
4048     kit.set_memory(init_out_raw, alias_idx);
4049   }
4050 }
4051 
4052 //---------------------------set_output_for_allocation-------------------------
4053 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4054                                           const TypeOopPtr* oop_type,
4055                                           bool deoptimize_on_exception) {
4056   int rawidx = Compile::AliasIdxRaw;
4057   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4058   add_safepoint_edges(alloc);
4059   Node* allocx = _gvn.transform(alloc);
4060   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4061   // create memory projection for i_o
4062   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4063   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4064 
4065   // create a memory projection as for the normal control path
4066   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4067   set_memory(malloc, rawidx);
4068 
4069   // a normal slow-call doesn't change i_o, but an allocation does
4070   // we create a separate i_o projection for the normal control path
4071   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4072   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4073 
4074   // put in an initialization barrier
4075   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4076                                                  rawoop)->as_Initialize();
4077   assert(alloc->initialization() == init,  "2-way macro link must work");
4078   assert(init ->allocation()     == alloc, "2-way macro link must work");
4079   {
4080     // Extract memory strands which may participate in the new object's
4081     // initialization, and source them from the new InitializeNode.
4082     // This will allow us to observe initializations when they occur,
4083     // and link them properly (as a group) to the InitializeNode.
4084     assert(init->in(InitializeNode::Memory) == malloc, "");
4085     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4086     init->set_req(InitializeNode::Memory, minit_in);
4087     record_for_igvn(minit_in); // fold it up later, if possible
4088     _gvn.set_type(minit_in, Type::MEMORY);
4089     Node* minit_out = memory(rawidx);
4090     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4091     // Add an edge in the MergeMem for the header fields so an access
4092     // to one of those has correct memory state
4093     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4094     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4095     if (oop_type->isa_aryptr()) {
4096       const TypeAryPtr* arytype = oop_type->is_aryptr();
4097       if (arytype->is_flat()) {
4098         // Initially all flat array accesses share a single slice
4099         // but that changes after parsing. Prepare the memory graph so
4100         // it can optimize flat array accesses properly once they
4101         // don't share a single slice.
4102         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4103         C->set_flat_accesses_share_alias(false);
4104         ciInlineKlass* vk = arytype->elem()->inline_klass();
4105         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4106           ciField* field = vk->nonstatic_field_at(i);
4107           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4108             continue;  // do not bother to track really large numbers of fields
4109           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4110           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4111           int fieldidx = C->get_alias_index(adr_type, true);
4112           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4113           // can result in per flat array field Phis to be created which confuses the logic of
4114           // Compile::adjust_flat_array_access_aliases().
4115           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4116         }
4117         C->set_flat_accesses_share_alias(true);
4118         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4119       } else {
4120         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4121         int            elemidx  = C->get_alias_index(telemref);
4122         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4123       }
4124     } else if (oop_type->isa_instptr()) {
4125       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4126       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4127       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4128         ciField* field = ik->nonstatic_field_at(i);
4129         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4130           continue;  // do not bother to track really large numbers of fields
4131         // Find (or create) the alias category for this field:
4132         int fieldidx = C->alias_type(field)->index();
4133         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4134       }
4135     }
4136   }
4137 
4138   // Cast raw oop to the real thing...
4139   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4140   javaoop = _gvn.transform(javaoop);
4141   C->set_recent_alloc(control(), javaoop);
4142   assert(just_allocated_object(control()) == javaoop, "just allocated");
4143 
4144 #ifdef ASSERT
4145   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4146     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4147            "Ideal_allocation works");
4148     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4149            "Ideal_allocation works");
4150     if (alloc->is_AllocateArray()) {
4151       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4152              "Ideal_allocation works");
4153       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4154              "Ideal_allocation works");
4155     } else {
4156       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4157     }
4158   }
4159 #endif //ASSERT
4160 
4161   return javaoop;
4162 }
4163 
4164 //---------------------------new_instance--------------------------------------
4165 // This routine takes a klass_node which may be constant (for a static type)
4166 // or may be non-constant (for reflective code).  It will work equally well
4167 // for either, and the graph will fold nicely if the optimizer later reduces
4168 // the type to a constant.
4169 // The optional arguments are for specialized use by intrinsics:
4170 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4171 //  - If 'return_size_val', report the total object size to the caller.
4172 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4173 Node* GraphKit::new_instance(Node* klass_node,
4174                              Node* extra_slow_test,
4175                              Node* *return_size_val,
4176                              bool deoptimize_on_exception,
4177                              InlineTypeNode* inline_type_node) {
4178   // Compute size in doublewords
4179   // The size is always an integral number of doublewords, represented
4180   // as a positive bytewise size stored in the klass's layout_helper.
4181   // The layout_helper also encodes (in a low bit) the need for a slow path.
4182   jint  layout_con = Klass::_lh_neutral_value;
4183   Node* layout_val = get_layout_helper(klass_node, layout_con);
4184   bool  layout_is_con = (layout_val == nullptr);
4185 
4186   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4187   // Generate the initial go-slow test.  It's either ALWAYS (return a
4188   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4189   // case) a computed value derived from the layout_helper.
4190   Node* initial_slow_test = nullptr;
4191   if (layout_is_con) {
4192     assert(!StressReflectiveCode, "stress mode does not use these paths");
4193     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4194     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4195   } else {   // reflective case
4196     // This reflective path is used by Unsafe.allocateInstance.
4197     // (It may be stress-tested by specifying StressReflectiveCode.)
4198     // Basically, we want to get into the VM is there's an illegal argument.
4199     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4200     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4201     if (extra_slow_test != intcon(0)) {
4202       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4203     }
4204     // (Macro-expander will further convert this to a Bool, if necessary.)
4205   }
4206 
4207   // Find the size in bytes.  This is easy; it's the layout_helper.
4208   // The size value must be valid even if the slow path is taken.
4209   Node* size = nullptr;
4210   if (layout_is_con) {
4211     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4212   } else {   // reflective case
4213     // This reflective path is used by clone and Unsafe.allocateInstance.
4214     size = ConvI2X(layout_val);
4215 
4216     // Clear the low bits to extract layout_helper_size_in_bytes:
4217     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4218     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4219     size = _gvn.transform( new AndXNode(size, mask) );
4220   }
4221   if (return_size_val != nullptr) {
4222     (*return_size_val) = size;
4223   }
4224 
4225   // This is a precise notnull oop of the klass.
4226   // (Actually, it need not be precise if this is a reflective allocation.)
4227   // It's what we cast the result to.
4228   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4229   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4230   const TypeOopPtr* oop_type = tklass->as_instance_type();
4231 
4232   // Now generate allocation code
4233 
4234   // The entire memory state is needed for slow path of the allocation
4235   // since GC and deoptimization can happen.
4236   Node *mem = reset_memory();
4237   set_all_memory(mem); // Create new memory state
4238 
4239   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4240                                          control(), mem, i_o(),
4241                                          size, klass_node,
4242                                          initial_slow_test, inline_type_node);
4243 
4244   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4245 }
4246 
4247 //-------------------------------new_array-------------------------------------
4248 // helper for newarray and anewarray
4249 // The 'length' parameter is (obviously) the length of the array.
4250 // The optional arguments are for specialized use by intrinsics:
4251 //  - If 'return_size_val', report the non-padded array size (sum of header size
4252 //    and array body) to the caller.
4253 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4254 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4255                           Node* length,         // number of array elements
4256                           int   nargs,          // number of arguments to push back for uncommon trap
4257                           Node* *return_size_val,
4258                           bool deoptimize_on_exception,
4259                           Node* init_val) {
4260   jint  layout_con = Klass::_lh_neutral_value;
4261   Node* layout_val = get_layout_helper(klass_node, layout_con);
4262   bool  layout_is_con = (layout_val == nullptr);
4263 
4264   if (!layout_is_con && !StressReflectiveCode &&
4265       !too_many_traps(Deoptimization::Reason_class_check)) {
4266     // This is a reflective array creation site.
4267     // Optimistically assume that it is a subtype of Object[],
4268     // so that we can fold up all the address arithmetic.
4269     layout_con = Klass::array_layout_helper(T_OBJECT);
4270     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4271     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4272     { BuildCutout unless(this, bol_lh, PROB_MAX);
4273       inc_sp(nargs);
4274       uncommon_trap(Deoptimization::Reason_class_check,
4275                     Deoptimization::Action_maybe_recompile);
4276     }
4277     layout_val = nullptr;
4278     layout_is_con = true;
4279   }
4280 
4281   // Generate the initial go-slow test.  Make sure we do not overflow
4282   // if length is huge (near 2Gig) or negative!  We do not need
4283   // exact double-words here, just a close approximation of needed
4284   // double-words.  We can't add any offset or rounding bits, lest we
4285   // take a size -1 of bytes and make it positive.  Use an unsigned
4286   // compare, so negative sizes look hugely positive.
4287   int fast_size_limit = FastAllocateSizeLimit;
4288   if (layout_is_con) {
4289     assert(!StressReflectiveCode, "stress mode does not use these paths");
4290     // Increase the size limit if we have exact knowledge of array type.
4291     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4292     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4293   }
4294 
4295   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4296   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4297 
4298   // --- Size Computation ---
4299   // array_size = round_to_heap(array_header + (length << elem_shift));
4300   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4301   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4302   // The rounding mask is strength-reduced, if possible.
4303   int round_mask = MinObjAlignmentInBytes - 1;
4304   Node* header_size = nullptr;
4305   // (T_BYTE has the weakest alignment and size restrictions...)
4306   if (layout_is_con) {
4307     int       hsize  = Klass::layout_helper_header_size(layout_con);
4308     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4309     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4310     if ((round_mask & ~right_n_bits(eshift)) == 0)
4311       round_mask = 0;  // strength-reduce it if it goes away completely
4312     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4313     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4314     assert(header_size_min <= hsize, "generic minimum is smallest");
4315     header_size = intcon(hsize);
4316   } else {
4317     Node* hss   = intcon(Klass::_lh_header_size_shift);
4318     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4319     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4320     header_size = _gvn.transform(new AndINode(header_size, hsm));
4321   }
4322 
4323   Node* elem_shift = nullptr;
4324   if (layout_is_con) {
4325     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4326     if (eshift != 0)
4327       elem_shift = intcon(eshift);
4328   } else {
4329     // There is no need to mask or shift this value.
4330     // The semantics of LShiftINode include an implicit mask to 0x1F.
4331     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4332     elem_shift = layout_val;
4333   }
4334 
4335   // Transition to native address size for all offset calculations:
4336   Node* lengthx = ConvI2X(length);
4337   Node* headerx = ConvI2X(header_size);
4338 #ifdef _LP64
4339   { const TypeInt* tilen = _gvn.find_int_type(length);
4340     if (tilen != nullptr && tilen->_lo < 0) {
4341       // Add a manual constraint to a positive range.  Cf. array_element_address.
4342       jint size_max = fast_size_limit;
4343       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4344       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4345 
4346       // Only do a narrow I2L conversion if the range check passed.
4347       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4348       _gvn.transform(iff);
4349       RegionNode* region = new RegionNode(3);
4350       _gvn.set_type(region, Type::CONTROL);
4351       lengthx = new PhiNode(region, TypeLong::LONG);
4352       _gvn.set_type(lengthx, TypeLong::LONG);
4353 
4354       // Range check passed. Use ConvI2L node with narrow type.
4355       Node* passed = IfFalse(iff);
4356       region->init_req(1, passed);
4357       // Make I2L conversion control dependent to prevent it from
4358       // floating above the range check during loop optimizations.
4359       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4360 
4361       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4362       region->init_req(2, IfTrue(iff));
4363       lengthx->init_req(2, ConvI2X(length));
4364 
4365       set_control(region);
4366       record_for_igvn(region);
4367       record_for_igvn(lengthx);
4368     }
4369   }
4370 #endif
4371 
4372   // Combine header size and body size for the array copy part, then align (if
4373   // necessary) for the allocation part. This computation cannot overflow,
4374   // because it is used only in two places, one where the length is sharply
4375   // limited, and the other after a successful allocation.
4376   Node* abody = lengthx;
4377   if (elem_shift != nullptr) {
4378     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4379   }
4380   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4381 
4382   if (return_size_val != nullptr) {
4383     // This is the size
4384     (*return_size_val) = non_rounded_size;
4385   }
4386 
4387   Node* size = non_rounded_size;
4388   if (round_mask != 0) {
4389     Node* mask1 = MakeConX(round_mask);
4390     size = _gvn.transform(new AddXNode(size, mask1));
4391     Node* mask2 = MakeConX(~round_mask);
4392     size = _gvn.transform(new AndXNode(size, mask2));
4393   }
4394   // else if round_mask == 0, the size computation is self-rounding
4395 
4396   // Now generate allocation code
4397 
4398   // The entire memory state is needed for slow path of the allocation
4399   // since GC and deoptimization can happen.
4400   Node *mem = reset_memory();
4401   set_all_memory(mem); // Create new memory state
4402 
4403   if (initial_slow_test->is_Bool()) {
4404     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4405     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4406   }
4407 
4408   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4409   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4410 
4411   Node* raw_init_value = nullptr;
4412   if (init_val != nullptr) {
4413     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4414     if (ary_type->is_flat()) {
4415       initial_slow_test = intcon(1);
4416     }
4417 
4418     if (UseCompressedOops) {
4419       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4420       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4421       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4422       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4423       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4424     } else {
4425       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4426     }
4427   }
4428 
4429   Node* valid_length_test = _gvn.intcon(1);
4430   if (ary_type->isa_aryptr()) {
4431     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4432     jint max = TypeAryPtr::max_array_length(bt);
4433     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4434     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4435   }
4436 
4437   // Create the AllocateArrayNode and its result projections
4438   AllocateArrayNode* alloc
4439     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4440                             control(), mem, i_o(),
4441                             size, klass_node,
4442                             initial_slow_test,
4443                             length, valid_length_test,
4444                             init_val, raw_init_value);
4445   // Cast to correct type.  Note that the klass_node may be constant or not,
4446   // and in the latter case the actual array type will be inexact also.
4447   // (This happens via a non-constant argument to inline_native_newArray.)
4448   // In any case, the value of klass_node provides the desired array type.
4449   const TypeInt* length_type = _gvn.find_int_type(length);
4450   if (ary_type->isa_aryptr() && length_type != nullptr) {
4451     // Try to get a better type than POS for the size
4452     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4453   }
4454 
4455   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4456 
4457   array_ideal_length(alloc, ary_type, true);
4458   return javaoop;
4459 }
4460 
4461 // The following "Ideal_foo" functions are placed here because they recognize
4462 // the graph shapes created by the functions immediately above.
4463 
4464 //---------------------------Ideal_allocation----------------------------------
4465 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4466 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4467   if (ptr == nullptr) {     // reduce dumb test in callers
4468     return nullptr;
4469   }
4470 
4471   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4472   ptr = bs->step_over_gc_barrier(ptr);
4473 
4474   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4475     ptr = ptr->in(1);
4476     if (ptr == nullptr) return nullptr;
4477   }
4478   // Return null for allocations with several casts:
4479   //   j.l.reflect.Array.newInstance(jobject, jint)
4480   //   Object.clone()
4481   // to keep more precise type from last cast.
4482   if (ptr->is_Proj()) {
4483     Node* allo = ptr->in(0);
4484     if (allo != nullptr && allo->is_Allocate()) {
4485       return allo->as_Allocate();
4486     }
4487   }
4488   // Report failure to match.
4489   return nullptr;
4490 }
4491 
4492 // Fancy version which also strips off an offset (and reports it to caller).
4493 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4494                                              intptr_t& offset) {
4495   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4496   if (base == nullptr)  return nullptr;
4497   return Ideal_allocation(base);
4498 }
4499 
4500 // Trace Initialize <- Proj[Parm] <- Allocate
4501 AllocateNode* InitializeNode::allocation() {
4502   Node* rawoop = in(InitializeNode::RawAddress);
4503   if (rawoop->is_Proj()) {
4504     Node* alloc = rawoop->in(0);
4505     if (alloc->is_Allocate()) {
4506       return alloc->as_Allocate();
4507     }
4508   }
4509   return nullptr;
4510 }
4511 
4512 // Trace Allocate -> Proj[Parm] -> Initialize
4513 InitializeNode* AllocateNode::initialization() {
4514   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4515   if (rawoop == nullptr)  return nullptr;
4516   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4517     Node* init = rawoop->fast_out(i);
4518     if (init->is_Initialize()) {
4519       assert(init->as_Initialize()->allocation() == this, "2-way link");
4520       return init->as_Initialize();
4521     }
4522   }
4523   return nullptr;
4524 }
4525 
4526 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4527 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4528   // Too many traps seen?
4529   if (too_many_traps(reason)) {
4530 #ifdef ASSERT
4531     if (TraceLoopPredicate) {
4532       int tc = C->trap_count(reason);
4533       tty->print("too many traps=%s tcount=%d in ",
4534                     Deoptimization::trap_reason_name(reason), tc);
4535       method()->print(); // which method has too many predicate traps
4536       tty->cr();
4537     }
4538 #endif
4539     // We cannot afford to take more traps here,
4540     // do not generate Parse Predicate.
4541     return;
4542   }
4543 
4544   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4545   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4546   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4547   {
4548     PreserveJVMState pjvms(this);
4549     set_control(if_false);
4550     inc_sp(nargs);
4551     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4552   }
4553   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4554   set_control(if_true);
4555 }
4556 
4557 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4558 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4559 void GraphKit::add_parse_predicates(int nargs) {
4560   if (UseLoopPredicate) {
4561     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4562     if (UseProfiledLoopPredicate) {
4563       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4564     }
4565   }
4566   add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4567   // Loop Limit Check Predicate should be near the loop.
4568   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4569 }
4570 
4571 void GraphKit::sync_kit(IdealKit& ideal) {
4572   set_all_memory(ideal.merged_memory());
4573   set_i_o(ideal.i_o());
4574   set_control(ideal.ctrl());
4575 }
4576 
4577 void GraphKit::final_sync(IdealKit& ideal) {
4578   // Final sync IdealKit and graphKit.
4579   sync_kit(ideal);
4580 }
4581 
4582 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4583   Node* len = load_array_length(load_String_value(str, set_ctrl));
4584   Node* coder = load_String_coder(str, set_ctrl);
4585   // Divide length by 2 if coder is UTF16
4586   return _gvn.transform(new RShiftINode(len, coder));
4587 }
4588 
4589 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4590   int value_offset = java_lang_String::value_offset();
4591   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4592                                                      false, nullptr, Type::Offset(0));
4593   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4594   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4595                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4596                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4597   Node* p = basic_plus_adr(str, str, value_offset);
4598   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4599                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4600   return load;
4601 }
4602 
4603 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4604   if (!CompactStrings) {
4605     return intcon(java_lang_String::CODER_UTF16);
4606   }
4607   int coder_offset = java_lang_String::coder_offset();
4608   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4609                                                      false, nullptr, Type::Offset(0));
4610   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4611 
4612   Node* p = basic_plus_adr(str, str, coder_offset);
4613   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4614                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4615   return load;
4616 }
4617 
4618 void GraphKit::store_String_value(Node* str, Node* value) {
4619   int value_offset = java_lang_String::value_offset();
4620   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4621                                                      false, nullptr, Type::Offset(0));
4622   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4623 
4624   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4625                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4626 }
4627 
4628 void GraphKit::store_String_coder(Node* str, Node* value) {
4629   int coder_offset = java_lang_String::coder_offset();
4630   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4631                                                      false, nullptr, Type::Offset(0));
4632   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4633 
4634   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4635                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4636 }
4637 
4638 // Capture src and dst memory state with a MergeMemNode
4639 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4640   if (src_type == dst_type) {
4641     // Types are equal, we don't need a MergeMemNode
4642     return memory(src_type);
4643   }
4644   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4645   record_for_igvn(merge); // fold it up later, if possible
4646   int src_idx = C->get_alias_index(src_type);
4647   int dst_idx = C->get_alias_index(dst_type);
4648   merge->set_memory_at(src_idx, memory(src_idx));
4649   merge->set_memory_at(dst_idx, memory(dst_idx));
4650   return merge;
4651 }
4652 
4653 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4654   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4655   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4656   // If input and output memory types differ, capture both states to preserve
4657   // the dependency between preceding and subsequent loads/stores.
4658   // For example, the following program:
4659   //  StoreB
4660   //  compress_string
4661   //  LoadB
4662   // has this memory graph (use->def):
4663   //  LoadB -> compress_string -> CharMem
4664   //             ... -> StoreB -> ByteMem
4665   // The intrinsic hides the dependency between LoadB and StoreB, causing
4666   // the load to read from memory not containing the result of the StoreB.
4667   // The correct memory graph should look like this:
4668   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4669   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4670   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4671   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4672   set_memory(res_mem, TypeAryPtr::BYTES);
4673   return str;
4674 }
4675 
4676 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4677   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4678   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4679   // Capture src and dst memory (see comment in 'compress_string').
4680   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4681   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4682   set_memory(_gvn.transform(str), dst_type);
4683 }
4684 
4685 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4686   /**
4687    * int i_char = start;
4688    * for (int i_byte = 0; i_byte < count; i_byte++) {
4689    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4690    * }
4691    */
4692   add_parse_predicates();
4693   C->set_has_loops(true);
4694 
4695   RegionNode* head = new RegionNode(3);
4696   head->init_req(1, control());
4697   gvn().set_type(head, Type::CONTROL);
4698   record_for_igvn(head);
4699 
4700   Node* i_byte = new PhiNode(head, TypeInt::INT);
4701   i_byte->init_req(1, intcon(0));
4702   gvn().set_type(i_byte, TypeInt::INT);
4703   record_for_igvn(i_byte);
4704 
4705   Node* i_char = new PhiNode(head, TypeInt::INT);
4706   i_char->init_req(1, start);
4707   gvn().set_type(i_char, TypeInt::INT);
4708   record_for_igvn(i_char);
4709 
4710   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4711   gvn().set_type(mem, Type::MEMORY);
4712   record_for_igvn(mem);
4713   set_control(head);
4714   set_memory(mem, TypeAryPtr::BYTES);
4715   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4716   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4717                              AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false,
4718                              false, true /* mismatched */);
4719 
4720   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4721   head->init_req(2, IfTrue(iff));
4722   mem->init_req(2, st);
4723   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4724   i_char->init_req(2, AddI(i_char, intcon(2)));
4725 
4726   set_control(IfFalse(iff));
4727   set_memory(st, TypeAryPtr::BYTES);
4728 }
4729 
4730 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4731   if (!field->is_constant()) {
4732     return nullptr; // Field not marked as constant.
4733   }
4734   ciInstance* holder = nullptr;
4735   if (!field->is_static()) {
4736     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4737     if (const_oop != nullptr && const_oop->is_instance()) {
4738       holder = const_oop->as_instance();
4739     }
4740   }
4741   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4742                                                         /*is_unsigned_load=*/false);
4743   if (con_type != nullptr) {
4744     Node* con = makecon(con_type);
4745     if (field->type()->is_inlinetype()) {
4746       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4747     } else if (con_type->is_inlinetypeptr()) {
4748       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4749     }
4750     return con;
4751   }
4752   return nullptr;
4753 }
4754 
4755 //---------------------------load_mirror_from_klass----------------------------
4756 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4757 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4758   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4759   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4760   // mirror = ((OopHandle)mirror)->resolve();
4761   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4762 }
4763 
4764 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4765   const Type* obj_type = obj->bottom_type();
4766   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4767   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4768     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4769     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4770     obj = casted_obj;
4771   }
4772   if (sig_type->is_inlinetypeptr()) {
4773     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4774   }
4775   return obj;
4776 }