1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_exception_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_exception_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing_internal()) {
 356     return;  // dying anyway...
 357   }
 358   JVMState* ex_jvms = ex_map->_jvms;
 359   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 360   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 361   // TODO 8325632 Re-enable
 362   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 363   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 364   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 365   assert(ex_map->req() == phi_map->req(), "matching maps");
 366   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 367   Node*         hidden_merge_mark = root();
 368   Node*         region  = phi_map->control();
 369   MergeMemNode* phi_mem = phi_map->merged_memory();
 370   MergeMemNode* ex_mem  = ex_map->merged_memory();
 371   if (region->in(0) != hidden_merge_mark) {
 372     // The control input is not (yet) a specially-marked region in phi_map.
 373     // Make it so, and build some phis.
 374     region = new RegionNode(2);
 375     _gvn.set_type(region, Type::CONTROL);
 376     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 377     region->init_req(1, phi_map->control());
 378     phi_map->set_control(region);
 379     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 380     record_for_igvn(io_phi);
 381     _gvn.set_type(io_phi, Type::ABIO);
 382     phi_map->set_i_o(io_phi);
 383     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 384       Node* m = mms.memory();
 385       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 386       record_for_igvn(m_phi);
 387       _gvn.set_type(m_phi, Type::MEMORY);
 388       mms.set_memory(m_phi);
 389     }
 390   }
 391 
 392   // Either or both of phi_map and ex_map might already be converted into phis.
 393   Node* ex_control = ex_map->control();
 394   // if there is special marking on ex_map also, we add multiple edges from src
 395   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 396   // how wide was the destination phi_map, originally?
 397   uint orig_width = region->req();
 398 
 399   if (add_multiple) {
 400     add_n_reqs(region, ex_control);
 401     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 402   } else {
 403     // ex_map has no merges, so we just add single edges everywhere
 404     add_one_req(region, ex_control);
 405     add_one_req(phi_map->i_o(), ex_map->i_o());
 406   }
 407   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 408     if (mms.is_empty()) {
 409       // get a copy of the base memory, and patch some inputs into it
 410       const TypePtr* adr_type = mms.adr_type(C);
 411       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 412       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 413       mms.set_memory(phi);
 414       // Prepare to append interesting stuff onto the newly sliced phi:
 415       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 416     }
 417     // Append stuff from ex_map:
 418     if (add_multiple) {
 419       add_n_reqs(mms.memory(), mms.memory2());
 420     } else {
 421       add_one_req(mms.memory(), mms.memory2());
 422     }
 423   }
 424   uint limit = ex_map->req();
 425   for (uint i = TypeFunc::Parms; i < limit; i++) {
 426     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 427     if (i == tos)  i = ex_jvms->monoff();
 428     Node* src = ex_map->in(i);
 429     Node* dst = phi_map->in(i);
 430     if (src != dst) {
 431       PhiNode* phi;
 432       if (dst->in(0) != region) {
 433         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 434         record_for_igvn(phi);
 435         _gvn.set_type(phi, phi->type());
 436         phi_map->set_req(i, dst);
 437         // Prepare to append interesting stuff onto the new phi:
 438         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 439       } else {
 440         assert(dst->is_Phi(), "nobody else uses a hidden region");
 441         phi = dst->as_Phi();
 442       }
 443       if (add_multiple && src->in(0) == ex_control) {
 444         // Both are phis.
 445         add_n_reqs(dst, src);
 446       } else {
 447         while (dst->req() < region->req())  add_one_req(dst, src);
 448       }
 449       const Type* srctype = _gvn.type(src);
 450       if (phi->type() != srctype) {
 451         const Type* dsttype = phi->type()->meet_speculative(srctype);
 452         if (phi->type() != dsttype) {
 453           phi->set_type(dsttype);
 454           _gvn.set_type(phi, dsttype);
 455         }
 456       }
 457     }
 458   }
 459   phi_map->merge_replaced_nodes_with(ex_map);
 460 }
 461 
 462 //--------------------------use_exception_state--------------------------------
 463 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 464   if (failing_internal()) { stop(); return top(); }
 465   Node* region = phi_map->control();
 466   Node* hidden_merge_mark = root();
 467   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 468   Node* ex_oop = clear_saved_ex_oop(phi_map);
 469   if (region->in(0) == hidden_merge_mark) {
 470     // Special marking for internal ex-states.  Process the phis now.
 471     region->set_req(0, region);  // now it's an ordinary region
 472     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 473     // Note: Setting the jvms also sets the bci and sp.
 474     set_control(_gvn.transform(region));
 475     uint tos = jvms()->stkoff() + sp();
 476     for (uint i = 1; i < tos; i++) {
 477       Node* x = phi_map->in(i);
 478       if (x->in(0) == region) {
 479         assert(x->is_Phi(), "expected a special phi");
 480         phi_map->set_req(i, _gvn.transform(x));
 481       }
 482     }
 483     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 484       Node* x = mms.memory();
 485       if (x->in(0) == region) {
 486         assert(x->is_Phi(), "nobody else uses a hidden region");
 487         mms.set_memory(_gvn.transform(x));
 488       }
 489     }
 490     if (ex_oop->in(0) == region) {
 491       assert(ex_oop->is_Phi(), "expected a special phi");
 492       ex_oop = _gvn.transform(ex_oop);
 493     }
 494   } else {
 495     set_jvms(phi_map->jvms());
 496   }
 497 
 498   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 499   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 500   return ex_oop;
 501 }
 502 
 503 //---------------------------------java_bc-------------------------------------
 504 Bytecodes::Code GraphKit::java_bc() const {
 505   ciMethod* method = this->method();
 506   int       bci    = this->bci();
 507   if (method != nullptr && bci != InvocationEntryBci)
 508     return method->java_code_at_bci(bci);
 509   else
 510     return Bytecodes::_illegal;
 511 }
 512 
 513 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 514                                                           bool must_throw) {
 515     // if the exception capability is set, then we will generate code
 516     // to check the JavaThread.should_post_on_exceptions flag to see
 517     // if we actually need to report exception events (for this
 518     // thread).  If we don't need to report exception events, we will
 519     // take the normal fast path provided by add_exception_events.  If
 520     // exception event reporting is enabled for this thread, we will
 521     // take the uncommon_trap in the BuildCutout below.
 522 
 523     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 524     Node* jthread = _gvn.transform(new ThreadLocalNode());
 525     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 526     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
 527 
 528     // Test the should_post_on_exceptions_flag vs. 0
 529     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 530     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 531 
 532     // Branch to slow_path if should_post_on_exceptions_flag was true
 533     { BuildCutout unless(this, tst, PROB_MAX);
 534       // Do not try anything fancy if we're notifying the VM on every throw.
 535       // Cf. case Bytecodes::_athrow in parse2.cpp.
 536       uncommon_trap(reason, Deoptimization::Action_none,
 537                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 538     }
 539 
 540 }
 541 
 542 //------------------------------builtin_throw----------------------------------
 543 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 544   builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true);
 545 }
 546 
 547 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason,
 548                              ciInstance* ex_obj,
 549                              bool allow_too_many_traps) {
 550   // If this throw happens frequently, an uncommon trap might cause
 551   // a performance pothole.  If there is a local exception handler,
 552   // and if this particular bytecode appears to be deoptimizing often,
 553   // let us handle the throw inline, with a preconstructed instance.
 554   // Note:   If the deopt count has blown up, the uncommon trap
 555   // runtime is going to flush this nmethod, not matter what.
 556   if (is_builtin_throw_hot(reason)) {
 557     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 558       // If the throw is local, we use a pre-existing instance and
 559       // punt on the backtrace.  This would lead to a missing backtrace
 560       // (a repeat of 4292742) if the backtrace object is ever asked
 561       // for its backtrace.
 562       // Fixing this remaining case of 4292742 requires some flavor of
 563       // escape analysis.  Leave that for the future.
 564       if (env()->jvmti_can_post_on_exceptions()) {
 565         // check if we must post exception events, take uncommon trap if so
 566         uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/);
 567         // here if should_post_on_exceptions is false
 568         // continue on with the normal codegen
 569       }
 570 
 571       // Cheat with a preallocated exception object.
 572       if (C->log() != nullptr)
 573         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 574                        Deoptimization::trap_reason_name(reason));
 575       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 576       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 577 
 578       // Clear the detail message of the preallocated exception object.
 579       // Weblogic sometimes mutates the detail message of exceptions
 580       // using reflection.
 581       int offset = java_lang_Throwable::get_detailMessage_offset();
 582       const TypePtr* adr_typ = ex_con->add_offset(offset);
 583 
 584       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 585       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 586       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 587 
 588       if (!method()->has_exception_handlers()) {
 589         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 590         // This prevents issues with exception handling and late inlining.
 591         set_sp(0);
 592         clean_stack(0);
 593       }
 594 
 595       add_exception_state(make_exception_state(ex_node));
 596       return;
 597     } else if (builtin_throw_too_many_traps(reason, ex_obj)) {
 598       // We cannot afford to take too many traps here. Suffer in the interpreter instead.
 599       assert(allow_too_many_traps, "not allowed");
 600       if (C->log() != nullptr) {
 601         C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 602                        Deoptimization::trap_reason_name(reason),
 603                        C->trap_count(reason));
 604       }
 605       uncommon_trap(reason, Deoptimization::Action_none,
 606                     (ciKlass*) nullptr, (char*) nullptr,
 607                     true /*must_throw*/);
 608       return;
 609     }
 610   }
 611 
 612   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 613   // It won't be much cheaper than bailing to the interp., since we'll
 614   // have to pass up all the debug-info, and the runtime will have to
 615   // create the stack trace.
 616 
 617   // Usual case:  Bail to interpreter.
 618   // Reserve the right to recompile if we haven't seen anything yet.
 619 
 620   // "must_throw" prunes the JVM state to include only the stack, if there
 621   // are no local exception handlers.  This should cut down on register
 622   // allocation time and code size, by drastically reducing the number
 623   // of in-edges on the call to the uncommon trap.
 624   uncommon_trap(reason, Deoptimization::Action_maybe_recompile,
 625                 (ciKlass*) nullptr, (char*) nullptr,
 626                 true /*must_throw*/);
 627 }
 628 
 629 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) {
 630   // If this particular condition has not yet happened at this
 631   // bytecode, then use the uncommon trap mechanism, and allow for
 632   // a future recompilation if several traps occur here.
 633   // If the throw is hot, try to use a more complicated inline mechanism
 634   // which keeps execution inside the compiled code.
 635   if (ProfileTraps) {
 636     if (too_many_traps(reason)) {
 637       return true;
 638     }
 639     // (If there is no MDO at all, assume it is early in
 640     // execution, and that any deopts are part of the
 641     // startup transient, and don't need to be remembered.)
 642 
 643     // Also, if there is a local exception handler, treat all throws
 644     // as hot if there has been at least one in this method.
 645     if (C->trap_count(reason) != 0 &&
 646         method()->method_data()->trap_count(reason) != 0 &&
 647         has_exception_handler()) {
 648       return true;
 649     }
 650   }
 651   return false;
 652 }
 653 
 654 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason,
 655                                             ciInstance* ex_obj) {
 656   if (is_builtin_throw_hot(reason)) {
 657     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 658       return false; // no traps; throws preallocated exception instead
 659     }
 660     ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 661     if (method()->method_data()->trap_recompiled_at(bci(), m) ||
 662         C->too_many_traps(reason)) {
 663       return true;
 664     }
 665   }
 666   return false;
 667 }
 668 
 669 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const {
 670   // Preallocated exception objects to use when we don't need the backtrace.
 671   switch (reason) {
 672   case Deoptimization::Reason_null_check:
 673     return env()->NullPointerException_instance();
 674   case Deoptimization::Reason_div0_check:
 675     return env()->ArithmeticException_instance();
 676   case Deoptimization::Reason_range_check:
 677     return env()->ArrayIndexOutOfBoundsException_instance();
 678   case Deoptimization::Reason_class_check:
 679     return env()->ClassCastException_instance();
 680   case Deoptimization::Reason_array_check:
 681     return env()->ArrayStoreException_instance();
 682   default:
 683     return nullptr;
 684   }
 685 }
 686 
 687 //----------------------------PreserveJVMState---------------------------------
 688 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 689   debug_only(kit->verify_map());
 690   _kit    = kit;
 691   _map    = kit->map();   // preserve the map
 692   _sp     = kit->sp();
 693   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 694 #ifdef ASSERT
 695   _bci    = kit->bci();
 696   Parse* parser = kit->is_Parse();
 697   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 698   _block  = block;
 699 #endif
 700 }
 701 PreserveJVMState::~PreserveJVMState() {
 702   GraphKit* kit = _kit;
 703 #ifdef ASSERT
 704   assert(kit->bci() == _bci, "bci must not shift");
 705   Parse* parser = kit->is_Parse();
 706   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 707   assert(block == _block,    "block must not shift");
 708 #endif
 709   kit->set_map(_map);
 710   kit->set_sp(_sp);
 711 }
 712 
 713 
 714 //-----------------------------BuildCutout-------------------------------------
 715 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 716   : PreserveJVMState(kit)
 717 {
 718   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 719   SafePointNode* outer_map = _map;   // preserved map is caller's
 720   SafePointNode* inner_map = kit->map();
 721   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 722   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 723   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 724 }
 725 BuildCutout::~BuildCutout() {
 726   GraphKit* kit = _kit;
 727   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 728 }
 729 
 730 //---------------------------PreserveReexecuteState----------------------------
 731 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 732   assert(!kit->stopped(), "must call stopped() before");
 733   _kit    =    kit;
 734   _sp     =    kit->sp();
 735   _reexecute = kit->jvms()->_reexecute;
 736 }
 737 PreserveReexecuteState::~PreserveReexecuteState() {
 738   if (_kit->stopped()) return;
 739   _kit->jvms()->_reexecute = _reexecute;
 740   _kit->set_sp(_sp);
 741 }
 742 
 743 //------------------------------clone_map--------------------------------------
 744 // Implementation of PreserveJVMState
 745 //
 746 // Only clone_map(...) here. If this function is only used in the
 747 // PreserveJVMState class we may want to get rid of this extra
 748 // function eventually and do it all there.
 749 
 750 SafePointNode* GraphKit::clone_map() {
 751   if (map() == nullptr)  return nullptr;
 752 
 753   // Clone the memory edge first
 754   Node* mem = MergeMemNode::make(map()->memory());
 755   gvn().set_type_bottom(mem);
 756 
 757   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 758   JVMState* jvms = this->jvms();
 759   JVMState* clonejvms = jvms->clone_shallow(C);
 760   clonemap->set_memory(mem);
 761   clonemap->set_jvms(clonejvms);
 762   clonejvms->set_map(clonemap);
 763   record_for_igvn(clonemap);
 764   gvn().set_type_bottom(clonemap);
 765   return clonemap;
 766 }
 767 
 768 //-----------------------------destruct_map_clone------------------------------
 769 //
 770 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 771 // to destruct/free/delete in the exact opposite order as clone_map().
 772 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 773   if (sfp == nullptr) return;
 774 
 775   Node* mem = sfp->memory();
 776   JVMState* jvms = sfp->jvms();
 777 
 778   if (jvms != nullptr) {
 779     delete jvms;
 780   }
 781 
 782   remove_for_igvn(sfp);
 783   gvn().clear_type(sfp);
 784   sfp->destruct(&_gvn);
 785 
 786   if (mem != nullptr) {
 787     gvn().clear_type(mem);
 788     mem->destruct(&_gvn);
 789   }
 790 }
 791 
 792 //-----------------------------set_map_clone-----------------------------------
 793 void GraphKit::set_map_clone(SafePointNode* m) {
 794   _map = m;
 795   _map = clone_map();
 796   _map->set_next_exception(nullptr);
 797   debug_only(verify_map());
 798 }
 799 
 800 
 801 //----------------------------kill_dead_locals---------------------------------
 802 // Detect any locals which are known to be dead, and force them to top.
 803 void GraphKit::kill_dead_locals() {
 804   // Consult the liveness information for the locals.  If any
 805   // of them are unused, then they can be replaced by top().  This
 806   // should help register allocation time and cut down on the size
 807   // of the deoptimization information.
 808 
 809   // This call is made from many of the bytecode handling
 810   // subroutines called from the Big Switch in do_one_bytecode.
 811   // Every bytecode which might include a slow path is responsible
 812   // for killing its dead locals.  The more consistent we
 813   // are about killing deads, the fewer useless phis will be
 814   // constructed for them at various merge points.
 815 
 816   // bci can be -1 (InvocationEntryBci).  We return the entry
 817   // liveness for the method.
 818 
 819   if (method() == nullptr || method()->code_size() == 0) {
 820     // We are building a graph for a call to a native method.
 821     // All locals are live.
 822     return;
 823   }
 824 
 825   ResourceMark rm;
 826 
 827   // Consult the liveness information for the locals.  If any
 828   // of them are unused, then they can be replaced by top().  This
 829   // should help register allocation time and cut down on the size
 830   // of the deoptimization information.
 831   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 832 
 833   int len = (int)live_locals.size();
 834   assert(len <= jvms()->loc_size(), "too many live locals");
 835   for (int local = 0; local < len; local++) {
 836     if (!live_locals.at(local)) {
 837       set_local(local, top());
 838     }
 839   }
 840 }
 841 
 842 #ifdef ASSERT
 843 //-------------------------dead_locals_are_killed------------------------------
 844 // Return true if all dead locals are set to top in the map.
 845 // Used to assert "clean" debug info at various points.
 846 bool GraphKit::dead_locals_are_killed() {
 847   if (method() == nullptr || method()->code_size() == 0) {
 848     // No locals need to be dead, so all is as it should be.
 849     return true;
 850   }
 851 
 852   // Make sure somebody called kill_dead_locals upstream.
 853   ResourceMark rm;
 854   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 855     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 856     SafePointNode* map = jvms->map();
 857     ciMethod* method = jvms->method();
 858     int       bci    = jvms->bci();
 859     if (jvms == this->jvms()) {
 860       bci = this->bci();  // it might not yet be synched
 861     }
 862     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 863     int len = (int)live_locals.size();
 864     if (!live_locals.is_valid() || len == 0)
 865       // This method is trivial, or is poisoned by a breakpoint.
 866       return true;
 867     assert(len == jvms->loc_size(), "live map consistent with locals map");
 868     for (int local = 0; local < len; local++) {
 869       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 870         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 871           tty->print_cr("Zombie local %d: ", local);
 872           jvms->dump();
 873         }
 874         return false;
 875       }
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 #endif //ASSERT
 882 
 883 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 884 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 885   ciMethod* cur_method = jvms->method();
 886   int       cur_bci   = jvms->bci();
 887   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 888     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 889     return Interpreter::bytecode_should_reexecute(code) ||
 890            (is_anewarray && (code == Bytecodes::_multianewarray));
 891     // Reexecute _multianewarray bytecode which was replaced with
 892     // sequence of [a]newarray. See Parse::do_multianewarray().
 893     //
 894     // Note: interpreter should not have it set since this optimization
 895     // is limited by dimensions and guarded by flag so in some cases
 896     // multianewarray() runtime calls will be generated and
 897     // the bytecode should not be reexecutes (stack will not be reset).
 898   } else {
 899     return false;
 900   }
 901 }
 902 
 903 // Helper function for adding JVMState and debug information to node
 904 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 905   // Add the safepoint edges to the call (or other safepoint).
 906 
 907   // Make sure dead locals are set to top.  This
 908   // should help register allocation time and cut down on the size
 909   // of the deoptimization information.
 910   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 911 
 912   // Walk the inline list to fill in the correct set of JVMState's
 913   // Also fill in the associated edges for each JVMState.
 914 
 915   // If the bytecode needs to be reexecuted we need to put
 916   // the arguments back on the stack.
 917   const bool should_reexecute = jvms()->should_reexecute();
 918   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 919 
 920   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 921   // undefined if the bci is different.  This is normal for Parse but it
 922   // should not happen for LibraryCallKit because only one bci is processed.
 923   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 924          "in LibraryCallKit the reexecute bit should not change");
 925 
 926   // If we are guaranteed to throw, we can prune everything but the
 927   // input to the current bytecode.
 928   bool can_prune_locals = false;
 929   uint stack_slots_not_pruned = 0;
 930   int inputs = 0, depth = 0;
 931   if (must_throw) {
 932     assert(method() == youngest_jvms->method(), "sanity");
 933     if (compute_stack_effects(inputs, depth)) {
 934       can_prune_locals = true;
 935       stack_slots_not_pruned = inputs;
 936     }
 937   }
 938 
 939   if (env()->should_retain_local_variables()) {
 940     // At any safepoint, this method can get breakpointed, which would
 941     // then require an immediate deoptimization.
 942     can_prune_locals = false;  // do not prune locals
 943     stack_slots_not_pruned = 0;
 944   }
 945 
 946   // do not scribble on the input jvms
 947   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 948   call->set_jvms(out_jvms); // Start jvms list for call node
 949 
 950   // For a known set of bytecodes, the interpreter should reexecute them if
 951   // deoptimization happens. We set the reexecute state for them here
 952   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 953       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 954 #ifdef ASSERT
 955     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 956     assert(method() == youngest_jvms->method(), "sanity");
 957     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 958     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 959 #endif // ASSERT
 960     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 961   }
 962 
 963   // Presize the call:
 964   DEBUG_ONLY(uint non_debug_edges = call->req());
 965   call->add_req_batch(top(), youngest_jvms->debug_depth());
 966   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 967 
 968   // Set up edges so that the call looks like this:
 969   //  Call [state:] ctl io mem fptr retadr
 970   //       [parms:] parm0 ... parmN
 971   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 972   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 973   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 974   // Note that caller debug info precedes callee debug info.
 975 
 976   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 977   uint debug_ptr = call->req();
 978 
 979   // Loop over the map input edges associated with jvms, add them
 980   // to the call node, & reset all offsets to match call node array.
 981 
 982   JVMState* callee_jvms = nullptr;
 983   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 984     uint debug_end   = debug_ptr;
 985     uint debug_start = debug_ptr - in_jvms->debug_size();
 986     debug_ptr = debug_start;  // back up the ptr
 987 
 988     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 989     uint j, k, l;
 990     SafePointNode* in_map = in_jvms->map();
 991     out_jvms->set_map(call);
 992 
 993     if (can_prune_locals) {
 994       assert(in_jvms->method() == out_jvms->method(), "sanity");
 995       // If the current throw can reach an exception handler in this JVMS,
 996       // then we must keep everything live that can reach that handler.
 997       // As a quick and dirty approximation, we look for any handlers at all.
 998       if (in_jvms->method()->has_exception_handlers()) {
 999         can_prune_locals = false;
1000       }
1001     }
1002 
1003     // Add the Locals
1004     k = in_jvms->locoff();
1005     l = in_jvms->loc_size();
1006     out_jvms->set_locoff(p);
1007     if (!can_prune_locals) {
1008       for (j = 0; j < l; j++) {
1009         call->set_req(p++, in_map->in(k + j));
1010       }
1011     } else {
1012       p += l;  // already set to top above by add_req_batch
1013     }
1014 
1015     // Add the Expression Stack
1016     k = in_jvms->stkoff();
1017     l = in_jvms->sp();
1018     out_jvms->set_stkoff(p);
1019     if (!can_prune_locals) {
1020       for (j = 0; j < l; j++) {
1021         call->set_req(p++, in_map->in(k + j));
1022       }
1023     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1024       // Divide stack into {S0,...,S1}, where S0 is set to top.
1025       uint s1 = stack_slots_not_pruned;
1026       stack_slots_not_pruned = 0;  // for next iteration
1027       if (s1 > l)  s1 = l;
1028       uint s0 = l - s1;
1029       p += s0;  // skip the tops preinstalled by add_req_batch
1030       for (j = s0; j < l; j++)
1031         call->set_req(p++, in_map->in(k+j));
1032     } else {
1033       p += l;  // already set to top above by add_req_batch
1034     }
1035 
1036     // Add the Monitors
1037     k = in_jvms->monoff();
1038     l = in_jvms->mon_size();
1039     out_jvms->set_monoff(p);
1040     for (j = 0; j < l; j++)
1041       call->set_req(p++, in_map->in(k+j));
1042 
1043     // Copy any scalar object fields.
1044     k = in_jvms->scloff();
1045     l = in_jvms->scl_size();
1046     out_jvms->set_scloff(p);
1047     for (j = 0; j < l; j++)
1048       call->set_req(p++, in_map->in(k+j));
1049 
1050     // Finish the new jvms.
1051     out_jvms->set_endoff(p);
1052 
1053     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1054     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1055     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1056     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1057     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1058     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1059 
1060     // Update the two tail pointers in parallel.
1061     callee_jvms = out_jvms;
1062     out_jvms = out_jvms->caller();
1063     in_jvms  = in_jvms->caller();
1064   }
1065 
1066   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1067 
1068   // Test the correctness of JVMState::debug_xxx accessors:
1069   assert(call->jvms()->debug_start() == non_debug_edges, "");
1070   assert(call->jvms()->debug_end()   == call->req(), "");
1071   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1072 }
1073 
1074 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1075   Bytecodes::Code code = java_bc();
1076   if (code == Bytecodes::_wide) {
1077     code = method()->java_code_at_bci(bci() + 1);
1078   }
1079 
1080   if (code != Bytecodes::_illegal) {
1081     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1082   }
1083 
1084   auto rsize = [&]() {
1085     assert(code != Bytecodes::_illegal, "code is illegal!");
1086     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1087     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1088   };
1089 
1090   switch (code) {
1091   case Bytecodes::_illegal:
1092     return false;
1093 
1094   case Bytecodes::_ldc:
1095   case Bytecodes::_ldc_w:
1096   case Bytecodes::_ldc2_w:
1097     inputs = 0;
1098     break;
1099 
1100   case Bytecodes::_dup:         inputs = 1;  break;
1101   case Bytecodes::_dup_x1:      inputs = 2;  break;
1102   case Bytecodes::_dup_x2:      inputs = 3;  break;
1103   case Bytecodes::_dup2:        inputs = 2;  break;
1104   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1105   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1106   case Bytecodes::_swap:        inputs = 2;  break;
1107   case Bytecodes::_arraylength: inputs = 1;  break;
1108 
1109   case Bytecodes::_getstatic:
1110   case Bytecodes::_putstatic:
1111   case Bytecodes::_getfield:
1112   case Bytecodes::_putfield:
1113     {
1114       bool ignored_will_link;
1115       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1116       int      size  = field->type()->size();
1117       bool is_get = (depth >= 0), is_static = (depth & 1);
1118       inputs = (is_static ? 0 : 1);
1119       if (is_get) {
1120         depth = size - inputs;
1121       } else {
1122         inputs += size;        // putxxx pops the value from the stack
1123         depth = - inputs;
1124       }
1125     }
1126     break;
1127 
1128   case Bytecodes::_invokevirtual:
1129   case Bytecodes::_invokespecial:
1130   case Bytecodes::_invokestatic:
1131   case Bytecodes::_invokedynamic:
1132   case Bytecodes::_invokeinterface:
1133     {
1134       bool ignored_will_link;
1135       ciSignature* declared_signature = nullptr;
1136       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1137       assert(declared_signature != nullptr, "cannot be null");
1138       inputs   = declared_signature->arg_size_for_bc(code);
1139       int size = declared_signature->return_type()->size();
1140       depth = size - inputs;
1141     }
1142     break;
1143 
1144   case Bytecodes::_multianewarray:
1145     {
1146       ciBytecodeStream iter(method());
1147       iter.reset_to_bci(bci());
1148       iter.next();
1149       inputs = iter.get_dimensions();
1150       assert(rsize() == 1, "");
1151       depth = 1 - inputs;
1152     }
1153     break;
1154 
1155   case Bytecodes::_ireturn:
1156   case Bytecodes::_lreturn:
1157   case Bytecodes::_freturn:
1158   case Bytecodes::_dreturn:
1159   case Bytecodes::_areturn:
1160     assert(rsize() == -depth, "");
1161     inputs = -depth;
1162     break;
1163 
1164   case Bytecodes::_jsr:
1165   case Bytecodes::_jsr_w:
1166     inputs = 0;
1167     depth  = 1;                  // S.B. depth=1, not zero
1168     break;
1169 
1170   default:
1171     // bytecode produces a typed result
1172     inputs = rsize() - depth;
1173     assert(inputs >= 0, "");
1174     break;
1175   }
1176 
1177 #ifdef ASSERT
1178   // spot check
1179   int outputs = depth + inputs;
1180   assert(outputs >= 0, "sanity");
1181   switch (code) {
1182   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1183   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1184   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1185   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1186   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1187   default:                    break;
1188   }
1189 #endif //ASSERT
1190 
1191   return true;
1192 }
1193 
1194 
1195 
1196 //------------------------------basic_plus_adr---------------------------------
1197 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1198   // short-circuit a common case
1199   if (offset == intcon(0))  return ptr;
1200   return _gvn.transform( new AddPNode(base, ptr, offset) );
1201 }
1202 
1203 Node* GraphKit::ConvI2L(Node* offset) {
1204   // short-circuit a common case
1205   jint offset_con = find_int_con(offset, Type::OffsetBot);
1206   if (offset_con != Type::OffsetBot) {
1207     return longcon((jlong) offset_con);
1208   }
1209   return _gvn.transform( new ConvI2LNode(offset));
1210 }
1211 
1212 Node* GraphKit::ConvI2UL(Node* offset) {
1213   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1214   if (offset_con != (juint) Type::OffsetBot) {
1215     return longcon((julong) offset_con);
1216   }
1217   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1218   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1219   return _gvn.transform( new AndLNode(conv, mask) );
1220 }
1221 
1222 Node* GraphKit::ConvL2I(Node* offset) {
1223   // short-circuit a common case
1224   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1225   if (offset_con != (jlong)Type::OffsetBot) {
1226     return intcon((int) offset_con);
1227   }
1228   return _gvn.transform( new ConvL2INode(offset));
1229 }
1230 
1231 //-------------------------load_object_klass-----------------------------------
1232 Node* GraphKit::load_object_klass(Node* obj, bool fold_for_arrays) {
1233   // Special-case a fresh allocation to avoid building nodes:
1234   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1235   if (akls != nullptr)  return akls;
1236   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1237   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT, fold_for_arrays));
1238 }
1239 
1240 //-------------------------load_array_length-----------------------------------
1241 Node* GraphKit::load_array_length(Node* array) {
1242   // Special-case a fresh allocation to avoid building nodes:
1243   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1244   Node *alen;
1245   if (alloc == nullptr) {
1246     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1247     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1248   } else {
1249     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1250   }
1251   return alen;
1252 }
1253 
1254 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1255                                    const TypeOopPtr* oop_type,
1256                                    bool replace_length_in_map) {
1257   Node* length = alloc->Ideal_length();
1258   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1259     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1260     if (ccast != length) {
1261       // do not transform ccast here, it might convert to top node for
1262       // negative array length and break assumptions in parsing stage.
1263       _gvn.set_type_bottom(ccast);
1264       record_for_igvn(ccast);
1265       if (replace_length_in_map) {
1266         replace_in_map(length, ccast);
1267       }
1268       return ccast;
1269     }
1270   }
1271   return length;
1272 }
1273 
1274 //------------------------------do_null_check----------------------------------
1275 // Helper function to do a null pointer check.  Returned value is
1276 // the incoming address with null casted away.  You are allowed to use the
1277 // not-null value only if you are control dependent on the test.
1278 #ifndef PRODUCT
1279 extern uint explicit_null_checks_inserted,
1280             explicit_null_checks_elided;
1281 #endif
1282 Node* GraphKit::null_check_common(Node* value, BasicType type,
1283                                   // optional arguments for variations:
1284                                   bool assert_null,
1285                                   Node* *null_control,
1286                                   bool speculative,
1287                                   bool is_init_check) {
1288   assert(!assert_null || null_control == nullptr, "not both at once");
1289   if (stopped())  return top();
1290   NOT_PRODUCT(explicit_null_checks_inserted++);
1291 
1292   if (value->is_InlineType()) {
1293     // Null checking a scalarized but nullable inline type. Check the IsInit
1294     // input instead of the oop input to avoid keeping buffer allocations alive.
1295     InlineTypeNode* vtptr = value->as_InlineType();
1296     while (vtptr->get_oop()->is_InlineType()) {
1297       vtptr = vtptr->get_oop()->as_InlineType();
1298     }
1299     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1300     if (stopped()) {
1301       return top();
1302     }
1303     if (assert_null) {
1304       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1305       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1306       // replace_in_map(value, vtptr);
1307       // return vtptr;
1308       replace_in_map(value, null());
1309       return null();
1310     }
1311     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1312     return cast_not_null(value, do_replace_in_map);
1313   }
1314 
1315   // Construct null check
1316   Node *chk = nullptr;
1317   switch(type) {
1318     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1319     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1320     case T_ARRAY  : // fall through
1321       type = T_OBJECT;  // simplify further tests
1322     case T_OBJECT : {
1323       const Type *t = _gvn.type( value );
1324 
1325       const TypeOopPtr* tp = t->isa_oopptr();
1326       if (tp != nullptr && !tp->is_loaded()
1327           // Only for do_null_check, not any of its siblings:
1328           && !assert_null && null_control == nullptr) {
1329         // Usually, any field access or invocation on an unloaded oop type
1330         // will simply fail to link, since the statically linked class is
1331         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1332         // the static class is loaded but the sharper oop type is not.
1333         // Rather than checking for this obscure case in lots of places,
1334         // we simply observe that a null check on an unloaded class
1335         // will always be followed by a nonsense operation, so we
1336         // can just issue the uncommon trap here.
1337         // Our access to the unloaded class will only be correct
1338         // after it has been loaded and initialized, which requires
1339         // a trip through the interpreter.
1340         ciKlass* klass = tp->unloaded_klass();
1341 #ifndef PRODUCT
1342         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1343 #endif
1344         uncommon_trap(Deoptimization::Reason_unloaded,
1345                       Deoptimization::Action_reinterpret,
1346                       klass, "!loaded");
1347         return top();
1348       }
1349 
1350       if (assert_null) {
1351         // See if the type is contained in NULL_PTR.
1352         // If so, then the value is already null.
1353         if (t->higher_equal(TypePtr::NULL_PTR)) {
1354           NOT_PRODUCT(explicit_null_checks_elided++);
1355           return value;           // Elided null assert quickly!
1356         }
1357       } else {
1358         // See if mixing in the null pointer changes type.
1359         // If so, then the null pointer was not allowed in the original
1360         // type.  In other words, "value" was not-null.
1361         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1362           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1363           NOT_PRODUCT(explicit_null_checks_elided++);
1364           return value;           // Elided null check quickly!
1365         }
1366       }
1367       chk = new CmpPNode( value, null() );
1368       break;
1369     }
1370 
1371     default:
1372       fatal("unexpected type: %s", type2name(type));
1373   }
1374   assert(chk != nullptr, "sanity check");
1375   chk = _gvn.transform(chk);
1376 
1377   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1378   BoolNode *btst = new BoolNode( chk, btest);
1379   Node   *tst = _gvn.transform( btst );
1380 
1381   //-----------
1382   // if peephole optimizations occurred, a prior test existed.
1383   // If a prior test existed, maybe it dominates as we can avoid this test.
1384   if (tst != btst && type == T_OBJECT) {
1385     // At this point we want to scan up the CFG to see if we can
1386     // find an identical test (and so avoid this test altogether).
1387     Node *cfg = control();
1388     int depth = 0;
1389     while( depth < 16 ) {       // Limit search depth for speed
1390       if( cfg->Opcode() == Op_IfTrue &&
1391           cfg->in(0)->in(1) == tst ) {
1392         // Found prior test.  Use "cast_not_null" to construct an identical
1393         // CastPP (and hence hash to) as already exists for the prior test.
1394         // Return that casted value.
1395         if (assert_null) {
1396           replace_in_map(value, null());
1397           return null();  // do not issue the redundant test
1398         }
1399         Node *oldcontrol = control();
1400         set_control(cfg);
1401         Node *res = cast_not_null(value);
1402         set_control(oldcontrol);
1403         NOT_PRODUCT(explicit_null_checks_elided++);
1404         return res;
1405       }
1406       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1407       if (cfg == nullptr)  break;  // Quit at region nodes
1408       depth++;
1409     }
1410   }
1411 
1412   //-----------
1413   // Branch to failure if null
1414   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1415   Deoptimization::DeoptReason reason;
1416   if (assert_null) {
1417     reason = Deoptimization::reason_null_assert(speculative);
1418   } else if (type == T_OBJECT || is_init_check) {
1419     reason = Deoptimization::reason_null_check(speculative);
1420   } else {
1421     reason = Deoptimization::Reason_div0_check;
1422   }
1423   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1424   // ciMethodData::has_trap_at will return a conservative -1 if any
1425   // must-be-null assertion has failed.  This could cause performance
1426   // problems for a method after its first do_null_assert failure.
1427   // Consider using 'Reason_class_check' instead?
1428 
1429   // To cause an implicit null check, we set the not-null probability
1430   // to the maximum (PROB_MAX).  For an explicit check the probability
1431   // is set to a smaller value.
1432   if (null_control != nullptr || too_many_traps(reason)) {
1433     // probability is less likely
1434     ok_prob =  PROB_LIKELY_MAG(3);
1435   } else if (!assert_null &&
1436              (ImplicitNullCheckThreshold > 0) &&
1437              method() != nullptr &&
1438              (method()->method_data()->trap_count(reason)
1439               >= (uint)ImplicitNullCheckThreshold)) {
1440     ok_prob =  PROB_LIKELY_MAG(3);
1441   }
1442 
1443   if (null_control != nullptr) {
1444     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1445     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1446     set_control(      _gvn.transform( new IfTrueNode(iff)));
1447 #ifndef PRODUCT
1448     if (null_true == top()) {
1449       explicit_null_checks_elided++;
1450     }
1451 #endif
1452     (*null_control) = null_true;
1453   } else {
1454     BuildCutout unless(this, tst, ok_prob);
1455     // Check for optimizer eliding test at parse time
1456     if (stopped()) {
1457       // Failure not possible; do not bother making uncommon trap.
1458       NOT_PRODUCT(explicit_null_checks_elided++);
1459     } else if (assert_null) {
1460       uncommon_trap(reason,
1461                     Deoptimization::Action_make_not_entrant,
1462                     nullptr, "assert_null");
1463     } else {
1464       replace_in_map(value, zerocon(type));
1465       builtin_throw(reason);
1466     }
1467   }
1468 
1469   // Must throw exception, fall-thru not possible?
1470   if (stopped()) {
1471     return top();               // No result
1472   }
1473 
1474   if (assert_null) {
1475     // Cast obj to null on this path.
1476     replace_in_map(value, zerocon(type));
1477     return zerocon(type);
1478   }
1479 
1480   // Cast obj to not-null on this path, if there is no null_control.
1481   // (If there is a null_control, a non-null value may come back to haunt us.)
1482   if (type == T_OBJECT) {
1483     Node* cast = cast_not_null(value, false);
1484     if (null_control == nullptr || (*null_control) == top())
1485       replace_in_map(value, cast);
1486     value = cast;
1487   }
1488 
1489   return value;
1490 }
1491 
1492 //------------------------------cast_not_null----------------------------------
1493 // Cast obj to not-null on this path
1494 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1495   if (obj->is_InlineType()) {
1496     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1497     vt->as_InlineType()->set_is_init(_gvn);
1498     vt = _gvn.transform(vt);
1499     if (do_replace_in_map) {
1500       replace_in_map(obj, vt);
1501     }
1502     return vt;
1503   }
1504   const Type *t = _gvn.type(obj);
1505   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1506   // Object is already not-null?
1507   if( t == t_not_null ) return obj;
1508 
1509   Node* cast = new CastPPNode(control(), obj,t_not_null);
1510   cast = _gvn.transform( cast );
1511 
1512   // Scan for instances of 'obj' in the current JVM mapping.
1513   // These instances are known to be not-null after the test.
1514   if (do_replace_in_map)
1515     replace_in_map(obj, cast);
1516 
1517   return cast;                  // Return casted value
1518 }
1519 
1520 Node* GraphKit::cast_to_non_larval(Node* obj) {
1521   const Type* obj_type = gvn().type(obj);
1522   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1523     return obj;
1524   }
1525 
1526   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1527   replace_in_map(obj, new_obj);
1528   return new_obj;
1529 }
1530 
1531 // Sometimes in intrinsics, we implicitly know an object is not null
1532 // (there's no actual null check) so we can cast it to not null. In
1533 // the course of optimizations, the input to the cast can become null.
1534 // In that case that data path will die and we need the control path
1535 // to become dead as well to keep the graph consistent. So we have to
1536 // add a check for null for which one branch can't be taken. It uses
1537 // an OpaqueNotNull node that will cause the check to be removed after loop
1538 // opts so the test goes away and the compiled code doesn't execute a
1539 // useless check.
1540 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1541   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1542     return value;
1543   }
1544   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1545   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1546   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1547   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1548   _gvn.set_type(iff, iff->Value(&_gvn));
1549   if (!tst->is_Con()) {
1550     record_for_igvn(iff);
1551   }
1552   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1553   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1554   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1555   C->root()->add_req(halt);
1556   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1557   set_control(if_t);
1558   return cast_not_null(value, do_replace_in_map);
1559 }
1560 
1561 
1562 //--------------------------replace_in_map-------------------------------------
1563 void GraphKit::replace_in_map(Node* old, Node* neww) {
1564   if (old == neww) {
1565     return;
1566   }
1567 
1568   map()->replace_edge(old, neww);
1569 
1570   // Note: This operation potentially replaces any edge
1571   // on the map.  This includes locals, stack, and monitors
1572   // of the current (innermost) JVM state.
1573 
1574   // don't let inconsistent types from profiling escape this
1575   // method
1576 
1577   const Type* told = _gvn.type(old);
1578   const Type* tnew = _gvn.type(neww);
1579 
1580   if (!tnew->higher_equal(told)) {
1581     return;
1582   }
1583 
1584   map()->record_replaced_node(old, neww);
1585 }
1586 
1587 
1588 //=============================================================================
1589 //--------------------------------memory---------------------------------------
1590 Node* GraphKit::memory(uint alias_idx) {
1591   MergeMemNode* mem = merged_memory();
1592   Node* p = mem->memory_at(alias_idx);
1593   assert(p != mem->empty_memory(), "empty");
1594   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1595   return p;
1596 }
1597 
1598 //-----------------------------reset_memory------------------------------------
1599 Node* GraphKit::reset_memory() {
1600   Node* mem = map()->memory();
1601   // do not use this node for any more parsing!
1602   debug_only( map()->set_memory((Node*)nullptr) );
1603   return _gvn.transform( mem );
1604 }
1605 
1606 //------------------------------set_all_memory---------------------------------
1607 void GraphKit::set_all_memory(Node* newmem) {
1608   Node* mergemem = MergeMemNode::make(newmem);
1609   gvn().set_type_bottom(mergemem);
1610   map()->set_memory(mergemem);
1611 }
1612 
1613 //------------------------------set_all_memory_call----------------------------
1614 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1615   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1616   set_all_memory(newmem);
1617 }
1618 
1619 //=============================================================================
1620 //
1621 // parser factory methods for MemNodes
1622 //
1623 // These are layered on top of the factory methods in LoadNode and StoreNode,
1624 // and integrate with the parser's memory state and _gvn engine.
1625 //
1626 
1627 // factory methods in "int adr_idx"
1628 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1629                           MemNode::MemOrd mo,
1630                           LoadNode::ControlDependency control_dependency,
1631                           bool require_atomic_access,
1632                           bool unaligned,
1633                           bool mismatched,
1634                           bool unsafe,
1635                           uint8_t barrier_data) {
1636   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1637   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1638   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1639   debug_only(adr_type = C->get_adr_type(adr_idx));
1640   Node* mem = memory(adr_idx);
1641   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1642   ld = _gvn.transform(ld);
1643 
1644   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1645     // Improve graph before escape analysis and boxing elimination.
1646     record_for_igvn(ld);
1647     if (ld->is_DecodeN()) {
1648       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1649       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1650       // a Phi). Recording such cases is still perfectly sound, but may be
1651       // unnecessary and result in some minor IGVN overhead.
1652       record_for_igvn(ld->in(1));
1653     }
1654   }
1655   return ld;
1656 }
1657 
1658 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1659                                 MemNode::MemOrd mo,
1660                                 bool require_atomic_access,
1661                                 bool unaligned,
1662                                 bool mismatched,
1663                                 bool unsafe,
1664                                 int barrier_data) {
1665   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1666   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1667   const TypePtr* adr_type = nullptr;
1668   debug_only(adr_type = C->get_adr_type(adr_idx));
1669   Node *mem = memory(adr_idx);
1670   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1671   if (unaligned) {
1672     st->as_Store()->set_unaligned_access();
1673   }
1674   if (mismatched) {
1675     st->as_Store()->set_mismatched_access();
1676   }
1677   if (unsafe) {
1678     st->as_Store()->set_unsafe_access();
1679   }
1680   st->as_Store()->set_barrier_data(barrier_data);
1681   st = _gvn.transform(st);
1682   set_memory(st, adr_idx);
1683   // Back-to-back stores can only remove intermediate store with DU info
1684   // so push on worklist for optimizer.
1685   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1686     record_for_igvn(st);
1687 
1688   return st;
1689 }
1690 
1691 Node* GraphKit::access_store_at(Node* obj,
1692                                 Node* adr,
1693                                 const TypePtr* adr_type,
1694                                 Node* val,
1695                                 const Type* val_type,
1696                                 BasicType bt,
1697                                 DecoratorSet decorators,
1698                                 bool safe_for_replace,
1699                                 const InlineTypeNode* vt) {
1700   // Transformation of a value which could be null pointer (CastPP #null)
1701   // could be delayed during Parse (for example, in adjust_map_after_if()).
1702   // Execute transformation here to avoid barrier generation in such case.
1703   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1704     val = _gvn.makecon(TypePtr::NULL_PTR);
1705   }
1706 
1707   if (stopped()) {
1708     return top(); // Dead path ?
1709   }
1710 
1711   assert(val != nullptr, "not dead path");
1712   if (val->is_InlineType()) {
1713     // Store to non-flat field. Buffer the inline type and make sure
1714     // the store is re-executed if the allocation triggers deoptimization.
1715     PreserveReexecuteState preexecs(this);
1716     jvms()->set_should_reexecute(true);
1717     val = val->as_InlineType()->buffer(this, safe_for_replace);
1718   }
1719 
1720   C2AccessValuePtr addr(adr, adr_type);
1721   C2AccessValue value(val, val_type);
1722   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1723   if (access.is_raw()) {
1724     return _barrier_set->BarrierSetC2::store_at(access, value);
1725   } else {
1726     return _barrier_set->store_at(access, value);
1727   }
1728 }
1729 
1730 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1731                                Node* adr,   // actual address to store val at
1732                                const TypePtr* adr_type,
1733                                const Type* val_type,
1734                                BasicType bt,
1735                                DecoratorSet decorators,
1736                                Node* ctl) {
1737   if (stopped()) {
1738     return top(); // Dead path ?
1739   }
1740 
1741   C2AccessValuePtr addr(adr, adr_type);
1742   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1743   if (access.is_raw()) {
1744     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1745   } else {
1746     return _barrier_set->load_at(access, val_type);
1747   }
1748 }
1749 
1750 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1751                             const Type* val_type,
1752                             BasicType bt,
1753                             DecoratorSet decorators) {
1754   if (stopped()) {
1755     return top(); // Dead path ?
1756   }
1757 
1758   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1759   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1762   } else {
1763     return _barrier_set->load_at(access, val_type);
1764   }
1765 }
1766 
1767 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1768                                              Node* adr,
1769                                              const TypePtr* adr_type,
1770                                              int alias_idx,
1771                                              Node* expected_val,
1772                                              Node* new_val,
1773                                              const Type* value_type,
1774                                              BasicType bt,
1775                                              DecoratorSet decorators) {
1776   C2AccessValuePtr addr(adr, adr_type);
1777   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1778                         bt, obj, addr, alias_idx);
1779   if (access.is_raw()) {
1780     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1781   } else {
1782     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1783   }
1784 }
1785 
1786 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1787                                               Node* adr,
1788                                               const TypePtr* adr_type,
1789                                               int alias_idx,
1790                                               Node* expected_val,
1791                                               Node* new_val,
1792                                               const Type* value_type,
1793                                               BasicType bt,
1794                                               DecoratorSet decorators) {
1795   C2AccessValuePtr addr(adr, adr_type);
1796   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1797                         bt, obj, addr, alias_idx);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1800   } else {
1801     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1802   }
1803 }
1804 
1805 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1806                                       Node* adr,
1807                                       const TypePtr* adr_type,
1808                                       int alias_idx,
1809                                       Node* new_val,
1810                                       const Type* value_type,
1811                                       BasicType bt,
1812                                       DecoratorSet decorators) {
1813   C2AccessValuePtr addr(adr, adr_type);
1814   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1815                         bt, obj, addr, alias_idx);
1816   if (access.is_raw()) {
1817     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1818   } else {
1819     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1820   }
1821 }
1822 
1823 Node* GraphKit::access_atomic_add_at(Node* obj,
1824                                      Node* adr,
1825                                      const TypePtr* adr_type,
1826                                      int alias_idx,
1827                                      Node* new_val,
1828                                      const Type* value_type,
1829                                      BasicType bt,
1830                                      DecoratorSet decorators) {
1831   C2AccessValuePtr addr(adr, adr_type);
1832   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1833   if (access.is_raw()) {
1834     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1835   } else {
1836     return _barrier_set->atomic_add_at(access, new_val, value_type);
1837   }
1838 }
1839 
1840 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1841   return _barrier_set->clone(this, src, dst, size, is_array);
1842 }
1843 
1844 //-------------------------array_element_address-------------------------
1845 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1846                                       const TypeInt* sizetype, Node* ctrl) {
1847   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1848   uint shift;
1849   if (arytype->is_flat() && arytype->klass_is_exact()) {
1850     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1851     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1852     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1853     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1854     // though we don't need the address node in this case and throw it away again.
1855     shift = arytype->flat_log_elem_size();
1856   } else {
1857     shift = exact_log2(type2aelembytes(elembt));
1858   }
1859   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1860 
1861   // short-circuit a common case (saves lots of confusing waste motion)
1862   jint idx_con = find_int_con(idx, -1);
1863   if (idx_con >= 0) {
1864     intptr_t offset = header + ((intptr_t)idx_con << shift);
1865     return basic_plus_adr(ary, offset);
1866   }
1867 
1868   // must be correct type for alignment purposes
1869   Node* base  = basic_plus_adr(ary, header);
1870   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1871   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1872   return basic_plus_adr(ary, base, scale);
1873 }
1874 
1875 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) {
1876   assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8());
1877   if (!vk->has_nullable_atomic_layout()) {
1878     // Element does not have a nullable flat layout, cannot be nullable
1879     is_null_free = true;
1880   }
1881   if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) {
1882     // Element does not have a null-free flat layout, cannot be null-free
1883     is_not_null_free = true;
1884   }
1885   if (is_null_free) {
1886     // TODO 8350865 Impossible type
1887     is_not_null_free = false;
1888   }
1889 
1890   bool is_exact = is_null_free || is_not_null_free;
1891   ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic);
1892   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1893   arytype = arytype->cast_to_exactness(is_exact);
1894   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1895   return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency));
1896 }
1897 
1898 //-------------------------load_array_element-------------------------
1899 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1900   const Type* elemtype = arytype->elem();
1901   BasicType elembt = elemtype->array_element_basic_type();
1902   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1903   if (elembt == T_NARROWOOP) {
1904     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1905   }
1906   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1907                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1908   return ld;
1909 }
1910 
1911 //-------------------------set_arguments_for_java_call-------------------------
1912 // Arguments (pre-popped from the stack) are taken from the JVMS.
1913 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1914   PreserveReexecuteState preexecs(this);
1915   if (EnableValhalla) {
1916     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1917     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1918     jvms()->set_should_reexecute(true);
1919     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1920     inc_sp(arg_size);
1921   }
1922   // Add the call arguments
1923   const TypeTuple* domain = call->tf()->domain_sig();
1924   uint nargs = domain->cnt();
1925   int arg_num = 0;
1926   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1927     Node* arg = argument(i-TypeFunc::Parms);
1928     const Type* t = domain->field_at(i);
1929     // TODO 8284443 A static call to a mismatched method should still be scalarized
1930     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1931       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1932       if (!arg->is_InlineType()) {
1933         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1934         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1935       }
1936       InlineTypeNode* vt = arg->as_InlineType();
1937       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1938       // If an inline type argument is passed as fields, attach the Method* to the call site
1939       // to be able to access the extended signature later via attached_method_before_pc().
1940       // For example, see CompiledMethod::preserve_callee_argument_oops().
1941       call->set_override_symbolic_info(true);
1942       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1943       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1944       C->dependencies()->assert_evol_method(call->method());
1945       arg_num++;
1946       continue;
1947     } else if (arg->is_InlineType()) {
1948       // Pass inline type argument via oop to callee
1949       arg = arg->as_InlineType()->buffer(this, true);
1950     }
1951     if (t != Type::HALF) {
1952       arg_num++;
1953     }
1954     call->init_req(idx++, arg);
1955   }
1956 }
1957 
1958 //---------------------------set_edges_for_java_call---------------------------
1959 // Connect a newly created call into the current JVMS.
1960 // A return value node (if any) is returned from set_edges_for_java_call.
1961 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1962 
1963   // Add the predefined inputs:
1964   call->init_req( TypeFunc::Control, control() );
1965   call->init_req( TypeFunc::I_O    , i_o() );
1966   call->init_req( TypeFunc::Memory , reset_memory() );
1967   call->init_req( TypeFunc::FramePtr, frameptr() );
1968   call->init_req( TypeFunc::ReturnAdr, top() );
1969 
1970   add_safepoint_edges(call, must_throw);
1971 
1972   Node* xcall = _gvn.transform(call);
1973 
1974   if (xcall == top()) {
1975     set_control(top());
1976     return;
1977   }
1978   assert(xcall == call, "call identity is stable");
1979 
1980   // Re-use the current map to produce the result.
1981 
1982   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1983   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1984   set_all_memory_call(xcall, separate_io_proj);
1985 
1986   //return xcall;   // no need, caller already has it
1987 }
1988 
1989 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1990   if (stopped())  return top();  // maybe the call folded up?
1991 
1992   // Note:  Since any out-of-line call can produce an exception,
1993   // we always insert an I_O projection from the call into the result.
1994 
1995   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1996 
1997   if (separate_io_proj) {
1998     // The caller requested separate projections be used by the fall
1999     // through and exceptional paths, so replace the projections for
2000     // the fall through path.
2001     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2002     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2003   }
2004 
2005   // Capture the return value, if any.
2006   Node* ret;
2007   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2008     ret = top();
2009   } else if (call->tf()->returns_inline_type_as_fields()) {
2010     // Return of multiple values (inline type fields): we create a
2011     // InlineType node, each field is a projection from the call.
2012     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2013     uint base_input = TypeFunc::Parms;
2014     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2015   } else {
2016     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2017     ciType* t = call->method()->return_type();
2018     if (t->is_klass()) {
2019       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2020       if (type->is_inlinetypeptr()) {
2021         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2022       }
2023     }
2024   }
2025 
2026   return ret;
2027 }
2028 
2029 //--------------------set_predefined_input_for_runtime_call--------------------
2030 // Reading and setting the memory state is way conservative here.
2031 // The real problem is that I am not doing real Type analysis on memory,
2032 // so I cannot distinguish card mark stores from other stores.  Across a GC
2033 // point the Store Barrier and the card mark memory has to agree.  I cannot
2034 // have a card mark store and its barrier split across the GC point from
2035 // either above or below.  Here I get that to happen by reading ALL of memory.
2036 // A better answer would be to separate out card marks from other memory.
2037 // For now, return the input memory state, so that it can be reused
2038 // after the call, if this call has restricted memory effects.
2039 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2040   // Set fixed predefined input arguments
2041   Node* memory = reset_memory();
2042   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2043   call->init_req( TypeFunc::Control,   control()  );
2044   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2045   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2046   call->init_req( TypeFunc::FramePtr,  frameptr() );
2047   call->init_req( TypeFunc::ReturnAdr, top()      );
2048   return memory;
2049 }
2050 
2051 //-------------------set_predefined_output_for_runtime_call--------------------
2052 // Set control and memory (not i_o) from the call.
2053 // If keep_mem is not null, use it for the output state,
2054 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2055 // If hook_mem is null, this call produces no memory effects at all.
2056 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2057 // then only that memory slice is taken from the call.
2058 // In the last case, we must put an appropriate memory barrier before
2059 // the call, so as to create the correct anti-dependencies on loads
2060 // preceding the call.
2061 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2062                                                       Node* keep_mem,
2063                                                       const TypePtr* hook_mem) {
2064   // no i/o
2065   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2066   if (keep_mem) {
2067     // First clone the existing memory state
2068     set_all_memory(keep_mem);
2069     if (hook_mem != nullptr) {
2070       // Make memory for the call
2071       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2072       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2073       // We also use hook_mem to extract specific effects from arraycopy stubs.
2074       set_memory(mem, hook_mem);
2075     }
2076     // ...else the call has NO memory effects.
2077 
2078     // Make sure the call advertises its memory effects precisely.
2079     // This lets us build accurate anti-dependences in gcm.cpp.
2080     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2081            "call node must be constructed correctly");
2082   } else {
2083     assert(hook_mem == nullptr, "");
2084     // This is not a "slow path" call; all memory comes from the call.
2085     set_all_memory_call(call);
2086   }
2087 }
2088 
2089 // Keep track of MergeMems feeding into other MergeMems
2090 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2091   if (!mem->is_MergeMem()) {
2092     return;
2093   }
2094   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2095     Node* use = i.get();
2096     if (use->is_MergeMem()) {
2097       wl.push(use);
2098     }
2099   }
2100 }
2101 
2102 // Replace the call with the current state of the kit.
2103 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2104   JVMState* ejvms = nullptr;
2105   if (has_exceptions()) {
2106     ejvms = transfer_exceptions_into_jvms();
2107   }
2108 
2109   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2110   ReplacedNodes replaced_nodes_exception;
2111   Node* ex_ctl = top();
2112 
2113   SafePointNode* final_state = stop();
2114 
2115   // Find all the needed outputs of this call
2116   CallProjections* callprojs = call->extract_projections(true, do_asserts);
2117 
2118   Unique_Node_List wl;
2119   Node* init_mem = call->in(TypeFunc::Memory);
2120   Node* final_mem = final_state->in(TypeFunc::Memory);
2121   Node* final_ctl = final_state->in(TypeFunc::Control);
2122   Node* final_io = final_state->in(TypeFunc::I_O);
2123 
2124   // Replace all the old call edges with the edges from the inlining result
2125   if (callprojs->fallthrough_catchproj != nullptr) {
2126     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2127   }
2128   if (callprojs->fallthrough_memproj != nullptr) {
2129     if (final_mem->is_MergeMem()) {
2130       // Parser's exits MergeMem was not transformed but may be optimized
2131       final_mem = _gvn.transform(final_mem);
2132     }
2133     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2134     add_mergemem_users_to_worklist(wl, final_mem);
2135   }
2136   if (callprojs->fallthrough_ioproj != nullptr) {
2137     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2138   }
2139 
2140   // Replace the result with the new result if it exists and is used
2141   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2142     // If the inlined code is dead, the result projections for an inline type returned as
2143     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2144     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2145            "unexpected number of results");
2146     C->gvn_replace_by(callprojs->resproj[0], result);
2147   }
2148 
2149   if (ejvms == nullptr) {
2150     // No exception edges to simply kill off those paths
2151     if (callprojs->catchall_catchproj != nullptr) {
2152       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2153     }
2154     if (callprojs->catchall_memproj != nullptr) {
2155       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2156     }
2157     if (callprojs->catchall_ioproj != nullptr) {
2158       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2159     }
2160     // Replace the old exception object with top
2161     if (callprojs->exobj != nullptr) {
2162       C->gvn_replace_by(callprojs->exobj, C->top());
2163     }
2164   } else {
2165     GraphKit ekit(ejvms);
2166 
2167     // Load my combined exception state into the kit, with all phis transformed:
2168     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2169     replaced_nodes_exception = ex_map->replaced_nodes();
2170 
2171     Node* ex_oop = ekit.use_exception_state(ex_map);
2172 
2173     if (callprojs->catchall_catchproj != nullptr) {
2174       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2175       ex_ctl = ekit.control();
2176     }
2177     if (callprojs->catchall_memproj != nullptr) {
2178       Node* ex_mem = ekit.reset_memory();
2179       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2180       add_mergemem_users_to_worklist(wl, ex_mem);
2181     }
2182     if (callprojs->catchall_ioproj != nullptr) {
2183       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2184     }
2185 
2186     // Replace the old exception object with the newly created one
2187     if (callprojs->exobj != nullptr) {
2188       C->gvn_replace_by(callprojs->exobj, ex_oop);
2189     }
2190   }
2191 
2192   // Disconnect the call from the graph
2193   call->disconnect_inputs(C);
2194   C->gvn_replace_by(call, C->top());
2195 
2196   // Clean up any MergeMems that feed other MergeMems since the
2197   // optimizer doesn't like that.
2198   while (wl.size() > 0) {
2199     _gvn.transform(wl.pop());
2200   }
2201 
2202   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2203     replaced_nodes.apply(C, final_ctl);
2204   }
2205   if (!ex_ctl->is_top() && do_replaced_nodes) {
2206     replaced_nodes_exception.apply(C, ex_ctl);
2207   }
2208 }
2209 
2210 
2211 //------------------------------increment_counter------------------------------
2212 // for statistics: increment a VM counter by 1
2213 
2214 void GraphKit::increment_counter(address counter_addr) {
2215   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2216   increment_counter(adr1);
2217 }
2218 
2219 void GraphKit::increment_counter(Node* counter_addr) {
2220   Node* ctrl = control();
2221   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2222   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2223   store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered);
2224 }
2225 
2226 
2227 //------------------------------uncommon_trap----------------------------------
2228 // Bail out to the interpreter in mid-method.  Implemented by calling the
2229 // uncommon_trap blob.  This helper function inserts a runtime call with the
2230 // right debug info.
2231 Node* GraphKit::uncommon_trap(int trap_request,
2232                              ciKlass* klass, const char* comment,
2233                              bool must_throw,
2234                              bool keep_exact_action) {
2235   if (failing_internal()) {
2236     stop();
2237   }
2238   if (stopped())  return nullptr; // trap reachable?
2239 
2240   // Note:  If ProfileTraps is true, and if a deopt. actually
2241   // occurs here, the runtime will make sure an MDO exists.  There is
2242   // no need to call method()->ensure_method_data() at this point.
2243 
2244   // Set the stack pointer to the right value for reexecution:
2245   set_sp(reexecute_sp());
2246 
2247 #ifdef ASSERT
2248   if (!must_throw) {
2249     // Make sure the stack has at least enough depth to execute
2250     // the current bytecode.
2251     int inputs, ignored_depth;
2252     if (compute_stack_effects(inputs, ignored_depth)) {
2253       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2254              Bytecodes::name(java_bc()), sp(), inputs);
2255     }
2256   }
2257 #endif
2258 
2259   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2260   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2261 
2262   switch (action) {
2263   case Deoptimization::Action_maybe_recompile:
2264   case Deoptimization::Action_reinterpret:
2265     // Temporary fix for 6529811 to allow virtual calls to be sure they
2266     // get the chance to go from mono->bi->mega
2267     if (!keep_exact_action &&
2268         Deoptimization::trap_request_index(trap_request) < 0 &&
2269         too_many_recompiles(reason)) {
2270       // This BCI is causing too many recompilations.
2271       if (C->log() != nullptr) {
2272         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2273                 Deoptimization::trap_reason_name(reason),
2274                 Deoptimization::trap_action_name(action));
2275       }
2276       action = Deoptimization::Action_none;
2277       trap_request = Deoptimization::make_trap_request(reason, action);
2278     } else {
2279       C->set_trap_can_recompile(true);
2280     }
2281     break;
2282   case Deoptimization::Action_make_not_entrant:
2283     C->set_trap_can_recompile(true);
2284     break;
2285   case Deoptimization::Action_none:
2286   case Deoptimization::Action_make_not_compilable:
2287     break;
2288   default:
2289 #ifdef ASSERT
2290     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2291 #endif
2292     break;
2293   }
2294 
2295   if (TraceOptoParse) {
2296     char buf[100];
2297     tty->print_cr("Uncommon trap %s at bci:%d",
2298                   Deoptimization::format_trap_request(buf, sizeof(buf),
2299                                                       trap_request), bci());
2300   }
2301 
2302   CompileLog* log = C->log();
2303   if (log != nullptr) {
2304     int kid = (klass == nullptr)? -1: log->identify(klass);
2305     log->begin_elem("uncommon_trap bci='%d'", bci());
2306     char buf[100];
2307     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2308                                                           trap_request));
2309     if (kid >= 0)         log->print(" klass='%d'", kid);
2310     if (comment != nullptr)  log->print(" comment='%s'", comment);
2311     log->end_elem();
2312   }
2313 
2314   // Make sure any guarding test views this path as very unlikely
2315   Node *i0 = control()->in(0);
2316   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2317     IfNode *iff = i0->as_If();
2318     float f = iff->_prob;   // Get prob
2319     if (control()->Opcode() == Op_IfTrue) {
2320       if (f > PROB_UNLIKELY_MAG(4))
2321         iff->_prob = PROB_MIN;
2322     } else {
2323       if (f < PROB_LIKELY_MAG(4))
2324         iff->_prob = PROB_MAX;
2325     }
2326   }
2327 
2328   // Clear out dead values from the debug info.
2329   kill_dead_locals();
2330 
2331   // Now insert the uncommon trap subroutine call
2332   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2333   const TypePtr* no_memory_effects = nullptr;
2334   // Pass the index of the class to be loaded
2335   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2336                                  (must_throw ? RC_MUST_THROW : 0),
2337                                  OptoRuntime::uncommon_trap_Type(),
2338                                  call_addr, "uncommon_trap", no_memory_effects,
2339                                  intcon(trap_request));
2340   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2341          "must extract request correctly from the graph");
2342   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2343 
2344   call->set_req(TypeFunc::ReturnAdr, returnadr());
2345   // The debug info is the only real input to this call.
2346 
2347   // Halt-and-catch fire here.  The above call should never return!
2348   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2349                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2350   _gvn.set_type_bottom(halt);
2351   root()->add_req(halt);
2352 
2353   stop_and_kill_map();
2354   return call;
2355 }
2356 
2357 
2358 //--------------------------just_allocated_object------------------------------
2359 // Report the object that was just allocated.
2360 // It must be the case that there are no intervening safepoints.
2361 // We use this to determine if an object is so "fresh" that
2362 // it does not require card marks.
2363 Node* GraphKit::just_allocated_object(Node* current_control) {
2364   Node* ctrl = current_control;
2365   // Object::<init> is invoked after allocation, most of invoke nodes
2366   // will be reduced, but a region node is kept in parse time, we check
2367   // the pattern and skip the region node if it degraded to a copy.
2368   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2369       ctrl->as_Region()->is_copy()) {
2370     ctrl = ctrl->as_Region()->is_copy();
2371   }
2372   if (C->recent_alloc_ctl() == ctrl) {
2373    return C->recent_alloc_obj();
2374   }
2375   return nullptr;
2376 }
2377 
2378 
2379 /**
2380  * Record profiling data exact_kls for Node n with the type system so
2381  * that it can propagate it (speculation)
2382  *
2383  * @param n          node that the type applies to
2384  * @param exact_kls  type from profiling
2385  * @param maybe_null did profiling see null?
2386  *
2387  * @return           node with improved type
2388  */
2389 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2390   const Type* current_type = _gvn.type(n);
2391   assert(UseTypeSpeculation, "type speculation must be on");
2392 
2393   const TypePtr* speculative = current_type->speculative();
2394 
2395   // Should the klass from the profile be recorded in the speculative type?
2396   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2397     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2398     const TypeOopPtr* xtype = tklass->as_instance_type();
2399     assert(xtype->klass_is_exact(), "Should be exact");
2400     // Any reason to believe n is not null (from this profiling or a previous one)?
2401     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2402     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2403     // record the new speculative type's depth
2404     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2405     speculative = speculative->with_inline_depth(jvms()->depth());
2406   } else if (current_type->would_improve_ptr(ptr_kind)) {
2407     // Profiling report that null was never seen so we can change the
2408     // speculative type to non null ptr.
2409     if (ptr_kind == ProfileAlwaysNull) {
2410       speculative = TypePtr::NULL_PTR;
2411     } else {
2412       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2413       const TypePtr* ptr = TypePtr::NOTNULL;
2414       if (speculative != nullptr) {
2415         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2416       } else {
2417         speculative = ptr;
2418       }
2419     }
2420   }
2421 
2422   if (speculative != current_type->speculative()) {
2423     // Build a type with a speculative type (what we think we know
2424     // about the type but will need a guard when we use it)
2425     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2426     // We're changing the type, we need a new CheckCast node to carry
2427     // the new type. The new type depends on the control: what
2428     // profiling tells us is only valid from here as far as we can
2429     // tell.
2430     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2431     cast = _gvn.transform(cast);
2432     replace_in_map(n, cast);
2433     n = cast;
2434   }
2435 
2436   return n;
2437 }
2438 
2439 /**
2440  * Record profiling data from receiver profiling at an invoke with the
2441  * type system so that it can propagate it (speculation)
2442  *
2443  * @param n  receiver node
2444  *
2445  * @return   node with improved type
2446  */
2447 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2448   if (!UseTypeSpeculation) {
2449     return n;
2450   }
2451   ciKlass* exact_kls = profile_has_unique_klass();
2452   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2453   if ((java_bc() == Bytecodes::_checkcast ||
2454        java_bc() == Bytecodes::_instanceof ||
2455        java_bc() == Bytecodes::_aastore) &&
2456       method()->method_data()->is_mature()) {
2457     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2458     if (data != nullptr) {
2459       if (java_bc() == Bytecodes::_aastore) {
2460         ciKlass* array_type = nullptr;
2461         ciKlass* element_type = nullptr;
2462         ProfilePtrKind element_ptr = ProfileMaybeNull;
2463         bool flat_array = true;
2464         bool null_free_array = true;
2465         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2466         exact_kls = element_type;
2467         ptr_kind = element_ptr;
2468       } else {
2469         if (!data->as_BitData()->null_seen()) {
2470           ptr_kind = ProfileNeverNull;
2471         } else {
2472           assert(data->is_ReceiverTypeData(), "bad profile data type");
2473           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2474           uint i = 0;
2475           for (; i < call->row_limit(); i++) {
2476             ciKlass* receiver = call->receiver(i);
2477             if (receiver != nullptr) {
2478               break;
2479             }
2480           }
2481           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2482         }
2483       }
2484     }
2485   }
2486   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2487 }
2488 
2489 /**
2490  * Record profiling data from argument profiling at an invoke with the
2491  * type system so that it can propagate it (speculation)
2492  *
2493  * @param dest_method  target method for the call
2494  * @param bc           what invoke bytecode is this?
2495  */
2496 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2497   if (!UseTypeSpeculation) {
2498     return;
2499   }
2500   const TypeFunc* tf    = TypeFunc::make(dest_method);
2501   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2502   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2503   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2504     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2505     if (is_reference_type(targ->basic_type())) {
2506       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2507       ciKlass* better_type = nullptr;
2508       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2509         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2510       }
2511       i++;
2512     }
2513   }
2514 }
2515 
2516 /**
2517  * Record profiling data from parameter profiling at an invoke with
2518  * the type system so that it can propagate it (speculation)
2519  */
2520 void GraphKit::record_profiled_parameters_for_speculation() {
2521   if (!UseTypeSpeculation) {
2522     return;
2523   }
2524   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2525     if (_gvn.type(local(i))->isa_oopptr()) {
2526       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2527       ciKlass* better_type = nullptr;
2528       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2529         record_profile_for_speculation(local(i), better_type, ptr_kind);
2530       }
2531       j++;
2532     }
2533   }
2534 }
2535 
2536 /**
2537  * Record profiling data from return value profiling at an invoke with
2538  * the type system so that it can propagate it (speculation)
2539  */
2540 void GraphKit::record_profiled_return_for_speculation() {
2541   if (!UseTypeSpeculation) {
2542     return;
2543   }
2544   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2545   ciKlass* better_type = nullptr;
2546   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2547     // If profiling reports a single type for the return value,
2548     // feed it to the type system so it can propagate it as a
2549     // speculative type
2550     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2551   }
2552 }
2553 
2554 
2555 //=============================================================================
2556 // Generate a fast path/slow path idiom.  Graph looks like:
2557 // [foo] indicates that 'foo' is a parameter
2558 //
2559 //              [in]     null
2560 //                 \    /
2561 //                  CmpP
2562 //                  Bool ne
2563 //                   If
2564 //                  /  \
2565 //              True    False-<2>
2566 //              / |
2567 //             /  cast_not_null
2568 //           Load  |    |   ^
2569 //        [fast_test]   |   |
2570 // gvn to   opt_test    |   |
2571 //          /    \      |  <1>
2572 //      True     False  |
2573 //        |         \\  |
2574 //   [slow_call]     \[fast_result]
2575 //    Ctl   Val       \      \
2576 //     |               \      \
2577 //    Catch       <1>   \      \
2578 //   /    \        ^     \      \
2579 //  Ex    No_Ex    |      \      \
2580 //  |       \   \  |       \ <2>  \
2581 //  ...      \  [slow_res] |  |    \   [null_result]
2582 //            \         \--+--+---  |  |
2583 //             \           | /    \ | /
2584 //              --------Region     Phi
2585 //
2586 //=============================================================================
2587 // Code is structured as a series of driver functions all called 'do_XXX' that
2588 // call a set of helper functions.  Helper functions first, then drivers.
2589 
2590 //------------------------------null_check_oop---------------------------------
2591 // Null check oop.  Set null-path control into Region in slot 3.
2592 // Make a cast-not-nullness use the other not-null control.  Return cast.
2593 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2594                                bool never_see_null,
2595                                bool safe_for_replace,
2596                                bool speculative) {
2597   // Initial null check taken path
2598   (*null_control) = top();
2599   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2600 
2601   // Generate uncommon_trap:
2602   if (never_see_null && (*null_control) != top()) {
2603     // If we see an unexpected null at a check-cast we record it and force a
2604     // recompile; the offending check-cast will be compiled to handle nulls.
2605     // If we see more than one offending BCI, then all checkcasts in the
2606     // method will be compiled to handle nulls.
2607     PreserveJVMState pjvms(this);
2608     set_control(*null_control);
2609     replace_in_map(value, null());
2610     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2611     uncommon_trap(reason,
2612                   Deoptimization::Action_make_not_entrant);
2613     (*null_control) = top();    // null path is dead
2614   }
2615   if ((*null_control) == top() && safe_for_replace) {
2616     replace_in_map(value, cast);
2617   }
2618 
2619   // Cast away null-ness on the result
2620   return cast;
2621 }
2622 
2623 //------------------------------opt_iff----------------------------------------
2624 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2625 // Return slow-path control.
2626 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2627   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2628 
2629   // Fast path taken; set region slot 2
2630   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2631   region->init_req(2,fast_taken); // Capture fast-control
2632 
2633   // Fast path not-taken, i.e. slow path
2634   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2635   return slow_taken;
2636 }
2637 
2638 //-----------------------------make_runtime_call-------------------------------
2639 Node* GraphKit::make_runtime_call(int flags,
2640                                   const TypeFunc* call_type, address call_addr,
2641                                   const char* call_name,
2642                                   const TypePtr* adr_type,
2643                                   // The following parms are all optional.
2644                                   // The first null ends the list.
2645                                   Node* parm0, Node* parm1,
2646                                   Node* parm2, Node* parm3,
2647                                   Node* parm4, Node* parm5,
2648                                   Node* parm6, Node* parm7) {
2649   assert(call_addr != nullptr, "must not call null targets");
2650 
2651   // Slow-path call
2652   bool is_leaf = !(flags & RC_NO_LEAF);
2653   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2654   if (call_name == nullptr) {
2655     assert(!is_leaf, "must supply name for leaf");
2656     call_name = OptoRuntime::stub_name(call_addr);
2657   }
2658   CallNode* call;
2659   if (!is_leaf) {
2660     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2661   } else if (flags & RC_NO_FP) {
2662     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2663   } else  if (flags & RC_VECTOR){
2664     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2665     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2666   } else {
2667     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2668   }
2669 
2670   // The following is similar to set_edges_for_java_call,
2671   // except that the memory effects of the call are restricted to AliasIdxRaw.
2672 
2673   // Slow path call has no side-effects, uses few values
2674   bool wide_in  = !(flags & RC_NARROW_MEM);
2675   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2676 
2677   Node* prev_mem = nullptr;
2678   if (wide_in) {
2679     prev_mem = set_predefined_input_for_runtime_call(call);
2680   } else {
2681     assert(!wide_out, "narrow in => narrow out");
2682     Node* narrow_mem = memory(adr_type);
2683     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2684   }
2685 
2686   // Hook each parm in order.  Stop looking at the first null.
2687   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2688   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2689   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2690   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2691   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2692   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2693   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2694   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2695   /* close each nested if ===> */  } } } } } } } }
2696   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2697 
2698   if (!is_leaf) {
2699     // Non-leaves can block and take safepoints:
2700     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2701   }
2702   // Non-leaves can throw exceptions:
2703   if (has_io) {
2704     call->set_req(TypeFunc::I_O, i_o());
2705   }
2706 
2707   if (flags & RC_UNCOMMON) {
2708     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2709     // (An "if" probability corresponds roughly to an unconditional count.
2710     // Sort of.)
2711     call->set_cnt(PROB_UNLIKELY_MAG(4));
2712   }
2713 
2714   Node* c = _gvn.transform(call);
2715   assert(c == call, "cannot disappear");
2716 
2717   if (wide_out) {
2718     // Slow path call has full side-effects.
2719     set_predefined_output_for_runtime_call(call);
2720   } else {
2721     // Slow path call has few side-effects, and/or sets few values.
2722     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2723   }
2724 
2725   if (has_io) {
2726     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2727   }
2728   return call;
2729 
2730 }
2731 
2732 // i2b
2733 Node* GraphKit::sign_extend_byte(Node* in) {
2734   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2735   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2736 }
2737 
2738 // i2s
2739 Node* GraphKit::sign_extend_short(Node* in) {
2740   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2741   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2742 }
2743 
2744 
2745 //------------------------------merge_memory-----------------------------------
2746 // Merge memory from one path into the current memory state.
2747 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2748   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2749     Node* old_slice = mms.force_memory();
2750     Node* new_slice = mms.memory2();
2751     if (old_slice != new_slice) {
2752       PhiNode* phi;
2753       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2754         if (mms.is_empty()) {
2755           // clone base memory Phi's inputs for this memory slice
2756           assert(old_slice == mms.base_memory(), "sanity");
2757           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2758           _gvn.set_type(phi, Type::MEMORY);
2759           for (uint i = 1; i < phi->req(); i++) {
2760             phi->init_req(i, old_slice->in(i));
2761           }
2762         } else {
2763           phi = old_slice->as_Phi(); // Phi was generated already
2764         }
2765       } else {
2766         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2767         _gvn.set_type(phi, Type::MEMORY);
2768       }
2769       phi->set_req(new_path, new_slice);
2770       mms.set_memory(phi);
2771     }
2772   }
2773 }
2774 
2775 //------------------------------make_slow_call_ex------------------------------
2776 // Make the exception handler hookups for the slow call
2777 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2778   if (stopped())  return;
2779 
2780   // Make a catch node with just two handlers:  fall-through and catch-all
2781   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2782   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2783   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2784   _gvn.set_type_bottom(norm);
2785   C->record_for_igvn(norm);
2786   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2787 
2788   { PreserveJVMState pjvms(this);
2789     set_control(excp);
2790     set_i_o(i_o);
2791 
2792     if (excp != top()) {
2793       if (deoptimize) {
2794         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2795         uncommon_trap(Deoptimization::Reason_unhandled,
2796                       Deoptimization::Action_none);
2797       } else {
2798         // Create an exception state also.
2799         // Use an exact type if the caller has a specific exception.
2800         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2801         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2802         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2803       }
2804     }
2805   }
2806 
2807   // Get the no-exception control from the CatchNode.
2808   set_control(norm);
2809 }
2810 
2811 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2812   Node* cmp = nullptr;
2813   switch(bt) {
2814   case T_INT: cmp = new CmpINode(in1, in2); break;
2815   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2816   default: fatal("unexpected comparison type %s", type2name(bt));
2817   }
2818   cmp = gvn.transform(cmp);
2819   Node* bol = gvn.transform(new BoolNode(cmp, test));
2820   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2821   gvn.transform(iff);
2822   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2823   return iff;
2824 }
2825 
2826 //-------------------------------gen_subtype_check-----------------------------
2827 // Generate a subtyping check.  Takes as input the subtype and supertype.
2828 // Returns 2 values: sets the default control() to the true path and returns
2829 // the false path.  Only reads invariant memory; sets no (visible) memory.
2830 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2831 // but that's not exposed to the optimizer.  This call also doesn't take in an
2832 // Object; if you wish to check an Object you need to load the Object's class
2833 // prior to coming here.
2834 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2835                                ciMethod* method, int bci) {
2836   Compile* C = gvn.C;
2837   if ((*ctrl)->is_top()) {
2838     return C->top();
2839   }
2840 
2841   // Fast check for identical types, perhaps identical constants.
2842   // The types can even be identical non-constants, in cases
2843   // involving Array.newInstance, Object.clone, etc.
2844   if (subklass == superklass)
2845     return C->top();             // false path is dead; no test needed.
2846 
2847   if (gvn.type(superklass)->singleton()) {
2848     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2849     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2850 
2851     // In the common case of an exact superklass, try to fold up the
2852     // test before generating code.  You may ask, why not just generate
2853     // the code and then let it fold up?  The answer is that the generated
2854     // code will necessarily include null checks, which do not always
2855     // completely fold away.  If they are also needless, then they turn
2856     // into a performance loss.  Example:
2857     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2858     // Here, the type of 'fa' is often exact, so the store check
2859     // of fa[1]=x will fold up, without testing the nullness of x.
2860     //
2861     // At macro expansion, we would have already folded the SubTypeCheckNode
2862     // being expanded here because we always perform the static sub type
2863     // check in SubTypeCheckNode::sub() regardless of whether
2864     // StressReflectiveCode is set or not. We can therefore skip this
2865     // static check when StressReflectiveCode is on.
2866     switch (C->static_subtype_check(superk, subk)) {
2867     case Compile::SSC_always_false:
2868       {
2869         Node* always_fail = *ctrl;
2870         *ctrl = gvn.C->top();
2871         return always_fail;
2872       }
2873     case Compile::SSC_always_true:
2874       return C->top();
2875     case Compile::SSC_easy_test:
2876       {
2877         // Just do a direct pointer compare and be done.
2878         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2879         *ctrl = gvn.transform(new IfTrueNode(iff));
2880         return gvn.transform(new IfFalseNode(iff));
2881       }
2882     case Compile::SSC_full_test:
2883       break;
2884     default:
2885       ShouldNotReachHere();
2886     }
2887   }
2888 
2889   // %%% Possible further optimization:  Even if the superklass is not exact,
2890   // if the subklass is the unique subtype of the superklass, the check
2891   // will always succeed.  We could leave a dependency behind to ensure this.
2892 
2893   // First load the super-klass's check-offset
2894   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2895   Node* m = C->immutable_memory();
2896   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2897   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2898   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2899   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2900   bool might_be_cache = (chk_off_con == cacheoff_con);
2901 
2902   // Load from the sub-klass's super-class display list, or a 1-word cache of
2903   // the secondary superclass list, or a failing value with a sentinel offset
2904   // if the super-klass is an interface or exceptionally deep in the Java
2905   // hierarchy and we have to scan the secondary superclass list the hard way.
2906   // Worst-case type is a little odd: null is allowed as a result (usually
2907   // klass loads can never produce a null).
2908   Node *chk_off_X = chk_off;
2909 #ifdef _LP64
2910   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2911 #endif
2912   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2913   // For some types like interfaces the following loadKlass is from a 1-word
2914   // cache which is mutable so can't use immutable memory.  Other
2915   // types load from the super-class display table which is immutable.
2916   Node *kmem = C->immutable_memory();
2917   // secondary_super_cache is not immutable but can be treated as such because:
2918   // - no ideal node writes to it in a way that could cause an
2919   //   incorrect/missed optimization of the following Load.
2920   // - it's a cache so, worse case, not reading the latest value
2921   //   wouldn't cause incorrect execution
2922   if (might_be_cache && mem != nullptr) {
2923     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2924   }
2925   Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2926 
2927   // Compile speed common case: ARE a subtype and we canNOT fail
2928   if (superklass == nkls) {
2929     return C->top();             // false path is dead; no test needed.
2930   }
2931 
2932   // Gather the various success & failures here
2933   RegionNode* r_not_subtype = new RegionNode(3);
2934   gvn.record_for_igvn(r_not_subtype);
2935   RegionNode* r_ok_subtype = new RegionNode(4);
2936   gvn.record_for_igvn(r_ok_subtype);
2937 
2938   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2939   // SubTypeCheck node
2940   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2941     ciCallProfile profile = method->call_profile_at_bci(bci);
2942     float total_prob = 0;
2943     for (int i = 0; profile.has_receiver(i); ++i) {
2944       float prob = profile.receiver_prob(i);
2945       total_prob += prob;
2946     }
2947     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2948       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2949       for (int i = 0; profile.has_receiver(i); ++i) {
2950         ciKlass* klass = profile.receiver(i);
2951         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2952         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2953         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2954           continue;
2955         }
2956         float prob = profile.receiver_prob(i);
2957         ConNode* klass_node = gvn.makecon(klass_t);
2958         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2959         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2960 
2961         if (result == Compile::SSC_always_true) {
2962           r_ok_subtype->add_req(iftrue);
2963         } else {
2964           assert(result == Compile::SSC_always_false, "");
2965           r_not_subtype->add_req(iftrue);
2966         }
2967         *ctrl = gvn.transform(new IfFalseNode(iff));
2968       }
2969     }
2970   }
2971 
2972   // See if we get an immediate positive hit.  Happens roughly 83% of the
2973   // time.  Test to see if the value loaded just previously from the subklass
2974   // is exactly the superklass.
2975   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2976   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2977   *ctrl = gvn.transform(new IfFalseNode(iff1));
2978 
2979   // Compile speed common case: Check for being deterministic right now.  If
2980   // chk_off is a constant and not equal to cacheoff then we are NOT a
2981   // subklass.  In this case we need exactly the 1 test above and we can
2982   // return those results immediately.
2983   if (!might_be_cache) {
2984     Node* not_subtype_ctrl = *ctrl;
2985     *ctrl = iftrue1; // We need exactly the 1 test above
2986     PhaseIterGVN* igvn = gvn.is_IterGVN();
2987     if (igvn != nullptr) {
2988       igvn->remove_globally_dead_node(r_ok_subtype);
2989       igvn->remove_globally_dead_node(r_not_subtype);
2990     }
2991     return not_subtype_ctrl;
2992   }
2993 
2994   r_ok_subtype->init_req(1, iftrue1);
2995 
2996   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2997   // is roughly 63% of the remaining cases).  Test to see if the loaded
2998   // check-offset points into the subklass display list or the 1-element
2999   // cache.  If it points to the display (and NOT the cache) and the display
3000   // missed then it's not a subtype.
3001   Node *cacheoff = gvn.intcon(cacheoff_con);
3002   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3003   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3004   *ctrl = gvn.transform(new IfFalseNode(iff2));
3005 
3006   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3007   // No performance impact (too rare) but allows sharing of secondary arrays
3008   // which has some footprint reduction.
3009   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3010   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3011   *ctrl = gvn.transform(new IfFalseNode(iff3));
3012 
3013   // -- Roads not taken here: --
3014   // We could also have chosen to perform the self-check at the beginning
3015   // of this code sequence, as the assembler does.  This would not pay off
3016   // the same way, since the optimizer, unlike the assembler, can perform
3017   // static type analysis to fold away many successful self-checks.
3018   // Non-foldable self checks work better here in second position, because
3019   // the initial primary superclass check subsumes a self-check for most
3020   // types.  An exception would be a secondary type like array-of-interface,
3021   // which does not appear in its own primary supertype display.
3022   // Finally, we could have chosen to move the self-check into the
3023   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3024   // dependent manner.  But it is worthwhile to have the check here,
3025   // where it can be perhaps be optimized.  The cost in code space is
3026   // small (register compare, branch).
3027 
3028   // Now do a linear scan of the secondary super-klass array.  Again, no real
3029   // performance impact (too rare) but it's gotta be done.
3030   // Since the code is rarely used, there is no penalty for moving it
3031   // out of line, and it can only improve I-cache density.
3032   // The decision to inline or out-of-line this final check is platform
3033   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3034   Node* psc = gvn.transform(
3035     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3036 
3037   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3038   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3039   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3040 
3041   // Return false path; set default control to true path.
3042   *ctrl = gvn.transform(r_ok_subtype);
3043   return gvn.transform(r_not_subtype);
3044 }
3045 
3046 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3047   const Type* sub_t = _gvn.type(obj_or_subklass);
3048   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3049     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3050     obj_or_subklass = makecon(sub_t);
3051   }
3052   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3053   if (expand_subtype_check) {
3054     MergeMemNode* mem = merged_memory();
3055     Node* ctrl = control();
3056     Node* subklass = obj_or_subklass;
3057     if (!sub_t->isa_klassptr()) {
3058       subklass = load_object_klass(obj_or_subklass);
3059     }
3060 
3061     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3062     set_control(ctrl);
3063     return n;
3064   }
3065 
3066   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3067   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3068   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3069   set_control(_gvn.transform(new IfTrueNode(iff)));
3070   return _gvn.transform(new IfFalseNode(iff));
3071 }
3072 
3073 // Profile-driven exact type check:
3074 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3075                                     float prob, Node* *casted_receiver) {
3076   assert(!klass->is_interface(), "no exact type check on interfaces");
3077   Node* fail = top();
3078   const Type* rec_t = _gvn.type(receiver);
3079   if (rec_t->is_inlinetypeptr()) {
3080     if (klass->equals(rec_t->inline_klass())) {
3081       (*casted_receiver) = receiver; // Always passes
3082     } else {
3083       (*casted_receiver) = top();    // Always fails
3084       fail = control();
3085       set_control(top());
3086     }
3087     return fail;
3088   }
3089   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3090   Node* recv_klass = load_object_klass(receiver);
3091   fail = type_check(recv_klass, tklass, prob);
3092 
3093   if (!stopped()) {
3094     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3095     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3096     assert(recv_xtype->klass_is_exact(), "");
3097 
3098     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3099       // Subsume downstream occurrences of receiver with a cast to
3100       // recv_xtype, since now we know what the type will be.
3101       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3102       Node* res = _gvn.transform(cast);
3103       if (recv_xtype->is_inlinetypeptr()) {
3104         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3105         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3106       }
3107       (*casted_receiver) = res;
3108       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3109       // (User must make the replace_in_map call.)
3110     }
3111   }
3112 
3113   return fail;
3114 }
3115 
3116 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3117                            float prob) {
3118   Node* want_klass = makecon(tklass);
3119   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3120   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3121   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3122   set_control(_gvn.transform(new IfTrueNode (iff)));
3123   Node* fail = _gvn.transform(new IfFalseNode(iff));
3124   return fail;
3125 }
3126 
3127 //------------------------------subtype_check_receiver-------------------------
3128 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3129                                        Node** casted_receiver) {
3130   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3131   Node* want_klass = makecon(tklass);
3132 
3133   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3134 
3135   // Ignore interface type information until interface types are properly tracked.
3136   if (!stopped() && !klass->is_interface()) {
3137     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3138     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3139     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3140       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3141       if (recv_type->is_inlinetypeptr()) {
3142         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3143       }
3144       (*casted_receiver) = cast;
3145     }
3146   }
3147 
3148   return slow_ctl;
3149 }
3150 
3151 //------------------------------seems_never_null-------------------------------
3152 // Use null_seen information if it is available from the profile.
3153 // If we see an unexpected null at a type check we record it and force a
3154 // recompile; the offending check will be recompiled to handle nulls.
3155 // If we see several offending BCIs, then all checks in the
3156 // method will be recompiled.
3157 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3158   speculating = !_gvn.type(obj)->speculative_maybe_null();
3159   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3160   if (UncommonNullCast               // Cutout for this technique
3161       && obj != null()               // And not the -Xcomp stupid case?
3162       && !too_many_traps(reason)
3163       ) {
3164     if (speculating) {
3165       return true;
3166     }
3167     if (data == nullptr)
3168       // Edge case:  no mature data.  Be optimistic here.
3169       return true;
3170     // If the profile has not seen a null, assume it won't happen.
3171     assert(java_bc() == Bytecodes::_checkcast ||
3172            java_bc() == Bytecodes::_instanceof ||
3173            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3174     return !data->as_BitData()->null_seen();
3175   }
3176   speculating = false;
3177   return false;
3178 }
3179 
3180 void GraphKit::guard_klass_being_initialized(Node* klass) {
3181   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3182   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3183   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3184                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3185                                     T_BYTE, MemNode::acquire);
3186   init_state = _gvn.transform(init_state);
3187 
3188   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3189 
3190   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3191   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3192 
3193   { BuildCutout unless(this, tst, PROB_MAX);
3194     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3195   }
3196 }
3197 
3198 void GraphKit::guard_init_thread(Node* klass) {
3199   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3200   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3201 
3202   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3203                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3204                                      T_ADDRESS, MemNode::unordered);
3205   init_thread = _gvn.transform(init_thread);
3206 
3207   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3208 
3209   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3210   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3211 
3212   { BuildCutout unless(this, tst, PROB_MAX);
3213     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3214   }
3215 }
3216 
3217 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3218   if (ik->is_being_initialized()) {
3219     if (C->needs_clinit_barrier(ik, context)) {
3220       Node* klass = makecon(TypeKlassPtr::make(ik));
3221       guard_klass_being_initialized(klass);
3222       guard_init_thread(klass);
3223       insert_mem_bar(Op_MemBarCPUOrder);
3224     }
3225   } else if (ik->is_initialized()) {
3226     return; // no barrier needed
3227   } else {
3228     uncommon_trap(Deoptimization::Reason_uninitialized,
3229                   Deoptimization::Action_reinterpret,
3230                   nullptr);
3231   }
3232 }
3233 
3234 //------------------------maybe_cast_profiled_receiver-------------------------
3235 // If the profile has seen exactly one type, narrow to exactly that type.
3236 // Subsequent type checks will always fold up.
3237 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3238                                              const TypeKlassPtr* require_klass,
3239                                              ciKlass* spec_klass,
3240                                              bool safe_for_replace) {
3241   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3242 
3243   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3244 
3245   // Make sure we haven't already deoptimized from this tactic.
3246   if (too_many_traps_or_recompiles(reason))
3247     return nullptr;
3248 
3249   // (No, this isn't a call, but it's enough like a virtual call
3250   // to use the same ciMethod accessor to get the profile info...)
3251   // If we have a speculative type use it instead of profiling (which
3252   // may not help us)
3253   ciKlass* exact_kls = spec_klass;
3254   if (exact_kls == nullptr) {
3255     if (java_bc() == Bytecodes::_aastore) {
3256       ciKlass* array_type = nullptr;
3257       ciKlass* element_type = nullptr;
3258       ProfilePtrKind element_ptr = ProfileMaybeNull;
3259       bool flat_array = true;
3260       bool null_free_array = true;
3261       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3262       exact_kls = element_type;
3263     } else {
3264       exact_kls = profile_has_unique_klass();
3265     }
3266   }
3267   if (exact_kls != nullptr) {// no cast failures here
3268     if (require_klass == nullptr ||
3269         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3270       // If we narrow the type to match what the type profile sees or
3271       // the speculative type, we can then remove the rest of the
3272       // cast.
3273       // This is a win, even if the exact_kls is very specific,
3274       // because downstream operations, such as method calls,
3275       // will often benefit from the sharper type.
3276       Node* exact_obj = not_null_obj; // will get updated in place...
3277       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3278                                             &exact_obj);
3279       { PreserveJVMState pjvms(this);
3280         set_control(slow_ctl);
3281         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3282       }
3283       if (safe_for_replace) {
3284         replace_in_map(not_null_obj, exact_obj);
3285       }
3286       return exact_obj;
3287     }
3288     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3289   }
3290 
3291   return nullptr;
3292 }
3293 
3294 /**
3295  * Cast obj to type and emit guard unless we had too many traps here
3296  * already
3297  *
3298  * @param obj       node being casted
3299  * @param type      type to cast the node to
3300  * @param not_null  true if we know node cannot be null
3301  */
3302 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3303                                         ciKlass* type,
3304                                         bool not_null) {
3305   if (stopped()) {
3306     return obj;
3307   }
3308 
3309   // type is null if profiling tells us this object is always null
3310   if (type != nullptr) {
3311     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3312     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3313 
3314     if (!too_many_traps_or_recompiles(null_reason) &&
3315         !too_many_traps_or_recompiles(class_reason)) {
3316       Node* not_null_obj = nullptr;
3317       // not_null is true if we know the object is not null and
3318       // there's no need for a null check
3319       if (!not_null) {
3320         Node* null_ctl = top();
3321         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3322         assert(null_ctl->is_top(), "no null control here");
3323       } else {
3324         not_null_obj = obj;
3325       }
3326 
3327       Node* exact_obj = not_null_obj;
3328       ciKlass* exact_kls = type;
3329       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3330                                             &exact_obj);
3331       {
3332         PreserveJVMState pjvms(this);
3333         set_control(slow_ctl);
3334         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3335       }
3336       replace_in_map(not_null_obj, exact_obj);
3337       obj = exact_obj;
3338     }
3339   } else {
3340     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3341       Node* exact_obj = null_assert(obj);
3342       replace_in_map(obj, exact_obj);
3343       obj = exact_obj;
3344     }
3345   }
3346   return obj;
3347 }
3348 
3349 //-------------------------------gen_instanceof--------------------------------
3350 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3351 // and the reflective instance-of call.
3352 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3353   kill_dead_locals();           // Benefit all the uncommon traps
3354   assert( !stopped(), "dead parse path should be checked in callers" );
3355   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3356          "must check for not-null not-dead klass in callers");
3357 
3358   // Make the merge point
3359   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3360   RegionNode* region = new RegionNode(PATH_LIMIT);
3361   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3362   C->set_has_split_ifs(true); // Has chance for split-if optimization
3363 
3364   ciProfileData* data = nullptr;
3365   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3366     data = method()->method_data()->bci_to_data(bci());
3367   }
3368   bool speculative_not_null = false;
3369   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3370                          && seems_never_null(obj, data, speculative_not_null));
3371 
3372   // Null check; get casted pointer; set region slot 3
3373   Node* null_ctl = top();
3374   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3375 
3376   // If not_null_obj is dead, only null-path is taken
3377   if (stopped()) {              // Doing instance-of on a null?
3378     set_control(null_ctl);
3379     return intcon(0);
3380   }
3381   region->init_req(_null_path, null_ctl);
3382   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3383   if (null_ctl == top()) {
3384     // Do this eagerly, so that pattern matches like is_diamond_phi
3385     // will work even during parsing.
3386     assert(_null_path == PATH_LIMIT-1, "delete last");
3387     region->del_req(_null_path);
3388     phi   ->del_req(_null_path);
3389   }
3390 
3391   // Do we know the type check always succeed?
3392   bool known_statically = false;
3393   if (_gvn.type(superklass)->singleton()) {
3394     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3395     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3396     if (subk != nullptr && subk->is_loaded()) {
3397       int static_res = C->static_subtype_check(superk, subk);
3398       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3399     }
3400   }
3401 
3402   if (!known_statically) {
3403     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3404     // We may not have profiling here or it may not help us. If we
3405     // have a speculative type use it to perform an exact cast.
3406     ciKlass* spec_obj_type = obj_type->speculative_type();
3407     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3408       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3409       if (stopped()) {            // Profile disagrees with this path.
3410         set_control(null_ctl);    // Null is the only remaining possibility.
3411         return intcon(0);
3412       }
3413       if (cast_obj != nullptr) {
3414         not_null_obj = cast_obj;
3415       }
3416     }
3417   }
3418 
3419   // Generate the subtype check
3420   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3421 
3422   // Plug in the success path to the general merge in slot 1.
3423   region->init_req(_obj_path, control());
3424   phi   ->init_req(_obj_path, intcon(1));
3425 
3426   // Plug in the failing path to the general merge in slot 2.
3427   region->init_req(_fail_path, not_subtype_ctrl);
3428   phi   ->init_req(_fail_path, intcon(0));
3429 
3430   // Return final merged results
3431   set_control( _gvn.transform(region) );
3432   record_for_igvn(region);
3433 
3434   // If we know the type check always succeeds then we don't use the
3435   // profiling data at this bytecode. Don't lose it, feed it to the
3436   // type system as a speculative type.
3437   if (safe_for_replace) {
3438     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3439     replace_in_map(obj, casted_obj);
3440   }
3441 
3442   return _gvn.transform(phi);
3443 }
3444 
3445 //-------------------------------gen_checkcast---------------------------------
3446 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3447 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3448 // uncommon-trap paths work.  Adjust stack after this call.
3449 // If failure_control is supplied and not null, it is filled in with
3450 // the control edge for the cast failure.  Otherwise, an appropriate
3451 // uncommon trap or exception is thrown.
3452 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {
3453   kill_dead_locals();           // Benefit all the uncommon traps
3454   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3455   const Type* obj_type = _gvn.type(obj);
3456   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3457     // Special case: larval inline objects must not be scalarized. They are also generally not
3458     // allowed to participate in most operations except as the first operand of putfield, or as an
3459     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3460     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3461     // value objects in all other places. This special case comes from the limitation of the Java
3462     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3463     // value type. We must do this first because C->static_subtype_check may do nothing when
3464     // StressReflectiveCode is set.
3465     return obj;
3466   }
3467 
3468   // Else it must be a non-larval object
3469   obj = cast_to_non_larval(obj);
3470 
3471   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3472   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3473   bool safe_for_replace = (failure_control == nullptr);
3474   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3475 
3476   // Fast cutout:  Check the case that the cast is vacuously true.
3477   // This detects the common cases where the test will short-circuit
3478   // away completely.  We do this before we perform the null check,
3479   // because if the test is going to turn into zero code, we don't
3480   // want a residual null check left around.  (Causes a slowdown,
3481   // for example, in some objArray manipulations, such as a[i]=a[j].)
3482   if (improved_klass_ptr_type->singleton()) {
3483     const TypeKlassPtr* kptr = nullptr;
3484     if (obj_type->isa_oop_ptr()) {
3485       kptr = obj_type->is_oopptr()->as_klass_type();
3486     } else if (obj->is_InlineType()) {
3487       ciInlineKlass* vk = obj_type->inline_klass();
3488       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3489     }
3490 
3491     if (kptr != nullptr) {
3492       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3493       case Compile::SSC_always_true:
3494         // If we know the type check always succeed then we don't use
3495         // the profiling data at this bytecode. Don't lose it, feed it
3496         // to the type system as a speculative type.
3497         obj = record_profiled_receiver_for_speculation(obj);
3498         if (null_free) {
3499           assert(safe_for_replace, "must be");
3500           obj = null_check(obj);
3501         }
3502         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3503         return obj;
3504       case Compile::SSC_always_false:
3505         if (null_free) {
3506           assert(safe_for_replace, "must be");
3507           obj = null_check(obj);
3508         }
3509         // It needs a null check because a null will *pass* the cast check.
3510         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {
3511           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3512           Deoptimization::DeoptReason reason = is_aastore ?
3513             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3514           builtin_throw(reason);
3515           return top();
3516         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3517           return null_assert(obj);
3518         }
3519         break; // Fall through to full check
3520       default:
3521         break;
3522       }
3523     }
3524   }
3525 
3526   ciProfileData* data = nullptr;
3527   if (failure_control == nullptr) {        // use MDO in regular case only
3528     assert(java_bc() == Bytecodes::_aastore ||
3529            java_bc() == Bytecodes::_checkcast,
3530            "interpreter profiles type checks only for these BCs");
3531     if (method()->method_data()->is_mature()) {
3532       data = method()->method_data()->bci_to_data(bci());
3533     }
3534   }
3535 
3536   // Make the merge point
3537   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3538   RegionNode* region = new RegionNode(PATH_LIMIT);
3539   Node*       phi    = new PhiNode(region, toop);
3540   _gvn.set_type(region, Type::CONTROL);
3541   _gvn.set_type(phi, toop);
3542 
3543   C->set_has_split_ifs(true); // Has chance for split-if optimization
3544 
3545   // Use null-cast information if it is available
3546   bool speculative_not_null = false;
3547   bool never_see_null = ((failure_control == nullptr)  // regular case only
3548                          && seems_never_null(obj, data, speculative_not_null));
3549 
3550   if (obj->is_InlineType()) {
3551     // Re-execute if buffering during triggers deoptimization
3552     PreserveReexecuteState preexecs(this);
3553     jvms()->set_should_reexecute(true);
3554     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3555   }
3556 
3557   // Null check; get casted pointer; set region slot 3
3558   Node* null_ctl = top();
3559   Node* not_null_obj = nullptr;
3560   if (null_free) {
3561     assert(safe_for_replace, "must be");
3562     not_null_obj = null_check(obj);
3563   } else {
3564     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3565   }
3566 
3567   // If not_null_obj is dead, only null-path is taken
3568   if (stopped()) {              // Doing instance-of on a null?
3569     set_control(null_ctl);
3570     if (toop->is_inlinetypeptr()) {
3571       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3572     }
3573     return null();
3574   }
3575   region->init_req(_null_path, null_ctl);
3576   phi   ->init_req(_null_path, null());  // Set null path value
3577   if (null_ctl == top()) {
3578     // Do this eagerly, so that pattern matches like is_diamond_phi
3579     // will work even during parsing.
3580     assert(_null_path == PATH_LIMIT-1, "delete last");
3581     region->del_req(_null_path);
3582     phi   ->del_req(_null_path);
3583   }
3584 
3585   Node* cast_obj = nullptr;
3586   if (improved_klass_ptr_type->klass_is_exact()) {
3587     // The following optimization tries to statically cast the speculative type of the object
3588     // (for example obtained during profiling) to the type of the superklass and then do a
3589     // dynamic check that the type of the object is what we expect. To work correctly
3590     // for checkcast and aastore the type of superklass should be exact.
3591     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3592     // We may not have profiling here or it may not help us. If we have
3593     // a speculative type use it to perform an exact cast.
3594     ciKlass* spec_obj_type = obj_type->speculative_type();
3595     if (spec_obj_type != nullptr || data != nullptr) {
3596       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3597       if (cast_obj != nullptr) {
3598         if (failure_control != nullptr) // failure is now impossible
3599           (*failure_control) = top();
3600         // adjust the type of the phi to the exact klass:
3601         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3602       }
3603     }
3604   }
3605 
3606   if (cast_obj == nullptr) {
3607     // Generate the subtype check
3608     Node* improved_superklass = superklass;
3609     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3610       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3611       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3612       // Additionally, the benefit would only be minor in non-constant cases.
3613       improved_superklass = makecon(improved_klass_ptr_type);
3614     }
3615     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3616     // Plug in success path into the merge
3617     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3618     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3619     if (failure_control == nullptr) {
3620       if (not_subtype_ctrl != top()) { // If failure is possible
3621         PreserveJVMState pjvms(this);
3622         set_control(not_subtype_ctrl);
3623         Node* obj_klass = nullptr;
3624         if (not_null_obj->is_InlineType()) {
3625           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3626         } else {
3627           obj_klass = load_object_klass(not_null_obj);
3628         }
3629         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3630         Deoptimization::DeoptReason reason = is_aastore ?
3631           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3632         builtin_throw(reason);
3633       }
3634     } else {
3635       (*failure_control) = not_subtype_ctrl;
3636     }
3637   }
3638 
3639   region->init_req(_obj_path, control());
3640   phi   ->init_req(_obj_path, cast_obj);
3641 
3642   // A merge of null or Casted-NotNull obj
3643   Node* res = _gvn.transform(phi);
3644 
3645   // Note I do NOT always 'replace_in_map(obj,result)' here.
3646   //  if( tk->klass()->can_be_primary_super()  )
3647     // This means that if I successfully store an Object into an array-of-String
3648     // I 'forget' that the Object is really now known to be a String.  I have to
3649     // do this because we don't have true union types for interfaces - if I store
3650     // a Baz into an array-of-Interface and then tell the optimizer it's an
3651     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3652     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3653   //  replace_in_map( obj, res );
3654 
3655   // Return final merged results
3656   set_control( _gvn.transform(region) );
3657   record_for_igvn(region);
3658 
3659   bool not_inline = !toop->can_be_inline_type();
3660   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3661   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3662     // Check if obj has been loaded from an array
3663     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3664     Node* array = nullptr;
3665     if (obj->isa_Load()) {
3666       Node* address = obj->in(MemNode::Address);
3667       if (address->isa_AddP()) {
3668         array = address->as_AddP()->in(AddPNode::Base);
3669       }
3670     } else if (obj->is_Phi()) {
3671       Node* region = obj->in(0);
3672       // TODO make this more robust (see JDK-8231346)
3673       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3674         IfNode* iff = region->in(2)->in(0)->isa_If();
3675         if (iff != nullptr) {
3676           iff->is_flat_array_check(&_gvn, &array);
3677         }
3678       }
3679     }
3680     if (array != nullptr) {
3681       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3682       if (ary_t != nullptr) {
3683         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3684           // Casting array element to a non-inline-type, mark array as not null-free.
3685           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3686           replace_in_map(array, cast);
3687           array = cast;
3688         }
3689         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3690           // Casting array element to a non-flat-in-array type, mark array as not flat.
3691           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3692           replace_in_map(array, cast);
3693           array = cast;
3694         }
3695       }
3696     }
3697   }
3698 
3699   if (!stopped() && !res->is_InlineType()) {
3700     res = record_profiled_receiver_for_speculation(res);
3701     if (toop->is_inlinetypeptr() && !maybe_larval) {
3702       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3703       res = vt;
3704       if (safe_for_replace) {
3705         replace_in_map(obj, vt);
3706         replace_in_map(not_null_obj, vt);
3707         replace_in_map(res, vt);
3708       }
3709     }
3710   }
3711   return res;
3712 }
3713 
3714 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3715   // Load markword
3716   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3717   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3718   if (check_lock) {
3719     // Check if obj is locked
3720     Node* locked_bit = MakeConX(markWord::unlocked_value);
3721     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3722     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3723     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3724     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3725     _gvn.transform(iff);
3726     Node* locked_region = new RegionNode(3);
3727     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3728 
3729     // Unlocked: Use bits from mark word
3730     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3731     mark_phi->init_req(1, mark);
3732 
3733     // Locked: Load prototype header from klass
3734     set_control(_gvn.transform(new IfFalseNode(iff)));
3735     // Make loads control dependent to make sure they are only executed if array is locked
3736     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3737     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3738     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3739     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3740 
3741     locked_region->init_req(2, control());
3742     mark_phi->init_req(2, proto);
3743     set_control(_gvn.transform(locked_region));
3744     record_for_igvn(locked_region);
3745 
3746     mark = mark_phi;
3747   }
3748 
3749   // Now check if mark word bits are set
3750   Node* mask = MakeConX(mask_val);
3751   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3752   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3753   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3754   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3755 }
3756 
3757 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3758   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3759 }
3760 
3761 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3762   // We can't use immutable memory here because the mark word is mutable.
3763   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3764   // check is moved out of loops (mainly to enable loop unswitching).
3765   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3766   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3767   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3768 }
3769 
3770 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3771   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3772 }
3773 
3774 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3775   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3776 
3777   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3778   if (!vk->has_non_atomic_layout()) {
3779     return intcon(1); // Always atomic
3780   } else if (!vk->has_atomic_layout()) {
3781     return intcon(0); // Never atomic
3782   }
3783 
3784   // TODO 8350865 Don't fold this klass load because atomicity is currently not included in the typesystem
3785   Node* array_klass = load_object_klass(array, /* fold_for_arrays = */ false);
3786   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3787   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3788   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3789   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3790   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3791 }
3792 
3793 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3794 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3795   RegionNode* region = new RegionNode(3);
3796   Node* null_ctl = top();
3797   null_check_oop(val, &null_ctl);
3798   if (null_ctl != top()) {
3799     PreserveJVMState pjvms(this);
3800     set_control(null_ctl);
3801     {
3802       // Deoptimize if null-free array
3803       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3804       inc_sp(nargs);
3805       uncommon_trap(Deoptimization::Reason_null_check,
3806                     Deoptimization::Action_none);
3807     }
3808     region->init_req(1, control());
3809   }
3810   region->init_req(2, control());
3811   set_control(_gvn.transform(region));
3812   record_for_igvn(region);
3813   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3814     // Since we were just successfully storing null, the array can't be null free.
3815     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3816     ary_t = ary_t->cast_to_not_null_free();
3817     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3818     if (safe_for_replace) {
3819       replace_in_map(ary, cast);
3820     }
3821     ary = cast;
3822   }
3823   return ary;
3824 }
3825 
3826 //------------------------------next_monitor-----------------------------------
3827 // What number should be given to the next monitor?
3828 int GraphKit::next_monitor() {
3829   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3830   int next = current + C->sync_stack_slots();
3831   // Keep the toplevel high water mark current:
3832   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3833   return current;
3834 }
3835 
3836 //------------------------------insert_mem_bar---------------------------------
3837 // Memory barrier to avoid floating things around
3838 // The membar serves as a pinch point between both control and all memory slices.
3839 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3840   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3841   mb->init_req(TypeFunc::Control, control());
3842   mb->init_req(TypeFunc::Memory,  reset_memory());
3843   Node* membar = _gvn.transform(mb);
3844   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3845   set_all_memory_call(membar);
3846   return membar;
3847 }
3848 
3849 //-------------------------insert_mem_bar_volatile----------------------------
3850 // Memory barrier to avoid floating things around
3851 // The membar serves as a pinch point between both control and memory(alias_idx).
3852 // If you want to make a pinch point on all memory slices, do not use this
3853 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3854 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3855   // When Parse::do_put_xxx updates a volatile field, it appends a series
3856   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3857   // The first membar is on the same memory slice as the field store opcode.
3858   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3859   // All the other membars (for other volatile slices, including AliasIdxBot,
3860   // which stands for all unknown volatile slices) are control-dependent
3861   // on the first membar.  This prevents later volatile loads or stores
3862   // from sliding up past the just-emitted store.
3863 
3864   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3865   mb->set_req(TypeFunc::Control,control());
3866   if (alias_idx == Compile::AliasIdxBot) {
3867     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3868   } else {
3869     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3870     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3871   }
3872   Node* membar = _gvn.transform(mb);
3873   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3874   if (alias_idx == Compile::AliasIdxBot) {
3875     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3876   } else {
3877     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3878   }
3879   return membar;
3880 }
3881 
3882 //------------------------------shared_lock------------------------------------
3883 // Emit locking code.
3884 FastLockNode* GraphKit::shared_lock(Node* obj) {
3885   // bci is either a monitorenter bc or InvocationEntryBci
3886   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3887   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3888 
3889   if( !GenerateSynchronizationCode )
3890     return nullptr;                // Not locking things?
3891 
3892   if (stopped())                // Dead monitor?
3893     return nullptr;
3894 
3895   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3896 
3897   // Box the stack location
3898   Node* box = new BoxLockNode(next_monitor());
3899   // Check for bailout after new BoxLockNode
3900   if (failing()) { return nullptr; }
3901   box = _gvn.transform(box);
3902   Node* mem = reset_memory();
3903 
3904   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3905 
3906   // Add monitor to debug info for the slow path.  If we block inside the
3907   // slow path and de-opt, we need the monitor hanging around
3908   map()->push_monitor( flock );
3909 
3910   const TypeFunc *tf = LockNode::lock_type();
3911   LockNode *lock = new LockNode(C, tf);
3912 
3913   lock->init_req( TypeFunc::Control, control() );
3914   lock->init_req( TypeFunc::Memory , mem );
3915   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3916   lock->init_req( TypeFunc::FramePtr, frameptr() );
3917   lock->init_req( TypeFunc::ReturnAdr, top() );
3918 
3919   lock->init_req(TypeFunc::Parms + 0, obj);
3920   lock->init_req(TypeFunc::Parms + 1, box);
3921   lock->init_req(TypeFunc::Parms + 2, flock);
3922   add_safepoint_edges(lock);
3923 
3924   lock = _gvn.transform( lock )->as_Lock();
3925 
3926   // lock has no side-effects, sets few values
3927   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3928 
3929   insert_mem_bar(Op_MemBarAcquireLock);
3930 
3931   // Add this to the worklist so that the lock can be eliminated
3932   record_for_igvn(lock);
3933 
3934 #ifndef PRODUCT
3935   if (PrintLockStatistics) {
3936     // Update the counter for this lock.  Don't bother using an atomic
3937     // operation since we don't require absolute accuracy.
3938     lock->create_lock_counter(map()->jvms());
3939     increment_counter(lock->counter()->addr());
3940   }
3941 #endif
3942 
3943   return flock;
3944 }
3945 
3946 
3947 //------------------------------shared_unlock----------------------------------
3948 // Emit unlocking code.
3949 void GraphKit::shared_unlock(Node* box, Node* obj) {
3950   // bci is either a monitorenter bc or InvocationEntryBci
3951   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3952   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3953 
3954   if( !GenerateSynchronizationCode )
3955     return;
3956   if (stopped()) {               // Dead monitor?
3957     map()->pop_monitor();        // Kill monitor from debug info
3958     return;
3959   }
3960   assert(!obj->is_InlineType(), "should not unlock on inline type");
3961 
3962   // Memory barrier to avoid floating things down past the locked region
3963   insert_mem_bar(Op_MemBarReleaseLock);
3964 
3965   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3966   UnlockNode *unlock = new UnlockNode(C, tf);
3967 #ifdef ASSERT
3968   unlock->set_dbg_jvms(sync_jvms());
3969 #endif
3970   uint raw_idx = Compile::AliasIdxRaw;
3971   unlock->init_req( TypeFunc::Control, control() );
3972   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3973   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3974   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3975   unlock->init_req( TypeFunc::ReturnAdr, top() );
3976 
3977   unlock->init_req(TypeFunc::Parms + 0, obj);
3978   unlock->init_req(TypeFunc::Parms + 1, box);
3979   unlock = _gvn.transform(unlock)->as_Unlock();
3980 
3981   Node* mem = reset_memory();
3982 
3983   // unlock has no side-effects, sets few values
3984   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3985 
3986   // Kill monitor from debug info
3987   map()->pop_monitor( );
3988 }
3989 
3990 //-------------------------------get_layout_helper-----------------------------
3991 // If the given klass is a constant or known to be an array,
3992 // fetch the constant layout helper value into constant_value
3993 // and return null.  Otherwise, load the non-constant
3994 // layout helper value, and return the node which represents it.
3995 // This two-faced routine is useful because allocation sites
3996 // almost always feature constant types.
3997 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3998   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3999   if (!StressReflectiveCode && klass_t != nullptr) {
4000     bool xklass = klass_t->klass_is_exact();
4001     bool can_be_flat = false;
4002     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4003     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4004       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4005       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4006       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4007     }
4008     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4009       jint lhelper;
4010       if (klass_t->is_flat()) {
4011         lhelper = ary_type->flat_layout_helper();
4012       } else if (klass_t->isa_aryklassptr()) {
4013         BasicType elem = ary_type->elem()->array_element_basic_type();
4014         if (is_reference_type(elem, true)) {
4015           elem = T_OBJECT;
4016         }
4017         lhelper = Klass::array_layout_helper(elem);
4018       } else {
4019         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4020       }
4021       if (lhelper != Klass::_lh_neutral_value) {
4022         constant_value = lhelper;
4023         return (Node*) nullptr;
4024       }
4025     }
4026   }
4027   constant_value = Klass::_lh_neutral_value;  // put in a known value
4028   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4029   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4030 }
4031 
4032 // We just put in an allocate/initialize with a big raw-memory effect.
4033 // Hook selected additional alias categories on the initialization.
4034 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4035                                 MergeMemNode* init_in_merge,
4036                                 Node* init_out_raw) {
4037   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4038   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4039 
4040   Node* prevmem = kit.memory(alias_idx);
4041   init_in_merge->set_memory_at(alias_idx, prevmem);
4042   if (init_out_raw != nullptr) {
4043     kit.set_memory(init_out_raw, alias_idx);
4044   }
4045 }
4046 
4047 //---------------------------set_output_for_allocation-------------------------
4048 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4049                                           const TypeOopPtr* oop_type,
4050                                           bool deoptimize_on_exception) {
4051   int rawidx = Compile::AliasIdxRaw;
4052   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4053   add_safepoint_edges(alloc);
4054   Node* allocx = _gvn.transform(alloc);
4055   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4056   // create memory projection for i_o
4057   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4058   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4059 
4060   // create a memory projection as for the normal control path
4061   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4062   set_memory(malloc, rawidx);
4063 
4064   // a normal slow-call doesn't change i_o, but an allocation does
4065   // we create a separate i_o projection for the normal control path
4066   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4067   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4068 
4069   // put in an initialization barrier
4070   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4071                                                  rawoop)->as_Initialize();
4072   assert(alloc->initialization() == init,  "2-way macro link must work");
4073   assert(init ->allocation()     == alloc, "2-way macro link must work");
4074   {
4075     // Extract memory strands which may participate in the new object's
4076     // initialization, and source them from the new InitializeNode.
4077     // This will allow us to observe initializations when they occur,
4078     // and link them properly (as a group) to the InitializeNode.
4079     assert(init->in(InitializeNode::Memory) == malloc, "");
4080     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4081     init->set_req(InitializeNode::Memory, minit_in);
4082     record_for_igvn(minit_in); // fold it up later, if possible
4083     _gvn.set_type(minit_in, Type::MEMORY);
4084     Node* minit_out = memory(rawidx);
4085     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4086     // Add an edge in the MergeMem for the header fields so an access
4087     // to one of those has correct memory state
4088     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4089     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4090     if (oop_type->isa_aryptr()) {
4091       const TypeAryPtr* arytype = oop_type->is_aryptr();
4092       if (arytype->is_flat()) {
4093         // Initially all flat array accesses share a single slice
4094         // but that changes after parsing. Prepare the memory graph so
4095         // it can optimize flat array accesses properly once they
4096         // don't share a single slice.
4097         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4098         C->set_flat_accesses_share_alias(false);
4099         ciInlineKlass* vk = arytype->elem()->inline_klass();
4100         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4101           ciField* field = vk->nonstatic_field_at(i);
4102           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4103             continue;  // do not bother to track really large numbers of fields
4104           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4105           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4106           int fieldidx = C->get_alias_index(adr_type, true);
4107           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4108           // can result in per flat array field Phis to be created which confuses the logic of
4109           // Compile::adjust_flat_array_access_aliases().
4110           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4111         }
4112         C->set_flat_accesses_share_alias(true);
4113         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4114       } else {
4115         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4116         int            elemidx  = C->get_alias_index(telemref);
4117         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4118       }
4119     } else if (oop_type->isa_instptr()) {
4120       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4121       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4122       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4123         ciField* field = ik->nonstatic_field_at(i);
4124         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4125           continue;  // do not bother to track really large numbers of fields
4126         // Find (or create) the alias category for this field:
4127         int fieldidx = C->alias_type(field)->index();
4128         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4129       }
4130     }
4131   }
4132 
4133   // Cast raw oop to the real thing...
4134   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4135   javaoop = _gvn.transform(javaoop);
4136   C->set_recent_alloc(control(), javaoop);
4137   assert(just_allocated_object(control()) == javaoop, "just allocated");
4138 
4139 #ifdef ASSERT
4140   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4141     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4142            "Ideal_allocation works");
4143     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4144            "Ideal_allocation works");
4145     if (alloc->is_AllocateArray()) {
4146       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4147              "Ideal_allocation works");
4148       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4149              "Ideal_allocation works");
4150     } else {
4151       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4152     }
4153   }
4154 #endif //ASSERT
4155 
4156   return javaoop;
4157 }
4158 
4159 //---------------------------new_instance--------------------------------------
4160 // This routine takes a klass_node which may be constant (for a static type)
4161 // or may be non-constant (for reflective code).  It will work equally well
4162 // for either, and the graph will fold nicely if the optimizer later reduces
4163 // the type to a constant.
4164 // The optional arguments are for specialized use by intrinsics:
4165 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4166 //  - If 'return_size_val', report the total object size to the caller.
4167 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4168 Node* GraphKit::new_instance(Node* klass_node,
4169                              Node* extra_slow_test,
4170                              Node* *return_size_val,
4171                              bool deoptimize_on_exception,
4172                              InlineTypeNode* inline_type_node) {
4173   // Compute size in doublewords
4174   // The size is always an integral number of doublewords, represented
4175   // as a positive bytewise size stored in the klass's layout_helper.
4176   // The layout_helper also encodes (in a low bit) the need for a slow path.
4177   jint  layout_con = Klass::_lh_neutral_value;
4178   Node* layout_val = get_layout_helper(klass_node, layout_con);
4179   bool  layout_is_con = (layout_val == nullptr);
4180 
4181   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4182   // Generate the initial go-slow test.  It's either ALWAYS (return a
4183   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4184   // case) a computed value derived from the layout_helper.
4185   Node* initial_slow_test = nullptr;
4186   if (layout_is_con) {
4187     assert(!StressReflectiveCode, "stress mode does not use these paths");
4188     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4189     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4190   } else {   // reflective case
4191     // This reflective path is used by Unsafe.allocateInstance.
4192     // (It may be stress-tested by specifying StressReflectiveCode.)
4193     // Basically, we want to get into the VM is there's an illegal argument.
4194     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4195     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4196     if (extra_slow_test != intcon(0)) {
4197       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4198     }
4199     // (Macro-expander will further convert this to a Bool, if necessary.)
4200   }
4201 
4202   // Find the size in bytes.  This is easy; it's the layout_helper.
4203   // The size value must be valid even if the slow path is taken.
4204   Node* size = nullptr;
4205   if (layout_is_con) {
4206     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4207   } else {   // reflective case
4208     // This reflective path is used by clone and Unsafe.allocateInstance.
4209     size = ConvI2X(layout_val);
4210 
4211     // Clear the low bits to extract layout_helper_size_in_bytes:
4212     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4213     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4214     size = _gvn.transform( new AndXNode(size, mask) );
4215   }
4216   if (return_size_val != nullptr) {
4217     (*return_size_val) = size;
4218   }
4219 
4220   // This is a precise notnull oop of the klass.
4221   // (Actually, it need not be precise if this is a reflective allocation.)
4222   // It's what we cast the result to.
4223   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4224   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4225   const TypeOopPtr* oop_type = tklass->as_instance_type();
4226 
4227   // Now generate allocation code
4228 
4229   // The entire memory state is needed for slow path of the allocation
4230   // since GC and deoptimization can happen.
4231   Node *mem = reset_memory();
4232   set_all_memory(mem); // Create new memory state
4233 
4234   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4235                                          control(), mem, i_o(),
4236                                          size, klass_node,
4237                                          initial_slow_test, inline_type_node);
4238 
4239   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4240 }
4241 
4242 //-------------------------------new_array-------------------------------------
4243 // helper for newarray and anewarray
4244 // The 'length' parameter is (obviously) the length of the array.
4245 // The optional arguments are for specialized use by intrinsics:
4246 //  - If 'return_size_val', report the non-padded array size (sum of header size
4247 //    and array body) to the caller.
4248 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4249 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4250                           Node* length,         // number of array elements
4251                           int   nargs,          // number of arguments to push back for uncommon trap
4252                           Node* *return_size_val,
4253                           bool deoptimize_on_exception,
4254                           Node* init_val) {
4255   jint  layout_con = Klass::_lh_neutral_value;
4256   Node* layout_val = get_layout_helper(klass_node, layout_con);
4257   bool  layout_is_con = (layout_val == nullptr);
4258 
4259   if (!layout_is_con && !StressReflectiveCode &&
4260       !too_many_traps(Deoptimization::Reason_class_check)) {
4261     // This is a reflective array creation site.
4262     // Optimistically assume that it is a subtype of Object[],
4263     // so that we can fold up all the address arithmetic.
4264     layout_con = Klass::array_layout_helper(T_OBJECT);
4265     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4266     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4267     { BuildCutout unless(this, bol_lh, PROB_MAX);
4268       inc_sp(nargs);
4269       uncommon_trap(Deoptimization::Reason_class_check,
4270                     Deoptimization::Action_maybe_recompile);
4271     }
4272     layout_val = nullptr;
4273     layout_is_con = true;
4274   }
4275 
4276   // Generate the initial go-slow test.  Make sure we do not overflow
4277   // if length is huge (near 2Gig) or negative!  We do not need
4278   // exact double-words here, just a close approximation of needed
4279   // double-words.  We can't add any offset or rounding bits, lest we
4280   // take a size -1 of bytes and make it positive.  Use an unsigned
4281   // compare, so negative sizes look hugely positive.
4282   int fast_size_limit = FastAllocateSizeLimit;
4283   if (layout_is_con) {
4284     assert(!StressReflectiveCode, "stress mode does not use these paths");
4285     // Increase the size limit if we have exact knowledge of array type.
4286     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4287     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4288   }
4289 
4290   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4291   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4292 
4293   // --- Size Computation ---
4294   // array_size = round_to_heap(array_header + (length << elem_shift));
4295   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4296   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4297   // The rounding mask is strength-reduced, if possible.
4298   int round_mask = MinObjAlignmentInBytes - 1;
4299   Node* header_size = nullptr;
4300   // (T_BYTE has the weakest alignment and size restrictions...)
4301   if (layout_is_con) {
4302     int       hsize  = Klass::layout_helper_header_size(layout_con);
4303     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4304     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4305     if ((round_mask & ~right_n_bits(eshift)) == 0)
4306       round_mask = 0;  // strength-reduce it if it goes away completely
4307     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4308     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4309     assert(header_size_min <= hsize, "generic minimum is smallest");
4310     header_size = intcon(hsize);
4311   } else {
4312     Node* hss   = intcon(Klass::_lh_header_size_shift);
4313     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4314     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4315     header_size = _gvn.transform(new AndINode(header_size, hsm));
4316   }
4317 
4318   Node* elem_shift = nullptr;
4319   if (layout_is_con) {
4320     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4321     if (eshift != 0)
4322       elem_shift = intcon(eshift);
4323   } else {
4324     // There is no need to mask or shift this value.
4325     // The semantics of LShiftINode include an implicit mask to 0x1F.
4326     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4327     elem_shift = layout_val;
4328   }
4329 
4330   // Transition to native address size for all offset calculations:
4331   Node* lengthx = ConvI2X(length);
4332   Node* headerx = ConvI2X(header_size);
4333 #ifdef _LP64
4334   { const TypeInt* tilen = _gvn.find_int_type(length);
4335     if (tilen != nullptr && tilen->_lo < 0) {
4336       // Add a manual constraint to a positive range.  Cf. array_element_address.
4337       jint size_max = fast_size_limit;
4338       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4339       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4340 
4341       // Only do a narrow I2L conversion if the range check passed.
4342       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4343       _gvn.transform(iff);
4344       RegionNode* region = new RegionNode(3);
4345       _gvn.set_type(region, Type::CONTROL);
4346       lengthx = new PhiNode(region, TypeLong::LONG);
4347       _gvn.set_type(lengthx, TypeLong::LONG);
4348 
4349       // Range check passed. Use ConvI2L node with narrow type.
4350       Node* passed = IfFalse(iff);
4351       region->init_req(1, passed);
4352       // Make I2L conversion control dependent to prevent it from
4353       // floating above the range check during loop optimizations.
4354       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4355 
4356       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4357       region->init_req(2, IfTrue(iff));
4358       lengthx->init_req(2, ConvI2X(length));
4359 
4360       set_control(region);
4361       record_for_igvn(region);
4362       record_for_igvn(lengthx);
4363     }
4364   }
4365 #endif
4366 
4367   // Combine header size and body size for the array copy part, then align (if
4368   // necessary) for the allocation part. This computation cannot overflow,
4369   // because it is used only in two places, one where the length is sharply
4370   // limited, and the other after a successful allocation.
4371   Node* abody = lengthx;
4372   if (elem_shift != nullptr) {
4373     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4374   }
4375   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4376 
4377   if (return_size_val != nullptr) {
4378     // This is the size
4379     (*return_size_val) = non_rounded_size;
4380   }
4381 
4382   Node* size = non_rounded_size;
4383   if (round_mask != 0) {
4384     Node* mask1 = MakeConX(round_mask);
4385     size = _gvn.transform(new AddXNode(size, mask1));
4386     Node* mask2 = MakeConX(~round_mask);
4387     size = _gvn.transform(new AndXNode(size, mask2));
4388   }
4389   // else if round_mask == 0, the size computation is self-rounding
4390 
4391   // Now generate allocation code
4392 
4393   // The entire memory state is needed for slow path of the allocation
4394   // since GC and deoptimization can happen.
4395   Node *mem = reset_memory();
4396   set_all_memory(mem); // Create new memory state
4397 
4398   if (initial_slow_test->is_Bool()) {
4399     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4400     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4401   }
4402 
4403   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4404   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4405 
4406   Node* raw_init_value = nullptr;
4407   if (init_val != nullptr) {
4408     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4409     if (ary_type->is_flat()) {
4410       initial_slow_test = intcon(1);
4411     }
4412 
4413     if (UseCompressedOops) {
4414       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4415       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4416       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4417       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4418       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4419     } else {
4420       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4421     }
4422   }
4423 
4424   Node* valid_length_test = _gvn.intcon(1);
4425   if (ary_type->isa_aryptr()) {
4426     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4427     jint max = TypeAryPtr::max_array_length(bt);
4428     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4429     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4430   }
4431 
4432   // Create the AllocateArrayNode and its result projections
4433   AllocateArrayNode* alloc
4434     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4435                             control(), mem, i_o(),
4436                             size, klass_node,
4437                             initial_slow_test,
4438                             length, valid_length_test,
4439                             init_val, raw_init_value);
4440   // Cast to correct type.  Note that the klass_node may be constant or not,
4441   // and in the latter case the actual array type will be inexact also.
4442   // (This happens via a non-constant argument to inline_native_newArray.)
4443   // In any case, the value of klass_node provides the desired array type.
4444   const TypeInt* length_type = _gvn.find_int_type(length);
4445   if (ary_type->isa_aryptr() && length_type != nullptr) {
4446     // Try to get a better type than POS for the size
4447     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4448   }
4449 
4450   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4451 
4452   array_ideal_length(alloc, ary_type, true);
4453   return javaoop;
4454 }
4455 
4456 // The following "Ideal_foo" functions are placed here because they recognize
4457 // the graph shapes created by the functions immediately above.
4458 
4459 //---------------------------Ideal_allocation----------------------------------
4460 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4461 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4462   if (ptr == nullptr) {     // reduce dumb test in callers
4463     return nullptr;
4464   }
4465 
4466   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4467   ptr = bs->step_over_gc_barrier(ptr);
4468 
4469   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4470     ptr = ptr->in(1);
4471     if (ptr == nullptr) return nullptr;
4472   }
4473   // Return null for allocations with several casts:
4474   //   j.l.reflect.Array.newInstance(jobject, jint)
4475   //   Object.clone()
4476   // to keep more precise type from last cast.
4477   if (ptr->is_Proj()) {
4478     Node* allo = ptr->in(0);
4479     if (allo != nullptr && allo->is_Allocate()) {
4480       return allo->as_Allocate();
4481     }
4482   }
4483   // Report failure to match.
4484   return nullptr;
4485 }
4486 
4487 // Fancy version which also strips off an offset (and reports it to caller).
4488 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4489                                              intptr_t& offset) {
4490   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4491   if (base == nullptr)  return nullptr;
4492   return Ideal_allocation(base);
4493 }
4494 
4495 // Trace Initialize <- Proj[Parm] <- Allocate
4496 AllocateNode* InitializeNode::allocation() {
4497   Node* rawoop = in(InitializeNode::RawAddress);
4498   if (rawoop->is_Proj()) {
4499     Node* alloc = rawoop->in(0);
4500     if (alloc->is_Allocate()) {
4501       return alloc->as_Allocate();
4502     }
4503   }
4504   return nullptr;
4505 }
4506 
4507 // Trace Allocate -> Proj[Parm] -> Initialize
4508 InitializeNode* AllocateNode::initialization() {
4509   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4510   if (rawoop == nullptr)  return nullptr;
4511   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4512     Node* init = rawoop->fast_out(i);
4513     if (init->is_Initialize()) {
4514       assert(init->as_Initialize()->allocation() == this, "2-way link");
4515       return init->as_Initialize();
4516     }
4517   }
4518   return nullptr;
4519 }
4520 
4521 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4522 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4523   // Too many traps seen?
4524   if (too_many_traps(reason)) {
4525 #ifdef ASSERT
4526     if (TraceLoopPredicate) {
4527       int tc = C->trap_count(reason);
4528       tty->print("too many traps=%s tcount=%d in ",
4529                     Deoptimization::trap_reason_name(reason), tc);
4530       method()->print(); // which method has too many predicate traps
4531       tty->cr();
4532     }
4533 #endif
4534     // We cannot afford to take more traps here,
4535     // do not generate Parse Predicate.
4536     return;
4537   }
4538 
4539   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4540   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4541   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4542   {
4543     PreserveJVMState pjvms(this);
4544     set_control(if_false);
4545     inc_sp(nargs);
4546     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4547   }
4548   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4549   set_control(if_true);
4550 }
4551 
4552 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4553 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4554 void GraphKit::add_parse_predicates(int nargs) {
4555   if (UseLoopPredicate) {
4556     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4557     if (UseProfiledLoopPredicate) {
4558       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4559     }
4560   }
4561   add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4562   // Loop Limit Check Predicate should be near the loop.
4563   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4564 }
4565 
4566 void GraphKit::sync_kit(IdealKit& ideal) {
4567   set_all_memory(ideal.merged_memory());
4568   set_i_o(ideal.i_o());
4569   set_control(ideal.ctrl());
4570 }
4571 
4572 void GraphKit::final_sync(IdealKit& ideal) {
4573   // Final sync IdealKit and graphKit.
4574   sync_kit(ideal);
4575 }
4576 
4577 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4578   Node* len = load_array_length(load_String_value(str, set_ctrl));
4579   Node* coder = load_String_coder(str, set_ctrl);
4580   // Divide length by 2 if coder is UTF16
4581   return _gvn.transform(new RShiftINode(len, coder));
4582 }
4583 
4584 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4585   int value_offset = java_lang_String::value_offset();
4586   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4587                                                      false, nullptr, Type::Offset(0));
4588   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4589   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4590                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4591                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4592   Node* p = basic_plus_adr(str, str, value_offset);
4593   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4594                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4595   return load;
4596 }
4597 
4598 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4599   if (!CompactStrings) {
4600     return intcon(java_lang_String::CODER_UTF16);
4601   }
4602   int coder_offset = java_lang_String::coder_offset();
4603   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4604                                                      false, nullptr, Type::Offset(0));
4605   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4606 
4607   Node* p = basic_plus_adr(str, str, coder_offset);
4608   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4609                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4610   return load;
4611 }
4612 
4613 void GraphKit::store_String_value(Node* str, Node* value) {
4614   int value_offset = java_lang_String::value_offset();
4615   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4616                                                      false, nullptr, Type::Offset(0));
4617   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4618 
4619   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4620                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4621 }
4622 
4623 void GraphKit::store_String_coder(Node* str, Node* value) {
4624   int coder_offset = java_lang_String::coder_offset();
4625   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4626                                                      false, nullptr, Type::Offset(0));
4627   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4628 
4629   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4630                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4631 }
4632 
4633 // Capture src and dst memory state with a MergeMemNode
4634 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4635   if (src_type == dst_type) {
4636     // Types are equal, we don't need a MergeMemNode
4637     return memory(src_type);
4638   }
4639   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4640   record_for_igvn(merge); // fold it up later, if possible
4641   int src_idx = C->get_alias_index(src_type);
4642   int dst_idx = C->get_alias_index(dst_type);
4643   merge->set_memory_at(src_idx, memory(src_idx));
4644   merge->set_memory_at(dst_idx, memory(dst_idx));
4645   return merge;
4646 }
4647 
4648 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4649   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4650   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4651   // If input and output memory types differ, capture both states to preserve
4652   // the dependency between preceding and subsequent loads/stores.
4653   // For example, the following program:
4654   //  StoreB
4655   //  compress_string
4656   //  LoadB
4657   // has this memory graph (use->def):
4658   //  LoadB -> compress_string -> CharMem
4659   //             ... -> StoreB -> ByteMem
4660   // The intrinsic hides the dependency between LoadB and StoreB, causing
4661   // the load to read from memory not containing the result of the StoreB.
4662   // The correct memory graph should look like this:
4663   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4664   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4665   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4666   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4667   set_memory(res_mem, TypeAryPtr::BYTES);
4668   return str;
4669 }
4670 
4671 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4672   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4673   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4674   // Capture src and dst memory (see comment in 'compress_string').
4675   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4676   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4677   set_memory(_gvn.transform(str), dst_type);
4678 }
4679 
4680 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4681   /**
4682    * int i_char = start;
4683    * for (int i_byte = 0; i_byte < count; i_byte++) {
4684    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4685    * }
4686    */
4687   add_parse_predicates();
4688   C->set_has_loops(true);
4689 
4690   RegionNode* head = new RegionNode(3);
4691   head->init_req(1, control());
4692   gvn().set_type(head, Type::CONTROL);
4693   record_for_igvn(head);
4694 
4695   Node* i_byte = new PhiNode(head, TypeInt::INT);
4696   i_byte->init_req(1, intcon(0));
4697   gvn().set_type(i_byte, TypeInt::INT);
4698   record_for_igvn(i_byte);
4699 
4700   Node* i_char = new PhiNode(head, TypeInt::INT);
4701   i_char->init_req(1, start);
4702   gvn().set_type(i_char, TypeInt::INT);
4703   record_for_igvn(i_char);
4704 
4705   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4706   gvn().set_type(mem, Type::MEMORY);
4707   record_for_igvn(mem);
4708   set_control(head);
4709   set_memory(mem, TypeAryPtr::BYTES);
4710   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4711   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4712                              AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false,
4713                              false, true /* mismatched */);
4714 
4715   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4716   head->init_req(2, IfTrue(iff));
4717   mem->init_req(2, st);
4718   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4719   i_char->init_req(2, AddI(i_char, intcon(2)));
4720 
4721   set_control(IfFalse(iff));
4722   set_memory(st, TypeAryPtr::BYTES);
4723 }
4724 
4725 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4726   if (!field->is_constant()) {
4727     return nullptr; // Field not marked as constant.
4728   }
4729   ciInstance* holder = nullptr;
4730   if (!field->is_static()) {
4731     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4732     if (const_oop != nullptr && const_oop->is_instance()) {
4733       holder = const_oop->as_instance();
4734     }
4735   }
4736   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4737                                                         /*is_unsigned_load=*/false);
4738   if (con_type != nullptr) {
4739     Node* con = makecon(con_type);
4740     if (field->type()->is_inlinetype()) {
4741       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4742     } else if (con_type->is_inlinetypeptr()) {
4743       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4744     }
4745     return con;
4746   }
4747   return nullptr;
4748 }
4749 
4750 //---------------------------load_mirror_from_klass----------------------------
4751 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4752 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4753   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4754   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4755   // mirror = ((OopHandle)mirror)->resolve();
4756   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4757 }
4758 
4759 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4760   const Type* obj_type = obj->bottom_type();
4761   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4762   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4763     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4764     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4765     obj = casted_obj;
4766   }
4767   if (sig_type->is_inlinetypeptr()) {
4768     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4769   }
4770   return obj;
4771 }