1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciUtilities.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "utilities/bitMap.inline.hpp"
  56 #include "utilities/growableArray.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 
  59 //----------------------------GraphKit-----------------------------------------
  60 // Main utility constructor.
  61 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  65     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  66 {
  67   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  68   _exceptions = jvms->map()->next_exception();
  69   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  70   set_jvms(jvms);
  71 #ifdef ASSERT
  72   if (_gvn.is_IterGVN() != nullptr) {
  73     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  74     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  75     _worklist_size = _gvn.C->igvn_worklist()->size();
  76   }
  77 #endif
  78 }
  79 
  80 // Private constructor for parser.
  81 GraphKit::GraphKit()
  82   : Phase(Phase::Parser),
  83     _env(C->env()),
  84     _gvn(*C->initial_gvn()),
  85     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  86 {
  87   _exceptions = nullptr;
  88   set_map(nullptr);
  89   DEBUG_ONLY(_sp = -99);
  90   DEBUG_ONLY(set_bci(-99));
  91 }
  92 
  93 
  94 
  95 //---------------------------clean_stack---------------------------------------
  96 // Clear away rubbish from the stack area of the JVM state.
  97 // This destroys any arguments that may be waiting on the stack.
  98 void GraphKit::clean_stack(int from_sp) {
  99   SafePointNode* map      = this->map();
 100   JVMState*      jvms     = this->jvms();
 101   int            stk_size = jvms->stk_size();
 102   int            stkoff   = jvms->stkoff();
 103   Node*          top      = this->top();
 104   for (int i = from_sp; i < stk_size; i++) {
 105     if (map->in(stkoff + i) != top) {
 106       map->set_req(stkoff + i, top);
 107     }
 108   }
 109 }
 110 
 111 
 112 //--------------------------------sync_jvms-----------------------------------
 113 // Make sure our current jvms agrees with our parse state.
 114 JVMState* GraphKit::sync_jvms() const {
 115   JVMState* jvms = this->jvms();
 116   jvms->set_bci(bci());       // Record the new bci in the JVMState
 117   jvms->set_sp(sp());         // Record the new sp in the JVMState
 118   assert(jvms_in_sync(), "jvms is now in sync");
 119   return jvms;
 120 }
 121 
 122 //--------------------------------sync_jvms_for_reexecute---------------------
 123 // Make sure our current jvms agrees with our parse state.  This version
 124 // uses the reexecute_sp for reexecuting bytecodes.
 125 JVMState* GraphKit::sync_jvms_for_reexecute() {
 126   JVMState* jvms = this->jvms();
 127   jvms->set_bci(bci());          // Record the new bci in the JVMState
 128   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 129   return jvms;
 130 }
 131 
 132 #ifdef ASSERT
 133 bool GraphKit::jvms_in_sync() const {
 134   Parse* parse = is_Parse();
 135   if (parse == nullptr) {
 136     if (bci() !=      jvms()->bci())          return false;
 137     if (sp()  != (int)jvms()->sp())           return false;
 138     return true;
 139   }
 140   if (jvms()->method() != parse->method())    return false;
 141   if (jvms()->bci()    != parse->bci())       return false;
 142   int jvms_sp = jvms()->sp();
 143   if (jvms_sp          != parse->sp())        return false;
 144   int jvms_depth = jvms()->depth();
 145   if (jvms_depth       != parse->depth())     return false;
 146   return true;
 147 }
 148 
 149 // Local helper checks for special internal merge points
 150 // used to accumulate and merge exception states.
 151 // They are marked by the region's in(0) edge being the map itself.
 152 // Such merge points must never "escape" into the parser at large,
 153 // until they have been handed to gvn.transform.
 154 static bool is_hidden_merge(Node* reg) {
 155   if (reg == nullptr)  return false;
 156   if (reg->is_Phi()) {
 157     reg = reg->in(0);
 158     if (reg == nullptr)  return false;
 159   }
 160   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 161 }
 162 
 163 void GraphKit::verify_map() const {
 164   if (map() == nullptr)  return;  // null map is OK
 165   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 166   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 167   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 168 }
 169 
 170 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 171   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 172   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 173 }
 174 #endif
 175 
 176 //---------------------------stop_and_kill_map---------------------------------
 177 // Set _map to null, signalling a stop to further bytecode execution.
 178 // First smash the current map's control to a constant, to mark it dead.
 179 void GraphKit::stop_and_kill_map() {
 180   SafePointNode* dead_map = stop();
 181   if (dead_map != nullptr) {
 182     dead_map->disconnect_inputs(C); // Mark the map as killed.
 183     assert(dead_map->is_killed(), "must be so marked");
 184   }
 185 }
 186 
 187 
 188 //--------------------------------stopped--------------------------------------
 189 // Tell if _map is null, or control is top.
 190 bool GraphKit::stopped() {
 191   if (map() == nullptr)        return true;
 192   else if (control() == top()) return true;
 193   else                         return false;
 194 }
 195 
 196 
 197 //-----------------------------has_exception_handler----------------------------------
 198 // Tell if this method or any caller method has exception handlers.
 199 bool GraphKit::has_exception_handler() {
 200   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 201     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 202       return true;
 203     }
 204   }
 205   return false;
 206 }
 207 
 208 //------------------------------save_ex_oop------------------------------------
 209 // Save an exception without blowing stack contents or other JVM state.
 210 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 211   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 212   ex_map->add_req(ex_oop);
 213   DEBUG_ONLY(verify_exception_state(ex_map));
 214 }
 215 
 216 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 217   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 218   Node* ex_oop = ex_map->in(ex_map->req()-1);
 219   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 220   return ex_oop;
 221 }
 222 
 223 //-----------------------------saved_ex_oop------------------------------------
 224 // Recover a saved exception from its map.
 225 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 226   return common_saved_ex_oop(ex_map, false);
 227 }
 228 
 229 //--------------------------clear_saved_ex_oop---------------------------------
 230 // Erase a previously saved exception from its map.
 231 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 232   return common_saved_ex_oop(ex_map, true);
 233 }
 234 
 235 #ifdef ASSERT
 236 //---------------------------has_saved_ex_oop----------------------------------
 237 // Erase a previously saved exception from its map.
 238 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 239   return ex_map->req() == ex_map->jvms()->endoff()+1;
 240 }
 241 #endif
 242 
 243 //-------------------------make_exception_state--------------------------------
 244 // Turn the current JVM state into an exception state, appending the ex_oop.
 245 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 246   sync_jvms();
 247   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 248   set_saved_ex_oop(ex_map, ex_oop);
 249   return ex_map;
 250 }
 251 
 252 
 253 //--------------------------add_exception_state--------------------------------
 254 // Add an exception to my list of exceptions.
 255 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 256   if (ex_map == nullptr || ex_map->control() == top()) {
 257     return;
 258   }
 259 #ifdef ASSERT
 260   verify_exception_state(ex_map);
 261   if (has_exceptions()) {
 262     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 263   }
 264 #endif
 265 
 266   // If there is already an exception of exactly this type, merge with it.
 267   // In particular, null-checks and other low-level exceptions common up here.
 268   Node*       ex_oop  = saved_ex_oop(ex_map);
 269   const Type* ex_type = _gvn.type(ex_oop);
 270   if (ex_oop == top()) {
 271     // No action needed.
 272     return;
 273   }
 274   assert(ex_type->isa_instptr(), "exception must be an instance");
 275   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 276     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 277     // We check sp also because call bytecodes can generate exceptions
 278     // both before and after arguments are popped!
 279     if (ex_type2 == ex_type
 280         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 281       combine_exception_states(ex_map, e2);
 282       return;
 283     }
 284   }
 285 
 286   // No pre-existing exception of the same type.  Chain it on the list.
 287   push_exception_state(ex_map);
 288 }
 289 
 290 //-----------------------add_exception_states_from-----------------------------
 291 void GraphKit::add_exception_states_from(JVMState* jvms) {
 292   SafePointNode* ex_map = jvms->map()->next_exception();
 293   if (ex_map != nullptr) {
 294     jvms->map()->set_next_exception(nullptr);
 295     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 296       next_map = ex_map->next_exception();
 297       ex_map->set_next_exception(nullptr);
 298       add_exception_state(ex_map);
 299     }
 300   }
 301 }
 302 
 303 //-----------------------transfer_exceptions_into_jvms-------------------------
 304 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 305   if (map() == nullptr) {
 306     // We need a JVMS to carry the exceptions, but the map has gone away.
 307     // Create a scratch JVMS, cloned from any of the exception states...
 308     if (has_exceptions()) {
 309       _map = _exceptions;
 310       _map = clone_map();
 311       _map->set_next_exception(nullptr);
 312       clear_saved_ex_oop(_map);
 313       DEBUG_ONLY(verify_map());
 314     } else {
 315       // ...or created from scratch
 316       JVMState* jvms = new (C) JVMState(_method, nullptr);
 317       jvms->set_bci(_bci);
 318       jvms->set_sp(_sp);
 319       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 320       set_jvms(jvms);
 321       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 322       set_all_memory(top());
 323       while (map()->req() < jvms->endoff())  map()->add_req(top());
 324     }
 325     // (This is a kludge, in case you didn't notice.)
 326     set_control(top());
 327   }
 328   JVMState* jvms = sync_jvms();
 329   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 330   jvms->map()->set_next_exception(_exceptions);
 331   _exceptions = nullptr;   // done with this set of exceptions
 332   return jvms;
 333 }
 334 
 335 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 336   assert(is_hidden_merge(dstphi), "must be a special merge node");
 337   assert(is_hidden_merge(srcphi), "must be a special merge node");
 338   uint limit = srcphi->req();
 339   for (uint i = PhiNode::Input; i < limit; i++) {
 340     dstphi->add_req(srcphi->in(i));
 341   }
 342 }
 343 static inline void add_one_req(Node* dstphi, Node* src) {
 344   assert(is_hidden_merge(dstphi), "must be a special merge node");
 345   assert(!is_hidden_merge(src), "must not be a special merge node");
 346   dstphi->add_req(src);
 347 }
 348 
 349 //-----------------------combine_exception_states------------------------------
 350 // This helper function combines exception states by building phis on a
 351 // specially marked state-merging region.  These regions and phis are
 352 // untransformed, and can build up gradually.  The region is marked by
 353 // having a control input of its exception map, rather than null.  Such
 354 // regions do not appear except in this function, and in use_exception_state.
 355 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 356   if (failing_internal()) {
 357     return;  // dying anyway...
 358   }
 359   JVMState* ex_jvms = ex_map->_jvms;
 360   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 361   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 362   // TODO 8325632 Re-enable
 363   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 364   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 365   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 366   assert(ex_map->req() == phi_map->req(), "matching maps");
 367   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 368   Node*         hidden_merge_mark = root();
 369   Node*         region  = phi_map->control();
 370   MergeMemNode* phi_mem = phi_map->merged_memory();
 371   MergeMemNode* ex_mem  = ex_map->merged_memory();
 372   if (region->in(0) != hidden_merge_mark) {
 373     // The control input is not (yet) a specially-marked region in phi_map.
 374     // Make it so, and build some phis.
 375     region = new RegionNode(2);
 376     _gvn.set_type(region, Type::CONTROL);
 377     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 378     region->init_req(1, phi_map->control());
 379     phi_map->set_control(region);
 380     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 381     record_for_igvn(io_phi);
 382     _gvn.set_type(io_phi, Type::ABIO);
 383     phi_map->set_i_o(io_phi);
 384     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 385       Node* m = mms.memory();
 386       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 387       record_for_igvn(m_phi);
 388       _gvn.set_type(m_phi, Type::MEMORY);
 389       mms.set_memory(m_phi);
 390     }
 391   }
 392 
 393   // Either or both of phi_map and ex_map might already be converted into phis.
 394   Node* ex_control = ex_map->control();
 395   // if there is special marking on ex_map also, we add multiple edges from src
 396   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 397   // how wide was the destination phi_map, originally?
 398   uint orig_width = region->req();
 399 
 400   if (add_multiple) {
 401     add_n_reqs(region, ex_control);
 402     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 403   } else {
 404     // ex_map has no merges, so we just add single edges everywhere
 405     add_one_req(region, ex_control);
 406     add_one_req(phi_map->i_o(), ex_map->i_o());
 407   }
 408   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 409     if (mms.is_empty()) {
 410       // get a copy of the base memory, and patch some inputs into it
 411       const TypePtr* adr_type = mms.adr_type(C);
 412       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 413       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 414       mms.set_memory(phi);
 415       // Prepare to append interesting stuff onto the newly sliced phi:
 416       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 417     }
 418     // Append stuff from ex_map:
 419     if (add_multiple) {
 420       add_n_reqs(mms.memory(), mms.memory2());
 421     } else {
 422       add_one_req(mms.memory(), mms.memory2());
 423     }
 424   }
 425   uint limit = ex_map->req();
 426   for (uint i = TypeFunc::Parms; i < limit; i++) {
 427     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 428     if (i == tos)  i = ex_jvms->monoff();
 429     Node* src = ex_map->in(i);
 430     Node* dst = phi_map->in(i);
 431     if (src != dst) {
 432       PhiNode* phi;
 433       if (dst->in(0) != region) {
 434         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 435         record_for_igvn(phi);
 436         _gvn.set_type(phi, phi->type());
 437         phi_map->set_req(i, dst);
 438         // Prepare to append interesting stuff onto the new phi:
 439         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 440       } else {
 441         assert(dst->is_Phi(), "nobody else uses a hidden region");
 442         phi = dst->as_Phi();
 443       }
 444       if (add_multiple && src->in(0) == ex_control) {
 445         // Both are phis.
 446         add_n_reqs(dst, src);
 447       } else {
 448         while (dst->req() < region->req())  add_one_req(dst, src);
 449       }
 450       const Type* srctype = _gvn.type(src);
 451       if (phi->type() != srctype) {
 452         const Type* dsttype = phi->type()->meet_speculative(srctype);
 453         if (phi->type() != dsttype) {
 454           phi->set_type(dsttype);
 455           _gvn.set_type(phi, dsttype);
 456         }
 457       }
 458     }
 459   }
 460   phi_map->merge_replaced_nodes_with(ex_map);
 461 }
 462 
 463 //--------------------------use_exception_state--------------------------------
 464 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 465   if (failing_internal()) { stop(); return top(); }
 466   Node* region = phi_map->control();
 467   Node* hidden_merge_mark = root();
 468   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 469   Node* ex_oop = clear_saved_ex_oop(phi_map);
 470   if (region->in(0) == hidden_merge_mark) {
 471     // Special marking for internal ex-states.  Process the phis now.
 472     region->set_req(0, region);  // now it's an ordinary region
 473     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 474     // Note: Setting the jvms also sets the bci and sp.
 475     set_control(_gvn.transform(region));
 476     uint tos = jvms()->stkoff() + sp();
 477     for (uint i = 1; i < tos; i++) {
 478       Node* x = phi_map->in(i);
 479       if (x->in(0) == region) {
 480         assert(x->is_Phi(), "expected a special phi");
 481         phi_map->set_req(i, _gvn.transform(x));
 482       }
 483     }
 484     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 485       Node* x = mms.memory();
 486       if (x->in(0) == region) {
 487         assert(x->is_Phi(), "nobody else uses a hidden region");
 488         mms.set_memory(_gvn.transform(x));
 489       }
 490     }
 491     if (ex_oop->in(0) == region) {
 492       assert(ex_oop->is_Phi(), "expected a special phi");
 493       ex_oop = _gvn.transform(ex_oop);
 494     }
 495   } else {
 496     set_jvms(phi_map->jvms());
 497   }
 498 
 499   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 500   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 501   return ex_oop;
 502 }
 503 
 504 //---------------------------------java_bc-------------------------------------
 505 Bytecodes::Code GraphKit::java_bc() const {
 506   ciMethod* method = this->method();
 507   int       bci    = this->bci();
 508   if (method != nullptr && bci != InvocationEntryBci)
 509     return method->java_code_at_bci(bci);
 510   else
 511     return Bytecodes::_illegal;
 512 }
 513 
 514 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 515                                                           bool must_throw) {
 516     // if the exception capability is set, then we will generate code
 517     // to check the JavaThread.should_post_on_exceptions flag to see
 518     // if we actually need to report exception events (for this
 519     // thread).  If we don't need to report exception events, we will
 520     // take the normal fast path provided by add_exception_events.  If
 521     // exception event reporting is enabled for this thread, we will
 522     // take the uncommon_trap in the BuildCutout below.
 523 
 524     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 525     Node* jthread = _gvn.transform(new ThreadLocalNode());
 526     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 527     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
 528 
 529     // Test the should_post_on_exceptions_flag vs. 0
 530     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 531     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 532 
 533     // Branch to slow_path if should_post_on_exceptions_flag was true
 534     { BuildCutout unless(this, tst, PROB_MAX);
 535       // Do not try anything fancy if we're notifying the VM on every throw.
 536       // Cf. case Bytecodes::_athrow in parse2.cpp.
 537       uncommon_trap(reason, Deoptimization::Action_none,
 538                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 539     }
 540 
 541 }
 542 
 543 //------------------------------builtin_throw----------------------------------
 544 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 545   builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true);
 546 }
 547 
 548 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason,
 549                              ciInstance* ex_obj,
 550                              bool allow_too_many_traps) {
 551   // If this throw happens frequently, an uncommon trap might cause
 552   // a performance pothole.  If there is a local exception handler,
 553   // and if this particular bytecode appears to be deoptimizing often,
 554   // let us handle the throw inline, with a preconstructed instance.
 555   // Note:   If the deopt count has blown up, the uncommon trap
 556   // runtime is going to flush this nmethod, not matter what.
 557   if (is_builtin_throw_hot(reason)) {
 558     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 559       // If the throw is local, we use a pre-existing instance and
 560       // punt on the backtrace.  This would lead to a missing backtrace
 561       // (a repeat of 4292742) if the backtrace object is ever asked
 562       // for its backtrace.
 563       // Fixing this remaining case of 4292742 requires some flavor of
 564       // escape analysis.  Leave that for the future.
 565       if (env()->jvmti_can_post_on_exceptions()) {
 566         // check if we must post exception events, take uncommon trap if so
 567         uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/);
 568         // here if should_post_on_exceptions is false
 569         // continue on with the normal codegen
 570       }
 571 
 572       // Cheat with a preallocated exception object.
 573       if (C->log() != nullptr)
 574         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 575                        Deoptimization::trap_reason_name(reason));
 576       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 577       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 578 
 579       // Clear the detail message of the preallocated exception object.
 580       // Weblogic sometimes mutates the detail message of exceptions
 581       // using reflection.
 582       int offset = java_lang_Throwable::get_detailMessage_offset();
 583       const TypePtr* adr_typ = ex_con->add_offset(offset);
 584 
 585       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 586       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 587       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 588 
 589       if (!method()->has_exception_handlers()) {
 590         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 591         // This prevents issues with exception handling and late inlining.
 592         set_sp(0);
 593         clean_stack(0);
 594       }
 595 
 596       add_exception_state(make_exception_state(ex_node));
 597       return;
 598     } else if (builtin_throw_too_many_traps(reason, ex_obj)) {
 599       // We cannot afford to take too many traps here. Suffer in the interpreter instead.
 600       assert(allow_too_many_traps, "not allowed");
 601       if (C->log() != nullptr) {
 602         C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 603                        Deoptimization::trap_reason_name(reason),
 604                        C->trap_count(reason));
 605       }
 606       uncommon_trap(reason, Deoptimization::Action_none,
 607                     (ciKlass*) nullptr, (char*) nullptr,
 608                     true /*must_throw*/);
 609       return;
 610     }
 611   }
 612 
 613   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 614   // It won't be much cheaper than bailing to the interp., since we'll
 615   // have to pass up all the debug-info, and the runtime will have to
 616   // create the stack trace.
 617 
 618   // Usual case:  Bail to interpreter.
 619   // Reserve the right to recompile if we haven't seen anything yet.
 620 
 621   // "must_throw" prunes the JVM state to include only the stack, if there
 622   // are no local exception handlers.  This should cut down on register
 623   // allocation time and code size, by drastically reducing the number
 624   // of in-edges on the call to the uncommon trap.
 625   uncommon_trap(reason, Deoptimization::Action_maybe_recompile,
 626                 (ciKlass*) nullptr, (char*) nullptr,
 627                 true /*must_throw*/);
 628 }
 629 
 630 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) {
 631   // If this particular condition has not yet happened at this
 632   // bytecode, then use the uncommon trap mechanism, and allow for
 633   // a future recompilation if several traps occur here.
 634   // If the throw is hot, try to use a more complicated inline mechanism
 635   // which keeps execution inside the compiled code.
 636   if (ProfileTraps) {
 637     if (too_many_traps(reason)) {
 638       return true;
 639     }
 640     // (If there is no MDO at all, assume it is early in
 641     // execution, and that any deopts are part of the
 642     // startup transient, and don't need to be remembered.)
 643 
 644     // Also, if there is a local exception handler, treat all throws
 645     // as hot if there has been at least one in this method.
 646     if (C->trap_count(reason) != 0 &&
 647         method()->method_data()->trap_count(reason) != 0 &&
 648         has_exception_handler()) {
 649       return true;
 650     }
 651   }
 652   return false;
 653 }
 654 
 655 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason,
 656                                             ciInstance* ex_obj) {
 657   if (is_builtin_throw_hot(reason)) {
 658     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 659       return false; // no traps; throws preallocated exception instead
 660     }
 661     ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 662     if (method()->method_data()->trap_recompiled_at(bci(), m) ||
 663         C->too_many_traps(reason)) {
 664       return true;
 665     }
 666   }
 667   return false;
 668 }
 669 
 670 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const {
 671   // Preallocated exception objects to use when we don't need the backtrace.
 672   switch (reason) {
 673   case Deoptimization::Reason_null_check:
 674     return env()->NullPointerException_instance();
 675   case Deoptimization::Reason_div0_check:
 676     return env()->ArithmeticException_instance();
 677   case Deoptimization::Reason_range_check:
 678     return env()->ArrayIndexOutOfBoundsException_instance();
 679   case Deoptimization::Reason_class_check:
 680     return env()->ClassCastException_instance();
 681   case Deoptimization::Reason_array_check:
 682     return env()->ArrayStoreException_instance();
 683   default:
 684     return nullptr;
 685   }
 686 }
 687 
 688 //----------------------------PreserveJVMState---------------------------------
 689 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 690   DEBUG_ONLY(kit->verify_map());
 691   _kit    = kit;
 692   _map    = kit->map();   // preserve the map
 693   _sp     = kit->sp();
 694   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 695 #ifdef ASSERT
 696   _bci    = kit->bci();
 697   Parse* parser = kit->is_Parse();
 698   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 699   _block  = block;
 700 #endif
 701 }
 702 PreserveJVMState::~PreserveJVMState() {
 703   GraphKit* kit = _kit;
 704 #ifdef ASSERT
 705   assert(kit->bci() == _bci, "bci must not shift");
 706   Parse* parser = kit->is_Parse();
 707   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 708   assert(block == _block,    "block must not shift");
 709 #endif
 710   kit->set_map(_map);
 711   kit->set_sp(_sp);
 712 }
 713 
 714 
 715 //-----------------------------BuildCutout-------------------------------------
 716 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 717   : PreserveJVMState(kit)
 718 {
 719   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 720   SafePointNode* outer_map = _map;   // preserved map is caller's
 721   SafePointNode* inner_map = kit->map();
 722   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 723   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 724   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 725 }
 726 BuildCutout::~BuildCutout() {
 727   GraphKit* kit = _kit;
 728   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 729 }
 730 
 731 //---------------------------PreserveReexecuteState----------------------------
 732 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 733   assert(!kit->stopped(), "must call stopped() before");
 734   _kit    =    kit;
 735   _sp     =    kit->sp();
 736   _reexecute = kit->jvms()->_reexecute;
 737 }
 738 PreserveReexecuteState::~PreserveReexecuteState() {
 739   if (_kit->stopped()) return;
 740   _kit->jvms()->_reexecute = _reexecute;
 741   _kit->set_sp(_sp);
 742 }
 743 
 744 //------------------------------clone_map--------------------------------------
 745 // Implementation of PreserveJVMState
 746 //
 747 // Only clone_map(...) here. If this function is only used in the
 748 // PreserveJVMState class we may want to get rid of this extra
 749 // function eventually and do it all there.
 750 
 751 SafePointNode* GraphKit::clone_map() {
 752   if (map() == nullptr)  return nullptr;
 753 
 754   // Clone the memory edge first
 755   Node* mem = MergeMemNode::make(map()->memory());
 756   gvn().set_type_bottom(mem);
 757 
 758   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 759   JVMState* jvms = this->jvms();
 760   JVMState* clonejvms = jvms->clone_shallow(C);
 761   clonemap->set_memory(mem);
 762   clonemap->set_jvms(clonejvms);
 763   clonejvms->set_map(clonemap);
 764   record_for_igvn(clonemap);
 765   gvn().set_type_bottom(clonemap);
 766   return clonemap;
 767 }
 768 
 769 //-----------------------------destruct_map_clone------------------------------
 770 //
 771 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 772 // to destruct/free/delete in the exact opposite order as clone_map().
 773 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 774   if (sfp == nullptr) return;
 775 
 776   Node* mem = sfp->memory();
 777   JVMState* jvms = sfp->jvms();
 778 
 779   if (jvms != nullptr) {
 780     delete jvms;
 781   }
 782 
 783   remove_for_igvn(sfp);
 784   gvn().clear_type(sfp);
 785   sfp->destruct(&_gvn);
 786 
 787   if (mem != nullptr) {
 788     gvn().clear_type(mem);
 789     mem->destruct(&_gvn);
 790   }
 791 }
 792 
 793 //-----------------------------set_map_clone-----------------------------------
 794 void GraphKit::set_map_clone(SafePointNode* m) {
 795   _map = m;
 796   _map = clone_map();
 797   _map->set_next_exception(nullptr);
 798   DEBUG_ONLY(verify_map());
 799 }
 800 
 801 
 802 //----------------------------kill_dead_locals---------------------------------
 803 // Detect any locals which are known to be dead, and force them to top.
 804 void GraphKit::kill_dead_locals() {
 805   // Consult the liveness information for the locals.  If any
 806   // of them are unused, then they can be replaced by top().  This
 807   // should help register allocation time and cut down on the size
 808   // of the deoptimization information.
 809 
 810   // This call is made from many of the bytecode handling
 811   // subroutines called from the Big Switch in do_one_bytecode.
 812   // Every bytecode which might include a slow path is responsible
 813   // for killing its dead locals.  The more consistent we
 814   // are about killing deads, the fewer useless phis will be
 815   // constructed for them at various merge points.
 816 
 817   // bci can be -1 (InvocationEntryBci).  We return the entry
 818   // liveness for the method.
 819 
 820   if (method() == nullptr || method()->code_size() == 0) {
 821     // We are building a graph for a call to a native method.
 822     // All locals are live.
 823     return;
 824   }
 825 
 826   ResourceMark rm;
 827 
 828   // Consult the liveness information for the locals.  If any
 829   // of them are unused, then they can be replaced by top().  This
 830   // should help register allocation time and cut down on the size
 831   // of the deoptimization information.
 832   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 833 
 834   int len = (int)live_locals.size();
 835   assert(len <= jvms()->loc_size(), "too many live locals");
 836   for (int local = 0; local < len; local++) {
 837     if (!live_locals.at(local)) {
 838       set_local(local, top());
 839     }
 840   }
 841 }
 842 
 843 #ifdef ASSERT
 844 //-------------------------dead_locals_are_killed------------------------------
 845 // Return true if all dead locals are set to top in the map.
 846 // Used to assert "clean" debug info at various points.
 847 bool GraphKit::dead_locals_are_killed() {
 848   if (method() == nullptr || method()->code_size() == 0) {
 849     // No locals need to be dead, so all is as it should be.
 850     return true;
 851   }
 852 
 853   // Make sure somebody called kill_dead_locals upstream.
 854   ResourceMark rm;
 855   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 856     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 857     SafePointNode* map = jvms->map();
 858     ciMethod* method = jvms->method();
 859     int       bci    = jvms->bci();
 860     if (jvms == this->jvms()) {
 861       bci = this->bci();  // it might not yet be synched
 862     }
 863     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 864     int len = (int)live_locals.size();
 865     if (!live_locals.is_valid() || len == 0)
 866       // This method is trivial, or is poisoned by a breakpoint.
 867       return true;
 868     assert(len == jvms->loc_size(), "live map consistent with locals map");
 869     for (int local = 0; local < len; local++) {
 870       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 871         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 872           tty->print_cr("Zombie local %d: ", local);
 873           jvms->dump();
 874         }
 875         return false;
 876       }
 877     }
 878   }
 879   return true;
 880 }
 881 
 882 #endif //ASSERT
 883 
 884 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 885 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 886   ciMethod* cur_method = jvms->method();
 887   int       cur_bci   = jvms->bci();
 888   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 889     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 890     return Interpreter::bytecode_should_reexecute(code) ||
 891            (is_anewarray && (code == Bytecodes::_multianewarray));
 892     // Reexecute _multianewarray bytecode which was replaced with
 893     // sequence of [a]newarray. See Parse::do_multianewarray().
 894     //
 895     // Note: interpreter should not have it set since this optimization
 896     // is limited by dimensions and guarded by flag so in some cases
 897     // multianewarray() runtime calls will be generated and
 898     // the bytecode should not be reexecutes (stack will not be reset).
 899   } else {
 900     return false;
 901   }
 902 }
 903 
 904 // Helper function for adding JVMState and debug information to node
 905 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 906   // Add the safepoint edges to the call (or other safepoint).
 907 
 908   // Make sure dead locals are set to top.  This
 909   // should help register allocation time and cut down on the size
 910   // of the deoptimization information.
 911   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 912 
 913   // Walk the inline list to fill in the correct set of JVMState's
 914   // Also fill in the associated edges for each JVMState.
 915 
 916   // If the bytecode needs to be reexecuted we need to put
 917   // the arguments back on the stack.
 918   const bool should_reexecute = jvms()->should_reexecute();
 919   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 920 
 921   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 922   // undefined if the bci is different.  This is normal for Parse but it
 923   // should not happen for LibraryCallKit because only one bci is processed.
 924   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 925          "in LibraryCallKit the reexecute bit should not change");
 926 
 927   // If we are guaranteed to throw, we can prune everything but the
 928   // input to the current bytecode.
 929   bool can_prune_locals = false;
 930   uint stack_slots_not_pruned = 0;
 931   int inputs = 0, depth = 0;
 932   if (must_throw) {
 933     assert(method() == youngest_jvms->method(), "sanity");
 934     if (compute_stack_effects(inputs, depth)) {
 935       can_prune_locals = true;
 936       stack_slots_not_pruned = inputs;
 937     }
 938   }
 939 
 940   if (env()->should_retain_local_variables()) {
 941     // At any safepoint, this method can get breakpointed, which would
 942     // then require an immediate deoptimization.
 943     can_prune_locals = false;  // do not prune locals
 944     stack_slots_not_pruned = 0;
 945   }
 946 
 947   // do not scribble on the input jvms
 948   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 949   call->set_jvms(out_jvms); // Start jvms list for call node
 950 
 951   // For a known set of bytecodes, the interpreter should reexecute them if
 952   // deoptimization happens. We set the reexecute state for them here
 953   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 954       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 955 #ifdef ASSERT
 956     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 957     assert(method() == youngest_jvms->method(), "sanity");
 958     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 959     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 960 #endif // ASSERT
 961     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 962   }
 963 
 964   // Presize the call:
 965   DEBUG_ONLY(uint non_debug_edges = call->req());
 966   call->add_req_batch(top(), youngest_jvms->debug_depth());
 967   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 968 
 969   // Set up edges so that the call looks like this:
 970   //  Call [state:] ctl io mem fptr retadr
 971   //       [parms:] parm0 ... parmN
 972   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 973   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 974   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 975   // Note that caller debug info precedes callee debug info.
 976 
 977   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 978   uint debug_ptr = call->req();
 979 
 980   // Loop over the map input edges associated with jvms, add them
 981   // to the call node, & reset all offsets to match call node array.
 982 
 983   JVMState* callee_jvms = nullptr;
 984   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 985     uint debug_end   = debug_ptr;
 986     uint debug_start = debug_ptr - in_jvms->debug_size();
 987     debug_ptr = debug_start;  // back up the ptr
 988 
 989     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 990     uint j, k, l;
 991     SafePointNode* in_map = in_jvms->map();
 992     out_jvms->set_map(call);
 993 
 994     if (can_prune_locals) {
 995       assert(in_jvms->method() == out_jvms->method(), "sanity");
 996       // If the current throw can reach an exception handler in this JVMS,
 997       // then we must keep everything live that can reach that handler.
 998       // As a quick and dirty approximation, we look for any handlers at all.
 999       if (in_jvms->method()->has_exception_handlers()) {
1000         can_prune_locals = false;
1001       }
1002     }
1003 
1004     // Add the Locals
1005     k = in_jvms->locoff();
1006     l = in_jvms->loc_size();
1007     out_jvms->set_locoff(p);
1008     if (!can_prune_locals) {
1009       for (j = 0; j < l; j++) {
1010         call->set_req(p++, in_map->in(k + j));
1011       }
1012     } else {
1013       p += l;  // already set to top above by add_req_batch
1014     }
1015 
1016     // Add the Expression Stack
1017     k = in_jvms->stkoff();
1018     l = in_jvms->sp();
1019     out_jvms->set_stkoff(p);
1020     if (!can_prune_locals) {
1021       for (j = 0; j < l; j++) {
1022         call->set_req(p++, in_map->in(k + j));
1023       }
1024     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1025       // Divide stack into {S0,...,S1}, where S0 is set to top.
1026       uint s1 = stack_slots_not_pruned;
1027       stack_slots_not_pruned = 0;  // for next iteration
1028       if (s1 > l)  s1 = l;
1029       uint s0 = l - s1;
1030       p += s0;  // skip the tops preinstalled by add_req_batch
1031       for (j = s0; j < l; j++)
1032         call->set_req(p++, in_map->in(k+j));
1033     } else {
1034       p += l;  // already set to top above by add_req_batch
1035     }
1036 
1037     // Add the Monitors
1038     k = in_jvms->monoff();
1039     l = in_jvms->mon_size();
1040     out_jvms->set_monoff(p);
1041     for (j = 0; j < l; j++)
1042       call->set_req(p++, in_map->in(k+j));
1043 
1044     // Copy any scalar object fields.
1045     k = in_jvms->scloff();
1046     l = in_jvms->scl_size();
1047     out_jvms->set_scloff(p);
1048     for (j = 0; j < l; j++)
1049       call->set_req(p++, in_map->in(k+j));
1050 
1051     // Finish the new jvms.
1052     out_jvms->set_endoff(p);
1053 
1054     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1055     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1056     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1057     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1058     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1059     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1060 
1061     // Update the two tail pointers in parallel.
1062     callee_jvms = out_jvms;
1063     out_jvms = out_jvms->caller();
1064     in_jvms  = in_jvms->caller();
1065   }
1066 
1067   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1068 
1069   // Test the correctness of JVMState::debug_xxx accessors:
1070   assert(call->jvms()->debug_start() == non_debug_edges, "");
1071   assert(call->jvms()->debug_end()   == call->req(), "");
1072   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1073 }
1074 
1075 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1076   Bytecodes::Code code = java_bc();
1077   if (code == Bytecodes::_wide) {
1078     code = method()->java_code_at_bci(bci() + 1);
1079   }
1080 
1081   if (code != Bytecodes::_illegal) {
1082     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1083   }
1084 
1085   auto rsize = [&]() {
1086     assert(code != Bytecodes::_illegal, "code is illegal!");
1087     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1088     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1089   };
1090 
1091   switch (code) {
1092   case Bytecodes::_illegal:
1093     return false;
1094 
1095   case Bytecodes::_ldc:
1096   case Bytecodes::_ldc_w:
1097   case Bytecodes::_ldc2_w:
1098     inputs = 0;
1099     break;
1100 
1101   case Bytecodes::_dup:         inputs = 1;  break;
1102   case Bytecodes::_dup_x1:      inputs = 2;  break;
1103   case Bytecodes::_dup_x2:      inputs = 3;  break;
1104   case Bytecodes::_dup2:        inputs = 2;  break;
1105   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1106   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1107   case Bytecodes::_swap:        inputs = 2;  break;
1108   case Bytecodes::_arraylength: inputs = 1;  break;
1109 
1110   case Bytecodes::_getstatic:
1111   case Bytecodes::_putstatic:
1112   case Bytecodes::_getfield:
1113   case Bytecodes::_putfield:
1114     {
1115       bool ignored_will_link;
1116       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1117       int      size  = field->type()->size();
1118       bool is_get = (depth >= 0), is_static = (depth & 1);
1119       inputs = (is_static ? 0 : 1);
1120       if (is_get) {
1121         depth = size - inputs;
1122       } else {
1123         inputs += size;        // putxxx pops the value from the stack
1124         depth = - inputs;
1125       }
1126     }
1127     break;
1128 
1129   case Bytecodes::_invokevirtual:
1130   case Bytecodes::_invokespecial:
1131   case Bytecodes::_invokestatic:
1132   case Bytecodes::_invokedynamic:
1133   case Bytecodes::_invokeinterface:
1134     {
1135       bool ignored_will_link;
1136       ciSignature* declared_signature = nullptr;
1137       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1138       assert(declared_signature != nullptr, "cannot be null");
1139       inputs   = declared_signature->arg_size_for_bc(code);
1140       int size = declared_signature->return_type()->size();
1141       depth = size - inputs;
1142     }
1143     break;
1144 
1145   case Bytecodes::_multianewarray:
1146     {
1147       ciBytecodeStream iter(method());
1148       iter.reset_to_bci(bci());
1149       iter.next();
1150       inputs = iter.get_dimensions();
1151       assert(rsize() == 1, "");
1152       depth = 1 - inputs;
1153     }
1154     break;
1155 
1156   case Bytecodes::_ireturn:
1157   case Bytecodes::_lreturn:
1158   case Bytecodes::_freturn:
1159   case Bytecodes::_dreturn:
1160   case Bytecodes::_areturn:
1161     assert(rsize() == -depth, "");
1162     inputs = -depth;
1163     break;
1164 
1165   case Bytecodes::_jsr:
1166   case Bytecodes::_jsr_w:
1167     inputs = 0;
1168     depth  = 1;                  // S.B. depth=1, not zero
1169     break;
1170 
1171   default:
1172     // bytecode produces a typed result
1173     inputs = rsize() - depth;
1174     assert(inputs >= 0, "");
1175     break;
1176   }
1177 
1178 #ifdef ASSERT
1179   // spot check
1180   int outputs = depth + inputs;
1181   assert(outputs >= 0, "sanity");
1182   switch (code) {
1183   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1184   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1185   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1186   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1187   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1188   default:                    break;
1189   }
1190 #endif //ASSERT
1191 
1192   return true;
1193 }
1194 
1195 
1196 
1197 //------------------------------basic_plus_adr---------------------------------
1198 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1199   // short-circuit a common case
1200   if (offset == intcon(0))  return ptr;
1201   return _gvn.transform( new AddPNode(base, ptr, offset) );
1202 }
1203 
1204 Node* GraphKit::ConvI2L(Node* offset) {
1205   // short-circuit a common case
1206   jint offset_con = find_int_con(offset, Type::OffsetBot);
1207   if (offset_con != Type::OffsetBot) {
1208     return longcon((jlong) offset_con);
1209   }
1210   return _gvn.transform( new ConvI2LNode(offset));
1211 }
1212 
1213 Node* GraphKit::ConvI2UL(Node* offset) {
1214   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1215   if (offset_con != (juint) Type::OffsetBot) {
1216     return longcon((julong) offset_con);
1217   }
1218   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1219   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1220   return _gvn.transform( new AndLNode(conv, mask) );
1221 }
1222 
1223 Node* GraphKit::ConvL2I(Node* offset) {
1224   // short-circuit a common case
1225   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1226   if (offset_con != (jlong)Type::OffsetBot) {
1227     return intcon((int) offset_con);
1228   }
1229   return _gvn.transform( new ConvL2INode(offset));
1230 }
1231 
1232 //-------------------------load_object_klass-----------------------------------
1233 Node* GraphKit::load_object_klass(Node* obj) {
1234   // Special-case a fresh allocation to avoid building nodes:
1235   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1236   if (akls != nullptr)  return akls;
1237   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1238   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1239 }
1240 
1241 //-------------------------load_array_length-----------------------------------
1242 Node* GraphKit::load_array_length(Node* array) {
1243   // Special-case a fresh allocation to avoid building nodes:
1244   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1245   Node *alen;
1246   if (alloc == nullptr) {
1247     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1248     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1249   } else {
1250     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1251   }
1252   return alen;
1253 }
1254 
1255 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1256                                    const TypeOopPtr* oop_type,
1257                                    bool replace_length_in_map) {
1258   Node* length = alloc->Ideal_length();
1259   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1260     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1261     if (ccast != length) {
1262       // do not transform ccast here, it might convert to top node for
1263       // negative array length and break assumptions in parsing stage.
1264       _gvn.set_type_bottom(ccast);
1265       record_for_igvn(ccast);
1266       if (replace_length_in_map) {
1267         replace_in_map(length, ccast);
1268       }
1269       return ccast;
1270     }
1271   }
1272   return length;
1273 }
1274 
1275 //------------------------------do_null_check----------------------------------
1276 // Helper function to do a null pointer check.  Returned value is
1277 // the incoming address with null casted away.  You are allowed to use the
1278 // not-null value only if you are control dependent on the test.
1279 #ifndef PRODUCT
1280 extern uint explicit_null_checks_inserted,
1281             explicit_null_checks_elided;
1282 #endif
1283 Node* GraphKit::null_check_common(Node* value, BasicType type,
1284                                   // optional arguments for variations:
1285                                   bool assert_null,
1286                                   Node* *null_control,
1287                                   bool speculative,
1288                                   bool null_marker_check) {
1289   assert(!assert_null || null_control == nullptr, "not both at once");
1290   if (stopped())  return top();
1291   NOT_PRODUCT(explicit_null_checks_inserted++);
1292 
1293   if (value->is_InlineType()) {
1294     // Null checking a scalarized but nullable inline type. Check the null marker
1295     // input instead of the oop input to avoid keeping buffer allocations alive.
1296     InlineTypeNode* vtptr = value->as_InlineType();
1297     while (vtptr->get_oop()->is_InlineType()) {
1298       vtptr = vtptr->get_oop()->as_InlineType();
1299     }
1300     null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true);
1301     if (stopped()) {
1302       return top();
1303     }
1304     if (assert_null) {
1305       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1306       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1307       // replace_in_map(value, vtptr);
1308       // return vtptr;
1309       replace_in_map(value, null());
1310       return null();
1311     }
1312     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1313     return cast_not_null(value, do_replace_in_map);
1314   }
1315 
1316   // Construct null check
1317   Node *chk = nullptr;
1318   switch(type) {
1319     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1320     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1321     case T_ARRAY  : // fall through
1322       type = T_OBJECT;  // simplify further tests
1323     case T_OBJECT : {
1324       const Type *t = _gvn.type( value );
1325 
1326       const TypeOopPtr* tp = t->isa_oopptr();
1327       if (tp != nullptr && !tp->is_loaded()
1328           // Only for do_null_check, not any of its siblings:
1329           && !assert_null && null_control == nullptr) {
1330         // Usually, any field access or invocation on an unloaded oop type
1331         // will simply fail to link, since the statically linked class is
1332         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1333         // the static class is loaded but the sharper oop type is not.
1334         // Rather than checking for this obscure case in lots of places,
1335         // we simply observe that a null check on an unloaded class
1336         // will always be followed by a nonsense operation, so we
1337         // can just issue the uncommon trap here.
1338         // Our access to the unloaded class will only be correct
1339         // after it has been loaded and initialized, which requires
1340         // a trip through the interpreter.
1341         ciKlass* klass = tp->unloaded_klass();
1342 #ifndef PRODUCT
1343         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1344 #endif
1345         uncommon_trap(Deoptimization::Reason_unloaded,
1346                       Deoptimization::Action_reinterpret,
1347                       klass, "!loaded");
1348         return top();
1349       }
1350 
1351       if (assert_null) {
1352         // See if the type is contained in NULL_PTR.
1353         // If so, then the value is already null.
1354         if (t->higher_equal(TypePtr::NULL_PTR)) {
1355           NOT_PRODUCT(explicit_null_checks_elided++);
1356           return value;           // Elided null assert quickly!
1357         }
1358       } else {
1359         // See if mixing in the null pointer changes type.
1360         // If so, then the null pointer was not allowed in the original
1361         // type.  In other words, "value" was not-null.
1362         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1363           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1364           NOT_PRODUCT(explicit_null_checks_elided++);
1365           return value;           // Elided null check quickly!
1366         }
1367       }
1368       chk = new CmpPNode( value, null() );
1369       break;
1370     }
1371 
1372     default:
1373       fatal("unexpected type: %s", type2name(type));
1374   }
1375   assert(chk != nullptr, "sanity check");
1376   chk = _gvn.transform(chk);
1377 
1378   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1379   BoolNode *btst = new BoolNode( chk, btest);
1380   Node   *tst = _gvn.transform( btst );
1381 
1382   //-----------
1383   // if peephole optimizations occurred, a prior test existed.
1384   // If a prior test existed, maybe it dominates as we can avoid this test.
1385   if (tst != btst && type == T_OBJECT) {
1386     // At this point we want to scan up the CFG to see if we can
1387     // find an identical test (and so avoid this test altogether).
1388     Node *cfg = control();
1389     int depth = 0;
1390     while( depth < 16 ) {       // Limit search depth for speed
1391       if( cfg->Opcode() == Op_IfTrue &&
1392           cfg->in(0)->in(1) == tst ) {
1393         // Found prior test.  Use "cast_not_null" to construct an identical
1394         // CastPP (and hence hash to) as already exists for the prior test.
1395         // Return that casted value.
1396         if (assert_null) {
1397           replace_in_map(value, null());
1398           return null();  // do not issue the redundant test
1399         }
1400         Node *oldcontrol = control();
1401         set_control(cfg);
1402         Node *res = cast_not_null(value);
1403         set_control(oldcontrol);
1404         NOT_PRODUCT(explicit_null_checks_elided++);
1405         return res;
1406       }
1407       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1408       if (cfg == nullptr)  break;  // Quit at region nodes
1409       depth++;
1410     }
1411   }
1412 
1413   //-----------
1414   // Branch to failure if null
1415   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1416   Deoptimization::DeoptReason reason;
1417   if (assert_null) {
1418     reason = Deoptimization::reason_null_assert(speculative);
1419   } else if (type == T_OBJECT || null_marker_check) {
1420     reason = Deoptimization::reason_null_check(speculative);
1421   } else {
1422     reason = Deoptimization::Reason_div0_check;
1423   }
1424   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1425   // ciMethodData::has_trap_at will return a conservative -1 if any
1426   // must-be-null assertion has failed.  This could cause performance
1427   // problems for a method after its first do_null_assert failure.
1428   // Consider using 'Reason_class_check' instead?
1429 
1430   // To cause an implicit null check, we set the not-null probability
1431   // to the maximum (PROB_MAX).  For an explicit check the probability
1432   // is set to a smaller value.
1433   if (null_control != nullptr || too_many_traps(reason)) {
1434     // probability is less likely
1435     ok_prob =  PROB_LIKELY_MAG(3);
1436   } else if (!assert_null &&
1437              (ImplicitNullCheckThreshold > 0) &&
1438              method() != nullptr &&
1439              (method()->method_data()->trap_count(reason)
1440               >= (uint)ImplicitNullCheckThreshold)) {
1441     ok_prob =  PROB_LIKELY_MAG(3);
1442   }
1443 
1444   if (null_control != nullptr) {
1445     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1446     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1447     set_control(      _gvn.transform( new IfTrueNode(iff)));
1448 #ifndef PRODUCT
1449     if (null_true == top()) {
1450       explicit_null_checks_elided++;
1451     }
1452 #endif
1453     (*null_control) = null_true;
1454   } else {
1455     BuildCutout unless(this, tst, ok_prob);
1456     // Check for optimizer eliding test at parse time
1457     if (stopped()) {
1458       // Failure not possible; do not bother making uncommon trap.
1459       NOT_PRODUCT(explicit_null_checks_elided++);
1460     } else if (assert_null) {
1461       uncommon_trap(reason,
1462                     Deoptimization::Action_make_not_entrant,
1463                     nullptr, "assert_null");
1464     } else {
1465       replace_in_map(value, zerocon(type));
1466       builtin_throw(reason);
1467     }
1468   }
1469 
1470   // Must throw exception, fall-thru not possible?
1471   if (stopped()) {
1472     return top();               // No result
1473   }
1474 
1475   if (assert_null) {
1476     // Cast obj to null on this path.
1477     replace_in_map(value, zerocon(type));
1478     return zerocon(type);
1479   }
1480 
1481   // Cast obj to not-null on this path, if there is no null_control.
1482   // (If there is a null_control, a non-null value may come back to haunt us.)
1483   if (type == T_OBJECT) {
1484     Node* cast = cast_not_null(value, false);
1485     if (null_control == nullptr || (*null_control) == top())
1486       replace_in_map(value, cast);
1487     value = cast;
1488   }
1489 
1490   return value;
1491 }
1492 
1493 //------------------------------cast_not_null----------------------------------
1494 // Cast obj to not-null on this path
1495 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1496   if (obj->is_InlineType()) {
1497     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1498     vt->as_InlineType()->set_null_marker(_gvn);
1499     vt = _gvn.transform(vt);
1500     if (do_replace_in_map) {
1501       replace_in_map(obj, vt);
1502     }
1503     return vt;
1504   }
1505   const Type *t = _gvn.type(obj);
1506   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1507   // Object is already not-null?
1508   if( t == t_not_null ) return obj;
1509 
1510   Node* cast = new CastPPNode(control(), obj,t_not_null);
1511   cast = _gvn.transform( cast );
1512 
1513   // Scan for instances of 'obj' in the current JVM mapping.
1514   // These instances are known to be not-null after the test.
1515   if (do_replace_in_map)
1516     replace_in_map(obj, cast);
1517 
1518   return cast;                  // Return casted value
1519 }
1520 
1521 Node* GraphKit::cast_to_non_larval(Node* obj) {
1522   const Type* obj_type = gvn().type(obj);
1523   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1524     return obj;
1525   }
1526 
1527   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1528   replace_in_map(obj, new_obj);
1529   return new_obj;
1530 }
1531 
1532 // Sometimes in intrinsics, we implicitly know an object is not null
1533 // (there's no actual null check) so we can cast it to not null. In
1534 // the course of optimizations, the input to the cast can become null.
1535 // In that case that data path will die and we need the control path
1536 // to become dead as well to keep the graph consistent. So we have to
1537 // add a check for null for which one branch can't be taken. It uses
1538 // an OpaqueNotNull node that will cause the check to be removed after loop
1539 // opts so the test goes away and the compiled code doesn't execute a
1540 // useless check.
1541 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1542   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1543     return value;
1544   }
1545   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1546   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1547   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1548   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1549   _gvn.set_type(iff, iff->Value(&_gvn));
1550   if (!tst->is_Con()) {
1551     record_for_igvn(iff);
1552   }
1553   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1554   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1555   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1556   C->root()->add_req(halt);
1557   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1558   set_control(if_t);
1559   return cast_not_null(value, do_replace_in_map);
1560 }
1561 
1562 
1563 //--------------------------replace_in_map-------------------------------------
1564 void GraphKit::replace_in_map(Node* old, Node* neww) {
1565   if (old == neww) {
1566     return;
1567   }
1568 
1569   map()->replace_edge(old, neww);
1570 
1571   // Note: This operation potentially replaces any edge
1572   // on the map.  This includes locals, stack, and monitors
1573   // of the current (innermost) JVM state.
1574 
1575   // don't let inconsistent types from profiling escape this
1576   // method
1577 
1578   const Type* told = _gvn.type(old);
1579   const Type* tnew = _gvn.type(neww);
1580 
1581   if (!tnew->higher_equal(told)) {
1582     return;
1583   }
1584 
1585   map()->record_replaced_node(old, neww);
1586 }
1587 
1588 
1589 //=============================================================================
1590 //--------------------------------memory---------------------------------------
1591 Node* GraphKit::memory(uint alias_idx) {
1592   MergeMemNode* mem = merged_memory();
1593   Node* p = mem->memory_at(alias_idx);
1594   assert(p != mem->empty_memory(), "empty");
1595   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1596   return p;
1597 }
1598 
1599 //-----------------------------reset_memory------------------------------------
1600 Node* GraphKit::reset_memory() {
1601   Node* mem = map()->memory();
1602   // do not use this node for any more parsing!
1603   DEBUG_ONLY( map()->set_memory((Node*)nullptr) );
1604   return _gvn.transform( mem );
1605 }
1606 
1607 //------------------------------set_all_memory---------------------------------
1608 void GraphKit::set_all_memory(Node* newmem) {
1609   Node* mergemem = MergeMemNode::make(newmem);
1610   gvn().set_type_bottom(mergemem);
1611   map()->set_memory(mergemem);
1612 }
1613 
1614 //------------------------------set_all_memory_call----------------------------
1615 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1616   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1617   set_all_memory(newmem);
1618 }
1619 
1620 //=============================================================================
1621 //
1622 // parser factory methods for MemNodes
1623 //
1624 // These are layered on top of the factory methods in LoadNode and StoreNode,
1625 // and integrate with the parser's memory state and _gvn engine.
1626 //
1627 
1628 // factory methods in "int adr_idx"
1629 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1630                           MemNode::MemOrd mo,
1631                           LoadNode::ControlDependency control_dependency,
1632                           bool require_atomic_access,
1633                           bool unaligned,
1634                           bool mismatched,
1635                           bool unsafe,
1636                           uint8_t barrier_data) {
1637   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1638   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1639   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1640   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1641   Node* mem = memory(adr_idx);
1642   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1643   ld = _gvn.transform(ld);
1644 
1645   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1646     // Improve graph before escape analysis and boxing elimination.
1647     record_for_igvn(ld);
1648     if (ld->is_DecodeN()) {
1649       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1650       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1651       // a Phi). Recording such cases is still perfectly sound, but may be
1652       // unnecessary and result in some minor IGVN overhead.
1653       record_for_igvn(ld->in(1));
1654     }
1655   }
1656   return ld;
1657 }
1658 
1659 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1660                                 MemNode::MemOrd mo,
1661                                 bool require_atomic_access,
1662                                 bool unaligned,
1663                                 bool mismatched,
1664                                 bool unsafe,
1665                                 int barrier_data) {
1666   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1667   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1668   const TypePtr* adr_type = nullptr;
1669   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1670   Node *mem = memory(adr_idx);
1671   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1672   if (unaligned) {
1673     st->as_Store()->set_unaligned_access();
1674   }
1675   if (mismatched) {
1676     st->as_Store()->set_mismatched_access();
1677   }
1678   if (unsafe) {
1679     st->as_Store()->set_unsafe_access();
1680   }
1681   st->as_Store()->set_barrier_data(barrier_data);
1682   st = _gvn.transform(st);
1683   set_memory(st, adr_idx);
1684   // Back-to-back stores can only remove intermediate store with DU info
1685   // so push on worklist for optimizer.
1686   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1687     record_for_igvn(st);
1688 
1689   return st;
1690 }
1691 
1692 Node* GraphKit::access_store_at(Node* obj,
1693                                 Node* adr,
1694                                 const TypePtr* adr_type,
1695                                 Node* val,
1696                                 const Type* val_type,
1697                                 BasicType bt,
1698                                 DecoratorSet decorators,
1699                                 bool safe_for_replace,
1700                                 const InlineTypeNode* vt) {
1701   // Transformation of a value which could be null pointer (CastPP #null)
1702   // could be delayed during Parse (for example, in adjust_map_after_if()).
1703   // Execute transformation here to avoid barrier generation in such case.
1704   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1705     val = _gvn.makecon(TypePtr::NULL_PTR);
1706   }
1707 
1708   if (stopped()) {
1709     return top(); // Dead path ?
1710   }
1711 
1712   assert(val != nullptr, "not dead path");
1713   if (val->is_InlineType()) {
1714     // Store to non-flat field. Buffer the inline type and make sure
1715     // the store is re-executed if the allocation triggers deoptimization.
1716     PreserveReexecuteState preexecs(this);
1717     jvms()->set_should_reexecute(true);
1718     val = val->as_InlineType()->buffer(this, safe_for_replace);
1719   }
1720 
1721   C2AccessValuePtr addr(adr, adr_type);
1722   C2AccessValue value(val, val_type);
1723   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1724   if (access.is_raw()) {
1725     return _barrier_set->BarrierSetC2::store_at(access, value);
1726   } else {
1727     return _barrier_set->store_at(access, value);
1728   }
1729 }
1730 
1731 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1732                                Node* adr,   // actual address to store val at
1733                                const TypePtr* adr_type,
1734                                const Type* val_type,
1735                                BasicType bt,
1736                                DecoratorSet decorators,
1737                                Node* ctl) {
1738   if (stopped()) {
1739     return top(); // Dead path ?
1740   }
1741 
1742   C2AccessValuePtr addr(adr, adr_type);
1743   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1744   if (access.is_raw()) {
1745     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1746   } else {
1747     return _barrier_set->load_at(access, val_type);
1748   }
1749 }
1750 
1751 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1752                             const Type* val_type,
1753                             BasicType bt,
1754                             DecoratorSet decorators) {
1755   if (stopped()) {
1756     return top(); // Dead path ?
1757   }
1758 
1759   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1760   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1761   if (access.is_raw()) {
1762     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1763   } else {
1764     return _barrier_set->load_at(access, val_type);
1765   }
1766 }
1767 
1768 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1769                                              Node* adr,
1770                                              const TypePtr* adr_type,
1771                                              int alias_idx,
1772                                              Node* expected_val,
1773                                              Node* new_val,
1774                                              const Type* value_type,
1775                                              BasicType bt,
1776                                              DecoratorSet decorators) {
1777   C2AccessValuePtr addr(adr, adr_type);
1778   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1779                         bt, obj, addr, alias_idx);
1780   if (access.is_raw()) {
1781     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1782   } else {
1783     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1784   }
1785 }
1786 
1787 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1788                                               Node* adr,
1789                                               const TypePtr* adr_type,
1790                                               int alias_idx,
1791                                               Node* expected_val,
1792                                               Node* new_val,
1793                                               const Type* value_type,
1794                                               BasicType bt,
1795                                               DecoratorSet decorators) {
1796   C2AccessValuePtr addr(adr, adr_type);
1797   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1798                         bt, obj, addr, alias_idx);
1799   if (access.is_raw()) {
1800     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1801   } else {
1802     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1803   }
1804 }
1805 
1806 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1807                                       Node* adr,
1808                                       const TypePtr* adr_type,
1809                                       int alias_idx,
1810                                       Node* new_val,
1811                                       const Type* value_type,
1812                                       BasicType bt,
1813                                       DecoratorSet decorators) {
1814   C2AccessValuePtr addr(adr, adr_type);
1815   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1816                         bt, obj, addr, alias_idx);
1817   if (access.is_raw()) {
1818     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1819   } else {
1820     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1821   }
1822 }
1823 
1824 Node* GraphKit::access_atomic_add_at(Node* obj,
1825                                      Node* adr,
1826                                      const TypePtr* adr_type,
1827                                      int alias_idx,
1828                                      Node* new_val,
1829                                      const Type* value_type,
1830                                      BasicType bt,
1831                                      DecoratorSet decorators) {
1832   C2AccessValuePtr addr(adr, adr_type);
1833   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1834   if (access.is_raw()) {
1835     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1836   } else {
1837     return _barrier_set->atomic_add_at(access, new_val, value_type);
1838   }
1839 }
1840 
1841 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1842   return _barrier_set->clone(this, src, dst, size, is_array);
1843 }
1844 
1845 //-------------------------array_element_address-------------------------
1846 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1847                                       const TypeInt* sizetype, Node* ctrl) {
1848   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1849   uint shift;
1850   uint header;
1851   if (arytype->is_flat() && arytype->klass_is_exact()) {
1852     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1853     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1854     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1855     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1856     // though we don't need the address node in this case and throw it away again.
1857     shift = arytype->flat_log_elem_size();
1858     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
1859   } else {
1860     shift = exact_log2(type2aelembytes(elembt));
1861     header = arrayOopDesc::base_offset_in_bytes(elembt);
1862   }
1863 
1864   // short-circuit a common case (saves lots of confusing waste motion)
1865   jint idx_con = find_int_con(idx, -1);
1866   if (idx_con >= 0) {
1867     intptr_t offset = header + ((intptr_t)idx_con << shift);
1868     return basic_plus_adr(ary, offset);
1869   }
1870 
1871   // must be correct type for alignment purposes
1872   Node* base  = basic_plus_adr(ary, header);
1873   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1874   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1875   return basic_plus_adr(ary, base, scale);
1876 }
1877 
1878 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) {
1879   assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8());
1880   if (!vk->has_nullable_atomic_layout()) {
1881     // Element does not have a nullable flat layout, cannot be nullable
1882     is_null_free = true;
1883   }
1884   if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) {
1885     // Element does not have a null-free flat layout, cannot be null-free
1886     is_not_null_free = true;
1887   }
1888   if (is_null_free) {
1889     // TODO 8350865 Impossible type
1890     is_not_null_free = false;
1891   }
1892 
1893   bool is_exact = is_null_free || is_not_null_free;
1894   ciArrayKlass* array_klass = ciArrayKlass::make(vk, is_null_free, is_atomic, true);
1895   assert(array_klass->is_elem_null_free() == is_null_free, "inconsistency");
1896   assert(array_klass->is_elem_atomic() == is_atomic, "inconsistency");
1897   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1898   arytype = arytype->cast_to_exactness(is_exact);
1899   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1900   assert(arytype->is_null_free() == is_null_free, "inconsistency");
1901   assert(arytype->is_not_null_free() == is_not_null_free, "inconsistency");
1902   assert(arytype->is_atomic() == is_atomic, "inconsistency");
1903   return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency));
1904 }
1905 
1906 //-------------------------load_array_element-------------------------
1907 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1908   const Type* elemtype = arytype->elem();
1909   BasicType elembt = elemtype->array_element_basic_type();
1910   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1911   if (elembt == T_NARROWOOP) {
1912     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1913   }
1914   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1915                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1916   return ld;
1917 }
1918 
1919 //-------------------------set_arguments_for_java_call-------------------------
1920 // Arguments (pre-popped from the stack) are taken from the JVMS.
1921 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1922   PreserveReexecuteState preexecs(this);
1923   if (EnableValhalla) {
1924     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1925     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1926     jvms()->set_should_reexecute(true);
1927     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1928     inc_sp(arg_size);
1929   }
1930   // Add the call arguments
1931   const TypeTuple* domain = call->tf()->domain_sig();
1932   uint nargs = domain->cnt();
1933   int arg_num = 0;
1934   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1935     Node* arg = argument(i-TypeFunc::Parms);
1936     const Type* t = domain->field_at(i);
1937     // TODO 8284443 A static call to a mismatched method should still be scalarized
1938     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1939       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1940       if (!arg->is_InlineType()) {
1941         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1942         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1943       }
1944       InlineTypeNode* vt = arg->as_InlineType();
1945       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1946       // If an inline type argument is passed as fields, attach the Method* to the call site
1947       // to be able to access the extended signature later via attached_method_before_pc().
1948       // For example, see CompiledMethod::preserve_callee_argument_oops().
1949       call->set_override_symbolic_info(true);
1950       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1951       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1952       C->dependencies()->assert_evol_method(call->method());
1953       arg_num++;
1954       continue;
1955     } else if (arg->is_InlineType()) {
1956       // Pass inline type argument via oop to callee
1957       arg = arg->as_InlineType()->buffer(this, true);
1958     }
1959     if (t != Type::HALF) {
1960       arg_num++;
1961     }
1962     call->init_req(idx++, arg);
1963   }
1964 }
1965 
1966 //---------------------------set_edges_for_java_call---------------------------
1967 // Connect a newly created call into the current JVMS.
1968 // A return value node (if any) is returned from set_edges_for_java_call.
1969 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1970 
1971   // Add the predefined inputs:
1972   call->init_req( TypeFunc::Control, control() );
1973   call->init_req( TypeFunc::I_O    , i_o() );
1974   call->init_req( TypeFunc::Memory , reset_memory() );
1975   call->init_req( TypeFunc::FramePtr, frameptr() );
1976   call->init_req( TypeFunc::ReturnAdr, top() );
1977 
1978   add_safepoint_edges(call, must_throw);
1979 
1980   Node* xcall = _gvn.transform(call);
1981 
1982   if (xcall == top()) {
1983     set_control(top());
1984     return;
1985   }
1986   assert(xcall == call, "call identity is stable");
1987 
1988   // Re-use the current map to produce the result.
1989 
1990   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1991   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1992   set_all_memory_call(xcall, separate_io_proj);
1993 
1994   //return xcall;   // no need, caller already has it
1995 }
1996 
1997 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1998   if (stopped())  return top();  // maybe the call folded up?
1999 
2000   // Note:  Since any out-of-line call can produce an exception,
2001   // we always insert an I_O projection from the call into the result.
2002 
2003   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
2004 
2005   if (separate_io_proj) {
2006     // The caller requested separate projections be used by the fall
2007     // through and exceptional paths, so replace the projections for
2008     // the fall through path.
2009     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2010     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2011   }
2012 
2013   // Capture the return value, if any.
2014   Node* ret;
2015   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2016     ret = top();
2017   } else if (call->tf()->returns_inline_type_as_fields()) {
2018     // Return of multiple values (inline type fields): we create a
2019     // InlineType node, each field is a projection from the call.
2020     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2021     uint base_input = TypeFunc::Parms;
2022     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2023   } else {
2024     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2025     ciType* t = call->method()->return_type();
2026     if (!t->is_loaded() && InlineTypeReturnedAsFields) {
2027       // The return type is unloaded but the callee might later be C2 compiled and then return
2028       // in scalarized form when the return type is loaded. Handle this similar to what we do in
2029       // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer.
2030       // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop.
2031       IdealKit ideal(this);
2032       IdealVariable res(ideal);
2033       ideal.declarations_done();
2034       ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); {
2035         // Return value is null
2036         ideal.set(res, ret);
2037       } ideal.else_(); {
2038         // Return value is non-null
2039         sync_kit(ideal);
2040 
2041         // Change return type of call to scalarized return
2042         const TypeFunc* tf = call->_tf;
2043         const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2044         const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2045         call->_tf = new_tf;
2046         _gvn.set_type(call, call->Value(&_gvn));
2047         _gvn.set_type(ret, ret->Value(&_gvn));
2048 
2049         Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
2050                                                     OptoRuntime::store_inline_type_fields_Type(),
2051                                                     StubRoutines::store_inline_type_fields_to_buf(),
2052                                                     nullptr, TypePtr::BOTTOM, ret);
2053 
2054         // We don't know how many values are returned. This assumes the
2055         // worst case, that all available registers are used.
2056         for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2057           if (domain->field_at(i) == Type::HALF) {
2058             store_to_buf_call->init_req(i, top());
2059             continue;
2060           }
2061           Node* proj =_gvn.transform(new ProjNode(call, i));
2062           store_to_buf_call->init_req(i, proj);
2063         }
2064         make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false);
2065 
2066         Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms));
2067         const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL);
2068         buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type));
2069 
2070         ideal.set(res, buf);
2071         ideal.sync_kit(this);
2072       } ideal.end_if();
2073       sync_kit(ideal);
2074       ret = _gvn.transform(ideal.value(res));
2075     }
2076     if (t->is_klass()) {
2077       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2078       if (type->is_inlinetypeptr()) {
2079         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2080       }
2081     }
2082   }
2083 
2084   return ret;
2085 }
2086 
2087 //--------------------set_predefined_input_for_runtime_call--------------------
2088 // Reading and setting the memory state is way conservative here.
2089 // The real problem is that I am not doing real Type analysis on memory,
2090 // so I cannot distinguish card mark stores from other stores.  Across a GC
2091 // point the Store Barrier and the card mark memory has to agree.  I cannot
2092 // have a card mark store and its barrier split across the GC point from
2093 // either above or below.  Here I get that to happen by reading ALL of memory.
2094 // A better answer would be to separate out card marks from other memory.
2095 // For now, return the input memory state, so that it can be reused
2096 // after the call, if this call has restricted memory effects.
2097 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2098   // Set fixed predefined input arguments
2099   call->init_req(TypeFunc::Control, control());
2100   call->init_req(TypeFunc::I_O, top()); // does no i/o
2101   call->init_req(TypeFunc::ReturnAdr, top());
2102   if (call->is_CallLeafPure()) {
2103     call->init_req(TypeFunc::Memory, top());
2104     call->init_req(TypeFunc::FramePtr, top());
2105     return nullptr;
2106   } else {
2107     Node* memory = reset_memory();
2108     Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2109     call->init_req(TypeFunc::Memory, m); // may gc ptrs
2110     call->init_req(TypeFunc::FramePtr, frameptr());
2111     return memory;
2112   }
2113 }
2114 
2115 //-------------------set_predefined_output_for_runtime_call--------------------
2116 // Set control and memory (not i_o) from the call.
2117 // If keep_mem is not null, use it for the output state,
2118 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2119 // If hook_mem is null, this call produces no memory effects at all.
2120 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2121 // then only that memory slice is taken from the call.
2122 // In the last case, we must put an appropriate memory barrier before
2123 // the call, so as to create the correct anti-dependencies on loads
2124 // preceding the call.
2125 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2126                                                       Node* keep_mem,
2127                                                       const TypePtr* hook_mem) {
2128   // no i/o
2129   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2130   if (call->is_CallLeafPure()) {
2131     // Pure function have only control (for now) and data output, in particular
2132     // they don't touch the memory, so we don't want a memory proj that is set after.
2133     return;
2134   }
2135   if (keep_mem) {
2136     // First clone the existing memory state
2137     set_all_memory(keep_mem);
2138     if (hook_mem != nullptr) {
2139       // Make memory for the call
2140       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2141       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2142       // We also use hook_mem to extract specific effects from arraycopy stubs.
2143       set_memory(mem, hook_mem);
2144     }
2145     // ...else the call has NO memory effects.
2146 
2147     // Make sure the call advertises its memory effects precisely.
2148     // This lets us build accurate anti-dependences in gcm.cpp.
2149     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2150            "call node must be constructed correctly");
2151   } else {
2152     assert(hook_mem == nullptr, "");
2153     // This is not a "slow path" call; all memory comes from the call.
2154     set_all_memory_call(call);
2155   }
2156 }
2157 
2158 // Keep track of MergeMems feeding into other MergeMems
2159 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2160   if (!mem->is_MergeMem()) {
2161     return;
2162   }
2163   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2164     Node* use = i.get();
2165     if (use->is_MergeMem()) {
2166       wl.push(use);
2167     }
2168   }
2169 }
2170 
2171 // Replace the call with the current state of the kit.
2172 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2173   JVMState* ejvms = nullptr;
2174   if (has_exceptions()) {
2175     ejvms = transfer_exceptions_into_jvms();
2176   }
2177 
2178   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2179   ReplacedNodes replaced_nodes_exception;
2180   Node* ex_ctl = top();
2181 
2182   SafePointNode* final_state = stop();
2183 
2184   // Find all the needed outputs of this call
2185   CallProjections* callprojs = call->extract_projections(true, do_asserts);
2186 
2187   Unique_Node_List wl;
2188   Node* init_mem = call->in(TypeFunc::Memory);
2189   Node* final_mem = final_state->in(TypeFunc::Memory);
2190   Node* final_ctl = final_state->in(TypeFunc::Control);
2191   Node* final_io = final_state->in(TypeFunc::I_O);
2192 
2193   // Replace all the old call edges with the edges from the inlining result
2194   if (callprojs->fallthrough_catchproj != nullptr) {
2195     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2196   }
2197   if (callprojs->fallthrough_memproj != nullptr) {
2198     if (final_mem->is_MergeMem()) {
2199       // Parser's exits MergeMem was not transformed but may be optimized
2200       final_mem = _gvn.transform(final_mem);
2201     }
2202     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2203     add_mergemem_users_to_worklist(wl, final_mem);
2204   }
2205   if (callprojs->fallthrough_ioproj != nullptr) {
2206     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2207   }
2208 
2209   // Replace the result with the new result if it exists and is used
2210   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2211     // If the inlined code is dead, the result projections for an inline type returned as
2212     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2213     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2214            "unexpected number of results");
2215     C->gvn_replace_by(callprojs->resproj[0], result);
2216   }
2217 
2218   if (ejvms == nullptr) {
2219     // No exception edges to simply kill off those paths
2220     if (callprojs->catchall_catchproj != nullptr) {
2221       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2222     }
2223     if (callprojs->catchall_memproj != nullptr) {
2224       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2225     }
2226     if (callprojs->catchall_ioproj != nullptr) {
2227       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2228     }
2229     // Replace the old exception object with top
2230     if (callprojs->exobj != nullptr) {
2231       C->gvn_replace_by(callprojs->exobj, C->top());
2232     }
2233   } else {
2234     GraphKit ekit(ejvms);
2235 
2236     // Load my combined exception state into the kit, with all phis transformed:
2237     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2238     replaced_nodes_exception = ex_map->replaced_nodes();
2239 
2240     Node* ex_oop = ekit.use_exception_state(ex_map);
2241 
2242     if (callprojs->catchall_catchproj != nullptr) {
2243       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2244       ex_ctl = ekit.control();
2245     }
2246     if (callprojs->catchall_memproj != nullptr) {
2247       Node* ex_mem = ekit.reset_memory();
2248       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2249       add_mergemem_users_to_worklist(wl, ex_mem);
2250     }
2251     if (callprojs->catchall_ioproj != nullptr) {
2252       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2253     }
2254 
2255     // Replace the old exception object with the newly created one
2256     if (callprojs->exobj != nullptr) {
2257       C->gvn_replace_by(callprojs->exobj, ex_oop);
2258     }
2259   }
2260 
2261   // Disconnect the call from the graph
2262   call->disconnect_inputs(C);
2263   C->gvn_replace_by(call, C->top());
2264 
2265   // Clean up any MergeMems that feed other MergeMems since the
2266   // optimizer doesn't like that.
2267   while (wl.size() > 0) {
2268     _gvn.transform(wl.pop());
2269   }
2270 
2271   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2272     replaced_nodes.apply(C, final_ctl);
2273   }
2274   if (!ex_ctl->is_top() && do_replaced_nodes) {
2275     replaced_nodes_exception.apply(C, ex_ctl);
2276   }
2277 }
2278 
2279 
2280 //------------------------------increment_counter------------------------------
2281 // for statistics: increment a VM counter by 1
2282 
2283 void GraphKit::increment_counter(address counter_addr) {
2284   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2285   increment_counter(adr1);
2286 }
2287 
2288 void GraphKit::increment_counter(Node* counter_addr) {
2289   Node* ctrl = control();
2290   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2291   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2292   store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered);
2293 }
2294 
2295 
2296 //------------------------------uncommon_trap----------------------------------
2297 // Bail out to the interpreter in mid-method.  Implemented by calling the
2298 // uncommon_trap blob.  This helper function inserts a runtime call with the
2299 // right debug info.
2300 Node* GraphKit::uncommon_trap(int trap_request,
2301                              ciKlass* klass, const char* comment,
2302                              bool must_throw,
2303                              bool keep_exact_action) {
2304   if (failing_internal()) {
2305     stop();
2306   }
2307   if (stopped())  return nullptr; // trap reachable?
2308 
2309   // Note:  If ProfileTraps is true, and if a deopt. actually
2310   // occurs here, the runtime will make sure an MDO exists.  There is
2311   // no need to call method()->ensure_method_data() at this point.
2312 
2313   // Set the stack pointer to the right value for reexecution:
2314   set_sp(reexecute_sp());
2315 
2316 #ifdef ASSERT
2317   if (!must_throw) {
2318     // Make sure the stack has at least enough depth to execute
2319     // the current bytecode.
2320     int inputs, ignored_depth;
2321     if (compute_stack_effects(inputs, ignored_depth)) {
2322       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2323              Bytecodes::name(java_bc()), sp(), inputs);
2324     }
2325   }
2326 #endif
2327 
2328   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2329   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2330 
2331   switch (action) {
2332   case Deoptimization::Action_maybe_recompile:
2333   case Deoptimization::Action_reinterpret:
2334     // Temporary fix for 6529811 to allow virtual calls to be sure they
2335     // get the chance to go from mono->bi->mega
2336     if (!keep_exact_action &&
2337         Deoptimization::trap_request_index(trap_request) < 0 &&
2338         too_many_recompiles(reason)) {
2339       // This BCI is causing too many recompilations.
2340       if (C->log() != nullptr) {
2341         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2342                 Deoptimization::trap_reason_name(reason),
2343                 Deoptimization::trap_action_name(action));
2344       }
2345       action = Deoptimization::Action_none;
2346       trap_request = Deoptimization::make_trap_request(reason, action);
2347     } else {
2348       C->set_trap_can_recompile(true);
2349     }
2350     break;
2351   case Deoptimization::Action_make_not_entrant:
2352     C->set_trap_can_recompile(true);
2353     break;
2354   case Deoptimization::Action_none:
2355   case Deoptimization::Action_make_not_compilable:
2356     break;
2357   default:
2358 #ifdef ASSERT
2359     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2360 #endif
2361     break;
2362   }
2363 
2364   if (TraceOptoParse) {
2365     char buf[100];
2366     tty->print_cr("Uncommon trap %s at bci:%d",
2367                   Deoptimization::format_trap_request(buf, sizeof(buf),
2368                                                       trap_request), bci());
2369   }
2370 
2371   CompileLog* log = C->log();
2372   if (log != nullptr) {
2373     int kid = (klass == nullptr)? -1: log->identify(klass);
2374     log->begin_elem("uncommon_trap bci='%d'", bci());
2375     char buf[100];
2376     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2377                                                           trap_request));
2378     if (kid >= 0)         log->print(" klass='%d'", kid);
2379     if (comment != nullptr)  log->print(" comment='%s'", comment);
2380     log->end_elem();
2381   }
2382 
2383   // Make sure any guarding test views this path as very unlikely
2384   Node *i0 = control()->in(0);
2385   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2386     IfNode *iff = i0->as_If();
2387     float f = iff->_prob;   // Get prob
2388     if (control()->Opcode() == Op_IfTrue) {
2389       if (f > PROB_UNLIKELY_MAG(4))
2390         iff->_prob = PROB_MIN;
2391     } else {
2392       if (f < PROB_LIKELY_MAG(4))
2393         iff->_prob = PROB_MAX;
2394     }
2395   }
2396 
2397   // Clear out dead values from the debug info.
2398   kill_dead_locals();
2399 
2400   // Now insert the uncommon trap subroutine call
2401   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2402   const TypePtr* no_memory_effects = nullptr;
2403   // Pass the index of the class to be loaded
2404   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2405                                  (must_throw ? RC_MUST_THROW : 0),
2406                                  OptoRuntime::uncommon_trap_Type(),
2407                                  call_addr, "uncommon_trap", no_memory_effects,
2408                                  intcon(trap_request));
2409   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2410          "must extract request correctly from the graph");
2411   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2412 
2413   call->set_req(TypeFunc::ReturnAdr, returnadr());
2414   // The debug info is the only real input to this call.
2415 
2416   // Halt-and-catch fire here.  The above call should never return!
2417   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2418                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2419   _gvn.set_type_bottom(halt);
2420   root()->add_req(halt);
2421 
2422   stop_and_kill_map();
2423   return call;
2424 }
2425 
2426 
2427 //--------------------------just_allocated_object------------------------------
2428 // Report the object that was just allocated.
2429 // It must be the case that there are no intervening safepoints.
2430 // We use this to determine if an object is so "fresh" that
2431 // it does not require card marks.
2432 Node* GraphKit::just_allocated_object(Node* current_control) {
2433   Node* ctrl = current_control;
2434   // Object::<init> is invoked after allocation, most of invoke nodes
2435   // will be reduced, but a region node is kept in parse time, we check
2436   // the pattern and skip the region node if it degraded to a copy.
2437   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2438       ctrl->as_Region()->is_copy()) {
2439     ctrl = ctrl->as_Region()->is_copy();
2440   }
2441   if (C->recent_alloc_ctl() == ctrl) {
2442    return C->recent_alloc_obj();
2443   }
2444   return nullptr;
2445 }
2446 
2447 
2448 /**
2449  * Record profiling data exact_kls for Node n with the type system so
2450  * that it can propagate it (speculation)
2451  *
2452  * @param n          node that the type applies to
2453  * @param exact_kls  type from profiling
2454  * @param maybe_null did profiling see null?
2455  *
2456  * @return           node with improved type
2457  */
2458 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2459   const Type* current_type = _gvn.type(n);
2460   assert(UseTypeSpeculation, "type speculation must be on");
2461 
2462   const TypePtr* speculative = current_type->speculative();
2463 
2464   // Should the klass from the profile be recorded in the speculative type?
2465   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2466     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2467     const TypeOopPtr* xtype = tklass->as_instance_type();
2468     assert(xtype->klass_is_exact(), "Should be exact");
2469     // Any reason to believe n is not null (from this profiling or a previous one)?
2470     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2471     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2472     // record the new speculative type's depth
2473     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2474     speculative = speculative->with_inline_depth(jvms()->depth());
2475   } else if (current_type->would_improve_ptr(ptr_kind)) {
2476     // Profiling report that null was never seen so we can change the
2477     // speculative type to non null ptr.
2478     if (ptr_kind == ProfileAlwaysNull) {
2479       speculative = TypePtr::NULL_PTR;
2480     } else {
2481       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2482       const TypePtr* ptr = TypePtr::NOTNULL;
2483       if (speculative != nullptr) {
2484         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2485       } else {
2486         speculative = ptr;
2487       }
2488     }
2489   }
2490 
2491   if (speculative != current_type->speculative()) {
2492     // Build a type with a speculative type (what we think we know
2493     // about the type but will need a guard when we use it)
2494     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2495     // We're changing the type, we need a new CheckCast node to carry
2496     // the new type. The new type depends on the control: what
2497     // profiling tells us is only valid from here as far as we can
2498     // tell.
2499     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2500     cast = _gvn.transform(cast);
2501     replace_in_map(n, cast);
2502     n = cast;
2503   }
2504 
2505   return n;
2506 }
2507 
2508 /**
2509  * Record profiling data from receiver profiling at an invoke with the
2510  * type system so that it can propagate it (speculation)
2511  *
2512  * @param n  receiver node
2513  *
2514  * @return   node with improved type
2515  */
2516 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2517   if (!UseTypeSpeculation) {
2518     return n;
2519   }
2520   ciKlass* exact_kls = profile_has_unique_klass();
2521   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2522   if ((java_bc() == Bytecodes::_checkcast ||
2523        java_bc() == Bytecodes::_instanceof ||
2524        java_bc() == Bytecodes::_aastore) &&
2525       method()->method_data()->is_mature()) {
2526     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2527     if (data != nullptr) {
2528       if (java_bc() == Bytecodes::_aastore) {
2529         ciKlass* array_type = nullptr;
2530         ciKlass* element_type = nullptr;
2531         ProfilePtrKind element_ptr = ProfileMaybeNull;
2532         bool flat_array = true;
2533         bool null_free_array = true;
2534         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2535         exact_kls = element_type;
2536         ptr_kind = element_ptr;
2537       } else {
2538         if (!data->as_BitData()->null_seen()) {
2539           ptr_kind = ProfileNeverNull;
2540         } else {
2541           if (TypeProfileCasts) {
2542             assert(data->is_ReceiverTypeData(), "bad profile data type");
2543             ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2544             uint i = 0;
2545             for (; i < call->row_limit(); i++) {
2546               ciKlass* receiver = call->receiver(i);
2547               if (receiver != nullptr) {
2548                 break;
2549               }
2550             }
2551             ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2552           }
2553         }
2554       }
2555     }
2556   }
2557   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2558 }
2559 
2560 /**
2561  * Record profiling data from argument profiling at an invoke with the
2562  * type system so that it can propagate it (speculation)
2563  *
2564  * @param dest_method  target method for the call
2565  * @param bc           what invoke bytecode is this?
2566  */
2567 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2568   if (!UseTypeSpeculation) {
2569     return;
2570   }
2571   const TypeFunc* tf    = TypeFunc::make(dest_method);
2572   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2573   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2574   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2575     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2576     if (is_reference_type(targ->basic_type())) {
2577       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2578       ciKlass* better_type = nullptr;
2579       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2580         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2581       }
2582       i++;
2583     }
2584   }
2585 }
2586 
2587 /**
2588  * Record profiling data from parameter profiling at an invoke with
2589  * the type system so that it can propagate it (speculation)
2590  */
2591 void GraphKit::record_profiled_parameters_for_speculation() {
2592   if (!UseTypeSpeculation) {
2593     return;
2594   }
2595   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2596     if (_gvn.type(local(i))->isa_oopptr()) {
2597       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2598       ciKlass* better_type = nullptr;
2599       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2600         record_profile_for_speculation(local(i), better_type, ptr_kind);
2601       }
2602       j++;
2603     }
2604   }
2605 }
2606 
2607 /**
2608  * Record profiling data from return value profiling at an invoke with
2609  * the type system so that it can propagate it (speculation)
2610  */
2611 void GraphKit::record_profiled_return_for_speculation() {
2612   if (!UseTypeSpeculation) {
2613     return;
2614   }
2615   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2616   ciKlass* better_type = nullptr;
2617   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2618     // If profiling reports a single type for the return value,
2619     // feed it to the type system so it can propagate it as a
2620     // speculative type
2621     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2622   }
2623 }
2624 
2625 
2626 //=============================================================================
2627 // Generate a fast path/slow path idiom.  Graph looks like:
2628 // [foo] indicates that 'foo' is a parameter
2629 //
2630 //              [in]     null
2631 //                 \    /
2632 //                  CmpP
2633 //                  Bool ne
2634 //                   If
2635 //                  /  \
2636 //              True    False-<2>
2637 //              / |
2638 //             /  cast_not_null
2639 //           Load  |    |   ^
2640 //        [fast_test]   |   |
2641 // gvn to   opt_test    |   |
2642 //          /    \      |  <1>
2643 //      True     False  |
2644 //        |         \\  |
2645 //   [slow_call]     \[fast_result]
2646 //    Ctl   Val       \      \
2647 //     |               \      \
2648 //    Catch       <1>   \      \
2649 //   /    \        ^     \      \
2650 //  Ex    No_Ex    |      \      \
2651 //  |       \   \  |       \ <2>  \
2652 //  ...      \  [slow_res] |  |    \   [null_result]
2653 //            \         \--+--+---  |  |
2654 //             \           | /    \ | /
2655 //              --------Region     Phi
2656 //
2657 //=============================================================================
2658 // Code is structured as a series of driver functions all called 'do_XXX' that
2659 // call a set of helper functions.  Helper functions first, then drivers.
2660 
2661 //------------------------------null_check_oop---------------------------------
2662 // Null check oop.  Set null-path control into Region in slot 3.
2663 // Make a cast-not-nullness use the other not-null control.  Return cast.
2664 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2665                                bool never_see_null,
2666                                bool safe_for_replace,
2667                                bool speculative) {
2668   // Initial null check taken path
2669   (*null_control) = top();
2670   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2671 
2672   // Generate uncommon_trap:
2673   if (never_see_null && (*null_control) != top()) {
2674     // If we see an unexpected null at a check-cast we record it and force a
2675     // recompile; the offending check-cast will be compiled to handle nulls.
2676     // If we see more than one offending BCI, then all checkcasts in the
2677     // method will be compiled to handle nulls.
2678     PreserveJVMState pjvms(this);
2679     set_control(*null_control);
2680     replace_in_map(value, null());
2681     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2682     uncommon_trap(reason,
2683                   Deoptimization::Action_make_not_entrant);
2684     (*null_control) = top();    // null path is dead
2685   }
2686   if ((*null_control) == top() && safe_for_replace) {
2687     replace_in_map(value, cast);
2688   }
2689 
2690   // Cast away null-ness on the result
2691   return cast;
2692 }
2693 
2694 //------------------------------opt_iff----------------------------------------
2695 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2696 // Return slow-path control.
2697 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2698   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2699 
2700   // Fast path taken; set region slot 2
2701   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2702   region->init_req(2,fast_taken); // Capture fast-control
2703 
2704   // Fast path not-taken, i.e. slow path
2705   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2706   return slow_taken;
2707 }
2708 
2709 //-----------------------------make_runtime_call-------------------------------
2710 Node* GraphKit::make_runtime_call(int flags,
2711                                   const TypeFunc* call_type, address call_addr,
2712                                   const char* call_name,
2713                                   const TypePtr* adr_type,
2714                                   // The following parms are all optional.
2715                                   // The first null ends the list.
2716                                   Node* parm0, Node* parm1,
2717                                   Node* parm2, Node* parm3,
2718                                   Node* parm4, Node* parm5,
2719                                   Node* parm6, Node* parm7) {
2720   assert(call_addr != nullptr, "must not call null targets");
2721 
2722   // Slow-path call
2723   bool is_leaf = !(flags & RC_NO_LEAF);
2724   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2725   if (call_name == nullptr) {
2726     assert(!is_leaf, "must supply name for leaf");
2727     call_name = OptoRuntime::stub_name(call_addr);
2728   }
2729   CallNode* call;
2730   if (!is_leaf) {
2731     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2732   } else if (flags & RC_NO_FP) {
2733     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2734   } else  if (flags & RC_VECTOR){
2735     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2736     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2737   } else if (flags & RC_PURE) {
2738     call = new CallLeafPureNode(call_type, call_addr, call_name, adr_type);
2739   } else {
2740     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2741   }
2742 
2743   // The following is similar to set_edges_for_java_call,
2744   // except that the memory effects of the call are restricted to AliasIdxRaw.
2745 
2746   // Slow path call has no side-effects, uses few values
2747   bool wide_in  = !(flags & RC_NARROW_MEM);
2748   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2749 
2750   Node* prev_mem = nullptr;
2751   if (wide_in) {
2752     prev_mem = set_predefined_input_for_runtime_call(call);
2753   } else {
2754     assert(!wide_out, "narrow in => narrow out");
2755     Node* narrow_mem = memory(adr_type);
2756     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2757   }
2758 
2759   // Hook each parm in order.  Stop looking at the first null.
2760   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2761   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2762   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2763   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2764   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2765   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2766   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2767   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2768   /* close each nested if ===> */  } } } } } } } }
2769   assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms");
2770 
2771   if (!is_leaf) {
2772     // Non-leaves can block and take safepoints:
2773     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2774   }
2775   // Non-leaves can throw exceptions:
2776   if (has_io) {
2777     call->set_req(TypeFunc::I_O, i_o());
2778   }
2779 
2780   if (flags & RC_UNCOMMON) {
2781     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2782     // (An "if" probability corresponds roughly to an unconditional count.
2783     // Sort of.)
2784     call->set_cnt(PROB_UNLIKELY_MAG(4));
2785   }
2786 
2787   Node* c = _gvn.transform(call);
2788   assert(c == call, "cannot disappear");
2789 
2790   if (wide_out) {
2791     // Slow path call has full side-effects.
2792     set_predefined_output_for_runtime_call(call);
2793   } else {
2794     // Slow path call has few side-effects, and/or sets few values.
2795     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2796   }
2797 
2798   if (has_io) {
2799     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2800   }
2801   return call;
2802 
2803 }
2804 
2805 // i2b
2806 Node* GraphKit::sign_extend_byte(Node* in) {
2807   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2808   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2809 }
2810 
2811 // i2s
2812 Node* GraphKit::sign_extend_short(Node* in) {
2813   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2814   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2815 }
2816 
2817 
2818 //------------------------------merge_memory-----------------------------------
2819 // Merge memory from one path into the current memory state.
2820 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2821   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2822     Node* old_slice = mms.force_memory();
2823     Node* new_slice = mms.memory2();
2824     if (old_slice != new_slice) {
2825       PhiNode* phi;
2826       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2827         if (mms.is_empty()) {
2828           // clone base memory Phi's inputs for this memory slice
2829           assert(old_slice == mms.base_memory(), "sanity");
2830           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2831           _gvn.set_type(phi, Type::MEMORY);
2832           for (uint i = 1; i < phi->req(); i++) {
2833             phi->init_req(i, old_slice->in(i));
2834           }
2835         } else {
2836           phi = old_slice->as_Phi(); // Phi was generated already
2837         }
2838       } else {
2839         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2840         _gvn.set_type(phi, Type::MEMORY);
2841       }
2842       phi->set_req(new_path, new_slice);
2843       mms.set_memory(phi);
2844     }
2845   }
2846 }
2847 
2848 //------------------------------make_slow_call_ex------------------------------
2849 // Make the exception handler hookups for the slow call
2850 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2851   if (stopped())  return;
2852 
2853   // Make a catch node with just two handlers:  fall-through and catch-all
2854   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2855   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2856   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2857   _gvn.set_type_bottom(norm);
2858   C->record_for_igvn(norm);
2859   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2860 
2861   { PreserveJVMState pjvms(this);
2862     set_control(excp);
2863     set_i_o(i_o);
2864 
2865     if (excp != top()) {
2866       if (deoptimize) {
2867         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2868         uncommon_trap(Deoptimization::Reason_unhandled,
2869                       Deoptimization::Action_none);
2870       } else {
2871         // Create an exception state also.
2872         // Use an exact type if the caller has a specific exception.
2873         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2874         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2875         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2876       }
2877     }
2878   }
2879 
2880   // Get the no-exception control from the CatchNode.
2881   set_control(norm);
2882 }
2883 
2884 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2885   Node* cmp = nullptr;
2886   switch(bt) {
2887   case T_INT: cmp = new CmpINode(in1, in2); break;
2888   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2889   default: fatal("unexpected comparison type %s", type2name(bt));
2890   }
2891   cmp = gvn.transform(cmp);
2892   Node* bol = gvn.transform(new BoolNode(cmp, test));
2893   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2894   gvn.transform(iff);
2895   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2896   return iff;
2897 }
2898 
2899 //-------------------------------gen_subtype_check-----------------------------
2900 // Generate a subtyping check.  Takes as input the subtype and supertype.
2901 // Returns 2 values: sets the default control() to the true path and returns
2902 // the false path.  Only reads invariant memory; sets no (visible) memory.
2903 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2904 // but that's not exposed to the optimizer.  This call also doesn't take in an
2905 // Object; if you wish to check an Object you need to load the Object's class
2906 // prior to coming here.
2907 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2908                                ciMethod* method, int bci) {
2909   Compile* C = gvn.C;
2910   if ((*ctrl)->is_top()) {
2911     return C->top();
2912   }
2913 
2914   const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr();
2915   const TypeAryKlassPtr* ary_klass_t = klass_ptr_type->isa_aryklassptr();
2916   Node* vm_superklass = superklass;
2917   // TODO 8366668 Compute the VM type here for when we do a direct pointer comparison
2918   if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) {
2919     ary_klass_t = ary_klass_t->get_vm_type();
2920     vm_superklass = gvn.makecon(ary_klass_t);
2921   }
2922 
2923   // Fast check for identical types, perhaps identical constants.
2924   // The types can even be identical non-constants, in cases
2925   // involving Array.newInstance, Object.clone, etc.
2926   if (subklass == superklass)
2927     return C->top();             // false path is dead; no test needed.
2928 
2929   if (gvn.type(superklass)->singleton()) {
2930     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2931     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2932 
2933     // In the common case of an exact superklass, try to fold up the
2934     // test before generating code.  You may ask, why not just generate
2935     // the code and then let it fold up?  The answer is that the generated
2936     // code will necessarily include null checks, which do not always
2937     // completely fold away.  If they are also needless, then they turn
2938     // into a performance loss.  Example:
2939     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2940     // Here, the type of 'fa' is often exact, so the store check
2941     // of fa[1]=x will fold up, without testing the nullness of x.
2942     //
2943     // At macro expansion, we would have already folded the SubTypeCheckNode
2944     // being expanded here because we always perform the static sub type
2945     // check in SubTypeCheckNode::sub() regardless of whether
2946     // StressReflectiveCode is set or not. We can therefore skip this
2947     // static check when StressReflectiveCode is on.
2948     switch (C->static_subtype_check(superk, subk)) {
2949     case Compile::SSC_always_false:
2950       {
2951         Node* always_fail = *ctrl;
2952         *ctrl = gvn.C->top();
2953         return always_fail;
2954       }
2955     case Compile::SSC_always_true:
2956       return C->top();
2957     case Compile::SSC_easy_test:
2958       {
2959         // Just do a direct pointer compare and be done.
2960         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2961         *ctrl = gvn.transform(new IfTrueNode(iff));
2962         return gvn.transform(new IfFalseNode(iff));
2963       }
2964     case Compile::SSC_full_test:
2965       break;
2966     default:
2967       ShouldNotReachHere();
2968     }
2969   }
2970 
2971   // %%% Possible further optimization:  Even if the superklass is not exact,
2972   // if the subklass is the unique subtype of the superklass, the check
2973   // will always succeed.  We could leave a dependency behind to ensure this.
2974 
2975   // First load the super-klass's check-offset
2976   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2977   Node* m = C->immutable_memory();
2978   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2979   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2980   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2981   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2982   // TODO 8366668 Re-enable. This breaks test/hotspot/jtreg/compiler/c2/irTests/ProfileAtTypeCheck.java
2983   bool might_be_cache = true;//(chk_off_con == cacheoff_con);
2984 
2985   // Load from the sub-klass's super-class display list, or a 1-word cache of
2986   // the secondary superclass list, or a failing value with a sentinel offset
2987   // if the super-klass is an interface or exceptionally deep in the Java
2988   // hierarchy and we have to scan the secondary superclass list the hard way.
2989   // Worst-case type is a little odd: null is allowed as a result (usually
2990   // klass loads can never produce a null).
2991   Node *chk_off_X = chk_off;
2992 #ifdef _LP64
2993   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2994 #endif
2995   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2996   // For some types like interfaces the following loadKlass is from a 1-word
2997   // cache which is mutable so can't use immutable memory.  Other
2998   // types load from the super-class display table which is immutable.
2999   Node *kmem = C->immutable_memory();
3000   // secondary_super_cache is not immutable but can be treated as such because:
3001   // - no ideal node writes to it in a way that could cause an
3002   //   incorrect/missed optimization of the following Load.
3003   // - it's a cache so, worse case, not reading the latest value
3004   //   wouldn't cause incorrect execution
3005   if (might_be_cache && mem != nullptr) {
3006     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
3007   }
3008   Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
3009 
3010   // Compile speed common case: ARE a subtype and we canNOT fail
3011   if (superklass == nkls) {
3012     return C->top();             // false path is dead; no test needed.
3013   }
3014 
3015   // Gather the various success & failures here
3016   RegionNode* r_not_subtype = new RegionNode(3);
3017   gvn.record_for_igvn(r_not_subtype);
3018   RegionNode* r_ok_subtype = new RegionNode(4);
3019   gvn.record_for_igvn(r_ok_subtype);
3020 
3021   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
3022   // SubTypeCheck node
3023   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
3024     ciCallProfile profile = method->call_profile_at_bci(bci);
3025     float total_prob = 0;
3026     for (int i = 0; profile.has_receiver(i); ++i) {
3027       float prob = profile.receiver_prob(i);
3028       total_prob += prob;
3029     }
3030     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
3031       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
3032       for (int i = 0; profile.has_receiver(i); ++i) {
3033         ciKlass* klass = profile.receiver(i);
3034         // TODO 8366668 Do we need adjustments here??
3035         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
3036         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
3037         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
3038           continue;
3039         }
3040         float prob = profile.receiver_prob(i);
3041         ConNode* klass_node = gvn.makecon(klass_t);
3042         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3043         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3044 
3045         if (result == Compile::SSC_always_true) {
3046           r_ok_subtype->add_req(iftrue);
3047         } else {
3048           assert(result == Compile::SSC_always_false, "");
3049           r_not_subtype->add_req(iftrue);
3050         }
3051         *ctrl = gvn.transform(new IfFalseNode(iff));
3052       }
3053     }
3054   }
3055 
3056   // See if we get an immediate positive hit.  Happens roughly 83% of the
3057   // time.  Test to see if the value loaded just previously from the subklass
3058   // is exactly the superklass.
3059   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
3060   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
3061   *ctrl = gvn.transform(new IfFalseNode(iff1));
3062 
3063   // Compile speed common case: Check for being deterministic right now.  If
3064   // chk_off is a constant and not equal to cacheoff then we are NOT a
3065   // subklass.  In this case we need exactly the 1 test above and we can
3066   // return those results immediately.
3067   if (!might_be_cache) {
3068     Node* not_subtype_ctrl = *ctrl;
3069     *ctrl = iftrue1; // We need exactly the 1 test above
3070     PhaseIterGVN* igvn = gvn.is_IterGVN();
3071     if (igvn != nullptr) {
3072       igvn->remove_globally_dead_node(r_ok_subtype);
3073       igvn->remove_globally_dead_node(r_not_subtype);
3074     }
3075     return not_subtype_ctrl;
3076   }
3077 
3078   r_ok_subtype->init_req(1, iftrue1);
3079 
3080   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3081   // is roughly 63% of the remaining cases).  Test to see if the loaded
3082   // check-offset points into the subklass display list or the 1-element
3083   // cache.  If it points to the display (and NOT the cache) and the display
3084   // missed then it's not a subtype.
3085   // TODO 8366668 Re-enable
3086 /*
3087   Node *cacheoff = gvn.intcon(cacheoff_con);
3088   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3089   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3090   *ctrl = gvn.transform(new IfFalseNode(iff2));
3091 */
3092   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3093   // No performance impact (too rare) but allows sharing of secondary arrays
3094   // which has some footprint reduction.
3095   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3096   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3097   *ctrl = gvn.transform(new IfFalseNode(iff3));
3098 
3099   // -- Roads not taken here: --
3100   // We could also have chosen to perform the self-check at the beginning
3101   // of this code sequence, as the assembler does.  This would not pay off
3102   // the same way, since the optimizer, unlike the assembler, can perform
3103   // static type analysis to fold away many successful self-checks.
3104   // Non-foldable self checks work better here in second position, because
3105   // the initial primary superclass check subsumes a self-check for most
3106   // types.  An exception would be a secondary type like array-of-interface,
3107   // which does not appear in its own primary supertype display.
3108   // Finally, we could have chosen to move the self-check into the
3109   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3110   // dependent manner.  But it is worthwhile to have the check here,
3111   // where it can be perhaps be optimized.  The cost in code space is
3112   // small (register compare, branch).
3113 
3114   // Now do a linear scan of the secondary super-klass array.  Again, no real
3115   // performance impact (too rare) but it's gotta be done.
3116   // Since the code is rarely used, there is no penalty for moving it
3117   // out of line, and it can only improve I-cache density.
3118   // The decision to inline or out-of-line this final check is platform
3119   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3120   Node* psc = gvn.transform(
3121     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3122 
3123   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3124   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3125   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3126 
3127   // Return false path; set default control to true path.
3128   *ctrl = gvn.transform(r_ok_subtype);
3129   return gvn.transform(r_not_subtype);
3130 }
3131 
3132 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3133   const Type* sub_t = _gvn.type(obj_or_subklass);
3134   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3135     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3136     obj_or_subklass = makecon(sub_t);
3137   }
3138   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3139   if (expand_subtype_check) {
3140     MergeMemNode* mem = merged_memory();
3141     Node* ctrl = control();
3142     Node* subklass = obj_or_subklass;
3143     if (!sub_t->isa_klassptr()) {
3144       subklass = load_object_klass(obj_or_subklass);
3145     }
3146 
3147     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3148     set_control(ctrl);
3149     return n;
3150   }
3151 
3152   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3153   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3154   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3155   set_control(_gvn.transform(new IfTrueNode(iff)));
3156   return _gvn.transform(new IfFalseNode(iff));
3157 }
3158 
3159 // Profile-driven exact type check:
3160 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3161                                     float prob, Node* *casted_receiver) {
3162   assert(!klass->is_interface(), "no exact type check on interfaces");
3163   Node* fail = top();
3164   const Type* rec_t = _gvn.type(receiver);
3165   if (rec_t->is_inlinetypeptr()) {
3166     if (klass->equals(rec_t->inline_klass())) {
3167       (*casted_receiver) = receiver; // Always passes
3168     } else {
3169       (*casted_receiver) = top();    // Always fails
3170       fail = control();
3171       set_control(top());
3172     }
3173     return fail;
3174   }
3175   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3176   const TypeAryKlassPtr* ary_klass_t = tklass->isa_aryklassptr();
3177     // TODO 8366668 Compute the VM type
3178   if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) {
3179     tklass = ary_klass_t->get_vm_type();
3180   }
3181   Node* recv_klass = load_object_klass(receiver);
3182   fail = type_check(recv_klass, tklass, prob);
3183 
3184   if (!stopped()) {
3185     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3186     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3187     assert(recv_xtype->klass_is_exact(), "");
3188 
3189     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3190       // Subsume downstream occurrences of receiver with a cast to
3191       // recv_xtype, since now we know what the type will be.
3192       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3193       Node* res = _gvn.transform(cast);
3194       if (recv_xtype->is_inlinetypeptr()) {
3195         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3196         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3197       }
3198       (*casted_receiver) = res;
3199       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3200       // (User must make the replace_in_map call.)
3201     }
3202   }
3203 
3204   return fail;
3205 }
3206 
3207 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3208                            float prob) {
3209   Node* want_klass = makecon(tklass);
3210   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3211   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3212   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3213   set_control(_gvn.transform(new IfTrueNode (iff)));
3214   Node* fail = _gvn.transform(new IfFalseNode(iff));
3215   return fail;
3216 }
3217 
3218 //------------------------------subtype_check_receiver-------------------------
3219 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3220                                        Node** casted_receiver) {
3221   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3222   Node* want_klass = makecon(tklass);
3223 
3224   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3225 
3226   // Ignore interface type information until interface types are properly tracked.
3227   if (!stopped() && !klass->is_interface()) {
3228     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3229     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3230     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3231       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3232       if (recv_type->is_inlinetypeptr()) {
3233         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3234       }
3235       (*casted_receiver) = cast;
3236     }
3237   }
3238 
3239   return slow_ctl;
3240 }
3241 
3242 //------------------------------seems_never_null-------------------------------
3243 // Use null_seen information if it is available from the profile.
3244 // If we see an unexpected null at a type check we record it and force a
3245 // recompile; the offending check will be recompiled to handle nulls.
3246 // If we see several offending BCIs, then all checks in the
3247 // method will be recompiled.
3248 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3249   speculating = !_gvn.type(obj)->speculative_maybe_null();
3250   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3251   if (UncommonNullCast               // Cutout for this technique
3252       && obj != null()               // And not the -Xcomp stupid case?
3253       && !too_many_traps(reason)
3254       ) {
3255     if (speculating) {
3256       return true;
3257     }
3258     if (data == nullptr)
3259       // Edge case:  no mature data.  Be optimistic here.
3260       return true;
3261     // If the profile has not seen a null, assume it won't happen.
3262     assert(java_bc() == Bytecodes::_checkcast ||
3263            java_bc() == Bytecodes::_instanceof ||
3264            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3265     return !data->as_BitData()->null_seen();
3266   }
3267   speculating = false;
3268   return false;
3269 }
3270 
3271 void GraphKit::guard_klass_being_initialized(Node* klass) {
3272   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3273   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3274   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3275                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3276                                     T_BYTE, MemNode::acquire);
3277   init_state = _gvn.transform(init_state);
3278 
3279   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3280 
3281   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3282   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3283 
3284   { BuildCutout unless(this, tst, PROB_MAX);
3285     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3286   }
3287 }
3288 
3289 void GraphKit::guard_init_thread(Node* klass) {
3290   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3291   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3292 
3293   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3294                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3295                                      T_ADDRESS, MemNode::unordered);
3296   init_thread = _gvn.transform(init_thread);
3297 
3298   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3299 
3300   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3301   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3302 
3303   { BuildCutout unless(this, tst, PROB_MAX);
3304     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3305   }
3306 }
3307 
3308 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3309   if (ik->is_being_initialized()) {
3310     if (C->needs_clinit_barrier(ik, context)) {
3311       Node* klass = makecon(TypeKlassPtr::make(ik));
3312       guard_klass_being_initialized(klass);
3313       guard_init_thread(klass);
3314       insert_mem_bar(Op_MemBarCPUOrder);
3315     }
3316   } else if (ik->is_initialized()) {
3317     return; // no barrier needed
3318   } else {
3319     uncommon_trap(Deoptimization::Reason_uninitialized,
3320                   Deoptimization::Action_reinterpret,
3321                   nullptr);
3322   }
3323 }
3324 
3325 //------------------------maybe_cast_profiled_receiver-------------------------
3326 // If the profile has seen exactly one type, narrow to exactly that type.
3327 // Subsequent type checks will always fold up.
3328 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3329                                              const TypeKlassPtr* require_klass,
3330                                              ciKlass* spec_klass,
3331                                              bool safe_for_replace) {
3332   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3333 
3334   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3335 
3336   // Make sure we haven't already deoptimized from this tactic.
3337   if (too_many_traps_or_recompiles(reason))
3338     return nullptr;
3339 
3340   // (No, this isn't a call, but it's enough like a virtual call
3341   // to use the same ciMethod accessor to get the profile info...)
3342   // If we have a speculative type use it instead of profiling (which
3343   // may not help us)
3344   ciKlass* exact_kls = spec_klass;
3345   if (exact_kls == nullptr) {
3346     if (java_bc() == Bytecodes::_aastore) {
3347       ciKlass* array_type = nullptr;
3348       ciKlass* element_type = nullptr;
3349       ProfilePtrKind element_ptr = ProfileMaybeNull;
3350       bool flat_array = true;
3351       bool null_free_array = true;
3352       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3353       exact_kls = element_type;
3354     } else {
3355       exact_kls = profile_has_unique_klass();
3356     }
3357   }
3358   if (exact_kls != nullptr) {// no cast failures here
3359     if (require_klass == nullptr ||
3360         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3361       // If we narrow the type to match what the type profile sees or
3362       // the speculative type, we can then remove the rest of the
3363       // cast.
3364       // This is a win, even if the exact_kls is very specific,
3365       // because downstream operations, such as method calls,
3366       // will often benefit from the sharper type.
3367       Node* exact_obj = not_null_obj; // will get updated in place...
3368       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3369                                             &exact_obj);
3370       { PreserveJVMState pjvms(this);
3371         set_control(slow_ctl);
3372         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3373       }
3374       if (safe_for_replace) {
3375         replace_in_map(not_null_obj, exact_obj);
3376       }
3377       return exact_obj;
3378     }
3379     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3380   }
3381 
3382   return nullptr;
3383 }
3384 
3385 /**
3386  * Cast obj to type and emit guard unless we had too many traps here
3387  * already
3388  *
3389  * @param obj       node being casted
3390  * @param type      type to cast the node to
3391  * @param not_null  true if we know node cannot be null
3392  */
3393 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3394                                         ciKlass* type,
3395                                         bool not_null) {
3396   if (stopped()) {
3397     return obj;
3398   }
3399 
3400   // type is null if profiling tells us this object is always null
3401   if (type != nullptr) {
3402     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3403     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3404 
3405     if (!too_many_traps_or_recompiles(null_reason) &&
3406         !too_many_traps_or_recompiles(class_reason)) {
3407       Node* not_null_obj = nullptr;
3408       // not_null is true if we know the object is not null and
3409       // there's no need for a null check
3410       if (!not_null) {
3411         Node* null_ctl = top();
3412         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3413         assert(null_ctl->is_top(), "no null control here");
3414       } else {
3415         not_null_obj = obj;
3416       }
3417 
3418       Node* exact_obj = not_null_obj;
3419       ciKlass* exact_kls = type;
3420       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3421                                             &exact_obj);
3422       {
3423         PreserveJVMState pjvms(this);
3424         set_control(slow_ctl);
3425         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3426       }
3427       replace_in_map(not_null_obj, exact_obj);
3428       obj = exact_obj;
3429     }
3430   } else {
3431     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3432       Node* exact_obj = null_assert(obj);
3433       replace_in_map(obj, exact_obj);
3434       obj = exact_obj;
3435     }
3436   }
3437   return obj;
3438 }
3439 
3440 //-------------------------------gen_instanceof--------------------------------
3441 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3442 // and the reflective instance-of call.
3443 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3444   kill_dead_locals();           // Benefit all the uncommon traps
3445   assert( !stopped(), "dead parse path should be checked in callers" );
3446   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3447          "must check for not-null not-dead klass in callers");
3448 
3449   // Make the merge point
3450   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3451   RegionNode* region = new RegionNode(PATH_LIMIT);
3452   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3453   C->set_has_split_ifs(true); // Has chance for split-if optimization
3454 
3455   ciProfileData* data = nullptr;
3456   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3457     data = method()->method_data()->bci_to_data(bci());
3458   }
3459   bool speculative_not_null = false;
3460   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3461                          && seems_never_null(obj, data, speculative_not_null));
3462 
3463   // Null check; get casted pointer; set region slot 3
3464   Node* null_ctl = top();
3465   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3466 
3467   // If not_null_obj is dead, only null-path is taken
3468   if (stopped()) {              // Doing instance-of on a null?
3469     set_control(null_ctl);
3470     return intcon(0);
3471   }
3472   region->init_req(_null_path, null_ctl);
3473   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3474   if (null_ctl == top()) {
3475     // Do this eagerly, so that pattern matches like is_diamond_phi
3476     // will work even during parsing.
3477     assert(_null_path == PATH_LIMIT-1, "delete last");
3478     region->del_req(_null_path);
3479     phi   ->del_req(_null_path);
3480   }
3481 
3482   // Do we know the type check always succeed?
3483   bool known_statically = false;
3484   if (_gvn.type(superklass)->singleton()) {
3485     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3486     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3487     if (subk != nullptr && subk->is_loaded()) {
3488       int static_res = C->static_subtype_check(superk, subk);
3489       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3490     }
3491   }
3492 
3493   if (!known_statically) {
3494     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3495     // We may not have profiling here or it may not help us. If we
3496     // have a speculative type use it to perform an exact cast.
3497     ciKlass* spec_obj_type = obj_type->speculative_type();
3498     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3499       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3500       if (stopped()) {            // Profile disagrees with this path.
3501         set_control(null_ctl);    // Null is the only remaining possibility.
3502         return intcon(0);
3503       }
3504       if (cast_obj != nullptr) {
3505         not_null_obj = cast_obj;
3506       }
3507     }
3508   }
3509 
3510   // Generate the subtype check
3511   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3512 
3513   // Plug in the success path to the general merge in slot 1.
3514   region->init_req(_obj_path, control());
3515   phi   ->init_req(_obj_path, intcon(1));
3516 
3517   // Plug in the failing path to the general merge in slot 2.
3518   region->init_req(_fail_path, not_subtype_ctrl);
3519   phi   ->init_req(_fail_path, intcon(0));
3520 
3521   // Return final merged results
3522   set_control( _gvn.transform(region) );
3523   record_for_igvn(region);
3524 
3525   // If we know the type check always succeeds then we don't use the
3526   // profiling data at this bytecode. Don't lose it, feed it to the
3527   // type system as a speculative type.
3528   if (safe_for_replace) {
3529     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3530     replace_in_map(obj, casted_obj);
3531   }
3532 
3533   return _gvn.transform(phi);
3534 }
3535 
3536 //-------------------------------gen_checkcast---------------------------------
3537 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3538 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3539 // uncommon-trap paths work.  Adjust stack after this call.
3540 // If failure_control is supplied and not null, it is filled in with
3541 // the control edge for the cast failure.  Otherwise, an appropriate
3542 // uncommon trap or exception is thrown.
3543 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {
3544   kill_dead_locals();           // Benefit all the uncommon traps
3545   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3546   const Type* obj_type = _gvn.type(obj);
3547   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3548     // Special case: larval inline objects must not be scalarized. They are also generally not
3549     // allowed to participate in most operations except as the first operand of putfield, or as an
3550     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3551     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3552     // value objects in all other places. This special case comes from the limitation of the Java
3553     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3554     // value type. We must do this first because C->static_subtype_check may do nothing when
3555     // StressReflectiveCode is set.
3556     return obj;
3557   }
3558 
3559   // Else it must be a non-larval object
3560   obj = cast_to_non_larval(obj);
3561 
3562   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3563   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3564   bool safe_for_replace = (failure_control == nullptr);
3565   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3566 
3567   // Fast cutout:  Check the case that the cast is vacuously true.
3568   // This detects the common cases where the test will short-circuit
3569   // away completely.  We do this before we perform the null check,
3570   // because if the test is going to turn into zero code, we don't
3571   // want a residual null check left around.  (Causes a slowdown,
3572   // for example, in some objArray manipulations, such as a[i]=a[j].)
3573   if (improved_klass_ptr_type->singleton()) {
3574     const TypeKlassPtr* kptr = nullptr;
3575     if (obj_type->isa_oop_ptr()) {
3576       kptr = obj_type->is_oopptr()->as_klass_type();
3577     } else if (obj->is_InlineType()) {
3578       ciInlineKlass* vk = obj_type->inline_klass();
3579       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3580     }
3581 
3582     if (kptr != nullptr) {
3583       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3584       case Compile::SSC_always_true:
3585         // If we know the type check always succeed then we don't use
3586         // the profiling data at this bytecode. Don't lose it, feed it
3587         // to the type system as a speculative type.
3588         obj = record_profiled_receiver_for_speculation(obj);
3589         if (null_free) {
3590           assert(safe_for_replace, "must be");
3591           obj = null_check(obj);
3592         }
3593         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3594         return obj;
3595       case Compile::SSC_always_false:
3596         if (null_free) {
3597           assert(safe_for_replace, "must be");
3598           obj = null_check(obj);
3599         }
3600         // It needs a null check because a null will *pass* the cast check.
3601         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {
3602           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3603           Deoptimization::DeoptReason reason = is_aastore ?
3604             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3605           builtin_throw(reason);
3606           return top();
3607         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3608           return null_assert(obj);
3609         }
3610         break; // Fall through to full check
3611       default:
3612         break;
3613       }
3614     }
3615   }
3616 
3617   ciProfileData* data = nullptr;
3618   if (failure_control == nullptr) {        // use MDO in regular case only
3619     assert(java_bc() == Bytecodes::_aastore ||
3620            java_bc() == Bytecodes::_checkcast,
3621            "interpreter profiles type checks only for these BCs");
3622     if (method()->method_data()->is_mature()) {
3623       data = method()->method_data()->bci_to_data(bci());
3624     }
3625   }
3626 
3627   // Make the merge point
3628   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3629   RegionNode* region = new RegionNode(PATH_LIMIT);
3630   Node*       phi    = new PhiNode(region, toop);
3631   _gvn.set_type(region, Type::CONTROL);
3632   _gvn.set_type(phi, toop);
3633 
3634   C->set_has_split_ifs(true); // Has chance for split-if optimization
3635 
3636   // Use null-cast information if it is available
3637   bool speculative_not_null = false;
3638   bool never_see_null = ((failure_control == nullptr)  // regular case only
3639                          && seems_never_null(obj, data, speculative_not_null));
3640 
3641   if (obj->is_InlineType()) {
3642     // Re-execute if buffering during triggers deoptimization
3643     PreserveReexecuteState preexecs(this);
3644     jvms()->set_should_reexecute(true);
3645     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3646   }
3647 
3648   // Null check; get casted pointer; set region slot 3
3649   Node* null_ctl = top();
3650   Node* not_null_obj = nullptr;
3651   if (null_free) {
3652     assert(safe_for_replace, "must be");
3653     not_null_obj = null_check(obj);
3654   } else {
3655     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3656   }
3657 
3658   // If not_null_obj is dead, only null-path is taken
3659   if (stopped()) {              // Doing instance-of on a null?
3660     set_control(null_ctl);
3661     if (toop->is_inlinetypeptr()) {
3662       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3663     }
3664     return null();
3665   }
3666   region->init_req(_null_path, null_ctl);
3667   phi   ->init_req(_null_path, null());  // Set null path value
3668   if (null_ctl == top()) {
3669     // Do this eagerly, so that pattern matches like is_diamond_phi
3670     // will work even during parsing.
3671     assert(_null_path == PATH_LIMIT-1, "delete last");
3672     region->del_req(_null_path);
3673     phi   ->del_req(_null_path);
3674   }
3675 
3676   Node* cast_obj = nullptr;
3677   if (improved_klass_ptr_type->klass_is_exact()) {
3678     // The following optimization tries to statically cast the speculative type of the object
3679     // (for example obtained during profiling) to the type of the superklass and then do a
3680     // dynamic check that the type of the object is what we expect. To work correctly
3681     // for checkcast and aastore the type of superklass should be exact.
3682     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3683     // We may not have profiling here or it may not help us. If we have
3684     // a speculative type use it to perform an exact cast.
3685     ciKlass* spec_obj_type = obj_type->speculative_type();
3686     if (spec_obj_type != nullptr || data != nullptr) {
3687       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3688       if (cast_obj != nullptr) {
3689         if (failure_control != nullptr) // failure is now impossible
3690           (*failure_control) = top();
3691         // adjust the type of the phi to the exact klass:
3692         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3693       }
3694     }
3695   }
3696 
3697   if (cast_obj == nullptr) {
3698     // Generate the subtype check
3699     Node* improved_superklass = superklass;
3700     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3701       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3702       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3703       // Additionally, the benefit would only be minor in non-constant cases.
3704       improved_superklass = makecon(improved_klass_ptr_type);
3705     }
3706     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3707     // Plug in success path into the merge
3708     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3709     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3710     if (failure_control == nullptr) {
3711       if (not_subtype_ctrl != top()) { // If failure is possible
3712         PreserveJVMState pjvms(this);
3713         set_control(not_subtype_ctrl);
3714         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3715         Deoptimization::DeoptReason reason = is_aastore ?
3716           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3717         builtin_throw(reason);
3718       }
3719     } else {
3720       (*failure_control) = not_subtype_ctrl;
3721     }
3722   }
3723 
3724   region->init_req(_obj_path, control());
3725   phi   ->init_req(_obj_path, cast_obj);
3726 
3727   // A merge of null or Casted-NotNull obj
3728   Node* res = _gvn.transform(phi);
3729 
3730   // Note I do NOT always 'replace_in_map(obj,result)' here.
3731   //  if( tk->klass()->can_be_primary_super()  )
3732     // This means that if I successfully store an Object into an array-of-String
3733     // I 'forget' that the Object is really now known to be a String.  I have to
3734     // do this because we don't have true union types for interfaces - if I store
3735     // a Baz into an array-of-Interface and then tell the optimizer it's an
3736     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3737     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3738   //  replace_in_map( obj, res );
3739 
3740   // Return final merged results
3741   set_control( _gvn.transform(region) );
3742   record_for_igvn(region);
3743 
3744   bool not_inline = !toop->can_be_inline_type();
3745   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3746   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3747     // Check if obj has been loaded from an array
3748     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3749     Node* array = nullptr;
3750     if (obj->isa_Load()) {
3751       Node* address = obj->in(MemNode::Address);
3752       if (address->isa_AddP()) {
3753         array = address->as_AddP()->in(AddPNode::Base);
3754       }
3755     } else if (obj->is_Phi()) {
3756       Node* region = obj->in(0);
3757       // TODO make this more robust (see JDK-8231346)
3758       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3759         IfNode* iff = region->in(2)->in(0)->isa_If();
3760         if (iff != nullptr) {
3761           iff->is_flat_array_check(&_gvn, &array);
3762         }
3763       }
3764     }
3765     if (array != nullptr) {
3766       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3767       if (ary_t != nullptr) {
3768         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3769           // Casting array element to a non-inline-type, mark array as not null-free.
3770           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3771           replace_in_map(array, cast);
3772           array = cast;
3773         }
3774         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3775           // Casting array element to a non-flat-in-array type, mark array as not flat.
3776           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3777           replace_in_map(array, cast);
3778           array = cast;
3779         }
3780       }
3781     }
3782   }
3783 
3784   if (!stopped() && !res->is_InlineType()) {
3785     res = record_profiled_receiver_for_speculation(res);
3786     if (toop->is_inlinetypeptr() && !maybe_larval) {
3787       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3788       res = vt;
3789       if (safe_for_replace) {
3790         replace_in_map(obj, vt);
3791         replace_in_map(not_null_obj, vt);
3792         replace_in_map(res, vt);
3793       }
3794     }
3795   }
3796   return res;
3797 }
3798 
3799 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3800   // Load markword
3801   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3802   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3803   if (check_lock && !UseCompactObjectHeaders) {
3804     // COH: Locking does not override the markword with a tagged pointer. We can directly read from the markword.
3805     // Check if obj is locked
3806     Node* locked_bit = MakeConX(markWord::unlocked_value);
3807     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3808     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3809     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3810     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3811     _gvn.transform(iff);
3812     Node* locked_region = new RegionNode(3);
3813     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3814 
3815     // Unlocked: Use bits from mark word
3816     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3817     mark_phi->init_req(1, mark);
3818 
3819     // Locked: Load prototype header from klass
3820     set_control(_gvn.transform(new IfFalseNode(iff)));
3821     // Make loads control dependent to make sure they are only executed if array is locked
3822     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3823     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3824     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3825     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3826 
3827     locked_region->init_req(2, control());
3828     mark_phi->init_req(2, proto);
3829     set_control(_gvn.transform(locked_region));
3830     record_for_igvn(locked_region);
3831 
3832     mark = mark_phi;
3833   }
3834 
3835   // Now check if mark word bits are set
3836   Node* mask = MakeConX(mask_val);
3837   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3838   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3839   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3840   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3841 }
3842 
3843 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3844   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3845 }
3846 
3847 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3848   // We can't use immutable memory here because the mark word is mutable.
3849   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3850   // check is moved out of loops (mainly to enable loop unswitching).
3851   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3852   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3853   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3854 }
3855 
3856 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3857   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3858 }
3859 
3860 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3861   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3862 
3863   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3864   if (!vk->has_non_atomic_layout()) {
3865     return intcon(1); // Always atomic
3866   } else if (!vk->has_atomic_layout()) {
3867     return intcon(0); // Never atomic
3868   }
3869 
3870   Node* array_klass = load_object_klass(array);
3871   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3872   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3873   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3874   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3875   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3876 }
3877 
3878 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3879 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3880   RegionNode* region = new RegionNode(3);
3881   Node* null_ctl = top();
3882   null_check_oop(val, &null_ctl);
3883   if (null_ctl != top()) {
3884     PreserveJVMState pjvms(this);
3885     set_control(null_ctl);
3886     {
3887       // Deoptimize if null-free array
3888       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3889       inc_sp(nargs);
3890       uncommon_trap(Deoptimization::Reason_null_check,
3891                     Deoptimization::Action_none);
3892     }
3893     region->init_req(1, control());
3894   }
3895   region->init_req(2, control());
3896   set_control(_gvn.transform(region));
3897   record_for_igvn(region);
3898   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3899     // Since we were just successfully storing null, the array can't be null free.
3900     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3901     ary_t = ary_t->cast_to_not_null_free();
3902     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3903     if (safe_for_replace) {
3904       replace_in_map(ary, cast);
3905     }
3906     ary = cast;
3907   }
3908   return ary;
3909 }
3910 
3911 //------------------------------next_monitor-----------------------------------
3912 // What number should be given to the next monitor?
3913 int GraphKit::next_monitor() {
3914   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3915   int next = current + C->sync_stack_slots();
3916   // Keep the toplevel high water mark current:
3917   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3918   return current;
3919 }
3920 
3921 //------------------------------insert_mem_bar---------------------------------
3922 // Memory barrier to avoid floating things around
3923 // The membar serves as a pinch point between both control and all memory slices.
3924 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3925   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3926   mb->init_req(TypeFunc::Control, control());
3927   mb->init_req(TypeFunc::Memory,  reset_memory());
3928   Node* membar = _gvn.transform(mb);
3929   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3930   set_all_memory_call(membar);
3931   return membar;
3932 }
3933 
3934 //-------------------------insert_mem_bar_volatile----------------------------
3935 // Memory barrier to avoid floating things around
3936 // The membar serves as a pinch point between both control and memory(alias_idx).
3937 // If you want to make a pinch point on all memory slices, do not use this
3938 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3939 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3940   // When Parse::do_put_xxx updates a volatile field, it appends a series
3941   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3942   // The first membar is on the same memory slice as the field store opcode.
3943   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3944   // All the other membars (for other volatile slices, including AliasIdxBot,
3945   // which stands for all unknown volatile slices) are control-dependent
3946   // on the first membar.  This prevents later volatile loads or stores
3947   // from sliding up past the just-emitted store.
3948 
3949   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3950   mb->set_req(TypeFunc::Control,control());
3951   if (alias_idx == Compile::AliasIdxBot) {
3952     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3953   } else {
3954     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3955     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3956   }
3957   Node* membar = _gvn.transform(mb);
3958   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3959   if (alias_idx == Compile::AliasIdxBot) {
3960     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3961   } else {
3962     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3963   }
3964   return membar;
3965 }
3966 
3967 //------------------------------shared_lock------------------------------------
3968 // Emit locking code.
3969 FastLockNode* GraphKit::shared_lock(Node* obj) {
3970   // bci is either a monitorenter bc or InvocationEntryBci
3971   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3972   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3973 
3974   if (stopped())                // Dead monitor?
3975     return nullptr;
3976 
3977   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3978 
3979   // Box the stack location
3980   Node* box = new BoxLockNode(next_monitor());
3981   // Check for bailout after new BoxLockNode
3982   if (failing()) { return nullptr; }
3983   box = _gvn.transform(box);
3984   Node* mem = reset_memory();
3985 
3986   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3987 
3988   // Add monitor to debug info for the slow path.  If we block inside the
3989   // slow path and de-opt, we need the monitor hanging around
3990   map()->push_monitor( flock );
3991 
3992   const TypeFunc *tf = LockNode::lock_type();
3993   LockNode *lock = new LockNode(C, tf);
3994 
3995   lock->init_req( TypeFunc::Control, control() );
3996   lock->init_req( TypeFunc::Memory , mem );
3997   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3998   lock->init_req( TypeFunc::FramePtr, frameptr() );
3999   lock->init_req( TypeFunc::ReturnAdr, top() );
4000 
4001   lock->init_req(TypeFunc::Parms + 0, obj);
4002   lock->init_req(TypeFunc::Parms + 1, box);
4003   lock->init_req(TypeFunc::Parms + 2, flock);
4004   add_safepoint_edges(lock);
4005 
4006   lock = _gvn.transform( lock )->as_Lock();
4007 
4008   // lock has no side-effects, sets few values
4009   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
4010 
4011   insert_mem_bar(Op_MemBarAcquireLock);
4012 
4013   // Add this to the worklist so that the lock can be eliminated
4014   record_for_igvn(lock);
4015 
4016 #ifndef PRODUCT
4017   if (PrintLockStatistics) {
4018     // Update the counter for this lock.  Don't bother using an atomic
4019     // operation since we don't require absolute accuracy.
4020     lock->create_lock_counter(map()->jvms());
4021     increment_counter(lock->counter()->addr());
4022   }
4023 #endif
4024 
4025   return flock;
4026 }
4027 
4028 
4029 //------------------------------shared_unlock----------------------------------
4030 // Emit unlocking code.
4031 void GraphKit::shared_unlock(Node* box, Node* obj) {
4032   // bci is either a monitorenter bc or InvocationEntryBci
4033   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
4034   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
4035 
4036   if (stopped()) {               // Dead monitor?
4037     map()->pop_monitor();        // Kill monitor from debug info
4038     return;
4039   }
4040   assert(!obj->is_InlineType(), "should not unlock on inline type");
4041 
4042   // Memory barrier to avoid floating things down past the locked region
4043   insert_mem_bar(Op_MemBarReleaseLock);
4044 
4045   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4046   UnlockNode *unlock = new UnlockNode(C, tf);
4047 #ifdef ASSERT
4048   unlock->set_dbg_jvms(sync_jvms());
4049 #endif
4050   uint raw_idx = Compile::AliasIdxRaw;
4051   unlock->init_req( TypeFunc::Control, control() );
4052   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4053   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4054   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4055   unlock->init_req( TypeFunc::ReturnAdr, top() );
4056 
4057   unlock->init_req(TypeFunc::Parms + 0, obj);
4058   unlock->init_req(TypeFunc::Parms + 1, box);
4059   unlock = _gvn.transform(unlock)->as_Unlock();
4060 
4061   Node* mem = reset_memory();
4062 
4063   // unlock has no side-effects, sets few values
4064   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4065 
4066   // Kill monitor from debug info
4067   map()->pop_monitor( );
4068 }
4069 
4070 //-------------------------------get_layout_helper-----------------------------
4071 // If the given klass is a constant or known to be an array,
4072 // fetch the constant layout helper value into constant_value
4073 // and return null.  Otherwise, load the non-constant
4074 // layout helper value, and return the node which represents it.
4075 // This two-faced routine is useful because allocation sites
4076 // almost always feature constant types.
4077 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4078   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4079   if (!StressReflectiveCode && klass_t != nullptr) {
4080     bool xklass = klass_t->klass_is_exact();
4081     bool can_be_flat = false;
4082     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4083     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4084       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4085       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4086       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4087     }
4088     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4089       jint lhelper;
4090       if (klass_t->is_flat()) {
4091         lhelper = ary_type->flat_layout_helper();
4092       } else if (klass_t->isa_aryklassptr()) {
4093         BasicType elem = ary_type->elem()->array_element_basic_type();
4094         if (is_reference_type(elem, true)) {
4095           elem = T_OBJECT;
4096         }
4097         lhelper = Klass::array_layout_helper(elem);
4098       } else {
4099         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4100       }
4101       if (lhelper != Klass::_lh_neutral_value) {
4102         constant_value = lhelper;
4103         return (Node*) nullptr;
4104       }
4105     }
4106   }
4107   constant_value = Klass::_lh_neutral_value;  // put in a known value
4108   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4109   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4110 }
4111 
4112 // We just put in an allocate/initialize with a big raw-memory effect.
4113 // Hook selected additional alias categories on the initialization.
4114 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4115                                 MergeMemNode* init_in_merge,
4116                                 Node* init_out_raw) {
4117   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4118   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4119 
4120   Node* prevmem = kit.memory(alias_idx);
4121   init_in_merge->set_memory_at(alias_idx, prevmem);
4122   if (init_out_raw != nullptr) {
4123     kit.set_memory(init_out_raw, alias_idx);
4124   }
4125 }
4126 
4127 //---------------------------set_output_for_allocation-------------------------
4128 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4129                                           const TypeOopPtr* oop_type,
4130                                           bool deoptimize_on_exception) {
4131   int rawidx = Compile::AliasIdxRaw;
4132   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4133   add_safepoint_edges(alloc);
4134   Node* allocx = _gvn.transform(alloc);
4135   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4136   // create memory projection for i_o
4137   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4138   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4139 
4140   // create a memory projection as for the normal control path
4141   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4142   set_memory(malloc, rawidx);
4143 
4144   // a normal slow-call doesn't change i_o, but an allocation does
4145   // we create a separate i_o projection for the normal control path
4146   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4147   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4148 
4149   // put in an initialization barrier
4150   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4151                                                  rawoop)->as_Initialize();
4152   assert(alloc->initialization() == init,  "2-way macro link must work");
4153   assert(init ->allocation()     == alloc, "2-way macro link must work");
4154   {
4155     // Extract memory strands which may participate in the new object's
4156     // initialization, and source them from the new InitializeNode.
4157     // This will allow us to observe initializations when they occur,
4158     // and link them properly (as a group) to the InitializeNode.
4159     assert(init->in(InitializeNode::Memory) == malloc, "");
4160     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4161     init->set_req(InitializeNode::Memory, minit_in);
4162     record_for_igvn(minit_in); // fold it up later, if possible
4163     _gvn.set_type(minit_in, Type::MEMORY);
4164     Node* minit_out = memory(rawidx);
4165     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4166     // Add an edge in the MergeMem for the header fields so an access
4167     // to one of those has correct memory state
4168     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4169     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4170     if (oop_type->isa_aryptr()) {
4171       const TypeAryPtr* arytype = oop_type->is_aryptr();
4172       if (arytype->is_flat()) {
4173         // Initially all flat array accesses share a single slice
4174         // but that changes after parsing. Prepare the memory graph so
4175         // it can optimize flat array accesses properly once they
4176         // don't share a single slice.
4177         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4178         C->set_flat_accesses_share_alias(false);
4179         ciInlineKlass* vk = arytype->elem()->inline_klass();
4180         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4181           ciField* field = vk->nonstatic_field_at(i);
4182           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4183             continue;  // do not bother to track really large numbers of fields
4184           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4185           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4186           int fieldidx = C->get_alias_index(adr_type, true);
4187           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4188           // can result in per flat array field Phis to be created which confuses the logic of
4189           // Compile::adjust_flat_array_access_aliases().
4190           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4191         }
4192         C->set_flat_accesses_share_alias(true);
4193         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4194       } else {
4195         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4196         int            elemidx  = C->get_alias_index(telemref);
4197         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4198       }
4199     } else if (oop_type->isa_instptr()) {
4200       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4201       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4202       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4203         ciField* field = ik->nonstatic_field_at(i);
4204         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4205           continue;  // do not bother to track really large numbers of fields
4206         // Find (or create) the alias category for this field:
4207         int fieldidx = C->alias_type(field)->index();
4208         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4209       }
4210     }
4211   }
4212 
4213   // Cast raw oop to the real thing...
4214   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4215   javaoop = _gvn.transform(javaoop);
4216   C->set_recent_alloc(control(), javaoop);
4217   assert(just_allocated_object(control()) == javaoop, "just allocated");
4218 
4219 #ifdef ASSERT
4220   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4221     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4222            "Ideal_allocation works");
4223     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4224            "Ideal_allocation works");
4225     if (alloc->is_AllocateArray()) {
4226       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4227              "Ideal_allocation works");
4228       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4229              "Ideal_allocation works");
4230     } else {
4231       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4232     }
4233   }
4234 #endif //ASSERT
4235 
4236   return javaoop;
4237 }
4238 
4239 //---------------------------new_instance--------------------------------------
4240 // This routine takes a klass_node which may be constant (for a static type)
4241 // or may be non-constant (for reflective code).  It will work equally well
4242 // for either, and the graph will fold nicely if the optimizer later reduces
4243 // the type to a constant.
4244 // The optional arguments are for specialized use by intrinsics:
4245 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4246 //  - If 'return_size_val', report the total object size to the caller.
4247 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4248 Node* GraphKit::new_instance(Node* klass_node,
4249                              Node* extra_slow_test,
4250                              Node* *return_size_val,
4251                              bool deoptimize_on_exception,
4252                              InlineTypeNode* inline_type_node) {
4253   // Compute size in doublewords
4254   // The size is always an integral number of doublewords, represented
4255   // as a positive bytewise size stored in the klass's layout_helper.
4256   // The layout_helper also encodes (in a low bit) the need for a slow path.
4257   jint  layout_con = Klass::_lh_neutral_value;
4258   Node* layout_val = get_layout_helper(klass_node, layout_con);
4259   bool  layout_is_con = (layout_val == nullptr);
4260 
4261   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4262   // Generate the initial go-slow test.  It's either ALWAYS (return a
4263   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4264   // case) a computed value derived from the layout_helper.
4265   Node* initial_slow_test = nullptr;
4266   if (layout_is_con) {
4267     assert(!StressReflectiveCode, "stress mode does not use these paths");
4268     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4269     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4270   } else {   // reflective case
4271     // This reflective path is used by Unsafe.allocateInstance.
4272     // (It may be stress-tested by specifying StressReflectiveCode.)
4273     // Basically, we want to get into the VM is there's an illegal argument.
4274     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4275     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4276     if (extra_slow_test != intcon(0)) {
4277       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4278     }
4279     // (Macro-expander will further convert this to a Bool, if necessary.)
4280   }
4281 
4282   // Find the size in bytes.  This is easy; it's the layout_helper.
4283   // The size value must be valid even if the slow path is taken.
4284   Node* size = nullptr;
4285   if (layout_is_con) {
4286     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4287   } else {   // reflective case
4288     // This reflective path is used by clone and Unsafe.allocateInstance.
4289     size = ConvI2X(layout_val);
4290 
4291     // Clear the low bits to extract layout_helper_size_in_bytes:
4292     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4293     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4294     size = _gvn.transform( new AndXNode(size, mask) );
4295   }
4296   if (return_size_val != nullptr) {
4297     (*return_size_val) = size;
4298   }
4299 
4300   // This is a precise notnull oop of the klass.
4301   // (Actually, it need not be precise if this is a reflective allocation.)
4302   // It's what we cast the result to.
4303   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4304   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4305   const TypeOopPtr* oop_type = tklass->as_instance_type();
4306 
4307   // Now generate allocation code
4308 
4309   // The entire memory state is needed for slow path of the allocation
4310   // since GC and deoptimization can happen.
4311   Node *mem = reset_memory();
4312   set_all_memory(mem); // Create new memory state
4313 
4314   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4315                                          control(), mem, i_o(),
4316                                          size, klass_node,
4317                                          initial_slow_test, inline_type_node);
4318 
4319   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4320 }
4321 
4322 //-------------------------------new_array-------------------------------------
4323 // helper for newarray and anewarray
4324 // The 'length' parameter is (obviously) the length of the array.
4325 // The optional arguments are for specialized use by intrinsics:
4326 //  - If 'return_size_val', report the non-padded array size (sum of header size
4327 //    and array body) to the caller.
4328 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4329 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4330                           Node* length,         // number of array elements
4331                           int   nargs,          // number of arguments to push back for uncommon trap
4332                           Node* *return_size_val,
4333                           bool deoptimize_on_exception,
4334                           Node* init_val) {
4335   jint  layout_con = Klass::_lh_neutral_value;
4336   Node* layout_val = get_layout_helper(klass_node, layout_con);
4337   bool  layout_is_con = (layout_val == nullptr);
4338 
4339   if (!layout_is_con && !StressReflectiveCode &&
4340       !too_many_traps(Deoptimization::Reason_class_check)) {
4341     // This is a reflective array creation site.
4342     // Optimistically assume that it is a subtype of Object[],
4343     // so that we can fold up all the address arithmetic.
4344     layout_con = Klass::array_layout_helper(T_OBJECT);
4345     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4346     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4347     { BuildCutout unless(this, bol_lh, PROB_MAX);
4348       inc_sp(nargs);
4349       uncommon_trap(Deoptimization::Reason_class_check,
4350                     Deoptimization::Action_maybe_recompile);
4351     }
4352     layout_val = nullptr;
4353     layout_is_con = true;
4354   }
4355 
4356   // Generate the initial go-slow test.  Make sure we do not overflow
4357   // if length is huge (near 2Gig) or negative!  We do not need
4358   // exact double-words here, just a close approximation of needed
4359   // double-words.  We can't add any offset or rounding bits, lest we
4360   // take a size -1 of bytes and make it positive.  Use an unsigned
4361   // compare, so negative sizes look hugely positive.
4362   int fast_size_limit = FastAllocateSizeLimit;
4363   if (layout_is_con) {
4364     assert(!StressReflectiveCode, "stress mode does not use these paths");
4365     // Increase the size limit if we have exact knowledge of array type.
4366     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4367     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4368   }
4369 
4370   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4371   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4372 
4373   // --- Size Computation ---
4374   // array_size = round_to_heap(array_header + (length << elem_shift));
4375   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4376   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4377   // The rounding mask is strength-reduced, if possible.
4378   int round_mask = MinObjAlignmentInBytes - 1;
4379   Node* header_size = nullptr;
4380   // (T_BYTE has the weakest alignment and size restrictions...)
4381   if (layout_is_con) {
4382     int       hsize  = Klass::layout_helper_header_size(layout_con);
4383     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4384     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4385     if ((round_mask & ~right_n_bits(eshift)) == 0)
4386       round_mask = 0;  // strength-reduce it if it goes away completely
4387     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4388     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4389     assert(header_size_min <= hsize, "generic minimum is smallest");
4390     header_size = intcon(hsize);
4391   } else {
4392     Node* hss   = intcon(Klass::_lh_header_size_shift);
4393     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4394     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4395     header_size = _gvn.transform(new AndINode(header_size, hsm));
4396   }
4397 
4398   Node* elem_shift = nullptr;
4399   if (layout_is_con) {
4400     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4401     if (eshift != 0)
4402       elem_shift = intcon(eshift);
4403   } else {
4404     // There is no need to mask or shift this value.
4405     // The semantics of LShiftINode include an implicit mask to 0x1F.
4406     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4407     elem_shift = layout_val;
4408   }
4409 
4410   // Transition to native address size for all offset calculations:
4411   Node* lengthx = ConvI2X(length);
4412   Node* headerx = ConvI2X(header_size);
4413 #ifdef _LP64
4414   { const TypeInt* tilen = _gvn.find_int_type(length);
4415     if (tilen != nullptr && tilen->_lo < 0) {
4416       // Add a manual constraint to a positive range.  Cf. array_element_address.
4417       jint size_max = fast_size_limit;
4418       if (size_max > tilen->_hi && tilen->_hi >= 0) {
4419         size_max = tilen->_hi;
4420       }
4421       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4422 
4423       // Only do a narrow I2L conversion if the range check passed.
4424       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4425       _gvn.transform(iff);
4426       RegionNode* region = new RegionNode(3);
4427       _gvn.set_type(region, Type::CONTROL);
4428       lengthx = new PhiNode(region, TypeLong::LONG);
4429       _gvn.set_type(lengthx, TypeLong::LONG);
4430 
4431       // Range check passed. Use ConvI2L node with narrow type.
4432       Node* passed = IfFalse(iff);
4433       region->init_req(1, passed);
4434       // Make I2L conversion control dependent to prevent it from
4435       // floating above the range check during loop optimizations.
4436       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4437 
4438       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4439       region->init_req(2, IfTrue(iff));
4440       lengthx->init_req(2, ConvI2X(length));
4441 
4442       set_control(region);
4443       record_for_igvn(region);
4444       record_for_igvn(lengthx);
4445     }
4446   }
4447 #endif
4448 
4449   // Combine header size and body size for the array copy part, then align (if
4450   // necessary) for the allocation part. This computation cannot overflow,
4451   // because it is used only in two places, one where the length is sharply
4452   // limited, and the other after a successful allocation.
4453   Node* abody = lengthx;
4454   if (elem_shift != nullptr) {
4455     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4456   }
4457   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4458 
4459   if (return_size_val != nullptr) {
4460     // This is the size
4461     (*return_size_val) = non_rounded_size;
4462   }
4463 
4464   Node* size = non_rounded_size;
4465   if (round_mask != 0) {
4466     Node* mask1 = MakeConX(round_mask);
4467     size = _gvn.transform(new AddXNode(size, mask1));
4468     Node* mask2 = MakeConX(~round_mask);
4469     size = _gvn.transform(new AndXNode(size, mask2));
4470   }
4471   // else if round_mask == 0, the size computation is self-rounding
4472 
4473   // Now generate allocation code
4474 
4475   // The entire memory state is needed for slow path of the allocation
4476   // since GC and deoptimization can happen.
4477   Node *mem = reset_memory();
4478   set_all_memory(mem); // Create new memory state
4479 
4480   if (initial_slow_test->is_Bool()) {
4481     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4482     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4483   }
4484 
4485   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4486   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4487 
4488   Node* raw_init_value = nullptr;
4489   if (init_val != nullptr) {
4490     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4491     if (ary_type->is_flat()) {
4492       initial_slow_test = intcon(1);
4493     }
4494 
4495     if (UseCompressedOops) {
4496       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4497       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4498       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4499       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4500       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4501     } else {
4502       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4503     }
4504   }
4505 
4506   Node* valid_length_test = _gvn.intcon(1);
4507   if (ary_type->isa_aryptr()) {
4508     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4509     jint max = TypeAryPtr::max_array_length(bt);
4510     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4511     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4512   }
4513 
4514   // Create the AllocateArrayNode and its result projections
4515   AllocateArrayNode* alloc
4516     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4517                             control(), mem, i_o(),
4518                             size, klass_node,
4519                             initial_slow_test,
4520                             length, valid_length_test,
4521                             init_val, raw_init_value);
4522   // Cast to correct type.  Note that the klass_node may be constant or not,
4523   // and in the latter case the actual array type will be inexact also.
4524   // (This happens via a non-constant argument to inline_native_newArray.)
4525   // In any case, the value of klass_node provides the desired array type.
4526   const TypeInt* length_type = _gvn.find_int_type(length);
4527   if (ary_type->isa_aryptr() && length_type != nullptr) {
4528     // Try to get a better type than POS for the size
4529     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4530   }
4531 
4532   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4533 
4534   array_ideal_length(alloc, ary_type, true);
4535   return javaoop;
4536 }
4537 
4538 // The following "Ideal_foo" functions are placed here because they recognize
4539 // the graph shapes created by the functions immediately above.
4540 
4541 //---------------------------Ideal_allocation----------------------------------
4542 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4543 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4544   if (ptr == nullptr) {     // reduce dumb test in callers
4545     return nullptr;
4546   }
4547 
4548   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4549   ptr = bs->step_over_gc_barrier(ptr);
4550 
4551   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4552     ptr = ptr->in(1);
4553     if (ptr == nullptr) return nullptr;
4554   }
4555   // Return null for allocations with several casts:
4556   //   j.l.reflect.Array.newInstance(jobject, jint)
4557   //   Object.clone()
4558   // to keep more precise type from last cast.
4559   if (ptr->is_Proj()) {
4560     Node* allo = ptr->in(0);
4561     if (allo != nullptr && allo->is_Allocate()) {
4562       return allo->as_Allocate();
4563     }
4564   }
4565   // Report failure to match.
4566   return nullptr;
4567 }
4568 
4569 // Fancy version which also strips off an offset (and reports it to caller).
4570 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4571                                              intptr_t& offset) {
4572   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4573   if (base == nullptr)  return nullptr;
4574   return Ideal_allocation(base);
4575 }
4576 
4577 // Trace Initialize <- Proj[Parm] <- Allocate
4578 AllocateNode* InitializeNode::allocation() {
4579   Node* rawoop = in(InitializeNode::RawAddress);
4580   if (rawoop->is_Proj()) {
4581     Node* alloc = rawoop->in(0);
4582     if (alloc->is_Allocate()) {
4583       return alloc->as_Allocate();
4584     }
4585   }
4586   return nullptr;
4587 }
4588 
4589 // Trace Allocate -> Proj[Parm] -> Initialize
4590 InitializeNode* AllocateNode::initialization() {
4591   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4592   if (rawoop == nullptr)  return nullptr;
4593   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4594     Node* init = rawoop->fast_out(i);
4595     if (init->is_Initialize()) {
4596       assert(init->as_Initialize()->allocation() == this, "2-way link");
4597       return init->as_Initialize();
4598     }
4599   }
4600   return nullptr;
4601 }
4602 
4603 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4604 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4605   // Too many traps seen?
4606   if (too_many_traps(reason)) {
4607 #ifdef ASSERT
4608     if (TraceLoopPredicate) {
4609       int tc = C->trap_count(reason);
4610       tty->print("too many traps=%s tcount=%d in ",
4611                     Deoptimization::trap_reason_name(reason), tc);
4612       method()->print(); // which method has too many predicate traps
4613       tty->cr();
4614     }
4615 #endif
4616     // We cannot afford to take more traps here,
4617     // do not generate Parse Predicate.
4618     return;
4619   }
4620 
4621   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4622   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4623   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4624   {
4625     PreserveJVMState pjvms(this);
4626     set_control(if_false);
4627     inc_sp(nargs);
4628     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4629   }
4630   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4631   set_control(if_true);
4632 }
4633 
4634 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4635 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4636 void GraphKit::add_parse_predicates(int nargs) {
4637   if (ShortRunningLongLoop) {
4638     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4639     // walking up from the loop.
4640     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4641   }
4642   if (UseLoopPredicate) {
4643     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4644     if (UseProfiledLoopPredicate) {
4645       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4646     }
4647   }
4648   add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4649   // Loop Limit Check Predicate should be near the loop.
4650   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4651 }
4652 
4653 void GraphKit::sync_kit(IdealKit& ideal) {
4654   set_all_memory(ideal.merged_memory());
4655   set_i_o(ideal.i_o());
4656   set_control(ideal.ctrl());
4657 }
4658 
4659 void GraphKit::final_sync(IdealKit& ideal) {
4660   // Final sync IdealKit and graphKit.
4661   sync_kit(ideal);
4662 }
4663 
4664 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4665   Node* len = load_array_length(load_String_value(str, set_ctrl));
4666   Node* coder = load_String_coder(str, set_ctrl);
4667   // Divide length by 2 if coder is UTF16
4668   return _gvn.transform(new RShiftINode(len, coder));
4669 }
4670 
4671 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4672   int value_offset = java_lang_String::value_offset();
4673   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4674                                                      false, nullptr, Type::Offset(0));
4675   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4676   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4677                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4678                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4679   Node* p = basic_plus_adr(str, str, value_offset);
4680   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4681                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4682   return load;
4683 }
4684 
4685 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4686   if (!CompactStrings) {
4687     return intcon(java_lang_String::CODER_UTF16);
4688   }
4689   int coder_offset = java_lang_String::coder_offset();
4690   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4691                                                      false, nullptr, Type::Offset(0));
4692   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4693 
4694   Node* p = basic_plus_adr(str, str, coder_offset);
4695   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4696                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4697   return load;
4698 }
4699 
4700 void GraphKit::store_String_value(Node* str, Node* value) {
4701   int value_offset = java_lang_String::value_offset();
4702   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4703                                                      false, nullptr, Type::Offset(0));
4704   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4705 
4706   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4707                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4708 }
4709 
4710 void GraphKit::store_String_coder(Node* str, Node* value) {
4711   int coder_offset = java_lang_String::coder_offset();
4712   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4713                                                      false, nullptr, Type::Offset(0));
4714   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4715 
4716   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4717                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4718 }
4719 
4720 // Capture src and dst memory state with a MergeMemNode
4721 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4722   if (src_type == dst_type) {
4723     // Types are equal, we don't need a MergeMemNode
4724     return memory(src_type);
4725   }
4726   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4727   record_for_igvn(merge); // fold it up later, if possible
4728   int src_idx = C->get_alias_index(src_type);
4729   int dst_idx = C->get_alias_index(dst_type);
4730   merge->set_memory_at(src_idx, memory(src_idx));
4731   merge->set_memory_at(dst_idx, memory(dst_idx));
4732   return merge;
4733 }
4734 
4735 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4736   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4737   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4738   // If input and output memory types differ, capture both states to preserve
4739   // the dependency between preceding and subsequent loads/stores.
4740   // For example, the following program:
4741   //  StoreB
4742   //  compress_string
4743   //  LoadB
4744   // has this memory graph (use->def):
4745   //  LoadB -> compress_string -> CharMem
4746   //             ... -> StoreB -> ByteMem
4747   // The intrinsic hides the dependency between LoadB and StoreB, causing
4748   // the load to read from memory not containing the result of the StoreB.
4749   // The correct memory graph should look like this:
4750   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4751   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4752   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4753   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4754   set_memory(res_mem, TypeAryPtr::BYTES);
4755   return str;
4756 }
4757 
4758 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4759   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4760   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4761   // Capture src and dst memory (see comment in 'compress_string').
4762   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4763   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4764   set_memory(_gvn.transform(str), dst_type);
4765 }
4766 
4767 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4768   /**
4769    * int i_char = start;
4770    * for (int i_byte = 0; i_byte < count; i_byte++) {
4771    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4772    * }
4773    */
4774   add_parse_predicates();
4775   C->set_has_loops(true);
4776 
4777   RegionNode* head = new RegionNode(3);
4778   head->init_req(1, control());
4779   gvn().set_type(head, Type::CONTROL);
4780   record_for_igvn(head);
4781 
4782   Node* i_byte = new PhiNode(head, TypeInt::INT);
4783   i_byte->init_req(1, intcon(0));
4784   gvn().set_type(i_byte, TypeInt::INT);
4785   record_for_igvn(i_byte);
4786 
4787   Node* i_char = new PhiNode(head, TypeInt::INT);
4788   i_char->init_req(1, start);
4789   gvn().set_type(i_char, TypeInt::INT);
4790   record_for_igvn(i_char);
4791 
4792   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4793   gvn().set_type(mem, Type::MEMORY);
4794   record_for_igvn(mem);
4795   set_control(head);
4796   set_memory(mem, TypeAryPtr::BYTES);
4797   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4798   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4799                              AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false,
4800                              false, true /* mismatched */);
4801 
4802   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4803   head->init_req(2, IfTrue(iff));
4804   mem->init_req(2, st);
4805   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4806   i_char->init_req(2, AddI(i_char, intcon(2)));
4807 
4808   set_control(IfFalse(iff));
4809   set_memory(st, TypeAryPtr::BYTES);
4810 }
4811 
4812 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4813   if (!field->is_constant()) {
4814     return nullptr; // Field not marked as constant.
4815   }
4816   ciInstance* holder = nullptr;
4817   if (!field->is_static()) {
4818     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4819     if (const_oop != nullptr && const_oop->is_instance()) {
4820       holder = const_oop->as_instance();
4821     }
4822   }
4823   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4824                                                         /*is_unsigned_load=*/false);
4825   if (con_type != nullptr) {
4826     Node* con = makecon(con_type);
4827     if (field->type()->is_inlinetype()) {
4828       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4829     } else if (con_type->is_inlinetypeptr()) {
4830       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4831     }
4832     return con;
4833   }
4834   return nullptr;
4835 }
4836 
4837 //---------------------------load_mirror_from_klass----------------------------
4838 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4839 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4840   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4841   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4842   // mirror = ((OopHandle)mirror)->resolve();
4843   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4844 }
4845 
4846 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4847   const Type* obj_type = obj->bottom_type();
4848   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4849   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4850     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4851     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4852     obj = casted_obj;
4853   }
4854   if (sig_type->is_inlinetypeptr()) {
4855     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4856   }
4857   return obj;
4858 }