1 /*
   2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_ex_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_ex_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing())  return;  // dying anyway...
 356   JVMState* ex_jvms = ex_map->_jvms;
 357   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 358   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 359   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 360   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 361   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 362   assert(ex_map->req() == phi_map->req(), "matching maps");
 363   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 364   Node*         hidden_merge_mark = root();
 365   Node*         region  = phi_map->control();
 366   MergeMemNode* phi_mem = phi_map->merged_memory();
 367   MergeMemNode* ex_mem  = ex_map->merged_memory();
 368   if (region->in(0) != hidden_merge_mark) {
 369     // The control input is not (yet) a specially-marked region in phi_map.
 370     // Make it so, and build some phis.
 371     region = new RegionNode(2);
 372     _gvn.set_type(region, Type::CONTROL);
 373     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 374     region->init_req(1, phi_map->control());
 375     phi_map->set_control(region);
 376     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 377     record_for_igvn(io_phi);
 378     _gvn.set_type(io_phi, Type::ABIO);
 379     phi_map->set_i_o(io_phi);
 380     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 381       Node* m = mms.memory();
 382       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 383       record_for_igvn(m_phi);
 384       _gvn.set_type(m_phi, Type::MEMORY);
 385       mms.set_memory(m_phi);
 386     }
 387   }
 388 
 389   // Either or both of phi_map and ex_map might already be converted into phis.
 390   Node* ex_control = ex_map->control();
 391   // if there is special marking on ex_map also, we add multiple edges from src
 392   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 393   // how wide was the destination phi_map, originally?
 394   uint orig_width = region->req();
 395 
 396   if (add_multiple) {
 397     add_n_reqs(region, ex_control);
 398     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 399   } else {
 400     // ex_map has no merges, so we just add single edges everywhere
 401     add_one_req(region, ex_control);
 402     add_one_req(phi_map->i_o(), ex_map->i_o());
 403   }
 404   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 405     if (mms.is_empty()) {
 406       // get a copy of the base memory, and patch some inputs into it
 407       const TypePtr* adr_type = mms.adr_type(C);
 408       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 409       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 410       mms.set_memory(phi);
 411       // Prepare to append interesting stuff onto the newly sliced phi:
 412       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 413     }
 414     // Append stuff from ex_map:
 415     if (add_multiple) {
 416       add_n_reqs(mms.memory(), mms.memory2());
 417     } else {
 418       add_one_req(mms.memory(), mms.memory2());
 419     }
 420   }
 421   uint limit = ex_map->req();
 422   for (uint i = TypeFunc::Parms; i < limit; i++) {
 423     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 424     if (i == tos)  i = ex_jvms->monoff();
 425     Node* src = ex_map->in(i);
 426     Node* dst = phi_map->in(i);
 427     if (src != dst) {
 428       PhiNode* phi;
 429       if (dst->in(0) != region) {
 430         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 431         record_for_igvn(phi);
 432         _gvn.set_type(phi, phi->type());
 433         phi_map->set_req(i, dst);
 434         // Prepare to append interesting stuff onto the new phi:
 435         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 436       } else {
 437         assert(dst->is_Phi(), "nobody else uses a hidden region");
 438         phi = dst->as_Phi();
 439       }
 440       if (add_multiple && src->in(0) == ex_control) {
 441         // Both are phis.
 442         add_n_reqs(dst, src);
 443       } else {
 444         while (dst->req() < region->req())  add_one_req(dst, src);
 445       }
 446       const Type* srctype = _gvn.type(src);
 447       if (phi->type() != srctype) {
 448         const Type* dsttype = phi->type()->meet_speculative(srctype);
 449         if (phi->type() != dsttype) {
 450           phi->set_type(dsttype);
 451           _gvn.set_type(phi, dsttype);
 452         }
 453       }
 454     }
 455   }
 456   phi_map->merge_replaced_nodes_with(ex_map);
 457 }
 458 
 459 //--------------------------use_exception_state--------------------------------
 460 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 461   if (failing()) { stop(); return top(); }
 462   Node* region = phi_map->control();
 463   Node* hidden_merge_mark = root();
 464   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 465   Node* ex_oop = clear_saved_ex_oop(phi_map);
 466   if (region->in(0) == hidden_merge_mark) {
 467     // Special marking for internal ex-states.  Process the phis now.
 468     region->set_req(0, region);  // now it's an ordinary region
 469     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 470     // Note: Setting the jvms also sets the bci and sp.
 471     set_control(_gvn.transform(region));
 472     uint tos = jvms()->stkoff() + sp();
 473     for (uint i = 1; i < tos; i++) {
 474       Node* x = phi_map->in(i);
 475       if (x->in(0) == region) {
 476         assert(x->is_Phi(), "expected a special phi");
 477         phi_map->set_req(i, _gvn.transform(x));
 478       }
 479     }
 480     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 481       Node* x = mms.memory();
 482       if (x->in(0) == region) {
 483         assert(x->is_Phi(), "nobody else uses a hidden region");
 484         mms.set_memory(_gvn.transform(x));
 485       }
 486     }
 487     if (ex_oop->in(0) == region) {
 488       assert(ex_oop->is_Phi(), "expected a special phi");
 489       ex_oop = _gvn.transform(ex_oop);
 490     }
 491   } else {
 492     set_jvms(phi_map->jvms());
 493   }
 494 
 495   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 496   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 497   return ex_oop;
 498 }
 499 
 500 //---------------------------------java_bc-------------------------------------
 501 Bytecodes::Code GraphKit::java_bc() const {
 502   ciMethod* method = this->method();
 503   int       bci    = this->bci();
 504   if (method != nullptr && bci != InvocationEntryBci)
 505     return method->java_code_at_bci(bci);
 506   else
 507     return Bytecodes::_illegal;
 508 }
 509 
 510 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 511                                                           bool must_throw) {
 512     // if the exception capability is set, then we will generate code
 513     // to check the JavaThread.should_post_on_exceptions flag to see
 514     // if we actually need to report exception events (for this
 515     // thread).  If we don't need to report exception events, we will
 516     // take the normal fast path provided by add_exception_events.  If
 517     // exception event reporting is enabled for this thread, we will
 518     // take the uncommon_trap in the BuildCutout below.
 519 
 520     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 521     Node* jthread = _gvn.transform(new ThreadLocalNode());
 522     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 523     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 524 
 525     // Test the should_post_on_exceptions_flag vs. 0
 526     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 527     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 528 
 529     // Branch to slow_path if should_post_on_exceptions_flag was true
 530     { BuildCutout unless(this, tst, PROB_MAX);
 531       // Do not try anything fancy if we're notifying the VM on every throw.
 532       // Cf. case Bytecodes::_athrow in parse2.cpp.
 533       uncommon_trap(reason, Deoptimization::Action_none,
 534                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 535     }
 536 
 537 }
 538 
 539 //------------------------------builtin_throw----------------------------------
 540 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 541   bool must_throw = true;
 542 
 543   // If this particular condition has not yet happened at this
 544   // bytecode, then use the uncommon trap mechanism, and allow for
 545   // a future recompilation if several traps occur here.
 546   // If the throw is hot, try to use a more complicated inline mechanism
 547   // which keeps execution inside the compiled code.
 548   bool treat_throw_as_hot = false;
 549   ciMethodData* md = method()->method_data();
 550 
 551   if (ProfileTraps) {
 552     if (too_many_traps(reason)) {
 553       treat_throw_as_hot = true;
 554     }
 555     // (If there is no MDO at all, assume it is early in
 556     // execution, and that any deopts are part of the
 557     // startup transient, and don't need to be remembered.)
 558 
 559     // Also, if there is a local exception handler, treat all throws
 560     // as hot if there has been at least one in this method.
 561     if (C->trap_count(reason) != 0
 562         && method()->method_data()->trap_count(reason) != 0
 563         && has_ex_handler()) {
 564         treat_throw_as_hot = true;
 565     }
 566   }
 567 
 568   // If this throw happens frequently, an uncommon trap might cause
 569   // a performance pothole.  If there is a local exception handler,
 570   // and if this particular bytecode appears to be deoptimizing often,
 571   // let us handle the throw inline, with a preconstructed instance.
 572   // Note:   If the deopt count has blown up, the uncommon trap
 573   // runtime is going to flush this nmethod, not matter what.
 574   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 575     // If the throw is local, we use a pre-existing instance and
 576     // punt on the backtrace.  This would lead to a missing backtrace
 577     // (a repeat of 4292742) if the backtrace object is ever asked
 578     // for its backtrace.
 579     // Fixing this remaining case of 4292742 requires some flavor of
 580     // escape analysis.  Leave that for the future.
 581     ciInstance* ex_obj = nullptr;
 582     switch (reason) {
 583     case Deoptimization::Reason_null_check:
 584       ex_obj = env()->NullPointerException_instance();
 585       break;
 586     case Deoptimization::Reason_div0_check:
 587       ex_obj = env()->ArithmeticException_instance();
 588       break;
 589     case Deoptimization::Reason_range_check:
 590       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 591       break;
 592     case Deoptimization::Reason_class_check:
 593       ex_obj = env()->ClassCastException_instance();
 594       break;
 595     case Deoptimization::Reason_array_check:
 596       ex_obj = env()->ArrayStoreException_instance();
 597       break;
 598     default:
 599       break;
 600     }
 601     if (failing()) { stop(); return; }  // exception allocation might fail
 602     if (ex_obj != nullptr) {
 603       if (env()->jvmti_can_post_on_exceptions()) {
 604         // check if we must post exception events, take uncommon trap if so
 605         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 606         // here if should_post_on_exceptions is false
 607         // continue on with the normal codegen
 608       }
 609 
 610       // Cheat with a preallocated exception object.
 611       if (C->log() != nullptr)
 612         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 613                        Deoptimization::trap_reason_name(reason));
 614       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 615       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 616 
 617       // Clear the detail message of the preallocated exception object.
 618       // Weblogic sometimes mutates the detail message of exceptions
 619       // using reflection.
 620       int offset = java_lang_Throwable::get_detailMessage_offset();
 621       const TypePtr* adr_typ = ex_con->add_offset(offset);
 622 
 623       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 624       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 625       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 626 
 627       if (!method()->has_exception_handlers()) {
 628         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 629         // This prevents issues with exception handling and late inlining.
 630         set_sp(0);
 631         clean_stack(0);
 632       }
 633 
 634       add_exception_state(make_exception_state(ex_node));
 635       return;
 636     }
 637   }
 638 
 639   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 640   // It won't be much cheaper than bailing to the interp., since we'll
 641   // have to pass up all the debug-info, and the runtime will have to
 642   // create the stack trace.
 643 
 644   // Usual case:  Bail to interpreter.
 645   // Reserve the right to recompile if we haven't seen anything yet.
 646 
 647   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 648   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 649   if (treat_throw_as_hot
 650       && (method()->method_data()->trap_recompiled_at(bci(), m)
 651           || C->too_many_traps(reason))) {
 652     // We cannot afford to take more traps here.  Suffer in the interpreter.
 653     if (C->log() != nullptr)
 654       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 655                      Deoptimization::trap_reason_name(reason),
 656                      C->trap_count(reason));
 657     action = Deoptimization::Action_none;
 658   }
 659 
 660   // "must_throw" prunes the JVM state to include only the stack, if there
 661   // are no local exception handlers.  This should cut down on register
 662   // allocation time and code size, by drastically reducing the number
 663   // of in-edges on the call to the uncommon trap.
 664 
 665   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 666 }
 667 
 668 
 669 //----------------------------PreserveJVMState---------------------------------
 670 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 671   debug_only(kit->verify_map());
 672   _kit    = kit;
 673   _map    = kit->map();   // preserve the map
 674   _sp     = kit->sp();
 675   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 676 #ifdef ASSERT
 677   _bci    = kit->bci();
 678   Parse* parser = kit->is_Parse();
 679   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 680   _block  = block;
 681 #endif
 682 }
 683 PreserveJVMState::~PreserveJVMState() {
 684   GraphKit* kit = _kit;
 685 #ifdef ASSERT
 686   assert(kit->bci() == _bci, "bci must not shift");
 687   Parse* parser = kit->is_Parse();
 688   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 689   assert(block == _block,    "block must not shift");
 690 #endif
 691   kit->set_map(_map);
 692   kit->set_sp(_sp);
 693 }
 694 
 695 
 696 //-----------------------------BuildCutout-------------------------------------
 697 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 698   : PreserveJVMState(kit)
 699 {
 700   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 701   SafePointNode* outer_map = _map;   // preserved map is caller's
 702   SafePointNode* inner_map = kit->map();
 703   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 704   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 705   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 706 }
 707 BuildCutout::~BuildCutout() {
 708   GraphKit* kit = _kit;
 709   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 710 }
 711 
 712 //---------------------------PreserveReexecuteState----------------------------
 713 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 714   assert(!kit->stopped(), "must call stopped() before");
 715   _kit    =    kit;
 716   _sp     =    kit->sp();
 717   _reexecute = kit->jvms()->_reexecute;
 718 }
 719 PreserveReexecuteState::~PreserveReexecuteState() {
 720   if (_kit->stopped()) return;
 721   _kit->jvms()->_reexecute = _reexecute;
 722   _kit->set_sp(_sp);
 723 }
 724 
 725 //------------------------------clone_map--------------------------------------
 726 // Implementation of PreserveJVMState
 727 //
 728 // Only clone_map(...) here. If this function is only used in the
 729 // PreserveJVMState class we may want to get rid of this extra
 730 // function eventually and do it all there.
 731 
 732 SafePointNode* GraphKit::clone_map() {
 733   if (map() == nullptr)  return nullptr;
 734 
 735   // Clone the memory edge first
 736   Node* mem = MergeMemNode::make(map()->memory());
 737   gvn().set_type_bottom(mem);
 738 
 739   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 740   JVMState* jvms = this->jvms();
 741   JVMState* clonejvms = jvms->clone_shallow(C);
 742   clonemap->set_memory(mem);
 743   clonemap->set_jvms(clonejvms);
 744   clonejvms->set_map(clonemap);
 745   record_for_igvn(clonemap);
 746   gvn().set_type_bottom(clonemap);
 747   return clonemap;
 748 }
 749 
 750 //-----------------------------destruct_map_clone------------------------------
 751 //
 752 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 753 // to destruct/free/delete in the exact opposite order as clone_map().
 754 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 755   if (sfp == nullptr) return;
 756 
 757   Node* mem = sfp->memory();
 758   JVMState* jvms = sfp->jvms();
 759 
 760   if (jvms != nullptr) {
 761     delete jvms;
 762   }
 763 
 764   remove_for_igvn(sfp);
 765   gvn().clear_type(sfp);
 766   sfp->destruct(&_gvn);
 767 
 768   if (mem != nullptr) {
 769     gvn().clear_type(mem);
 770     mem->destruct(&_gvn);
 771   }
 772 }
 773 
 774 //-----------------------------set_map_clone-----------------------------------
 775 void GraphKit::set_map_clone(SafePointNode* m) {
 776   _map = m;
 777   _map = clone_map();
 778   _map->set_next_exception(nullptr);
 779   debug_only(verify_map());
 780 }
 781 
 782 
 783 //----------------------------kill_dead_locals---------------------------------
 784 // Detect any locals which are known to be dead, and force them to top.
 785 void GraphKit::kill_dead_locals() {
 786   // Consult the liveness information for the locals.  If any
 787   // of them are unused, then they can be replaced by top().  This
 788   // should help register allocation time and cut down on the size
 789   // of the deoptimization information.
 790 
 791   // This call is made from many of the bytecode handling
 792   // subroutines called from the Big Switch in do_one_bytecode.
 793   // Every bytecode which might include a slow path is responsible
 794   // for killing its dead locals.  The more consistent we
 795   // are about killing deads, the fewer useless phis will be
 796   // constructed for them at various merge points.
 797 
 798   // bci can be -1 (InvocationEntryBci).  We return the entry
 799   // liveness for the method.
 800 
 801   if (method() == nullptr || method()->code_size() == 0) {
 802     // We are building a graph for a call to a native method.
 803     // All locals are live.
 804     return;
 805   }
 806 
 807   ResourceMark rm;
 808 
 809   // Consult the liveness information for the locals.  If any
 810   // of them are unused, then they can be replaced by top().  This
 811   // should help register allocation time and cut down on the size
 812   // of the deoptimization information.
 813   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 814 
 815   int len = (int)live_locals.size();
 816   assert(len <= jvms()->loc_size(), "too many live locals");
 817   for (int local = 0; local < len; local++) {
 818     if (!live_locals.at(local)) {
 819       set_local(local, top());
 820     }
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 //-------------------------dead_locals_are_killed------------------------------
 826 // Return true if all dead locals are set to top in the map.
 827 // Used to assert "clean" debug info at various points.
 828 bool GraphKit::dead_locals_are_killed() {
 829   if (method() == nullptr || method()->code_size() == 0) {
 830     // No locals need to be dead, so all is as it should be.
 831     return true;
 832   }
 833 
 834   // Make sure somebody called kill_dead_locals upstream.
 835   ResourceMark rm;
 836   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 837     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 838     SafePointNode* map = jvms->map();
 839     ciMethod* method = jvms->method();
 840     int       bci    = jvms->bci();
 841     if (jvms == this->jvms()) {
 842       bci = this->bci();  // it might not yet be synched
 843     }
 844     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 845     int len = (int)live_locals.size();
 846     if (!live_locals.is_valid() || len == 0)
 847       // This method is trivial, or is poisoned by a breakpoint.
 848       return true;
 849     assert(len == jvms->loc_size(), "live map consistent with locals map");
 850     for (int local = 0; local < len; local++) {
 851       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 893 
 894   // Walk the inline list to fill in the correct set of JVMState's
 895   // Also fill in the associated edges for each JVMState.
 896 
 897   // If the bytecode needs to be reexecuted we need to put
 898   // the arguments back on the stack.
 899   const bool should_reexecute = jvms()->should_reexecute();
 900   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 901 
 902   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 903   // undefined if the bci is different.  This is normal for Parse but it
 904   // should not happen for LibraryCallKit because only one bci is processed.
 905   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 906          "in LibraryCallKit the reexecute bit should not change");
 907 
 908   // If we are guaranteed to throw, we can prune everything but the
 909   // input to the current bytecode.
 910   bool can_prune_locals = false;
 911   uint stack_slots_not_pruned = 0;
 912   int inputs = 0, depth = 0;
 913   if (must_throw) {
 914     assert(method() == youngest_jvms->method(), "sanity");
 915     if (compute_stack_effects(inputs, depth)) {
 916       can_prune_locals = true;
 917       stack_slots_not_pruned = inputs;
 918     }
 919   }
 920 
 921   if (env()->should_retain_local_variables()) {
 922     // At any safepoint, this method can get breakpointed, which would
 923     // then require an immediate deoptimization.
 924     can_prune_locals = false;  // do not prune locals
 925     stack_slots_not_pruned = 0;
 926   }
 927 
 928   // do not scribble on the input jvms
 929   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 930   call->set_jvms(out_jvms); // Start jvms list for call node
 931 
 932   // For a known set of bytecodes, the interpreter should reexecute them if
 933   // deoptimization happens. We set the reexecute state for them here
 934   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 935       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 936 #ifdef ASSERT
 937     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 938     assert(method() == youngest_jvms->method(), "sanity");
 939     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 940     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 941 #endif // ASSERT
 942     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 943   }
 944 
 945   // Presize the call:
 946   DEBUG_ONLY(uint non_debug_edges = call->req());
 947   call->add_req_batch(top(), youngest_jvms->debug_depth());
 948   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 949 
 950   // Set up edges so that the call looks like this:
 951   //  Call [state:] ctl io mem fptr retadr
 952   //       [parms:] parm0 ... parmN
 953   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 954   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 955   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   // Note that caller debug info precedes callee debug info.
 957 
 958   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 959   uint debug_ptr = call->req();
 960 
 961   // Loop over the map input edges associated with jvms, add them
 962   // to the call node, & reset all offsets to match call node array.
 963   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 964     uint debug_end   = debug_ptr;
 965     uint debug_start = debug_ptr - in_jvms->debug_size();
 966     debug_ptr = debug_start;  // back up the ptr
 967 
 968     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 969     uint j, k, l;
 970     SafePointNode* in_map = in_jvms->map();
 971     out_jvms->set_map(call);
 972 
 973     if (can_prune_locals) {
 974       assert(in_jvms->method() == out_jvms->method(), "sanity");
 975       // If the current throw can reach an exception handler in this JVMS,
 976       // then we must keep everything live that can reach that handler.
 977       // As a quick and dirty approximation, we look for any handlers at all.
 978       if (in_jvms->method()->has_exception_handlers()) {
 979         can_prune_locals = false;
 980       }
 981     }
 982 
 983     // Add the Locals
 984     k = in_jvms->locoff();
 985     l = in_jvms->loc_size();
 986     out_jvms->set_locoff(p);
 987     if (!can_prune_locals) {
 988       for (j = 0; j < l; j++)
 989         call->set_req(p++, in_map->in(k+j));
 990     } else {
 991       p += l;  // already set to top above by add_req_batch
 992     }
 993 
 994     // Add the Expression Stack
 995     k = in_jvms->stkoff();
 996     l = in_jvms->sp();
 997     out_jvms->set_stkoff(p);
 998     if (!can_prune_locals) {
 999       for (j = 0; j < l; j++)
1000         call->set_req(p++, in_map->in(k+j));
1001     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1002       // Divide stack into {S0,...,S1}, where S0 is set to top.
1003       uint s1 = stack_slots_not_pruned;
1004       stack_slots_not_pruned = 0;  // for next iteration
1005       if (s1 > l)  s1 = l;
1006       uint s0 = l - s1;
1007       p += s0;  // skip the tops preinstalled by add_req_batch
1008       for (j = s0; j < l; j++)
1009         call->set_req(p++, in_map->in(k+j));
1010     } else {
1011       p += l;  // already set to top above by add_req_batch
1012     }
1013 
1014     // Add the Monitors
1015     k = in_jvms->monoff();
1016     l = in_jvms->mon_size();
1017     out_jvms->set_monoff(p);
1018     for (j = 0; j < l; j++)
1019       call->set_req(p++, in_map->in(k+j));
1020 
1021     // Copy any scalar object fields.
1022     k = in_jvms->scloff();
1023     l = in_jvms->scl_size();
1024     out_jvms->set_scloff(p);
1025     for (j = 0; j < l; j++)
1026       call->set_req(p++, in_map->in(k+j));
1027 
1028     // Finish the new jvms.
1029     out_jvms->set_endoff(p);
1030 
1031     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1032     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1033     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1034     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1035     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1036     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1037 
1038     // Update the two tail pointers in parallel.
1039     out_jvms = out_jvms->caller();
1040     in_jvms  = in_jvms->caller();
1041   }
1042 
1043   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1044 
1045   // Test the correctness of JVMState::debug_xxx accessors:
1046   assert(call->jvms()->debug_start() == non_debug_edges, "");
1047   assert(call->jvms()->debug_end()   == call->req(), "");
1048   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1049 }
1050 
1051 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1052   Bytecodes::Code code = java_bc();
1053   if (code == Bytecodes::_wide) {
1054     code = method()->java_code_at_bci(bci() + 1);
1055   }
1056 
1057   if (code != Bytecodes::_illegal) {
1058     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1059   }
1060 
1061   auto rsize = [&]() {
1062     assert(code != Bytecodes::_illegal, "code is illegal!");
1063     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1064     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1065   };
1066 
1067   switch (code) {
1068   case Bytecodes::_illegal:
1069     return false;
1070 
1071   case Bytecodes::_ldc:
1072   case Bytecodes::_ldc_w:
1073   case Bytecodes::_ldc2_w:
1074     inputs = 0;
1075     break;
1076 
1077   case Bytecodes::_dup:         inputs = 1;  break;
1078   case Bytecodes::_dup_x1:      inputs = 2;  break;
1079   case Bytecodes::_dup_x2:      inputs = 3;  break;
1080   case Bytecodes::_dup2:        inputs = 2;  break;
1081   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1082   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1083   case Bytecodes::_swap:        inputs = 2;  break;
1084   case Bytecodes::_arraylength: inputs = 1;  break;
1085 
1086   case Bytecodes::_getstatic:
1087   case Bytecodes::_putstatic:
1088   case Bytecodes::_getfield:
1089   case Bytecodes::_putfield:
1090     {
1091       bool ignored_will_link;
1092       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1093       int      size  = field->type()->size();
1094       bool is_get = (depth >= 0), is_static = (depth & 1);
1095       inputs = (is_static ? 0 : 1);
1096       if (is_get) {
1097         depth = size - inputs;
1098       } else {
1099         inputs += size;        // putxxx pops the value from the stack
1100         depth = - inputs;
1101       }
1102     }
1103     break;
1104 
1105   case Bytecodes::_invokevirtual:
1106   case Bytecodes::_invokespecial:
1107   case Bytecodes::_invokestatic:
1108   case Bytecodes::_invokedynamic:
1109   case Bytecodes::_invokeinterface:
1110     {
1111       bool ignored_will_link;
1112       ciSignature* declared_signature = nullptr;
1113       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1114       assert(declared_signature != nullptr, "cannot be null");
1115       inputs   = declared_signature->arg_size_for_bc(code);
1116       int size = declared_signature->return_type()->size();
1117       depth = size - inputs;
1118     }
1119     break;
1120 
1121   case Bytecodes::_multianewarray:
1122     {
1123       ciBytecodeStream iter(method());
1124       iter.reset_to_bci(bci());
1125       iter.next();
1126       inputs = iter.get_dimensions();
1127       assert(rsize() == 1, "");
1128       depth = 1 - inputs;
1129     }
1130     break;
1131 
1132   case Bytecodes::_withfield: {
1133     bool ignored_will_link;
1134     ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1135     int      size  = field->type()->size();
1136     inputs = size+1;
1137     depth = rsize() - inputs;
1138     break;
1139   }
1140 
1141   case Bytecodes::_ireturn:
1142   case Bytecodes::_lreturn:
1143   case Bytecodes::_freturn:
1144   case Bytecodes::_dreturn:
1145   case Bytecodes::_areturn:
1146     assert(rsize() == -depth, "");
1147     inputs = -depth;
1148     break;
1149 
1150   case Bytecodes::_jsr:
1151   case Bytecodes::_jsr_w:
1152     inputs = 0;
1153     depth  = 1;                  // S.B. depth=1, not zero
1154     break;
1155 
1156   default:
1157     // bytecode produces a typed result
1158     inputs = rsize() - depth;
1159     assert(inputs >= 0, "");
1160     break;
1161   }
1162 
1163 #ifdef ASSERT
1164   // spot check
1165   int outputs = depth + inputs;
1166   assert(outputs >= 0, "sanity");
1167   switch (code) {
1168   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1169   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1170   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1171   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1172   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1173   default:                    break;
1174   }
1175 #endif //ASSERT
1176 
1177   return true;
1178 }
1179 
1180 
1181 
1182 //------------------------------basic_plus_adr---------------------------------
1183 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1184   // short-circuit a common case
1185   if (offset == intcon(0))  return ptr;
1186   return _gvn.transform( new AddPNode(base, ptr, offset) );
1187 }
1188 
1189 Node* GraphKit::ConvI2L(Node* offset) {
1190   // short-circuit a common case
1191   jint offset_con = find_int_con(offset, Type::OffsetBot);
1192   if (offset_con != Type::OffsetBot) {
1193     return longcon((jlong) offset_con);
1194   }
1195   return _gvn.transform( new ConvI2LNode(offset));
1196 }
1197 
1198 Node* GraphKit::ConvI2UL(Node* offset) {
1199   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1200   if (offset_con != (juint) Type::OffsetBot) {
1201     return longcon((julong) offset_con);
1202   }
1203   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1204   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1205   return _gvn.transform( new AndLNode(conv, mask) );
1206 }
1207 
1208 Node* GraphKit::ConvL2I(Node* offset) {
1209   // short-circuit a common case
1210   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1211   if (offset_con != (jlong)Type::OffsetBot) {
1212     return intcon((int) offset_con);
1213   }
1214   return _gvn.transform( new ConvL2INode(offset));
1215 }
1216 
1217 //-------------------------load_object_klass-----------------------------------
1218 Node* GraphKit::load_object_klass(Node* obj) {
1219   // Special-case a fresh allocation to avoid building nodes:
1220   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1221   if (akls != nullptr)  return akls;
1222   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1223   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1224 }
1225 
1226 //-------------------------load_array_length-----------------------------------
1227 Node* GraphKit::load_array_length(Node* array) {
1228   // Special-case a fresh allocation to avoid building nodes:
1229   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1230   Node *alen;
1231   if (alloc == nullptr) {
1232     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1233     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1234   } else {
1235     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1236   }
1237   return alen;
1238 }
1239 
1240 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1241                                    const TypeOopPtr* oop_type,
1242                                    bool replace_length_in_map) {
1243   Node* length = alloc->Ideal_length();
1244   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1245     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1246     if (ccast != length) {
1247       // do not transform ccast here, it might convert to top node for
1248       // negative array length and break assumptions in parsing stage.
1249       _gvn.set_type_bottom(ccast);
1250       record_for_igvn(ccast);
1251       if (replace_length_in_map) {
1252         replace_in_map(length, ccast);
1253       }
1254       return ccast;
1255     }
1256   }
1257   return length;
1258 }
1259 
1260 //------------------------------do_null_check----------------------------------
1261 // Helper function to do a null pointer check.  Returned value is
1262 // the incoming address with null casted away.  You are allowed to use the
1263 // not-null value only if you are control dependent on the test.
1264 #ifndef PRODUCT
1265 extern uint explicit_null_checks_inserted,
1266             explicit_null_checks_elided;
1267 #endif
1268 Node* GraphKit::null_check_common(Node* value, BasicType type,
1269                                   // optional arguments for variations:
1270                                   bool assert_null,
1271                                   Node* *null_control,
1272                                   bool speculative,
1273                                   bool is_init_check) {
1274   assert(!assert_null || null_control == nullptr, "not both at once");
1275   if (stopped())  return top();
1276   NOT_PRODUCT(explicit_null_checks_inserted++);
1277 
1278   if (value->is_InlineType()) {
1279     // Null checking a scalarized but nullable inline type. Check the IsInit
1280     // input instead of the oop input to avoid keeping buffer allocations alive.
1281     InlineTypeNode* vtptr = value->as_InlineType();
1282     while (vtptr->get_oop()->is_InlineType()) {
1283       vtptr = vtptr->get_oop()->as_InlineType();
1284     }
1285     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1286     if (stopped()) {
1287       return top();
1288     }
1289     if (assert_null) {
1290       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1291       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1292       // replace_in_map(value, vtptr);
1293       // return vtptr;
1294       return null();
1295     }
1296     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1297     return cast_not_null(value, do_replace_in_map);
1298   }
1299 
1300   // Construct null check
1301   Node *chk = nullptr;
1302   switch(type) {
1303     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1304     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1305     case T_PRIMITIVE_OBJECT : // fall through
1306     case T_ARRAY  : // fall through
1307       type = T_OBJECT;  // simplify further tests
1308     case T_OBJECT : {
1309       const Type *t = _gvn.type( value );
1310 
1311       const TypeOopPtr* tp = t->isa_oopptr();
1312       if (tp != nullptr && !tp->is_loaded()
1313           // Only for do_null_check, not any of its siblings:
1314           && !assert_null && null_control == nullptr) {
1315         // Usually, any field access or invocation on an unloaded oop type
1316         // will simply fail to link, since the statically linked class is
1317         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1318         // the static class is loaded but the sharper oop type is not.
1319         // Rather than checking for this obscure case in lots of places,
1320         // we simply observe that a null check on an unloaded class
1321         // will always be followed by a nonsense operation, so we
1322         // can just issue the uncommon trap here.
1323         // Our access to the unloaded class will only be correct
1324         // after it has been loaded and initialized, which requires
1325         // a trip through the interpreter.
1326         ciKlass* klass = tp->unloaded_klass();
1327 #ifndef PRODUCT
1328         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1329 #endif
1330         uncommon_trap(Deoptimization::Reason_unloaded,
1331                       Deoptimization::Action_reinterpret,
1332                       klass, "!loaded");
1333         return top();
1334       }
1335 
1336       if (assert_null) {
1337         // See if the type is contained in NULL_PTR.
1338         // If so, then the value is already null.
1339         if (t->higher_equal(TypePtr::NULL_PTR)) {
1340           NOT_PRODUCT(explicit_null_checks_elided++);
1341           return value;           // Elided null assert quickly!
1342         }
1343       } else {
1344         // See if mixing in the null pointer changes type.
1345         // If so, then the null pointer was not allowed in the original
1346         // type.  In other words, "value" was not-null.
1347         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1348           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1349           NOT_PRODUCT(explicit_null_checks_elided++);
1350           return value;           // Elided null check quickly!
1351         }
1352       }
1353       chk = new CmpPNode( value, null() );
1354       break;
1355     }
1356 
1357     default:
1358       fatal("unexpected type: %s", type2name(type));
1359   }
1360   assert(chk != nullptr, "sanity check");
1361   chk = _gvn.transform(chk);
1362 
1363   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1364   BoolNode *btst = new BoolNode( chk, btest);
1365   Node   *tst = _gvn.transform( btst );
1366 
1367   //-----------
1368   // if peephole optimizations occurred, a prior test existed.
1369   // If a prior test existed, maybe it dominates as we can avoid this test.
1370   if (tst != btst && type == T_OBJECT) {
1371     // At this point we want to scan up the CFG to see if we can
1372     // find an identical test (and so avoid this test altogether).
1373     Node *cfg = control();
1374     int depth = 0;
1375     while( depth < 16 ) {       // Limit search depth for speed
1376       if( cfg->Opcode() == Op_IfTrue &&
1377           cfg->in(0)->in(1) == tst ) {
1378         // Found prior test.  Use "cast_not_null" to construct an identical
1379         // CastPP (and hence hash to) as already exists for the prior test.
1380         // Return that casted value.
1381         if (assert_null) {
1382           replace_in_map(value, null());
1383           return null();  // do not issue the redundant test
1384         }
1385         Node *oldcontrol = control();
1386         set_control(cfg);
1387         Node *res = cast_not_null(value);
1388         set_control(oldcontrol);
1389         NOT_PRODUCT(explicit_null_checks_elided++);
1390         return res;
1391       }
1392       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1393       if (cfg == nullptr)  break;  // Quit at region nodes
1394       depth++;
1395     }
1396   }
1397 
1398   //-----------
1399   // Branch to failure if null
1400   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1401   Deoptimization::DeoptReason reason;
1402   if (assert_null) {
1403     reason = Deoptimization::reason_null_assert(speculative);
1404   } else if (type == T_OBJECT || is_init_check) {
1405     reason = Deoptimization::reason_null_check(speculative);
1406   } else {
1407     reason = Deoptimization::Reason_div0_check;
1408   }
1409   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1410   // ciMethodData::has_trap_at will return a conservative -1 if any
1411   // must-be-null assertion has failed.  This could cause performance
1412   // problems for a method after its first do_null_assert failure.
1413   // Consider using 'Reason_class_check' instead?
1414 
1415   // To cause an implicit null check, we set the not-null probability
1416   // to the maximum (PROB_MAX).  For an explicit check the probability
1417   // is set to a smaller value.
1418   if (null_control != nullptr || too_many_traps(reason)) {
1419     // probability is less likely
1420     ok_prob =  PROB_LIKELY_MAG(3);
1421   } else if (!assert_null &&
1422              (ImplicitNullCheckThreshold > 0) &&
1423              method() != nullptr &&
1424              (method()->method_data()->trap_count(reason)
1425               >= (uint)ImplicitNullCheckThreshold)) {
1426     ok_prob =  PROB_LIKELY_MAG(3);
1427   }
1428 
1429   if (null_control != nullptr) {
1430     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1431     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1432     set_control(      _gvn.transform( new IfTrueNode(iff)));
1433 #ifndef PRODUCT
1434     if (null_true == top()) {
1435       explicit_null_checks_elided++;
1436     }
1437 #endif
1438     (*null_control) = null_true;
1439   } else {
1440     BuildCutout unless(this, tst, ok_prob);
1441     // Check for optimizer eliding test at parse time
1442     if (stopped()) {
1443       // Failure not possible; do not bother making uncommon trap.
1444       NOT_PRODUCT(explicit_null_checks_elided++);
1445     } else if (assert_null) {
1446       uncommon_trap(reason,
1447                     Deoptimization::Action_make_not_entrant,
1448                     nullptr, "assert_null");
1449     } else {
1450       replace_in_map(value, zerocon(type));
1451       builtin_throw(reason);
1452     }
1453   }
1454 
1455   // Must throw exception, fall-thru not possible?
1456   if (stopped()) {
1457     return top();               // No result
1458   }
1459 
1460   if (assert_null) {
1461     // Cast obj to null on this path.
1462     replace_in_map(value, zerocon(type));
1463     return zerocon(type);
1464   }
1465 
1466   // Cast obj to not-null on this path, if there is no null_control.
1467   // (If there is a null_control, a non-null value may come back to haunt us.)
1468   if (type == T_OBJECT) {
1469     Node* cast = cast_not_null(value, false);
1470     if (null_control == nullptr || (*null_control) == top())
1471       replace_in_map(value, cast);
1472     value = cast;
1473   }
1474 
1475   return value;
1476 }
1477 
1478 //------------------------------cast_not_null----------------------------------
1479 // Cast obj to not-null on this path
1480 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1481   if (obj->is_InlineType()) {
1482     Node* vt = obj->clone();
1483     vt->as_InlineType()->set_is_init(_gvn);
1484     vt = _gvn.transform(vt);
1485     if (do_replace_in_map) {
1486       replace_in_map(obj, vt);
1487     }
1488     return vt;
1489   }
1490   const Type *t = _gvn.type(obj);
1491   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1492   // Object is already not-null?
1493   if( t == t_not_null ) return obj;
1494 
1495   Node *cast = new CastPPNode(obj,t_not_null);
1496   cast->init_req(0, control());
1497   cast = _gvn.transform( cast );
1498 
1499   // Scan for instances of 'obj' in the current JVM mapping.
1500   // These instances are known to be not-null after the test.
1501   if (do_replace_in_map)
1502     replace_in_map(obj, cast);
1503 
1504   return cast;                  // Return casted value
1505 }
1506 
1507 // Sometimes in intrinsics, we implicitly know an object is not null
1508 // (there's no actual null check) so we can cast it to not null. In
1509 // the course of optimizations, the input to the cast can become null.
1510 // In that case that data path will die and we need the control path
1511 // to become dead as well to keep the graph consistent. So we have to
1512 // add a check for null for which one branch can't be taken. It uses
1513 // an Opaque4 node that will cause the check to be removed after loop
1514 // opts so the test goes away and the compiled code doesn't execute a
1515 // useless check.
1516 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1517   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1518     return value;
1519   }
1520   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1521   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1522   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1523   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1524   _gvn.set_type(iff, iff->Value(&_gvn));
1525   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1526   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1527   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1528   C->root()->add_req(halt);
1529   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1530   set_control(if_t);
1531   return cast_not_null(value, do_replace_in_map);
1532 }
1533 
1534 
1535 //--------------------------replace_in_map-------------------------------------
1536 void GraphKit::replace_in_map(Node* old, Node* neww) {
1537   if (old == neww) {
1538     return;
1539   }
1540 
1541   map()->replace_edge(old, neww);
1542 
1543   // Note: This operation potentially replaces any edge
1544   // on the map.  This includes locals, stack, and monitors
1545   // of the current (innermost) JVM state.
1546 
1547   // don't let inconsistent types from profiling escape this
1548   // method
1549 
1550   const Type* told = _gvn.type(old);
1551   const Type* tnew = _gvn.type(neww);
1552 
1553   if (!tnew->higher_equal(told)) {
1554     return;
1555   }
1556 
1557   map()->record_replaced_node(old, neww);
1558 }
1559 
1560 
1561 //=============================================================================
1562 //--------------------------------memory---------------------------------------
1563 Node* GraphKit::memory(uint alias_idx) {
1564   MergeMemNode* mem = merged_memory();
1565   Node* p = mem->memory_at(alias_idx);
1566   assert(p != mem->empty_memory(), "empty");
1567   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1568   return p;
1569 }
1570 
1571 //-----------------------------reset_memory------------------------------------
1572 Node* GraphKit::reset_memory() {
1573   Node* mem = map()->memory();
1574   // do not use this node for any more parsing!
1575   debug_only( map()->set_memory((Node*)nullptr) );
1576   return _gvn.transform( mem );
1577 }
1578 
1579 //------------------------------set_all_memory---------------------------------
1580 void GraphKit::set_all_memory(Node* newmem) {
1581   Node* mergemem = MergeMemNode::make(newmem);
1582   gvn().set_type_bottom(mergemem);
1583   map()->set_memory(mergemem);
1584 }
1585 
1586 //------------------------------set_all_memory_call----------------------------
1587 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1588   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1589   set_all_memory(newmem);
1590 }
1591 
1592 //=============================================================================
1593 //
1594 // parser factory methods for MemNodes
1595 //
1596 // These are layered on top of the factory methods in LoadNode and StoreNode,
1597 // and integrate with the parser's memory state and _gvn engine.
1598 //
1599 
1600 // factory methods in "int adr_idx"
1601 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1602                           int adr_idx,
1603                           MemNode::MemOrd mo,
1604                           LoadNode::ControlDependency control_dependency,
1605                           bool require_atomic_access,
1606                           bool unaligned,
1607                           bool mismatched,
1608                           bool unsafe,
1609                           uint8_t barrier_data) {
1610   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1611   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1612   debug_only(adr_type = C->get_adr_type(adr_idx));
1613   Node* mem = memory(adr_idx);
1614   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1615   ld = _gvn.transform(ld);
1616 
1617   if (((bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1618     // Improve graph before escape analysis and boxing elimination.
1619     record_for_igvn(ld);
1620   }
1621   return ld;
1622 }
1623 
1624 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1625                                 int adr_idx,
1626                                 MemNode::MemOrd mo,
1627                                 bool require_atomic_access,
1628                                 bool unaligned,
1629                                 bool mismatched,
1630                                 bool unsafe,
1631                                 int barrier_data) {
1632   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1633   const TypePtr* adr_type = nullptr;
1634   debug_only(adr_type = C->get_adr_type(adr_idx));
1635   Node *mem = memory(adr_idx);
1636   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1637   if (unaligned) {
1638     st->as_Store()->set_unaligned_access();
1639   }
1640   if (mismatched) {
1641     st->as_Store()->set_mismatched_access();
1642   }
1643   if (unsafe) {
1644     st->as_Store()->set_unsafe_access();
1645   }
1646   st->as_Store()->set_barrier_data(barrier_data);
1647   st = _gvn.transform(st);
1648   set_memory(st, adr_idx);
1649   // Back-to-back stores can only remove intermediate store with DU info
1650   // so push on worklist for optimizer.
1651   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1652     record_for_igvn(st);
1653 
1654   return st;
1655 }
1656 
1657 Node* GraphKit::access_store_at(Node* obj,
1658                                 Node* adr,
1659                                 const TypePtr* adr_type,
1660                                 Node* val,
1661                                 const Type* val_type,
1662                                 BasicType bt,
1663                                 DecoratorSet decorators,
1664                                 bool safe_for_replace) {
1665   // Transformation of a value which could be null pointer (CastPP #null)
1666   // could be delayed during Parse (for example, in adjust_map_after_if()).
1667   // Execute transformation here to avoid barrier generation in such case.
1668   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1669     val = _gvn.makecon(TypePtr::NULL_PTR);
1670   }
1671 
1672   if (stopped()) {
1673     return top(); // Dead path ?
1674   }
1675 
1676   assert(val != nullptr, "not dead path");
1677   if (val->is_InlineType()) {
1678     // Store to non-flat field. Buffer the inline type and make sure
1679     // the store is re-executed if the allocation triggers deoptimization.
1680     PreserveReexecuteState preexecs(this);
1681     jvms()->set_should_reexecute(true);
1682     val = val->as_InlineType()->buffer(this, safe_for_replace);
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr_type);
1686   C2AccessValue value(val, val_type);
1687   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1688   if (access.is_raw()) {
1689     return _barrier_set->BarrierSetC2::store_at(access, value);
1690   } else {
1691     return _barrier_set->store_at(access, value);
1692   }
1693 }
1694 
1695 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1696                                Node* adr,   // actual address to store val at
1697                                const TypePtr* adr_type,
1698                                const Type* val_type,
1699                                BasicType bt,
1700                                DecoratorSet decorators,
1701                                Node* ctl) {
1702   if (stopped()) {
1703     return top(); // Dead path ?
1704   }
1705 
1706   C2AccessValuePtr addr(adr, adr_type);
1707   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1708   if (access.is_raw()) {
1709     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1710   } else {
1711     return _barrier_set->load_at(access, val_type);
1712   }
1713 }
1714 
1715 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1716                             const Type* val_type,
1717                             BasicType bt,
1718                             DecoratorSet decorators) {
1719   if (stopped()) {
1720     return top(); // Dead path ?
1721   }
1722 
1723   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1724   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1725   if (access.is_raw()) {
1726     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1727   } else {
1728     return _barrier_set->load_at(access, val_type);
1729   }
1730 }
1731 
1732 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1733                                              Node* adr,
1734                                              const TypePtr* adr_type,
1735                                              int alias_idx,
1736                                              Node* expected_val,
1737                                              Node* new_val,
1738                                              const Type* value_type,
1739                                              BasicType bt,
1740                                              DecoratorSet decorators) {
1741   C2AccessValuePtr addr(adr, adr_type);
1742   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1743                         bt, obj, addr, alias_idx);
1744   if (access.is_raw()) {
1745     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1746   } else {
1747     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1748   }
1749 }
1750 
1751 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1752                                               Node* adr,
1753                                               const TypePtr* adr_type,
1754                                               int alias_idx,
1755                                               Node* expected_val,
1756                                               Node* new_val,
1757                                               const Type* value_type,
1758                                               BasicType bt,
1759                                               DecoratorSet decorators) {
1760   C2AccessValuePtr addr(adr, adr_type);
1761   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1762                         bt, obj, addr, alias_idx);
1763   if (access.is_raw()) {
1764     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1765   } else {
1766     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1767   }
1768 }
1769 
1770 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1771                                       Node* adr,
1772                                       const TypePtr* adr_type,
1773                                       int alias_idx,
1774                                       Node* new_val,
1775                                       const Type* value_type,
1776                                       BasicType bt,
1777                                       DecoratorSet decorators) {
1778   C2AccessValuePtr addr(adr, adr_type);
1779   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1780                         bt, obj, addr, alias_idx);
1781   if (access.is_raw()) {
1782     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1783   } else {
1784     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1785   }
1786 }
1787 
1788 Node* GraphKit::access_atomic_add_at(Node* obj,
1789                                      Node* adr,
1790                                      const TypePtr* adr_type,
1791                                      int alias_idx,
1792                                      Node* new_val,
1793                                      const Type* value_type,
1794                                      BasicType bt,
1795                                      DecoratorSet decorators) {
1796   C2AccessValuePtr addr(adr, adr_type);
1797   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1800   } else {
1801     return _barrier_set->atomic_add_at(access, new_val, value_type);
1802   }
1803 }
1804 
1805 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1806   return _barrier_set->clone(this, src, dst, size, is_array);
1807 }
1808 
1809 //-------------------------array_element_address-------------------------
1810 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1811                                       const TypeInt* sizetype, Node* ctrl) {
1812   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1813   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1814   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1815 
1816   // short-circuit a common case (saves lots of confusing waste motion)
1817   jint idx_con = find_int_con(idx, -1);
1818   if (idx_con >= 0) {
1819     intptr_t offset = header + ((intptr_t)idx_con << shift);
1820     return basic_plus_adr(ary, offset);
1821   }
1822 
1823   // must be correct type for alignment purposes
1824   Node* base  = basic_plus_adr(ary, header);
1825   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1826   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1827   return basic_plus_adr(ary, base, scale);
1828 }
1829 
1830 //-------------------------load_array_element-------------------------
1831 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1832   const Type* elemtype = arytype->elem();
1833   BasicType elembt = elemtype->array_element_basic_type();
1834   assert(elembt != T_PRIMITIVE_OBJECT, "inline types are not supported by this method");
1835   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1836   if (elembt == T_NARROWOOP) {
1837     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1838   }
1839   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1840                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1841   return ld;
1842 }
1843 
1844 //-------------------------set_arguments_for_java_call-------------------------
1845 // Arguments (pre-popped from the stack) are taken from the JVMS.
1846 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1847   PreserveReexecuteState preexecs(this);
1848   if (EnableValhalla) {
1849     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1850     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1851     jvms()->set_should_reexecute(true);
1852     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1853     inc_sp(arg_size);
1854   }
1855   // Add the call arguments
1856   const TypeTuple* domain = call->tf()->domain_sig();
1857   uint nargs = domain->cnt();
1858   int arg_num = 0;
1859   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1860     Node* arg = argument(i-TypeFunc::Parms);
1861     const Type* t = domain->field_at(i);
1862     // TODO 8284443 A static call to a mismatched method should still be scalarized
1863     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1864       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1865       if (!arg->is_InlineType()) {
1866         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1867         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1868       }
1869       InlineTypeNode* vt = arg->as_InlineType();
1870       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1871       // If an inline type argument is passed as fields, attach the Method* to the call site
1872       // to be able to access the extended signature later via attached_method_before_pc().
1873       // For example, see CompiledMethod::preserve_callee_argument_oops().
1874       call->set_override_symbolic_info(true);
1875       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1876       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1877       C->dependencies()->assert_evol_method(call->method());
1878       arg_num++;
1879       continue;
1880     } else if (arg->is_InlineType()) {
1881       // Pass inline type argument via oop to callee
1882       arg = arg->as_InlineType()->buffer(this);
1883       if (!is_late_inline) {
1884         arg = arg->as_InlineType()->get_oop();
1885       }
1886     }
1887     if (t != Type::HALF) {
1888       arg_num++;
1889     }
1890     call->init_req(idx++, arg);
1891   }
1892 }
1893 
1894 //---------------------------set_edges_for_java_call---------------------------
1895 // Connect a newly created call into the current JVMS.
1896 // A return value node (if any) is returned from set_edges_for_java_call.
1897 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1898 
1899   // Add the predefined inputs:
1900   call->init_req( TypeFunc::Control, control() );
1901   call->init_req( TypeFunc::I_O    , i_o() );
1902   call->init_req( TypeFunc::Memory , reset_memory() );
1903   call->init_req( TypeFunc::FramePtr, frameptr() );
1904   call->init_req( TypeFunc::ReturnAdr, top() );
1905 
1906   add_safepoint_edges(call, must_throw);
1907 
1908   Node* xcall = _gvn.transform(call);
1909 
1910   if (xcall == top()) {
1911     set_control(top());
1912     return;
1913   }
1914   assert(xcall == call, "call identity is stable");
1915 
1916   // Re-use the current map to produce the result.
1917 
1918   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1919   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1920   set_all_memory_call(xcall, separate_io_proj);
1921 
1922   //return xcall;   // no need, caller already has it
1923 }
1924 
1925 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1926   if (stopped())  return top();  // maybe the call folded up?
1927 
1928   // Note:  Since any out-of-line call can produce an exception,
1929   // we always insert an I_O projection from the call into the result.
1930 
1931   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1932 
1933   if (separate_io_proj) {
1934     // The caller requested separate projections be used by the fall
1935     // through and exceptional paths, so replace the projections for
1936     // the fall through path.
1937     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1938     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1939   }
1940 
1941   // Capture the return value, if any.
1942   Node* ret;
1943   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1944     ret = top();
1945   } else if (call->tf()->returns_inline_type_as_fields()) {
1946     // Return of multiple values (inline type fields): we create a
1947     // InlineType node, each field is a projection from the call.
1948     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1949     uint base_input = TypeFunc::Parms;
1950     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, call->method()->signature()->returns_null_free_inline_type());
1951   } else {
1952     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1953     ciType* t = call->method()->return_type();
1954     if (t->is_klass()) {
1955       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
1956       if (type->is_inlinetypeptr()) {
1957         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
1958       }
1959     }
1960   }
1961 
1962   return ret;
1963 }
1964 
1965 //--------------------set_predefined_input_for_runtime_call--------------------
1966 // Reading and setting the memory state is way conservative here.
1967 // The real problem is that I am not doing real Type analysis on memory,
1968 // so I cannot distinguish card mark stores from other stores.  Across a GC
1969 // point the Store Barrier and the card mark memory has to agree.  I cannot
1970 // have a card mark store and its barrier split across the GC point from
1971 // either above or below.  Here I get that to happen by reading ALL of memory.
1972 // A better answer would be to separate out card marks from other memory.
1973 // For now, return the input memory state, so that it can be reused
1974 // after the call, if this call has restricted memory effects.
1975 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1976   // Set fixed predefined input arguments
1977   Node* memory = reset_memory();
1978   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1979   call->init_req( TypeFunc::Control,   control()  );
1980   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1981   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1982   call->init_req( TypeFunc::FramePtr,  frameptr() );
1983   call->init_req( TypeFunc::ReturnAdr, top()      );
1984   return memory;
1985 }
1986 
1987 //-------------------set_predefined_output_for_runtime_call--------------------
1988 // Set control and memory (not i_o) from the call.
1989 // If keep_mem is not null, use it for the output state,
1990 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1991 // If hook_mem is null, this call produces no memory effects at all.
1992 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1993 // then only that memory slice is taken from the call.
1994 // In the last case, we must put an appropriate memory barrier before
1995 // the call, so as to create the correct anti-dependencies on loads
1996 // preceding the call.
1997 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1998                                                       Node* keep_mem,
1999                                                       const TypePtr* hook_mem) {
2000   // no i/o
2001   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2002   if (keep_mem) {
2003     // First clone the existing memory state
2004     set_all_memory(keep_mem);
2005     if (hook_mem != nullptr) {
2006       // Make memory for the call
2007       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2008       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2009       // We also use hook_mem to extract specific effects from arraycopy stubs.
2010       set_memory(mem, hook_mem);
2011     }
2012     // ...else the call has NO memory effects.
2013 
2014     // Make sure the call advertises its memory effects precisely.
2015     // This lets us build accurate anti-dependences in gcm.cpp.
2016     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2017            "call node must be constructed correctly");
2018   } else {
2019     assert(hook_mem == nullptr, "");
2020     // This is not a "slow path" call; all memory comes from the call.
2021     set_all_memory_call(call);
2022   }
2023 }
2024 
2025 // Keep track of MergeMems feeding into other MergeMems
2026 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2027   if (!mem->is_MergeMem()) {
2028     return;
2029   }
2030   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2031     Node* use = i.get();
2032     if (use->is_MergeMem()) {
2033       wl.push(use);
2034     }
2035   }
2036 }
2037 
2038 // Replace the call with the current state of the kit.
2039 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2040   JVMState* ejvms = nullptr;
2041   if (has_exceptions()) {
2042     ejvms = transfer_exceptions_into_jvms();
2043   }
2044 
2045   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2046   ReplacedNodes replaced_nodes_exception;
2047   Node* ex_ctl = top();
2048 
2049   SafePointNode* final_state = stop();
2050 
2051   // Find all the needed outputs of this call
2052   CallProjections* callprojs = call->extract_projections(true);
2053 
2054   Unique_Node_List wl;
2055   Node* init_mem = call->in(TypeFunc::Memory);
2056   Node* final_mem = final_state->in(TypeFunc::Memory);
2057   Node* final_ctl = final_state->in(TypeFunc::Control);
2058   Node* final_io = final_state->in(TypeFunc::I_O);
2059 
2060   // Replace all the old call edges with the edges from the inlining result
2061   if (callprojs->fallthrough_catchproj != nullptr) {
2062     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2063   }
2064   if (callprojs->fallthrough_memproj != nullptr) {
2065     if (final_mem->is_MergeMem()) {
2066       // Parser's exits MergeMem was not transformed but may be optimized
2067       final_mem = _gvn.transform(final_mem);
2068     }
2069     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2070     add_mergemem_users_to_worklist(wl, final_mem);
2071   }
2072   if (callprojs->fallthrough_ioproj != nullptr) {
2073     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2074   }
2075 
2076   // Replace the result with the new result if it exists and is used
2077   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2078     // If the inlined code is dead, the result projections for an inline type returned as
2079     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2080     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2081            "unexpected number of results");
2082     C->gvn_replace_by(callprojs->resproj[0], result);
2083   }
2084 
2085   if (ejvms == nullptr) {
2086     // No exception edges to simply kill off those paths
2087     if (callprojs->catchall_catchproj != nullptr) {
2088       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2089     }
2090     if (callprojs->catchall_memproj != nullptr) {
2091       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2092     }
2093     if (callprojs->catchall_ioproj != nullptr) {
2094       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2095     }
2096     // Replace the old exception object with top
2097     if (callprojs->exobj != nullptr) {
2098       C->gvn_replace_by(callprojs->exobj, C->top());
2099     }
2100   } else {
2101     GraphKit ekit(ejvms);
2102 
2103     // Load my combined exception state into the kit, with all phis transformed:
2104     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2105     replaced_nodes_exception = ex_map->replaced_nodes();
2106 
2107     Node* ex_oop = ekit.use_exception_state(ex_map);
2108 
2109     if (callprojs->catchall_catchproj != nullptr) {
2110       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2111       ex_ctl = ekit.control();
2112     }
2113     if (callprojs->catchall_memproj != nullptr) {
2114       Node* ex_mem = ekit.reset_memory();
2115       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2116       add_mergemem_users_to_worklist(wl, ex_mem);
2117     }
2118     if (callprojs->catchall_ioproj != nullptr) {
2119       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2120     }
2121 
2122     // Replace the old exception object with the newly created one
2123     if (callprojs->exobj != nullptr) {
2124       C->gvn_replace_by(callprojs->exobj, ex_oop);
2125     }
2126   }
2127 
2128   // Disconnect the call from the graph
2129   call->disconnect_inputs(C);
2130   C->gvn_replace_by(call, C->top());
2131 
2132   // Clean up any MergeMems that feed other MergeMems since the
2133   // optimizer doesn't like that.
2134   while (wl.size() > 0) {
2135     _gvn.transform(wl.pop());
2136   }
2137 
2138   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2139     replaced_nodes.apply(C, final_ctl);
2140   }
2141   if (!ex_ctl->is_top() && do_replaced_nodes) {
2142     replaced_nodes_exception.apply(C, ex_ctl);
2143   }
2144 }
2145 
2146 
2147 //------------------------------increment_counter------------------------------
2148 // for statistics: increment a VM counter by 1
2149 
2150 void GraphKit::increment_counter(address counter_addr) {
2151   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2152   increment_counter(adr1);
2153 }
2154 
2155 void GraphKit::increment_counter(Node* counter_addr) {
2156   int adr_type = Compile::AliasIdxRaw;
2157   Node* ctrl = control();
2158   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2159   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2160   store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered);
2161 }
2162 
2163 
2164 //------------------------------uncommon_trap----------------------------------
2165 // Bail out to the interpreter in mid-method.  Implemented by calling the
2166 // uncommon_trap blob.  This helper function inserts a runtime call with the
2167 // right debug info.
2168 Node* GraphKit::uncommon_trap(int trap_request,
2169                              ciKlass* klass, const char* comment,
2170                              bool must_throw,
2171                              bool keep_exact_action) {
2172   if (failing())  stop();
2173   if (stopped())  return nullptr; // trap reachable?
2174 
2175   // Note:  If ProfileTraps is true, and if a deopt. actually
2176   // occurs here, the runtime will make sure an MDO exists.  There is
2177   // no need to call method()->ensure_method_data() at this point.
2178 
2179   // Set the stack pointer to the right value for reexecution:
2180   set_sp(reexecute_sp());
2181 
2182 #ifdef ASSERT
2183   if (!must_throw) {
2184     // Make sure the stack has at least enough depth to execute
2185     // the current bytecode.
2186     int inputs, ignored_depth;
2187     if (compute_stack_effects(inputs, ignored_depth)) {
2188       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2189              Bytecodes::name(java_bc()), sp(), inputs);
2190     }
2191   }
2192 #endif
2193 
2194   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2195   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2196 
2197   switch (action) {
2198   case Deoptimization::Action_maybe_recompile:
2199   case Deoptimization::Action_reinterpret:
2200     // Temporary fix for 6529811 to allow virtual calls to be sure they
2201     // get the chance to go from mono->bi->mega
2202     if (!keep_exact_action &&
2203         Deoptimization::trap_request_index(trap_request) < 0 &&
2204         too_many_recompiles(reason)) {
2205       // This BCI is causing too many recompilations.
2206       if (C->log() != nullptr) {
2207         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2208                 Deoptimization::trap_reason_name(reason),
2209                 Deoptimization::trap_action_name(action));
2210       }
2211       action = Deoptimization::Action_none;
2212       trap_request = Deoptimization::make_trap_request(reason, action);
2213     } else {
2214       C->set_trap_can_recompile(true);
2215     }
2216     break;
2217   case Deoptimization::Action_make_not_entrant:
2218     C->set_trap_can_recompile(true);
2219     break;
2220   case Deoptimization::Action_none:
2221   case Deoptimization::Action_make_not_compilable:
2222     break;
2223   default:
2224 #ifdef ASSERT
2225     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2226 #endif
2227     break;
2228   }
2229 
2230   if (TraceOptoParse) {
2231     char buf[100];
2232     tty->print_cr("Uncommon trap %s at bci:%d",
2233                   Deoptimization::format_trap_request(buf, sizeof(buf),
2234                                                       trap_request), bci());
2235   }
2236 
2237   CompileLog* log = C->log();
2238   if (log != nullptr) {
2239     int kid = (klass == nullptr)? -1: log->identify(klass);
2240     log->begin_elem("uncommon_trap bci='%d'", bci());
2241     char buf[100];
2242     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2243                                                           trap_request));
2244     if (kid >= 0)         log->print(" klass='%d'", kid);
2245     if (comment != nullptr)  log->print(" comment='%s'", comment);
2246     log->end_elem();
2247   }
2248 
2249   // Make sure any guarding test views this path as very unlikely
2250   Node *i0 = control()->in(0);
2251   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2252     IfNode *iff = i0->as_If();
2253     float f = iff->_prob;   // Get prob
2254     if (control()->Opcode() == Op_IfTrue) {
2255       if (f > PROB_UNLIKELY_MAG(4))
2256         iff->_prob = PROB_MIN;
2257     } else {
2258       if (f < PROB_LIKELY_MAG(4))
2259         iff->_prob = PROB_MAX;
2260     }
2261   }
2262 
2263   // Clear out dead values from the debug info.
2264   kill_dead_locals();
2265 
2266   // Now insert the uncommon trap subroutine call
2267   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2268   const TypePtr* no_memory_effects = nullptr;
2269   // Pass the index of the class to be loaded
2270   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2271                                  (must_throw ? RC_MUST_THROW : 0),
2272                                  OptoRuntime::uncommon_trap_Type(),
2273                                  call_addr, "uncommon_trap", no_memory_effects,
2274                                  intcon(trap_request));
2275   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2276          "must extract request correctly from the graph");
2277   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2278 
2279   call->set_req(TypeFunc::ReturnAdr, returnadr());
2280   // The debug info is the only real input to this call.
2281 
2282   // Halt-and-catch fire here.  The above call should never return!
2283   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2284                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2285   _gvn.set_type_bottom(halt);
2286   root()->add_req(halt);
2287 
2288   stop_and_kill_map();
2289   return call;
2290 }
2291 
2292 
2293 //--------------------------just_allocated_object------------------------------
2294 // Report the object that was just allocated.
2295 // It must be the case that there are no intervening safepoints.
2296 // We use this to determine if an object is so "fresh" that
2297 // it does not require card marks.
2298 Node* GraphKit::just_allocated_object(Node* current_control) {
2299   Node* ctrl = current_control;
2300   // Object::<init> is invoked after allocation, most of invoke nodes
2301   // will be reduced, but a region node is kept in parse time, we check
2302   // the pattern and skip the region node if it degraded to a copy.
2303   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2304       ctrl->as_Region()->is_copy()) {
2305     ctrl = ctrl->as_Region()->is_copy();
2306   }
2307   if (C->recent_alloc_ctl() == ctrl) {
2308    return C->recent_alloc_obj();
2309   }
2310   return nullptr;
2311 }
2312 
2313 
2314 /**
2315  * Record profiling data exact_kls for Node n with the type system so
2316  * that it can propagate it (speculation)
2317  *
2318  * @param n          node that the type applies to
2319  * @param exact_kls  type from profiling
2320  * @param maybe_null did profiling see null?
2321  *
2322  * @return           node with improved type
2323  */
2324 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2325   const Type* current_type = _gvn.type(n);
2326   assert(UseTypeSpeculation, "type speculation must be on");
2327 
2328   const TypePtr* speculative = current_type->speculative();
2329 
2330   // Should the klass from the profile be recorded in the speculative type?
2331   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2332     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2333     const TypeOopPtr* xtype = tklass->as_instance_type();
2334     assert(xtype->klass_is_exact(), "Should be exact");
2335     // Any reason to believe n is not null (from this profiling or a previous one)?
2336     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2337     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2338     // record the new speculative type's depth
2339     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2340     speculative = speculative->with_inline_depth(jvms()->depth());
2341   } else if (current_type->would_improve_ptr(ptr_kind)) {
2342     // Profiling report that null was never seen so we can change the
2343     // speculative type to non null ptr.
2344     if (ptr_kind == ProfileAlwaysNull) {
2345       speculative = TypePtr::NULL_PTR;
2346     } else {
2347       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2348       const TypePtr* ptr = TypePtr::NOTNULL;
2349       if (speculative != nullptr) {
2350         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2351       } else {
2352         speculative = ptr;
2353       }
2354     }
2355   }
2356 
2357   if (speculative != current_type->speculative()) {
2358     // Build a type with a speculative type (what we think we know
2359     // about the type but will need a guard when we use it)
2360     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2361     // We're changing the type, we need a new CheckCast node to carry
2362     // the new type. The new type depends on the control: what
2363     // profiling tells us is only valid from here as far as we can
2364     // tell.
2365     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2366     cast = _gvn.transform(cast);
2367     replace_in_map(n, cast);
2368     n = cast;
2369   }
2370 
2371   return n;
2372 }
2373 
2374 /**
2375  * Record profiling data from receiver profiling at an invoke with the
2376  * type system so that it can propagate it (speculation)
2377  *
2378  * @param n  receiver node
2379  *
2380  * @return   node with improved type
2381  */
2382 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2383   if (!UseTypeSpeculation) {
2384     return n;
2385   }
2386   ciKlass* exact_kls = profile_has_unique_klass();
2387   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2388   if ((java_bc() == Bytecodes::_checkcast ||
2389        java_bc() == Bytecodes::_instanceof ||
2390        java_bc() == Bytecodes::_aastore) &&
2391       method()->method_data()->is_mature()) {
2392     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2393     if (data != nullptr) {
2394       if (java_bc() == Bytecodes::_aastore) {
2395         ciKlass* array_type = nullptr;
2396         ciKlass* element_type = nullptr;
2397         ProfilePtrKind element_ptr = ProfileMaybeNull;
2398         bool flat_array = true;
2399         bool null_free_array = true;
2400         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2401         exact_kls = element_type;
2402         ptr_kind = element_ptr;
2403       } else {
2404         if (!data->as_BitData()->null_seen()) {
2405           ptr_kind = ProfileNeverNull;
2406         } else {
2407           assert(data->is_ReceiverTypeData(), "bad profile data type");
2408           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2409           uint i = 0;
2410           for (; i < call->row_limit(); i++) {
2411             ciKlass* receiver = call->receiver(i);
2412             if (receiver != nullptr) {
2413               break;
2414             }
2415           }
2416           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2417         }
2418       }
2419     }
2420   }
2421   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2422 }
2423 
2424 /**
2425  * Record profiling data from argument profiling at an invoke with the
2426  * type system so that it can propagate it (speculation)
2427  *
2428  * @param dest_method  target method for the call
2429  * @param bc           what invoke bytecode is this?
2430  */
2431 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2432   if (!UseTypeSpeculation) {
2433     return;
2434   }
2435   const TypeFunc* tf    = TypeFunc::make(dest_method);
2436   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2437   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2438   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2439     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2440     if (is_reference_type(targ->basic_type())) {
2441       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2442       ciKlass* better_type = nullptr;
2443       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2444         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2445       }
2446       i++;
2447     }
2448   }
2449 }
2450 
2451 /**
2452  * Record profiling data from parameter profiling at an invoke with
2453  * the type system so that it can propagate it (speculation)
2454  */
2455 void GraphKit::record_profiled_parameters_for_speculation() {
2456   if (!UseTypeSpeculation) {
2457     return;
2458   }
2459   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2460     if (_gvn.type(local(i))->isa_oopptr()) {
2461       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2462       ciKlass* better_type = nullptr;
2463       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2464         record_profile_for_speculation(local(i), better_type, ptr_kind);
2465       }
2466       j++;
2467     }
2468   }
2469 }
2470 
2471 /**
2472  * Record profiling data from return value profiling at an invoke with
2473  * the type system so that it can propagate it (speculation)
2474  */
2475 void GraphKit::record_profiled_return_for_speculation() {
2476   if (!UseTypeSpeculation) {
2477     return;
2478   }
2479   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2480   ciKlass* better_type = nullptr;
2481   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2482     // If profiling reports a single type for the return value,
2483     // feed it to the type system so it can propagate it as a
2484     // speculative type
2485     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2486   }
2487 }
2488 
2489 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2490   if (Matcher::strict_fp_requires_explicit_rounding) {
2491     // (Note:  TypeFunc::make has a cache that makes this fast.)
2492     const TypeFunc* tf    = TypeFunc::make(dest_method);
2493     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2494     for (int j = 0; j < nargs; j++) {
2495       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2496       if (targ->basic_type() == T_DOUBLE) {
2497         // If any parameters are doubles, they must be rounded before
2498         // the call, dprecision_rounding does gvn.transform
2499         Node *arg = argument(j);
2500         arg = dprecision_rounding(arg);
2501         set_argument(j, arg);
2502       }
2503     }
2504   }
2505 }
2506 
2507 // rounding for strict float precision conformance
2508 Node* GraphKit::precision_rounding(Node* n) {
2509   if (Matcher::strict_fp_requires_explicit_rounding) {
2510 #ifdef IA32
2511     if (UseSSE == 0) {
2512       return _gvn.transform(new RoundFloatNode(0, n));
2513     }
2514 #else
2515     Unimplemented();
2516 #endif // IA32
2517   }
2518   return n;
2519 }
2520 
2521 // rounding for strict double precision conformance
2522 Node* GraphKit::dprecision_rounding(Node *n) {
2523   if (Matcher::strict_fp_requires_explicit_rounding) {
2524 #ifdef IA32
2525     if (UseSSE < 2) {
2526       return _gvn.transform(new RoundDoubleNode(0, n));
2527     }
2528 #else
2529     Unimplemented();
2530 #endif // IA32
2531   }
2532   return n;
2533 }
2534 
2535 //=============================================================================
2536 // Generate a fast path/slow path idiom.  Graph looks like:
2537 // [foo] indicates that 'foo' is a parameter
2538 //
2539 //              [in]     null
2540 //                 \    /
2541 //                  CmpP
2542 //                  Bool ne
2543 //                   If
2544 //                  /  \
2545 //              True    False-<2>
2546 //              / |
2547 //             /  cast_not_null
2548 //           Load  |    |   ^
2549 //        [fast_test]   |   |
2550 // gvn to   opt_test    |   |
2551 //          /    \      |  <1>
2552 //      True     False  |
2553 //        |         \\  |
2554 //   [slow_call]     \[fast_result]
2555 //    Ctl   Val       \      \
2556 //     |               \      \
2557 //    Catch       <1>   \      \
2558 //   /    \        ^     \      \
2559 //  Ex    No_Ex    |      \      \
2560 //  |       \   \  |       \ <2>  \
2561 //  ...      \  [slow_res] |  |    \   [null_result]
2562 //            \         \--+--+---  |  |
2563 //             \           | /    \ | /
2564 //              --------Region     Phi
2565 //
2566 //=============================================================================
2567 // Code is structured as a series of driver functions all called 'do_XXX' that
2568 // call a set of helper functions.  Helper functions first, then drivers.
2569 
2570 //------------------------------null_check_oop---------------------------------
2571 // Null check oop.  Set null-path control into Region in slot 3.
2572 // Make a cast-not-nullness use the other not-null control.  Return cast.
2573 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2574                                bool never_see_null,
2575                                bool safe_for_replace,
2576                                bool speculative) {
2577   // Initial null check taken path
2578   (*null_control) = top();
2579   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2580 
2581   // Generate uncommon_trap:
2582   if (never_see_null && (*null_control) != top()) {
2583     // If we see an unexpected null at a check-cast we record it and force a
2584     // recompile; the offending check-cast will be compiled to handle nulls.
2585     // If we see more than one offending BCI, then all checkcasts in the
2586     // method will be compiled to handle nulls.
2587     PreserveJVMState pjvms(this);
2588     set_control(*null_control);
2589     replace_in_map(value, null());
2590     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2591     uncommon_trap(reason,
2592                   Deoptimization::Action_make_not_entrant);
2593     (*null_control) = top();    // null path is dead
2594   }
2595   if ((*null_control) == top() && safe_for_replace) {
2596     replace_in_map(value, cast);
2597   }
2598 
2599   // Cast away null-ness on the result
2600   return cast;
2601 }
2602 
2603 //------------------------------opt_iff----------------------------------------
2604 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2605 // Return slow-path control.
2606 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2607   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2608 
2609   // Fast path taken; set region slot 2
2610   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2611   region->init_req(2,fast_taken); // Capture fast-control
2612 
2613   // Fast path not-taken, i.e. slow path
2614   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2615   return slow_taken;
2616 }
2617 
2618 //-----------------------------make_runtime_call-------------------------------
2619 Node* GraphKit::make_runtime_call(int flags,
2620                                   const TypeFunc* call_type, address call_addr,
2621                                   const char* call_name,
2622                                   const TypePtr* adr_type,
2623                                   // The following parms are all optional.
2624                                   // The first null ends the list.
2625                                   Node* parm0, Node* parm1,
2626                                   Node* parm2, Node* parm3,
2627                                   Node* parm4, Node* parm5,
2628                                   Node* parm6, Node* parm7) {
2629   assert(call_addr != nullptr, "must not call null targets");
2630 
2631   // Slow-path call
2632   bool is_leaf = !(flags & RC_NO_LEAF);
2633   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2634   if (call_name == nullptr) {
2635     assert(!is_leaf, "must supply name for leaf");
2636     call_name = OptoRuntime::stub_name(call_addr);
2637   }
2638   CallNode* call;
2639   if (!is_leaf) {
2640     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2641   } else if (flags & RC_NO_FP) {
2642     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2643   } else  if (flags & RC_VECTOR){
2644     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2645     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2646   } else {
2647     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2648   }
2649 
2650   // The following is similar to set_edges_for_java_call,
2651   // except that the memory effects of the call are restricted to AliasIdxRaw.
2652 
2653   // Slow path call has no side-effects, uses few values
2654   bool wide_in  = !(flags & RC_NARROW_MEM);
2655   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2656 
2657   Node* prev_mem = nullptr;
2658   if (wide_in) {
2659     prev_mem = set_predefined_input_for_runtime_call(call);
2660   } else {
2661     assert(!wide_out, "narrow in => narrow out");
2662     Node* narrow_mem = memory(adr_type);
2663     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2664   }
2665 
2666   // Hook each parm in order.  Stop looking at the first null.
2667   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2668   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2669   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2670   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2671   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2672   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2673   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2674   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2675   /* close each nested if ===> */  } } } } } } } }
2676   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2677 
2678   if (!is_leaf) {
2679     // Non-leaves can block and take safepoints:
2680     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2681   }
2682   // Non-leaves can throw exceptions:
2683   if (has_io) {
2684     call->set_req(TypeFunc::I_O, i_o());
2685   }
2686 
2687   if (flags & RC_UNCOMMON) {
2688     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2689     // (An "if" probability corresponds roughly to an unconditional count.
2690     // Sort of.)
2691     call->set_cnt(PROB_UNLIKELY_MAG(4));
2692   }
2693 
2694   Node* c = _gvn.transform(call);
2695   assert(c == call, "cannot disappear");
2696 
2697   if (wide_out) {
2698     // Slow path call has full side-effects.
2699     set_predefined_output_for_runtime_call(call);
2700   } else {
2701     // Slow path call has few side-effects, and/or sets few values.
2702     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2703   }
2704 
2705   if (has_io) {
2706     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2707   }
2708   return call;
2709 
2710 }
2711 
2712 // i2b
2713 Node* GraphKit::sign_extend_byte(Node* in) {
2714   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2715   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2716 }
2717 
2718 // i2s
2719 Node* GraphKit::sign_extend_short(Node* in) {
2720   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2721   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2722 }
2723 
2724 
2725 //------------------------------merge_memory-----------------------------------
2726 // Merge memory from one path into the current memory state.
2727 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2728   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2729     Node* old_slice = mms.force_memory();
2730     Node* new_slice = mms.memory2();
2731     if (old_slice != new_slice) {
2732       PhiNode* phi;
2733       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2734         if (mms.is_empty()) {
2735           // clone base memory Phi's inputs for this memory slice
2736           assert(old_slice == mms.base_memory(), "sanity");
2737           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2738           _gvn.set_type(phi, Type::MEMORY);
2739           for (uint i = 1; i < phi->req(); i++) {
2740             phi->init_req(i, old_slice->in(i));
2741           }
2742         } else {
2743           phi = old_slice->as_Phi(); // Phi was generated already
2744         }
2745       } else {
2746         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2747         _gvn.set_type(phi, Type::MEMORY);
2748       }
2749       phi->set_req(new_path, new_slice);
2750       mms.set_memory(phi);
2751     }
2752   }
2753 }
2754 
2755 //------------------------------make_slow_call_ex------------------------------
2756 // Make the exception handler hookups for the slow call
2757 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2758   if (stopped())  return;
2759 
2760   // Make a catch node with just two handlers:  fall-through and catch-all
2761   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2762   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2763   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2764   _gvn.set_type_bottom(norm);
2765   C->record_for_igvn(norm);
2766   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2767 
2768   { PreserveJVMState pjvms(this);
2769     set_control(excp);
2770     set_i_o(i_o);
2771 
2772     if (excp != top()) {
2773       if (deoptimize) {
2774         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2775         uncommon_trap(Deoptimization::Reason_unhandled,
2776                       Deoptimization::Action_none);
2777       } else {
2778         // Create an exception state also.
2779         // Use an exact type if the caller has a specific exception.
2780         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2781         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2782         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2783       }
2784     }
2785   }
2786 
2787   // Get the no-exception control from the CatchNode.
2788   set_control(norm);
2789 }
2790 
2791 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2792   Node* cmp = nullptr;
2793   switch(bt) {
2794   case T_INT: cmp = new CmpINode(in1, in2); break;
2795   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2796   default: fatal("unexpected comparison type %s", type2name(bt));
2797   }
2798   cmp = gvn.transform(cmp);
2799   Node* bol = gvn.transform(new BoolNode(cmp, test));
2800   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2801   gvn.transform(iff);
2802   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2803   return iff;
2804 }
2805 
2806 //-------------------------------gen_subtype_check-----------------------------
2807 // Generate a subtyping check.  Takes as input the subtype and supertype.
2808 // Returns 2 values: sets the default control() to the true path and returns
2809 // the false path.  Only reads invariant memory; sets no (visible) memory.
2810 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2811 // but that's not exposed to the optimizer.  This call also doesn't take in an
2812 // Object; if you wish to check an Object you need to load the Object's class
2813 // prior to coming here.
2814 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn) {
2815   Compile* C = gvn.C;
2816   if ((*ctrl)->is_top()) {
2817     return C->top();
2818   }
2819 
2820   // Fast check for identical types, perhaps identical constants.
2821   // The types can even be identical non-constants, in cases
2822   // involving Array.newInstance, Object.clone, etc.
2823   if (subklass == superklass)
2824     return C->top();             // false path is dead; no test needed.
2825 
2826   if (gvn.type(superklass)->singleton()) {
2827     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2828     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2829 
2830     // In the common case of an exact superklass, try to fold up the
2831     // test before generating code.  You may ask, why not just generate
2832     // the code and then let it fold up?  The answer is that the generated
2833     // code will necessarily include null checks, which do not always
2834     // completely fold away.  If they are also needless, then they turn
2835     // into a performance loss.  Example:
2836     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2837     // Here, the type of 'fa' is often exact, so the store check
2838     // of fa[1]=x will fold up, without testing the nullness of x.
2839     switch (C->static_subtype_check(superk, subk)) {
2840     case Compile::SSC_always_false:
2841       {
2842         Node* always_fail = *ctrl;
2843         *ctrl = gvn.C->top();
2844         return always_fail;
2845       }
2846     case Compile::SSC_always_true:
2847       return C->top();
2848     case Compile::SSC_easy_test:
2849       {
2850         // Just do a direct pointer compare and be done.
2851         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2852         *ctrl = gvn.transform(new IfTrueNode(iff));
2853         return gvn.transform(new IfFalseNode(iff));
2854       }
2855     case Compile::SSC_full_test:
2856       break;
2857     default:
2858       ShouldNotReachHere();
2859     }
2860   }
2861 
2862   // %%% Possible further optimization:  Even if the superklass is not exact,
2863   // if the subklass is the unique subtype of the superklass, the check
2864   // will always succeed.  We could leave a dependency behind to ensure this.
2865 
2866   // First load the super-klass's check-offset
2867   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2868   Node* m = C->immutable_memory();
2869   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2870   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2871   bool might_be_cache = (gvn.find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2872 
2873   // Load from the sub-klass's super-class display list, or a 1-word cache of
2874   // the secondary superclass list, or a failing value with a sentinel offset
2875   // if the super-klass is an interface or exceptionally deep in the Java
2876   // hierarchy and we have to scan the secondary superclass list the hard way.
2877   // Worst-case type is a little odd: null is allowed as a result (usually
2878   // klass loads can never produce a null).
2879   Node *chk_off_X = chk_off;
2880 #ifdef _LP64
2881   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2882 #endif
2883   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2884   // For some types like interfaces the following loadKlass is from a 1-word
2885   // cache which is mutable so can't use immutable memory.  Other
2886   // types load from the super-class display table which is immutable.
2887   Node *kmem = C->immutable_memory();
2888   // secondary_super_cache is not immutable but can be treated as such because:
2889   // - no ideal node writes to it in a way that could cause an
2890   //   incorrect/missed optimization of the following Load.
2891   // - it's a cache so, worse case, not reading the latest value
2892   //   wouldn't cause incorrect execution
2893   if (might_be_cache && mem != nullptr) {
2894     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2895   }
2896   Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2897 
2898   // Compile speed common case: ARE a subtype and we canNOT fail
2899   if( superklass == nkls )
2900     return C->top();             // false path is dead; no test needed.
2901 
2902   // See if we get an immediate positive hit.  Happens roughly 83% of the
2903   // time.  Test to see if the value loaded just previously from the subklass
2904   // is exactly the superklass.
2905   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2906   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2907   *ctrl = gvn.transform(new IfFalseNode(iff1));
2908 
2909   // Compile speed common case: Check for being deterministic right now.  If
2910   // chk_off is a constant and not equal to cacheoff then we are NOT a
2911   // subklass.  In this case we need exactly the 1 test above and we can
2912   // return those results immediately.
2913   if (!might_be_cache) {
2914     Node* not_subtype_ctrl = *ctrl;
2915     *ctrl = iftrue1; // We need exactly the 1 test above
2916     return not_subtype_ctrl;
2917   }
2918 
2919   // Gather the various success & failures here
2920   RegionNode *r_ok_subtype = new RegionNode(4);
2921   gvn.record_for_igvn(r_ok_subtype);
2922   RegionNode *r_not_subtype = new RegionNode(3);
2923   gvn.record_for_igvn(r_not_subtype);
2924 
2925   r_ok_subtype->init_req(1, iftrue1);
2926 
2927   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2928   // is roughly 63% of the remaining cases).  Test to see if the loaded
2929   // check-offset points into the subklass display list or the 1-element
2930   // cache.  If it points to the display (and NOT the cache) and the display
2931   // missed then it's not a subtype.
2932   Node *cacheoff = gvn.intcon(cacheoff_con);
2933   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2934   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2935   *ctrl = gvn.transform(new IfFalseNode(iff2));
2936 
2937   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2938   // No performance impact (too rare) but allows sharing of secondary arrays
2939   // which has some footprint reduction.
2940   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2941   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2942   *ctrl = gvn.transform(new IfFalseNode(iff3));
2943 
2944   // -- Roads not taken here: --
2945   // We could also have chosen to perform the self-check at the beginning
2946   // of this code sequence, as the assembler does.  This would not pay off
2947   // the same way, since the optimizer, unlike the assembler, can perform
2948   // static type analysis to fold away many successful self-checks.
2949   // Non-foldable self checks work better here in second position, because
2950   // the initial primary superclass check subsumes a self-check for most
2951   // types.  An exception would be a secondary type like array-of-interface,
2952   // which does not appear in its own primary supertype display.
2953   // Finally, we could have chosen to move the self-check into the
2954   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2955   // dependent manner.  But it is worthwhile to have the check here,
2956   // where it can be perhaps be optimized.  The cost in code space is
2957   // small (register compare, branch).
2958 
2959   // Now do a linear scan of the secondary super-klass array.  Again, no real
2960   // performance impact (too rare) but it's gotta be done.
2961   // Since the code is rarely used, there is no penalty for moving it
2962   // out of line, and it can only improve I-cache density.
2963   // The decision to inline or out-of-line this final check is platform
2964   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2965   Node* psc = gvn.transform(
2966     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2967 
2968   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2969   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2970   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2971 
2972   // Return false path; set default control to true path.
2973   *ctrl = gvn.transform(r_ok_subtype);
2974   return gvn.transform(r_not_subtype);
2975 }
2976 
2977 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2978   const Type* sub_t = _gvn.type(obj_or_subklass);
2979   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
2980     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
2981     obj_or_subklass = makecon(sub_t);
2982   }
2983   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
2984                               ExpandSubTypeCheckAtParseTime; // forced expansion
2985   if (expand_subtype_check) {
2986     MergeMemNode* mem = merged_memory();
2987     Node* ctrl = control();
2988     Node* subklass = obj_or_subklass;
2989     if (!sub_t->isa_klassptr()) {
2990       subklass = load_object_klass(obj_or_subklass);
2991     }
2992     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn);
2993     set_control(ctrl);
2994     return n;
2995   }
2996 
2997   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass));
2998   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2999   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3000   set_control(_gvn.transform(new IfTrueNode(iff)));
3001   return _gvn.transform(new IfFalseNode(iff));
3002 }
3003 
3004 // Profile-driven exact type check:
3005 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3006                                     float prob, Node* *casted_receiver) {
3007   assert(!klass->is_interface(), "no exact type check on interfaces");
3008   Node* fail = top();
3009   const Type* rec_t = _gvn.type(receiver);
3010   if (rec_t->is_inlinetypeptr()) {
3011     if (klass->equals(rec_t->inline_klass())) {
3012       (*casted_receiver) = receiver; // Always passes
3013     } else {
3014       (*casted_receiver) = top();    // Always fails
3015       fail = control();
3016       set_control(top());
3017     }
3018     return fail;
3019   }
3020   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3021   Node* recv_klass = load_object_klass(receiver);
3022   fail = type_check(recv_klass, tklass, prob);
3023 
3024   if (!stopped()) {
3025     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3026     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3027     assert(recv_xtype->klass_is_exact(), "");
3028 
3029     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3030       // Subsume downstream occurrences of receiver with a cast to
3031       // recv_xtype, since now we know what the type will be.
3032       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3033       Node* res = _gvn.transform(cast);
3034       if (recv_xtype->is_inlinetypeptr()) {
3035         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3036         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3037       }
3038       (*casted_receiver) = res;
3039       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3040       // (User must make the replace_in_map call.)
3041     }
3042   }
3043 
3044   return fail;
3045 }
3046 
3047 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3048                            float prob) {
3049   Node* want_klass = makecon(tklass);
3050   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3051   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3052   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3053   set_control(_gvn.transform(new IfTrueNode (iff)));
3054   Node* fail = _gvn.transform(new IfFalseNode(iff));
3055   return fail;
3056 }
3057 
3058 //------------------------------subtype_check_receiver-------------------------
3059 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3060                                        Node** casted_receiver) {
3061   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3062   Node* want_klass = makecon(tklass);
3063 
3064   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3065 
3066   // Ignore interface type information until interface types are properly tracked.
3067   if (!stopped() && !klass->is_interface()) {
3068     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3069     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3070     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3071       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3072       if (recv_type->is_inlinetypeptr()) {
3073         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3074       }
3075       (*casted_receiver) = cast;
3076     }
3077   }
3078 
3079   return slow_ctl;
3080 }
3081 
3082 //------------------------------seems_never_null-------------------------------
3083 // Use null_seen information if it is available from the profile.
3084 // If we see an unexpected null at a type check we record it and force a
3085 // recompile; the offending check will be recompiled to handle nulls.
3086 // If we see several offending BCIs, then all checks in the
3087 // method will be recompiled.
3088 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3089   speculating = !_gvn.type(obj)->speculative_maybe_null();
3090   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3091   if (UncommonNullCast               // Cutout for this technique
3092       && obj != null()               // And not the -Xcomp stupid case?
3093       && !too_many_traps(reason)
3094       ) {
3095     if (speculating) {
3096       return true;
3097     }
3098     if (data == nullptr)
3099       // Edge case:  no mature data.  Be optimistic here.
3100       return true;
3101     // If the profile has not seen a null, assume it won't happen.
3102     assert(java_bc() == Bytecodes::_checkcast ||
3103            java_bc() == Bytecodes::_instanceof ||
3104            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3105     if (java_bc() == Bytecodes::_aastore) {
3106       return ((ciArrayLoadStoreData*)data->as_ArrayLoadStoreData())->element()->ptr_kind() == ProfileNeverNull;
3107     }
3108     return !data->as_BitData()->null_seen();
3109   }
3110   speculating = false;
3111   return false;
3112 }
3113 
3114 void GraphKit::guard_klass_being_initialized(Node* klass) {
3115   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3116   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3117   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3118                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3119                                     T_BYTE, MemNode::unordered);
3120   init_state = _gvn.transform(init_state);
3121 
3122   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3123 
3124   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3125   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3126 
3127   { BuildCutout unless(this, tst, PROB_MAX);
3128     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3129   }
3130 }
3131 
3132 void GraphKit::guard_init_thread(Node* klass) {
3133   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3134   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3135 
3136   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3137                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3138                                      T_ADDRESS, MemNode::unordered);
3139   init_thread = _gvn.transform(init_thread);
3140 
3141   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3142 
3143   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3144   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3145 
3146   { BuildCutout unless(this, tst, PROB_MAX);
3147     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3148   }
3149 }
3150 
3151 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3152   if (ik->is_being_initialized()) {
3153     if (C->needs_clinit_barrier(ik, context)) {
3154       Node* klass = makecon(TypeKlassPtr::make(ik));
3155       guard_klass_being_initialized(klass);
3156       guard_init_thread(klass);
3157       insert_mem_bar(Op_MemBarCPUOrder);
3158     }
3159   } else if (ik->is_initialized()) {
3160     return; // no barrier needed
3161   } else {
3162     uncommon_trap(Deoptimization::Reason_uninitialized,
3163                   Deoptimization::Action_reinterpret,
3164                   nullptr);
3165   }
3166 }
3167 
3168 //------------------------maybe_cast_profiled_receiver-------------------------
3169 // If the profile has seen exactly one type, narrow to exactly that type.
3170 // Subsequent type checks will always fold up.
3171 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3172                                              const TypeKlassPtr* require_klass,
3173                                              ciKlass* spec_klass,
3174                                              bool safe_for_replace) {
3175   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3176 
3177   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3178 
3179   // Make sure we haven't already deoptimized from this tactic.
3180   if (too_many_traps_or_recompiles(reason))
3181     return nullptr;
3182 
3183   // (No, this isn't a call, but it's enough like a virtual call
3184   // to use the same ciMethod accessor to get the profile info...)
3185   // If we have a speculative type use it instead of profiling (which
3186   // may not help us)
3187   ciKlass* exact_kls = spec_klass;
3188   if (exact_kls == nullptr) {
3189     if (java_bc() == Bytecodes::_aastore) {
3190       ciKlass* array_type = nullptr;
3191       ciKlass* element_type = nullptr;
3192       ProfilePtrKind element_ptr = ProfileMaybeNull;
3193       bool flat_array = true;
3194       bool null_free_array = true;
3195       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3196       exact_kls = element_type;
3197     } else {
3198       exact_kls = profile_has_unique_klass();
3199     }
3200   }
3201   if (exact_kls != nullptr) {// no cast failures here
3202     if (require_klass == nullptr ||
3203         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3204       // If we narrow the type to match what the type profile sees or
3205       // the speculative type, we can then remove the rest of the
3206       // cast.
3207       // This is a win, even if the exact_kls is very specific,
3208       // because downstream operations, such as method calls,
3209       // will often benefit from the sharper type.
3210       Node* exact_obj = not_null_obj; // will get updated in place...
3211       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3212                                             &exact_obj);
3213       { PreserveJVMState pjvms(this);
3214         set_control(slow_ctl);
3215         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3216       }
3217       if (safe_for_replace) {
3218         replace_in_map(not_null_obj, exact_obj);
3219       }
3220       return exact_obj;
3221     }
3222     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3223   }
3224 
3225   return nullptr;
3226 }
3227 
3228 /**
3229  * Cast obj to type and emit guard unless we had too many traps here
3230  * already
3231  *
3232  * @param obj       node being casted
3233  * @param type      type to cast the node to
3234  * @param not_null  true if we know node cannot be null
3235  */
3236 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3237                                         ciKlass* type,
3238                                         bool not_null) {
3239   if (stopped()) {
3240     return obj;
3241   }
3242 
3243   // type is null if profiling tells us this object is always null
3244   if (type != nullptr) {
3245     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3246     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3247 
3248     if (!too_many_traps_or_recompiles(null_reason) &&
3249         !too_many_traps_or_recompiles(class_reason)) {
3250       Node* not_null_obj = nullptr;
3251       // not_null is true if we know the object is not null and
3252       // there's no need for a null check
3253       if (!not_null) {
3254         Node* null_ctl = top();
3255         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3256         assert(null_ctl->is_top(), "no null control here");
3257       } else {
3258         not_null_obj = obj;
3259       }
3260 
3261       Node* exact_obj = not_null_obj;
3262       ciKlass* exact_kls = type;
3263       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3264                                             &exact_obj);
3265       {
3266         PreserveJVMState pjvms(this);
3267         set_control(slow_ctl);
3268         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3269       }
3270       replace_in_map(not_null_obj, exact_obj);
3271       obj = exact_obj;
3272     }
3273   } else {
3274     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3275       Node* exact_obj = null_assert(obj);
3276       replace_in_map(obj, exact_obj);
3277       obj = exact_obj;
3278     }
3279   }
3280   return obj;
3281 }
3282 
3283 //-------------------------------gen_instanceof--------------------------------
3284 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3285 // and the reflective instance-of call.
3286 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3287   kill_dead_locals();           // Benefit all the uncommon traps
3288   assert( !stopped(), "dead parse path should be checked in callers" );
3289   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3290          "must check for not-null not-dead klass in callers");
3291 
3292   // Make the merge point
3293   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3294   RegionNode* region = new RegionNode(PATH_LIMIT);
3295   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3296   C->set_has_split_ifs(true); // Has chance for split-if optimization
3297 
3298   ciProfileData* data = nullptr;
3299   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3300     data = method()->method_data()->bci_to_data(bci());
3301   }
3302   bool speculative_not_null = false;
3303   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3304                          && seems_never_null(obj, data, speculative_not_null));
3305 
3306   // Null check; get casted pointer; set region slot 3
3307   Node* null_ctl = top();
3308   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3309 
3310   // If not_null_obj is dead, only null-path is taken
3311   if (stopped()) {              // Doing instance-of on a null?
3312     set_control(null_ctl);
3313     return intcon(0);
3314   }
3315   region->init_req(_null_path, null_ctl);
3316   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3317   if (null_ctl == top()) {
3318     // Do this eagerly, so that pattern matches like is_diamond_phi
3319     // will work even during parsing.
3320     assert(_null_path == PATH_LIMIT-1, "delete last");
3321     region->del_req(_null_path);
3322     phi   ->del_req(_null_path);
3323   }
3324 
3325   // Do we know the type check always succeed?
3326   bool known_statically = false;
3327   if (_gvn.type(superklass)->singleton()) {
3328     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3329     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3330     if (subk != nullptr && subk->is_loaded()) {
3331       int static_res = C->static_subtype_check(superk, subk);
3332       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3333     }
3334   }
3335 
3336   if (!known_statically) {
3337     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3338     // We may not have profiling here or it may not help us. If we
3339     // have a speculative type use it to perform an exact cast.
3340     ciKlass* spec_obj_type = obj_type->speculative_type();
3341     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3342       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3343       if (stopped()) {            // Profile disagrees with this path.
3344         set_control(null_ctl);    // Null is the only remaining possibility.
3345         return intcon(0);
3346       }
3347       if (cast_obj != nullptr) {
3348         not_null_obj = cast_obj;
3349       }
3350     }
3351   }
3352 
3353   // Generate the subtype check
3354   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3355 
3356   // Plug in the success path to the general merge in slot 1.
3357   region->init_req(_obj_path, control());
3358   phi   ->init_req(_obj_path, intcon(1));
3359 
3360   // Plug in the failing path to the general merge in slot 2.
3361   region->init_req(_fail_path, not_subtype_ctrl);
3362   phi   ->init_req(_fail_path, intcon(0));
3363 
3364   // Return final merged results
3365   set_control( _gvn.transform(region) );
3366   record_for_igvn(region);
3367 
3368   // If we know the type check always succeeds then we don't use the
3369   // profiling data at this bytecode. Don't lose it, feed it to the
3370   // type system as a speculative type.
3371   if (safe_for_replace) {
3372     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3373     replace_in_map(obj, casted_obj);
3374   }
3375 
3376   return _gvn.transform(phi);
3377 }
3378 
3379 //-------------------------------gen_checkcast---------------------------------
3380 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3381 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3382 // uncommon-trap paths work.  Adjust stack after this call.
3383 // If failure_control is supplied and not null, it is filled in with
3384 // the control edge for the cast failure.  Otherwise, an appropriate
3385 // uncommon trap or exception is thrown.
3386 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3387   kill_dead_locals();           // Benefit all the uncommon traps
3388   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr()->try_improve();
3389   const TypeOopPtr *toop = tk->cast_to_exactness(false)->as_instance_type();
3390   bool safe_for_replace = (failure_control == nullptr);
3391   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3392 
3393   // Fast cutout:  Check the case that the cast is vacuously true.
3394   // This detects the common cases where the test will short-circuit
3395   // away completely.  We do this before we perform the null check,
3396   // because if the test is going to turn into zero code, we don't
3397   // want a residual null check left around.  (Causes a slowdown,
3398   // for example, in some objArray manipulations, such as a[i]=a[j].)
3399   if (tk->singleton()) {
3400     const TypeKlassPtr* kptr = nullptr;
3401     const Type* t = _gvn.type(obj);
3402     if (t->isa_oop_ptr()) {
3403       kptr = t->is_oopptr()->as_klass_type();
3404     } else if (obj->is_InlineType()) {
3405       ciInlineKlass* vk = t->inline_klass();
3406       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3407     }
3408     if (kptr != nullptr) {
3409       switch (C->static_subtype_check(tk, kptr)) {
3410       case Compile::SSC_always_true:
3411         // If we know the type check always succeed then we don't use
3412         // the profiling data at this bytecode. Don't lose it, feed it
3413         // to the type system as a speculative type.
3414         obj = record_profiled_receiver_for_speculation(obj);
3415         if (null_free) {
3416           assert(safe_for_replace, "must be");
3417           obj = null_check(obj);
3418         }
3419         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3420         return obj;
3421       case Compile::SSC_always_false:
3422         if (null_free) {
3423           assert(safe_for_replace, "must be");
3424           obj = null_check(obj);
3425         }
3426         // It needs a null check because a null will *pass* the cast check.
3427         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {
3428           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3429           Deoptimization::DeoptReason reason = is_aastore ?
3430             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3431           builtin_throw(reason);
3432           return top();
3433         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3434           return null_assert(obj);
3435         }
3436         break; // Fall through to full check
3437       default:
3438         break;
3439       }
3440     }
3441   }
3442 
3443   ciProfileData* data = nullptr;
3444   if (failure_control == nullptr) {        // use MDO in regular case only
3445     assert(java_bc() == Bytecodes::_aastore ||
3446            java_bc() == Bytecodes::_checkcast,
3447            "interpreter profiles type checks only for these BCs");
3448     if (method()->method_data()->is_mature()) {
3449       data = method()->method_data()->bci_to_data(bci());
3450     }
3451   }
3452 
3453   // Make the merge point
3454   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3455   RegionNode* region = new RegionNode(PATH_LIMIT);
3456   Node*       phi    = new PhiNode(region, toop);
3457   _gvn.set_type(region, Type::CONTROL);
3458   _gvn.set_type(phi, toop);
3459 
3460   C->set_has_split_ifs(true); // Has chance for split-if optimization
3461 
3462   // Use null-cast information if it is available
3463   bool speculative_not_null = false;
3464   bool never_see_null = ((failure_control == nullptr)  // regular case only
3465                          && seems_never_null(obj, data, speculative_not_null));
3466 
3467   if (obj->is_InlineType()) {
3468     // Re-execute if buffering during triggers deoptimization
3469     PreserveReexecuteState preexecs(this);
3470     jvms()->set_should_reexecute(true);
3471     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3472   }
3473 
3474   // Null check; get casted pointer; set region slot 3
3475   Node* null_ctl = top();
3476   Node* not_null_obj = nullptr;
3477   if (null_free) {
3478     assert(safe_for_replace, "must be");
3479     not_null_obj = null_check(obj);
3480   } else {
3481     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3482   }
3483 
3484   // If not_null_obj is dead, only null-path is taken
3485   if (stopped()) {              // Doing instance-of on a null?
3486     set_control(null_ctl);
3487     if (toop->is_inlinetypeptr()) {
3488       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3489     }
3490     return null();
3491   }
3492   region->init_req(_null_path, null_ctl);
3493   phi   ->init_req(_null_path, null());  // Set null path value
3494   if (null_ctl == top()) {
3495     // Do this eagerly, so that pattern matches like is_diamond_phi
3496     // will work even during parsing.
3497     assert(_null_path == PATH_LIMIT-1, "delete last");
3498     region->del_req(_null_path);
3499     phi   ->del_req(_null_path);
3500   }
3501 
3502   Node* cast_obj = nullptr;
3503   if (tk->klass_is_exact()) {
3504     // The following optimization tries to statically cast the speculative type of the object
3505     // (for example obtained during profiling) to the type of the superklass and then do a
3506     // dynamic check that the type of the object is what we expect. To work correctly
3507     // for checkcast and aastore the type of superklass should be exact.
3508     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3509     // We may not have profiling here or it may not help us. If we have
3510     // a speculative type use it to perform an exact cast.
3511     ciKlass* spec_obj_type = obj_type->speculative_type();
3512     if (spec_obj_type != nullptr || data != nullptr) {
3513       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3514       if (cast_obj != nullptr) {
3515         if (failure_control != nullptr) // failure is now impossible
3516           (*failure_control) = top();
3517         // adjust the type of the phi to the exact klass:
3518         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3519       }
3520     }
3521   }
3522 
3523   if (cast_obj == nullptr) {
3524     // Generate the subtype check
3525     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3526 
3527     // Plug in success path into the merge
3528     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3529     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3530     if (failure_control == nullptr) {
3531       if (not_subtype_ctrl != top()) { // If failure is possible
3532         PreserveJVMState pjvms(this);
3533         set_control(not_subtype_ctrl);
3534         Node* obj_klass = nullptr;
3535         if (not_null_obj->is_InlineType()) {
3536           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3537         } else {
3538           obj_klass = load_object_klass(not_null_obj);
3539         }
3540         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3541         Deoptimization::DeoptReason reason = is_aastore ?
3542           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3543         builtin_throw(reason);
3544       }
3545     } else {
3546       (*failure_control) = not_subtype_ctrl;
3547     }
3548   }
3549 
3550   region->init_req(_obj_path, control());
3551   phi   ->init_req(_obj_path, cast_obj);
3552 
3553   // A merge of null or Casted-NotNull obj
3554   Node* res = _gvn.transform(phi);
3555 
3556   // Note I do NOT always 'replace_in_map(obj,result)' here.
3557   //  if( tk->klass()->can_be_primary_super()  )
3558     // This means that if I successfully store an Object into an array-of-String
3559     // I 'forget' that the Object is really now known to be a String.  I have to
3560     // do this because we don't have true union types for interfaces - if I store
3561     // a Baz into an array-of-Interface and then tell the optimizer it's an
3562     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3563     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3564   //  replace_in_map( obj, res );
3565 
3566   // Return final merged results
3567   set_control( _gvn.transform(region) );
3568   record_for_igvn(region);
3569 
3570   bool not_inline = !toop->can_be_inline_type();
3571   bool not_flat = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_array());
3572   if (EnableValhalla && not_flat) {
3573     // Check if obj has been loaded from an array
3574     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3575     Node* array = nullptr;
3576     if (obj->isa_Load()) {
3577       Node* address = obj->in(MemNode::Address);
3578       if (address->isa_AddP()) {
3579         array = address->as_AddP()->in(AddPNode::Base);
3580       }
3581     } else if (obj->is_Phi()) {
3582       Node* region = obj->in(0);
3583       // TODO make this more robust (see JDK-8231346)
3584       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3585         IfNode* iff = region->in(2)->in(0)->isa_If();
3586         if (iff != nullptr) {
3587           iff->is_flat_array_check(&_gvn, &array);
3588         }
3589       }
3590     }
3591     if (array != nullptr) {
3592       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3593       if (ary_t != nullptr) {
3594         if (!ary_t->is_not_null_free() && not_inline) {
3595           // Casting array element to a non-inline-type, mark array as not null-free.
3596           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3597           replace_in_map(array, cast);
3598         } else if (!ary_t->is_not_flat()) {
3599           // Casting array element to a non-flat type, mark array as not flat.
3600           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3601           replace_in_map(array, cast);
3602         }
3603       }
3604     }
3605   }
3606 
3607   if (!stopped() && !res->is_InlineType()) {
3608     res = record_profiled_receiver_for_speculation(res);
3609     if (toop->is_inlinetypeptr()) {
3610       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3611       res = vt;
3612       if (safe_for_replace) {
3613         replace_in_map(obj, vt);
3614         replace_in_map(not_null_obj, vt);
3615         replace_in_map(res, vt);
3616       }
3617     }
3618   }
3619   return res;
3620 }
3621 
3622 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3623   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3624   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3625   Node* mask = MakeConX(markWord::inline_type_pattern);
3626   Node* masked = _gvn.transform(new AndXNode(mark, mask));
3627   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3628   return _gvn.transform(new BoolNode(cmp, is_inline ? BoolTest::eq : BoolTest::ne));
3629 }
3630 
3631 Node* GraphKit::is_val_mirror(Node* mirror) {
3632   Node* p = basic_plus_adr(mirror, java_lang_Class::secondary_mirror_offset());
3633   Node* secondary_mirror = access_load_at(mirror, p, _gvn.type(p)->is_ptr(), TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR), T_OBJECT, IN_HEAP);
3634   Node* cmp = _gvn.transform(new CmpPNode(mirror, secondary_mirror));
3635   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3636 }
3637 
3638 Node* GraphKit::array_lh_test(Node* klass, jint mask, jint val, bool eq) {
3639   Node* lh_adr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
3640   // Make sure to use immutable memory here to enable hoisting the check out of loops
3641   Node* lh_val = _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), lh_adr, lh_adr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
3642   Node* masked = _gvn.transform(new AndINode(lh_val, intcon(mask)));
3643   Node* cmp = _gvn.transform(new CmpINode(masked, intcon(val)));
3644   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3645 }
3646 
3647 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3648   // We can't use immutable memory here because the mark word is mutable.
3649   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3650   // check is moved out of loops (mainly to enable loop unswitching).
3651   Node* mem = UseArrayMarkWordCheck ? memory(Compile::AliasIdxRaw) : immutable_memory();
3652   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, mem, array_or_klass));
3653   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3654   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3655 }
3656 
3657 Node* GraphKit::null_free_array_test(Node* klass, bool null_free) {
3658   return array_lh_test(klass, Klass::_lh_null_free_array_bit_inplace, 0, !null_free);
3659 }
3660 
3661 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3662 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3663   RegionNode* region = new RegionNode(3);
3664   Node* null_ctl = top();
3665   null_check_oop(val, &null_ctl);
3666   if (null_ctl != top()) {
3667     PreserveJVMState pjvms(this);
3668     set_control(null_ctl);
3669     {
3670       // Deoptimize if null-free array
3671       BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX);
3672       inc_sp(nargs);
3673       uncommon_trap(Deoptimization::Reason_null_check,
3674                     Deoptimization::Action_none);
3675     }
3676     region->init_req(1, control());
3677   }
3678   region->init_req(2, control());
3679   set_control(_gvn.transform(region));
3680   record_for_igvn(region);
3681   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3682     // Since we were just successfully storing null, the array can't be null free.
3683     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3684     ary_t = ary_t->cast_to_not_null_free();
3685     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3686     if (safe_for_replace) {
3687       replace_in_map(ary, cast);
3688     }
3689     ary = cast;
3690   }
3691   return ary;
3692 }
3693 
3694 //------------------------------next_monitor-----------------------------------
3695 // What number should be given to the next monitor?
3696 int GraphKit::next_monitor() {
3697   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3698   int next = current + C->sync_stack_slots();
3699   // Keep the toplevel high water mark current:
3700   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3701   return current;
3702 }
3703 
3704 //------------------------------insert_mem_bar---------------------------------
3705 // Memory barrier to avoid floating things around
3706 // The membar serves as a pinch point between both control and all memory slices.
3707 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3708   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3709   mb->init_req(TypeFunc::Control, control());
3710   mb->init_req(TypeFunc::Memory,  reset_memory());
3711   Node* membar = _gvn.transform(mb);
3712   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3713   set_all_memory_call(membar);
3714   return membar;
3715 }
3716 
3717 //-------------------------insert_mem_bar_volatile----------------------------
3718 // Memory barrier to avoid floating things around
3719 // The membar serves as a pinch point between both control and memory(alias_idx).
3720 // If you want to make a pinch point on all memory slices, do not use this
3721 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3722 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3723   // When Parse::do_put_xxx updates a volatile field, it appends a series
3724   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3725   // The first membar is on the same memory slice as the field store opcode.
3726   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3727   // All the other membars (for other volatile slices, including AliasIdxBot,
3728   // which stands for all unknown volatile slices) are control-dependent
3729   // on the first membar.  This prevents later volatile loads or stores
3730   // from sliding up past the just-emitted store.
3731 
3732   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3733   mb->set_req(TypeFunc::Control,control());
3734   if (alias_idx == Compile::AliasIdxBot) {
3735     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3736   } else {
3737     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3738     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3739   }
3740   Node* membar = _gvn.transform(mb);
3741   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3742   if (alias_idx == Compile::AliasIdxBot) {
3743     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3744   } else {
3745     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3746   }
3747   return membar;
3748 }
3749 
3750 //------------------------------shared_lock------------------------------------
3751 // Emit locking code.
3752 FastLockNode* GraphKit::shared_lock(Node* obj) {
3753   // bci is either a monitorenter bc or InvocationEntryBci
3754   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3755   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3756 
3757   if( !GenerateSynchronizationCode )
3758     return nullptr;                // Not locking things?
3759 
3760   if (stopped())                // Dead monitor?
3761     return nullptr;
3762 
3763   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3764 
3765   // Box the stack location
3766   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3767   Node* mem = reset_memory();
3768 
3769   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3770 
3771   // Create the rtm counters for this fast lock if needed.
3772   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3773 
3774   // Add monitor to debug info for the slow path.  If we block inside the
3775   // slow path and de-opt, we need the monitor hanging around
3776   map()->push_monitor( flock );
3777 
3778   const TypeFunc *tf = LockNode::lock_type();
3779   LockNode *lock = new LockNode(C, tf);
3780 
3781   lock->init_req( TypeFunc::Control, control() );
3782   lock->init_req( TypeFunc::Memory , mem );
3783   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3784   lock->init_req( TypeFunc::FramePtr, frameptr() );
3785   lock->init_req( TypeFunc::ReturnAdr, top() );
3786 
3787   lock->init_req(TypeFunc::Parms + 0, obj);
3788   lock->init_req(TypeFunc::Parms + 1, box);
3789   lock->init_req(TypeFunc::Parms + 2, flock);
3790   add_safepoint_edges(lock);
3791 
3792   lock = _gvn.transform( lock )->as_Lock();
3793 
3794   // lock has no side-effects, sets few values
3795   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3796 
3797   insert_mem_bar(Op_MemBarAcquireLock);
3798 
3799   // Add this to the worklist so that the lock can be eliminated
3800   record_for_igvn(lock);
3801 
3802 #ifndef PRODUCT
3803   if (PrintLockStatistics) {
3804     // Update the counter for this lock.  Don't bother using an atomic
3805     // operation since we don't require absolute accuracy.
3806     lock->create_lock_counter(map()->jvms());
3807     increment_counter(lock->counter()->addr());
3808   }
3809 #endif
3810 
3811   return flock;
3812 }
3813 
3814 
3815 //------------------------------shared_unlock----------------------------------
3816 // Emit unlocking code.
3817 void GraphKit::shared_unlock(Node* box, Node* obj) {
3818   // bci is either a monitorenter bc or InvocationEntryBci
3819   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3820   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3821 
3822   if( !GenerateSynchronizationCode )
3823     return;
3824   if (stopped()) {               // Dead monitor?
3825     map()->pop_monitor();        // Kill monitor from debug info
3826     return;
3827   }
3828   assert(!obj->is_InlineType(), "should not unlock on inline type");
3829 
3830   // Memory barrier to avoid floating things down past the locked region
3831   insert_mem_bar(Op_MemBarReleaseLock);
3832 
3833   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3834   UnlockNode *unlock = new UnlockNode(C, tf);
3835 #ifdef ASSERT
3836   unlock->set_dbg_jvms(sync_jvms());
3837 #endif
3838   uint raw_idx = Compile::AliasIdxRaw;
3839   unlock->init_req( TypeFunc::Control, control() );
3840   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3841   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3842   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3843   unlock->init_req( TypeFunc::ReturnAdr, top() );
3844 
3845   unlock->init_req(TypeFunc::Parms + 0, obj);
3846   unlock->init_req(TypeFunc::Parms + 1, box);
3847   unlock = _gvn.transform(unlock)->as_Unlock();
3848 
3849   Node* mem = reset_memory();
3850 
3851   // unlock has no side-effects, sets few values
3852   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3853 
3854   // Kill monitor from debug info
3855   map()->pop_monitor( );
3856 }
3857 
3858 //-------------------------------get_layout_helper-----------------------------
3859 // If the given klass is a constant or known to be an array,
3860 // fetch the constant layout helper value into constant_value
3861 // and return null.  Otherwise, load the non-constant
3862 // layout helper value, and return the node which represents it.
3863 // This two-faced routine is useful because allocation sites
3864 // almost always feature constant types.
3865 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3866   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3867   if (!StressReflectiveCode && klass_t != nullptr) {
3868     bool xklass = klass_t->klass_is_exact();
3869     bool can_be_flat = false;
3870     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3871     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3872       // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3873       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3874       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_array());
3875     }
3876     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3877       jint lhelper;
3878       if (klass_t->is_flat()) {
3879         lhelper = ary_type->flat_layout_helper();
3880       } else if (klass_t->isa_aryklassptr()) {
3881         BasicType elem = ary_type->elem()->array_element_basic_type();
3882         if (is_reference_type(elem, true)) {
3883           elem = T_OBJECT;
3884         }
3885         lhelper = Klass::array_layout_helper(elem);
3886       } else {
3887         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3888       }
3889       if (lhelper != Klass::_lh_neutral_value) {
3890         constant_value = lhelper;
3891         return (Node*) nullptr;
3892       }
3893     }
3894   }
3895   constant_value = Klass::_lh_neutral_value;  // put in a known value
3896   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3897   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3898 }
3899 
3900 // We just put in an allocate/initialize with a big raw-memory effect.
3901 // Hook selected additional alias categories on the initialization.
3902 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3903                                 MergeMemNode* init_in_merge,
3904                                 Node* init_out_raw) {
3905   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3906   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3907 
3908   Node* prevmem = kit.memory(alias_idx);
3909   init_in_merge->set_memory_at(alias_idx, prevmem);
3910   if (init_out_raw != nullptr) {
3911     kit.set_memory(init_out_raw, alias_idx);
3912   }
3913 }
3914 
3915 //---------------------------set_output_for_allocation-------------------------
3916 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3917                                           const TypeOopPtr* oop_type,
3918                                           bool deoptimize_on_exception) {
3919   int rawidx = Compile::AliasIdxRaw;
3920   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3921   add_safepoint_edges(alloc);
3922   Node* allocx = _gvn.transform(alloc);
3923   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3924   // create memory projection for i_o
3925   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3926   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3927 
3928   // create a memory projection as for the normal control path
3929   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3930   set_memory(malloc, rawidx);
3931 
3932   // a normal slow-call doesn't change i_o, but an allocation does
3933   // we create a separate i_o projection for the normal control path
3934   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3935   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3936 
3937   // put in an initialization barrier
3938   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3939                                                  rawoop)->as_Initialize();
3940   assert(alloc->initialization() == init,  "2-way macro link must work");
3941   assert(init ->allocation()     == alloc, "2-way macro link must work");
3942   {
3943     // Extract memory strands which may participate in the new object's
3944     // initialization, and source them from the new InitializeNode.
3945     // This will allow us to observe initializations when they occur,
3946     // and link them properly (as a group) to the InitializeNode.
3947     assert(init->in(InitializeNode::Memory) == malloc, "");
3948     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3949     init->set_req(InitializeNode::Memory, minit_in);
3950     record_for_igvn(minit_in); // fold it up later, if possible
3951     _gvn.set_type(minit_in, Type::MEMORY);
3952     Node* minit_out = memory(rawidx);
3953     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3954     // Add an edge in the MergeMem for the header fields so an access
3955     // to one of those has correct memory state
3956     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3957     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3958     if (oop_type->isa_aryptr()) {
3959       const TypeAryPtr* arytype = oop_type->is_aryptr();
3960       if (arytype->is_flat()) {
3961         // Initially all flat array accesses share a single slice
3962         // but that changes after parsing. Prepare the memory graph so
3963         // it can optimize flat array accesses properly once they
3964         // don't share a single slice.
3965         assert(C->flat_accesses_share_alias(), "should be set at parse time");
3966         C->set_flat_accesses_share_alias(false);
3967         ciInlineKlass* vk = arytype->elem()->inline_klass();
3968         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
3969           ciField* field = vk->nonstatic_field_at(i);
3970           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3971             continue;  // do not bother to track really large numbers of fields
3972           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
3973           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
3974           int fieldidx = C->get_alias_index(adr_type, true);
3975           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
3976           // can result in per flat array field Phis to be created which confuses the logic of
3977           // Compile::adjust_flat_array_access_aliases().
3978           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
3979         }
3980         C->set_flat_accesses_share_alias(true);
3981         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
3982       } else {
3983         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3984         int            elemidx  = C->get_alias_index(telemref);
3985         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3986       }
3987     } else if (oop_type->isa_instptr()) {
3988       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
3989       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3990       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3991         ciField* field = ik->nonstatic_field_at(i);
3992         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3993           continue;  // do not bother to track really large numbers of fields
3994         // Find (or create) the alias category for this field:
3995         int fieldidx = C->alias_type(field)->index();
3996         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3997       }
3998     }
3999   }
4000 
4001   // Cast raw oop to the real thing...
4002   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4003   javaoop = _gvn.transform(javaoop);
4004   C->set_recent_alloc(control(), javaoop);
4005   assert(just_allocated_object(control()) == javaoop, "just allocated");
4006 
4007 #ifdef ASSERT
4008   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4009     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4010            "Ideal_allocation works");
4011     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4012            "Ideal_allocation works");
4013     if (alloc->is_AllocateArray()) {
4014       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4015              "Ideal_allocation works");
4016       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4017              "Ideal_allocation works");
4018     } else {
4019       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4020     }
4021   }
4022 #endif //ASSERT
4023 
4024   return javaoop;
4025 }
4026 
4027 //---------------------------new_instance--------------------------------------
4028 // This routine takes a klass_node which may be constant (for a static type)
4029 // or may be non-constant (for reflective code).  It will work equally well
4030 // for either, and the graph will fold nicely if the optimizer later reduces
4031 // the type to a constant.
4032 // The optional arguments are for specialized use by intrinsics:
4033 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4034 //  - If 'return_size_val', report the total object size to the caller.
4035 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4036 Node* GraphKit::new_instance(Node* klass_node,
4037                              Node* extra_slow_test,
4038                              Node* *return_size_val,
4039                              bool deoptimize_on_exception,
4040                              InlineTypeNode* inline_type_node) {
4041   // Compute size in doublewords
4042   // The size is always an integral number of doublewords, represented
4043   // as a positive bytewise size stored in the klass's layout_helper.
4044   // The layout_helper also encodes (in a low bit) the need for a slow path.
4045   jint  layout_con = Klass::_lh_neutral_value;
4046   Node* layout_val = get_layout_helper(klass_node, layout_con);
4047   bool  layout_is_con = (layout_val == nullptr);
4048 
4049   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4050   // Generate the initial go-slow test.  It's either ALWAYS (return a
4051   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4052   // case) a computed value derived from the layout_helper.
4053   Node* initial_slow_test = nullptr;
4054   if (layout_is_con) {
4055     assert(!StressReflectiveCode, "stress mode does not use these paths");
4056     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4057     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4058   } else {   // reflective case
4059     // This reflective path is used by Unsafe.allocateInstance.
4060     // (It may be stress-tested by specifying StressReflectiveCode.)
4061     // Basically, we want to get into the VM is there's an illegal argument.
4062     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4063     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4064     if (extra_slow_test != intcon(0)) {
4065       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4066     }
4067     // (Macro-expander will further convert this to a Bool, if necessary.)
4068   }
4069 
4070   // Find the size in bytes.  This is easy; it's the layout_helper.
4071   // The size value must be valid even if the slow path is taken.
4072   Node* size = nullptr;
4073   if (layout_is_con) {
4074     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4075   } else {   // reflective case
4076     // This reflective path is used by clone and Unsafe.allocateInstance.
4077     size = ConvI2X(layout_val);
4078 
4079     // Clear the low bits to extract layout_helper_size_in_bytes:
4080     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4081     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4082     size = _gvn.transform( new AndXNode(size, mask) );
4083   }
4084   if (return_size_val != nullptr) {
4085     (*return_size_val) = size;
4086   }
4087 
4088   // This is a precise notnull oop of the klass.
4089   // (Actually, it need not be precise if this is a reflective allocation.)
4090   // It's what we cast the result to.
4091   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4092   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4093   const TypeOopPtr* oop_type = tklass->as_instance_type();
4094 
4095   // Now generate allocation code
4096 
4097   // The entire memory state is needed for slow path of the allocation
4098   // since GC and deoptimization can happen.
4099   Node *mem = reset_memory();
4100   set_all_memory(mem); // Create new memory state
4101 
4102   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4103                                          control(), mem, i_o(),
4104                                          size, klass_node,
4105                                          initial_slow_test, inline_type_node);
4106 
4107   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4108 }
4109 
4110 //-------------------------------new_array-------------------------------------
4111 // helper for newarray and anewarray
4112 // The 'length' parameter is (obviously) the length of the array.
4113 // See comments on new_instance for the meaning of the other arguments.
4114 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4115                           Node* length,         // number of array elements
4116                           int   nargs,          // number of arguments to push back for uncommon trap
4117                           Node* *return_size_val,
4118                           bool deoptimize_on_exception) {
4119   jint  layout_con = Klass::_lh_neutral_value;
4120   Node* layout_val = get_layout_helper(klass_node, layout_con);
4121   bool  layout_is_con = (layout_val == nullptr);
4122 
4123   if (!layout_is_con && !StressReflectiveCode &&
4124       !too_many_traps(Deoptimization::Reason_class_check)) {
4125     // This is a reflective array creation site.
4126     // Optimistically assume that it is a subtype of Object[],
4127     // so that we can fold up all the address arithmetic.
4128     layout_con = Klass::array_layout_helper(T_OBJECT);
4129     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4130     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4131     { BuildCutout unless(this, bol_lh, PROB_MAX);
4132       inc_sp(nargs);
4133       uncommon_trap(Deoptimization::Reason_class_check,
4134                     Deoptimization::Action_maybe_recompile);
4135     }
4136     layout_val = nullptr;
4137     layout_is_con = true;
4138   }
4139 
4140   // Generate the initial go-slow test.  Make sure we do not overflow
4141   // if length is huge (near 2Gig) or negative!  We do not need
4142   // exact double-words here, just a close approximation of needed
4143   // double-words.  We can't add any offset or rounding bits, lest we
4144   // take a size -1 of bytes and make it positive.  Use an unsigned
4145   // compare, so negative sizes look hugely positive.
4146   int fast_size_limit = FastAllocateSizeLimit;
4147   if (layout_is_con) {
4148     assert(!StressReflectiveCode, "stress mode does not use these paths");
4149     // Increase the size limit if we have exact knowledge of array type.
4150     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4151     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4152   }
4153 
4154   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4155   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4156 
4157   // --- Size Computation ---
4158   // array_size = round_to_heap(array_header + (length << elem_shift));
4159   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4160   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4161   // The rounding mask is strength-reduced, if possible.
4162   int round_mask = MinObjAlignmentInBytes - 1;
4163   Node* header_size = nullptr;
4164   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4165   // (T_BYTE has the weakest alignment and size restrictions...)
4166   if (layout_is_con) {
4167     int       hsize  = Klass::layout_helper_header_size(layout_con);
4168     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4169     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4170     if ((round_mask & ~right_n_bits(eshift)) == 0)
4171       round_mask = 0;  // strength-reduce it if it goes away completely
4172     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4173     assert(header_size_min <= hsize, "generic minimum is smallest");
4174     header_size_min = hsize;
4175     header_size = intcon(hsize + round_mask);
4176   } else {
4177     Node* hss   = intcon(Klass::_lh_header_size_shift);
4178     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4179     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
4180     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
4181     Node* mask  = intcon(round_mask);
4182     header_size = _gvn.transform( new AddINode(hsize, mask) );
4183   }
4184 
4185   Node* elem_shift = nullptr;
4186   if (layout_is_con) {
4187     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4188     if (eshift != 0)
4189       elem_shift = intcon(eshift);
4190   } else {
4191     // There is no need to mask or shift this value.
4192     // The semantics of LShiftINode include an implicit mask to 0x1F.
4193     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4194     elem_shift = layout_val;
4195   }
4196 
4197   // Transition to native address size for all offset calculations:
4198   Node* lengthx = ConvI2X(length);
4199   Node* headerx = ConvI2X(header_size);
4200 #ifdef _LP64
4201   { const TypeInt* tilen = _gvn.find_int_type(length);
4202     if (tilen != nullptr && tilen->_lo < 0) {
4203       // Add a manual constraint to a positive range.  Cf. array_element_address.
4204       jint size_max = fast_size_limit;
4205       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4206       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4207 
4208       // Only do a narrow I2L conversion if the range check passed.
4209       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4210       _gvn.transform(iff);
4211       RegionNode* region = new RegionNode(3);
4212       _gvn.set_type(region, Type::CONTROL);
4213       lengthx = new PhiNode(region, TypeLong::LONG);
4214       _gvn.set_type(lengthx, TypeLong::LONG);
4215 
4216       // Range check passed. Use ConvI2L node with narrow type.
4217       Node* passed = IfFalse(iff);
4218       region->init_req(1, passed);
4219       // Make I2L conversion control dependent to prevent it from
4220       // floating above the range check during loop optimizations.
4221       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4222 
4223       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4224       region->init_req(2, IfTrue(iff));
4225       lengthx->init_req(2, ConvI2X(length));
4226 
4227       set_control(region);
4228       record_for_igvn(region);
4229       record_for_igvn(lengthx);
4230     }
4231   }
4232 #endif
4233 
4234   // Combine header size (plus rounding) and body size.  Then round down.
4235   // This computation cannot overflow, because it is used only in two
4236   // places, one where the length is sharply limited, and the other
4237   // after a successful allocation.
4238   Node* abody = lengthx;
4239   if (elem_shift != nullptr)
4240     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
4241   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
4242   if (round_mask != 0) {
4243     Node* mask = MakeConX(~round_mask);
4244     size       = _gvn.transform( new AndXNode(size, mask) );
4245   }
4246   // else if round_mask == 0, the size computation is self-rounding
4247 
4248   if (return_size_val != nullptr) {
4249     // This is the size
4250     (*return_size_val) = size;
4251   }
4252 
4253   // Now generate allocation code
4254 
4255   // The entire memory state is needed for slow path of the allocation
4256   // since GC and deoptimization can happen.
4257   Node *mem = reset_memory();
4258   set_all_memory(mem); // Create new memory state
4259 
4260   if (initial_slow_test->is_Bool()) {
4261     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4262     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4263   }
4264 
4265   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4266   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4267   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4268 
4269   // Inline type array variants:
4270   // - null-ok:              MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4271   // - null-free:            MyValue.val[] (ciObjArrayKlass "[QMyValue")
4272   // - null-free, flat     : MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4273   // Check if array is a null-free, non-flat inline type array
4274   // that needs to be initialized with the default inline type.
4275   Node* default_value = nullptr;
4276   Node* raw_default_value = nullptr;
4277   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4278     // Array type is known
4279     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4280       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4281       default_value = InlineTypeNode::default_oop(gvn(), vk);
4282     }
4283   } else if (ary_type->can_be_inline_array()) {
4284     // Array type is not known, add runtime checks
4285     assert(!ary_klass->klass_is_exact(), "unexpected exact type");
4286     Node* r = new RegionNode(3);
4287     default_value = new PhiNode(r, TypeInstPtr::BOTTOM);
4288 
4289     Node* bol = array_lh_test(klass_node, Klass::_lh_array_tag_flat_value_bit_inplace | Klass::_lh_null_free_array_bit_inplace, Klass::_lh_null_free_array_bit_inplace);
4290     IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4291 
4292     // Null-free, non-flat inline type array, initialize with the default value
4293     set_control(_gvn.transform(new IfTrueNode(iff)));
4294     Node* p = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4295     Node* eklass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), p, TypeInstPtr::KLASS));
4296     Node* adr_fixed_block_addr = basic_plus_adr(eklass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()));
4297     Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4298     Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(InlineKlass::default_value_offset_offset()));
4299     Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4300     Node* elem_mirror = load_mirror_from_klass(eklass);
4301     Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4302     Node* val = access_load_at(elem_mirror, default_value_addr, TypeInstPtr::MIRROR, TypeInstPtr::NOTNULL, T_OBJECT, IN_HEAP);
4303     r->init_req(1, control());
4304     default_value->init_req(1, val);
4305 
4306     // Otherwise initialize with all zero
4307     r->init_req(2, _gvn.transform(new IfFalseNode(iff)));
4308     default_value->init_req(2, null());
4309 
4310     set_control(_gvn.transform(r));
4311     default_value = _gvn.transform(default_value);
4312   }
4313   if (default_value != nullptr) {
4314     if (UseCompressedOops) {
4315       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4316       default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4317       Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4318       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4319       raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4320     } else {
4321       raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4322     }
4323   }
4324 
4325   Node* valid_length_test = _gvn.intcon(1);
4326   if (ary_type->isa_aryptr()) {
4327     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4328     jint max = TypeAryPtr::max_array_length(bt);
4329     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4330     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4331   }
4332 
4333   // Create the AllocateArrayNode and its result projections
4334   AllocateArrayNode* alloc
4335     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4336                             control(), mem, i_o(),
4337                             size, klass_node,
4338                             initial_slow_test,
4339                             length, valid_length_test,
4340                             default_value, raw_default_value);
4341   // Cast to correct type.  Note that the klass_node may be constant or not,
4342   // and in the latter case the actual array type will be inexact also.
4343   // (This happens via a non-constant argument to inline_native_newArray.)
4344   // In any case, the value of klass_node provides the desired array type.
4345   const TypeInt* length_type = _gvn.find_int_type(length);
4346   if (ary_type->isa_aryptr() && length_type != nullptr) {
4347     // Try to get a better type than POS for the size
4348     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4349   }
4350 
4351   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4352 
4353   array_ideal_length(alloc, ary_type, true);
4354   return javaoop;
4355 }
4356 
4357 // The following "Ideal_foo" functions are placed here because they recognize
4358 // the graph shapes created by the functions immediately above.
4359 
4360 //---------------------------Ideal_allocation----------------------------------
4361 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4362 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4363   if (ptr == nullptr) {     // reduce dumb test in callers
4364     return nullptr;
4365   }
4366 
4367   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4368   ptr = bs->step_over_gc_barrier(ptr);
4369 
4370   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4371     ptr = ptr->in(1);
4372     if (ptr == nullptr) return nullptr;
4373   }
4374   // Return null for allocations with several casts:
4375   //   j.l.reflect.Array.newInstance(jobject, jint)
4376   //   Object.clone()
4377   // to keep more precise type from last cast.
4378   if (ptr->is_Proj()) {
4379     Node* allo = ptr->in(0);
4380     if (allo != nullptr && allo->is_Allocate()) {
4381       return allo->as_Allocate();
4382     }
4383   }
4384   // Report failure to match.
4385   return nullptr;
4386 }
4387 
4388 // Fancy version which also strips off an offset (and reports it to caller).
4389 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4390                                              intptr_t& offset) {
4391   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4392   if (base == nullptr)  return nullptr;
4393   return Ideal_allocation(base);
4394 }
4395 
4396 // Trace Initialize <- Proj[Parm] <- Allocate
4397 AllocateNode* InitializeNode::allocation() {
4398   Node* rawoop = in(InitializeNode::RawAddress);
4399   if (rawoop->is_Proj()) {
4400     Node* alloc = rawoop->in(0);
4401     if (alloc->is_Allocate()) {
4402       return alloc->as_Allocate();
4403     }
4404   }
4405   return nullptr;
4406 }
4407 
4408 // Trace Allocate -> Proj[Parm] -> Initialize
4409 InitializeNode* AllocateNode::initialization() {
4410   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4411   if (rawoop == nullptr)  return nullptr;
4412   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4413     Node* init = rawoop->fast_out(i);
4414     if (init->is_Initialize()) {
4415       assert(init->as_Initialize()->allocation() == this, "2-way link");
4416       return init->as_Initialize();
4417     }
4418   }
4419   return nullptr;
4420 }
4421 
4422 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4423 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4424   // Too many traps seen?
4425   if (too_many_traps(reason)) {
4426 #ifdef ASSERT
4427     if (TraceLoopPredicate) {
4428       int tc = C->trap_count(reason);
4429       tty->print("too many traps=%s tcount=%d in ",
4430                     Deoptimization::trap_reason_name(reason), tc);
4431       method()->print(); // which method has too many predicate traps
4432       tty->cr();
4433     }
4434 #endif
4435     // We cannot afford to take more traps here,
4436     // do not generate Parse Predicate.
4437     return;
4438   }
4439 
4440   Node* cont = _gvn.intcon(1);
4441   Node* opaq = _gvn.transform(new Opaque1Node(C, cont));
4442   C->add_parse_predicate_opaq(opaq);
4443   Node* bol = _gvn.transform(new Conv2BNode(opaq));
4444   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), bol, reason);
4445   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4446   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4447   {
4448     PreserveJVMState pjvms(this);
4449     set_control(if_false);
4450     inc_sp(nargs);
4451     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4452   }
4453   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4454   set_control(if_true);
4455 }
4456 
4457 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4458 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4459 void GraphKit::add_parse_predicates(int nargs) {
4460   if (UseLoopPredicate) {
4461     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4462   }
4463   if (UseProfiledLoopPredicate) {
4464     add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4465   }
4466   // Loop Limit Check Predicate should be near the loop.
4467   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4468 }
4469 
4470 void GraphKit::sync_kit(IdealKit& ideal) {
4471   set_all_memory(ideal.merged_memory());
4472   set_i_o(ideal.i_o());
4473   set_control(ideal.ctrl());
4474 }
4475 
4476 void GraphKit::final_sync(IdealKit& ideal) {
4477   // Final sync IdealKit and graphKit.
4478   sync_kit(ideal);
4479 }
4480 
4481 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4482   Node* len = load_array_length(load_String_value(str, set_ctrl));
4483   Node* coder = load_String_coder(str, set_ctrl);
4484   // Divide length by 2 if coder is UTF16
4485   return _gvn.transform(new RShiftINode(len, coder));
4486 }
4487 
4488 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4489   int value_offset = java_lang_String::value_offset();
4490   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4491                                                      false, nullptr, Type::Offset(0));
4492   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4493   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4494                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4495                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4496   Node* p = basic_plus_adr(str, str, value_offset);
4497   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4498                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4499   return load;
4500 }
4501 
4502 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4503   if (!CompactStrings) {
4504     return intcon(java_lang_String::CODER_UTF16);
4505   }
4506   int coder_offset = java_lang_String::coder_offset();
4507   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4508                                                      false, nullptr, Type::Offset(0));
4509   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4510 
4511   Node* p = basic_plus_adr(str, str, coder_offset);
4512   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4513                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4514   return load;
4515 }
4516 
4517 void GraphKit::store_String_value(Node* str, Node* value) {
4518   int value_offset = java_lang_String::value_offset();
4519   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4520                                                      false, nullptr, Type::Offset(0));
4521   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4522 
4523   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4524                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4525 }
4526 
4527 void GraphKit::store_String_coder(Node* str, Node* value) {
4528   int coder_offset = java_lang_String::coder_offset();
4529   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4530                                                      false, nullptr, Type::Offset(0));
4531   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4532 
4533   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4534                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4535 }
4536 
4537 // Capture src and dst memory state with a MergeMemNode
4538 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4539   if (src_type == dst_type) {
4540     // Types are equal, we don't need a MergeMemNode
4541     return memory(src_type);
4542   }
4543   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4544   record_for_igvn(merge); // fold it up later, if possible
4545   int src_idx = C->get_alias_index(src_type);
4546   int dst_idx = C->get_alias_index(dst_type);
4547   merge->set_memory_at(src_idx, memory(src_idx));
4548   merge->set_memory_at(dst_idx, memory(dst_idx));
4549   return merge;
4550 }
4551 
4552 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4553   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4554   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4555   // If input and output memory types differ, capture both states to preserve
4556   // the dependency between preceding and subsequent loads/stores.
4557   // For example, the following program:
4558   //  StoreB
4559   //  compress_string
4560   //  LoadB
4561   // has this memory graph (use->def):
4562   //  LoadB -> compress_string -> CharMem
4563   //             ... -> StoreB -> ByteMem
4564   // The intrinsic hides the dependency between LoadB and StoreB, causing
4565   // the load to read from memory not containing the result of the StoreB.
4566   // The correct memory graph should look like this:
4567   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4568   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4569   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4570   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4571   set_memory(res_mem, TypeAryPtr::BYTES);
4572   return str;
4573 }
4574 
4575 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4576   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4577   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4578   // Capture src and dst memory (see comment in 'compress_string').
4579   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4580   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4581   set_memory(_gvn.transform(str), dst_type);
4582 }
4583 
4584 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4585   /**
4586    * int i_char = start;
4587    * for (int i_byte = 0; i_byte < count; i_byte++) {
4588    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4589    * }
4590    */
4591   add_parse_predicates();
4592   C->set_has_loops(true);
4593 
4594   RegionNode* head = new RegionNode(3);
4595   head->init_req(1, control());
4596   gvn().set_type(head, Type::CONTROL);
4597   record_for_igvn(head);
4598 
4599   Node* i_byte = new PhiNode(head, TypeInt::INT);
4600   i_byte->init_req(1, intcon(0));
4601   gvn().set_type(i_byte, TypeInt::INT);
4602   record_for_igvn(i_byte);
4603 
4604   Node* i_char = new PhiNode(head, TypeInt::INT);
4605   i_char->init_req(1, start);
4606   gvn().set_type(i_char, TypeInt::INT);
4607   record_for_igvn(i_char);
4608 
4609   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4610   gvn().set_type(mem, Type::MEMORY);
4611   record_for_igvn(mem);
4612   set_control(head);
4613   set_memory(mem, TypeAryPtr::BYTES);
4614   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4615   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4616                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4617                              false, false, true /* mismatched */);
4618 
4619   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4620   head->init_req(2, IfTrue(iff));
4621   mem->init_req(2, st);
4622   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4623   i_char->init_req(2, AddI(i_char, intcon(2)));
4624 
4625   set_control(IfFalse(iff));
4626   set_memory(st, TypeAryPtr::BYTES);
4627 }
4628 
4629 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4630   if (!field->is_constant()) {
4631     return nullptr; // Field not marked as constant.
4632   }
4633   ciInstance* holder = nullptr;
4634   if (!field->is_static()) {
4635     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4636     if (const_oop != nullptr && const_oop->is_instance()) {
4637       holder = const_oop->as_instance();
4638     }
4639   }
4640   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4641                                                         /*is_unsigned_load=*/false);
4642   if (con_type != nullptr) {
4643     Node* con = makecon(con_type);
4644     if (field->type()->is_inlinetype()) {
4645       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4646     } else if (con_type->is_inlinetypeptr()) {
4647       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4648     }
4649     return con;
4650   }
4651   return nullptr;
4652 }
4653 
4654 //---------------------------load_mirror_from_klass----------------------------
4655 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4656 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4657   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4658   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4659   // mirror = ((OopHandle)mirror)->resolve();
4660   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4661 }