1 /*
   2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_ex_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_ex_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing())  return;  // dying anyway...
 356   JVMState* ex_jvms = ex_map->_jvms;
 357   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 358   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 359   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 360   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 361   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 362   assert(ex_map->req() == phi_map->req(), "matching maps");
 363   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 364   Node*         hidden_merge_mark = root();
 365   Node*         region  = phi_map->control();
 366   MergeMemNode* phi_mem = phi_map->merged_memory();
 367   MergeMemNode* ex_mem  = ex_map->merged_memory();
 368   if (region->in(0) != hidden_merge_mark) {
 369     // The control input is not (yet) a specially-marked region in phi_map.
 370     // Make it so, and build some phis.
 371     region = new RegionNode(2);
 372     _gvn.set_type(region, Type::CONTROL);
 373     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 374     region->init_req(1, phi_map->control());
 375     phi_map->set_control(region);
 376     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 377     record_for_igvn(io_phi);
 378     _gvn.set_type(io_phi, Type::ABIO);
 379     phi_map->set_i_o(io_phi);
 380     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 381       Node* m = mms.memory();
 382       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 383       record_for_igvn(m_phi);
 384       _gvn.set_type(m_phi, Type::MEMORY);
 385       mms.set_memory(m_phi);
 386     }
 387   }
 388 
 389   // Either or both of phi_map and ex_map might already be converted into phis.
 390   Node* ex_control = ex_map->control();
 391   // if there is special marking on ex_map also, we add multiple edges from src
 392   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 393   // how wide was the destination phi_map, originally?
 394   uint orig_width = region->req();
 395 
 396   if (add_multiple) {
 397     add_n_reqs(region, ex_control);
 398     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 399   } else {
 400     // ex_map has no merges, so we just add single edges everywhere
 401     add_one_req(region, ex_control);
 402     add_one_req(phi_map->i_o(), ex_map->i_o());
 403   }
 404   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 405     if (mms.is_empty()) {
 406       // get a copy of the base memory, and patch some inputs into it
 407       const TypePtr* adr_type = mms.adr_type(C);
 408       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 409       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 410       mms.set_memory(phi);
 411       // Prepare to append interesting stuff onto the newly sliced phi:
 412       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 413     }
 414     // Append stuff from ex_map:
 415     if (add_multiple) {
 416       add_n_reqs(mms.memory(), mms.memory2());
 417     } else {
 418       add_one_req(mms.memory(), mms.memory2());
 419     }
 420   }
 421   uint limit = ex_map->req();
 422   for (uint i = TypeFunc::Parms; i < limit; i++) {
 423     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 424     if (i == tos)  i = ex_jvms->monoff();
 425     Node* src = ex_map->in(i);
 426     Node* dst = phi_map->in(i);
 427     if (src != dst) {
 428       PhiNode* phi;
 429       if (dst->in(0) != region) {
 430         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 431         record_for_igvn(phi);
 432         _gvn.set_type(phi, phi->type());
 433         phi_map->set_req(i, dst);
 434         // Prepare to append interesting stuff onto the new phi:
 435         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 436       } else {
 437         assert(dst->is_Phi(), "nobody else uses a hidden region");
 438         phi = dst->as_Phi();
 439       }
 440       if (add_multiple && src->in(0) == ex_control) {
 441         // Both are phis.
 442         add_n_reqs(dst, src);
 443       } else {
 444         while (dst->req() < region->req())  add_one_req(dst, src);
 445       }
 446       const Type* srctype = _gvn.type(src);
 447       if (phi->type() != srctype) {
 448         const Type* dsttype = phi->type()->meet_speculative(srctype);
 449         if (phi->type() != dsttype) {
 450           phi->set_type(dsttype);
 451           _gvn.set_type(phi, dsttype);
 452         }
 453       }
 454     }
 455   }
 456   phi_map->merge_replaced_nodes_with(ex_map);
 457 }
 458 
 459 //--------------------------use_exception_state--------------------------------
 460 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 461   if (failing()) { stop(); return top(); }
 462   Node* region = phi_map->control();
 463   Node* hidden_merge_mark = root();
 464   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 465   Node* ex_oop = clear_saved_ex_oop(phi_map);
 466   if (region->in(0) == hidden_merge_mark) {
 467     // Special marking for internal ex-states.  Process the phis now.
 468     region->set_req(0, region);  // now it's an ordinary region
 469     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 470     // Note: Setting the jvms also sets the bci and sp.
 471     set_control(_gvn.transform(region));
 472     uint tos = jvms()->stkoff() + sp();
 473     for (uint i = 1; i < tos; i++) {
 474       Node* x = phi_map->in(i);
 475       if (x->in(0) == region) {
 476         assert(x->is_Phi(), "expected a special phi");
 477         phi_map->set_req(i, _gvn.transform(x));
 478       }
 479     }
 480     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 481       Node* x = mms.memory();
 482       if (x->in(0) == region) {
 483         assert(x->is_Phi(), "nobody else uses a hidden region");
 484         mms.set_memory(_gvn.transform(x));
 485       }
 486     }
 487     if (ex_oop->in(0) == region) {
 488       assert(ex_oop->is_Phi(), "expected a special phi");
 489       ex_oop = _gvn.transform(ex_oop);
 490     }
 491   } else {
 492     set_jvms(phi_map->jvms());
 493   }
 494 
 495   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 496   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 497   return ex_oop;
 498 }
 499 
 500 //---------------------------------java_bc-------------------------------------
 501 Bytecodes::Code GraphKit::java_bc() const {
 502   ciMethod* method = this->method();
 503   int       bci    = this->bci();
 504   if (method != nullptr && bci != InvocationEntryBci)
 505     return method->java_code_at_bci(bci);
 506   else
 507     return Bytecodes::_illegal;
 508 }
 509 
 510 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 511                                                           bool must_throw) {
 512     // if the exception capability is set, then we will generate code
 513     // to check the JavaThread.should_post_on_exceptions flag to see
 514     // if we actually need to report exception events (for this
 515     // thread).  If we don't need to report exception events, we will
 516     // take the normal fast path provided by add_exception_events.  If
 517     // exception event reporting is enabled for this thread, we will
 518     // take the uncommon_trap in the BuildCutout below.
 519 
 520     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 521     Node* jthread = _gvn.transform(new ThreadLocalNode());
 522     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 523     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 524 
 525     // Test the should_post_on_exceptions_flag vs. 0
 526     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 527     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 528 
 529     // Branch to slow_path if should_post_on_exceptions_flag was true
 530     { BuildCutout unless(this, tst, PROB_MAX);
 531       // Do not try anything fancy if we're notifying the VM on every throw.
 532       // Cf. case Bytecodes::_athrow in parse2.cpp.
 533       uncommon_trap(reason, Deoptimization::Action_none,
 534                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 535     }
 536 
 537 }
 538 
 539 //------------------------------builtin_throw----------------------------------
 540 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 541   bool must_throw = true;
 542 
 543   // If this particular condition has not yet happened at this
 544   // bytecode, then use the uncommon trap mechanism, and allow for
 545   // a future recompilation if several traps occur here.
 546   // If the throw is hot, try to use a more complicated inline mechanism
 547   // which keeps execution inside the compiled code.
 548   bool treat_throw_as_hot = false;
 549   ciMethodData* md = method()->method_data();
 550 
 551   if (ProfileTraps) {
 552     if (too_many_traps(reason)) {
 553       treat_throw_as_hot = true;
 554     }
 555     // (If there is no MDO at all, assume it is early in
 556     // execution, and that any deopts are part of the
 557     // startup transient, and don't need to be remembered.)
 558 
 559     // Also, if there is a local exception handler, treat all throws
 560     // as hot if there has been at least one in this method.
 561     if (C->trap_count(reason) != 0
 562         && method()->method_data()->trap_count(reason) != 0
 563         && has_ex_handler()) {
 564         treat_throw_as_hot = true;
 565     }
 566   }
 567 
 568   // If this throw happens frequently, an uncommon trap might cause
 569   // a performance pothole.  If there is a local exception handler,
 570   // and if this particular bytecode appears to be deoptimizing often,
 571   // let us handle the throw inline, with a preconstructed instance.
 572   // Note:   If the deopt count has blown up, the uncommon trap
 573   // runtime is going to flush this nmethod, not matter what.
 574   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 575     // If the throw is local, we use a pre-existing instance and
 576     // punt on the backtrace.  This would lead to a missing backtrace
 577     // (a repeat of 4292742) if the backtrace object is ever asked
 578     // for its backtrace.
 579     // Fixing this remaining case of 4292742 requires some flavor of
 580     // escape analysis.  Leave that for the future.
 581     ciInstance* ex_obj = nullptr;
 582     switch (reason) {
 583     case Deoptimization::Reason_null_check:
 584       ex_obj = env()->NullPointerException_instance();
 585       break;
 586     case Deoptimization::Reason_div0_check:
 587       ex_obj = env()->ArithmeticException_instance();
 588       break;
 589     case Deoptimization::Reason_range_check:
 590       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 591       break;
 592     case Deoptimization::Reason_class_check:
 593       ex_obj = env()->ClassCastException_instance();
 594       break;
 595     case Deoptimization::Reason_array_check:
 596       ex_obj = env()->ArrayStoreException_instance();
 597       break;
 598     default:
 599       break;
 600     }
 601     if (failing()) { stop(); return; }  // exception allocation might fail
 602     if (ex_obj != nullptr) {
 603       if (env()->jvmti_can_post_on_exceptions()) {
 604         // check if we must post exception events, take uncommon trap if so
 605         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 606         // here if should_post_on_exceptions is false
 607         // continue on with the normal codegen
 608       }
 609 
 610       // Cheat with a preallocated exception object.
 611       if (C->log() != nullptr)
 612         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 613                        Deoptimization::trap_reason_name(reason));
 614       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 615       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 616 
 617       // Clear the detail message of the preallocated exception object.
 618       // Weblogic sometimes mutates the detail message of exceptions
 619       // using reflection.
 620       int offset = java_lang_Throwable::get_detailMessage_offset();
 621       const TypePtr* adr_typ = ex_con->add_offset(offset);
 622 
 623       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 624       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 625       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 626 
 627       if (!method()->has_exception_handlers()) {
 628         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 629         // This prevents issues with exception handling and late inlining.
 630         set_sp(0);
 631         clean_stack(0);
 632       }
 633 
 634       add_exception_state(make_exception_state(ex_node));
 635       return;
 636     }
 637   }
 638 
 639   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 640   // It won't be much cheaper than bailing to the interp., since we'll
 641   // have to pass up all the debug-info, and the runtime will have to
 642   // create the stack trace.
 643 
 644   // Usual case:  Bail to interpreter.
 645   // Reserve the right to recompile if we haven't seen anything yet.
 646 
 647   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 648   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 649   if (treat_throw_as_hot
 650       && (method()->method_data()->trap_recompiled_at(bci(), m)
 651           || C->too_many_traps(reason))) {
 652     // We cannot afford to take more traps here.  Suffer in the interpreter.
 653     if (C->log() != nullptr)
 654       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 655                      Deoptimization::trap_reason_name(reason),
 656                      C->trap_count(reason));
 657     action = Deoptimization::Action_none;
 658   }
 659 
 660   // "must_throw" prunes the JVM state to include only the stack, if there
 661   // are no local exception handlers.  This should cut down on register
 662   // allocation time and code size, by drastically reducing the number
 663   // of in-edges on the call to the uncommon trap.
 664 
 665   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 666 }
 667 
 668 
 669 //----------------------------PreserveJVMState---------------------------------
 670 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 671   debug_only(kit->verify_map());
 672   _kit    = kit;
 673   _map    = kit->map();   // preserve the map
 674   _sp     = kit->sp();
 675   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 676 #ifdef ASSERT
 677   _bci    = kit->bci();
 678   Parse* parser = kit->is_Parse();
 679   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 680   _block  = block;
 681 #endif
 682 }
 683 PreserveJVMState::~PreserveJVMState() {
 684   GraphKit* kit = _kit;
 685 #ifdef ASSERT
 686   assert(kit->bci() == _bci, "bci must not shift");
 687   Parse* parser = kit->is_Parse();
 688   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 689   assert(block == _block,    "block must not shift");
 690 #endif
 691   kit->set_map(_map);
 692   kit->set_sp(_sp);
 693 }
 694 
 695 
 696 //-----------------------------BuildCutout-------------------------------------
 697 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 698   : PreserveJVMState(kit)
 699 {
 700   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 701   SafePointNode* outer_map = _map;   // preserved map is caller's
 702   SafePointNode* inner_map = kit->map();
 703   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 704   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 705   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 706 }
 707 BuildCutout::~BuildCutout() {
 708   GraphKit* kit = _kit;
 709   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 710 }
 711 
 712 //---------------------------PreserveReexecuteState----------------------------
 713 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 714   assert(!kit->stopped(), "must call stopped() before");
 715   _kit    =    kit;
 716   _sp     =    kit->sp();
 717   _reexecute = kit->jvms()->_reexecute;
 718 }
 719 PreserveReexecuteState::~PreserveReexecuteState() {
 720   if (_kit->stopped()) return;
 721   _kit->jvms()->_reexecute = _reexecute;
 722   _kit->set_sp(_sp);
 723 }
 724 
 725 //------------------------------clone_map--------------------------------------
 726 // Implementation of PreserveJVMState
 727 //
 728 // Only clone_map(...) here. If this function is only used in the
 729 // PreserveJVMState class we may want to get rid of this extra
 730 // function eventually and do it all there.
 731 
 732 SafePointNode* GraphKit::clone_map() {
 733   if (map() == nullptr)  return nullptr;
 734 
 735   // Clone the memory edge first
 736   Node* mem = MergeMemNode::make(map()->memory());
 737   gvn().set_type_bottom(mem);
 738 
 739   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 740   JVMState* jvms = this->jvms();
 741   JVMState* clonejvms = jvms->clone_shallow(C);
 742   clonemap->set_memory(mem);
 743   clonemap->set_jvms(clonejvms);
 744   clonejvms->set_map(clonemap);
 745   record_for_igvn(clonemap);
 746   gvn().set_type_bottom(clonemap);
 747   return clonemap;
 748 }
 749 
 750 //-----------------------------destruct_map_clone------------------------------
 751 //
 752 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 753 // to destruct/free/delete in the exact opposite order as clone_map().
 754 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 755   if (sfp == nullptr) return;
 756 
 757   Node* mem = sfp->memory();
 758   JVMState* jvms = sfp->jvms();
 759 
 760   if (jvms != nullptr) {
 761     delete jvms;
 762   }
 763 
 764   remove_for_igvn(sfp);
 765   gvn().clear_type(sfp);
 766   sfp->destruct(&_gvn);
 767 
 768   if (mem != nullptr) {
 769     gvn().clear_type(mem);
 770     mem->destruct(&_gvn);
 771   }
 772 }
 773 
 774 //-----------------------------set_map_clone-----------------------------------
 775 void GraphKit::set_map_clone(SafePointNode* m) {
 776   _map = m;
 777   _map = clone_map();
 778   _map->set_next_exception(nullptr);
 779   debug_only(verify_map());
 780 }
 781 
 782 
 783 //----------------------------kill_dead_locals---------------------------------
 784 // Detect any locals which are known to be dead, and force them to top.
 785 void GraphKit::kill_dead_locals() {
 786   // Consult the liveness information for the locals.  If any
 787   // of them are unused, then they can be replaced by top().  This
 788   // should help register allocation time and cut down on the size
 789   // of the deoptimization information.
 790 
 791   // This call is made from many of the bytecode handling
 792   // subroutines called from the Big Switch in do_one_bytecode.
 793   // Every bytecode which might include a slow path is responsible
 794   // for killing its dead locals.  The more consistent we
 795   // are about killing deads, the fewer useless phis will be
 796   // constructed for them at various merge points.
 797 
 798   // bci can be -1 (InvocationEntryBci).  We return the entry
 799   // liveness for the method.
 800 
 801   if (method() == nullptr || method()->code_size() == 0) {
 802     // We are building a graph for a call to a native method.
 803     // All locals are live.
 804     return;
 805   }
 806 
 807   ResourceMark rm;
 808 
 809   // Consult the liveness information for the locals.  If any
 810   // of them are unused, then they can be replaced by top().  This
 811   // should help register allocation time and cut down on the size
 812   // of the deoptimization information.
 813   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 814 
 815   int len = (int)live_locals.size();
 816   assert(len <= jvms()->loc_size(), "too many live locals");
 817   for (int local = 0; local < len; local++) {
 818     if (!live_locals.at(local)) {
 819       set_local(local, top());
 820     }
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 //-------------------------dead_locals_are_killed------------------------------
 826 // Return true if all dead locals are set to top in the map.
 827 // Used to assert "clean" debug info at various points.
 828 bool GraphKit::dead_locals_are_killed() {
 829   if (method() == nullptr || method()->code_size() == 0) {
 830     // No locals need to be dead, so all is as it should be.
 831     return true;
 832   }
 833 
 834   // Make sure somebody called kill_dead_locals upstream.
 835   ResourceMark rm;
 836   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 837     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 838     SafePointNode* map = jvms->map();
 839     ciMethod* method = jvms->method();
 840     int       bci    = jvms->bci();
 841     if (jvms == this->jvms()) {
 842       bci = this->bci();  // it might not yet be synched
 843     }
 844     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 845     int len = (int)live_locals.size();
 846     if (!live_locals.is_valid() || len == 0)
 847       // This method is trivial, or is poisoned by a breakpoint.
 848       return true;
 849     assert(len == jvms->loc_size(), "live map consistent with locals map");
 850     for (int local = 0; local < len; local++) {
 851       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 893 
 894   // Walk the inline list to fill in the correct set of JVMState's
 895   // Also fill in the associated edges for each JVMState.
 896 
 897   // If the bytecode needs to be reexecuted we need to put
 898   // the arguments back on the stack.
 899   const bool should_reexecute = jvms()->should_reexecute();
 900   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 901 
 902   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 903   // undefined if the bci is different.  This is normal for Parse but it
 904   // should not happen for LibraryCallKit because only one bci is processed.
 905   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 906          "in LibraryCallKit the reexecute bit should not change");
 907 
 908   // If we are guaranteed to throw, we can prune everything but the
 909   // input to the current bytecode.
 910   bool can_prune_locals = false;
 911   uint stack_slots_not_pruned = 0;
 912   int inputs = 0, depth = 0;
 913   if (must_throw) {
 914     assert(method() == youngest_jvms->method(), "sanity");
 915     if (compute_stack_effects(inputs, depth)) {
 916       can_prune_locals = true;
 917       stack_slots_not_pruned = inputs;
 918     }
 919   }
 920 
 921   if (env()->should_retain_local_variables()) {
 922     // At any safepoint, this method can get breakpointed, which would
 923     // then require an immediate deoptimization.
 924     can_prune_locals = false;  // do not prune locals
 925     stack_slots_not_pruned = 0;
 926   }
 927 
 928   // do not scribble on the input jvms
 929   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 930   call->set_jvms(out_jvms); // Start jvms list for call node
 931 
 932   // For a known set of bytecodes, the interpreter should reexecute them if
 933   // deoptimization happens. We set the reexecute state for them here
 934   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 935       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 936 #ifdef ASSERT
 937     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 938     assert(method() == youngest_jvms->method(), "sanity");
 939     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 940     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 941 #endif // ASSERT
 942     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 943   }
 944 
 945   // Presize the call:
 946   DEBUG_ONLY(uint non_debug_edges = call->req());
 947   call->add_req_batch(top(), youngest_jvms->debug_depth());
 948   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 949 
 950   // Set up edges so that the call looks like this:
 951   //  Call [state:] ctl io mem fptr retadr
 952   //       [parms:] parm0 ... parmN
 953   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 954   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 955   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   // Note that caller debug info precedes callee debug info.
 957 
 958   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 959   uint debug_ptr = call->req();
 960 
 961   // Loop over the map input edges associated with jvms, add them
 962   // to the call node, & reset all offsets to match call node array.
 963   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 964     uint debug_end   = debug_ptr;
 965     uint debug_start = debug_ptr - in_jvms->debug_size();
 966     debug_ptr = debug_start;  // back up the ptr
 967 
 968     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 969     uint j, k, l;
 970     SafePointNode* in_map = in_jvms->map();
 971     out_jvms->set_map(call);
 972 
 973     if (can_prune_locals) {
 974       assert(in_jvms->method() == out_jvms->method(), "sanity");
 975       // If the current throw can reach an exception handler in this JVMS,
 976       // then we must keep everything live that can reach that handler.
 977       // As a quick and dirty approximation, we look for any handlers at all.
 978       if (in_jvms->method()->has_exception_handlers()) {
 979         can_prune_locals = false;
 980       }
 981     }
 982 
 983     // Add the Locals
 984     k = in_jvms->locoff();
 985     l = in_jvms->loc_size();
 986     out_jvms->set_locoff(p);
 987     if (!can_prune_locals) {
 988       for (j = 0; j < l; j++)
 989         call->set_req(p++, in_map->in(k+j));
 990     } else {
 991       p += l;  // already set to top above by add_req_batch
 992     }
 993 
 994     // Add the Expression Stack
 995     k = in_jvms->stkoff();
 996     l = in_jvms->sp();
 997     out_jvms->set_stkoff(p);
 998     if (!can_prune_locals) {
 999       for (j = 0; j < l; j++)
1000         call->set_req(p++, in_map->in(k+j));
1001     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1002       // Divide stack into {S0,...,S1}, where S0 is set to top.
1003       uint s1 = stack_slots_not_pruned;
1004       stack_slots_not_pruned = 0;  // for next iteration
1005       if (s1 > l)  s1 = l;
1006       uint s0 = l - s1;
1007       p += s0;  // skip the tops preinstalled by add_req_batch
1008       for (j = s0; j < l; j++)
1009         call->set_req(p++, in_map->in(k+j));
1010     } else {
1011       p += l;  // already set to top above by add_req_batch
1012     }
1013 
1014     // Add the Monitors
1015     k = in_jvms->monoff();
1016     l = in_jvms->mon_size();
1017     out_jvms->set_monoff(p);
1018     for (j = 0; j < l; j++)
1019       call->set_req(p++, in_map->in(k+j));
1020 
1021     // Copy any scalar object fields.
1022     k = in_jvms->scloff();
1023     l = in_jvms->scl_size();
1024     out_jvms->set_scloff(p);
1025     for (j = 0; j < l; j++)
1026       call->set_req(p++, in_map->in(k+j));
1027 
1028     // Finish the new jvms.
1029     out_jvms->set_endoff(p);
1030 
1031     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1032     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1033     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1034     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1035     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1036     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1037 
1038     // Update the two tail pointers in parallel.
1039     out_jvms = out_jvms->caller();
1040     in_jvms  = in_jvms->caller();
1041   }
1042 
1043   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1044 
1045   // Test the correctness of JVMState::debug_xxx accessors:
1046   assert(call->jvms()->debug_start() == non_debug_edges, "");
1047   assert(call->jvms()->debug_end()   == call->req(), "");
1048   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1049 }
1050 
1051 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1052   Bytecodes::Code code = java_bc();
1053   if (code == Bytecodes::_wide) {
1054     code = method()->java_code_at_bci(bci() + 1);
1055   }
1056 
1057   if (code != Bytecodes::_illegal) {
1058     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1059   }
1060 
1061   auto rsize = [&]() {
1062     assert(code != Bytecodes::_illegal, "code is illegal!");
1063     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1064     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1065   };
1066 
1067   switch (code) {
1068   case Bytecodes::_illegal:
1069     return false;
1070 
1071   case Bytecodes::_ldc:
1072   case Bytecodes::_ldc_w:
1073   case Bytecodes::_ldc2_w:
1074     inputs = 0;
1075     break;
1076 
1077   case Bytecodes::_dup:         inputs = 1;  break;
1078   case Bytecodes::_dup_x1:      inputs = 2;  break;
1079   case Bytecodes::_dup_x2:      inputs = 3;  break;
1080   case Bytecodes::_dup2:        inputs = 2;  break;
1081   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1082   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1083   case Bytecodes::_swap:        inputs = 2;  break;
1084   case Bytecodes::_arraylength: inputs = 1;  break;
1085 
1086   case Bytecodes::_getstatic:
1087   case Bytecodes::_putstatic:
1088   case Bytecodes::_getfield:
1089   case Bytecodes::_putfield:
1090     {
1091       bool ignored_will_link;
1092       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1093       int      size  = field->type()->size();
1094       bool is_get = (depth >= 0), is_static = (depth & 1);
1095       inputs = (is_static ? 0 : 1);
1096       if (is_get) {
1097         depth = size - inputs;
1098       } else {
1099         inputs += size;        // putxxx pops the value from the stack
1100         depth = - inputs;
1101       }
1102     }
1103     break;
1104 
1105   case Bytecodes::_invokevirtual:
1106   case Bytecodes::_invokespecial:
1107   case Bytecodes::_invokestatic:
1108   case Bytecodes::_invokedynamic:
1109   case Bytecodes::_invokeinterface:
1110     {
1111       bool ignored_will_link;
1112       ciSignature* declared_signature = nullptr;
1113       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1114       assert(declared_signature != nullptr, "cannot be null");
1115       inputs   = declared_signature->arg_size_for_bc(code);
1116       int size = declared_signature->return_type()->size();
1117       depth = size - inputs;
1118     }
1119     break;
1120 
1121   case Bytecodes::_multianewarray:
1122     {
1123       ciBytecodeStream iter(method());
1124       iter.reset_to_bci(bci());
1125       iter.next();
1126       inputs = iter.get_dimensions();
1127       assert(rsize() == 1, "");
1128       depth = 1 - inputs;
1129     }
1130     break;
1131 
1132   case Bytecodes::_withfield: {
1133     bool ignored_will_link;
1134     ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1135     int      size  = field->type()->size();
1136     inputs = size+1;
1137     depth = rsize() - inputs;
1138     break;
1139   }
1140 
1141   case Bytecodes::_ireturn:
1142   case Bytecodes::_lreturn:
1143   case Bytecodes::_freturn:
1144   case Bytecodes::_dreturn:
1145   case Bytecodes::_areturn:
1146     assert(rsize() == -depth, "");
1147     inputs = -depth;
1148     break;
1149 
1150   case Bytecodes::_jsr:
1151   case Bytecodes::_jsr_w:
1152     inputs = 0;
1153     depth  = 1;                  // S.B. depth=1, not zero
1154     break;
1155 
1156   default:
1157     // bytecode produces a typed result
1158     inputs = rsize() - depth;
1159     assert(inputs >= 0, "");
1160     break;
1161   }
1162 
1163 #ifdef ASSERT
1164   // spot check
1165   int outputs = depth + inputs;
1166   assert(outputs >= 0, "sanity");
1167   switch (code) {
1168   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1169   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1170   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1171   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1172   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1173   default:                    break;
1174   }
1175 #endif //ASSERT
1176 
1177   return true;
1178 }
1179 
1180 
1181 
1182 //------------------------------basic_plus_adr---------------------------------
1183 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1184   // short-circuit a common case
1185   if (offset == intcon(0))  return ptr;
1186   return _gvn.transform( new AddPNode(base, ptr, offset) );
1187 }
1188 
1189 Node* GraphKit::ConvI2L(Node* offset) {
1190   // short-circuit a common case
1191   jint offset_con = find_int_con(offset, Type::OffsetBot);
1192   if (offset_con != Type::OffsetBot) {
1193     return longcon((jlong) offset_con);
1194   }
1195   return _gvn.transform( new ConvI2LNode(offset));
1196 }
1197 
1198 Node* GraphKit::ConvI2UL(Node* offset) {
1199   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1200   if (offset_con != (juint) Type::OffsetBot) {
1201     return longcon((julong) offset_con);
1202   }
1203   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1204   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1205   return _gvn.transform( new AndLNode(conv, mask) );
1206 }
1207 
1208 Node* GraphKit::ConvL2I(Node* offset) {
1209   // short-circuit a common case
1210   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1211   if (offset_con != (jlong)Type::OffsetBot) {
1212     return intcon((int) offset_con);
1213   }
1214   return _gvn.transform( new ConvL2INode(offset));
1215 }
1216 
1217 //-------------------------load_object_klass-----------------------------------
1218 Node* GraphKit::load_object_klass(Node* obj) {
1219   // Special-case a fresh allocation to avoid building nodes:
1220   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1221   if (akls != nullptr)  return akls;
1222   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1223   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1224 }
1225 
1226 //-------------------------load_array_length-----------------------------------
1227 Node* GraphKit::load_array_length(Node* array) {
1228   // Special-case a fresh allocation to avoid building nodes:
1229   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1230   Node *alen;
1231   if (alloc == nullptr) {
1232     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1233     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1234   } else {
1235     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1236   }
1237   return alen;
1238 }
1239 
1240 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1241                                    const TypeOopPtr* oop_type,
1242                                    bool replace_length_in_map) {
1243   Node* length = alloc->Ideal_length();
1244   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1245     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1246     if (ccast != length) {
1247       // do not transform ccast here, it might convert to top node for
1248       // negative array length and break assumptions in parsing stage.
1249       _gvn.set_type_bottom(ccast);
1250       record_for_igvn(ccast);
1251       if (replace_length_in_map) {
1252         replace_in_map(length, ccast);
1253       }
1254       return ccast;
1255     }
1256   }
1257   return length;
1258 }
1259 
1260 //------------------------------do_null_check----------------------------------
1261 // Helper function to do a null pointer check.  Returned value is
1262 // the incoming address with null casted away.  You are allowed to use the
1263 // not-null value only if you are control dependent on the test.
1264 #ifndef PRODUCT
1265 extern uint explicit_null_checks_inserted,
1266             explicit_null_checks_elided;
1267 #endif
1268 Node* GraphKit::null_check_common(Node* value, BasicType type,
1269                                   // optional arguments for variations:
1270                                   bool assert_null,
1271                                   Node* *null_control,
1272                                   bool speculative,
1273                                   bool is_init_check) {
1274   assert(!assert_null || null_control == nullptr, "not both at once");
1275   if (stopped())  return top();
1276   NOT_PRODUCT(explicit_null_checks_inserted++);
1277 
1278   if (value->is_InlineType()) {
1279     // Null checking a scalarized but nullable inline type. Check the IsInit
1280     // input instead of the oop input to avoid keeping buffer allocations alive.
1281     InlineTypeNode* vtptr = value->as_InlineType();
1282     while (vtptr->get_oop()->is_InlineType()) {
1283       vtptr = vtptr->get_oop()->as_InlineType();
1284     }
1285     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1286     if (stopped()) {
1287       return top();
1288     }
1289     if (assert_null) {
1290       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1291       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1292       // replace_in_map(value, vtptr);
1293       // return vtptr;
1294       return null();
1295     }
1296     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1297     return cast_not_null(value, do_replace_in_map);
1298   }
1299 
1300   // Construct null check
1301   Node *chk = nullptr;
1302   switch(type) {
1303     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1304     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1305     case T_ARRAY  : // fall through
1306       type = T_OBJECT;  // simplify further tests
1307     case T_OBJECT : {
1308       const Type *t = _gvn.type( value );
1309 
1310       const TypeOopPtr* tp = t->isa_oopptr();
1311       if (tp != nullptr && !tp->is_loaded()
1312           // Only for do_null_check, not any of its siblings:
1313           && !assert_null && null_control == nullptr) {
1314         // Usually, any field access or invocation on an unloaded oop type
1315         // will simply fail to link, since the statically linked class is
1316         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1317         // the static class is loaded but the sharper oop type is not.
1318         // Rather than checking for this obscure case in lots of places,
1319         // we simply observe that a null check on an unloaded class
1320         // will always be followed by a nonsense operation, so we
1321         // can just issue the uncommon trap here.
1322         // Our access to the unloaded class will only be correct
1323         // after it has been loaded and initialized, which requires
1324         // a trip through the interpreter.
1325         ciKlass* klass = tp->unloaded_klass();
1326 #ifndef PRODUCT
1327         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1328 #endif
1329         uncommon_trap(Deoptimization::Reason_unloaded,
1330                       Deoptimization::Action_reinterpret,
1331                       klass, "!loaded");
1332         return top();
1333       }
1334 
1335       if (assert_null) {
1336         // See if the type is contained in NULL_PTR.
1337         // If so, then the value is already null.
1338         if (t->higher_equal(TypePtr::NULL_PTR)) {
1339           NOT_PRODUCT(explicit_null_checks_elided++);
1340           return value;           // Elided null assert quickly!
1341         }
1342       } else {
1343         // See if mixing in the null pointer changes type.
1344         // If so, then the null pointer was not allowed in the original
1345         // type.  In other words, "value" was not-null.
1346         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1347           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1348           NOT_PRODUCT(explicit_null_checks_elided++);
1349           return value;           // Elided null check quickly!
1350         }
1351       }
1352       chk = new CmpPNode( value, null() );
1353       break;
1354     }
1355 
1356     default:
1357       fatal("unexpected type: %s", type2name(type));
1358   }
1359   assert(chk != nullptr, "sanity check");
1360   chk = _gvn.transform(chk);
1361 
1362   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1363   BoolNode *btst = new BoolNode( chk, btest);
1364   Node   *tst = _gvn.transform( btst );
1365 
1366   //-----------
1367   // if peephole optimizations occurred, a prior test existed.
1368   // If a prior test existed, maybe it dominates as we can avoid this test.
1369   if (tst != btst && type == T_OBJECT) {
1370     // At this point we want to scan up the CFG to see if we can
1371     // find an identical test (and so avoid this test altogether).
1372     Node *cfg = control();
1373     int depth = 0;
1374     while( depth < 16 ) {       // Limit search depth for speed
1375       if( cfg->Opcode() == Op_IfTrue &&
1376           cfg->in(0)->in(1) == tst ) {
1377         // Found prior test.  Use "cast_not_null" to construct an identical
1378         // CastPP (and hence hash to) as already exists for the prior test.
1379         // Return that casted value.
1380         if (assert_null) {
1381           replace_in_map(value, null());
1382           return null();  // do not issue the redundant test
1383         }
1384         Node *oldcontrol = control();
1385         set_control(cfg);
1386         Node *res = cast_not_null(value);
1387         set_control(oldcontrol);
1388         NOT_PRODUCT(explicit_null_checks_elided++);
1389         return res;
1390       }
1391       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1392       if (cfg == nullptr)  break;  // Quit at region nodes
1393       depth++;
1394     }
1395   }
1396 
1397   //-----------
1398   // Branch to failure if null
1399   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1400   Deoptimization::DeoptReason reason;
1401   if (assert_null) {
1402     reason = Deoptimization::reason_null_assert(speculative);
1403   } else if (type == T_OBJECT || is_init_check) {
1404     reason = Deoptimization::reason_null_check(speculative);
1405   } else {
1406     reason = Deoptimization::Reason_div0_check;
1407   }
1408   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1409   // ciMethodData::has_trap_at will return a conservative -1 if any
1410   // must-be-null assertion has failed.  This could cause performance
1411   // problems for a method after its first do_null_assert failure.
1412   // Consider using 'Reason_class_check' instead?
1413 
1414   // To cause an implicit null check, we set the not-null probability
1415   // to the maximum (PROB_MAX).  For an explicit check the probability
1416   // is set to a smaller value.
1417   if (null_control != nullptr || too_many_traps(reason)) {
1418     // probability is less likely
1419     ok_prob =  PROB_LIKELY_MAG(3);
1420   } else if (!assert_null &&
1421              (ImplicitNullCheckThreshold > 0) &&
1422              method() != nullptr &&
1423              (method()->method_data()->trap_count(reason)
1424               >= (uint)ImplicitNullCheckThreshold)) {
1425     ok_prob =  PROB_LIKELY_MAG(3);
1426   }
1427 
1428   if (null_control != nullptr) {
1429     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1430     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1431     set_control(      _gvn.transform( new IfTrueNode(iff)));
1432 #ifndef PRODUCT
1433     if (null_true == top()) {
1434       explicit_null_checks_elided++;
1435     }
1436 #endif
1437     (*null_control) = null_true;
1438   } else {
1439     BuildCutout unless(this, tst, ok_prob);
1440     // Check for optimizer eliding test at parse time
1441     if (stopped()) {
1442       // Failure not possible; do not bother making uncommon trap.
1443       NOT_PRODUCT(explicit_null_checks_elided++);
1444     } else if (assert_null) {
1445       uncommon_trap(reason,
1446                     Deoptimization::Action_make_not_entrant,
1447                     nullptr, "assert_null");
1448     } else {
1449       replace_in_map(value, zerocon(type));
1450       builtin_throw(reason);
1451     }
1452   }
1453 
1454   // Must throw exception, fall-thru not possible?
1455   if (stopped()) {
1456     return top();               // No result
1457   }
1458 
1459   if (assert_null) {
1460     // Cast obj to null on this path.
1461     replace_in_map(value, zerocon(type));
1462     return zerocon(type);
1463   }
1464 
1465   // Cast obj to not-null on this path, if there is no null_control.
1466   // (If there is a null_control, a non-null value may come back to haunt us.)
1467   if (type == T_OBJECT) {
1468     Node* cast = cast_not_null(value, false);
1469     if (null_control == nullptr || (*null_control) == top())
1470       replace_in_map(value, cast);
1471     value = cast;
1472   }
1473 
1474   return value;
1475 }
1476 
1477 //------------------------------cast_not_null----------------------------------
1478 // Cast obj to not-null on this path
1479 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1480   if (obj->is_InlineType()) {
1481     Node* vt = obj->clone();
1482     vt->as_InlineType()->set_is_init(_gvn);
1483     vt = _gvn.transform(vt);
1484     if (do_replace_in_map) {
1485       replace_in_map(obj, vt);
1486     }
1487     return vt;
1488   }
1489   const Type *t = _gvn.type(obj);
1490   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1491   // Object is already not-null?
1492   if( t == t_not_null ) return obj;
1493 
1494   Node *cast = new CastPPNode(obj,t_not_null);
1495   cast->init_req(0, control());
1496   cast = _gvn.transform( cast );
1497 
1498   // Scan for instances of 'obj' in the current JVM mapping.
1499   // These instances are known to be not-null after the test.
1500   if (do_replace_in_map)
1501     replace_in_map(obj, cast);
1502 
1503   return cast;                  // Return casted value
1504 }
1505 
1506 // Sometimes in intrinsics, we implicitly know an object is not null
1507 // (there's no actual null check) so we can cast it to not null. In
1508 // the course of optimizations, the input to the cast can become null.
1509 // In that case that data path will die and we need the control path
1510 // to become dead as well to keep the graph consistent. So we have to
1511 // add a check for null for which one branch can't be taken. It uses
1512 // an Opaque4 node that will cause the check to be removed after loop
1513 // opts so the test goes away and the compiled code doesn't execute a
1514 // useless check.
1515 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1516   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1517     return value;
1518   }
1519   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1520   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1521   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1522   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1523   _gvn.set_type(iff, iff->Value(&_gvn));
1524   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1525   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1526   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1527   C->root()->add_req(halt);
1528   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1529   set_control(if_t);
1530   return cast_not_null(value, do_replace_in_map);
1531 }
1532 
1533 
1534 //--------------------------replace_in_map-------------------------------------
1535 void GraphKit::replace_in_map(Node* old, Node* neww) {
1536   if (old == neww) {
1537     return;
1538   }
1539 
1540   map()->replace_edge(old, neww);
1541 
1542   // Note: This operation potentially replaces any edge
1543   // on the map.  This includes locals, stack, and monitors
1544   // of the current (innermost) JVM state.
1545 
1546   // don't let inconsistent types from profiling escape this
1547   // method
1548 
1549   const Type* told = _gvn.type(old);
1550   const Type* tnew = _gvn.type(neww);
1551 
1552   if (!tnew->higher_equal(told)) {
1553     return;
1554   }
1555 
1556   map()->record_replaced_node(old, neww);
1557 }
1558 
1559 
1560 //=============================================================================
1561 //--------------------------------memory---------------------------------------
1562 Node* GraphKit::memory(uint alias_idx) {
1563   MergeMemNode* mem = merged_memory();
1564   Node* p = mem->memory_at(alias_idx);
1565   assert(p != mem->empty_memory(), "empty");
1566   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1567   return p;
1568 }
1569 
1570 //-----------------------------reset_memory------------------------------------
1571 Node* GraphKit::reset_memory() {
1572   Node* mem = map()->memory();
1573   // do not use this node for any more parsing!
1574   debug_only( map()->set_memory((Node*)nullptr) );
1575   return _gvn.transform( mem );
1576 }
1577 
1578 //------------------------------set_all_memory---------------------------------
1579 void GraphKit::set_all_memory(Node* newmem) {
1580   Node* mergemem = MergeMemNode::make(newmem);
1581   gvn().set_type_bottom(mergemem);
1582   map()->set_memory(mergemem);
1583 }
1584 
1585 //------------------------------set_all_memory_call----------------------------
1586 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1587   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1588   set_all_memory(newmem);
1589 }
1590 
1591 //=============================================================================
1592 //
1593 // parser factory methods for MemNodes
1594 //
1595 // These are layered on top of the factory methods in LoadNode and StoreNode,
1596 // and integrate with the parser's memory state and _gvn engine.
1597 //
1598 
1599 // factory methods in "int adr_idx"
1600 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1601                           int adr_idx,
1602                           MemNode::MemOrd mo,
1603                           LoadNode::ControlDependency control_dependency,
1604                           bool require_atomic_access,
1605                           bool unaligned,
1606                           bool mismatched,
1607                           bool unsafe,
1608                           uint8_t barrier_data) {
1609   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1610   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1611   debug_only(adr_type = C->get_adr_type(adr_idx));
1612   Node* mem = memory(adr_idx);
1613   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1614   ld = _gvn.transform(ld);
1615 
1616   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1617     // Improve graph before escape analysis and boxing elimination.
1618     record_for_igvn(ld);
1619   }
1620   return ld;
1621 }
1622 
1623 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1624                                 int adr_idx,
1625                                 MemNode::MemOrd mo,
1626                                 bool require_atomic_access,
1627                                 bool unaligned,
1628                                 bool mismatched,
1629                                 bool unsafe,
1630                                 int barrier_data) {
1631   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1632   const TypePtr* adr_type = nullptr;
1633   debug_only(adr_type = C->get_adr_type(adr_idx));
1634   Node *mem = memory(adr_idx);
1635   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1636   if (unaligned) {
1637     st->as_Store()->set_unaligned_access();
1638   }
1639   if (mismatched) {
1640     st->as_Store()->set_mismatched_access();
1641   }
1642   if (unsafe) {
1643     st->as_Store()->set_unsafe_access();
1644   }
1645   st->as_Store()->set_barrier_data(barrier_data);
1646   st = _gvn.transform(st);
1647   set_memory(st, adr_idx);
1648   // Back-to-back stores can only remove intermediate store with DU info
1649   // so push on worklist for optimizer.
1650   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1651     record_for_igvn(st);
1652 
1653   return st;
1654 }
1655 
1656 Node* GraphKit::access_store_at(Node* obj,
1657                                 Node* adr,
1658                                 const TypePtr* adr_type,
1659                                 Node* val,
1660                                 const Type* val_type,
1661                                 BasicType bt,
1662                                 DecoratorSet decorators,
1663                                 bool safe_for_replace) {
1664   // Transformation of a value which could be null pointer (CastPP #null)
1665   // could be delayed during Parse (for example, in adjust_map_after_if()).
1666   // Execute transformation here to avoid barrier generation in such case.
1667   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1668     val = _gvn.makecon(TypePtr::NULL_PTR);
1669   }
1670 
1671   if (stopped()) {
1672     return top(); // Dead path ?
1673   }
1674 
1675   assert(val != nullptr, "not dead path");
1676   if (val->is_InlineType()) {
1677     // Store to non-flat field. Buffer the inline type and make sure
1678     // the store is re-executed if the allocation triggers deoptimization.
1679     PreserveReexecuteState preexecs(this);
1680     jvms()->set_should_reexecute(true);
1681     val = val->as_InlineType()->buffer(this, safe_for_replace);
1682   }
1683 
1684   C2AccessValuePtr addr(adr, adr_type);
1685   C2AccessValue value(val, val_type);
1686   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1687   if (access.is_raw()) {
1688     return _barrier_set->BarrierSetC2::store_at(access, value);
1689   } else {
1690     return _barrier_set->store_at(access, value);
1691   }
1692 }
1693 
1694 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1695                                Node* adr,   // actual address to store val at
1696                                const TypePtr* adr_type,
1697                                const Type* val_type,
1698                                BasicType bt,
1699                                DecoratorSet decorators,
1700                                Node* ctl) {
1701   if (stopped()) {
1702     return top(); // Dead path ?
1703   }
1704 
1705   C2AccessValuePtr addr(adr, adr_type);
1706   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1707   if (access.is_raw()) {
1708     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1709   } else {
1710     return _barrier_set->load_at(access, val_type);
1711   }
1712 }
1713 
1714 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1715                             const Type* val_type,
1716                             BasicType bt,
1717                             DecoratorSet decorators) {
1718   if (stopped()) {
1719     return top(); // Dead path ?
1720   }
1721 
1722   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1723   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1724   if (access.is_raw()) {
1725     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1726   } else {
1727     return _barrier_set->load_at(access, val_type);
1728   }
1729 }
1730 
1731 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1732                                              Node* adr,
1733                                              const TypePtr* adr_type,
1734                                              int alias_idx,
1735                                              Node* expected_val,
1736                                              Node* new_val,
1737                                              const Type* value_type,
1738                                              BasicType bt,
1739                                              DecoratorSet decorators) {
1740   C2AccessValuePtr addr(adr, adr_type);
1741   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1742                         bt, obj, addr, alias_idx);
1743   if (access.is_raw()) {
1744     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1745   } else {
1746     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1747   }
1748 }
1749 
1750 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1751                                               Node* adr,
1752                                               const TypePtr* adr_type,
1753                                               int alias_idx,
1754                                               Node* expected_val,
1755                                               Node* new_val,
1756                                               const Type* value_type,
1757                                               BasicType bt,
1758                                               DecoratorSet decorators) {
1759   C2AccessValuePtr addr(adr, adr_type);
1760   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1761                         bt, obj, addr, alias_idx);
1762   if (access.is_raw()) {
1763     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1764   } else {
1765     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1766   }
1767 }
1768 
1769 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1770                                       Node* adr,
1771                                       const TypePtr* adr_type,
1772                                       int alias_idx,
1773                                       Node* new_val,
1774                                       const Type* value_type,
1775                                       BasicType bt,
1776                                       DecoratorSet decorators) {
1777   C2AccessValuePtr addr(adr, adr_type);
1778   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1779                         bt, obj, addr, alias_idx);
1780   if (access.is_raw()) {
1781     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1782   } else {
1783     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1784   }
1785 }
1786 
1787 Node* GraphKit::access_atomic_add_at(Node* obj,
1788                                      Node* adr,
1789                                      const TypePtr* adr_type,
1790                                      int alias_idx,
1791                                      Node* new_val,
1792                                      const Type* value_type,
1793                                      BasicType bt,
1794                                      DecoratorSet decorators) {
1795   C2AccessValuePtr addr(adr, adr_type);
1796   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1797   if (access.is_raw()) {
1798     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1799   } else {
1800     return _barrier_set->atomic_add_at(access, new_val, value_type);
1801   }
1802 }
1803 
1804 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1805   return _barrier_set->clone(this, src, dst, size, is_array);
1806 }
1807 
1808 //-------------------------array_element_address-------------------------
1809 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1810                                       const TypeInt* sizetype, Node* ctrl) {
1811   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1812   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1813   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1814 
1815   // short-circuit a common case (saves lots of confusing waste motion)
1816   jint idx_con = find_int_con(idx, -1);
1817   if (idx_con >= 0) {
1818     intptr_t offset = header + ((intptr_t)idx_con << shift);
1819     return basic_plus_adr(ary, offset);
1820   }
1821 
1822   // must be correct type for alignment purposes
1823   Node* base  = basic_plus_adr(ary, header);
1824   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1825   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1826   return basic_plus_adr(ary, base, scale);
1827 }
1828 
1829 //-------------------------load_array_element-------------------------
1830 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1831   const Type* elemtype = arytype->elem();
1832   BasicType elembt = elemtype->array_element_basic_type();
1833   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1834   if (elembt == T_NARROWOOP) {
1835     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1836   }
1837   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1838                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1839   return ld;
1840 }
1841 
1842 //-------------------------set_arguments_for_java_call-------------------------
1843 // Arguments (pre-popped from the stack) are taken from the JVMS.
1844 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1845   PreserveReexecuteState preexecs(this);
1846   if (EnableValhalla) {
1847     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1848     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1849     jvms()->set_should_reexecute(true);
1850     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1851     inc_sp(arg_size);
1852   }
1853   // Add the call arguments
1854   const TypeTuple* domain = call->tf()->domain_sig();
1855   uint nargs = domain->cnt();
1856   int arg_num = 0;
1857   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1858     Node* arg = argument(i-TypeFunc::Parms);
1859     const Type* t = domain->field_at(i);
1860     // TODO 8284443 A static call to a mismatched method should still be scalarized
1861     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1862       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1863       if (!arg->is_InlineType()) {
1864         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1865         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1866       }
1867       InlineTypeNode* vt = arg->as_InlineType();
1868       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1869       // If an inline type argument is passed as fields, attach the Method* to the call site
1870       // to be able to access the extended signature later via attached_method_before_pc().
1871       // For example, see CompiledMethod::preserve_callee_argument_oops().
1872       call->set_override_symbolic_info(true);
1873       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1874       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1875       C->dependencies()->assert_evol_method(call->method());
1876       arg_num++;
1877       continue;
1878     } else if (arg->is_InlineType()) {
1879       // Pass inline type argument via oop to callee
1880       arg = arg->as_InlineType()->buffer(this);
1881       if (!is_late_inline) {
1882         arg = arg->as_InlineType()->get_oop();
1883       }
1884     }
1885     if (t != Type::HALF) {
1886       arg_num++;
1887     }
1888     call->init_req(idx++, arg);
1889   }
1890 }
1891 
1892 //---------------------------set_edges_for_java_call---------------------------
1893 // Connect a newly created call into the current JVMS.
1894 // A return value node (if any) is returned from set_edges_for_java_call.
1895 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1896 
1897   // Add the predefined inputs:
1898   call->init_req( TypeFunc::Control, control() );
1899   call->init_req( TypeFunc::I_O    , i_o() );
1900   call->init_req( TypeFunc::Memory , reset_memory() );
1901   call->init_req( TypeFunc::FramePtr, frameptr() );
1902   call->init_req( TypeFunc::ReturnAdr, top() );
1903 
1904   add_safepoint_edges(call, must_throw);
1905 
1906   Node* xcall = _gvn.transform(call);
1907 
1908   if (xcall == top()) {
1909     set_control(top());
1910     return;
1911   }
1912   assert(xcall == call, "call identity is stable");
1913 
1914   // Re-use the current map to produce the result.
1915 
1916   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1917   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1918   set_all_memory_call(xcall, separate_io_proj);
1919 
1920   //return xcall;   // no need, caller already has it
1921 }
1922 
1923 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1924   if (stopped())  return top();  // maybe the call folded up?
1925 
1926   // Note:  Since any out-of-line call can produce an exception,
1927   // we always insert an I_O projection from the call into the result.
1928 
1929   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1930 
1931   if (separate_io_proj) {
1932     // The caller requested separate projections be used by the fall
1933     // through and exceptional paths, so replace the projections for
1934     // the fall through path.
1935     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1936     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1937   }
1938 
1939   // Capture the return value, if any.
1940   Node* ret;
1941   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1942     ret = top();
1943   } else if (call->tf()->returns_inline_type_as_fields()) {
1944     // Return of multiple values (inline type fields): we create a
1945     // InlineType node, each field is a projection from the call.
1946     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1947     uint base_input = TypeFunc::Parms;
1948     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, call->method()->signature()->returns_null_free_inline_type());
1949   } else {
1950     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1951     ciType* t = call->method()->return_type();
1952     if (t->is_klass()) {
1953       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
1954       if (type->is_inlinetypeptr()) {
1955         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
1956       }
1957     }
1958   }
1959 
1960   return ret;
1961 }
1962 
1963 //--------------------set_predefined_input_for_runtime_call--------------------
1964 // Reading and setting the memory state is way conservative here.
1965 // The real problem is that I am not doing real Type analysis on memory,
1966 // so I cannot distinguish card mark stores from other stores.  Across a GC
1967 // point the Store Barrier and the card mark memory has to agree.  I cannot
1968 // have a card mark store and its barrier split across the GC point from
1969 // either above or below.  Here I get that to happen by reading ALL of memory.
1970 // A better answer would be to separate out card marks from other memory.
1971 // For now, return the input memory state, so that it can be reused
1972 // after the call, if this call has restricted memory effects.
1973 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1974   // Set fixed predefined input arguments
1975   Node* memory = reset_memory();
1976   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1977   call->init_req( TypeFunc::Control,   control()  );
1978   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1979   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1980   call->init_req( TypeFunc::FramePtr,  frameptr() );
1981   call->init_req( TypeFunc::ReturnAdr, top()      );
1982   return memory;
1983 }
1984 
1985 //-------------------set_predefined_output_for_runtime_call--------------------
1986 // Set control and memory (not i_o) from the call.
1987 // If keep_mem is not null, use it for the output state,
1988 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1989 // If hook_mem is null, this call produces no memory effects at all.
1990 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1991 // then only that memory slice is taken from the call.
1992 // In the last case, we must put an appropriate memory barrier before
1993 // the call, so as to create the correct anti-dependencies on loads
1994 // preceding the call.
1995 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1996                                                       Node* keep_mem,
1997                                                       const TypePtr* hook_mem) {
1998   // no i/o
1999   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2000   if (keep_mem) {
2001     // First clone the existing memory state
2002     set_all_memory(keep_mem);
2003     if (hook_mem != nullptr) {
2004       // Make memory for the call
2005       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2006       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2007       // We also use hook_mem to extract specific effects from arraycopy stubs.
2008       set_memory(mem, hook_mem);
2009     }
2010     // ...else the call has NO memory effects.
2011 
2012     // Make sure the call advertises its memory effects precisely.
2013     // This lets us build accurate anti-dependences in gcm.cpp.
2014     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2015            "call node must be constructed correctly");
2016   } else {
2017     assert(hook_mem == nullptr, "");
2018     // This is not a "slow path" call; all memory comes from the call.
2019     set_all_memory_call(call);
2020   }
2021 }
2022 
2023 // Keep track of MergeMems feeding into other MergeMems
2024 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2025   if (!mem->is_MergeMem()) {
2026     return;
2027   }
2028   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2029     Node* use = i.get();
2030     if (use->is_MergeMem()) {
2031       wl.push(use);
2032     }
2033   }
2034 }
2035 
2036 // Replace the call with the current state of the kit.
2037 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2038   JVMState* ejvms = nullptr;
2039   if (has_exceptions()) {
2040     ejvms = transfer_exceptions_into_jvms();
2041   }
2042 
2043   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2044   ReplacedNodes replaced_nodes_exception;
2045   Node* ex_ctl = top();
2046 
2047   SafePointNode* final_state = stop();
2048 
2049   // Find all the needed outputs of this call
2050   CallProjections* callprojs = call->extract_projections(true);
2051 
2052   Unique_Node_List wl;
2053   Node* init_mem = call->in(TypeFunc::Memory);
2054   Node* final_mem = final_state->in(TypeFunc::Memory);
2055   Node* final_ctl = final_state->in(TypeFunc::Control);
2056   Node* final_io = final_state->in(TypeFunc::I_O);
2057 
2058   // Replace all the old call edges with the edges from the inlining result
2059   if (callprojs->fallthrough_catchproj != nullptr) {
2060     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2061   }
2062   if (callprojs->fallthrough_memproj != nullptr) {
2063     if (final_mem->is_MergeMem()) {
2064       // Parser's exits MergeMem was not transformed but may be optimized
2065       final_mem = _gvn.transform(final_mem);
2066     }
2067     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2068     add_mergemem_users_to_worklist(wl, final_mem);
2069   }
2070   if (callprojs->fallthrough_ioproj != nullptr) {
2071     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2072   }
2073 
2074   // Replace the result with the new result if it exists and is used
2075   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2076     // If the inlined code is dead, the result projections for an inline type returned as
2077     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2078     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2079            "unexpected number of results");
2080     C->gvn_replace_by(callprojs->resproj[0], result);
2081   }
2082 
2083   if (ejvms == nullptr) {
2084     // No exception edges to simply kill off those paths
2085     if (callprojs->catchall_catchproj != nullptr) {
2086       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2087     }
2088     if (callprojs->catchall_memproj != nullptr) {
2089       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2090     }
2091     if (callprojs->catchall_ioproj != nullptr) {
2092       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2093     }
2094     // Replace the old exception object with top
2095     if (callprojs->exobj != nullptr) {
2096       C->gvn_replace_by(callprojs->exobj, C->top());
2097     }
2098   } else {
2099     GraphKit ekit(ejvms);
2100 
2101     // Load my combined exception state into the kit, with all phis transformed:
2102     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2103     replaced_nodes_exception = ex_map->replaced_nodes();
2104 
2105     Node* ex_oop = ekit.use_exception_state(ex_map);
2106 
2107     if (callprojs->catchall_catchproj != nullptr) {
2108       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2109       ex_ctl = ekit.control();
2110     }
2111     if (callprojs->catchall_memproj != nullptr) {
2112       Node* ex_mem = ekit.reset_memory();
2113       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2114       add_mergemem_users_to_worklist(wl, ex_mem);
2115     }
2116     if (callprojs->catchall_ioproj != nullptr) {
2117       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2118     }
2119 
2120     // Replace the old exception object with the newly created one
2121     if (callprojs->exobj != nullptr) {
2122       C->gvn_replace_by(callprojs->exobj, ex_oop);
2123     }
2124   }
2125 
2126   // Disconnect the call from the graph
2127   call->disconnect_inputs(C);
2128   C->gvn_replace_by(call, C->top());
2129 
2130   // Clean up any MergeMems that feed other MergeMems since the
2131   // optimizer doesn't like that.
2132   while (wl.size() > 0) {
2133     _gvn.transform(wl.pop());
2134   }
2135 
2136   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2137     replaced_nodes.apply(C, final_ctl);
2138   }
2139   if (!ex_ctl->is_top() && do_replaced_nodes) {
2140     replaced_nodes_exception.apply(C, ex_ctl);
2141   }
2142 }
2143 
2144 
2145 //------------------------------increment_counter------------------------------
2146 // for statistics: increment a VM counter by 1
2147 
2148 void GraphKit::increment_counter(address counter_addr) {
2149   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2150   increment_counter(adr1);
2151 }
2152 
2153 void GraphKit::increment_counter(Node* counter_addr) {
2154   int adr_type = Compile::AliasIdxRaw;
2155   Node* ctrl = control();
2156   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2157   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2158   store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered);
2159 }
2160 
2161 
2162 //------------------------------uncommon_trap----------------------------------
2163 // Bail out to the interpreter in mid-method.  Implemented by calling the
2164 // uncommon_trap blob.  This helper function inserts a runtime call with the
2165 // right debug info.
2166 Node* GraphKit::uncommon_trap(int trap_request,
2167                              ciKlass* klass, const char* comment,
2168                              bool must_throw,
2169                              bool keep_exact_action) {
2170   if (failing())  stop();
2171   if (stopped())  return nullptr; // trap reachable?
2172 
2173   // Note:  If ProfileTraps is true, and if a deopt. actually
2174   // occurs here, the runtime will make sure an MDO exists.  There is
2175   // no need to call method()->ensure_method_data() at this point.
2176 
2177   // Set the stack pointer to the right value for reexecution:
2178   set_sp(reexecute_sp());
2179 
2180 #ifdef ASSERT
2181   if (!must_throw) {
2182     // Make sure the stack has at least enough depth to execute
2183     // the current bytecode.
2184     int inputs, ignored_depth;
2185     if (compute_stack_effects(inputs, ignored_depth)) {
2186       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2187              Bytecodes::name(java_bc()), sp(), inputs);
2188     }
2189   }
2190 #endif
2191 
2192   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2193   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2194 
2195   switch (action) {
2196   case Deoptimization::Action_maybe_recompile:
2197   case Deoptimization::Action_reinterpret:
2198     // Temporary fix for 6529811 to allow virtual calls to be sure they
2199     // get the chance to go from mono->bi->mega
2200     if (!keep_exact_action &&
2201         Deoptimization::trap_request_index(trap_request) < 0 &&
2202         too_many_recompiles(reason)) {
2203       // This BCI is causing too many recompilations.
2204       if (C->log() != nullptr) {
2205         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2206                 Deoptimization::trap_reason_name(reason),
2207                 Deoptimization::trap_action_name(action));
2208       }
2209       action = Deoptimization::Action_none;
2210       trap_request = Deoptimization::make_trap_request(reason, action);
2211     } else {
2212       C->set_trap_can_recompile(true);
2213     }
2214     break;
2215   case Deoptimization::Action_make_not_entrant:
2216     C->set_trap_can_recompile(true);
2217     break;
2218   case Deoptimization::Action_none:
2219   case Deoptimization::Action_make_not_compilable:
2220     break;
2221   default:
2222 #ifdef ASSERT
2223     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2224 #endif
2225     break;
2226   }
2227 
2228   if (TraceOptoParse) {
2229     char buf[100];
2230     tty->print_cr("Uncommon trap %s at bci:%d",
2231                   Deoptimization::format_trap_request(buf, sizeof(buf),
2232                                                       trap_request), bci());
2233   }
2234 
2235   CompileLog* log = C->log();
2236   if (log != nullptr) {
2237     int kid = (klass == nullptr)? -1: log->identify(klass);
2238     log->begin_elem("uncommon_trap bci='%d'", bci());
2239     char buf[100];
2240     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2241                                                           trap_request));
2242     if (kid >= 0)         log->print(" klass='%d'", kid);
2243     if (comment != nullptr)  log->print(" comment='%s'", comment);
2244     log->end_elem();
2245   }
2246 
2247   // Make sure any guarding test views this path as very unlikely
2248   Node *i0 = control()->in(0);
2249   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2250     IfNode *iff = i0->as_If();
2251     float f = iff->_prob;   // Get prob
2252     if (control()->Opcode() == Op_IfTrue) {
2253       if (f > PROB_UNLIKELY_MAG(4))
2254         iff->_prob = PROB_MIN;
2255     } else {
2256       if (f < PROB_LIKELY_MAG(4))
2257         iff->_prob = PROB_MAX;
2258     }
2259   }
2260 
2261   // Clear out dead values from the debug info.
2262   kill_dead_locals();
2263 
2264   // Now insert the uncommon trap subroutine call
2265   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2266   const TypePtr* no_memory_effects = nullptr;
2267   // Pass the index of the class to be loaded
2268   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2269                                  (must_throw ? RC_MUST_THROW : 0),
2270                                  OptoRuntime::uncommon_trap_Type(),
2271                                  call_addr, "uncommon_trap", no_memory_effects,
2272                                  intcon(trap_request));
2273   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2274          "must extract request correctly from the graph");
2275   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2276 
2277   call->set_req(TypeFunc::ReturnAdr, returnadr());
2278   // The debug info is the only real input to this call.
2279 
2280   // Halt-and-catch fire here.  The above call should never return!
2281   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2282                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2283   _gvn.set_type_bottom(halt);
2284   root()->add_req(halt);
2285 
2286   stop_and_kill_map();
2287   return call;
2288 }
2289 
2290 
2291 //--------------------------just_allocated_object------------------------------
2292 // Report the object that was just allocated.
2293 // It must be the case that there are no intervening safepoints.
2294 // We use this to determine if an object is so "fresh" that
2295 // it does not require card marks.
2296 Node* GraphKit::just_allocated_object(Node* current_control) {
2297   Node* ctrl = current_control;
2298   // Object::<init> is invoked after allocation, most of invoke nodes
2299   // will be reduced, but a region node is kept in parse time, we check
2300   // the pattern and skip the region node if it degraded to a copy.
2301   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2302       ctrl->as_Region()->is_copy()) {
2303     ctrl = ctrl->as_Region()->is_copy();
2304   }
2305   if (C->recent_alloc_ctl() == ctrl) {
2306    return C->recent_alloc_obj();
2307   }
2308   return nullptr;
2309 }
2310 
2311 
2312 /**
2313  * Record profiling data exact_kls for Node n with the type system so
2314  * that it can propagate it (speculation)
2315  *
2316  * @param n          node that the type applies to
2317  * @param exact_kls  type from profiling
2318  * @param maybe_null did profiling see null?
2319  *
2320  * @return           node with improved type
2321  */
2322 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2323   const Type* current_type = _gvn.type(n);
2324   assert(UseTypeSpeculation, "type speculation must be on");
2325 
2326   const TypePtr* speculative = current_type->speculative();
2327 
2328   // Should the klass from the profile be recorded in the speculative type?
2329   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2330     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2331     const TypeOopPtr* xtype = tklass->as_instance_type();
2332     assert(xtype->klass_is_exact(), "Should be exact");
2333     // Any reason to believe n is not null (from this profiling or a previous one)?
2334     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2335     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2336     // record the new speculative type's depth
2337     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2338     speculative = speculative->with_inline_depth(jvms()->depth());
2339   } else if (current_type->would_improve_ptr(ptr_kind)) {
2340     // Profiling report that null was never seen so we can change the
2341     // speculative type to non null ptr.
2342     if (ptr_kind == ProfileAlwaysNull) {
2343       speculative = TypePtr::NULL_PTR;
2344     } else {
2345       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2346       const TypePtr* ptr = TypePtr::NOTNULL;
2347       if (speculative != nullptr) {
2348         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2349       } else {
2350         speculative = ptr;
2351       }
2352     }
2353   }
2354 
2355   if (speculative != current_type->speculative()) {
2356     // Build a type with a speculative type (what we think we know
2357     // about the type but will need a guard when we use it)
2358     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2359     // We're changing the type, we need a new CheckCast node to carry
2360     // the new type. The new type depends on the control: what
2361     // profiling tells us is only valid from here as far as we can
2362     // tell.
2363     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2364     cast = _gvn.transform(cast);
2365     replace_in_map(n, cast);
2366     n = cast;
2367   }
2368 
2369   return n;
2370 }
2371 
2372 /**
2373  * Record profiling data from receiver profiling at an invoke with the
2374  * type system so that it can propagate it (speculation)
2375  *
2376  * @param n  receiver node
2377  *
2378  * @return   node with improved type
2379  */
2380 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2381   if (!UseTypeSpeculation) {
2382     return n;
2383   }
2384   ciKlass* exact_kls = profile_has_unique_klass();
2385   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2386   if ((java_bc() == Bytecodes::_checkcast ||
2387        java_bc() == Bytecodes::_instanceof ||
2388        java_bc() == Bytecodes::_aastore) &&
2389       method()->method_data()->is_mature()) {
2390     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2391     if (data != nullptr) {
2392       if (java_bc() == Bytecodes::_aastore) {
2393         ciKlass* array_type = nullptr;
2394         ciKlass* element_type = nullptr;
2395         ProfilePtrKind element_ptr = ProfileMaybeNull;
2396         bool flat_array = true;
2397         bool null_free_array = true;
2398         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2399         exact_kls = element_type;
2400         ptr_kind = element_ptr;
2401       } else {
2402         if (!data->as_BitData()->null_seen()) {
2403           ptr_kind = ProfileNeverNull;
2404         } else {
2405           assert(data->is_ReceiverTypeData(), "bad profile data type");
2406           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2407           uint i = 0;
2408           for (; i < call->row_limit(); i++) {
2409             ciKlass* receiver = call->receiver(i);
2410             if (receiver != nullptr) {
2411               break;
2412             }
2413           }
2414           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2415         }
2416       }
2417     }
2418   }
2419   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2420 }
2421 
2422 /**
2423  * Record profiling data from argument profiling at an invoke with the
2424  * type system so that it can propagate it (speculation)
2425  *
2426  * @param dest_method  target method for the call
2427  * @param bc           what invoke bytecode is this?
2428  */
2429 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2430   if (!UseTypeSpeculation) {
2431     return;
2432   }
2433   const TypeFunc* tf    = TypeFunc::make(dest_method);
2434   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2435   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2436   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2437     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2438     if (is_reference_type(targ->basic_type())) {
2439       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2440       ciKlass* better_type = nullptr;
2441       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2442         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2443       }
2444       i++;
2445     }
2446   }
2447 }
2448 
2449 /**
2450  * Record profiling data from parameter profiling at an invoke with
2451  * the type system so that it can propagate it (speculation)
2452  */
2453 void GraphKit::record_profiled_parameters_for_speculation() {
2454   if (!UseTypeSpeculation) {
2455     return;
2456   }
2457   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2458     if (_gvn.type(local(i))->isa_oopptr()) {
2459       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2460       ciKlass* better_type = nullptr;
2461       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2462         record_profile_for_speculation(local(i), better_type, ptr_kind);
2463       }
2464       j++;
2465     }
2466   }
2467 }
2468 
2469 /**
2470  * Record profiling data from return value profiling at an invoke with
2471  * the type system so that it can propagate it (speculation)
2472  */
2473 void GraphKit::record_profiled_return_for_speculation() {
2474   if (!UseTypeSpeculation) {
2475     return;
2476   }
2477   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2478   ciKlass* better_type = nullptr;
2479   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2480     // If profiling reports a single type for the return value,
2481     // feed it to the type system so it can propagate it as a
2482     // speculative type
2483     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2484   }
2485 }
2486 
2487 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2488   if (Matcher::strict_fp_requires_explicit_rounding) {
2489     // (Note:  TypeFunc::make has a cache that makes this fast.)
2490     const TypeFunc* tf    = TypeFunc::make(dest_method);
2491     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2492     for (int j = 0; j < nargs; j++) {
2493       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2494       if (targ->basic_type() == T_DOUBLE) {
2495         // If any parameters are doubles, they must be rounded before
2496         // the call, dprecision_rounding does gvn.transform
2497         Node *arg = argument(j);
2498         arg = dprecision_rounding(arg);
2499         set_argument(j, arg);
2500       }
2501     }
2502   }
2503 }
2504 
2505 // rounding for strict float precision conformance
2506 Node* GraphKit::precision_rounding(Node* n) {
2507   if (Matcher::strict_fp_requires_explicit_rounding) {
2508 #ifdef IA32
2509     if (UseSSE == 0) {
2510       return _gvn.transform(new RoundFloatNode(0, n));
2511     }
2512 #else
2513     Unimplemented();
2514 #endif // IA32
2515   }
2516   return n;
2517 }
2518 
2519 // rounding for strict double precision conformance
2520 Node* GraphKit::dprecision_rounding(Node *n) {
2521   if (Matcher::strict_fp_requires_explicit_rounding) {
2522 #ifdef IA32
2523     if (UseSSE < 2) {
2524       return _gvn.transform(new RoundDoubleNode(0, n));
2525     }
2526 #else
2527     Unimplemented();
2528 #endif // IA32
2529   }
2530   return n;
2531 }
2532 
2533 //=============================================================================
2534 // Generate a fast path/slow path idiom.  Graph looks like:
2535 // [foo] indicates that 'foo' is a parameter
2536 //
2537 //              [in]     null
2538 //                 \    /
2539 //                  CmpP
2540 //                  Bool ne
2541 //                   If
2542 //                  /  \
2543 //              True    False-<2>
2544 //              / |
2545 //             /  cast_not_null
2546 //           Load  |    |   ^
2547 //        [fast_test]   |   |
2548 // gvn to   opt_test    |   |
2549 //          /    \      |  <1>
2550 //      True     False  |
2551 //        |         \\  |
2552 //   [slow_call]     \[fast_result]
2553 //    Ctl   Val       \      \
2554 //     |               \      \
2555 //    Catch       <1>   \      \
2556 //   /    \        ^     \      \
2557 //  Ex    No_Ex    |      \      \
2558 //  |       \   \  |       \ <2>  \
2559 //  ...      \  [slow_res] |  |    \   [null_result]
2560 //            \         \--+--+---  |  |
2561 //             \           | /    \ | /
2562 //              --------Region     Phi
2563 //
2564 //=============================================================================
2565 // Code is structured as a series of driver functions all called 'do_XXX' that
2566 // call a set of helper functions.  Helper functions first, then drivers.
2567 
2568 //------------------------------null_check_oop---------------------------------
2569 // Null check oop.  Set null-path control into Region in slot 3.
2570 // Make a cast-not-nullness use the other not-null control.  Return cast.
2571 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2572                                bool never_see_null,
2573                                bool safe_for_replace,
2574                                bool speculative) {
2575   // Initial null check taken path
2576   (*null_control) = top();
2577   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2578 
2579   // Generate uncommon_trap:
2580   if (never_see_null && (*null_control) != top()) {
2581     // If we see an unexpected null at a check-cast we record it and force a
2582     // recompile; the offending check-cast will be compiled to handle nulls.
2583     // If we see more than one offending BCI, then all checkcasts in the
2584     // method will be compiled to handle nulls.
2585     PreserveJVMState pjvms(this);
2586     set_control(*null_control);
2587     replace_in_map(value, null());
2588     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2589     uncommon_trap(reason,
2590                   Deoptimization::Action_make_not_entrant);
2591     (*null_control) = top();    // null path is dead
2592   }
2593   if ((*null_control) == top() && safe_for_replace) {
2594     replace_in_map(value, cast);
2595   }
2596 
2597   // Cast away null-ness on the result
2598   return cast;
2599 }
2600 
2601 //------------------------------opt_iff----------------------------------------
2602 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2603 // Return slow-path control.
2604 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2605   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2606 
2607   // Fast path taken; set region slot 2
2608   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2609   region->init_req(2,fast_taken); // Capture fast-control
2610 
2611   // Fast path not-taken, i.e. slow path
2612   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2613   return slow_taken;
2614 }
2615 
2616 //-----------------------------make_runtime_call-------------------------------
2617 Node* GraphKit::make_runtime_call(int flags,
2618                                   const TypeFunc* call_type, address call_addr,
2619                                   const char* call_name,
2620                                   const TypePtr* adr_type,
2621                                   // The following parms are all optional.
2622                                   // The first null ends the list.
2623                                   Node* parm0, Node* parm1,
2624                                   Node* parm2, Node* parm3,
2625                                   Node* parm4, Node* parm5,
2626                                   Node* parm6, Node* parm7) {
2627   assert(call_addr != nullptr, "must not call null targets");
2628 
2629   // Slow-path call
2630   bool is_leaf = !(flags & RC_NO_LEAF);
2631   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2632   if (call_name == nullptr) {
2633     assert(!is_leaf, "must supply name for leaf");
2634     call_name = OptoRuntime::stub_name(call_addr);
2635   }
2636   CallNode* call;
2637   if (!is_leaf) {
2638     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2639   } else if (flags & RC_NO_FP) {
2640     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2641   } else  if (flags & RC_VECTOR){
2642     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2643     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2644   } else {
2645     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2646   }
2647 
2648   // The following is similar to set_edges_for_java_call,
2649   // except that the memory effects of the call are restricted to AliasIdxRaw.
2650 
2651   // Slow path call has no side-effects, uses few values
2652   bool wide_in  = !(flags & RC_NARROW_MEM);
2653   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2654 
2655   Node* prev_mem = nullptr;
2656   if (wide_in) {
2657     prev_mem = set_predefined_input_for_runtime_call(call);
2658   } else {
2659     assert(!wide_out, "narrow in => narrow out");
2660     Node* narrow_mem = memory(adr_type);
2661     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2662   }
2663 
2664   // Hook each parm in order.  Stop looking at the first null.
2665   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2666   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2667   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2668   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2669   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2670   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2671   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2672   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2673   /* close each nested if ===> */  } } } } } } } }
2674   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2675 
2676   if (!is_leaf) {
2677     // Non-leaves can block and take safepoints:
2678     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2679   }
2680   // Non-leaves can throw exceptions:
2681   if (has_io) {
2682     call->set_req(TypeFunc::I_O, i_o());
2683   }
2684 
2685   if (flags & RC_UNCOMMON) {
2686     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2687     // (An "if" probability corresponds roughly to an unconditional count.
2688     // Sort of.)
2689     call->set_cnt(PROB_UNLIKELY_MAG(4));
2690   }
2691 
2692   Node* c = _gvn.transform(call);
2693   assert(c == call, "cannot disappear");
2694 
2695   if (wide_out) {
2696     // Slow path call has full side-effects.
2697     set_predefined_output_for_runtime_call(call);
2698   } else {
2699     // Slow path call has few side-effects, and/or sets few values.
2700     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2701   }
2702 
2703   if (has_io) {
2704     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2705   }
2706   return call;
2707 
2708 }
2709 
2710 // i2b
2711 Node* GraphKit::sign_extend_byte(Node* in) {
2712   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2713   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2714 }
2715 
2716 // i2s
2717 Node* GraphKit::sign_extend_short(Node* in) {
2718   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2719   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2720 }
2721 
2722 
2723 //------------------------------merge_memory-----------------------------------
2724 // Merge memory from one path into the current memory state.
2725 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2726   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2727     Node* old_slice = mms.force_memory();
2728     Node* new_slice = mms.memory2();
2729     if (old_slice != new_slice) {
2730       PhiNode* phi;
2731       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2732         if (mms.is_empty()) {
2733           // clone base memory Phi's inputs for this memory slice
2734           assert(old_slice == mms.base_memory(), "sanity");
2735           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2736           _gvn.set_type(phi, Type::MEMORY);
2737           for (uint i = 1; i < phi->req(); i++) {
2738             phi->init_req(i, old_slice->in(i));
2739           }
2740         } else {
2741           phi = old_slice->as_Phi(); // Phi was generated already
2742         }
2743       } else {
2744         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2745         _gvn.set_type(phi, Type::MEMORY);
2746       }
2747       phi->set_req(new_path, new_slice);
2748       mms.set_memory(phi);
2749     }
2750   }
2751 }
2752 
2753 //------------------------------make_slow_call_ex------------------------------
2754 // Make the exception handler hookups for the slow call
2755 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2756   if (stopped())  return;
2757 
2758   // Make a catch node with just two handlers:  fall-through and catch-all
2759   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2760   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2761   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2762   _gvn.set_type_bottom(norm);
2763   C->record_for_igvn(norm);
2764   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2765 
2766   { PreserveJVMState pjvms(this);
2767     set_control(excp);
2768     set_i_o(i_o);
2769 
2770     if (excp != top()) {
2771       if (deoptimize) {
2772         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2773         uncommon_trap(Deoptimization::Reason_unhandled,
2774                       Deoptimization::Action_none);
2775       } else {
2776         // Create an exception state also.
2777         // Use an exact type if the caller has a specific exception.
2778         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2779         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2780         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2781       }
2782     }
2783   }
2784 
2785   // Get the no-exception control from the CatchNode.
2786   set_control(norm);
2787 }
2788 
2789 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2790   Node* cmp = nullptr;
2791   switch(bt) {
2792   case T_INT: cmp = new CmpINode(in1, in2); break;
2793   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2794   default: fatal("unexpected comparison type %s", type2name(bt));
2795   }
2796   cmp = gvn.transform(cmp);
2797   Node* bol = gvn.transform(new BoolNode(cmp, test));
2798   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2799   gvn.transform(iff);
2800   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2801   return iff;
2802 }
2803 
2804 //-------------------------------gen_subtype_check-----------------------------
2805 // Generate a subtyping check.  Takes as input the subtype and supertype.
2806 // Returns 2 values: sets the default control() to the true path and returns
2807 // the false path.  Only reads invariant memory; sets no (visible) memory.
2808 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2809 // but that's not exposed to the optimizer.  This call also doesn't take in an
2810 // Object; if you wish to check an Object you need to load the Object's class
2811 // prior to coming here.
2812 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2813                                ciMethod* method, int bci) {
2814   Compile* C = gvn.C;
2815   if ((*ctrl)->is_top()) {
2816     return C->top();
2817   }
2818 
2819   // Fast check for identical types, perhaps identical constants.
2820   // The types can even be identical non-constants, in cases
2821   // involving Array.newInstance, Object.clone, etc.
2822   if (subklass == superklass)
2823     return C->top();             // false path is dead; no test needed.
2824 
2825   if (gvn.type(superklass)->singleton()) {
2826     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2827     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2828 
2829     // In the common case of an exact superklass, try to fold up the
2830     // test before generating code.  You may ask, why not just generate
2831     // the code and then let it fold up?  The answer is that the generated
2832     // code will necessarily include null checks, which do not always
2833     // completely fold away.  If they are also needless, then they turn
2834     // into a performance loss.  Example:
2835     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2836     // Here, the type of 'fa' is often exact, so the store check
2837     // of fa[1]=x will fold up, without testing the nullness of x.
2838     switch (C->static_subtype_check(superk, subk)) {
2839     case Compile::SSC_always_false:
2840       {
2841         Node* always_fail = *ctrl;
2842         *ctrl = gvn.C->top();
2843         return always_fail;
2844       }
2845     case Compile::SSC_always_true:
2846       return C->top();
2847     case Compile::SSC_easy_test:
2848       {
2849         // Just do a direct pointer compare and be done.
2850         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2851         *ctrl = gvn.transform(new IfTrueNode(iff));
2852         return gvn.transform(new IfFalseNode(iff));
2853       }
2854     case Compile::SSC_full_test:
2855       break;
2856     default:
2857       ShouldNotReachHere();
2858     }
2859   }
2860 
2861   // %%% Possible further optimization:  Even if the superklass is not exact,
2862   // if the subklass is the unique subtype of the superklass, the check
2863   // will always succeed.  We could leave a dependency behind to ensure this.
2864 
2865   // First load the super-klass's check-offset
2866   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2867   Node* m = C->immutable_memory();
2868   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2869   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2870   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2871   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2872   bool might_be_cache = (chk_off_con == cacheoff_con);
2873 
2874   // Load from the sub-klass's super-class display list, or a 1-word cache of
2875   // the secondary superclass list, or a failing value with a sentinel offset
2876   // if the super-klass is an interface or exceptionally deep in the Java
2877   // hierarchy and we have to scan the secondary superclass list the hard way.
2878   // Worst-case type is a little odd: null is allowed as a result (usually
2879   // klass loads can never produce a null).
2880   Node *chk_off_X = chk_off;
2881 #ifdef _LP64
2882   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2883 #endif
2884   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2885   // For some types like interfaces the following loadKlass is from a 1-word
2886   // cache which is mutable so can't use immutable memory.  Other
2887   // types load from the super-class display table which is immutable.
2888   Node *kmem = C->immutable_memory();
2889   // secondary_super_cache is not immutable but can be treated as such because:
2890   // - no ideal node writes to it in a way that could cause an
2891   //   incorrect/missed optimization of the following Load.
2892   // - it's a cache so, worse case, not reading the latest value
2893   //   wouldn't cause incorrect execution
2894   if (might_be_cache && mem != nullptr) {
2895     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2896   }
2897   Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2898 
2899   // Compile speed common case: ARE a subtype and we canNOT fail
2900   if (superklass == nkls) {
2901     return C->top();             // false path is dead; no test needed.
2902   }
2903 
2904   // Gather the various success & failures here
2905   RegionNode* r_not_subtype = new RegionNode(3);
2906   gvn.record_for_igvn(r_not_subtype);
2907   RegionNode* r_ok_subtype = new RegionNode(4);
2908   gvn.record_for_igvn(r_ok_subtype);
2909 
2910   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2911   // SubTypeCheck node
2912   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2913     ciCallProfile profile = method->call_profile_at_bci(bci);
2914     float total_prob = 0;
2915     for (int i = 0; profile.has_receiver(i); ++i) {
2916       float prob = profile.receiver_prob(i);
2917       total_prob += prob;
2918     }
2919     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2920       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2921       for (int i = 0; profile.has_receiver(i); ++i) {
2922         ciKlass* klass = profile.receiver(i);
2923         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2924         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2925         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2926           continue;
2927         }
2928         float prob = profile.receiver_prob(i);
2929         ConNode* klass_node = gvn.makecon(klass_t);
2930         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2931         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2932 
2933         if (result == Compile::SSC_always_true) {
2934           r_ok_subtype->add_req(iftrue);
2935         } else {
2936           assert(result == Compile::SSC_always_false, "");
2937           r_not_subtype->add_req(iftrue);
2938         }
2939         *ctrl = gvn.transform(new IfFalseNode(iff));
2940       }
2941     }
2942   }
2943 
2944   // See if we get an immediate positive hit.  Happens roughly 83% of the
2945   // time.  Test to see if the value loaded just previously from the subklass
2946   // is exactly the superklass.
2947   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2948   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2949   *ctrl = gvn.transform(new IfFalseNode(iff1));
2950 
2951   // Compile speed common case: Check for being deterministic right now.  If
2952   // chk_off is a constant and not equal to cacheoff then we are NOT a
2953   // subklass.  In this case we need exactly the 1 test above and we can
2954   // return those results immediately.
2955   if (!might_be_cache) {
2956     Node* not_subtype_ctrl = *ctrl;
2957     *ctrl = iftrue1; // We need exactly the 1 test above
2958     PhaseIterGVN* igvn = gvn.is_IterGVN();
2959     if (igvn != nullptr) {
2960       igvn->remove_globally_dead_node(r_ok_subtype);
2961       igvn->remove_globally_dead_node(r_not_subtype);
2962     }
2963     return not_subtype_ctrl;
2964   }
2965 
2966   r_ok_subtype->init_req(1, iftrue1);
2967 
2968   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2969   // is roughly 63% of the remaining cases).  Test to see if the loaded
2970   // check-offset points into the subklass display list or the 1-element
2971   // cache.  If it points to the display (and NOT the cache) and the display
2972   // missed then it's not a subtype.
2973   Node *cacheoff = gvn.intcon(cacheoff_con);
2974   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2975   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2976   *ctrl = gvn.transform(new IfFalseNode(iff2));
2977 
2978   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2979   // No performance impact (too rare) but allows sharing of secondary arrays
2980   // which has some footprint reduction.
2981   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2982   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2983   *ctrl = gvn.transform(new IfFalseNode(iff3));
2984 
2985   // -- Roads not taken here: --
2986   // We could also have chosen to perform the self-check at the beginning
2987   // of this code sequence, as the assembler does.  This would not pay off
2988   // the same way, since the optimizer, unlike the assembler, can perform
2989   // static type analysis to fold away many successful self-checks.
2990   // Non-foldable self checks work better here in second position, because
2991   // the initial primary superclass check subsumes a self-check for most
2992   // types.  An exception would be a secondary type like array-of-interface,
2993   // which does not appear in its own primary supertype display.
2994   // Finally, we could have chosen to move the self-check into the
2995   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2996   // dependent manner.  But it is worthwhile to have the check here,
2997   // where it can be perhaps be optimized.  The cost in code space is
2998   // small (register compare, branch).
2999 
3000   // Now do a linear scan of the secondary super-klass array.  Again, no real
3001   // performance impact (too rare) but it's gotta be done.
3002   // Since the code is rarely used, there is no penalty for moving it
3003   // out of line, and it can only improve I-cache density.
3004   // The decision to inline or out-of-line this final check is platform
3005   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3006   Node* psc = gvn.transform(
3007     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3008 
3009   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3010   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3011   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3012 
3013   // Return false path; set default control to true path.
3014   *ctrl = gvn.transform(r_ok_subtype);
3015   return gvn.transform(r_not_subtype);
3016 }
3017 
3018 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3019   const Type* sub_t = _gvn.type(obj_or_subklass);
3020   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3021     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3022     obj_or_subklass = makecon(sub_t);
3023   }
3024   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
3025                               ExpandSubTypeCheckAtParseTime; // forced expansion
3026   if (expand_subtype_check) {
3027     MergeMemNode* mem = merged_memory();
3028     Node* ctrl = control();
3029     Node* subklass = obj_or_subklass;
3030     if (!sub_t->isa_klassptr()) {
3031       subklass = load_object_klass(obj_or_subklass);
3032     }
3033 
3034     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3035     set_control(ctrl);
3036     return n;
3037   }
3038 
3039   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3040   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3041   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3042   set_control(_gvn.transform(new IfTrueNode(iff)));
3043   return _gvn.transform(new IfFalseNode(iff));
3044 }
3045 
3046 // Profile-driven exact type check:
3047 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3048                                     float prob, Node* *casted_receiver) {
3049   assert(!klass->is_interface(), "no exact type check on interfaces");
3050   Node* fail = top();
3051   const Type* rec_t = _gvn.type(receiver);
3052   if (rec_t->is_inlinetypeptr()) {
3053     if (klass->equals(rec_t->inline_klass())) {
3054       (*casted_receiver) = receiver; // Always passes
3055     } else {
3056       (*casted_receiver) = top();    // Always fails
3057       fail = control();
3058       set_control(top());
3059     }
3060     return fail;
3061   }
3062   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3063   Node* recv_klass = load_object_klass(receiver);
3064   fail = type_check(recv_klass, tklass, prob);
3065 
3066   if (!stopped()) {
3067     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3068     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3069     assert(recv_xtype->klass_is_exact(), "");
3070 
3071     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3072       // Subsume downstream occurrences of receiver with a cast to
3073       // recv_xtype, since now we know what the type will be.
3074       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3075       Node* res = _gvn.transform(cast);
3076       if (recv_xtype->is_inlinetypeptr()) {
3077         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3078         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3079       }
3080       (*casted_receiver) = res;
3081       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3082       // (User must make the replace_in_map call.)
3083     }
3084   }
3085 
3086   return fail;
3087 }
3088 
3089 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3090                            float prob) {
3091   Node* want_klass = makecon(tklass);
3092   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3093   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3094   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3095   set_control(_gvn.transform(new IfTrueNode (iff)));
3096   Node* fail = _gvn.transform(new IfFalseNode(iff));
3097   return fail;
3098 }
3099 
3100 //------------------------------subtype_check_receiver-------------------------
3101 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3102                                        Node** casted_receiver) {
3103   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3104   Node* want_klass = makecon(tklass);
3105 
3106   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3107 
3108   // Ignore interface type information until interface types are properly tracked.
3109   if (!stopped() && !klass->is_interface()) {
3110     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3111     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3112     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3113       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3114       if (recv_type->is_inlinetypeptr()) {
3115         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3116       }
3117       (*casted_receiver) = cast;
3118     }
3119   }
3120 
3121   return slow_ctl;
3122 }
3123 
3124 //------------------------------seems_never_null-------------------------------
3125 // Use null_seen information if it is available from the profile.
3126 // If we see an unexpected null at a type check we record it and force a
3127 // recompile; the offending check will be recompiled to handle nulls.
3128 // If we see several offending BCIs, then all checks in the
3129 // method will be recompiled.
3130 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3131   speculating = !_gvn.type(obj)->speculative_maybe_null();
3132   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3133   if (UncommonNullCast               // Cutout for this technique
3134       && obj != null()               // And not the -Xcomp stupid case?
3135       && !too_many_traps(reason)
3136       ) {
3137     if (speculating) {
3138       return true;
3139     }
3140     if (data == nullptr)
3141       // Edge case:  no mature data.  Be optimistic here.
3142       return true;
3143     // If the profile has not seen a null, assume it won't happen.
3144     assert(java_bc() == Bytecodes::_checkcast ||
3145            java_bc() == Bytecodes::_instanceof ||
3146            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3147     return !data->as_BitData()->null_seen();
3148   }
3149   speculating = false;
3150   return false;
3151 }
3152 
3153 void GraphKit::guard_klass_being_initialized(Node* klass) {
3154   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3155   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3156   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3157                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3158                                     T_BYTE, MemNode::unordered);
3159   init_state = _gvn.transform(init_state);
3160 
3161   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3162 
3163   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3164   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3165 
3166   { BuildCutout unless(this, tst, PROB_MAX);
3167     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3168   }
3169 }
3170 
3171 void GraphKit::guard_init_thread(Node* klass) {
3172   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3173   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3174 
3175   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3176                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3177                                      T_ADDRESS, MemNode::unordered);
3178   init_thread = _gvn.transform(init_thread);
3179 
3180   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3181 
3182   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3183   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3184 
3185   { BuildCutout unless(this, tst, PROB_MAX);
3186     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3187   }
3188 }
3189 
3190 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3191   if (ik->is_being_initialized()) {
3192     if (C->needs_clinit_barrier(ik, context)) {
3193       Node* klass = makecon(TypeKlassPtr::make(ik));
3194       guard_klass_being_initialized(klass);
3195       guard_init_thread(klass);
3196       insert_mem_bar(Op_MemBarCPUOrder);
3197     }
3198   } else if (ik->is_initialized()) {
3199     return; // no barrier needed
3200   } else {
3201     uncommon_trap(Deoptimization::Reason_uninitialized,
3202                   Deoptimization::Action_reinterpret,
3203                   nullptr);
3204   }
3205 }
3206 
3207 //------------------------maybe_cast_profiled_receiver-------------------------
3208 // If the profile has seen exactly one type, narrow to exactly that type.
3209 // Subsequent type checks will always fold up.
3210 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3211                                              const TypeKlassPtr* require_klass,
3212                                              ciKlass* spec_klass,
3213                                              bool safe_for_replace) {
3214   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3215 
3216   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3217 
3218   // Make sure we haven't already deoptimized from this tactic.
3219   if (too_many_traps_or_recompiles(reason))
3220     return nullptr;
3221 
3222   // (No, this isn't a call, but it's enough like a virtual call
3223   // to use the same ciMethod accessor to get the profile info...)
3224   // If we have a speculative type use it instead of profiling (which
3225   // may not help us)
3226   ciKlass* exact_kls = spec_klass;
3227   if (exact_kls == nullptr) {
3228     if (java_bc() == Bytecodes::_aastore) {
3229       ciKlass* array_type = nullptr;
3230       ciKlass* element_type = nullptr;
3231       ProfilePtrKind element_ptr = ProfileMaybeNull;
3232       bool flat_array = true;
3233       bool null_free_array = true;
3234       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3235       exact_kls = element_type;
3236     } else {
3237       exact_kls = profile_has_unique_klass();
3238     }
3239   }
3240   if (exact_kls != nullptr) {// no cast failures here
3241     if (require_klass == nullptr ||
3242         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3243       // If we narrow the type to match what the type profile sees or
3244       // the speculative type, we can then remove the rest of the
3245       // cast.
3246       // This is a win, even if the exact_kls is very specific,
3247       // because downstream operations, such as method calls,
3248       // will often benefit from the sharper type.
3249       Node* exact_obj = not_null_obj; // will get updated in place...
3250       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3251                                             &exact_obj);
3252       { PreserveJVMState pjvms(this);
3253         set_control(slow_ctl);
3254         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3255       }
3256       if (safe_for_replace) {
3257         replace_in_map(not_null_obj, exact_obj);
3258       }
3259       return exact_obj;
3260     }
3261     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3262   }
3263 
3264   return nullptr;
3265 }
3266 
3267 /**
3268  * Cast obj to type and emit guard unless we had too many traps here
3269  * already
3270  *
3271  * @param obj       node being casted
3272  * @param type      type to cast the node to
3273  * @param not_null  true if we know node cannot be null
3274  */
3275 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3276                                         ciKlass* type,
3277                                         bool not_null) {
3278   if (stopped()) {
3279     return obj;
3280   }
3281 
3282   // type is null if profiling tells us this object is always null
3283   if (type != nullptr) {
3284     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3285     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3286 
3287     if (!too_many_traps_or_recompiles(null_reason) &&
3288         !too_many_traps_or_recompiles(class_reason)) {
3289       Node* not_null_obj = nullptr;
3290       // not_null is true if we know the object is not null and
3291       // there's no need for a null check
3292       if (!not_null) {
3293         Node* null_ctl = top();
3294         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3295         assert(null_ctl->is_top(), "no null control here");
3296       } else {
3297         not_null_obj = obj;
3298       }
3299 
3300       Node* exact_obj = not_null_obj;
3301       ciKlass* exact_kls = type;
3302       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3303                                             &exact_obj);
3304       {
3305         PreserveJVMState pjvms(this);
3306         set_control(slow_ctl);
3307         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3308       }
3309       replace_in_map(not_null_obj, exact_obj);
3310       obj = exact_obj;
3311     }
3312   } else {
3313     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3314       Node* exact_obj = null_assert(obj);
3315       replace_in_map(obj, exact_obj);
3316       obj = exact_obj;
3317     }
3318   }
3319   return obj;
3320 }
3321 
3322 //-------------------------------gen_instanceof--------------------------------
3323 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3324 // and the reflective instance-of call.
3325 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3326   kill_dead_locals();           // Benefit all the uncommon traps
3327   assert( !stopped(), "dead parse path should be checked in callers" );
3328   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3329          "must check for not-null not-dead klass in callers");
3330 
3331   // Make the merge point
3332   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3333   RegionNode* region = new RegionNode(PATH_LIMIT);
3334   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3335   C->set_has_split_ifs(true); // Has chance for split-if optimization
3336 
3337   ciProfileData* data = nullptr;
3338   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3339     data = method()->method_data()->bci_to_data(bci());
3340   }
3341   bool speculative_not_null = false;
3342   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3343                          && seems_never_null(obj, data, speculative_not_null));
3344 
3345   // Null check; get casted pointer; set region slot 3
3346   Node* null_ctl = top();
3347   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3348 
3349   // If not_null_obj is dead, only null-path is taken
3350   if (stopped()) {              // Doing instance-of on a null?
3351     set_control(null_ctl);
3352     return intcon(0);
3353   }
3354   region->init_req(_null_path, null_ctl);
3355   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3356   if (null_ctl == top()) {
3357     // Do this eagerly, so that pattern matches like is_diamond_phi
3358     // will work even during parsing.
3359     assert(_null_path == PATH_LIMIT-1, "delete last");
3360     region->del_req(_null_path);
3361     phi   ->del_req(_null_path);
3362   }
3363 
3364   // Do we know the type check always succeed?
3365   bool known_statically = false;
3366   if (_gvn.type(superklass)->singleton()) {
3367     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3368     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3369     if (subk != nullptr && subk->is_loaded()) {
3370       int static_res = C->static_subtype_check(superk, subk);
3371       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3372     }
3373   }
3374 
3375   if (!known_statically) {
3376     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3377     // We may not have profiling here or it may not help us. If we
3378     // have a speculative type use it to perform an exact cast.
3379     ciKlass* spec_obj_type = obj_type->speculative_type();
3380     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3381       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3382       if (stopped()) {            // Profile disagrees with this path.
3383         set_control(null_ctl);    // Null is the only remaining possibility.
3384         return intcon(0);
3385       }
3386       if (cast_obj != nullptr) {
3387         not_null_obj = cast_obj;
3388       }
3389     }
3390   }
3391 
3392   // Generate the subtype check
3393   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3394 
3395   // Plug in the success path to the general merge in slot 1.
3396   region->init_req(_obj_path, control());
3397   phi   ->init_req(_obj_path, intcon(1));
3398 
3399   // Plug in the failing path to the general merge in slot 2.
3400   region->init_req(_fail_path, not_subtype_ctrl);
3401   phi   ->init_req(_fail_path, intcon(0));
3402 
3403   // Return final merged results
3404   set_control( _gvn.transform(region) );
3405   record_for_igvn(region);
3406 
3407   // If we know the type check always succeeds then we don't use the
3408   // profiling data at this bytecode. Don't lose it, feed it to the
3409   // type system as a speculative type.
3410   if (safe_for_replace) {
3411     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3412     replace_in_map(obj, casted_obj);
3413   }
3414 
3415   return _gvn.transform(phi);
3416 }
3417 
3418 //-------------------------------gen_checkcast---------------------------------
3419 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3420 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3421 // uncommon-trap paths work.  Adjust stack after this call.
3422 // If failure_control is supplied and not null, it is filled in with
3423 // the control edge for the cast failure.  Otherwise, an appropriate
3424 // uncommon trap or exception is thrown.
3425 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3426   kill_dead_locals();           // Benefit all the uncommon traps
3427   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr()->try_improve();
3428   const TypeOopPtr *toop = tk->cast_to_exactness(false)->as_instance_type();
3429   bool safe_for_replace = (failure_control == nullptr);
3430   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3431 
3432   // Fast cutout:  Check the case that the cast is vacuously true.
3433   // This detects the common cases where the test will short-circuit
3434   // away completely.  We do this before we perform the null check,
3435   // because if the test is going to turn into zero code, we don't
3436   // want a residual null check left around.  (Causes a slowdown,
3437   // for example, in some objArray manipulations, such as a[i]=a[j].)
3438   if (tk->singleton()) {
3439     const TypeKlassPtr* kptr = nullptr;
3440     const Type* t = _gvn.type(obj);
3441     if (t->isa_oop_ptr()) {
3442       kptr = t->is_oopptr()->as_klass_type();
3443     } else if (obj->is_InlineType()) {
3444       ciInlineKlass* vk = t->inline_klass();
3445       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3446     }
3447     if (kptr != nullptr) {
3448       switch (C->static_subtype_check(tk, kptr)) {
3449       case Compile::SSC_always_true:
3450         // If we know the type check always succeed then we don't use
3451         // the profiling data at this bytecode. Don't lose it, feed it
3452         // to the type system as a speculative type.
3453         obj = record_profiled_receiver_for_speculation(obj);
3454         if (null_free) {
3455           assert(safe_for_replace, "must be");
3456           obj = null_check(obj);
3457         }
3458         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3459         return obj;
3460       case Compile::SSC_always_false:
3461         if (null_free) {
3462           assert(safe_for_replace, "must be");
3463           obj = null_check(obj);
3464         }
3465         // It needs a null check because a null will *pass* the cast check.
3466         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {
3467           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3468           Deoptimization::DeoptReason reason = is_aastore ?
3469             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3470           builtin_throw(reason);
3471           return top();
3472         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3473           return null_assert(obj);
3474         }
3475         break; // Fall through to full check
3476       default:
3477         break;
3478       }
3479     }
3480   }
3481 
3482   ciProfileData* data = nullptr;
3483   if (failure_control == nullptr) {        // use MDO in regular case only
3484     assert(java_bc() == Bytecodes::_aastore ||
3485            java_bc() == Bytecodes::_checkcast,
3486            "interpreter profiles type checks only for these BCs");
3487     if (method()->method_data()->is_mature()) {
3488       data = method()->method_data()->bci_to_data(bci());
3489     }
3490   }
3491 
3492   // Make the merge point
3493   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3494   RegionNode* region = new RegionNode(PATH_LIMIT);
3495   Node*       phi    = new PhiNode(region, toop);
3496   _gvn.set_type(region, Type::CONTROL);
3497   _gvn.set_type(phi, toop);
3498 
3499   C->set_has_split_ifs(true); // Has chance for split-if optimization
3500 
3501   // Use null-cast information if it is available
3502   bool speculative_not_null = false;
3503   bool never_see_null = ((failure_control == nullptr)  // regular case only
3504                          && seems_never_null(obj, data, speculative_not_null));
3505 
3506   if (obj->is_InlineType()) {
3507     // Re-execute if buffering during triggers deoptimization
3508     PreserveReexecuteState preexecs(this);
3509     jvms()->set_should_reexecute(true);
3510     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3511   }
3512 
3513   // Null check; get casted pointer; set region slot 3
3514   Node* null_ctl = top();
3515   Node* not_null_obj = nullptr;
3516   if (null_free) {
3517     assert(safe_for_replace, "must be");
3518     not_null_obj = null_check(obj);
3519   } else {
3520     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3521   }
3522 
3523   // If not_null_obj is dead, only null-path is taken
3524   if (stopped()) {              // Doing instance-of on a null?
3525     set_control(null_ctl);
3526     if (toop->is_inlinetypeptr()) {
3527       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3528     }
3529     return null();
3530   }
3531   region->init_req(_null_path, null_ctl);
3532   phi   ->init_req(_null_path, null());  // Set null path value
3533   if (null_ctl == top()) {
3534     // Do this eagerly, so that pattern matches like is_diamond_phi
3535     // will work even during parsing.
3536     assert(_null_path == PATH_LIMIT-1, "delete last");
3537     region->del_req(_null_path);
3538     phi   ->del_req(_null_path);
3539   }
3540 
3541   Node* cast_obj = nullptr;
3542   if (tk->klass_is_exact()) {
3543     // The following optimization tries to statically cast the speculative type of the object
3544     // (for example obtained during profiling) to the type of the superklass and then do a
3545     // dynamic check that the type of the object is what we expect. To work correctly
3546     // for checkcast and aastore the type of superklass should be exact.
3547     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3548     // We may not have profiling here or it may not help us. If we have
3549     // a speculative type use it to perform an exact cast.
3550     ciKlass* spec_obj_type = obj_type->speculative_type();
3551     if (spec_obj_type != nullptr || data != nullptr) {
3552       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3553       if (cast_obj != nullptr) {
3554         if (failure_control != nullptr) // failure is now impossible
3555           (*failure_control) = top();
3556         // adjust the type of the phi to the exact klass:
3557         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3558       }
3559     }
3560   }
3561 
3562   if (cast_obj == nullptr) {
3563     // Generate the subtype check
3564     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3565 
3566     // Plug in success path into the merge
3567     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3568     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3569     if (failure_control == nullptr) {
3570       if (not_subtype_ctrl != top()) { // If failure is possible
3571         PreserveJVMState pjvms(this);
3572         set_control(not_subtype_ctrl);
3573         Node* obj_klass = nullptr;
3574         if (not_null_obj->is_InlineType()) {
3575           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3576         } else {
3577           obj_klass = load_object_klass(not_null_obj);
3578         }
3579         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3580         Deoptimization::DeoptReason reason = is_aastore ?
3581           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3582         builtin_throw(reason);
3583       }
3584     } else {
3585       (*failure_control) = not_subtype_ctrl;
3586     }
3587   }
3588 
3589   region->init_req(_obj_path, control());
3590   phi   ->init_req(_obj_path, cast_obj);
3591 
3592   // A merge of null or Casted-NotNull obj
3593   Node* res = _gvn.transform(phi);
3594 
3595   // Note I do NOT always 'replace_in_map(obj,result)' here.
3596   //  if( tk->klass()->can_be_primary_super()  )
3597     // This means that if I successfully store an Object into an array-of-String
3598     // I 'forget' that the Object is really now known to be a String.  I have to
3599     // do this because we don't have true union types for interfaces - if I store
3600     // a Baz into an array-of-Interface and then tell the optimizer it's an
3601     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3602     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3603   //  replace_in_map( obj, res );
3604 
3605   // Return final merged results
3606   set_control( _gvn.transform(region) );
3607   record_for_igvn(region);
3608 
3609   bool not_inline = !toop->can_be_inline_type();
3610   bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3611   if (EnableValhalla && not_flat_in_array) {
3612     // Check if obj has been loaded from an array
3613     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3614     Node* array = nullptr;
3615     if (obj->isa_Load()) {
3616       Node* address = obj->in(MemNode::Address);
3617       if (address->isa_AddP()) {
3618         array = address->as_AddP()->in(AddPNode::Base);
3619       }
3620     } else if (obj->is_Phi()) {
3621       Node* region = obj->in(0);
3622       // TODO make this more robust (see JDK-8231346)
3623       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3624         IfNode* iff = region->in(2)->in(0)->isa_If();
3625         if (iff != nullptr) {
3626           iff->is_flat_array_check(&_gvn, &array);
3627         }
3628       }
3629     }
3630     if (array != nullptr) {
3631       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3632       if (ary_t != nullptr && !ary_t->is_flat()) {
3633         if (!ary_t->is_not_null_free() && not_inline) {
3634           // Casting array element to a non-inline-type, mark array as not null-free.
3635           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3636           replace_in_map(array, cast);
3637         } else if (!ary_t->is_not_flat()) {
3638           // Casting array element to a non-flat type, mark array as not flat.
3639           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3640           replace_in_map(array, cast);
3641         }
3642       }
3643     }
3644   }
3645 
3646   if (!stopped() && !res->is_InlineType()) {
3647     res = record_profiled_receiver_for_speculation(res);
3648     if (toop->is_inlinetypeptr()) {
3649       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3650       res = vt;
3651       if (safe_for_replace) {
3652         replace_in_map(obj, vt);
3653         replace_in_map(not_null_obj, vt);
3654         replace_in_map(res, vt);
3655       }
3656     }
3657   }
3658   return res;
3659 }
3660 
3661 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3662   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3663   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3664   Node* mask = MakeConX(markWord::inline_type_pattern);
3665   Node* masked = _gvn.transform(new AndXNode(mark, mask));
3666   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3667   return _gvn.transform(new BoolNode(cmp, is_inline ? BoolTest::eq : BoolTest::ne));
3668 }
3669 
3670 Node* GraphKit::is_val_mirror(Node* mirror) {
3671   Node* p = basic_plus_adr(mirror, java_lang_Class::secondary_mirror_offset());
3672   Node* secondary_mirror = access_load_at(mirror, p, _gvn.type(p)->is_ptr(), TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR), T_OBJECT, IN_HEAP);
3673   Node* cmp = _gvn.transform(new CmpPNode(mirror, secondary_mirror));
3674   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3675 }
3676 
3677 Node* GraphKit::array_lh_test(Node* klass, jint mask, jint val, bool eq) {
3678   Node* lh_adr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
3679   // Make sure to use immutable memory here to enable hoisting the check out of loops
3680   Node* lh_val = _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), lh_adr, lh_adr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
3681   Node* masked = _gvn.transform(new AndINode(lh_val, intcon(mask)));
3682   Node* cmp = _gvn.transform(new CmpINode(masked, intcon(val)));
3683   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3684 }
3685 
3686 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3687   // We can't use immutable memory here because the mark word is mutable.
3688   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3689   // check is moved out of loops (mainly to enable loop unswitching).
3690   Node* mem = UseArrayMarkWordCheck ? memory(Compile::AliasIdxRaw) : immutable_memory();
3691   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, mem, array_or_klass));
3692   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3693   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3694 }
3695 
3696 Node* GraphKit::null_free_array_test(Node* klass, bool null_free) {
3697   return array_lh_test(klass, Klass::_lh_null_free_array_bit_inplace, 0, !null_free);
3698 }
3699 
3700 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3701 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3702   RegionNode* region = new RegionNode(3);
3703   Node* null_ctl = top();
3704   null_check_oop(val, &null_ctl);
3705   if (null_ctl != top()) {
3706     PreserveJVMState pjvms(this);
3707     set_control(null_ctl);
3708     {
3709       // Deoptimize if null-free array
3710       BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX);
3711       inc_sp(nargs);
3712       uncommon_trap(Deoptimization::Reason_null_check,
3713                     Deoptimization::Action_none);
3714     }
3715     region->init_req(1, control());
3716   }
3717   region->init_req(2, control());
3718   set_control(_gvn.transform(region));
3719   record_for_igvn(region);
3720   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3721     // Since we were just successfully storing null, the array can't be null free.
3722     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3723     ary_t = ary_t->cast_to_not_null_free();
3724     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3725     if (safe_for_replace) {
3726       replace_in_map(ary, cast);
3727     }
3728     ary = cast;
3729   }
3730   return ary;
3731 }
3732 
3733 //------------------------------next_monitor-----------------------------------
3734 // What number should be given to the next monitor?
3735 int GraphKit::next_monitor() {
3736   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3737   int next = current + C->sync_stack_slots();
3738   // Keep the toplevel high water mark current:
3739   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3740   return current;
3741 }
3742 
3743 //------------------------------insert_mem_bar---------------------------------
3744 // Memory barrier to avoid floating things around
3745 // The membar serves as a pinch point between both control and all memory slices.
3746 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3747   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3748   mb->init_req(TypeFunc::Control, control());
3749   mb->init_req(TypeFunc::Memory,  reset_memory());
3750   Node* membar = _gvn.transform(mb);
3751   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3752   set_all_memory_call(membar);
3753   return membar;
3754 }
3755 
3756 //-------------------------insert_mem_bar_volatile----------------------------
3757 // Memory barrier to avoid floating things around
3758 // The membar serves as a pinch point between both control and memory(alias_idx).
3759 // If you want to make a pinch point on all memory slices, do not use this
3760 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3761 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3762   // When Parse::do_put_xxx updates a volatile field, it appends a series
3763   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3764   // The first membar is on the same memory slice as the field store opcode.
3765   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3766   // All the other membars (for other volatile slices, including AliasIdxBot,
3767   // which stands for all unknown volatile slices) are control-dependent
3768   // on the first membar.  This prevents later volatile loads or stores
3769   // from sliding up past the just-emitted store.
3770 
3771   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3772   mb->set_req(TypeFunc::Control,control());
3773   if (alias_idx == Compile::AliasIdxBot) {
3774     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3775   } else {
3776     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3777     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3778   }
3779   Node* membar = _gvn.transform(mb);
3780   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3781   if (alias_idx == Compile::AliasIdxBot) {
3782     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3783   } else {
3784     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3785   }
3786   return membar;
3787 }
3788 
3789 //------------------------------shared_lock------------------------------------
3790 // Emit locking code.
3791 FastLockNode* GraphKit::shared_lock(Node* obj) {
3792   // bci is either a monitorenter bc or InvocationEntryBci
3793   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3794   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3795 
3796   if( !GenerateSynchronizationCode )
3797     return nullptr;                // Not locking things?
3798 
3799   if (stopped())                // Dead monitor?
3800     return nullptr;
3801 
3802   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3803 
3804   // Box the stack location
3805   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3806   Node* mem = reset_memory();
3807 
3808   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3809 
3810   // Create the rtm counters for this fast lock if needed.
3811   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3812 
3813   // Add monitor to debug info for the slow path.  If we block inside the
3814   // slow path and de-opt, we need the monitor hanging around
3815   map()->push_monitor( flock );
3816 
3817   const TypeFunc *tf = LockNode::lock_type();
3818   LockNode *lock = new LockNode(C, tf);
3819 
3820   lock->init_req( TypeFunc::Control, control() );
3821   lock->init_req( TypeFunc::Memory , mem );
3822   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3823   lock->init_req( TypeFunc::FramePtr, frameptr() );
3824   lock->init_req( TypeFunc::ReturnAdr, top() );
3825 
3826   lock->init_req(TypeFunc::Parms + 0, obj);
3827   lock->init_req(TypeFunc::Parms + 1, box);
3828   lock->init_req(TypeFunc::Parms + 2, flock);
3829   add_safepoint_edges(lock);
3830 
3831   lock = _gvn.transform( lock )->as_Lock();
3832 
3833   // lock has no side-effects, sets few values
3834   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3835 
3836   insert_mem_bar(Op_MemBarAcquireLock);
3837 
3838   // Add this to the worklist so that the lock can be eliminated
3839   record_for_igvn(lock);
3840 
3841 #ifndef PRODUCT
3842   if (PrintLockStatistics) {
3843     // Update the counter for this lock.  Don't bother using an atomic
3844     // operation since we don't require absolute accuracy.
3845     lock->create_lock_counter(map()->jvms());
3846     increment_counter(lock->counter()->addr());
3847   }
3848 #endif
3849 
3850   return flock;
3851 }
3852 
3853 
3854 //------------------------------shared_unlock----------------------------------
3855 // Emit unlocking code.
3856 void GraphKit::shared_unlock(Node* box, Node* obj) {
3857   // bci is either a monitorenter bc or InvocationEntryBci
3858   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3859   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3860 
3861   if( !GenerateSynchronizationCode )
3862     return;
3863   if (stopped()) {               // Dead monitor?
3864     map()->pop_monitor();        // Kill monitor from debug info
3865     return;
3866   }
3867   assert(!obj->is_InlineType(), "should not unlock on inline type");
3868 
3869   // Memory barrier to avoid floating things down past the locked region
3870   insert_mem_bar(Op_MemBarReleaseLock);
3871 
3872   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3873   UnlockNode *unlock = new UnlockNode(C, tf);
3874 #ifdef ASSERT
3875   unlock->set_dbg_jvms(sync_jvms());
3876 #endif
3877   uint raw_idx = Compile::AliasIdxRaw;
3878   unlock->init_req( TypeFunc::Control, control() );
3879   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3880   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3881   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3882   unlock->init_req( TypeFunc::ReturnAdr, top() );
3883 
3884   unlock->init_req(TypeFunc::Parms + 0, obj);
3885   unlock->init_req(TypeFunc::Parms + 1, box);
3886   unlock = _gvn.transform(unlock)->as_Unlock();
3887 
3888   Node* mem = reset_memory();
3889 
3890   // unlock has no side-effects, sets few values
3891   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3892 
3893   // Kill monitor from debug info
3894   map()->pop_monitor( );
3895 }
3896 
3897 //-------------------------------get_layout_helper-----------------------------
3898 // If the given klass is a constant or known to be an array,
3899 // fetch the constant layout helper value into constant_value
3900 // and return null.  Otherwise, load the non-constant
3901 // layout helper value, and return the node which represents it.
3902 // This two-faced routine is useful because allocation sites
3903 // almost always feature constant types.
3904 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3905   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3906   if (!StressReflectiveCode && klass_t != nullptr) {
3907     bool xklass = klass_t->klass_is_exact();
3908     bool can_be_flat = false;
3909     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3910     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3911       // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3912       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3913       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
3914     }
3915     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3916       jint lhelper;
3917       if (klass_t->is_flat()) {
3918         lhelper = ary_type->flat_layout_helper();
3919       } else if (klass_t->isa_aryklassptr()) {
3920         BasicType elem = ary_type->elem()->array_element_basic_type();
3921         if (is_reference_type(elem, true)) {
3922           elem = T_OBJECT;
3923         }
3924         lhelper = Klass::array_layout_helper(elem);
3925       } else {
3926         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3927       }
3928       if (lhelper != Klass::_lh_neutral_value) {
3929         constant_value = lhelper;
3930         return (Node*) nullptr;
3931       }
3932     }
3933   }
3934   constant_value = Klass::_lh_neutral_value;  // put in a known value
3935   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3936   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3937 }
3938 
3939 // We just put in an allocate/initialize with a big raw-memory effect.
3940 // Hook selected additional alias categories on the initialization.
3941 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3942                                 MergeMemNode* init_in_merge,
3943                                 Node* init_out_raw) {
3944   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3945   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3946 
3947   Node* prevmem = kit.memory(alias_idx);
3948   init_in_merge->set_memory_at(alias_idx, prevmem);
3949   if (init_out_raw != nullptr) {
3950     kit.set_memory(init_out_raw, alias_idx);
3951   }
3952 }
3953 
3954 //---------------------------set_output_for_allocation-------------------------
3955 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3956                                           const TypeOopPtr* oop_type,
3957                                           bool deoptimize_on_exception) {
3958   int rawidx = Compile::AliasIdxRaw;
3959   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3960   add_safepoint_edges(alloc);
3961   Node* allocx = _gvn.transform(alloc);
3962   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3963   // create memory projection for i_o
3964   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3965   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3966 
3967   // create a memory projection as for the normal control path
3968   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3969   set_memory(malloc, rawidx);
3970 
3971   // a normal slow-call doesn't change i_o, but an allocation does
3972   // we create a separate i_o projection for the normal control path
3973   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3974   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3975 
3976   // put in an initialization barrier
3977   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3978                                                  rawoop)->as_Initialize();
3979   assert(alloc->initialization() == init,  "2-way macro link must work");
3980   assert(init ->allocation()     == alloc, "2-way macro link must work");
3981   {
3982     // Extract memory strands which may participate in the new object's
3983     // initialization, and source them from the new InitializeNode.
3984     // This will allow us to observe initializations when they occur,
3985     // and link them properly (as a group) to the InitializeNode.
3986     assert(init->in(InitializeNode::Memory) == malloc, "");
3987     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3988     init->set_req(InitializeNode::Memory, minit_in);
3989     record_for_igvn(minit_in); // fold it up later, if possible
3990     _gvn.set_type(minit_in, Type::MEMORY);
3991     Node* minit_out = memory(rawidx);
3992     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3993     // Add an edge in the MergeMem for the header fields so an access
3994     // to one of those has correct memory state
3995     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3996     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3997     if (oop_type->isa_aryptr()) {
3998       const TypeAryPtr* arytype = oop_type->is_aryptr();
3999       if (arytype->is_flat()) {
4000         // Initially all flat array accesses share a single slice
4001         // but that changes after parsing. Prepare the memory graph so
4002         // it can optimize flat array accesses properly once they
4003         // don't share a single slice.
4004         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4005         C->set_flat_accesses_share_alias(false);
4006         ciInlineKlass* vk = arytype->elem()->inline_klass();
4007         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4008           ciField* field = vk->nonstatic_field_at(i);
4009           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4010             continue;  // do not bother to track really large numbers of fields
4011           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
4012           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4013           int fieldidx = C->get_alias_index(adr_type, true);
4014           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4015           // can result in per flat array field Phis to be created which confuses the logic of
4016           // Compile::adjust_flat_array_access_aliases().
4017           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4018         }
4019         C->set_flat_accesses_share_alias(true);
4020         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4021       } else {
4022         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4023         int            elemidx  = C->get_alias_index(telemref);
4024         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4025       }
4026     } else if (oop_type->isa_instptr()) {
4027       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4028       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4029       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4030         ciField* field = ik->nonstatic_field_at(i);
4031         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4032           continue;  // do not bother to track really large numbers of fields
4033         // Find (or create) the alias category for this field:
4034         int fieldidx = C->alias_type(field)->index();
4035         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4036       }
4037     }
4038   }
4039 
4040   // Cast raw oop to the real thing...
4041   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4042   javaoop = _gvn.transform(javaoop);
4043   C->set_recent_alloc(control(), javaoop);
4044   assert(just_allocated_object(control()) == javaoop, "just allocated");
4045 
4046 #ifdef ASSERT
4047   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4048     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4049            "Ideal_allocation works");
4050     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4051            "Ideal_allocation works");
4052     if (alloc->is_AllocateArray()) {
4053       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4054              "Ideal_allocation works");
4055       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4056              "Ideal_allocation works");
4057     } else {
4058       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4059     }
4060   }
4061 #endif //ASSERT
4062 
4063   return javaoop;
4064 }
4065 
4066 //---------------------------new_instance--------------------------------------
4067 // This routine takes a klass_node which may be constant (for a static type)
4068 // or may be non-constant (for reflective code).  It will work equally well
4069 // for either, and the graph will fold nicely if the optimizer later reduces
4070 // the type to a constant.
4071 // The optional arguments are for specialized use by intrinsics:
4072 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4073 //  - If 'return_size_val', report the total object size to the caller.
4074 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4075 Node* GraphKit::new_instance(Node* klass_node,
4076                              Node* extra_slow_test,
4077                              Node* *return_size_val,
4078                              bool deoptimize_on_exception,
4079                              InlineTypeNode* inline_type_node) {
4080   // Compute size in doublewords
4081   // The size is always an integral number of doublewords, represented
4082   // as a positive bytewise size stored in the klass's layout_helper.
4083   // The layout_helper also encodes (in a low bit) the need for a slow path.
4084   jint  layout_con = Klass::_lh_neutral_value;
4085   Node* layout_val = get_layout_helper(klass_node, layout_con);
4086   bool  layout_is_con = (layout_val == nullptr);
4087 
4088   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4089   // Generate the initial go-slow test.  It's either ALWAYS (return a
4090   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4091   // case) a computed value derived from the layout_helper.
4092   Node* initial_slow_test = nullptr;
4093   if (layout_is_con) {
4094     assert(!StressReflectiveCode, "stress mode does not use these paths");
4095     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4096     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4097   } else {   // reflective case
4098     // This reflective path is used by Unsafe.allocateInstance.
4099     // (It may be stress-tested by specifying StressReflectiveCode.)
4100     // Basically, we want to get into the VM is there's an illegal argument.
4101     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4102     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4103     if (extra_slow_test != intcon(0)) {
4104       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4105     }
4106     // (Macro-expander will further convert this to a Bool, if necessary.)
4107   }
4108 
4109   // Find the size in bytes.  This is easy; it's the layout_helper.
4110   // The size value must be valid even if the slow path is taken.
4111   Node* size = nullptr;
4112   if (layout_is_con) {
4113     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4114   } else {   // reflective case
4115     // This reflective path is used by clone and Unsafe.allocateInstance.
4116     size = ConvI2X(layout_val);
4117 
4118     // Clear the low bits to extract layout_helper_size_in_bytes:
4119     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4120     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4121     size = _gvn.transform( new AndXNode(size, mask) );
4122   }
4123   if (return_size_val != nullptr) {
4124     (*return_size_val) = size;
4125   }
4126 
4127   // This is a precise notnull oop of the klass.
4128   // (Actually, it need not be precise if this is a reflective allocation.)
4129   // It's what we cast the result to.
4130   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4131   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4132   const TypeOopPtr* oop_type = tklass->as_instance_type();
4133 
4134   // Now generate allocation code
4135 
4136   // The entire memory state is needed for slow path of the allocation
4137   // since GC and deoptimization can happen.
4138   Node *mem = reset_memory();
4139   set_all_memory(mem); // Create new memory state
4140 
4141   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4142                                          control(), mem, i_o(),
4143                                          size, klass_node,
4144                                          initial_slow_test, inline_type_node);
4145 
4146   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4147 }
4148 
4149 //-------------------------------new_array-------------------------------------
4150 // helper for newarray and anewarray
4151 // The 'length' parameter is (obviously) the length of the array.
4152 // The optional arguments are for specialized use by intrinsics:
4153 //  - If 'return_size_val', report the non-padded array size (sum of header size
4154 //    and array body) to the caller.
4155 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4156 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4157                           Node* length,         // number of array elements
4158                           int   nargs,          // number of arguments to push back for uncommon trap
4159                           Node* *return_size_val,
4160                           bool deoptimize_on_exception) {
4161   jint  layout_con = Klass::_lh_neutral_value;
4162   Node* layout_val = get_layout_helper(klass_node, layout_con);
4163   bool  layout_is_con = (layout_val == nullptr);
4164 
4165   if (!layout_is_con && !StressReflectiveCode &&
4166       !too_many_traps(Deoptimization::Reason_class_check)) {
4167     // This is a reflective array creation site.
4168     // Optimistically assume that it is a subtype of Object[],
4169     // so that we can fold up all the address arithmetic.
4170     layout_con = Klass::array_layout_helper(T_OBJECT);
4171     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4172     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4173     { BuildCutout unless(this, bol_lh, PROB_MAX);
4174       inc_sp(nargs);
4175       uncommon_trap(Deoptimization::Reason_class_check,
4176                     Deoptimization::Action_maybe_recompile);
4177     }
4178     layout_val = nullptr;
4179     layout_is_con = true;
4180   }
4181 
4182   // Generate the initial go-slow test.  Make sure we do not overflow
4183   // if length is huge (near 2Gig) or negative!  We do not need
4184   // exact double-words here, just a close approximation of needed
4185   // double-words.  We can't add any offset or rounding bits, lest we
4186   // take a size -1 of bytes and make it positive.  Use an unsigned
4187   // compare, so negative sizes look hugely positive.
4188   int fast_size_limit = FastAllocateSizeLimit;
4189   if (layout_is_con) {
4190     assert(!StressReflectiveCode, "stress mode does not use these paths");
4191     // Increase the size limit if we have exact knowledge of array type.
4192     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4193     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4194   }
4195 
4196   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4197   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4198 
4199   // --- Size Computation ---
4200   // array_size = round_to_heap(array_header + (length << elem_shift));
4201   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4202   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4203   // The rounding mask is strength-reduced, if possible.
4204   int round_mask = MinObjAlignmentInBytes - 1;
4205   Node* header_size = nullptr;
4206   // (T_BYTE has the weakest alignment and size restrictions...)
4207   if (layout_is_con) {
4208     int       hsize  = Klass::layout_helper_header_size(layout_con);
4209     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4210     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4211     if ((round_mask & ~right_n_bits(eshift)) == 0)
4212       round_mask = 0;  // strength-reduce it if it goes away completely
4213     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4214     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4215     assert(header_size_min <= hsize, "generic minimum is smallest");
4216     header_size = intcon(hsize);
4217   } else {
4218     Node* hss   = intcon(Klass::_lh_header_size_shift);
4219     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4220     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4221     header_size = _gvn.transform(new AndINode(header_size, hsm));
4222   }
4223 
4224   Node* elem_shift = nullptr;
4225   if (layout_is_con) {
4226     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4227     if (eshift != 0)
4228       elem_shift = intcon(eshift);
4229   } else {
4230     // There is no need to mask or shift this value.
4231     // The semantics of LShiftINode include an implicit mask to 0x1F.
4232     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4233     elem_shift = layout_val;
4234   }
4235 
4236   // Transition to native address size for all offset calculations:
4237   Node* lengthx = ConvI2X(length);
4238   Node* headerx = ConvI2X(header_size);
4239 #ifdef _LP64
4240   { const TypeInt* tilen = _gvn.find_int_type(length);
4241     if (tilen != nullptr && tilen->_lo < 0) {
4242       // Add a manual constraint to a positive range.  Cf. array_element_address.
4243       jint size_max = fast_size_limit;
4244       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4245       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4246 
4247       // Only do a narrow I2L conversion if the range check passed.
4248       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4249       _gvn.transform(iff);
4250       RegionNode* region = new RegionNode(3);
4251       _gvn.set_type(region, Type::CONTROL);
4252       lengthx = new PhiNode(region, TypeLong::LONG);
4253       _gvn.set_type(lengthx, TypeLong::LONG);
4254 
4255       // Range check passed. Use ConvI2L node with narrow type.
4256       Node* passed = IfFalse(iff);
4257       region->init_req(1, passed);
4258       // Make I2L conversion control dependent to prevent it from
4259       // floating above the range check during loop optimizations.
4260       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4261 
4262       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4263       region->init_req(2, IfTrue(iff));
4264       lengthx->init_req(2, ConvI2X(length));
4265 
4266       set_control(region);
4267       record_for_igvn(region);
4268       record_for_igvn(lengthx);
4269     }
4270   }
4271 #endif
4272 
4273   // Combine header size and body size for the array copy part, then align (if
4274   // necessary) for the allocation part. This computation cannot overflow,
4275   // because it is used only in two places, one where the length is sharply
4276   // limited, and the other after a successful allocation.
4277   Node* abody = lengthx;
4278   if (elem_shift != nullptr) {
4279     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4280   }
4281   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4282 
4283   if (return_size_val != nullptr) {
4284     // This is the size
4285     (*return_size_val) = non_rounded_size;
4286   }
4287 
4288   Node* size = non_rounded_size;
4289   if (round_mask != 0) {
4290     Node* mask1 = MakeConX(round_mask);
4291     size = _gvn.transform(new AddXNode(size, mask1));
4292     Node* mask2 = MakeConX(~round_mask);
4293     size = _gvn.transform(new AndXNode(size, mask2));
4294   }
4295   // else if round_mask == 0, the size computation is self-rounding
4296 
4297   // Now generate allocation code
4298 
4299   // The entire memory state is needed for slow path of the allocation
4300   // since GC and deoptimization can happen.
4301   Node *mem = reset_memory();
4302   set_all_memory(mem); // Create new memory state
4303 
4304   if (initial_slow_test->is_Bool()) {
4305     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4306     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4307   }
4308 
4309   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4310   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4311   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4312 
4313   // Inline type array variants:
4314   // - null-ok:              MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4315   // - null-free:            MyValue.val[] (ciObjArrayKlass "[QMyValue")
4316   // - null-free, flat     : MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4317   // Check if array is a null-free, non-flat inline type array
4318   // that needs to be initialized with the default inline type.
4319   Node* default_value = nullptr;
4320   Node* raw_default_value = nullptr;
4321   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4322     // Array type is known
4323     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4324       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4325       default_value = InlineTypeNode::default_oop(gvn(), vk);
4326     }
4327   } else if (ary_type->can_be_inline_array()) {
4328     // Array type is not known, add runtime checks
4329     assert(!ary_klass->klass_is_exact(), "unexpected exact type");
4330     Node* r = new RegionNode(3);
4331     default_value = new PhiNode(r, TypeInstPtr::BOTTOM);
4332 
4333     Node* bol = array_lh_test(klass_node, Klass::_lh_array_tag_flat_value_bit_inplace | Klass::_lh_null_free_array_bit_inplace, Klass::_lh_null_free_array_bit_inplace);
4334     IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4335 
4336     // Null-free, non-flat inline type array, initialize with the default value
4337     set_control(_gvn.transform(new IfTrueNode(iff)));
4338     Node* p = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4339     Node* eklass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), p, TypeInstPtr::KLASS));
4340     Node* adr_fixed_block_addr = basic_plus_adr(eklass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()));
4341     Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4342     Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(InlineKlass::default_value_offset_offset()));
4343     Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4344     Node* elem_mirror = load_mirror_from_klass(eklass);
4345     Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4346     Node* val = access_load_at(elem_mirror, default_value_addr, TypeInstPtr::MIRROR, TypeInstPtr::NOTNULL, T_OBJECT, IN_HEAP);
4347     r->init_req(1, control());
4348     default_value->init_req(1, val);
4349 
4350     // Otherwise initialize with all zero
4351     r->init_req(2, _gvn.transform(new IfFalseNode(iff)));
4352     default_value->init_req(2, null());
4353 
4354     set_control(_gvn.transform(r));
4355     default_value = _gvn.transform(default_value);
4356   }
4357   if (default_value != nullptr) {
4358     if (UseCompressedOops) {
4359       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4360       default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4361       Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4362       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4363       raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4364     } else {
4365       raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4366     }
4367   }
4368 
4369   Node* valid_length_test = _gvn.intcon(1);
4370   if (ary_type->isa_aryptr()) {
4371     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4372     jint max = TypeAryPtr::max_array_length(bt);
4373     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4374     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4375   }
4376 
4377   // Create the AllocateArrayNode and its result projections
4378   AllocateArrayNode* alloc
4379     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4380                             control(), mem, i_o(),
4381                             size, klass_node,
4382                             initial_slow_test,
4383                             length, valid_length_test,
4384                             default_value, raw_default_value);
4385   // Cast to correct type.  Note that the klass_node may be constant or not,
4386   // and in the latter case the actual array type will be inexact also.
4387   // (This happens via a non-constant argument to inline_native_newArray.)
4388   // In any case, the value of klass_node provides the desired array type.
4389   const TypeInt* length_type = _gvn.find_int_type(length);
4390   if (ary_type->isa_aryptr() && length_type != nullptr) {
4391     // Try to get a better type than POS for the size
4392     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4393   }
4394 
4395   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4396 
4397   array_ideal_length(alloc, ary_type, true);
4398   return javaoop;
4399 }
4400 
4401 // The following "Ideal_foo" functions are placed here because they recognize
4402 // the graph shapes created by the functions immediately above.
4403 
4404 //---------------------------Ideal_allocation----------------------------------
4405 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4406 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4407   if (ptr == nullptr) {     // reduce dumb test in callers
4408     return nullptr;
4409   }
4410 
4411   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4412   ptr = bs->step_over_gc_barrier(ptr);
4413 
4414   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4415     ptr = ptr->in(1);
4416     if (ptr == nullptr) return nullptr;
4417   }
4418   // Return null for allocations with several casts:
4419   //   j.l.reflect.Array.newInstance(jobject, jint)
4420   //   Object.clone()
4421   // to keep more precise type from last cast.
4422   if (ptr->is_Proj()) {
4423     Node* allo = ptr->in(0);
4424     if (allo != nullptr && allo->is_Allocate()) {
4425       return allo->as_Allocate();
4426     }
4427   }
4428   // Report failure to match.
4429   return nullptr;
4430 }
4431 
4432 // Fancy version which also strips off an offset (and reports it to caller).
4433 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4434                                              intptr_t& offset) {
4435   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4436   if (base == nullptr)  return nullptr;
4437   return Ideal_allocation(base);
4438 }
4439 
4440 // Trace Initialize <- Proj[Parm] <- Allocate
4441 AllocateNode* InitializeNode::allocation() {
4442   Node* rawoop = in(InitializeNode::RawAddress);
4443   if (rawoop->is_Proj()) {
4444     Node* alloc = rawoop->in(0);
4445     if (alloc->is_Allocate()) {
4446       return alloc->as_Allocate();
4447     }
4448   }
4449   return nullptr;
4450 }
4451 
4452 // Trace Allocate -> Proj[Parm] -> Initialize
4453 InitializeNode* AllocateNode::initialization() {
4454   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4455   if (rawoop == nullptr)  return nullptr;
4456   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4457     Node* init = rawoop->fast_out(i);
4458     if (init->is_Initialize()) {
4459       assert(init->as_Initialize()->allocation() == this, "2-way link");
4460       return init->as_Initialize();
4461     }
4462   }
4463   return nullptr;
4464 }
4465 
4466 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4467 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4468   // Too many traps seen?
4469   if (too_many_traps(reason)) {
4470 #ifdef ASSERT
4471     if (TraceLoopPredicate) {
4472       int tc = C->trap_count(reason);
4473       tty->print("too many traps=%s tcount=%d in ",
4474                     Deoptimization::trap_reason_name(reason), tc);
4475       method()->print(); // which method has too many predicate traps
4476       tty->cr();
4477     }
4478 #endif
4479     // We cannot afford to take more traps here,
4480     // do not generate Parse Predicate.
4481     return;
4482   }
4483 
4484   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4485   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4486   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4487   {
4488     PreserveJVMState pjvms(this);
4489     set_control(if_false);
4490     inc_sp(nargs);
4491     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4492   }
4493   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4494   set_control(if_true);
4495 }
4496 
4497 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4498 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4499 void GraphKit::add_parse_predicates(int nargs) {
4500   if (UseLoopPredicate) {
4501     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4502   }
4503   if (UseProfiledLoopPredicate) {
4504     add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4505   }
4506   // Loop Limit Check Predicate should be near the loop.
4507   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4508 }
4509 
4510 void GraphKit::sync_kit(IdealKit& ideal) {
4511   set_all_memory(ideal.merged_memory());
4512   set_i_o(ideal.i_o());
4513   set_control(ideal.ctrl());
4514 }
4515 
4516 void GraphKit::final_sync(IdealKit& ideal) {
4517   // Final sync IdealKit and graphKit.
4518   sync_kit(ideal);
4519 }
4520 
4521 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4522   Node* len = load_array_length(load_String_value(str, set_ctrl));
4523   Node* coder = load_String_coder(str, set_ctrl);
4524   // Divide length by 2 if coder is UTF16
4525   return _gvn.transform(new RShiftINode(len, coder));
4526 }
4527 
4528 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4529   int value_offset = java_lang_String::value_offset();
4530   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4531                                                      false, nullptr, Type::Offset(0));
4532   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4533   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4534                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4535                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4536   Node* p = basic_plus_adr(str, str, value_offset);
4537   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4538                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4539   return load;
4540 }
4541 
4542 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4543   if (!CompactStrings) {
4544     return intcon(java_lang_String::CODER_UTF16);
4545   }
4546   int coder_offset = java_lang_String::coder_offset();
4547   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4548                                                      false, nullptr, Type::Offset(0));
4549   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4550 
4551   Node* p = basic_plus_adr(str, str, coder_offset);
4552   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4553                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4554   return load;
4555 }
4556 
4557 void GraphKit::store_String_value(Node* str, Node* value) {
4558   int value_offset = java_lang_String::value_offset();
4559   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4560                                                      false, nullptr, Type::Offset(0));
4561   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4562 
4563   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4564                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4565 }
4566 
4567 void GraphKit::store_String_coder(Node* str, Node* value) {
4568   int coder_offset = java_lang_String::coder_offset();
4569   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4570                                                      false, nullptr, Type::Offset(0));
4571   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4572 
4573   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4574                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4575 }
4576 
4577 // Capture src and dst memory state with a MergeMemNode
4578 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4579   if (src_type == dst_type) {
4580     // Types are equal, we don't need a MergeMemNode
4581     return memory(src_type);
4582   }
4583   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4584   record_for_igvn(merge); // fold it up later, if possible
4585   int src_idx = C->get_alias_index(src_type);
4586   int dst_idx = C->get_alias_index(dst_type);
4587   merge->set_memory_at(src_idx, memory(src_idx));
4588   merge->set_memory_at(dst_idx, memory(dst_idx));
4589   return merge;
4590 }
4591 
4592 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4593   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4594   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4595   // If input and output memory types differ, capture both states to preserve
4596   // the dependency between preceding and subsequent loads/stores.
4597   // For example, the following program:
4598   //  StoreB
4599   //  compress_string
4600   //  LoadB
4601   // has this memory graph (use->def):
4602   //  LoadB -> compress_string -> CharMem
4603   //             ... -> StoreB -> ByteMem
4604   // The intrinsic hides the dependency between LoadB and StoreB, causing
4605   // the load to read from memory not containing the result of the StoreB.
4606   // The correct memory graph should look like this:
4607   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4608   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4609   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4610   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4611   set_memory(res_mem, TypeAryPtr::BYTES);
4612   return str;
4613 }
4614 
4615 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4616   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4617   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4618   // Capture src and dst memory (see comment in 'compress_string').
4619   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4620   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4621   set_memory(_gvn.transform(str), dst_type);
4622 }
4623 
4624 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4625   /**
4626    * int i_char = start;
4627    * for (int i_byte = 0; i_byte < count; i_byte++) {
4628    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4629    * }
4630    */
4631   add_parse_predicates();
4632   C->set_has_loops(true);
4633 
4634   RegionNode* head = new RegionNode(3);
4635   head->init_req(1, control());
4636   gvn().set_type(head, Type::CONTROL);
4637   record_for_igvn(head);
4638 
4639   Node* i_byte = new PhiNode(head, TypeInt::INT);
4640   i_byte->init_req(1, intcon(0));
4641   gvn().set_type(i_byte, TypeInt::INT);
4642   record_for_igvn(i_byte);
4643 
4644   Node* i_char = new PhiNode(head, TypeInt::INT);
4645   i_char->init_req(1, start);
4646   gvn().set_type(i_char, TypeInt::INT);
4647   record_for_igvn(i_char);
4648 
4649   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4650   gvn().set_type(mem, Type::MEMORY);
4651   record_for_igvn(mem);
4652   set_control(head);
4653   set_memory(mem, TypeAryPtr::BYTES);
4654   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4655   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4656                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4657                              false, false, true /* mismatched */);
4658 
4659   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4660   head->init_req(2, IfTrue(iff));
4661   mem->init_req(2, st);
4662   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4663   i_char->init_req(2, AddI(i_char, intcon(2)));
4664 
4665   set_control(IfFalse(iff));
4666   set_memory(st, TypeAryPtr::BYTES);
4667 }
4668 
4669 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4670   if (!field->is_constant()) {
4671     return nullptr; // Field not marked as constant.
4672   }
4673   ciInstance* holder = nullptr;
4674   if (!field->is_static()) {
4675     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4676     if (const_oop != nullptr && const_oop->is_instance()) {
4677       holder = const_oop->as_instance();
4678     }
4679   }
4680   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4681                                                         /*is_unsigned_load=*/false);
4682   if (con_type != nullptr) {
4683     Node* con = makecon(con_type);
4684     if (field->type()->is_inlinetype()) {
4685       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4686     } else if (con_type->is_inlinetypeptr()) {
4687       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4688     }
4689     return con;
4690   }
4691   return nullptr;
4692 }
4693 
4694 //---------------------------load_mirror_from_klass----------------------------
4695 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4696 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4697   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4698   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4699   // mirror = ((OopHandle)mirror)->resolve();
4700   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4701 }