1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_exception_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_exception_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing_internal()) {
 356     return;  // dying anyway...
 357   }
 358   JVMState* ex_jvms = ex_map->_jvms;
 359   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 360   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 361   // TODO 8325632 Re-enable
 362   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 363   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 364   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 365   assert(ex_map->req() == phi_map->req(), "matching maps");
 366   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 367   Node*         hidden_merge_mark = root();
 368   Node*         region  = phi_map->control();
 369   MergeMemNode* phi_mem = phi_map->merged_memory();
 370   MergeMemNode* ex_mem  = ex_map->merged_memory();
 371   if (region->in(0) != hidden_merge_mark) {
 372     // The control input is not (yet) a specially-marked region in phi_map.
 373     // Make it so, and build some phis.
 374     region = new RegionNode(2);
 375     _gvn.set_type(region, Type::CONTROL);
 376     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 377     region->init_req(1, phi_map->control());
 378     phi_map->set_control(region);
 379     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 380     record_for_igvn(io_phi);
 381     _gvn.set_type(io_phi, Type::ABIO);
 382     phi_map->set_i_o(io_phi);
 383     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 384       Node* m = mms.memory();
 385       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 386       record_for_igvn(m_phi);
 387       _gvn.set_type(m_phi, Type::MEMORY);
 388       mms.set_memory(m_phi);
 389     }
 390   }
 391 
 392   // Either or both of phi_map and ex_map might already be converted into phis.
 393   Node* ex_control = ex_map->control();
 394   // if there is special marking on ex_map also, we add multiple edges from src
 395   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 396   // how wide was the destination phi_map, originally?
 397   uint orig_width = region->req();
 398 
 399   if (add_multiple) {
 400     add_n_reqs(region, ex_control);
 401     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 402   } else {
 403     // ex_map has no merges, so we just add single edges everywhere
 404     add_one_req(region, ex_control);
 405     add_one_req(phi_map->i_o(), ex_map->i_o());
 406   }
 407   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 408     if (mms.is_empty()) {
 409       // get a copy of the base memory, and patch some inputs into it
 410       const TypePtr* adr_type = mms.adr_type(C);
 411       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 412       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 413       mms.set_memory(phi);
 414       // Prepare to append interesting stuff onto the newly sliced phi:
 415       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 416     }
 417     // Append stuff from ex_map:
 418     if (add_multiple) {
 419       add_n_reqs(mms.memory(), mms.memory2());
 420     } else {
 421       add_one_req(mms.memory(), mms.memory2());
 422     }
 423   }
 424   uint limit = ex_map->req();
 425   for (uint i = TypeFunc::Parms; i < limit; i++) {
 426     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 427     if (i == tos)  i = ex_jvms->monoff();
 428     Node* src = ex_map->in(i);
 429     Node* dst = phi_map->in(i);
 430     if (src != dst) {
 431       PhiNode* phi;
 432       if (dst->in(0) != region) {
 433         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 434         record_for_igvn(phi);
 435         _gvn.set_type(phi, phi->type());
 436         phi_map->set_req(i, dst);
 437         // Prepare to append interesting stuff onto the new phi:
 438         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 439       } else {
 440         assert(dst->is_Phi(), "nobody else uses a hidden region");
 441         phi = dst->as_Phi();
 442       }
 443       if (add_multiple && src->in(0) == ex_control) {
 444         // Both are phis.
 445         add_n_reqs(dst, src);
 446       } else {
 447         while (dst->req() < region->req())  add_one_req(dst, src);
 448       }
 449       const Type* srctype = _gvn.type(src);
 450       if (phi->type() != srctype) {
 451         const Type* dsttype = phi->type()->meet_speculative(srctype);
 452         if (phi->type() != dsttype) {
 453           phi->set_type(dsttype);
 454           _gvn.set_type(phi, dsttype);
 455         }
 456       }
 457     }
 458   }
 459   phi_map->merge_replaced_nodes_with(ex_map);
 460 }
 461 
 462 //--------------------------use_exception_state--------------------------------
 463 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 464   if (failing_internal()) { stop(); return top(); }
 465   Node* region = phi_map->control();
 466   Node* hidden_merge_mark = root();
 467   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 468   Node* ex_oop = clear_saved_ex_oop(phi_map);
 469   if (region->in(0) == hidden_merge_mark) {
 470     // Special marking for internal ex-states.  Process the phis now.
 471     region->set_req(0, region);  // now it's an ordinary region
 472     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 473     // Note: Setting the jvms also sets the bci and sp.
 474     set_control(_gvn.transform(region));
 475     uint tos = jvms()->stkoff() + sp();
 476     for (uint i = 1; i < tos; i++) {
 477       Node* x = phi_map->in(i);
 478       if (x->in(0) == region) {
 479         assert(x->is_Phi(), "expected a special phi");
 480         phi_map->set_req(i, _gvn.transform(x));
 481       }
 482     }
 483     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 484       Node* x = mms.memory();
 485       if (x->in(0) == region) {
 486         assert(x->is_Phi(), "nobody else uses a hidden region");
 487         mms.set_memory(_gvn.transform(x));
 488       }
 489     }
 490     if (ex_oop->in(0) == region) {
 491       assert(ex_oop->is_Phi(), "expected a special phi");
 492       ex_oop = _gvn.transform(ex_oop);
 493     }
 494   } else {
 495     set_jvms(phi_map->jvms());
 496   }
 497 
 498   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 499   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 500   return ex_oop;
 501 }
 502 
 503 //---------------------------------java_bc-------------------------------------
 504 Bytecodes::Code GraphKit::java_bc() const {
 505   ciMethod* method = this->method();
 506   int       bci    = this->bci();
 507   if (method != nullptr && bci != InvocationEntryBci)
 508     return method->java_code_at_bci(bci);
 509   else
 510     return Bytecodes::_illegal;
 511 }
 512 
 513 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 514                                                           bool must_throw) {
 515     // if the exception capability is set, then we will generate code
 516     // to check the JavaThread.should_post_on_exceptions flag to see
 517     // if we actually need to report exception events (for this
 518     // thread).  If we don't need to report exception events, we will
 519     // take the normal fast path provided by add_exception_events.  If
 520     // exception event reporting is enabled for this thread, we will
 521     // take the uncommon_trap in the BuildCutout below.
 522 
 523     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 524     Node* jthread = _gvn.transform(new ThreadLocalNode());
 525     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 526     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
 527 
 528     // Test the should_post_on_exceptions_flag vs. 0
 529     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 530     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 531 
 532     // Branch to slow_path if should_post_on_exceptions_flag was true
 533     { BuildCutout unless(this, tst, PROB_MAX);
 534       // Do not try anything fancy if we're notifying the VM on every throw.
 535       // Cf. case Bytecodes::_athrow in parse2.cpp.
 536       uncommon_trap(reason, Deoptimization::Action_none,
 537                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 538     }
 539 
 540 }
 541 
 542 //------------------------------builtin_throw----------------------------------
 543 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 544   builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true);
 545 }
 546 
 547 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason,
 548                              ciInstance* ex_obj,
 549                              bool allow_too_many_traps) {
 550   // If this throw happens frequently, an uncommon trap might cause
 551   // a performance pothole.  If there is a local exception handler,
 552   // and if this particular bytecode appears to be deoptimizing often,
 553   // let us handle the throw inline, with a preconstructed instance.
 554   // Note:   If the deopt count has blown up, the uncommon trap
 555   // runtime is going to flush this nmethod, not matter what.
 556   if (is_builtin_throw_hot(reason)) {
 557     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 558       // If the throw is local, we use a pre-existing instance and
 559       // punt on the backtrace.  This would lead to a missing backtrace
 560       // (a repeat of 4292742) if the backtrace object is ever asked
 561       // for its backtrace.
 562       // Fixing this remaining case of 4292742 requires some flavor of
 563       // escape analysis.  Leave that for the future.
 564       if (env()->jvmti_can_post_on_exceptions()) {
 565         // check if we must post exception events, take uncommon trap if so
 566         uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/);
 567         // here if should_post_on_exceptions is false
 568         // continue on with the normal codegen
 569       }
 570 
 571       // Cheat with a preallocated exception object.
 572       if (C->log() != nullptr)
 573         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 574                        Deoptimization::trap_reason_name(reason));
 575       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 576       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 577 
 578       // Clear the detail message of the preallocated exception object.
 579       // Weblogic sometimes mutates the detail message of exceptions
 580       // using reflection.
 581       int offset = java_lang_Throwable::get_detailMessage_offset();
 582       const TypePtr* adr_typ = ex_con->add_offset(offset);
 583 
 584       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 585       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 586       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 587 
 588       if (!method()->has_exception_handlers()) {
 589         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 590         // This prevents issues with exception handling and late inlining.
 591         set_sp(0);
 592         clean_stack(0);
 593       }
 594 
 595       add_exception_state(make_exception_state(ex_node));
 596       return;
 597     } else if (builtin_throw_too_many_traps(reason, ex_obj)) {
 598       // We cannot afford to take too many traps here. Suffer in the interpreter instead.
 599       assert(allow_too_many_traps, "not allowed");
 600       if (C->log() != nullptr) {
 601         C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 602                        Deoptimization::trap_reason_name(reason),
 603                        C->trap_count(reason));
 604       }
 605       uncommon_trap(reason, Deoptimization::Action_none,
 606                     (ciKlass*) nullptr, (char*) nullptr,
 607                     true /*must_throw*/);
 608       return;
 609     }
 610   }
 611 
 612   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 613   // It won't be much cheaper than bailing to the interp., since we'll
 614   // have to pass up all the debug-info, and the runtime will have to
 615   // create the stack trace.
 616 
 617   // Usual case:  Bail to interpreter.
 618   // Reserve the right to recompile if we haven't seen anything yet.
 619 
 620   // "must_throw" prunes the JVM state to include only the stack, if there
 621   // are no local exception handlers.  This should cut down on register
 622   // allocation time and code size, by drastically reducing the number
 623   // of in-edges on the call to the uncommon trap.
 624   uncommon_trap(reason, Deoptimization::Action_maybe_recompile,
 625                 (ciKlass*) nullptr, (char*) nullptr,
 626                 true /*must_throw*/);
 627 }
 628 
 629 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) {
 630   // If this particular condition has not yet happened at this
 631   // bytecode, then use the uncommon trap mechanism, and allow for
 632   // a future recompilation if several traps occur here.
 633   // If the throw is hot, try to use a more complicated inline mechanism
 634   // which keeps execution inside the compiled code.
 635   if (ProfileTraps) {
 636     if (too_many_traps(reason)) {
 637       return true;
 638     }
 639     // (If there is no MDO at all, assume it is early in
 640     // execution, and that any deopts are part of the
 641     // startup transient, and don't need to be remembered.)
 642 
 643     // Also, if there is a local exception handler, treat all throws
 644     // as hot if there has been at least one in this method.
 645     if (C->trap_count(reason) != 0 &&
 646         method()->method_data()->trap_count(reason) != 0 &&
 647         has_exception_handler()) {
 648       return true;
 649     }
 650   }
 651   return false;
 652 }
 653 
 654 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason,
 655                                             ciInstance* ex_obj) {
 656   if (is_builtin_throw_hot(reason)) {
 657     if (method()->can_omit_stack_trace() && ex_obj != nullptr) {
 658       return false; // no traps; throws preallocated exception instead
 659     }
 660     ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 661     if (method()->method_data()->trap_recompiled_at(bci(), m) ||
 662         C->too_many_traps(reason)) {
 663       return true;
 664     }
 665   }
 666   return false;
 667 }
 668 
 669 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const {
 670   // Preallocated exception objects to use when we don't need the backtrace.
 671   switch (reason) {
 672   case Deoptimization::Reason_null_check:
 673     return env()->NullPointerException_instance();
 674   case Deoptimization::Reason_div0_check:
 675     return env()->ArithmeticException_instance();
 676   case Deoptimization::Reason_range_check:
 677     return env()->ArrayIndexOutOfBoundsException_instance();
 678   case Deoptimization::Reason_class_check:
 679     return env()->ClassCastException_instance();
 680   case Deoptimization::Reason_array_check:
 681     return env()->ArrayStoreException_instance();
 682   default:
 683     return nullptr;
 684   }
 685 }
 686 
 687 //----------------------------PreserveJVMState---------------------------------
 688 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 689   debug_only(kit->verify_map());
 690   _kit    = kit;
 691   _map    = kit->map();   // preserve the map
 692   _sp     = kit->sp();
 693   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 694 #ifdef ASSERT
 695   _bci    = kit->bci();
 696   Parse* parser = kit->is_Parse();
 697   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 698   _block  = block;
 699 #endif
 700 }
 701 PreserveJVMState::~PreserveJVMState() {
 702   GraphKit* kit = _kit;
 703 #ifdef ASSERT
 704   assert(kit->bci() == _bci, "bci must not shift");
 705   Parse* parser = kit->is_Parse();
 706   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 707   assert(block == _block,    "block must not shift");
 708 #endif
 709   kit->set_map(_map);
 710   kit->set_sp(_sp);
 711 }
 712 
 713 
 714 //-----------------------------BuildCutout-------------------------------------
 715 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 716   : PreserveJVMState(kit)
 717 {
 718   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 719   SafePointNode* outer_map = _map;   // preserved map is caller's
 720   SafePointNode* inner_map = kit->map();
 721   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 722   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 723   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 724 }
 725 BuildCutout::~BuildCutout() {
 726   GraphKit* kit = _kit;
 727   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 728 }
 729 
 730 //---------------------------PreserveReexecuteState----------------------------
 731 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 732   assert(!kit->stopped(), "must call stopped() before");
 733   _kit    =    kit;
 734   _sp     =    kit->sp();
 735   _reexecute = kit->jvms()->_reexecute;
 736 }
 737 PreserveReexecuteState::~PreserveReexecuteState() {
 738   if (_kit->stopped()) return;
 739   _kit->jvms()->_reexecute = _reexecute;
 740   _kit->set_sp(_sp);
 741 }
 742 
 743 //------------------------------clone_map--------------------------------------
 744 // Implementation of PreserveJVMState
 745 //
 746 // Only clone_map(...) here. If this function is only used in the
 747 // PreserveJVMState class we may want to get rid of this extra
 748 // function eventually and do it all there.
 749 
 750 SafePointNode* GraphKit::clone_map() {
 751   if (map() == nullptr)  return nullptr;
 752 
 753   // Clone the memory edge first
 754   Node* mem = MergeMemNode::make(map()->memory());
 755   gvn().set_type_bottom(mem);
 756 
 757   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 758   JVMState* jvms = this->jvms();
 759   JVMState* clonejvms = jvms->clone_shallow(C);
 760   clonemap->set_memory(mem);
 761   clonemap->set_jvms(clonejvms);
 762   clonejvms->set_map(clonemap);
 763   record_for_igvn(clonemap);
 764   gvn().set_type_bottom(clonemap);
 765   return clonemap;
 766 }
 767 
 768 //-----------------------------destruct_map_clone------------------------------
 769 //
 770 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 771 // to destruct/free/delete in the exact opposite order as clone_map().
 772 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 773   if (sfp == nullptr) return;
 774 
 775   Node* mem = sfp->memory();
 776   JVMState* jvms = sfp->jvms();
 777 
 778   if (jvms != nullptr) {
 779     delete jvms;
 780   }
 781 
 782   remove_for_igvn(sfp);
 783   gvn().clear_type(sfp);
 784   sfp->destruct(&_gvn);
 785 
 786   if (mem != nullptr) {
 787     gvn().clear_type(mem);
 788     mem->destruct(&_gvn);
 789   }
 790 }
 791 
 792 //-----------------------------set_map_clone-----------------------------------
 793 void GraphKit::set_map_clone(SafePointNode* m) {
 794   _map = m;
 795   _map = clone_map();
 796   _map->set_next_exception(nullptr);
 797   debug_only(verify_map());
 798 }
 799 
 800 
 801 //----------------------------kill_dead_locals---------------------------------
 802 // Detect any locals which are known to be dead, and force them to top.
 803 void GraphKit::kill_dead_locals() {
 804   // Consult the liveness information for the locals.  If any
 805   // of them are unused, then they can be replaced by top().  This
 806   // should help register allocation time and cut down on the size
 807   // of the deoptimization information.
 808 
 809   // This call is made from many of the bytecode handling
 810   // subroutines called from the Big Switch in do_one_bytecode.
 811   // Every bytecode which might include a slow path is responsible
 812   // for killing its dead locals.  The more consistent we
 813   // are about killing deads, the fewer useless phis will be
 814   // constructed for them at various merge points.
 815 
 816   // bci can be -1 (InvocationEntryBci).  We return the entry
 817   // liveness for the method.
 818 
 819   if (method() == nullptr || method()->code_size() == 0) {
 820     // We are building a graph for a call to a native method.
 821     // All locals are live.
 822     return;
 823   }
 824 
 825   ResourceMark rm;
 826 
 827   // Consult the liveness information for the locals.  If any
 828   // of them are unused, then they can be replaced by top().  This
 829   // should help register allocation time and cut down on the size
 830   // of the deoptimization information.
 831   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 832 
 833   int len = (int)live_locals.size();
 834   assert(len <= jvms()->loc_size(), "too many live locals");
 835   for (int local = 0; local < len; local++) {
 836     if (!live_locals.at(local)) {
 837       set_local(local, top());
 838     }
 839   }
 840 }
 841 
 842 #ifdef ASSERT
 843 //-------------------------dead_locals_are_killed------------------------------
 844 // Return true if all dead locals are set to top in the map.
 845 // Used to assert "clean" debug info at various points.
 846 bool GraphKit::dead_locals_are_killed() {
 847   if (method() == nullptr || method()->code_size() == 0) {
 848     // No locals need to be dead, so all is as it should be.
 849     return true;
 850   }
 851 
 852   // Make sure somebody called kill_dead_locals upstream.
 853   ResourceMark rm;
 854   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 855     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 856     SafePointNode* map = jvms->map();
 857     ciMethod* method = jvms->method();
 858     int       bci    = jvms->bci();
 859     if (jvms == this->jvms()) {
 860       bci = this->bci();  // it might not yet be synched
 861     }
 862     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 863     int len = (int)live_locals.size();
 864     if (!live_locals.is_valid() || len == 0)
 865       // This method is trivial, or is poisoned by a breakpoint.
 866       return true;
 867     assert(len == jvms->loc_size(), "live map consistent with locals map");
 868     for (int local = 0; local < len; local++) {
 869       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 870         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 871           tty->print_cr("Zombie local %d: ", local);
 872           jvms->dump();
 873         }
 874         return false;
 875       }
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 #endif //ASSERT
 882 
 883 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 884 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 885   ciMethod* cur_method = jvms->method();
 886   int       cur_bci   = jvms->bci();
 887   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 888     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 889     return Interpreter::bytecode_should_reexecute(code) ||
 890            (is_anewarray && (code == Bytecodes::_multianewarray));
 891     // Reexecute _multianewarray bytecode which was replaced with
 892     // sequence of [a]newarray. See Parse::do_multianewarray().
 893     //
 894     // Note: interpreter should not have it set since this optimization
 895     // is limited by dimensions and guarded by flag so in some cases
 896     // multianewarray() runtime calls will be generated and
 897     // the bytecode should not be reexecutes (stack will not be reset).
 898   } else {
 899     return false;
 900   }
 901 }
 902 
 903 // Helper function for adding JVMState and debug information to node
 904 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 905   // Add the safepoint edges to the call (or other safepoint).
 906 
 907   // Make sure dead locals are set to top.  This
 908   // should help register allocation time and cut down on the size
 909   // of the deoptimization information.
 910   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 911 
 912   // Walk the inline list to fill in the correct set of JVMState's
 913   // Also fill in the associated edges for each JVMState.
 914 
 915   // If the bytecode needs to be reexecuted we need to put
 916   // the arguments back on the stack.
 917   const bool should_reexecute = jvms()->should_reexecute();
 918   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 919 
 920   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 921   // undefined if the bci is different.  This is normal for Parse but it
 922   // should not happen for LibraryCallKit because only one bci is processed.
 923   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 924          "in LibraryCallKit the reexecute bit should not change");
 925 
 926   // If we are guaranteed to throw, we can prune everything but the
 927   // input to the current bytecode.
 928   bool can_prune_locals = false;
 929   uint stack_slots_not_pruned = 0;
 930   int inputs = 0, depth = 0;
 931   if (must_throw) {
 932     assert(method() == youngest_jvms->method(), "sanity");
 933     if (compute_stack_effects(inputs, depth)) {
 934       can_prune_locals = true;
 935       stack_slots_not_pruned = inputs;
 936     }
 937   }
 938 
 939   if (env()->should_retain_local_variables()) {
 940     // At any safepoint, this method can get breakpointed, which would
 941     // then require an immediate deoptimization.
 942     can_prune_locals = false;  // do not prune locals
 943     stack_slots_not_pruned = 0;
 944   }
 945 
 946   // do not scribble on the input jvms
 947   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 948   call->set_jvms(out_jvms); // Start jvms list for call node
 949 
 950   // For a known set of bytecodes, the interpreter should reexecute them if
 951   // deoptimization happens. We set the reexecute state for them here
 952   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 953       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 954 #ifdef ASSERT
 955     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 956     assert(method() == youngest_jvms->method(), "sanity");
 957     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 958     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 959 #endif // ASSERT
 960     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 961   }
 962 
 963   // Presize the call:
 964   DEBUG_ONLY(uint non_debug_edges = call->req());
 965   call->add_req_batch(top(), youngest_jvms->debug_depth());
 966   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 967 
 968   // Set up edges so that the call looks like this:
 969   //  Call [state:] ctl io mem fptr retadr
 970   //       [parms:] parm0 ... parmN
 971   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 972   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 973   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 974   // Note that caller debug info precedes callee debug info.
 975 
 976   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 977   uint debug_ptr = call->req();
 978 
 979   // Loop over the map input edges associated with jvms, add them
 980   // to the call node, & reset all offsets to match call node array.
 981 
 982   JVMState* callee_jvms = nullptr;
 983   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 984     uint debug_end   = debug_ptr;
 985     uint debug_start = debug_ptr - in_jvms->debug_size();
 986     debug_ptr = debug_start;  // back up the ptr
 987 
 988     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 989     uint j, k, l;
 990     SafePointNode* in_map = in_jvms->map();
 991     out_jvms->set_map(call);
 992 
 993     if (can_prune_locals) {
 994       assert(in_jvms->method() == out_jvms->method(), "sanity");
 995       // If the current throw can reach an exception handler in this JVMS,
 996       // then we must keep everything live that can reach that handler.
 997       // As a quick and dirty approximation, we look for any handlers at all.
 998       if (in_jvms->method()->has_exception_handlers()) {
 999         can_prune_locals = false;
1000       }
1001     }
1002 
1003     // Add the Locals
1004     k = in_jvms->locoff();
1005     l = in_jvms->loc_size();
1006     out_jvms->set_locoff(p);
1007     if (!can_prune_locals) {
1008       for (j = 0; j < l; j++) {
1009         call->set_req(p++, in_map->in(k + j));
1010       }
1011     } else {
1012       p += l;  // already set to top above by add_req_batch
1013     }
1014 
1015     // Add the Expression Stack
1016     k = in_jvms->stkoff();
1017     l = in_jvms->sp();
1018     out_jvms->set_stkoff(p);
1019     if (!can_prune_locals) {
1020       for (j = 0; j < l; j++) {
1021         call->set_req(p++, in_map->in(k + j));
1022       }
1023     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1024       // Divide stack into {S0,...,S1}, where S0 is set to top.
1025       uint s1 = stack_slots_not_pruned;
1026       stack_slots_not_pruned = 0;  // for next iteration
1027       if (s1 > l)  s1 = l;
1028       uint s0 = l - s1;
1029       p += s0;  // skip the tops preinstalled by add_req_batch
1030       for (j = s0; j < l; j++)
1031         call->set_req(p++, in_map->in(k+j));
1032     } else {
1033       p += l;  // already set to top above by add_req_batch
1034     }
1035 
1036     // Add the Monitors
1037     k = in_jvms->monoff();
1038     l = in_jvms->mon_size();
1039     out_jvms->set_monoff(p);
1040     for (j = 0; j < l; j++)
1041       call->set_req(p++, in_map->in(k+j));
1042 
1043     // Copy any scalar object fields.
1044     k = in_jvms->scloff();
1045     l = in_jvms->scl_size();
1046     out_jvms->set_scloff(p);
1047     for (j = 0; j < l; j++)
1048       call->set_req(p++, in_map->in(k+j));
1049 
1050     // Finish the new jvms.
1051     out_jvms->set_endoff(p);
1052 
1053     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1054     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1055     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1056     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1057     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1058     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1059 
1060     // Update the two tail pointers in parallel.
1061     callee_jvms = out_jvms;
1062     out_jvms = out_jvms->caller();
1063     in_jvms  = in_jvms->caller();
1064   }
1065 
1066   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1067 
1068   // Test the correctness of JVMState::debug_xxx accessors:
1069   assert(call->jvms()->debug_start() == non_debug_edges, "");
1070   assert(call->jvms()->debug_end()   == call->req(), "");
1071   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1072 }
1073 
1074 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1075   Bytecodes::Code code = java_bc();
1076   if (code == Bytecodes::_wide) {
1077     code = method()->java_code_at_bci(bci() + 1);
1078   }
1079 
1080   if (code != Bytecodes::_illegal) {
1081     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1082   }
1083 
1084   auto rsize = [&]() {
1085     assert(code != Bytecodes::_illegal, "code is illegal!");
1086     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1087     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1088   };
1089 
1090   switch (code) {
1091   case Bytecodes::_illegal:
1092     return false;
1093 
1094   case Bytecodes::_ldc:
1095   case Bytecodes::_ldc_w:
1096   case Bytecodes::_ldc2_w:
1097     inputs = 0;
1098     break;
1099 
1100   case Bytecodes::_dup:         inputs = 1;  break;
1101   case Bytecodes::_dup_x1:      inputs = 2;  break;
1102   case Bytecodes::_dup_x2:      inputs = 3;  break;
1103   case Bytecodes::_dup2:        inputs = 2;  break;
1104   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1105   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1106   case Bytecodes::_swap:        inputs = 2;  break;
1107   case Bytecodes::_arraylength: inputs = 1;  break;
1108 
1109   case Bytecodes::_getstatic:
1110   case Bytecodes::_putstatic:
1111   case Bytecodes::_getfield:
1112   case Bytecodes::_putfield:
1113     {
1114       bool ignored_will_link;
1115       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1116       int      size  = field->type()->size();
1117       bool is_get = (depth >= 0), is_static = (depth & 1);
1118       inputs = (is_static ? 0 : 1);
1119       if (is_get) {
1120         depth = size - inputs;
1121       } else {
1122         inputs += size;        // putxxx pops the value from the stack
1123         depth = - inputs;
1124       }
1125     }
1126     break;
1127 
1128   case Bytecodes::_invokevirtual:
1129   case Bytecodes::_invokespecial:
1130   case Bytecodes::_invokestatic:
1131   case Bytecodes::_invokedynamic:
1132   case Bytecodes::_invokeinterface:
1133     {
1134       bool ignored_will_link;
1135       ciSignature* declared_signature = nullptr;
1136       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1137       assert(declared_signature != nullptr, "cannot be null");
1138       inputs   = declared_signature->arg_size_for_bc(code);
1139       int size = declared_signature->return_type()->size();
1140       depth = size - inputs;
1141     }
1142     break;
1143 
1144   case Bytecodes::_multianewarray:
1145     {
1146       ciBytecodeStream iter(method());
1147       iter.reset_to_bci(bci());
1148       iter.next();
1149       inputs = iter.get_dimensions();
1150       assert(rsize() == 1, "");
1151       depth = 1 - inputs;
1152     }
1153     break;
1154 
1155   case Bytecodes::_ireturn:
1156   case Bytecodes::_lreturn:
1157   case Bytecodes::_freturn:
1158   case Bytecodes::_dreturn:
1159   case Bytecodes::_areturn:
1160     assert(rsize() == -depth, "");
1161     inputs = -depth;
1162     break;
1163 
1164   case Bytecodes::_jsr:
1165   case Bytecodes::_jsr_w:
1166     inputs = 0;
1167     depth  = 1;                  // S.B. depth=1, not zero
1168     break;
1169 
1170   default:
1171     // bytecode produces a typed result
1172     inputs = rsize() - depth;
1173     assert(inputs >= 0, "");
1174     break;
1175   }
1176 
1177 #ifdef ASSERT
1178   // spot check
1179   int outputs = depth + inputs;
1180   assert(outputs >= 0, "sanity");
1181   switch (code) {
1182   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1183   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1184   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1185   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1186   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1187   default:                    break;
1188   }
1189 #endif //ASSERT
1190 
1191   return true;
1192 }
1193 
1194 
1195 
1196 //------------------------------basic_plus_adr---------------------------------
1197 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1198   // short-circuit a common case
1199   if (offset == intcon(0))  return ptr;
1200   return _gvn.transform( new AddPNode(base, ptr, offset) );
1201 }
1202 
1203 Node* GraphKit::ConvI2L(Node* offset) {
1204   // short-circuit a common case
1205   jint offset_con = find_int_con(offset, Type::OffsetBot);
1206   if (offset_con != Type::OffsetBot) {
1207     return longcon((jlong) offset_con);
1208   }
1209   return _gvn.transform( new ConvI2LNode(offset));
1210 }
1211 
1212 Node* GraphKit::ConvI2UL(Node* offset) {
1213   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1214   if (offset_con != (juint) Type::OffsetBot) {
1215     return longcon((julong) offset_con);
1216   }
1217   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1218   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1219   return _gvn.transform( new AndLNode(conv, mask) );
1220 }
1221 
1222 Node* GraphKit::ConvL2I(Node* offset) {
1223   // short-circuit a common case
1224   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1225   if (offset_con != (jlong)Type::OffsetBot) {
1226     return intcon((int) offset_con);
1227   }
1228   return _gvn.transform( new ConvL2INode(offset));
1229 }
1230 
1231 //-------------------------load_object_klass-----------------------------------
1232 Node* GraphKit::load_object_klass(Node* obj, bool fold_for_arrays) {
1233   // Special-case a fresh allocation to avoid building nodes:
1234   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1235   if (akls != nullptr)  return akls;
1236   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1237   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT, fold_for_arrays));
1238 }
1239 
1240 //-------------------------load_array_length-----------------------------------
1241 Node* GraphKit::load_array_length(Node* array) {
1242   // Special-case a fresh allocation to avoid building nodes:
1243   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1244   Node *alen;
1245   if (alloc == nullptr) {
1246     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1247     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1248   } else {
1249     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1250   }
1251   return alen;
1252 }
1253 
1254 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1255                                    const TypeOopPtr* oop_type,
1256                                    bool replace_length_in_map) {
1257   Node* length = alloc->Ideal_length();
1258   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1259     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1260     if (ccast != length) {
1261       // do not transform ccast here, it might convert to top node for
1262       // negative array length and break assumptions in parsing stage.
1263       _gvn.set_type_bottom(ccast);
1264       record_for_igvn(ccast);
1265       if (replace_length_in_map) {
1266         replace_in_map(length, ccast);
1267       }
1268       return ccast;
1269     }
1270   }
1271   return length;
1272 }
1273 
1274 //------------------------------do_null_check----------------------------------
1275 // Helper function to do a null pointer check.  Returned value is
1276 // the incoming address with null casted away.  You are allowed to use the
1277 // not-null value only if you are control dependent on the test.
1278 #ifndef PRODUCT
1279 extern uint explicit_null_checks_inserted,
1280             explicit_null_checks_elided;
1281 #endif
1282 Node* GraphKit::null_check_common(Node* value, BasicType type,
1283                                   // optional arguments for variations:
1284                                   bool assert_null,
1285                                   Node* *null_control,
1286                                   bool speculative,
1287                                   bool is_init_check) {
1288   assert(!assert_null || null_control == nullptr, "not both at once");
1289   if (stopped())  return top();
1290   NOT_PRODUCT(explicit_null_checks_inserted++);
1291 
1292   if (value->is_InlineType()) {
1293     // Null checking a scalarized but nullable inline type. Check the IsInit
1294     // input instead of the oop input to avoid keeping buffer allocations alive.
1295     InlineTypeNode* vtptr = value->as_InlineType();
1296     while (vtptr->get_oop()->is_InlineType()) {
1297       vtptr = vtptr->get_oop()->as_InlineType();
1298     }
1299     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1300     if (stopped()) {
1301       return top();
1302     }
1303     if (assert_null) {
1304       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1305       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1306       // replace_in_map(value, vtptr);
1307       // return vtptr;
1308       replace_in_map(value, null());
1309       return null();
1310     }
1311     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1312     return cast_not_null(value, do_replace_in_map);
1313   }
1314 
1315   // Construct null check
1316   Node *chk = nullptr;
1317   switch(type) {
1318     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1319     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1320     case T_ARRAY  : // fall through
1321       type = T_OBJECT;  // simplify further tests
1322     case T_OBJECT : {
1323       const Type *t = _gvn.type( value );
1324 
1325       const TypeOopPtr* tp = t->isa_oopptr();
1326       if (tp != nullptr && !tp->is_loaded()
1327           // Only for do_null_check, not any of its siblings:
1328           && !assert_null && null_control == nullptr) {
1329         // Usually, any field access or invocation on an unloaded oop type
1330         // will simply fail to link, since the statically linked class is
1331         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1332         // the static class is loaded but the sharper oop type is not.
1333         // Rather than checking for this obscure case in lots of places,
1334         // we simply observe that a null check on an unloaded class
1335         // will always be followed by a nonsense operation, so we
1336         // can just issue the uncommon trap here.
1337         // Our access to the unloaded class will only be correct
1338         // after it has been loaded and initialized, which requires
1339         // a trip through the interpreter.
1340         ciKlass* klass = tp->unloaded_klass();
1341 #ifndef PRODUCT
1342         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1343 #endif
1344         uncommon_trap(Deoptimization::Reason_unloaded,
1345                       Deoptimization::Action_reinterpret,
1346                       klass, "!loaded");
1347         return top();
1348       }
1349 
1350       if (assert_null) {
1351         // See if the type is contained in NULL_PTR.
1352         // If so, then the value is already null.
1353         if (t->higher_equal(TypePtr::NULL_PTR)) {
1354           NOT_PRODUCT(explicit_null_checks_elided++);
1355           return value;           // Elided null assert quickly!
1356         }
1357       } else {
1358         // See if mixing in the null pointer changes type.
1359         // If so, then the null pointer was not allowed in the original
1360         // type.  In other words, "value" was not-null.
1361         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1362           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1363           NOT_PRODUCT(explicit_null_checks_elided++);
1364           return value;           // Elided null check quickly!
1365         }
1366       }
1367       chk = new CmpPNode( value, null() );
1368       break;
1369     }
1370 
1371     default:
1372       fatal("unexpected type: %s", type2name(type));
1373   }
1374   assert(chk != nullptr, "sanity check");
1375   chk = _gvn.transform(chk);
1376 
1377   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1378   BoolNode *btst = new BoolNode( chk, btest);
1379   Node   *tst = _gvn.transform( btst );
1380 
1381   //-----------
1382   // if peephole optimizations occurred, a prior test existed.
1383   // If a prior test existed, maybe it dominates as we can avoid this test.
1384   if (tst != btst && type == T_OBJECT) {
1385     // At this point we want to scan up the CFG to see if we can
1386     // find an identical test (and so avoid this test altogether).
1387     Node *cfg = control();
1388     int depth = 0;
1389     while( depth < 16 ) {       // Limit search depth for speed
1390       if( cfg->Opcode() == Op_IfTrue &&
1391           cfg->in(0)->in(1) == tst ) {
1392         // Found prior test.  Use "cast_not_null" to construct an identical
1393         // CastPP (and hence hash to) as already exists for the prior test.
1394         // Return that casted value.
1395         if (assert_null) {
1396           replace_in_map(value, null());
1397           return null();  // do not issue the redundant test
1398         }
1399         Node *oldcontrol = control();
1400         set_control(cfg);
1401         Node *res = cast_not_null(value);
1402         set_control(oldcontrol);
1403         NOT_PRODUCT(explicit_null_checks_elided++);
1404         return res;
1405       }
1406       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1407       if (cfg == nullptr)  break;  // Quit at region nodes
1408       depth++;
1409     }
1410   }
1411 
1412   //-----------
1413   // Branch to failure if null
1414   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1415   Deoptimization::DeoptReason reason;
1416   if (assert_null) {
1417     reason = Deoptimization::reason_null_assert(speculative);
1418   } else if (type == T_OBJECT || is_init_check) {
1419     reason = Deoptimization::reason_null_check(speculative);
1420   } else {
1421     reason = Deoptimization::Reason_div0_check;
1422   }
1423   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1424   // ciMethodData::has_trap_at will return a conservative -1 if any
1425   // must-be-null assertion has failed.  This could cause performance
1426   // problems for a method after its first do_null_assert failure.
1427   // Consider using 'Reason_class_check' instead?
1428 
1429   // To cause an implicit null check, we set the not-null probability
1430   // to the maximum (PROB_MAX).  For an explicit check the probability
1431   // is set to a smaller value.
1432   if (null_control != nullptr || too_many_traps(reason)) {
1433     // probability is less likely
1434     ok_prob =  PROB_LIKELY_MAG(3);
1435   } else if (!assert_null &&
1436              (ImplicitNullCheckThreshold > 0) &&
1437              method() != nullptr &&
1438              (method()->method_data()->trap_count(reason)
1439               >= (uint)ImplicitNullCheckThreshold)) {
1440     ok_prob =  PROB_LIKELY_MAG(3);
1441   }
1442 
1443   if (null_control != nullptr) {
1444     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1445     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1446     set_control(      _gvn.transform( new IfTrueNode(iff)));
1447 #ifndef PRODUCT
1448     if (null_true == top()) {
1449       explicit_null_checks_elided++;
1450     }
1451 #endif
1452     (*null_control) = null_true;
1453   } else {
1454     BuildCutout unless(this, tst, ok_prob);
1455     // Check for optimizer eliding test at parse time
1456     if (stopped()) {
1457       // Failure not possible; do not bother making uncommon trap.
1458       NOT_PRODUCT(explicit_null_checks_elided++);
1459     } else if (assert_null) {
1460       uncommon_trap(reason,
1461                     Deoptimization::Action_make_not_entrant,
1462                     nullptr, "assert_null");
1463     } else {
1464       replace_in_map(value, zerocon(type));
1465       builtin_throw(reason);
1466     }
1467   }
1468 
1469   // Must throw exception, fall-thru not possible?
1470   if (stopped()) {
1471     return top();               // No result
1472   }
1473 
1474   if (assert_null) {
1475     // Cast obj to null on this path.
1476     replace_in_map(value, zerocon(type));
1477     return zerocon(type);
1478   }
1479 
1480   // Cast obj to not-null on this path, if there is no null_control.
1481   // (If there is a null_control, a non-null value may come back to haunt us.)
1482   if (type == T_OBJECT) {
1483     Node* cast = cast_not_null(value, false);
1484     if (null_control == nullptr || (*null_control) == top())
1485       replace_in_map(value, cast);
1486     value = cast;
1487   }
1488 
1489   return value;
1490 }
1491 
1492 //------------------------------cast_not_null----------------------------------
1493 // Cast obj to not-null on this path
1494 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1495   if (obj->is_InlineType()) {
1496     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1497     vt->as_InlineType()->set_is_init(_gvn);
1498     vt = _gvn.transform(vt);
1499     if (do_replace_in_map) {
1500       replace_in_map(obj, vt);
1501     }
1502     return vt;
1503   }
1504   const Type *t = _gvn.type(obj);
1505   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1506   // Object is already not-null?
1507   if( t == t_not_null ) return obj;
1508 
1509   Node* cast = new CastPPNode(control(), obj,t_not_null);
1510   cast = _gvn.transform( cast );
1511 
1512   // Scan for instances of 'obj' in the current JVM mapping.
1513   // These instances are known to be not-null after the test.
1514   if (do_replace_in_map)
1515     replace_in_map(obj, cast);
1516 
1517   return cast;                  // Return casted value
1518 }
1519 
1520 Node* GraphKit::cast_to_non_larval(Node* obj) {
1521   const Type* obj_type = gvn().type(obj);
1522   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1523     return obj;
1524   }
1525 
1526   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1527   replace_in_map(obj, new_obj);
1528   return new_obj;
1529 }
1530 
1531 // Sometimes in intrinsics, we implicitly know an object is not null
1532 // (there's no actual null check) so we can cast it to not null. In
1533 // the course of optimizations, the input to the cast can become null.
1534 // In that case that data path will die and we need the control path
1535 // to become dead as well to keep the graph consistent. So we have to
1536 // add a check for null for which one branch can't be taken. It uses
1537 // an OpaqueNotNull node that will cause the check to be removed after loop
1538 // opts so the test goes away and the compiled code doesn't execute a
1539 // useless check.
1540 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1541   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1542     return value;
1543   }
1544   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1545   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1546   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1547   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1548   _gvn.set_type(iff, iff->Value(&_gvn));
1549   if (!tst->is_Con()) {
1550     record_for_igvn(iff);
1551   }
1552   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1553   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1554   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1555   C->root()->add_req(halt);
1556   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1557   set_control(if_t);
1558   return cast_not_null(value, do_replace_in_map);
1559 }
1560 
1561 
1562 //--------------------------replace_in_map-------------------------------------
1563 void GraphKit::replace_in_map(Node* old, Node* neww) {
1564   if (old == neww) {
1565     return;
1566   }
1567 
1568   map()->replace_edge(old, neww);
1569 
1570   // Note: This operation potentially replaces any edge
1571   // on the map.  This includes locals, stack, and monitors
1572   // of the current (innermost) JVM state.
1573 
1574   // don't let inconsistent types from profiling escape this
1575   // method
1576 
1577   const Type* told = _gvn.type(old);
1578   const Type* tnew = _gvn.type(neww);
1579 
1580   if (!tnew->higher_equal(told)) {
1581     return;
1582   }
1583 
1584   map()->record_replaced_node(old, neww);
1585 }
1586 
1587 
1588 //=============================================================================
1589 //--------------------------------memory---------------------------------------
1590 Node* GraphKit::memory(uint alias_idx) {
1591   MergeMemNode* mem = merged_memory();
1592   Node* p = mem->memory_at(alias_idx);
1593   assert(p != mem->empty_memory(), "empty");
1594   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1595   return p;
1596 }
1597 
1598 //-----------------------------reset_memory------------------------------------
1599 Node* GraphKit::reset_memory() {
1600   Node* mem = map()->memory();
1601   // do not use this node for any more parsing!
1602   debug_only( map()->set_memory((Node*)nullptr) );
1603   return _gvn.transform( mem );
1604 }
1605 
1606 //------------------------------set_all_memory---------------------------------
1607 void GraphKit::set_all_memory(Node* newmem) {
1608   Node* mergemem = MergeMemNode::make(newmem);
1609   gvn().set_type_bottom(mergemem);
1610   map()->set_memory(mergemem);
1611 }
1612 
1613 //------------------------------set_all_memory_call----------------------------
1614 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1615   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1616   set_all_memory(newmem);
1617 }
1618 
1619 //=============================================================================
1620 //
1621 // parser factory methods for MemNodes
1622 //
1623 // These are layered on top of the factory methods in LoadNode and StoreNode,
1624 // and integrate with the parser's memory state and _gvn engine.
1625 //
1626 
1627 // factory methods in "int adr_idx"
1628 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1629                           MemNode::MemOrd mo,
1630                           LoadNode::ControlDependency control_dependency,
1631                           bool require_atomic_access,
1632                           bool unaligned,
1633                           bool mismatched,
1634                           bool unsafe,
1635                           uint8_t barrier_data) {
1636   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1637   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1638   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1639   debug_only(adr_type = C->get_adr_type(adr_idx));
1640   Node* mem = memory(adr_idx);
1641   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1642   ld = _gvn.transform(ld);
1643 
1644   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1645     // Improve graph before escape analysis and boxing elimination.
1646     record_for_igvn(ld);
1647     if (ld->is_DecodeN()) {
1648       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1649       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1650       // a Phi). Recording such cases is still perfectly sound, but may be
1651       // unnecessary and result in some minor IGVN overhead.
1652       record_for_igvn(ld->in(1));
1653     }
1654   }
1655   return ld;
1656 }
1657 
1658 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1659                                 MemNode::MemOrd mo,
1660                                 bool require_atomic_access,
1661                                 bool unaligned,
1662                                 bool mismatched,
1663                                 bool unsafe,
1664                                 int barrier_data) {
1665   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1666   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1667   const TypePtr* adr_type = nullptr;
1668   debug_only(adr_type = C->get_adr_type(adr_idx));
1669   Node *mem = memory(adr_idx);
1670   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1671   if (unaligned) {
1672     st->as_Store()->set_unaligned_access();
1673   }
1674   if (mismatched) {
1675     st->as_Store()->set_mismatched_access();
1676   }
1677   if (unsafe) {
1678     st->as_Store()->set_unsafe_access();
1679   }
1680   st->as_Store()->set_barrier_data(barrier_data);
1681   st = _gvn.transform(st);
1682   set_memory(st, adr_idx);
1683   // Back-to-back stores can only remove intermediate store with DU info
1684   // so push on worklist for optimizer.
1685   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1686     record_for_igvn(st);
1687 
1688   return st;
1689 }
1690 
1691 Node* GraphKit::access_store_at(Node* obj,
1692                                 Node* adr,
1693                                 const TypePtr* adr_type,
1694                                 Node* val,
1695                                 const Type* val_type,
1696                                 BasicType bt,
1697                                 DecoratorSet decorators,
1698                                 bool safe_for_replace,
1699                                 const InlineTypeNode* vt) {
1700   // Transformation of a value which could be null pointer (CastPP #null)
1701   // could be delayed during Parse (for example, in adjust_map_after_if()).
1702   // Execute transformation here to avoid barrier generation in such case.
1703   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1704     val = _gvn.makecon(TypePtr::NULL_PTR);
1705   }
1706 
1707   if (stopped()) {
1708     return top(); // Dead path ?
1709   }
1710 
1711   assert(val != nullptr, "not dead path");
1712   if (val->is_InlineType()) {
1713     // Store to non-flat field. Buffer the inline type and make sure
1714     // the store is re-executed if the allocation triggers deoptimization.
1715     PreserveReexecuteState preexecs(this);
1716     jvms()->set_should_reexecute(true);
1717     val = val->as_InlineType()->buffer(this, safe_for_replace);
1718   }
1719 
1720   C2AccessValuePtr addr(adr, adr_type);
1721   C2AccessValue value(val, val_type);
1722   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1723   if (access.is_raw()) {
1724     return _barrier_set->BarrierSetC2::store_at(access, value);
1725   } else {
1726     return _barrier_set->store_at(access, value);
1727   }
1728 }
1729 
1730 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1731                                Node* adr,   // actual address to store val at
1732                                const TypePtr* adr_type,
1733                                const Type* val_type,
1734                                BasicType bt,
1735                                DecoratorSet decorators,
1736                                Node* ctl) {
1737   if (stopped()) {
1738     return top(); // Dead path ?
1739   }
1740 
1741   C2AccessValuePtr addr(adr, adr_type);
1742   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1743   if (access.is_raw()) {
1744     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1745   } else {
1746     return _barrier_set->load_at(access, val_type);
1747   }
1748 }
1749 
1750 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1751                             const Type* val_type,
1752                             BasicType bt,
1753                             DecoratorSet decorators) {
1754   if (stopped()) {
1755     return top(); // Dead path ?
1756   }
1757 
1758   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1759   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1762   } else {
1763     return _barrier_set->load_at(access, val_type);
1764   }
1765 }
1766 
1767 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1768                                              Node* adr,
1769                                              const TypePtr* adr_type,
1770                                              int alias_idx,
1771                                              Node* expected_val,
1772                                              Node* new_val,
1773                                              const Type* value_type,
1774                                              BasicType bt,
1775                                              DecoratorSet decorators) {
1776   C2AccessValuePtr addr(adr, adr_type);
1777   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1778                         bt, obj, addr, alias_idx);
1779   if (access.is_raw()) {
1780     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1781   } else {
1782     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1783   }
1784 }
1785 
1786 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1787                                               Node* adr,
1788                                               const TypePtr* adr_type,
1789                                               int alias_idx,
1790                                               Node* expected_val,
1791                                               Node* new_val,
1792                                               const Type* value_type,
1793                                               BasicType bt,
1794                                               DecoratorSet decorators) {
1795   C2AccessValuePtr addr(adr, adr_type);
1796   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1797                         bt, obj, addr, alias_idx);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1800   } else {
1801     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1802   }
1803 }
1804 
1805 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1806                                       Node* adr,
1807                                       const TypePtr* adr_type,
1808                                       int alias_idx,
1809                                       Node* new_val,
1810                                       const Type* value_type,
1811                                       BasicType bt,
1812                                       DecoratorSet decorators) {
1813   C2AccessValuePtr addr(adr, adr_type);
1814   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1815                         bt, obj, addr, alias_idx);
1816   if (access.is_raw()) {
1817     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1818   } else {
1819     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1820   }
1821 }
1822 
1823 Node* GraphKit::access_atomic_add_at(Node* obj,
1824                                      Node* adr,
1825                                      const TypePtr* adr_type,
1826                                      int alias_idx,
1827                                      Node* new_val,
1828                                      const Type* value_type,
1829                                      BasicType bt,
1830                                      DecoratorSet decorators) {
1831   C2AccessValuePtr addr(adr, adr_type);
1832   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1833   if (access.is_raw()) {
1834     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1835   } else {
1836     return _barrier_set->atomic_add_at(access, new_val, value_type);
1837   }
1838 }
1839 
1840 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1841   return _barrier_set->clone(this, src, dst, size, is_array);
1842 }
1843 
1844 //-------------------------array_element_address-------------------------
1845 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1846                                       const TypeInt* sizetype, Node* ctrl) {
1847   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1848   uint shift;
1849   if (arytype->is_flat() && arytype->klass_is_exact()) {
1850     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1851     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1852     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1853     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1854     // though we don't need the address node in this case and throw it away again.
1855     shift = arytype->flat_log_elem_size();
1856   } else {
1857     shift = exact_log2(type2aelembytes(elembt));
1858   }
1859   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1860 
1861   // short-circuit a common case (saves lots of confusing waste motion)
1862   jint idx_con = find_int_con(idx, -1);
1863   if (idx_con >= 0) {
1864     intptr_t offset = header + ((intptr_t)idx_con << shift);
1865     return basic_plus_adr(ary, offset);
1866   }
1867 
1868   // must be correct type for alignment purposes
1869   Node* base  = basic_plus_adr(ary, header);
1870   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1871   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1872   return basic_plus_adr(ary, base, scale);
1873 }
1874 
1875 Node* GraphKit::flat_array_element_address(Node*& array, Node* idx, ciInlineKlass* vk, bool is_null_free,
1876                                            bool is_not_null_free, bool is_atomic) {
1877   ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic);
1878   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1879   arytype = arytype->cast_to_exactness(true);
1880   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1881   array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
1882   return array_element_address(array, idx, T_FLAT_ELEMENT, arytype->size(), control());
1883 }
1884 
1885 //-------------------------load_array_element-------------------------
1886 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1887   const Type* elemtype = arytype->elem();
1888   BasicType elembt = elemtype->array_element_basic_type();
1889   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1890   if (elembt == T_NARROWOOP) {
1891     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1892   }
1893   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1894                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1895   return ld;
1896 }
1897 
1898 //-------------------------set_arguments_for_java_call-------------------------
1899 // Arguments (pre-popped from the stack) are taken from the JVMS.
1900 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1901   PreserveReexecuteState preexecs(this);
1902   if (EnableValhalla) {
1903     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1904     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1905     jvms()->set_should_reexecute(true);
1906     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1907     inc_sp(arg_size);
1908   }
1909   // Add the call arguments
1910   const TypeTuple* domain = call->tf()->domain_sig();
1911   uint nargs = domain->cnt();
1912   int arg_num = 0;
1913   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1914     Node* arg = argument(i-TypeFunc::Parms);
1915     const Type* t = domain->field_at(i);
1916     // TODO 8284443 A static call to a mismatched method should still be scalarized
1917     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1918       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1919       if (!arg->is_InlineType()) {
1920         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1921         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1922       }
1923       InlineTypeNode* vt = arg->as_InlineType();
1924       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1925       // If an inline type argument is passed as fields, attach the Method* to the call site
1926       // to be able to access the extended signature later via attached_method_before_pc().
1927       // For example, see CompiledMethod::preserve_callee_argument_oops().
1928       call->set_override_symbolic_info(true);
1929       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1930       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1931       C->dependencies()->assert_evol_method(call->method());
1932       arg_num++;
1933       continue;
1934     } else if (arg->is_InlineType()) {
1935       // Pass inline type argument via oop to callee
1936       arg = arg->as_InlineType()->buffer(this, true);
1937     }
1938     if (t != Type::HALF) {
1939       arg_num++;
1940     }
1941     call->init_req(idx++, arg);
1942   }
1943 }
1944 
1945 //---------------------------set_edges_for_java_call---------------------------
1946 // Connect a newly created call into the current JVMS.
1947 // A return value node (if any) is returned from set_edges_for_java_call.
1948 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1949 
1950   // Add the predefined inputs:
1951   call->init_req( TypeFunc::Control, control() );
1952   call->init_req( TypeFunc::I_O    , i_o() );
1953   call->init_req( TypeFunc::Memory , reset_memory() );
1954   call->init_req( TypeFunc::FramePtr, frameptr() );
1955   call->init_req( TypeFunc::ReturnAdr, top() );
1956 
1957   add_safepoint_edges(call, must_throw);
1958 
1959   Node* xcall = _gvn.transform(call);
1960 
1961   if (xcall == top()) {
1962     set_control(top());
1963     return;
1964   }
1965   assert(xcall == call, "call identity is stable");
1966 
1967   // Re-use the current map to produce the result.
1968 
1969   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1970   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1971   set_all_memory_call(xcall, separate_io_proj);
1972 
1973   //return xcall;   // no need, caller already has it
1974 }
1975 
1976 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1977   if (stopped())  return top();  // maybe the call folded up?
1978 
1979   // Note:  Since any out-of-line call can produce an exception,
1980   // we always insert an I_O projection from the call into the result.
1981 
1982   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1983 
1984   if (separate_io_proj) {
1985     // The caller requested separate projections be used by the fall
1986     // through and exceptional paths, so replace the projections for
1987     // the fall through path.
1988     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1989     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1990   }
1991 
1992   // Capture the return value, if any.
1993   Node* ret;
1994   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1995     ret = top();
1996   } else if (call->tf()->returns_inline_type_as_fields()) {
1997     // Return of multiple values (inline type fields): we create a
1998     // InlineType node, each field is a projection from the call.
1999     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2000     uint base_input = TypeFunc::Parms;
2001     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2002   } else {
2003     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2004     ciType* t = call->method()->return_type();
2005     if (t->is_klass()) {
2006       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2007       if (type->is_inlinetypeptr()) {
2008         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2009       }
2010     }
2011   }
2012 
2013   return ret;
2014 }
2015 
2016 //--------------------set_predefined_input_for_runtime_call--------------------
2017 // Reading and setting the memory state is way conservative here.
2018 // The real problem is that I am not doing real Type analysis on memory,
2019 // so I cannot distinguish card mark stores from other stores.  Across a GC
2020 // point the Store Barrier and the card mark memory has to agree.  I cannot
2021 // have a card mark store and its barrier split across the GC point from
2022 // either above or below.  Here I get that to happen by reading ALL of memory.
2023 // A better answer would be to separate out card marks from other memory.
2024 // For now, return the input memory state, so that it can be reused
2025 // after the call, if this call has restricted memory effects.
2026 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2027   // Set fixed predefined input arguments
2028   Node* memory = reset_memory();
2029   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2030   call->init_req( TypeFunc::Control,   control()  );
2031   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2032   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2033   call->init_req( TypeFunc::FramePtr,  frameptr() );
2034   call->init_req( TypeFunc::ReturnAdr, top()      );
2035   return memory;
2036 }
2037 
2038 //-------------------set_predefined_output_for_runtime_call--------------------
2039 // Set control and memory (not i_o) from the call.
2040 // If keep_mem is not null, use it for the output state,
2041 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2042 // If hook_mem is null, this call produces no memory effects at all.
2043 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2044 // then only that memory slice is taken from the call.
2045 // In the last case, we must put an appropriate memory barrier before
2046 // the call, so as to create the correct anti-dependencies on loads
2047 // preceding the call.
2048 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2049                                                       Node* keep_mem,
2050                                                       const TypePtr* hook_mem) {
2051   // no i/o
2052   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2053   if (keep_mem) {
2054     // First clone the existing memory state
2055     set_all_memory(keep_mem);
2056     if (hook_mem != nullptr) {
2057       // Make memory for the call
2058       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2059       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2060       // We also use hook_mem to extract specific effects from arraycopy stubs.
2061       set_memory(mem, hook_mem);
2062     }
2063     // ...else the call has NO memory effects.
2064 
2065     // Make sure the call advertises its memory effects precisely.
2066     // This lets us build accurate anti-dependences in gcm.cpp.
2067     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2068            "call node must be constructed correctly");
2069   } else {
2070     assert(hook_mem == nullptr, "");
2071     // This is not a "slow path" call; all memory comes from the call.
2072     set_all_memory_call(call);
2073   }
2074 }
2075 
2076 // Keep track of MergeMems feeding into other MergeMems
2077 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2078   if (!mem->is_MergeMem()) {
2079     return;
2080   }
2081   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2082     Node* use = i.get();
2083     if (use->is_MergeMem()) {
2084       wl.push(use);
2085     }
2086   }
2087 }
2088 
2089 // Replace the call with the current state of the kit.
2090 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2091   JVMState* ejvms = nullptr;
2092   if (has_exceptions()) {
2093     ejvms = transfer_exceptions_into_jvms();
2094   }
2095 
2096   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2097   ReplacedNodes replaced_nodes_exception;
2098   Node* ex_ctl = top();
2099 
2100   SafePointNode* final_state = stop();
2101 
2102   // Find all the needed outputs of this call
2103   CallProjections* callprojs = call->extract_projections(true, do_asserts);
2104 
2105   Unique_Node_List wl;
2106   Node* init_mem = call->in(TypeFunc::Memory);
2107   Node* final_mem = final_state->in(TypeFunc::Memory);
2108   Node* final_ctl = final_state->in(TypeFunc::Control);
2109   Node* final_io = final_state->in(TypeFunc::I_O);
2110 
2111   // Replace all the old call edges with the edges from the inlining result
2112   if (callprojs->fallthrough_catchproj != nullptr) {
2113     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2114   }
2115   if (callprojs->fallthrough_memproj != nullptr) {
2116     if (final_mem->is_MergeMem()) {
2117       // Parser's exits MergeMem was not transformed but may be optimized
2118       final_mem = _gvn.transform(final_mem);
2119     }
2120     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2121     add_mergemem_users_to_worklist(wl, final_mem);
2122   }
2123   if (callprojs->fallthrough_ioproj != nullptr) {
2124     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2125   }
2126 
2127   // Replace the result with the new result if it exists and is used
2128   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2129     // If the inlined code is dead, the result projections for an inline type returned as
2130     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2131     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2132            "unexpected number of results");
2133     C->gvn_replace_by(callprojs->resproj[0], result);
2134   }
2135 
2136   if (ejvms == nullptr) {
2137     // No exception edges to simply kill off those paths
2138     if (callprojs->catchall_catchproj != nullptr) {
2139       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2140     }
2141     if (callprojs->catchall_memproj != nullptr) {
2142       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2143     }
2144     if (callprojs->catchall_ioproj != nullptr) {
2145       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2146     }
2147     // Replace the old exception object with top
2148     if (callprojs->exobj != nullptr) {
2149       C->gvn_replace_by(callprojs->exobj, C->top());
2150     }
2151   } else {
2152     GraphKit ekit(ejvms);
2153 
2154     // Load my combined exception state into the kit, with all phis transformed:
2155     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2156     replaced_nodes_exception = ex_map->replaced_nodes();
2157 
2158     Node* ex_oop = ekit.use_exception_state(ex_map);
2159 
2160     if (callprojs->catchall_catchproj != nullptr) {
2161       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2162       ex_ctl = ekit.control();
2163     }
2164     if (callprojs->catchall_memproj != nullptr) {
2165       Node* ex_mem = ekit.reset_memory();
2166       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2167       add_mergemem_users_to_worklist(wl, ex_mem);
2168     }
2169     if (callprojs->catchall_ioproj != nullptr) {
2170       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2171     }
2172 
2173     // Replace the old exception object with the newly created one
2174     if (callprojs->exobj != nullptr) {
2175       C->gvn_replace_by(callprojs->exobj, ex_oop);
2176     }
2177   }
2178 
2179   // Disconnect the call from the graph
2180   call->disconnect_inputs(C);
2181   C->gvn_replace_by(call, C->top());
2182 
2183   // Clean up any MergeMems that feed other MergeMems since the
2184   // optimizer doesn't like that.
2185   while (wl.size() > 0) {
2186     _gvn.transform(wl.pop());
2187   }
2188 
2189   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2190     replaced_nodes.apply(C, final_ctl);
2191   }
2192   if (!ex_ctl->is_top() && do_replaced_nodes) {
2193     replaced_nodes_exception.apply(C, ex_ctl);
2194   }
2195 }
2196 
2197 
2198 //------------------------------increment_counter------------------------------
2199 // for statistics: increment a VM counter by 1
2200 
2201 void GraphKit::increment_counter(address counter_addr) {
2202   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2203   increment_counter(adr1);
2204 }
2205 
2206 void GraphKit::increment_counter(Node* counter_addr) {
2207   Node* ctrl = control();
2208   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2209   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2210   store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered);
2211 }
2212 
2213 
2214 //------------------------------uncommon_trap----------------------------------
2215 // Bail out to the interpreter in mid-method.  Implemented by calling the
2216 // uncommon_trap blob.  This helper function inserts a runtime call with the
2217 // right debug info.
2218 Node* GraphKit::uncommon_trap(int trap_request,
2219                              ciKlass* klass, const char* comment,
2220                              bool must_throw,
2221                              bool keep_exact_action) {
2222   if (failing_internal()) {
2223     stop();
2224   }
2225   if (stopped())  return nullptr; // trap reachable?
2226 
2227   // Note:  If ProfileTraps is true, and if a deopt. actually
2228   // occurs here, the runtime will make sure an MDO exists.  There is
2229   // no need to call method()->ensure_method_data() at this point.
2230 
2231   // Set the stack pointer to the right value for reexecution:
2232   set_sp(reexecute_sp());
2233 
2234 #ifdef ASSERT
2235   if (!must_throw) {
2236     // Make sure the stack has at least enough depth to execute
2237     // the current bytecode.
2238     int inputs, ignored_depth;
2239     if (compute_stack_effects(inputs, ignored_depth)) {
2240       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2241              Bytecodes::name(java_bc()), sp(), inputs);
2242     }
2243   }
2244 #endif
2245 
2246   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2247   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2248 
2249   switch (action) {
2250   case Deoptimization::Action_maybe_recompile:
2251   case Deoptimization::Action_reinterpret:
2252     // Temporary fix for 6529811 to allow virtual calls to be sure they
2253     // get the chance to go from mono->bi->mega
2254     if (!keep_exact_action &&
2255         Deoptimization::trap_request_index(trap_request) < 0 &&
2256         too_many_recompiles(reason)) {
2257       // This BCI is causing too many recompilations.
2258       if (C->log() != nullptr) {
2259         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2260                 Deoptimization::trap_reason_name(reason),
2261                 Deoptimization::trap_action_name(action));
2262       }
2263       action = Deoptimization::Action_none;
2264       trap_request = Deoptimization::make_trap_request(reason, action);
2265     } else {
2266       C->set_trap_can_recompile(true);
2267     }
2268     break;
2269   case Deoptimization::Action_make_not_entrant:
2270     C->set_trap_can_recompile(true);
2271     break;
2272   case Deoptimization::Action_none:
2273   case Deoptimization::Action_make_not_compilable:
2274     break;
2275   default:
2276 #ifdef ASSERT
2277     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2278 #endif
2279     break;
2280   }
2281 
2282   if (TraceOptoParse) {
2283     char buf[100];
2284     tty->print_cr("Uncommon trap %s at bci:%d",
2285                   Deoptimization::format_trap_request(buf, sizeof(buf),
2286                                                       trap_request), bci());
2287   }
2288 
2289   CompileLog* log = C->log();
2290   if (log != nullptr) {
2291     int kid = (klass == nullptr)? -1: log->identify(klass);
2292     log->begin_elem("uncommon_trap bci='%d'", bci());
2293     char buf[100];
2294     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2295                                                           trap_request));
2296     if (kid >= 0)         log->print(" klass='%d'", kid);
2297     if (comment != nullptr)  log->print(" comment='%s'", comment);
2298     log->end_elem();
2299   }
2300 
2301   // Make sure any guarding test views this path as very unlikely
2302   Node *i0 = control()->in(0);
2303   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2304     IfNode *iff = i0->as_If();
2305     float f = iff->_prob;   // Get prob
2306     if (control()->Opcode() == Op_IfTrue) {
2307       if (f > PROB_UNLIKELY_MAG(4))
2308         iff->_prob = PROB_MIN;
2309     } else {
2310       if (f < PROB_LIKELY_MAG(4))
2311         iff->_prob = PROB_MAX;
2312     }
2313   }
2314 
2315   // Clear out dead values from the debug info.
2316   kill_dead_locals();
2317 
2318   // Now insert the uncommon trap subroutine call
2319   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2320   const TypePtr* no_memory_effects = nullptr;
2321   // Pass the index of the class to be loaded
2322   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2323                                  (must_throw ? RC_MUST_THROW : 0),
2324                                  OptoRuntime::uncommon_trap_Type(),
2325                                  call_addr, "uncommon_trap", no_memory_effects,
2326                                  intcon(trap_request));
2327   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2328          "must extract request correctly from the graph");
2329   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2330 
2331   call->set_req(TypeFunc::ReturnAdr, returnadr());
2332   // The debug info is the only real input to this call.
2333 
2334   // Halt-and-catch fire here.  The above call should never return!
2335   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2336                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2337   _gvn.set_type_bottom(halt);
2338   root()->add_req(halt);
2339 
2340   stop_and_kill_map();
2341   return call;
2342 }
2343 
2344 
2345 //--------------------------just_allocated_object------------------------------
2346 // Report the object that was just allocated.
2347 // It must be the case that there are no intervening safepoints.
2348 // We use this to determine if an object is so "fresh" that
2349 // it does not require card marks.
2350 Node* GraphKit::just_allocated_object(Node* current_control) {
2351   Node* ctrl = current_control;
2352   // Object::<init> is invoked after allocation, most of invoke nodes
2353   // will be reduced, but a region node is kept in parse time, we check
2354   // the pattern and skip the region node if it degraded to a copy.
2355   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2356       ctrl->as_Region()->is_copy()) {
2357     ctrl = ctrl->as_Region()->is_copy();
2358   }
2359   if (C->recent_alloc_ctl() == ctrl) {
2360    return C->recent_alloc_obj();
2361   }
2362   return nullptr;
2363 }
2364 
2365 
2366 /**
2367  * Record profiling data exact_kls for Node n with the type system so
2368  * that it can propagate it (speculation)
2369  *
2370  * @param n          node that the type applies to
2371  * @param exact_kls  type from profiling
2372  * @param maybe_null did profiling see null?
2373  *
2374  * @return           node with improved type
2375  */
2376 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2377   const Type* current_type = _gvn.type(n);
2378   assert(UseTypeSpeculation, "type speculation must be on");
2379 
2380   const TypePtr* speculative = current_type->speculative();
2381 
2382   // Should the klass from the profile be recorded in the speculative type?
2383   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2384     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2385     const TypeOopPtr* xtype = tklass->as_instance_type();
2386     assert(xtype->klass_is_exact(), "Should be exact");
2387     // Any reason to believe n is not null (from this profiling or a previous one)?
2388     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2389     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2390     // record the new speculative type's depth
2391     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2392     speculative = speculative->with_inline_depth(jvms()->depth());
2393   } else if (current_type->would_improve_ptr(ptr_kind)) {
2394     // Profiling report that null was never seen so we can change the
2395     // speculative type to non null ptr.
2396     if (ptr_kind == ProfileAlwaysNull) {
2397       speculative = TypePtr::NULL_PTR;
2398     } else {
2399       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2400       const TypePtr* ptr = TypePtr::NOTNULL;
2401       if (speculative != nullptr) {
2402         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2403       } else {
2404         speculative = ptr;
2405       }
2406     }
2407   }
2408 
2409   if (speculative != current_type->speculative()) {
2410     // Build a type with a speculative type (what we think we know
2411     // about the type but will need a guard when we use it)
2412     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2413     // We're changing the type, we need a new CheckCast node to carry
2414     // the new type. The new type depends on the control: what
2415     // profiling tells us is only valid from here as far as we can
2416     // tell.
2417     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2418     cast = _gvn.transform(cast);
2419     replace_in_map(n, cast);
2420     n = cast;
2421   }
2422 
2423   return n;
2424 }
2425 
2426 /**
2427  * Record profiling data from receiver profiling at an invoke with the
2428  * type system so that it can propagate it (speculation)
2429  *
2430  * @param n  receiver node
2431  *
2432  * @return   node with improved type
2433  */
2434 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2435   if (!UseTypeSpeculation) {
2436     return n;
2437   }
2438   ciKlass* exact_kls = profile_has_unique_klass();
2439   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2440   if ((java_bc() == Bytecodes::_checkcast ||
2441        java_bc() == Bytecodes::_instanceof ||
2442        java_bc() == Bytecodes::_aastore) &&
2443       method()->method_data()->is_mature()) {
2444     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2445     if (data != nullptr) {
2446       if (java_bc() == Bytecodes::_aastore) {
2447         ciKlass* array_type = nullptr;
2448         ciKlass* element_type = nullptr;
2449         ProfilePtrKind element_ptr = ProfileMaybeNull;
2450         bool flat_array = true;
2451         bool null_free_array = true;
2452         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2453         exact_kls = element_type;
2454         ptr_kind = element_ptr;
2455       } else {
2456         if (!data->as_BitData()->null_seen()) {
2457           ptr_kind = ProfileNeverNull;
2458         } else {
2459           assert(data->is_ReceiverTypeData(), "bad profile data type");
2460           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2461           uint i = 0;
2462           for (; i < call->row_limit(); i++) {
2463             ciKlass* receiver = call->receiver(i);
2464             if (receiver != nullptr) {
2465               break;
2466             }
2467           }
2468           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2469         }
2470       }
2471     }
2472   }
2473   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2474 }
2475 
2476 /**
2477  * Record profiling data from argument profiling at an invoke with the
2478  * type system so that it can propagate it (speculation)
2479  *
2480  * @param dest_method  target method for the call
2481  * @param bc           what invoke bytecode is this?
2482  */
2483 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2484   if (!UseTypeSpeculation) {
2485     return;
2486   }
2487   const TypeFunc* tf    = TypeFunc::make(dest_method);
2488   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2489   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2490   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2491     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2492     if (is_reference_type(targ->basic_type())) {
2493       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2494       ciKlass* better_type = nullptr;
2495       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2496         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2497       }
2498       i++;
2499     }
2500   }
2501 }
2502 
2503 /**
2504  * Record profiling data from parameter profiling at an invoke with
2505  * the type system so that it can propagate it (speculation)
2506  */
2507 void GraphKit::record_profiled_parameters_for_speculation() {
2508   if (!UseTypeSpeculation) {
2509     return;
2510   }
2511   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2512     if (_gvn.type(local(i))->isa_oopptr()) {
2513       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2514       ciKlass* better_type = nullptr;
2515       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2516         record_profile_for_speculation(local(i), better_type, ptr_kind);
2517       }
2518       j++;
2519     }
2520   }
2521 }
2522 
2523 /**
2524  * Record profiling data from return value profiling at an invoke with
2525  * the type system so that it can propagate it (speculation)
2526  */
2527 void GraphKit::record_profiled_return_for_speculation() {
2528   if (!UseTypeSpeculation) {
2529     return;
2530   }
2531   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2532   ciKlass* better_type = nullptr;
2533   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2534     // If profiling reports a single type for the return value,
2535     // feed it to the type system so it can propagate it as a
2536     // speculative type
2537     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2538   }
2539 }
2540 
2541 
2542 //=============================================================================
2543 // Generate a fast path/slow path idiom.  Graph looks like:
2544 // [foo] indicates that 'foo' is a parameter
2545 //
2546 //              [in]     null
2547 //                 \    /
2548 //                  CmpP
2549 //                  Bool ne
2550 //                   If
2551 //                  /  \
2552 //              True    False-<2>
2553 //              / |
2554 //             /  cast_not_null
2555 //           Load  |    |   ^
2556 //        [fast_test]   |   |
2557 // gvn to   opt_test    |   |
2558 //          /    \      |  <1>
2559 //      True     False  |
2560 //        |         \\  |
2561 //   [slow_call]     \[fast_result]
2562 //    Ctl   Val       \      \
2563 //     |               \      \
2564 //    Catch       <1>   \      \
2565 //   /    \        ^     \      \
2566 //  Ex    No_Ex    |      \      \
2567 //  |       \   \  |       \ <2>  \
2568 //  ...      \  [slow_res] |  |    \   [null_result]
2569 //            \         \--+--+---  |  |
2570 //             \           | /    \ | /
2571 //              --------Region     Phi
2572 //
2573 //=============================================================================
2574 // Code is structured as a series of driver functions all called 'do_XXX' that
2575 // call a set of helper functions.  Helper functions first, then drivers.
2576 
2577 //------------------------------null_check_oop---------------------------------
2578 // Null check oop.  Set null-path control into Region in slot 3.
2579 // Make a cast-not-nullness use the other not-null control.  Return cast.
2580 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2581                                bool never_see_null,
2582                                bool safe_for_replace,
2583                                bool speculative) {
2584   // Initial null check taken path
2585   (*null_control) = top();
2586   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2587 
2588   // Generate uncommon_trap:
2589   if (never_see_null && (*null_control) != top()) {
2590     // If we see an unexpected null at a check-cast we record it and force a
2591     // recompile; the offending check-cast will be compiled to handle nulls.
2592     // If we see more than one offending BCI, then all checkcasts in the
2593     // method will be compiled to handle nulls.
2594     PreserveJVMState pjvms(this);
2595     set_control(*null_control);
2596     replace_in_map(value, null());
2597     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2598     uncommon_trap(reason,
2599                   Deoptimization::Action_make_not_entrant);
2600     (*null_control) = top();    // null path is dead
2601   }
2602   if ((*null_control) == top() && safe_for_replace) {
2603     replace_in_map(value, cast);
2604   }
2605 
2606   // Cast away null-ness on the result
2607   return cast;
2608 }
2609 
2610 //------------------------------opt_iff----------------------------------------
2611 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2612 // Return slow-path control.
2613 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2614   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2615 
2616   // Fast path taken; set region slot 2
2617   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2618   region->init_req(2,fast_taken); // Capture fast-control
2619 
2620   // Fast path not-taken, i.e. slow path
2621   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2622   return slow_taken;
2623 }
2624 
2625 //-----------------------------make_runtime_call-------------------------------
2626 Node* GraphKit::make_runtime_call(int flags,
2627                                   const TypeFunc* call_type, address call_addr,
2628                                   const char* call_name,
2629                                   const TypePtr* adr_type,
2630                                   // The following parms are all optional.
2631                                   // The first null ends the list.
2632                                   Node* parm0, Node* parm1,
2633                                   Node* parm2, Node* parm3,
2634                                   Node* parm4, Node* parm5,
2635                                   Node* parm6, Node* parm7) {
2636   assert(call_addr != nullptr, "must not call null targets");
2637 
2638   // Slow-path call
2639   bool is_leaf = !(flags & RC_NO_LEAF);
2640   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2641   if (call_name == nullptr) {
2642     assert(!is_leaf, "must supply name for leaf");
2643     call_name = OptoRuntime::stub_name(call_addr);
2644   }
2645   CallNode* call;
2646   if (!is_leaf) {
2647     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2648   } else if (flags & RC_NO_FP) {
2649     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2650   } else  if (flags & RC_VECTOR){
2651     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2652     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2653   } else {
2654     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2655   }
2656 
2657   // The following is similar to set_edges_for_java_call,
2658   // except that the memory effects of the call are restricted to AliasIdxRaw.
2659 
2660   // Slow path call has no side-effects, uses few values
2661   bool wide_in  = !(flags & RC_NARROW_MEM);
2662   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2663 
2664   Node* prev_mem = nullptr;
2665   if (wide_in) {
2666     prev_mem = set_predefined_input_for_runtime_call(call);
2667   } else {
2668     assert(!wide_out, "narrow in => narrow out");
2669     Node* narrow_mem = memory(adr_type);
2670     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2671   }
2672 
2673   // Hook each parm in order.  Stop looking at the first null.
2674   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2675   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2676   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2677   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2678   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2679   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2680   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2681   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2682   /* close each nested if ===> */  } } } } } } } }
2683   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2684 
2685   if (!is_leaf) {
2686     // Non-leaves can block and take safepoints:
2687     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2688   }
2689   // Non-leaves can throw exceptions:
2690   if (has_io) {
2691     call->set_req(TypeFunc::I_O, i_o());
2692   }
2693 
2694   if (flags & RC_UNCOMMON) {
2695     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2696     // (An "if" probability corresponds roughly to an unconditional count.
2697     // Sort of.)
2698     call->set_cnt(PROB_UNLIKELY_MAG(4));
2699   }
2700 
2701   Node* c = _gvn.transform(call);
2702   assert(c == call, "cannot disappear");
2703 
2704   if (wide_out) {
2705     // Slow path call has full side-effects.
2706     set_predefined_output_for_runtime_call(call);
2707   } else {
2708     // Slow path call has few side-effects, and/or sets few values.
2709     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2710   }
2711 
2712   if (has_io) {
2713     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2714   }
2715   return call;
2716 
2717 }
2718 
2719 // i2b
2720 Node* GraphKit::sign_extend_byte(Node* in) {
2721   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2722   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2723 }
2724 
2725 // i2s
2726 Node* GraphKit::sign_extend_short(Node* in) {
2727   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2728   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2729 }
2730 
2731 
2732 //------------------------------merge_memory-----------------------------------
2733 // Merge memory from one path into the current memory state.
2734 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2735   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2736     Node* old_slice = mms.force_memory();
2737     Node* new_slice = mms.memory2();
2738     if (old_slice != new_slice) {
2739       PhiNode* phi;
2740       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2741         if (mms.is_empty()) {
2742           // clone base memory Phi's inputs for this memory slice
2743           assert(old_slice == mms.base_memory(), "sanity");
2744           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2745           _gvn.set_type(phi, Type::MEMORY);
2746           for (uint i = 1; i < phi->req(); i++) {
2747             phi->init_req(i, old_slice->in(i));
2748           }
2749         } else {
2750           phi = old_slice->as_Phi(); // Phi was generated already
2751         }
2752       } else {
2753         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2754         _gvn.set_type(phi, Type::MEMORY);
2755       }
2756       phi->set_req(new_path, new_slice);
2757       mms.set_memory(phi);
2758     }
2759   }
2760 }
2761 
2762 //------------------------------make_slow_call_ex------------------------------
2763 // Make the exception handler hookups for the slow call
2764 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2765   if (stopped())  return;
2766 
2767   // Make a catch node with just two handlers:  fall-through and catch-all
2768   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2769   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2770   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2771   _gvn.set_type_bottom(norm);
2772   C->record_for_igvn(norm);
2773   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2774 
2775   { PreserveJVMState pjvms(this);
2776     set_control(excp);
2777     set_i_o(i_o);
2778 
2779     if (excp != top()) {
2780       if (deoptimize) {
2781         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2782         uncommon_trap(Deoptimization::Reason_unhandled,
2783                       Deoptimization::Action_none);
2784       } else {
2785         // Create an exception state also.
2786         // Use an exact type if the caller has a specific exception.
2787         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2788         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2789         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2790       }
2791     }
2792   }
2793 
2794   // Get the no-exception control from the CatchNode.
2795   set_control(norm);
2796 }
2797 
2798 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2799   Node* cmp = nullptr;
2800   switch(bt) {
2801   case T_INT: cmp = new CmpINode(in1, in2); break;
2802   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2803   default: fatal("unexpected comparison type %s", type2name(bt));
2804   }
2805   cmp = gvn.transform(cmp);
2806   Node* bol = gvn.transform(new BoolNode(cmp, test));
2807   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2808   gvn.transform(iff);
2809   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2810   return iff;
2811 }
2812 
2813 //-------------------------------gen_subtype_check-----------------------------
2814 // Generate a subtyping check.  Takes as input the subtype and supertype.
2815 // Returns 2 values: sets the default control() to the true path and returns
2816 // the false path.  Only reads invariant memory; sets no (visible) memory.
2817 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2818 // but that's not exposed to the optimizer.  This call also doesn't take in an
2819 // Object; if you wish to check an Object you need to load the Object's class
2820 // prior to coming here.
2821 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2822                                ciMethod* method, int bci) {
2823   Compile* C = gvn.C;
2824   if ((*ctrl)->is_top()) {
2825     return C->top();
2826   }
2827 
2828   // Fast check for identical types, perhaps identical constants.
2829   // The types can even be identical non-constants, in cases
2830   // involving Array.newInstance, Object.clone, etc.
2831   if (subklass == superklass)
2832     return C->top();             // false path is dead; no test needed.
2833 
2834   if (gvn.type(superklass)->singleton()) {
2835     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2836     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2837 
2838     // In the common case of an exact superklass, try to fold up the
2839     // test before generating code.  You may ask, why not just generate
2840     // the code and then let it fold up?  The answer is that the generated
2841     // code will necessarily include null checks, which do not always
2842     // completely fold away.  If they are also needless, then they turn
2843     // into a performance loss.  Example:
2844     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2845     // Here, the type of 'fa' is often exact, so the store check
2846     // of fa[1]=x will fold up, without testing the nullness of x.
2847     //
2848     // At macro expansion, we would have already folded the SubTypeCheckNode
2849     // being expanded here because we always perform the static sub type
2850     // check in SubTypeCheckNode::sub() regardless of whether
2851     // StressReflectiveCode is set or not. We can therefore skip this
2852     // static check when StressReflectiveCode is on.
2853     switch (C->static_subtype_check(superk, subk)) {
2854     case Compile::SSC_always_false:
2855       {
2856         Node* always_fail = *ctrl;
2857         *ctrl = gvn.C->top();
2858         return always_fail;
2859       }
2860     case Compile::SSC_always_true:
2861       return C->top();
2862     case Compile::SSC_easy_test:
2863       {
2864         // Just do a direct pointer compare and be done.
2865         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2866         *ctrl = gvn.transform(new IfTrueNode(iff));
2867         return gvn.transform(new IfFalseNode(iff));
2868       }
2869     case Compile::SSC_full_test:
2870       break;
2871     default:
2872       ShouldNotReachHere();
2873     }
2874   }
2875 
2876   // %%% Possible further optimization:  Even if the superklass is not exact,
2877   // if the subklass is the unique subtype of the superklass, the check
2878   // will always succeed.  We could leave a dependency behind to ensure this.
2879 
2880   // First load the super-klass's check-offset
2881   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2882   Node* m = C->immutable_memory();
2883   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2884   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2885   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2886   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2887   bool might_be_cache = (chk_off_con == cacheoff_con);
2888 
2889   // Load from the sub-klass's super-class display list, or a 1-word cache of
2890   // the secondary superclass list, or a failing value with a sentinel offset
2891   // if the super-klass is an interface or exceptionally deep in the Java
2892   // hierarchy and we have to scan the secondary superclass list the hard way.
2893   // Worst-case type is a little odd: null is allowed as a result (usually
2894   // klass loads can never produce a null).
2895   Node *chk_off_X = chk_off;
2896 #ifdef _LP64
2897   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2898 #endif
2899   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2900   // For some types like interfaces the following loadKlass is from a 1-word
2901   // cache which is mutable so can't use immutable memory.  Other
2902   // types load from the super-class display table which is immutable.
2903   Node *kmem = C->immutable_memory();
2904   // secondary_super_cache is not immutable but can be treated as such because:
2905   // - no ideal node writes to it in a way that could cause an
2906   //   incorrect/missed optimization of the following Load.
2907   // - it's a cache so, worse case, not reading the latest value
2908   //   wouldn't cause incorrect execution
2909   if (might_be_cache && mem != nullptr) {
2910     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2911   }
2912   Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2913 
2914   // Compile speed common case: ARE a subtype and we canNOT fail
2915   if (superklass == nkls) {
2916     return C->top();             // false path is dead; no test needed.
2917   }
2918 
2919   // Gather the various success & failures here
2920   RegionNode* r_not_subtype = new RegionNode(3);
2921   gvn.record_for_igvn(r_not_subtype);
2922   RegionNode* r_ok_subtype = new RegionNode(4);
2923   gvn.record_for_igvn(r_ok_subtype);
2924 
2925   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2926   // SubTypeCheck node
2927   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2928     ciCallProfile profile = method->call_profile_at_bci(bci);
2929     float total_prob = 0;
2930     for (int i = 0; profile.has_receiver(i); ++i) {
2931       float prob = profile.receiver_prob(i);
2932       total_prob += prob;
2933     }
2934     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2935       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2936       for (int i = 0; profile.has_receiver(i); ++i) {
2937         ciKlass* klass = profile.receiver(i);
2938         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2939         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2940         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2941           continue;
2942         }
2943         float prob = profile.receiver_prob(i);
2944         ConNode* klass_node = gvn.makecon(klass_t);
2945         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2946         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2947 
2948         if (result == Compile::SSC_always_true) {
2949           r_ok_subtype->add_req(iftrue);
2950         } else {
2951           assert(result == Compile::SSC_always_false, "");
2952           r_not_subtype->add_req(iftrue);
2953         }
2954         *ctrl = gvn.transform(new IfFalseNode(iff));
2955       }
2956     }
2957   }
2958 
2959   // See if we get an immediate positive hit.  Happens roughly 83% of the
2960   // time.  Test to see if the value loaded just previously from the subklass
2961   // is exactly the superklass.
2962   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2963   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2964   *ctrl = gvn.transform(new IfFalseNode(iff1));
2965 
2966   // Compile speed common case: Check for being deterministic right now.  If
2967   // chk_off is a constant and not equal to cacheoff then we are NOT a
2968   // subklass.  In this case we need exactly the 1 test above and we can
2969   // return those results immediately.
2970   if (!might_be_cache) {
2971     Node* not_subtype_ctrl = *ctrl;
2972     *ctrl = iftrue1; // We need exactly the 1 test above
2973     PhaseIterGVN* igvn = gvn.is_IterGVN();
2974     if (igvn != nullptr) {
2975       igvn->remove_globally_dead_node(r_ok_subtype);
2976       igvn->remove_globally_dead_node(r_not_subtype);
2977     }
2978     return not_subtype_ctrl;
2979   }
2980 
2981   r_ok_subtype->init_req(1, iftrue1);
2982 
2983   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2984   // is roughly 63% of the remaining cases).  Test to see if the loaded
2985   // check-offset points into the subklass display list or the 1-element
2986   // cache.  If it points to the display (and NOT the cache) and the display
2987   // missed then it's not a subtype.
2988   Node *cacheoff = gvn.intcon(cacheoff_con);
2989   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2990   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2991   *ctrl = gvn.transform(new IfFalseNode(iff2));
2992 
2993   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2994   // No performance impact (too rare) but allows sharing of secondary arrays
2995   // which has some footprint reduction.
2996   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2997   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2998   *ctrl = gvn.transform(new IfFalseNode(iff3));
2999 
3000   // -- Roads not taken here: --
3001   // We could also have chosen to perform the self-check at the beginning
3002   // of this code sequence, as the assembler does.  This would not pay off
3003   // the same way, since the optimizer, unlike the assembler, can perform
3004   // static type analysis to fold away many successful self-checks.
3005   // Non-foldable self checks work better here in second position, because
3006   // the initial primary superclass check subsumes a self-check for most
3007   // types.  An exception would be a secondary type like array-of-interface,
3008   // which does not appear in its own primary supertype display.
3009   // Finally, we could have chosen to move the self-check into the
3010   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3011   // dependent manner.  But it is worthwhile to have the check here,
3012   // where it can be perhaps be optimized.  The cost in code space is
3013   // small (register compare, branch).
3014 
3015   // Now do a linear scan of the secondary super-klass array.  Again, no real
3016   // performance impact (too rare) but it's gotta be done.
3017   // Since the code is rarely used, there is no penalty for moving it
3018   // out of line, and it can only improve I-cache density.
3019   // The decision to inline or out-of-line this final check is platform
3020   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3021   Node* psc = gvn.transform(
3022     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3023 
3024   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3025   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3026   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3027 
3028   // Return false path; set default control to true path.
3029   *ctrl = gvn.transform(r_ok_subtype);
3030   return gvn.transform(r_not_subtype);
3031 }
3032 
3033 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3034   const Type* sub_t = _gvn.type(obj_or_subklass);
3035   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3036     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3037     obj_or_subklass = makecon(sub_t);
3038   }
3039   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3040   if (expand_subtype_check) {
3041     MergeMemNode* mem = merged_memory();
3042     Node* ctrl = control();
3043     Node* subklass = obj_or_subklass;
3044     if (!sub_t->isa_klassptr()) {
3045       subklass = load_object_klass(obj_or_subklass);
3046     }
3047 
3048     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3049     set_control(ctrl);
3050     return n;
3051   }
3052 
3053   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3054   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3055   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3056   set_control(_gvn.transform(new IfTrueNode(iff)));
3057   return _gvn.transform(new IfFalseNode(iff));
3058 }
3059 
3060 // Profile-driven exact type check:
3061 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3062                                     float prob, Node* *casted_receiver) {
3063   assert(!klass->is_interface(), "no exact type check on interfaces");
3064   Node* fail = top();
3065   const Type* rec_t = _gvn.type(receiver);
3066   if (rec_t->is_inlinetypeptr()) {
3067     if (klass->equals(rec_t->inline_klass())) {
3068       (*casted_receiver) = receiver; // Always passes
3069     } else {
3070       (*casted_receiver) = top();    // Always fails
3071       fail = control();
3072       set_control(top());
3073     }
3074     return fail;
3075   }
3076   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3077   Node* recv_klass = load_object_klass(receiver);
3078   fail = type_check(recv_klass, tklass, prob);
3079 
3080   if (!stopped()) {
3081     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3082     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3083     assert(recv_xtype->klass_is_exact(), "");
3084 
3085     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3086       // Subsume downstream occurrences of receiver with a cast to
3087       // recv_xtype, since now we know what the type will be.
3088       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3089       Node* res = _gvn.transform(cast);
3090       if (recv_xtype->is_inlinetypeptr()) {
3091         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3092         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3093       }
3094       (*casted_receiver) = res;
3095       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3096       // (User must make the replace_in_map call.)
3097     }
3098   }
3099 
3100   return fail;
3101 }
3102 
3103 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3104                            float prob) {
3105   Node* want_klass = makecon(tklass);
3106   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3107   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3108   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3109   set_control(_gvn.transform(new IfTrueNode (iff)));
3110   Node* fail = _gvn.transform(new IfFalseNode(iff));
3111   return fail;
3112 }
3113 
3114 //------------------------------subtype_check_receiver-------------------------
3115 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3116                                        Node** casted_receiver) {
3117   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3118   Node* want_klass = makecon(tklass);
3119 
3120   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3121 
3122   // Ignore interface type information until interface types are properly tracked.
3123   if (!stopped() && !klass->is_interface()) {
3124     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3125     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3126     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3127       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3128       if (recv_type->is_inlinetypeptr()) {
3129         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3130       }
3131       (*casted_receiver) = cast;
3132     }
3133   }
3134 
3135   return slow_ctl;
3136 }
3137 
3138 //------------------------------seems_never_null-------------------------------
3139 // Use null_seen information if it is available from the profile.
3140 // If we see an unexpected null at a type check we record it and force a
3141 // recompile; the offending check will be recompiled to handle nulls.
3142 // If we see several offending BCIs, then all checks in the
3143 // method will be recompiled.
3144 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3145   speculating = !_gvn.type(obj)->speculative_maybe_null();
3146   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3147   if (UncommonNullCast               // Cutout for this technique
3148       && obj != null()               // And not the -Xcomp stupid case?
3149       && !too_many_traps(reason)
3150       ) {
3151     if (speculating) {
3152       return true;
3153     }
3154     if (data == nullptr)
3155       // Edge case:  no mature data.  Be optimistic here.
3156       return true;
3157     // If the profile has not seen a null, assume it won't happen.
3158     assert(java_bc() == Bytecodes::_checkcast ||
3159            java_bc() == Bytecodes::_instanceof ||
3160            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3161     return !data->as_BitData()->null_seen();
3162   }
3163   speculating = false;
3164   return false;
3165 }
3166 
3167 void GraphKit::guard_klass_being_initialized(Node* klass) {
3168   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3169   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3170   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3171                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3172                                     T_BYTE, MemNode::acquire);
3173   init_state = _gvn.transform(init_state);
3174 
3175   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3176 
3177   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3178   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3179 
3180   { BuildCutout unless(this, tst, PROB_MAX);
3181     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3182   }
3183 }
3184 
3185 void GraphKit::guard_init_thread(Node* klass) {
3186   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3187   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3188 
3189   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3190                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3191                                      T_ADDRESS, MemNode::unordered);
3192   init_thread = _gvn.transform(init_thread);
3193 
3194   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3195 
3196   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3197   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3198 
3199   { BuildCutout unless(this, tst, PROB_MAX);
3200     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3201   }
3202 }
3203 
3204 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3205   if (ik->is_being_initialized()) {
3206     if (C->needs_clinit_barrier(ik, context)) {
3207       Node* klass = makecon(TypeKlassPtr::make(ik));
3208       guard_klass_being_initialized(klass);
3209       guard_init_thread(klass);
3210       insert_mem_bar(Op_MemBarCPUOrder);
3211     }
3212   } else if (ik->is_initialized()) {
3213     return; // no barrier needed
3214   } else {
3215     uncommon_trap(Deoptimization::Reason_uninitialized,
3216                   Deoptimization::Action_reinterpret,
3217                   nullptr);
3218   }
3219 }
3220 
3221 //------------------------maybe_cast_profiled_receiver-------------------------
3222 // If the profile has seen exactly one type, narrow to exactly that type.
3223 // Subsequent type checks will always fold up.
3224 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3225                                              const TypeKlassPtr* require_klass,
3226                                              ciKlass* spec_klass,
3227                                              bool safe_for_replace) {
3228   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3229 
3230   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3231 
3232   // Make sure we haven't already deoptimized from this tactic.
3233   if (too_many_traps_or_recompiles(reason))
3234     return nullptr;
3235 
3236   // (No, this isn't a call, but it's enough like a virtual call
3237   // to use the same ciMethod accessor to get the profile info...)
3238   // If we have a speculative type use it instead of profiling (which
3239   // may not help us)
3240   ciKlass* exact_kls = spec_klass;
3241   if (exact_kls == nullptr) {
3242     if (java_bc() == Bytecodes::_aastore) {
3243       ciKlass* array_type = nullptr;
3244       ciKlass* element_type = nullptr;
3245       ProfilePtrKind element_ptr = ProfileMaybeNull;
3246       bool flat_array = true;
3247       bool null_free_array = true;
3248       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3249       exact_kls = element_type;
3250     } else {
3251       exact_kls = profile_has_unique_klass();
3252     }
3253   }
3254   if (exact_kls != nullptr) {// no cast failures here
3255     if (require_klass == nullptr ||
3256         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3257       // If we narrow the type to match what the type profile sees or
3258       // the speculative type, we can then remove the rest of the
3259       // cast.
3260       // This is a win, even if the exact_kls is very specific,
3261       // because downstream operations, such as method calls,
3262       // will often benefit from the sharper type.
3263       Node* exact_obj = not_null_obj; // will get updated in place...
3264       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3265                                             &exact_obj);
3266       { PreserveJVMState pjvms(this);
3267         set_control(slow_ctl);
3268         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3269       }
3270       if (safe_for_replace) {
3271         replace_in_map(not_null_obj, exact_obj);
3272       }
3273       return exact_obj;
3274     }
3275     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3276   }
3277 
3278   return nullptr;
3279 }
3280 
3281 /**
3282  * Cast obj to type and emit guard unless we had too many traps here
3283  * already
3284  *
3285  * @param obj       node being casted
3286  * @param type      type to cast the node to
3287  * @param not_null  true if we know node cannot be null
3288  */
3289 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3290                                         ciKlass* type,
3291                                         bool not_null) {
3292   if (stopped()) {
3293     return obj;
3294   }
3295 
3296   // type is null if profiling tells us this object is always null
3297   if (type != nullptr) {
3298     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3299     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3300 
3301     if (!too_many_traps_or_recompiles(null_reason) &&
3302         !too_many_traps_or_recompiles(class_reason)) {
3303       Node* not_null_obj = nullptr;
3304       // not_null is true if we know the object is not null and
3305       // there's no need for a null check
3306       if (!not_null) {
3307         Node* null_ctl = top();
3308         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3309         assert(null_ctl->is_top(), "no null control here");
3310       } else {
3311         not_null_obj = obj;
3312       }
3313 
3314       Node* exact_obj = not_null_obj;
3315       ciKlass* exact_kls = type;
3316       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3317                                             &exact_obj);
3318       {
3319         PreserveJVMState pjvms(this);
3320         set_control(slow_ctl);
3321         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3322       }
3323       replace_in_map(not_null_obj, exact_obj);
3324       obj = exact_obj;
3325     }
3326   } else {
3327     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3328       Node* exact_obj = null_assert(obj);
3329       replace_in_map(obj, exact_obj);
3330       obj = exact_obj;
3331     }
3332   }
3333   return obj;
3334 }
3335 
3336 //-------------------------------gen_instanceof--------------------------------
3337 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3338 // and the reflective instance-of call.
3339 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3340   kill_dead_locals();           // Benefit all the uncommon traps
3341   assert( !stopped(), "dead parse path should be checked in callers" );
3342   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3343          "must check for not-null not-dead klass in callers");
3344 
3345   // Make the merge point
3346   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3347   RegionNode* region = new RegionNode(PATH_LIMIT);
3348   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3349   C->set_has_split_ifs(true); // Has chance for split-if optimization
3350 
3351   ciProfileData* data = nullptr;
3352   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3353     data = method()->method_data()->bci_to_data(bci());
3354   }
3355   bool speculative_not_null = false;
3356   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3357                          && seems_never_null(obj, data, speculative_not_null));
3358 
3359   // Null check; get casted pointer; set region slot 3
3360   Node* null_ctl = top();
3361   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3362 
3363   // If not_null_obj is dead, only null-path is taken
3364   if (stopped()) {              // Doing instance-of on a null?
3365     set_control(null_ctl);
3366     return intcon(0);
3367   }
3368   region->init_req(_null_path, null_ctl);
3369   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3370   if (null_ctl == top()) {
3371     // Do this eagerly, so that pattern matches like is_diamond_phi
3372     // will work even during parsing.
3373     assert(_null_path == PATH_LIMIT-1, "delete last");
3374     region->del_req(_null_path);
3375     phi   ->del_req(_null_path);
3376   }
3377 
3378   // Do we know the type check always succeed?
3379   bool known_statically = false;
3380   if (_gvn.type(superklass)->singleton()) {
3381     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3382     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3383     if (subk != nullptr && subk->is_loaded()) {
3384       int static_res = C->static_subtype_check(superk, subk);
3385       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3386     }
3387   }
3388 
3389   if (!known_statically) {
3390     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3391     // We may not have profiling here or it may not help us. If we
3392     // have a speculative type use it to perform an exact cast.
3393     ciKlass* spec_obj_type = obj_type->speculative_type();
3394     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3395       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3396       if (stopped()) {            // Profile disagrees with this path.
3397         set_control(null_ctl);    // Null is the only remaining possibility.
3398         return intcon(0);
3399       }
3400       if (cast_obj != nullptr) {
3401         not_null_obj = cast_obj;
3402       }
3403     }
3404   }
3405 
3406   // Generate the subtype check
3407   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3408 
3409   // Plug in the success path to the general merge in slot 1.
3410   region->init_req(_obj_path, control());
3411   phi   ->init_req(_obj_path, intcon(1));
3412 
3413   // Plug in the failing path to the general merge in slot 2.
3414   region->init_req(_fail_path, not_subtype_ctrl);
3415   phi   ->init_req(_fail_path, intcon(0));
3416 
3417   // Return final merged results
3418   set_control( _gvn.transform(region) );
3419   record_for_igvn(region);
3420 
3421   // If we know the type check always succeeds then we don't use the
3422   // profiling data at this bytecode. Don't lose it, feed it to the
3423   // type system as a speculative type.
3424   if (safe_for_replace) {
3425     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3426     replace_in_map(obj, casted_obj);
3427   }
3428 
3429   return _gvn.transform(phi);
3430 }
3431 
3432 //-------------------------------gen_checkcast---------------------------------
3433 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3434 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3435 // uncommon-trap paths work.  Adjust stack after this call.
3436 // If failure_control is supplied and not null, it is filled in with
3437 // the control edge for the cast failure.  Otherwise, an appropriate
3438 // uncommon trap or exception is thrown.
3439 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {
3440   kill_dead_locals();           // Benefit all the uncommon traps
3441   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3442   const Type* obj_type = _gvn.type(obj);
3443   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3444     // Special case: larval inline objects must not be scalarized. They are also generally not
3445     // allowed to participate in most operations except as the first operand of putfield, or as an
3446     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3447     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3448     // value objects in all other places. This special case comes from the limitation of the Java
3449     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3450     // value type. We must do this first because C->static_subtype_check may do nothing when
3451     // StressReflectiveCode is set.
3452     return obj;
3453   }
3454 
3455   // Else it must be a non-larval object
3456   obj = cast_to_non_larval(obj);
3457 
3458   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3459   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3460   bool safe_for_replace = (failure_control == nullptr);
3461   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3462 
3463   // Fast cutout:  Check the case that the cast is vacuously true.
3464   // This detects the common cases where the test will short-circuit
3465   // away completely.  We do this before we perform the null check,
3466   // because if the test is going to turn into zero code, we don't
3467   // want a residual null check left around.  (Causes a slowdown,
3468   // for example, in some objArray manipulations, such as a[i]=a[j].)
3469   if (improved_klass_ptr_type->singleton()) {
3470     const TypeKlassPtr* kptr = nullptr;
3471     if (obj_type->isa_oop_ptr()) {
3472       kptr = obj_type->is_oopptr()->as_klass_type();
3473     } else if (obj->is_InlineType()) {
3474       ciInlineKlass* vk = obj_type->inline_klass();
3475       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3476     }
3477 
3478     if (kptr != nullptr) {
3479       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3480       case Compile::SSC_always_true:
3481         // If we know the type check always succeed then we don't use
3482         // the profiling data at this bytecode. Don't lose it, feed it
3483         // to the type system as a speculative type.
3484         obj = record_profiled_receiver_for_speculation(obj);
3485         if (null_free) {
3486           assert(safe_for_replace, "must be");
3487           obj = null_check(obj);
3488         }
3489         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3490         return obj;
3491       case Compile::SSC_always_false:
3492         if (null_free) {
3493           assert(safe_for_replace, "must be");
3494           obj = null_check(obj);
3495         }
3496         // It needs a null check because a null will *pass* the cast check.
3497         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {
3498           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3499           Deoptimization::DeoptReason reason = is_aastore ?
3500             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3501           builtin_throw(reason);
3502           return top();
3503         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3504           return null_assert(obj);
3505         }
3506         break; // Fall through to full check
3507       default:
3508         break;
3509       }
3510     }
3511   }
3512 
3513   ciProfileData* data = nullptr;
3514   if (failure_control == nullptr) {        // use MDO in regular case only
3515     assert(java_bc() == Bytecodes::_aastore ||
3516            java_bc() == Bytecodes::_checkcast,
3517            "interpreter profiles type checks only for these BCs");
3518     if (method()->method_data()->is_mature()) {
3519       data = method()->method_data()->bci_to_data(bci());
3520     }
3521   }
3522 
3523   // Make the merge point
3524   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3525   RegionNode* region = new RegionNode(PATH_LIMIT);
3526   Node*       phi    = new PhiNode(region, toop);
3527   _gvn.set_type(region, Type::CONTROL);
3528   _gvn.set_type(phi, toop);
3529 
3530   C->set_has_split_ifs(true); // Has chance for split-if optimization
3531 
3532   // Use null-cast information if it is available
3533   bool speculative_not_null = false;
3534   bool never_see_null = ((failure_control == nullptr)  // regular case only
3535                          && seems_never_null(obj, data, speculative_not_null));
3536 
3537   if (obj->is_InlineType()) {
3538     // Re-execute if buffering during triggers deoptimization
3539     PreserveReexecuteState preexecs(this);
3540     jvms()->set_should_reexecute(true);
3541     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3542   }
3543 
3544   // Null check; get casted pointer; set region slot 3
3545   Node* null_ctl = top();
3546   Node* not_null_obj = nullptr;
3547   if (null_free) {
3548     assert(safe_for_replace, "must be");
3549     not_null_obj = null_check(obj);
3550   } else {
3551     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3552   }
3553 
3554   // If not_null_obj is dead, only null-path is taken
3555   if (stopped()) {              // Doing instance-of on a null?
3556     set_control(null_ctl);
3557     if (toop->is_inlinetypeptr()) {
3558       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3559     }
3560     return null();
3561   }
3562   region->init_req(_null_path, null_ctl);
3563   phi   ->init_req(_null_path, null());  // Set null path value
3564   if (null_ctl == top()) {
3565     // Do this eagerly, so that pattern matches like is_diamond_phi
3566     // will work even during parsing.
3567     assert(_null_path == PATH_LIMIT-1, "delete last");
3568     region->del_req(_null_path);
3569     phi   ->del_req(_null_path);
3570   }
3571 
3572   Node* cast_obj = nullptr;
3573   if (improved_klass_ptr_type->klass_is_exact()) {
3574     // The following optimization tries to statically cast the speculative type of the object
3575     // (for example obtained during profiling) to the type of the superklass and then do a
3576     // dynamic check that the type of the object is what we expect. To work correctly
3577     // for checkcast and aastore the type of superklass should be exact.
3578     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3579     // We may not have profiling here or it may not help us. If we have
3580     // a speculative type use it to perform an exact cast.
3581     ciKlass* spec_obj_type = obj_type->speculative_type();
3582     if (spec_obj_type != nullptr || data != nullptr) {
3583       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3584       if (cast_obj != nullptr) {
3585         if (failure_control != nullptr) // failure is now impossible
3586           (*failure_control) = top();
3587         // adjust the type of the phi to the exact klass:
3588         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3589       }
3590     }
3591   }
3592 
3593   if (cast_obj == nullptr) {
3594     // Generate the subtype check
3595     Node* improved_superklass = superklass;
3596     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3597       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3598       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3599       // Additionally, the benefit would only be minor in non-constant cases.
3600       improved_superklass = makecon(improved_klass_ptr_type);
3601     }
3602     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3603     // Plug in success path into the merge
3604     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3605     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3606     if (failure_control == nullptr) {
3607       if (not_subtype_ctrl != top()) { // If failure is possible
3608         PreserveJVMState pjvms(this);
3609         set_control(not_subtype_ctrl);
3610         Node* obj_klass = nullptr;
3611         if (not_null_obj->is_InlineType()) {
3612           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3613         } else {
3614           obj_klass = load_object_klass(not_null_obj);
3615         }
3616         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3617         Deoptimization::DeoptReason reason = is_aastore ?
3618           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3619         builtin_throw(reason);
3620       }
3621     } else {
3622       (*failure_control) = not_subtype_ctrl;
3623     }
3624   }
3625 
3626   region->init_req(_obj_path, control());
3627   phi   ->init_req(_obj_path, cast_obj);
3628 
3629   // A merge of null or Casted-NotNull obj
3630   Node* res = _gvn.transform(phi);
3631 
3632   // Note I do NOT always 'replace_in_map(obj,result)' here.
3633   //  if( tk->klass()->can_be_primary_super()  )
3634     // This means that if I successfully store an Object into an array-of-String
3635     // I 'forget' that the Object is really now known to be a String.  I have to
3636     // do this because we don't have true union types for interfaces - if I store
3637     // a Baz into an array-of-Interface and then tell the optimizer it's an
3638     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3639     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3640   //  replace_in_map( obj, res );
3641 
3642   // Return final merged results
3643   set_control( _gvn.transform(region) );
3644   record_for_igvn(region);
3645 
3646   bool not_inline = !toop->can_be_inline_type();
3647   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3648   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3649     // Check if obj has been loaded from an array
3650     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3651     Node* array = nullptr;
3652     if (obj->isa_Load()) {
3653       Node* address = obj->in(MemNode::Address);
3654       if (address->isa_AddP()) {
3655         array = address->as_AddP()->in(AddPNode::Base);
3656       }
3657     } else if (obj->is_Phi()) {
3658       Node* region = obj->in(0);
3659       // TODO make this more robust (see JDK-8231346)
3660       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3661         IfNode* iff = region->in(2)->in(0)->isa_If();
3662         if (iff != nullptr) {
3663           iff->is_flat_array_check(&_gvn, &array);
3664         }
3665       }
3666     }
3667     if (array != nullptr) {
3668       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3669       if (ary_t != nullptr) {
3670         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3671           // Casting array element to a non-inline-type, mark array as not null-free.
3672           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3673           replace_in_map(array, cast);
3674           array = cast;
3675         }
3676         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3677           // Casting array element to a non-flat-in-array type, mark array as not flat.
3678           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3679           replace_in_map(array, cast);
3680           array = cast;
3681         }
3682       }
3683     }
3684   }
3685 
3686   if (!stopped() && !res->is_InlineType()) {
3687     res = record_profiled_receiver_for_speculation(res);
3688     if (toop->is_inlinetypeptr() && !maybe_larval) {
3689       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3690       res = vt;
3691       if (safe_for_replace) {
3692         replace_in_map(obj, vt);
3693         replace_in_map(not_null_obj, vt);
3694         replace_in_map(res, vt);
3695       }
3696     }
3697   }
3698   return res;
3699 }
3700 
3701 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3702   // Load markword
3703   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3704   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3705   if (check_lock) {
3706     // Check if obj is locked
3707     Node* locked_bit = MakeConX(markWord::unlocked_value);
3708     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3709     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3710     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3711     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3712     _gvn.transform(iff);
3713     Node* locked_region = new RegionNode(3);
3714     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3715 
3716     // Unlocked: Use bits from mark word
3717     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3718     mark_phi->init_req(1, mark);
3719 
3720     // Locked: Load prototype header from klass
3721     set_control(_gvn.transform(new IfFalseNode(iff)));
3722     // Make loads control dependent to make sure they are only executed if array is locked
3723     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3724     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3725     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3726     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3727 
3728     locked_region->init_req(2, control());
3729     mark_phi->init_req(2, proto);
3730     set_control(_gvn.transform(locked_region));
3731     record_for_igvn(locked_region);
3732 
3733     mark = mark_phi;
3734   }
3735 
3736   // Now check if mark word bits are set
3737   Node* mask = MakeConX(mask_val);
3738   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3739   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3740   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3741   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3742 }
3743 
3744 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3745   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3746 }
3747 
3748 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3749   // We can't use immutable memory here because the mark word is mutable.
3750   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3751   // check is moved out of loops (mainly to enable loop unswitching).
3752   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3753   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3754   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3755 }
3756 
3757 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3758   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3759 }
3760 
3761 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3762   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3763 
3764   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3765   if (!vk->has_non_atomic_layout()) {
3766     return intcon(1); // Always atomic
3767   } else if (!vk->has_atomic_layout()) {
3768     return intcon(0); // Never atomic
3769   }
3770 
3771   // TODO 8350865 Don't fold this klass load because atomicity is currently not included in the typesystem
3772   Node* array_klass = load_object_klass(array, /* fold_for_arrays = */ false);
3773   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3774   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3775   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3776   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3777   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3778 }
3779 
3780 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3781 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3782   RegionNode* region = new RegionNode(3);
3783   Node* null_ctl = top();
3784   null_check_oop(val, &null_ctl);
3785   if (null_ctl != top()) {
3786     PreserveJVMState pjvms(this);
3787     set_control(null_ctl);
3788     {
3789       // Deoptimize if null-free array
3790       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3791       inc_sp(nargs);
3792       uncommon_trap(Deoptimization::Reason_null_check,
3793                     Deoptimization::Action_none);
3794     }
3795     region->init_req(1, control());
3796   }
3797   region->init_req(2, control());
3798   set_control(_gvn.transform(region));
3799   record_for_igvn(region);
3800   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3801     // Since we were just successfully storing null, the array can't be null free.
3802     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3803     ary_t = ary_t->cast_to_not_null_free();
3804     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3805     if (safe_for_replace) {
3806       replace_in_map(ary, cast);
3807     }
3808     ary = cast;
3809   }
3810   return ary;
3811 }
3812 
3813 //------------------------------next_monitor-----------------------------------
3814 // What number should be given to the next monitor?
3815 int GraphKit::next_monitor() {
3816   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3817   int next = current + C->sync_stack_slots();
3818   // Keep the toplevel high water mark current:
3819   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3820   return current;
3821 }
3822 
3823 //------------------------------insert_mem_bar---------------------------------
3824 // Memory barrier to avoid floating things around
3825 // The membar serves as a pinch point between both control and all memory slices.
3826 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3827   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3828   mb->init_req(TypeFunc::Control, control());
3829   mb->init_req(TypeFunc::Memory,  reset_memory());
3830   Node* membar = _gvn.transform(mb);
3831   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3832   set_all_memory_call(membar);
3833   return membar;
3834 }
3835 
3836 //-------------------------insert_mem_bar_volatile----------------------------
3837 // Memory barrier to avoid floating things around
3838 // The membar serves as a pinch point between both control and memory(alias_idx).
3839 // If you want to make a pinch point on all memory slices, do not use this
3840 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3841 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3842   // When Parse::do_put_xxx updates a volatile field, it appends a series
3843   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3844   // The first membar is on the same memory slice as the field store opcode.
3845   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3846   // All the other membars (for other volatile slices, including AliasIdxBot,
3847   // which stands for all unknown volatile slices) are control-dependent
3848   // on the first membar.  This prevents later volatile loads or stores
3849   // from sliding up past the just-emitted store.
3850 
3851   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3852   mb->set_req(TypeFunc::Control,control());
3853   if (alias_idx == Compile::AliasIdxBot) {
3854     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3855   } else {
3856     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3857     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3858   }
3859   Node* membar = _gvn.transform(mb);
3860   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3861   if (alias_idx == Compile::AliasIdxBot) {
3862     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3863   } else {
3864     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3865   }
3866   return membar;
3867 }
3868 
3869 //------------------------------shared_lock------------------------------------
3870 // Emit locking code.
3871 FastLockNode* GraphKit::shared_lock(Node* obj) {
3872   // bci is either a monitorenter bc or InvocationEntryBci
3873   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3874   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3875 
3876   if( !GenerateSynchronizationCode )
3877     return nullptr;                // Not locking things?
3878 
3879   if (stopped())                // Dead monitor?
3880     return nullptr;
3881 
3882   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3883 
3884   // Box the stack location
3885   Node* box = new BoxLockNode(next_monitor());
3886   // Check for bailout after new BoxLockNode
3887   if (failing()) { return nullptr; }
3888   box = _gvn.transform(box);
3889   Node* mem = reset_memory();
3890 
3891   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3892 
3893   // Add monitor to debug info for the slow path.  If we block inside the
3894   // slow path and de-opt, we need the monitor hanging around
3895   map()->push_monitor( flock );
3896 
3897   const TypeFunc *tf = LockNode::lock_type();
3898   LockNode *lock = new LockNode(C, tf);
3899 
3900   lock->init_req( TypeFunc::Control, control() );
3901   lock->init_req( TypeFunc::Memory , mem );
3902   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3903   lock->init_req( TypeFunc::FramePtr, frameptr() );
3904   lock->init_req( TypeFunc::ReturnAdr, top() );
3905 
3906   lock->init_req(TypeFunc::Parms + 0, obj);
3907   lock->init_req(TypeFunc::Parms + 1, box);
3908   lock->init_req(TypeFunc::Parms + 2, flock);
3909   add_safepoint_edges(lock);
3910 
3911   lock = _gvn.transform( lock )->as_Lock();
3912 
3913   // lock has no side-effects, sets few values
3914   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3915 
3916   insert_mem_bar(Op_MemBarAcquireLock);
3917 
3918   // Add this to the worklist so that the lock can be eliminated
3919   record_for_igvn(lock);
3920 
3921 #ifndef PRODUCT
3922   if (PrintLockStatistics) {
3923     // Update the counter for this lock.  Don't bother using an atomic
3924     // operation since we don't require absolute accuracy.
3925     lock->create_lock_counter(map()->jvms());
3926     increment_counter(lock->counter()->addr());
3927   }
3928 #endif
3929 
3930   return flock;
3931 }
3932 
3933 
3934 //------------------------------shared_unlock----------------------------------
3935 // Emit unlocking code.
3936 void GraphKit::shared_unlock(Node* box, Node* obj) {
3937   // bci is either a monitorenter bc or InvocationEntryBci
3938   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3939   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3940 
3941   if( !GenerateSynchronizationCode )
3942     return;
3943   if (stopped()) {               // Dead monitor?
3944     map()->pop_monitor();        // Kill monitor from debug info
3945     return;
3946   }
3947   assert(!obj->is_InlineType(), "should not unlock on inline type");
3948 
3949   // Memory barrier to avoid floating things down past the locked region
3950   insert_mem_bar(Op_MemBarReleaseLock);
3951 
3952   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3953   UnlockNode *unlock = new UnlockNode(C, tf);
3954 #ifdef ASSERT
3955   unlock->set_dbg_jvms(sync_jvms());
3956 #endif
3957   uint raw_idx = Compile::AliasIdxRaw;
3958   unlock->init_req( TypeFunc::Control, control() );
3959   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3960   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3961   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3962   unlock->init_req( TypeFunc::ReturnAdr, top() );
3963 
3964   unlock->init_req(TypeFunc::Parms + 0, obj);
3965   unlock->init_req(TypeFunc::Parms + 1, box);
3966   unlock = _gvn.transform(unlock)->as_Unlock();
3967 
3968   Node* mem = reset_memory();
3969 
3970   // unlock has no side-effects, sets few values
3971   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3972 
3973   // Kill monitor from debug info
3974   map()->pop_monitor( );
3975 }
3976 
3977 //-------------------------------get_layout_helper-----------------------------
3978 // If the given klass is a constant or known to be an array,
3979 // fetch the constant layout helper value into constant_value
3980 // and return null.  Otherwise, load the non-constant
3981 // layout helper value, and return the node which represents it.
3982 // This two-faced routine is useful because allocation sites
3983 // almost always feature constant types.
3984 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3985   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3986   if (!StressReflectiveCode && klass_t != nullptr) {
3987     bool xklass = klass_t->klass_is_exact();
3988     bool can_be_flat = false;
3989     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3990     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3991       // Don't constant fold if the runtime type might be a flat array but the static type is not.
3992       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3993       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
3994     }
3995     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3996       jint lhelper;
3997       if (klass_t->is_flat()) {
3998         lhelper = ary_type->flat_layout_helper();
3999       } else if (klass_t->isa_aryklassptr()) {
4000         BasicType elem = ary_type->elem()->array_element_basic_type();
4001         if (is_reference_type(elem, true)) {
4002           elem = T_OBJECT;
4003         }
4004         lhelper = Klass::array_layout_helper(elem);
4005       } else {
4006         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4007       }
4008       if (lhelper != Klass::_lh_neutral_value) {
4009         constant_value = lhelper;
4010         return (Node*) nullptr;
4011       }
4012     }
4013   }
4014   constant_value = Klass::_lh_neutral_value;  // put in a known value
4015   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4016   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4017 }
4018 
4019 // We just put in an allocate/initialize with a big raw-memory effect.
4020 // Hook selected additional alias categories on the initialization.
4021 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4022                                 MergeMemNode* init_in_merge,
4023                                 Node* init_out_raw) {
4024   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4025   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4026 
4027   Node* prevmem = kit.memory(alias_idx);
4028   init_in_merge->set_memory_at(alias_idx, prevmem);
4029   if (init_out_raw != nullptr) {
4030     kit.set_memory(init_out_raw, alias_idx);
4031   }
4032 }
4033 
4034 //---------------------------set_output_for_allocation-------------------------
4035 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4036                                           const TypeOopPtr* oop_type,
4037                                           bool deoptimize_on_exception) {
4038   int rawidx = Compile::AliasIdxRaw;
4039   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4040   add_safepoint_edges(alloc);
4041   Node* allocx = _gvn.transform(alloc);
4042   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4043   // create memory projection for i_o
4044   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4045   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4046 
4047   // create a memory projection as for the normal control path
4048   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4049   set_memory(malloc, rawidx);
4050 
4051   // a normal slow-call doesn't change i_o, but an allocation does
4052   // we create a separate i_o projection for the normal control path
4053   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4054   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4055 
4056   // put in an initialization barrier
4057   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4058                                                  rawoop)->as_Initialize();
4059   assert(alloc->initialization() == init,  "2-way macro link must work");
4060   assert(init ->allocation()     == alloc, "2-way macro link must work");
4061   {
4062     // Extract memory strands which may participate in the new object's
4063     // initialization, and source them from the new InitializeNode.
4064     // This will allow us to observe initializations when they occur,
4065     // and link them properly (as a group) to the InitializeNode.
4066     assert(init->in(InitializeNode::Memory) == malloc, "");
4067     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4068     init->set_req(InitializeNode::Memory, minit_in);
4069     record_for_igvn(minit_in); // fold it up later, if possible
4070     _gvn.set_type(minit_in, Type::MEMORY);
4071     Node* minit_out = memory(rawidx);
4072     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4073     // Add an edge in the MergeMem for the header fields so an access
4074     // to one of those has correct memory state
4075     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4076     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4077     if (oop_type->isa_aryptr()) {
4078       const TypeAryPtr* arytype = oop_type->is_aryptr();
4079       if (arytype->is_flat()) {
4080         // Initially all flat array accesses share a single slice
4081         // but that changes after parsing. Prepare the memory graph so
4082         // it can optimize flat array accesses properly once they
4083         // don't share a single slice.
4084         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4085         C->set_flat_accesses_share_alias(false);
4086         ciInlineKlass* vk = arytype->elem()->inline_klass();
4087         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4088           ciField* field = vk->nonstatic_field_at(i);
4089           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4090             continue;  // do not bother to track really large numbers of fields
4091           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4092           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4093           int fieldidx = C->get_alias_index(adr_type, true);
4094           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4095           // can result in per flat array field Phis to be created which confuses the logic of
4096           // Compile::adjust_flat_array_access_aliases().
4097           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4098         }
4099         C->set_flat_accesses_share_alias(true);
4100         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4101       } else {
4102         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4103         int            elemidx  = C->get_alias_index(telemref);
4104         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4105       }
4106     } else if (oop_type->isa_instptr()) {
4107       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4108       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4109       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4110         ciField* field = ik->nonstatic_field_at(i);
4111         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4112           continue;  // do not bother to track really large numbers of fields
4113         // Find (or create) the alias category for this field:
4114         int fieldidx = C->alias_type(field)->index();
4115         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4116       }
4117     }
4118   }
4119 
4120   // Cast raw oop to the real thing...
4121   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4122   javaoop = _gvn.transform(javaoop);
4123   C->set_recent_alloc(control(), javaoop);
4124   assert(just_allocated_object(control()) == javaoop, "just allocated");
4125 
4126 #ifdef ASSERT
4127   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4128     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4129            "Ideal_allocation works");
4130     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4131            "Ideal_allocation works");
4132     if (alloc->is_AllocateArray()) {
4133       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4134              "Ideal_allocation works");
4135       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4136              "Ideal_allocation works");
4137     } else {
4138       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4139     }
4140   }
4141 #endif //ASSERT
4142 
4143   return javaoop;
4144 }
4145 
4146 //---------------------------new_instance--------------------------------------
4147 // This routine takes a klass_node which may be constant (for a static type)
4148 // or may be non-constant (for reflective code).  It will work equally well
4149 // for either, and the graph will fold nicely if the optimizer later reduces
4150 // the type to a constant.
4151 // The optional arguments are for specialized use by intrinsics:
4152 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4153 //  - If 'return_size_val', report the total object size to the caller.
4154 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4155 Node* GraphKit::new_instance(Node* klass_node,
4156                              Node* extra_slow_test,
4157                              Node* *return_size_val,
4158                              bool deoptimize_on_exception,
4159                              InlineTypeNode* inline_type_node) {
4160   // Compute size in doublewords
4161   // The size is always an integral number of doublewords, represented
4162   // as a positive bytewise size stored in the klass's layout_helper.
4163   // The layout_helper also encodes (in a low bit) the need for a slow path.
4164   jint  layout_con = Klass::_lh_neutral_value;
4165   Node* layout_val = get_layout_helper(klass_node, layout_con);
4166   bool  layout_is_con = (layout_val == nullptr);
4167 
4168   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4169   // Generate the initial go-slow test.  It's either ALWAYS (return a
4170   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4171   // case) a computed value derived from the layout_helper.
4172   Node* initial_slow_test = nullptr;
4173   if (layout_is_con) {
4174     assert(!StressReflectiveCode, "stress mode does not use these paths");
4175     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4176     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4177   } else {   // reflective case
4178     // This reflective path is used by Unsafe.allocateInstance.
4179     // (It may be stress-tested by specifying StressReflectiveCode.)
4180     // Basically, we want to get into the VM is there's an illegal argument.
4181     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4182     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4183     if (extra_slow_test != intcon(0)) {
4184       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4185     }
4186     // (Macro-expander will further convert this to a Bool, if necessary.)
4187   }
4188 
4189   // Find the size in bytes.  This is easy; it's the layout_helper.
4190   // The size value must be valid even if the slow path is taken.
4191   Node* size = nullptr;
4192   if (layout_is_con) {
4193     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4194   } else {   // reflective case
4195     // This reflective path is used by clone and Unsafe.allocateInstance.
4196     size = ConvI2X(layout_val);
4197 
4198     // Clear the low bits to extract layout_helper_size_in_bytes:
4199     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4200     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4201     size = _gvn.transform( new AndXNode(size, mask) );
4202   }
4203   if (return_size_val != nullptr) {
4204     (*return_size_val) = size;
4205   }
4206 
4207   // This is a precise notnull oop of the klass.
4208   // (Actually, it need not be precise if this is a reflective allocation.)
4209   // It's what we cast the result to.
4210   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4211   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4212   const TypeOopPtr* oop_type = tklass->as_instance_type();
4213 
4214   // Now generate allocation code
4215 
4216   // The entire memory state is needed for slow path of the allocation
4217   // since GC and deoptimization can happen.
4218   Node *mem = reset_memory();
4219   set_all_memory(mem); // Create new memory state
4220 
4221   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4222                                          control(), mem, i_o(),
4223                                          size, klass_node,
4224                                          initial_slow_test, inline_type_node);
4225 
4226   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4227 }
4228 
4229 //-------------------------------new_array-------------------------------------
4230 // helper for newarray and anewarray
4231 // The 'length' parameter is (obviously) the length of the array.
4232 // The optional arguments are for specialized use by intrinsics:
4233 //  - If 'return_size_val', report the non-padded array size (sum of header size
4234 //    and array body) to the caller.
4235 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4236 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4237                           Node* length,         // number of array elements
4238                           int   nargs,          // number of arguments to push back for uncommon trap
4239                           Node* *return_size_val,
4240                           bool deoptimize_on_exception,
4241                           Node* init_val) {
4242   jint  layout_con = Klass::_lh_neutral_value;
4243   Node* layout_val = get_layout_helper(klass_node, layout_con);
4244   bool  layout_is_con = (layout_val == nullptr);
4245 
4246   if (!layout_is_con && !StressReflectiveCode &&
4247       !too_many_traps(Deoptimization::Reason_class_check)) {
4248     // This is a reflective array creation site.
4249     // Optimistically assume that it is a subtype of Object[],
4250     // so that we can fold up all the address arithmetic.
4251     layout_con = Klass::array_layout_helper(T_OBJECT);
4252     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4253     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4254     { BuildCutout unless(this, bol_lh, PROB_MAX);
4255       inc_sp(nargs);
4256       uncommon_trap(Deoptimization::Reason_class_check,
4257                     Deoptimization::Action_maybe_recompile);
4258     }
4259     layout_val = nullptr;
4260     layout_is_con = true;
4261   }
4262 
4263   // Generate the initial go-slow test.  Make sure we do not overflow
4264   // if length is huge (near 2Gig) or negative!  We do not need
4265   // exact double-words here, just a close approximation of needed
4266   // double-words.  We can't add any offset or rounding bits, lest we
4267   // take a size -1 of bytes and make it positive.  Use an unsigned
4268   // compare, so negative sizes look hugely positive.
4269   int fast_size_limit = FastAllocateSizeLimit;
4270   if (layout_is_con) {
4271     assert(!StressReflectiveCode, "stress mode does not use these paths");
4272     // Increase the size limit if we have exact knowledge of array type.
4273     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4274     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4275   }
4276 
4277   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4278   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4279 
4280   // --- Size Computation ---
4281   // array_size = round_to_heap(array_header + (length << elem_shift));
4282   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4283   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4284   // The rounding mask is strength-reduced, if possible.
4285   int round_mask = MinObjAlignmentInBytes - 1;
4286   Node* header_size = nullptr;
4287   // (T_BYTE has the weakest alignment and size restrictions...)
4288   if (layout_is_con) {
4289     int       hsize  = Klass::layout_helper_header_size(layout_con);
4290     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4291     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4292     if ((round_mask & ~right_n_bits(eshift)) == 0)
4293       round_mask = 0;  // strength-reduce it if it goes away completely
4294     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4295     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4296     assert(header_size_min <= hsize, "generic minimum is smallest");
4297     header_size = intcon(hsize);
4298   } else {
4299     Node* hss   = intcon(Klass::_lh_header_size_shift);
4300     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4301     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4302     header_size = _gvn.transform(new AndINode(header_size, hsm));
4303   }
4304 
4305   Node* elem_shift = nullptr;
4306   if (layout_is_con) {
4307     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4308     if (eshift != 0)
4309       elem_shift = intcon(eshift);
4310   } else {
4311     // There is no need to mask or shift this value.
4312     // The semantics of LShiftINode include an implicit mask to 0x1F.
4313     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4314     elem_shift = layout_val;
4315   }
4316 
4317   // Transition to native address size for all offset calculations:
4318   Node* lengthx = ConvI2X(length);
4319   Node* headerx = ConvI2X(header_size);
4320 #ifdef _LP64
4321   { const TypeInt* tilen = _gvn.find_int_type(length);
4322     if (tilen != nullptr && tilen->_lo < 0) {
4323       // Add a manual constraint to a positive range.  Cf. array_element_address.
4324       jint size_max = fast_size_limit;
4325       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4326       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4327 
4328       // Only do a narrow I2L conversion if the range check passed.
4329       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4330       _gvn.transform(iff);
4331       RegionNode* region = new RegionNode(3);
4332       _gvn.set_type(region, Type::CONTROL);
4333       lengthx = new PhiNode(region, TypeLong::LONG);
4334       _gvn.set_type(lengthx, TypeLong::LONG);
4335 
4336       // Range check passed. Use ConvI2L node with narrow type.
4337       Node* passed = IfFalse(iff);
4338       region->init_req(1, passed);
4339       // Make I2L conversion control dependent to prevent it from
4340       // floating above the range check during loop optimizations.
4341       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4342 
4343       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4344       region->init_req(2, IfTrue(iff));
4345       lengthx->init_req(2, ConvI2X(length));
4346 
4347       set_control(region);
4348       record_for_igvn(region);
4349       record_for_igvn(lengthx);
4350     }
4351   }
4352 #endif
4353 
4354   // Combine header size and body size for the array copy part, then align (if
4355   // necessary) for the allocation part. This computation cannot overflow,
4356   // because it is used only in two places, one where the length is sharply
4357   // limited, and the other after a successful allocation.
4358   Node* abody = lengthx;
4359   if (elem_shift != nullptr) {
4360     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4361   }
4362   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4363 
4364   if (return_size_val != nullptr) {
4365     // This is the size
4366     (*return_size_val) = non_rounded_size;
4367   }
4368 
4369   Node* size = non_rounded_size;
4370   if (round_mask != 0) {
4371     Node* mask1 = MakeConX(round_mask);
4372     size = _gvn.transform(new AddXNode(size, mask1));
4373     Node* mask2 = MakeConX(~round_mask);
4374     size = _gvn.transform(new AndXNode(size, mask2));
4375   }
4376   // else if round_mask == 0, the size computation is self-rounding
4377 
4378   // Now generate allocation code
4379 
4380   // The entire memory state is needed for slow path of the allocation
4381   // since GC and deoptimization can happen.
4382   Node *mem = reset_memory();
4383   set_all_memory(mem); // Create new memory state
4384 
4385   if (initial_slow_test->is_Bool()) {
4386     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4387     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4388   }
4389 
4390   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4391   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4392 
4393   Node* raw_init_value = nullptr;
4394   if (init_val != nullptr) {
4395     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4396     if (ary_type->is_flat()) {
4397       initial_slow_test = intcon(1);
4398     }
4399 
4400     if (UseCompressedOops) {
4401       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4402       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4403       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4404       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4405       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4406     } else {
4407       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4408     }
4409   }
4410 
4411   Node* valid_length_test = _gvn.intcon(1);
4412   if (ary_type->isa_aryptr()) {
4413     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4414     jint max = TypeAryPtr::max_array_length(bt);
4415     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4416     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4417   }
4418 
4419   // Create the AllocateArrayNode and its result projections
4420   AllocateArrayNode* alloc
4421     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4422                             control(), mem, i_o(),
4423                             size, klass_node,
4424                             initial_slow_test,
4425                             length, valid_length_test,
4426                             init_val, raw_init_value);
4427   // Cast to correct type.  Note that the klass_node may be constant or not,
4428   // and in the latter case the actual array type will be inexact also.
4429   // (This happens via a non-constant argument to inline_native_newArray.)
4430   // In any case, the value of klass_node provides the desired array type.
4431   const TypeInt* length_type = _gvn.find_int_type(length);
4432   if (ary_type->isa_aryptr() && length_type != nullptr) {
4433     // Try to get a better type than POS for the size
4434     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4435   }
4436 
4437   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4438 
4439   array_ideal_length(alloc, ary_type, true);
4440   return javaoop;
4441 }
4442 
4443 // The following "Ideal_foo" functions are placed here because they recognize
4444 // the graph shapes created by the functions immediately above.
4445 
4446 //---------------------------Ideal_allocation----------------------------------
4447 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4448 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4449   if (ptr == nullptr) {     // reduce dumb test in callers
4450     return nullptr;
4451   }
4452 
4453   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4454   ptr = bs->step_over_gc_barrier(ptr);
4455 
4456   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4457     ptr = ptr->in(1);
4458     if (ptr == nullptr) return nullptr;
4459   }
4460   // Return null for allocations with several casts:
4461   //   j.l.reflect.Array.newInstance(jobject, jint)
4462   //   Object.clone()
4463   // to keep more precise type from last cast.
4464   if (ptr->is_Proj()) {
4465     Node* allo = ptr->in(0);
4466     if (allo != nullptr && allo->is_Allocate()) {
4467       return allo->as_Allocate();
4468     }
4469   }
4470   // Report failure to match.
4471   return nullptr;
4472 }
4473 
4474 // Fancy version which also strips off an offset (and reports it to caller).
4475 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4476                                              intptr_t& offset) {
4477   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4478   if (base == nullptr)  return nullptr;
4479   return Ideal_allocation(base);
4480 }
4481 
4482 // Trace Initialize <- Proj[Parm] <- Allocate
4483 AllocateNode* InitializeNode::allocation() {
4484   Node* rawoop = in(InitializeNode::RawAddress);
4485   if (rawoop->is_Proj()) {
4486     Node* alloc = rawoop->in(0);
4487     if (alloc->is_Allocate()) {
4488       return alloc->as_Allocate();
4489     }
4490   }
4491   return nullptr;
4492 }
4493 
4494 // Trace Allocate -> Proj[Parm] -> Initialize
4495 InitializeNode* AllocateNode::initialization() {
4496   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4497   if (rawoop == nullptr)  return nullptr;
4498   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4499     Node* init = rawoop->fast_out(i);
4500     if (init->is_Initialize()) {
4501       assert(init->as_Initialize()->allocation() == this, "2-way link");
4502       return init->as_Initialize();
4503     }
4504   }
4505   return nullptr;
4506 }
4507 
4508 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4509 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4510   // Too many traps seen?
4511   if (too_many_traps(reason)) {
4512 #ifdef ASSERT
4513     if (TraceLoopPredicate) {
4514       int tc = C->trap_count(reason);
4515       tty->print("too many traps=%s tcount=%d in ",
4516                     Deoptimization::trap_reason_name(reason), tc);
4517       method()->print(); // which method has too many predicate traps
4518       tty->cr();
4519     }
4520 #endif
4521     // We cannot afford to take more traps here,
4522     // do not generate Parse Predicate.
4523     return;
4524   }
4525 
4526   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4527   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4528   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4529   {
4530     PreserveJVMState pjvms(this);
4531     set_control(if_false);
4532     inc_sp(nargs);
4533     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4534   }
4535   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4536   set_control(if_true);
4537 }
4538 
4539 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4540 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4541 void GraphKit::add_parse_predicates(int nargs) {
4542   if (UseLoopPredicate) {
4543     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4544     if (UseProfiledLoopPredicate) {
4545       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4546     }
4547   }
4548   add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4549   // Loop Limit Check Predicate should be near the loop.
4550   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4551 }
4552 
4553 void GraphKit::sync_kit(IdealKit& ideal) {
4554   set_all_memory(ideal.merged_memory());
4555   set_i_o(ideal.i_o());
4556   set_control(ideal.ctrl());
4557 }
4558 
4559 void GraphKit::final_sync(IdealKit& ideal) {
4560   // Final sync IdealKit and graphKit.
4561   sync_kit(ideal);
4562 }
4563 
4564 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4565   Node* len = load_array_length(load_String_value(str, set_ctrl));
4566   Node* coder = load_String_coder(str, set_ctrl);
4567   // Divide length by 2 if coder is UTF16
4568   return _gvn.transform(new RShiftINode(len, coder));
4569 }
4570 
4571 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4572   int value_offset = java_lang_String::value_offset();
4573   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4574                                                      false, nullptr, Type::Offset(0));
4575   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4576   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4577                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4578                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4579   Node* p = basic_plus_adr(str, str, value_offset);
4580   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4581                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4582   return load;
4583 }
4584 
4585 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4586   if (!CompactStrings) {
4587     return intcon(java_lang_String::CODER_UTF16);
4588   }
4589   int coder_offset = java_lang_String::coder_offset();
4590   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4591                                                      false, nullptr, Type::Offset(0));
4592   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4593 
4594   Node* p = basic_plus_adr(str, str, coder_offset);
4595   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4596                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4597   return load;
4598 }
4599 
4600 void GraphKit::store_String_value(Node* str, Node* value) {
4601   int value_offset = java_lang_String::value_offset();
4602   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4603                                                      false, nullptr, Type::Offset(0));
4604   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4605 
4606   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4607                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4608 }
4609 
4610 void GraphKit::store_String_coder(Node* str, Node* value) {
4611   int coder_offset = java_lang_String::coder_offset();
4612   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4613                                                      false, nullptr, Type::Offset(0));
4614   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4615 
4616   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4617                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4618 }
4619 
4620 // Capture src and dst memory state with a MergeMemNode
4621 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4622   if (src_type == dst_type) {
4623     // Types are equal, we don't need a MergeMemNode
4624     return memory(src_type);
4625   }
4626   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4627   record_for_igvn(merge); // fold it up later, if possible
4628   int src_idx = C->get_alias_index(src_type);
4629   int dst_idx = C->get_alias_index(dst_type);
4630   merge->set_memory_at(src_idx, memory(src_idx));
4631   merge->set_memory_at(dst_idx, memory(dst_idx));
4632   return merge;
4633 }
4634 
4635 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4636   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4637   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4638   // If input and output memory types differ, capture both states to preserve
4639   // the dependency between preceding and subsequent loads/stores.
4640   // For example, the following program:
4641   //  StoreB
4642   //  compress_string
4643   //  LoadB
4644   // has this memory graph (use->def):
4645   //  LoadB -> compress_string -> CharMem
4646   //             ... -> StoreB -> ByteMem
4647   // The intrinsic hides the dependency between LoadB and StoreB, causing
4648   // the load to read from memory not containing the result of the StoreB.
4649   // The correct memory graph should look like this:
4650   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4651   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4652   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4653   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4654   set_memory(res_mem, TypeAryPtr::BYTES);
4655   return str;
4656 }
4657 
4658 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4659   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4660   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4661   // Capture src and dst memory (see comment in 'compress_string').
4662   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4663   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4664   set_memory(_gvn.transform(str), dst_type);
4665 }
4666 
4667 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4668   /**
4669    * int i_char = start;
4670    * for (int i_byte = 0; i_byte < count; i_byte++) {
4671    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4672    * }
4673    */
4674   add_parse_predicates();
4675   C->set_has_loops(true);
4676 
4677   RegionNode* head = new RegionNode(3);
4678   head->init_req(1, control());
4679   gvn().set_type(head, Type::CONTROL);
4680   record_for_igvn(head);
4681 
4682   Node* i_byte = new PhiNode(head, TypeInt::INT);
4683   i_byte->init_req(1, intcon(0));
4684   gvn().set_type(i_byte, TypeInt::INT);
4685   record_for_igvn(i_byte);
4686 
4687   Node* i_char = new PhiNode(head, TypeInt::INT);
4688   i_char->init_req(1, start);
4689   gvn().set_type(i_char, TypeInt::INT);
4690   record_for_igvn(i_char);
4691 
4692   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4693   gvn().set_type(mem, Type::MEMORY);
4694   record_for_igvn(mem);
4695   set_control(head);
4696   set_memory(mem, TypeAryPtr::BYTES);
4697   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4698   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4699                              AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false,
4700                              false, true /* mismatched */);
4701 
4702   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4703   head->init_req(2, IfTrue(iff));
4704   mem->init_req(2, st);
4705   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4706   i_char->init_req(2, AddI(i_char, intcon(2)));
4707 
4708   set_control(IfFalse(iff));
4709   set_memory(st, TypeAryPtr::BYTES);
4710 }
4711 
4712 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4713   if (!field->is_constant()) {
4714     return nullptr; // Field not marked as constant.
4715   }
4716   ciInstance* holder = nullptr;
4717   if (!field->is_static()) {
4718     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4719     if (const_oop != nullptr && const_oop->is_instance()) {
4720       holder = const_oop->as_instance();
4721     }
4722   }
4723   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4724                                                         /*is_unsigned_load=*/false);
4725   if (con_type != nullptr) {
4726     Node* con = makecon(con_type);
4727     if (field->type()->is_inlinetype()) {
4728       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4729     } else if (con_type->is_inlinetypeptr()) {
4730       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4731     }
4732     return con;
4733   }
4734   return nullptr;
4735 }
4736 
4737 //---------------------------load_mirror_from_klass----------------------------
4738 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4739 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4740   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4741   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4742   // mirror = ((OopHandle)mirror)->resolve();
4743   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4744 }
4745 
4746 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4747   const Type* obj_type = obj->bottom_type();
4748   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4749   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4750     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4751     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4752     obj = casted_obj;
4753   }
4754   if (sig_type->is_inlinetypeptr()) {
4755     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4756   }
4757   return obj;
4758 }