1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/graphKit.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/inlinetypenode.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/rootnode.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subtypenode.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "utilities/bitMap.inline.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/growableArray.hpp"
  56 
  57 //----------------------------GraphKit-----------------------------------------
  58 // Main utility constructor.
  59 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  60   : Phase(Phase::Parser),
  61     _env(C->env()),
  62     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  63     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  64 {
  65   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  66   _exceptions = jvms->map()->next_exception();
  67   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  68   set_jvms(jvms);
  69 #ifdef ASSERT
  70   if (_gvn.is_IterGVN() != nullptr) {
  71     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  72     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  73     _worklist_size = _gvn.C->igvn_worklist()->size();
  74   }
  75 #endif
  76 }
  77 
  78 // Private constructor for parser.
  79 GraphKit::GraphKit()
  80   : Phase(Phase::Parser),
  81     _env(C->env()),
  82     _gvn(*C->initial_gvn()),
  83     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  84 {
  85   _exceptions = nullptr;
  86   set_map(nullptr);
  87   debug_only(_sp = -99);
  88   debug_only(set_bci(-99));
  89 }
  90 
  91 
  92 
  93 //---------------------------clean_stack---------------------------------------
  94 // Clear away rubbish from the stack area of the JVM state.
  95 // This destroys any arguments that may be waiting on the stack.
  96 void GraphKit::clean_stack(int from_sp) {
  97   SafePointNode* map      = this->map();
  98   JVMState*      jvms     = this->jvms();
  99   int            stk_size = jvms->stk_size();
 100   int            stkoff   = jvms->stkoff();
 101   Node*          top      = this->top();
 102   for (int i = from_sp; i < stk_size; i++) {
 103     if (map->in(stkoff + i) != top) {
 104       map->set_req(stkoff + i, top);
 105     }
 106   }
 107 }
 108 
 109 
 110 //--------------------------------sync_jvms-----------------------------------
 111 // Make sure our current jvms agrees with our parse state.
 112 JVMState* GraphKit::sync_jvms() const {
 113   JVMState* jvms = this->jvms();
 114   jvms->set_bci(bci());       // Record the new bci in the JVMState
 115   jvms->set_sp(sp());         // Record the new sp in the JVMState
 116   assert(jvms_in_sync(), "jvms is now in sync");
 117   return jvms;
 118 }
 119 
 120 //--------------------------------sync_jvms_for_reexecute---------------------
 121 // Make sure our current jvms agrees with our parse state.  This version
 122 // uses the reexecute_sp for reexecuting bytecodes.
 123 JVMState* GraphKit::sync_jvms_for_reexecute() {
 124   JVMState* jvms = this->jvms();
 125   jvms->set_bci(bci());          // Record the new bci in the JVMState
 126   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 127   return jvms;
 128 }
 129 
 130 #ifdef ASSERT
 131 bool GraphKit::jvms_in_sync() const {
 132   Parse* parse = is_Parse();
 133   if (parse == nullptr) {
 134     if (bci() !=      jvms()->bci())          return false;
 135     if (sp()  != (int)jvms()->sp())           return false;
 136     return true;
 137   }
 138   if (jvms()->method() != parse->method())    return false;
 139   if (jvms()->bci()    != parse->bci())       return false;
 140   int jvms_sp = jvms()->sp();
 141   if (jvms_sp          != parse->sp())        return false;
 142   int jvms_depth = jvms()->depth();
 143   if (jvms_depth       != parse->depth())     return false;
 144   return true;
 145 }
 146 
 147 // Local helper checks for special internal merge points
 148 // used to accumulate and merge exception states.
 149 // They are marked by the region's in(0) edge being the map itself.
 150 // Such merge points must never "escape" into the parser at large,
 151 // until they have been handed to gvn.transform.
 152 static bool is_hidden_merge(Node* reg) {
 153   if (reg == nullptr)  return false;
 154   if (reg->is_Phi()) {
 155     reg = reg->in(0);
 156     if (reg == nullptr)  return false;
 157   }
 158   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 159 }
 160 
 161 void GraphKit::verify_map() const {
 162   if (map() == nullptr)  return;  // null map is OK
 163   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 164   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 165   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 166 }
 167 
 168 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 169   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 170   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 171 }
 172 #endif
 173 
 174 //---------------------------stop_and_kill_map---------------------------------
 175 // Set _map to null, signalling a stop to further bytecode execution.
 176 // First smash the current map's control to a constant, to mark it dead.
 177 void GraphKit::stop_and_kill_map() {
 178   SafePointNode* dead_map = stop();
 179   if (dead_map != nullptr) {
 180     dead_map->disconnect_inputs(C); // Mark the map as killed.
 181     assert(dead_map->is_killed(), "must be so marked");
 182   }
 183 }
 184 
 185 
 186 //--------------------------------stopped--------------------------------------
 187 // Tell if _map is null, or control is top.
 188 bool GraphKit::stopped() {
 189   if (map() == nullptr)        return true;
 190   else if (control() == top()) return true;
 191   else                         return false;
 192 }
 193 
 194 
 195 //-----------------------------has_exception_handler----------------------------------
 196 // Tell if this method or any caller method has exception handlers.
 197 bool GraphKit::has_exception_handler() {
 198   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 199     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 200       return true;
 201     }
 202   }
 203   return false;
 204 }
 205 
 206 //------------------------------save_ex_oop------------------------------------
 207 // Save an exception without blowing stack contents or other JVM state.
 208 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 209   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 210   ex_map->add_req(ex_oop);
 211   debug_only(verify_exception_state(ex_map));
 212 }
 213 
 214 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 215   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 216   Node* ex_oop = ex_map->in(ex_map->req()-1);
 217   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 218   return ex_oop;
 219 }
 220 
 221 //-----------------------------saved_ex_oop------------------------------------
 222 // Recover a saved exception from its map.
 223 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 224   return common_saved_ex_oop(ex_map, false);
 225 }
 226 
 227 //--------------------------clear_saved_ex_oop---------------------------------
 228 // Erase a previously saved exception from its map.
 229 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 230   return common_saved_ex_oop(ex_map, true);
 231 }
 232 
 233 #ifdef ASSERT
 234 //---------------------------has_saved_ex_oop----------------------------------
 235 // Erase a previously saved exception from its map.
 236 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 237   return ex_map->req() == ex_map->jvms()->endoff()+1;
 238 }
 239 #endif
 240 
 241 //-------------------------make_exception_state--------------------------------
 242 // Turn the current JVM state into an exception state, appending the ex_oop.
 243 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 244   sync_jvms();
 245   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 246   set_saved_ex_oop(ex_map, ex_oop);
 247   return ex_map;
 248 }
 249 
 250 
 251 //--------------------------add_exception_state--------------------------------
 252 // Add an exception to my list of exceptions.
 253 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 254   if (ex_map == nullptr || ex_map->control() == top()) {
 255     return;
 256   }
 257 #ifdef ASSERT
 258   verify_exception_state(ex_map);
 259   if (has_exceptions()) {
 260     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 261   }
 262 #endif
 263 
 264   // If there is already an exception of exactly this type, merge with it.
 265   // In particular, null-checks and other low-level exceptions common up here.
 266   Node*       ex_oop  = saved_ex_oop(ex_map);
 267   const Type* ex_type = _gvn.type(ex_oop);
 268   if (ex_oop == top()) {
 269     // No action needed.
 270     return;
 271   }
 272   assert(ex_type->isa_instptr(), "exception must be an instance");
 273   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 274     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 275     // We check sp also because call bytecodes can generate exceptions
 276     // both before and after arguments are popped!
 277     if (ex_type2 == ex_type
 278         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 279       combine_exception_states(ex_map, e2);
 280       return;
 281     }
 282   }
 283 
 284   // No pre-existing exception of the same type.  Chain it on the list.
 285   push_exception_state(ex_map);
 286 }
 287 
 288 //-----------------------add_exception_states_from-----------------------------
 289 void GraphKit::add_exception_states_from(JVMState* jvms) {
 290   SafePointNode* ex_map = jvms->map()->next_exception();
 291   if (ex_map != nullptr) {
 292     jvms->map()->set_next_exception(nullptr);
 293     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 294       next_map = ex_map->next_exception();
 295       ex_map->set_next_exception(nullptr);
 296       add_exception_state(ex_map);
 297     }
 298   }
 299 }
 300 
 301 //-----------------------transfer_exceptions_into_jvms-------------------------
 302 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 303   if (map() == nullptr) {
 304     // We need a JVMS to carry the exceptions, but the map has gone away.
 305     // Create a scratch JVMS, cloned from any of the exception states...
 306     if (has_exceptions()) {
 307       _map = _exceptions;
 308       _map = clone_map();
 309       _map->set_next_exception(nullptr);
 310       clear_saved_ex_oop(_map);
 311       debug_only(verify_map());
 312     } else {
 313       // ...or created from scratch
 314       JVMState* jvms = new (C) JVMState(_method, nullptr);
 315       jvms->set_bci(_bci);
 316       jvms->set_sp(_sp);
 317       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 318       set_jvms(jvms);
 319       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 320       set_all_memory(top());
 321       while (map()->req() < jvms->endoff())  map()->add_req(top());
 322     }
 323     // (This is a kludge, in case you didn't notice.)
 324     set_control(top());
 325   }
 326   JVMState* jvms = sync_jvms();
 327   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 328   jvms->map()->set_next_exception(_exceptions);
 329   _exceptions = nullptr;   // done with this set of exceptions
 330   return jvms;
 331 }
 332 
 333 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 334   assert(is_hidden_merge(dstphi), "must be a special merge node");
 335   assert(is_hidden_merge(srcphi), "must be a special merge node");
 336   uint limit = srcphi->req();
 337   for (uint i = PhiNode::Input; i < limit; i++) {
 338     dstphi->add_req(srcphi->in(i));
 339   }
 340 }
 341 static inline void add_one_req(Node* dstphi, Node* src) {
 342   assert(is_hidden_merge(dstphi), "must be a special merge node");
 343   assert(!is_hidden_merge(src), "must not be a special merge node");
 344   dstphi->add_req(src);
 345 }
 346 
 347 //-----------------------combine_exception_states------------------------------
 348 // This helper function combines exception states by building phis on a
 349 // specially marked state-merging region.  These regions and phis are
 350 // untransformed, and can build up gradually.  The region is marked by
 351 // having a control input of its exception map, rather than null.  Such
 352 // regions do not appear except in this function, and in use_exception_state.
 353 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 354   if (failing_internal()) {
 355     return;  // dying anyway...
 356   }
 357   JVMState* ex_jvms = ex_map->_jvms;
 358   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 359   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 360   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 361   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 362   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 363   assert(ex_map->req() == phi_map->req(), "matching maps");
 364   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 365   Node*         hidden_merge_mark = root();
 366   Node*         region  = phi_map->control();
 367   MergeMemNode* phi_mem = phi_map->merged_memory();
 368   MergeMemNode* ex_mem  = ex_map->merged_memory();
 369   if (region->in(0) != hidden_merge_mark) {
 370     // The control input is not (yet) a specially-marked region in phi_map.
 371     // Make it so, and build some phis.
 372     region = new RegionNode(2);
 373     _gvn.set_type(region, Type::CONTROL);
 374     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 375     region->init_req(1, phi_map->control());
 376     phi_map->set_control(region);
 377     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 378     record_for_igvn(io_phi);
 379     _gvn.set_type(io_phi, Type::ABIO);
 380     phi_map->set_i_o(io_phi);
 381     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 382       Node* m = mms.memory();
 383       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 384       record_for_igvn(m_phi);
 385       _gvn.set_type(m_phi, Type::MEMORY);
 386       mms.set_memory(m_phi);
 387     }
 388   }
 389 
 390   // Either or both of phi_map and ex_map might already be converted into phis.
 391   Node* ex_control = ex_map->control();
 392   // if there is special marking on ex_map also, we add multiple edges from src
 393   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 394   // how wide was the destination phi_map, originally?
 395   uint orig_width = region->req();
 396 
 397   if (add_multiple) {
 398     add_n_reqs(region, ex_control);
 399     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 400   } else {
 401     // ex_map has no merges, so we just add single edges everywhere
 402     add_one_req(region, ex_control);
 403     add_one_req(phi_map->i_o(), ex_map->i_o());
 404   }
 405   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 406     if (mms.is_empty()) {
 407       // get a copy of the base memory, and patch some inputs into it
 408       const TypePtr* adr_type = mms.adr_type(C);
 409       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 410       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 411       mms.set_memory(phi);
 412       // Prepare to append interesting stuff onto the newly sliced phi:
 413       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 414     }
 415     // Append stuff from ex_map:
 416     if (add_multiple) {
 417       add_n_reqs(mms.memory(), mms.memory2());
 418     } else {
 419       add_one_req(mms.memory(), mms.memory2());
 420     }
 421   }
 422   uint limit = ex_map->req();
 423   for (uint i = TypeFunc::Parms; i < limit; i++) {
 424     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 425     if (i == tos)  i = ex_jvms->monoff();
 426     Node* src = ex_map->in(i);
 427     Node* dst = phi_map->in(i);
 428     if (src != dst) {
 429       PhiNode* phi;
 430       if (dst->in(0) != region) {
 431         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 432         record_for_igvn(phi);
 433         _gvn.set_type(phi, phi->type());
 434         phi_map->set_req(i, dst);
 435         // Prepare to append interesting stuff onto the new phi:
 436         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 437       } else {
 438         assert(dst->is_Phi(), "nobody else uses a hidden region");
 439         phi = dst->as_Phi();
 440       }
 441       if (add_multiple && src->in(0) == ex_control) {
 442         // Both are phis.
 443         add_n_reqs(dst, src);
 444       } else {
 445         while (dst->req() < region->req())  add_one_req(dst, src);
 446       }
 447       const Type* srctype = _gvn.type(src);
 448       if (phi->type() != srctype) {
 449         const Type* dsttype = phi->type()->meet_speculative(srctype);
 450         if (phi->type() != dsttype) {
 451           phi->set_type(dsttype);
 452           _gvn.set_type(phi, dsttype);
 453         }
 454       }
 455     }
 456   }
 457   phi_map->merge_replaced_nodes_with(ex_map);
 458 }
 459 
 460 //--------------------------use_exception_state--------------------------------
 461 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 462   if (failing_internal()) { stop(); return top(); }
 463   Node* region = phi_map->control();
 464   Node* hidden_merge_mark = root();
 465   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 466   Node* ex_oop = clear_saved_ex_oop(phi_map);
 467   if (region->in(0) == hidden_merge_mark) {
 468     // Special marking for internal ex-states.  Process the phis now.
 469     region->set_req(0, region);  // now it's an ordinary region
 470     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 471     // Note: Setting the jvms also sets the bci and sp.
 472     set_control(_gvn.transform(region));
 473     uint tos = jvms()->stkoff() + sp();
 474     for (uint i = 1; i < tos; i++) {
 475       Node* x = phi_map->in(i);
 476       if (x->in(0) == region) {
 477         assert(x->is_Phi(), "expected a special phi");
 478         phi_map->set_req(i, _gvn.transform(x));
 479       }
 480     }
 481     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 482       Node* x = mms.memory();
 483       if (x->in(0) == region) {
 484         assert(x->is_Phi(), "nobody else uses a hidden region");
 485         mms.set_memory(_gvn.transform(x));
 486       }
 487     }
 488     if (ex_oop->in(0) == region) {
 489       assert(ex_oop->is_Phi(), "expected a special phi");
 490       ex_oop = _gvn.transform(ex_oop);
 491     }
 492   } else {
 493     set_jvms(phi_map->jvms());
 494   }
 495 
 496   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 497   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 498   return ex_oop;
 499 }
 500 
 501 //---------------------------------java_bc-------------------------------------
 502 Bytecodes::Code GraphKit::java_bc() const {
 503   ciMethod* method = this->method();
 504   int       bci    = this->bci();
 505   if (method != nullptr && bci != InvocationEntryBci)
 506     return method->java_code_at_bci(bci);
 507   else
 508     return Bytecodes::_illegal;
 509 }
 510 
 511 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 512                                                           bool must_throw) {
 513     // if the exception capability is set, then we will generate code
 514     // to check the JavaThread.should_post_on_exceptions flag to see
 515     // if we actually need to report exception events (for this
 516     // thread).  If we don't need to report exception events, we will
 517     // take the normal fast path provided by add_exception_events.  If
 518     // exception event reporting is enabled for this thread, we will
 519     // take the uncommon_trap in the BuildCutout below.
 520 
 521     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 522     Node* jthread = _gvn.transform(new ThreadLocalNode());
 523     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 524     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
 525 
 526     // Test the should_post_on_exceptions_flag vs. 0
 527     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 528     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 529 
 530     // Branch to slow_path if should_post_on_exceptions_flag was true
 531     { BuildCutout unless(this, tst, PROB_MAX);
 532       // Do not try anything fancy if we're notifying the VM on every throw.
 533       // Cf. case Bytecodes::_athrow in parse2.cpp.
 534       uncommon_trap(reason, Deoptimization::Action_none,
 535                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 536     }
 537 
 538 }
 539 
 540 //------------------------------builtin_throw----------------------------------
 541 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 542   bool must_throw = true;
 543 
 544   // If this particular condition has not yet happened at this
 545   // bytecode, then use the uncommon trap mechanism, and allow for
 546   // a future recompilation if several traps occur here.
 547   // If the throw is hot, try to use a more complicated inline mechanism
 548   // which keeps execution inside the compiled code.
 549   bool treat_throw_as_hot = false;
 550   ciMethodData* md = method()->method_data();
 551 
 552   if (ProfileTraps) {
 553     if (too_many_traps(reason)) {
 554       treat_throw_as_hot = true;
 555     }
 556     // (If there is no MDO at all, assume it is early in
 557     // execution, and that any deopts are part of the
 558     // startup transient, and don't need to be remembered.)
 559 
 560     // Also, if there is a local exception handler, treat all throws
 561     // as hot if there has been at least one in this method.
 562     if (C->trap_count(reason) != 0
 563         && method()->method_data()->trap_count(reason) != 0
 564         && has_exception_handler()) {
 565         treat_throw_as_hot = true;
 566     }
 567   }
 568 
 569   // If this throw happens frequently, an uncommon trap might cause
 570   // a performance pothole.  If there is a local exception handler,
 571   // and if this particular bytecode appears to be deoptimizing often,
 572   // let us handle the throw inline, with a preconstructed instance.
 573   // Note:   If the deopt count has blown up, the uncommon trap
 574   // runtime is going to flush this nmethod, not matter what.
 575   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 576     // If the throw is local, we use a pre-existing instance and
 577     // punt on the backtrace.  This would lead to a missing backtrace
 578     // (a repeat of 4292742) if the backtrace object is ever asked
 579     // for its backtrace.
 580     // Fixing this remaining case of 4292742 requires some flavor of
 581     // escape analysis.  Leave that for the future.
 582     ciInstance* ex_obj = nullptr;
 583     switch (reason) {
 584     case Deoptimization::Reason_null_check:
 585       ex_obj = env()->NullPointerException_instance();
 586       break;
 587     case Deoptimization::Reason_div0_check:
 588       ex_obj = env()->ArithmeticException_instance();
 589       break;
 590     case Deoptimization::Reason_range_check:
 591       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 592       break;
 593     case Deoptimization::Reason_class_check:
 594       ex_obj = env()->ClassCastException_instance();
 595       break;
 596     case Deoptimization::Reason_array_check:
 597       ex_obj = env()->ArrayStoreException_instance();
 598       break;
 599     default:
 600       break;
 601     }
 602     if (failing()) { stop(); return; }  // exception allocation might fail
 603     if (ex_obj != nullptr) {
 604       if (env()->jvmti_can_post_on_exceptions()) {
 605         // check if we must post exception events, take uncommon trap if so
 606         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 607         // here if should_post_on_exceptions is false
 608         // continue on with the normal codegen
 609       }
 610 
 611       // Cheat with a preallocated exception object.
 612       if (C->log() != nullptr)
 613         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 614                        Deoptimization::trap_reason_name(reason));
 615       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 616       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 617 
 618       // Clear the detail message of the preallocated exception object.
 619       // Weblogic sometimes mutates the detail message of exceptions
 620       // using reflection.
 621       int offset = java_lang_Throwable::get_detailMessage_offset();
 622       const TypePtr* adr_typ = ex_con->add_offset(offset);
 623 
 624       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 625       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 626       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 627 
 628       if (!method()->has_exception_handlers()) {
 629         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 630         // This prevents issues with exception handling and late inlining.
 631         set_sp(0);
 632         clean_stack(0);
 633       }
 634 
 635       add_exception_state(make_exception_state(ex_node));
 636       return;
 637     }
 638   }
 639 
 640   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 641   // It won't be much cheaper than bailing to the interp., since we'll
 642   // have to pass up all the debug-info, and the runtime will have to
 643   // create the stack trace.
 644 
 645   // Usual case:  Bail to interpreter.
 646   // Reserve the right to recompile if we haven't seen anything yet.
 647 
 648   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 649   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 650   if (treat_throw_as_hot
 651       && (method()->method_data()->trap_recompiled_at(bci(), m)
 652           || C->too_many_traps(reason))) {
 653     // We cannot afford to take more traps here.  Suffer in the interpreter.
 654     if (C->log() != nullptr)
 655       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 656                      Deoptimization::trap_reason_name(reason),
 657                      C->trap_count(reason));
 658     action = Deoptimization::Action_none;
 659   }
 660 
 661   // "must_throw" prunes the JVM state to include only the stack, if there
 662   // are no local exception handlers.  This should cut down on register
 663   // allocation time and code size, by drastically reducing the number
 664   // of in-edges on the call to the uncommon trap.
 665 
 666   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 667 }
 668 
 669 
 670 //----------------------------PreserveJVMState---------------------------------
 671 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 672   debug_only(kit->verify_map());
 673   _kit    = kit;
 674   _map    = kit->map();   // preserve the map
 675   _sp     = kit->sp();
 676   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 677 #ifdef ASSERT
 678   _bci    = kit->bci();
 679   Parse* parser = kit->is_Parse();
 680   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 681   _block  = block;
 682 #endif
 683 }
 684 PreserveJVMState::~PreserveJVMState() {
 685   GraphKit* kit = _kit;
 686 #ifdef ASSERT
 687   assert(kit->bci() == _bci, "bci must not shift");
 688   Parse* parser = kit->is_Parse();
 689   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 690   assert(block == _block,    "block must not shift");
 691 #endif
 692   kit->set_map(_map);
 693   kit->set_sp(_sp);
 694 }
 695 
 696 
 697 //-----------------------------BuildCutout-------------------------------------
 698 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 699   : PreserveJVMState(kit)
 700 {
 701   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 702   SafePointNode* outer_map = _map;   // preserved map is caller's
 703   SafePointNode* inner_map = kit->map();
 704   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 705   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 706   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 707 }
 708 BuildCutout::~BuildCutout() {
 709   GraphKit* kit = _kit;
 710   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 711 }
 712 
 713 //---------------------------PreserveReexecuteState----------------------------
 714 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 715   assert(!kit->stopped(), "must call stopped() before");
 716   _kit    =    kit;
 717   _sp     =    kit->sp();
 718   _reexecute = kit->jvms()->_reexecute;
 719 }
 720 PreserveReexecuteState::~PreserveReexecuteState() {
 721   if (_kit->stopped()) return;
 722   _kit->jvms()->_reexecute = _reexecute;
 723   _kit->set_sp(_sp);
 724 }
 725 
 726 //------------------------------clone_map--------------------------------------
 727 // Implementation of PreserveJVMState
 728 //
 729 // Only clone_map(...) here. If this function is only used in the
 730 // PreserveJVMState class we may want to get rid of this extra
 731 // function eventually and do it all there.
 732 
 733 SafePointNode* GraphKit::clone_map() {
 734   if (map() == nullptr)  return nullptr;
 735 
 736   // Clone the memory edge first
 737   Node* mem = MergeMemNode::make(map()->memory());
 738   gvn().set_type_bottom(mem);
 739 
 740   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 741   JVMState* jvms = this->jvms();
 742   JVMState* clonejvms = jvms->clone_shallow(C);
 743   clonemap->set_memory(mem);
 744   clonemap->set_jvms(clonejvms);
 745   clonejvms->set_map(clonemap);
 746   record_for_igvn(clonemap);
 747   gvn().set_type_bottom(clonemap);
 748   return clonemap;
 749 }
 750 
 751 //-----------------------------destruct_map_clone------------------------------
 752 //
 753 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 754 // to destruct/free/delete in the exact opposite order as clone_map().
 755 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 756   if (sfp == nullptr) return;
 757 
 758   Node* mem = sfp->memory();
 759   JVMState* jvms = sfp->jvms();
 760 
 761   if (jvms != nullptr) {
 762     delete jvms;
 763   }
 764 
 765   remove_for_igvn(sfp);
 766   gvn().clear_type(sfp);
 767   sfp->destruct(&_gvn);
 768 
 769   if (mem != nullptr) {
 770     gvn().clear_type(mem);
 771     mem->destruct(&_gvn);
 772   }
 773 }
 774 
 775 //-----------------------------set_map_clone-----------------------------------
 776 void GraphKit::set_map_clone(SafePointNode* m) {
 777   _map = m;
 778   _map = clone_map();
 779   _map->set_next_exception(nullptr);
 780   debug_only(verify_map());
 781 }
 782 
 783 
 784 //----------------------------kill_dead_locals---------------------------------
 785 // Detect any locals which are known to be dead, and force them to top.
 786 void GraphKit::kill_dead_locals() {
 787   // Consult the liveness information for the locals.  If any
 788   // of them are unused, then they can be replaced by top().  This
 789   // should help register allocation time and cut down on the size
 790   // of the deoptimization information.
 791 
 792   // This call is made from many of the bytecode handling
 793   // subroutines called from the Big Switch in do_one_bytecode.
 794   // Every bytecode which might include a slow path is responsible
 795   // for killing its dead locals.  The more consistent we
 796   // are about killing deads, the fewer useless phis will be
 797   // constructed for them at various merge points.
 798 
 799   // bci can be -1 (InvocationEntryBci).  We return the entry
 800   // liveness for the method.
 801 
 802   if (method() == nullptr || method()->code_size() == 0) {
 803     // We are building a graph for a call to a native method.
 804     // All locals are live.
 805     return;
 806   }
 807 
 808   ResourceMark rm;
 809 
 810   // Consult the liveness information for the locals.  If any
 811   // of them are unused, then they can be replaced by top().  This
 812   // should help register allocation time and cut down on the size
 813   // of the deoptimization information.
 814   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 815 
 816   int len = (int)live_locals.size();
 817   assert(len <= jvms()->loc_size(), "too many live locals");
 818   for (int local = 0; local < len; local++) {
 819     if (!live_locals.at(local)) {
 820       set_local(local, top());
 821     }
 822   }
 823 }
 824 
 825 #ifdef ASSERT
 826 //-------------------------dead_locals_are_killed------------------------------
 827 // Return true if all dead locals are set to top in the map.
 828 // Used to assert "clean" debug info at various points.
 829 bool GraphKit::dead_locals_are_killed() {
 830   if (method() == nullptr || method()->code_size() == 0) {
 831     // No locals need to be dead, so all is as it should be.
 832     return true;
 833   }
 834 
 835   // Make sure somebody called kill_dead_locals upstream.
 836   ResourceMark rm;
 837   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 838     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 839     SafePointNode* map = jvms->map();
 840     ciMethod* method = jvms->method();
 841     int       bci    = jvms->bci();
 842     if (jvms == this->jvms()) {
 843       bci = this->bci();  // it might not yet be synched
 844     }
 845     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 846     int len = (int)live_locals.size();
 847     if (!live_locals.is_valid() || len == 0)
 848       // This method is trivial, or is poisoned by a breakpoint.
 849       return true;
 850     assert(len == jvms->loc_size(), "live map consistent with locals map");
 851     for (int local = 0; local < len; local++) {
 852       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 853         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 854           tty->print_cr("Zombie local %d: ", local);
 855           jvms->dump();
 856         }
 857         return false;
 858       }
 859     }
 860   }
 861   return true;
 862 }
 863 
 864 #endif //ASSERT
 865 
 866 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 867 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 868   ciMethod* cur_method = jvms->method();
 869   int       cur_bci   = jvms->bci();
 870   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 871     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 872     return Interpreter::bytecode_should_reexecute(code) ||
 873            (is_anewarray && (code == Bytecodes::_multianewarray));
 874     // Reexecute _multianewarray bytecode which was replaced with
 875     // sequence of [a]newarray. See Parse::do_multianewarray().
 876     //
 877     // Note: interpreter should not have it set since this optimization
 878     // is limited by dimensions and guarded by flag so in some cases
 879     // multianewarray() runtime calls will be generated and
 880     // the bytecode should not be reexecutes (stack will not be reset).
 881   } else {
 882     return false;
 883   }
 884 }
 885 
 886 // Helper function for adding JVMState and debug information to node
 887 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 888   // Add the safepoint edges to the call (or other safepoint).
 889 
 890   // Make sure dead locals are set to top.  This
 891   // should help register allocation time and cut down on the size
 892   // of the deoptimization information.
 893   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 894 
 895   // Walk the inline list to fill in the correct set of JVMState's
 896   // Also fill in the associated edges for each JVMState.
 897 
 898   // If the bytecode needs to be reexecuted we need to put
 899   // the arguments back on the stack.
 900   const bool should_reexecute = jvms()->should_reexecute();
 901   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 902 
 903   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 904   // undefined if the bci is different.  This is normal for Parse but it
 905   // should not happen for LibraryCallKit because only one bci is processed.
 906   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 907          "in LibraryCallKit the reexecute bit should not change");
 908 
 909   // If we are guaranteed to throw, we can prune everything but the
 910   // input to the current bytecode.
 911   bool can_prune_locals = false;
 912   uint stack_slots_not_pruned = 0;
 913   int inputs = 0, depth = 0;
 914   if (must_throw) {
 915     assert(method() == youngest_jvms->method(), "sanity");
 916     if (compute_stack_effects(inputs, depth)) {
 917       can_prune_locals = true;
 918       stack_slots_not_pruned = inputs;
 919     }
 920   }
 921 
 922   if (env()->should_retain_local_variables()) {
 923     // At any safepoint, this method can get breakpointed, which would
 924     // then require an immediate deoptimization.
 925     can_prune_locals = false;  // do not prune locals
 926     stack_slots_not_pruned = 0;
 927   }
 928 
 929   // do not scribble on the input jvms
 930   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 931   call->set_jvms(out_jvms); // Start jvms list for call node
 932 
 933   // For a known set of bytecodes, the interpreter should reexecute them if
 934   // deoptimization happens. We set the reexecute state for them here
 935   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 936       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 937 #ifdef ASSERT
 938     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 939     assert(method() == youngest_jvms->method(), "sanity");
 940     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 941     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 942 #endif // ASSERT
 943     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 944   }
 945 
 946   // Presize the call:
 947   DEBUG_ONLY(uint non_debug_edges = call->req());
 948   call->add_req_batch(top(), youngest_jvms->debug_depth());
 949   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 950 
 951   // Set up edges so that the call looks like this:
 952   //  Call [state:] ctl io mem fptr retadr
 953   //       [parms:] parm0 ... parmN
 954   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 955   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 956   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 957   // Note that caller debug info precedes callee debug info.
 958 
 959   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 960   uint debug_ptr = call->req();
 961 
 962   // Loop over the map input edges associated with jvms, add them
 963   // to the call node, & reset all offsets to match call node array.
 964 
 965   JVMState* callee_jvms = nullptr;
 966   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 967     uint debug_end   = debug_ptr;
 968     uint debug_start = debug_ptr - in_jvms->debug_size();
 969     debug_ptr = debug_start;  // back up the ptr
 970 
 971     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 972     uint j, k, l;
 973     SafePointNode* in_map = in_jvms->map();
 974     out_jvms->set_map(call);
 975 
 976     if (can_prune_locals) {
 977       assert(in_jvms->method() == out_jvms->method(), "sanity");
 978       // If the current throw can reach an exception handler in this JVMS,
 979       // then we must keep everything live that can reach that handler.
 980       // As a quick and dirty approximation, we look for any handlers at all.
 981       if (in_jvms->method()->has_exception_handlers()) {
 982         can_prune_locals = false;
 983       }
 984     }
 985 
 986     // Add the Locals
 987     k = in_jvms->locoff();
 988     l = in_jvms->loc_size();
 989     out_jvms->set_locoff(p);
 990     if (!can_prune_locals) {
 991       for (j = 0; j < l; j++) {
 992         Node* val = in_map->in(k + j);
 993         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 994         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 995             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 996             val->bottom_type()->is_inlinetypeptr()) {
 997           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 998         }
 999         call->set_req(p++, val);
1000       }
1001     } else {
1002       p += l;  // already set to top above by add_req_batch
1003     }
1004 
1005     // Add the Expression Stack
1006     k = in_jvms->stkoff();
1007     l = in_jvms->sp();
1008     out_jvms->set_stkoff(p);
1009     if (!can_prune_locals) {
1010       for (j = 0; j < l; j++) {
1011         Node* val = in_map->in(k + j);
1012         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1013         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1014             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1015             val->bottom_type()->is_inlinetypeptr()) {
1016           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1017         }
1018         call->set_req(p++, val);
1019       }
1020     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1021       // Divide stack into {S0,...,S1}, where S0 is set to top.
1022       uint s1 = stack_slots_not_pruned;
1023       stack_slots_not_pruned = 0;  // for next iteration
1024       if (s1 > l)  s1 = l;
1025       uint s0 = l - s1;
1026       p += s0;  // skip the tops preinstalled by add_req_batch
1027       for (j = s0; j < l; j++)
1028         call->set_req(p++, in_map->in(k+j));
1029     } else {
1030       p += l;  // already set to top above by add_req_batch
1031     }
1032 
1033     // Add the Monitors
1034     k = in_jvms->monoff();
1035     l = in_jvms->mon_size();
1036     out_jvms->set_monoff(p);
1037     for (j = 0; j < l; j++)
1038       call->set_req(p++, in_map->in(k+j));
1039 
1040     // Copy any scalar object fields.
1041     k = in_jvms->scloff();
1042     l = in_jvms->scl_size();
1043     out_jvms->set_scloff(p);
1044     for (j = 0; j < l; j++)
1045       call->set_req(p++, in_map->in(k+j));
1046 
1047     // Finish the new jvms.
1048     out_jvms->set_endoff(p);
1049 
1050     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1051     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1052     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1053     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1054     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1055     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1056 
1057     // Update the two tail pointers in parallel.
1058     callee_jvms = out_jvms;
1059     out_jvms = out_jvms->caller();
1060     in_jvms  = in_jvms->caller();
1061   }
1062 
1063   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1064 
1065   // Test the correctness of JVMState::debug_xxx accessors:
1066   assert(call->jvms()->debug_start() == non_debug_edges, "");
1067   assert(call->jvms()->debug_end()   == call->req(), "");
1068   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1069 }
1070 
1071 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1072   Bytecodes::Code code = java_bc();
1073   if (code == Bytecodes::_wide) {
1074     code = method()->java_code_at_bci(bci() + 1);
1075   }
1076 
1077   if (code != Bytecodes::_illegal) {
1078     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1079   }
1080 
1081   auto rsize = [&]() {
1082     assert(code != Bytecodes::_illegal, "code is illegal!");
1083     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1084     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1085   };
1086 
1087   switch (code) {
1088   case Bytecodes::_illegal:
1089     return false;
1090 
1091   case Bytecodes::_ldc:
1092   case Bytecodes::_ldc_w:
1093   case Bytecodes::_ldc2_w:
1094     inputs = 0;
1095     break;
1096 
1097   case Bytecodes::_dup:         inputs = 1;  break;
1098   case Bytecodes::_dup_x1:      inputs = 2;  break;
1099   case Bytecodes::_dup_x2:      inputs = 3;  break;
1100   case Bytecodes::_dup2:        inputs = 2;  break;
1101   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1102   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1103   case Bytecodes::_swap:        inputs = 2;  break;
1104   case Bytecodes::_arraylength: inputs = 1;  break;
1105 
1106   case Bytecodes::_getstatic:
1107   case Bytecodes::_putstatic:
1108   case Bytecodes::_getfield:
1109   case Bytecodes::_putfield:
1110     {
1111       bool ignored_will_link;
1112       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1113       int      size  = field->type()->size();
1114       bool is_get = (depth >= 0), is_static = (depth & 1);
1115       inputs = (is_static ? 0 : 1);
1116       if (is_get) {
1117         depth = size - inputs;
1118       } else {
1119         inputs += size;        // putxxx pops the value from the stack
1120         depth = - inputs;
1121       }
1122     }
1123     break;
1124 
1125   case Bytecodes::_invokevirtual:
1126   case Bytecodes::_invokespecial:
1127   case Bytecodes::_invokestatic:
1128   case Bytecodes::_invokedynamic:
1129   case Bytecodes::_invokeinterface:
1130     {
1131       bool ignored_will_link;
1132       ciSignature* declared_signature = nullptr;
1133       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1134       assert(declared_signature != nullptr, "cannot be null");
1135       inputs   = declared_signature->arg_size_for_bc(code);
1136       int size = declared_signature->return_type()->size();
1137       depth = size - inputs;
1138     }
1139     break;
1140 
1141   case Bytecodes::_multianewarray:
1142     {
1143       ciBytecodeStream iter(method());
1144       iter.reset_to_bci(bci());
1145       iter.next();
1146       inputs = iter.get_dimensions();
1147       assert(rsize() == 1, "");
1148       depth = 1 - inputs;
1149     }
1150     break;
1151 
1152   case Bytecodes::_ireturn:
1153   case Bytecodes::_lreturn:
1154   case Bytecodes::_freturn:
1155   case Bytecodes::_dreturn:
1156   case Bytecodes::_areturn:
1157     assert(rsize() == -depth, "");
1158     inputs = -depth;
1159     break;
1160 
1161   case Bytecodes::_jsr:
1162   case Bytecodes::_jsr_w:
1163     inputs = 0;
1164     depth  = 1;                  // S.B. depth=1, not zero
1165     break;
1166 
1167   default:
1168     // bytecode produces a typed result
1169     inputs = rsize() - depth;
1170     assert(inputs >= 0, "");
1171     break;
1172   }
1173 
1174 #ifdef ASSERT
1175   // spot check
1176   int outputs = depth + inputs;
1177   assert(outputs >= 0, "sanity");
1178   switch (code) {
1179   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1180   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1181   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1182   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1183   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1184   default:                    break;
1185   }
1186 #endif //ASSERT
1187 
1188   return true;
1189 }
1190 
1191 
1192 
1193 //------------------------------basic_plus_adr---------------------------------
1194 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1195   // short-circuit a common case
1196   if (offset == intcon(0))  return ptr;
1197   return _gvn.transform( new AddPNode(base, ptr, offset) );
1198 }
1199 
1200 Node* GraphKit::ConvI2L(Node* offset) {
1201   // short-circuit a common case
1202   jint offset_con = find_int_con(offset, Type::OffsetBot);
1203   if (offset_con != Type::OffsetBot) {
1204     return longcon((jlong) offset_con);
1205   }
1206   return _gvn.transform( new ConvI2LNode(offset));
1207 }
1208 
1209 Node* GraphKit::ConvI2UL(Node* offset) {
1210   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1211   if (offset_con != (juint) Type::OffsetBot) {
1212     return longcon((julong) offset_con);
1213   }
1214   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1215   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1216   return _gvn.transform( new AndLNode(conv, mask) );
1217 }
1218 
1219 Node* GraphKit::ConvL2I(Node* offset) {
1220   // short-circuit a common case
1221   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1222   if (offset_con != (jlong)Type::OffsetBot) {
1223     return intcon((int) offset_con);
1224   }
1225   return _gvn.transform( new ConvL2INode(offset));
1226 }
1227 
1228 //-------------------------load_object_klass-----------------------------------
1229 Node* GraphKit::load_object_klass(Node* obj) {
1230   // Special-case a fresh allocation to avoid building nodes:
1231   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1232   if (akls != nullptr)  return akls;
1233   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1234   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1235 }
1236 
1237 //-------------------------load_array_length-----------------------------------
1238 Node* GraphKit::load_array_length(Node* array) {
1239   // Special-case a fresh allocation to avoid building nodes:
1240   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1241   Node *alen;
1242   if (alloc == nullptr) {
1243     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1244     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1245   } else {
1246     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1247   }
1248   return alen;
1249 }
1250 
1251 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1252                                    const TypeOopPtr* oop_type,
1253                                    bool replace_length_in_map) {
1254   Node* length = alloc->Ideal_length();
1255   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1256     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1257     if (ccast != length) {
1258       // do not transform ccast here, it might convert to top node for
1259       // negative array length and break assumptions in parsing stage.
1260       _gvn.set_type_bottom(ccast);
1261       record_for_igvn(ccast);
1262       if (replace_length_in_map) {
1263         replace_in_map(length, ccast);
1264       }
1265       return ccast;
1266     }
1267   }
1268   return length;
1269 }
1270 
1271 //------------------------------do_null_check----------------------------------
1272 // Helper function to do a null pointer check.  Returned value is
1273 // the incoming address with null casted away.  You are allowed to use the
1274 // not-null value only if you are control dependent on the test.
1275 #ifndef PRODUCT
1276 extern uint explicit_null_checks_inserted,
1277             explicit_null_checks_elided;
1278 #endif
1279 Node* GraphKit::null_check_common(Node* value, BasicType type,
1280                                   // optional arguments for variations:
1281                                   bool assert_null,
1282                                   Node* *null_control,
1283                                   bool speculative,
1284                                   bool is_init_check) {
1285   assert(!assert_null || null_control == nullptr, "not both at once");
1286   if (stopped())  return top();
1287   NOT_PRODUCT(explicit_null_checks_inserted++);
1288 
1289   if (value->is_InlineType()) {
1290     // Null checking a scalarized but nullable inline type. Check the IsInit
1291     // input instead of the oop input to avoid keeping buffer allocations alive.
1292     InlineTypeNode* vtptr = value->as_InlineType();
1293     while (vtptr->get_oop()->is_InlineType()) {
1294       vtptr = vtptr->get_oop()->as_InlineType();
1295     }
1296     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1297     if (stopped()) {
1298       return top();
1299     }
1300     if (assert_null) {
1301       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1302       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1303       // replace_in_map(value, vtptr);
1304       // return vtptr;
1305       replace_in_map(value, null());
1306       return null();
1307     }
1308     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1309     return cast_not_null(value, do_replace_in_map);
1310   }
1311 
1312   // Construct null check
1313   Node *chk = nullptr;
1314   switch(type) {
1315     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1316     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1317     case T_ARRAY  : // fall through
1318       type = T_OBJECT;  // simplify further tests
1319     case T_OBJECT : {
1320       const Type *t = _gvn.type( value );
1321 
1322       const TypeOopPtr* tp = t->isa_oopptr();
1323       if (tp != nullptr && !tp->is_loaded()
1324           // Only for do_null_check, not any of its siblings:
1325           && !assert_null && null_control == nullptr) {
1326         // Usually, any field access or invocation on an unloaded oop type
1327         // will simply fail to link, since the statically linked class is
1328         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1329         // the static class is loaded but the sharper oop type is not.
1330         // Rather than checking for this obscure case in lots of places,
1331         // we simply observe that a null check on an unloaded class
1332         // will always be followed by a nonsense operation, so we
1333         // can just issue the uncommon trap here.
1334         // Our access to the unloaded class will only be correct
1335         // after it has been loaded and initialized, which requires
1336         // a trip through the interpreter.
1337         ciKlass* klass = tp->unloaded_klass();
1338 #ifndef PRODUCT
1339         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1340 #endif
1341         uncommon_trap(Deoptimization::Reason_unloaded,
1342                       Deoptimization::Action_reinterpret,
1343                       klass, "!loaded");
1344         return top();
1345       }
1346 
1347       if (assert_null) {
1348         // See if the type is contained in NULL_PTR.
1349         // If so, then the value is already null.
1350         if (t->higher_equal(TypePtr::NULL_PTR)) {
1351           NOT_PRODUCT(explicit_null_checks_elided++);
1352           return value;           // Elided null assert quickly!
1353         }
1354       } else {
1355         // See if mixing in the null pointer changes type.
1356         // If so, then the null pointer was not allowed in the original
1357         // type.  In other words, "value" was not-null.
1358         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1359           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1360           NOT_PRODUCT(explicit_null_checks_elided++);
1361           return value;           // Elided null check quickly!
1362         }
1363       }
1364       chk = new CmpPNode( value, null() );
1365       break;
1366     }
1367 
1368     default:
1369       fatal("unexpected type: %s", type2name(type));
1370   }
1371   assert(chk != nullptr, "sanity check");
1372   chk = _gvn.transform(chk);
1373 
1374   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1375   BoolNode *btst = new BoolNode( chk, btest);
1376   Node   *tst = _gvn.transform( btst );
1377 
1378   //-----------
1379   // if peephole optimizations occurred, a prior test existed.
1380   // If a prior test existed, maybe it dominates as we can avoid this test.
1381   if (tst != btst && type == T_OBJECT) {
1382     // At this point we want to scan up the CFG to see if we can
1383     // find an identical test (and so avoid this test altogether).
1384     Node *cfg = control();
1385     int depth = 0;
1386     while( depth < 16 ) {       // Limit search depth for speed
1387       if( cfg->Opcode() == Op_IfTrue &&
1388           cfg->in(0)->in(1) == tst ) {
1389         // Found prior test.  Use "cast_not_null" to construct an identical
1390         // CastPP (and hence hash to) as already exists for the prior test.
1391         // Return that casted value.
1392         if (assert_null) {
1393           replace_in_map(value, null());
1394           return null();  // do not issue the redundant test
1395         }
1396         Node *oldcontrol = control();
1397         set_control(cfg);
1398         Node *res = cast_not_null(value);
1399         set_control(oldcontrol);
1400         NOT_PRODUCT(explicit_null_checks_elided++);
1401         return res;
1402       }
1403       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1404       if (cfg == nullptr)  break;  // Quit at region nodes
1405       depth++;
1406     }
1407   }
1408 
1409   //-----------
1410   // Branch to failure if null
1411   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1412   Deoptimization::DeoptReason reason;
1413   if (assert_null) {
1414     reason = Deoptimization::reason_null_assert(speculative);
1415   } else if (type == T_OBJECT || is_init_check) {
1416     reason = Deoptimization::reason_null_check(speculative);
1417   } else {
1418     reason = Deoptimization::Reason_div0_check;
1419   }
1420   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1421   // ciMethodData::has_trap_at will return a conservative -1 if any
1422   // must-be-null assertion has failed.  This could cause performance
1423   // problems for a method after its first do_null_assert failure.
1424   // Consider using 'Reason_class_check' instead?
1425 
1426   // To cause an implicit null check, we set the not-null probability
1427   // to the maximum (PROB_MAX).  For an explicit check the probability
1428   // is set to a smaller value.
1429   if (null_control != nullptr || too_many_traps(reason)) {
1430     // probability is less likely
1431     ok_prob =  PROB_LIKELY_MAG(3);
1432   } else if (!assert_null &&
1433              (ImplicitNullCheckThreshold > 0) &&
1434              method() != nullptr &&
1435              (method()->method_data()->trap_count(reason)
1436               >= (uint)ImplicitNullCheckThreshold)) {
1437     ok_prob =  PROB_LIKELY_MAG(3);
1438   }
1439 
1440   if (null_control != nullptr) {
1441     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1442     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1443     set_control(      _gvn.transform( new IfTrueNode(iff)));
1444 #ifndef PRODUCT
1445     if (null_true == top()) {
1446       explicit_null_checks_elided++;
1447     }
1448 #endif
1449     (*null_control) = null_true;
1450   } else {
1451     BuildCutout unless(this, tst, ok_prob);
1452     // Check for optimizer eliding test at parse time
1453     if (stopped()) {
1454       // Failure not possible; do not bother making uncommon trap.
1455       NOT_PRODUCT(explicit_null_checks_elided++);
1456     } else if (assert_null) {
1457       uncommon_trap(reason,
1458                     Deoptimization::Action_make_not_entrant,
1459                     nullptr, "assert_null");
1460     } else {
1461       replace_in_map(value, zerocon(type));
1462       builtin_throw(reason);
1463     }
1464   }
1465 
1466   // Must throw exception, fall-thru not possible?
1467   if (stopped()) {
1468     return top();               // No result
1469   }
1470 
1471   if (assert_null) {
1472     // Cast obj to null on this path.
1473     replace_in_map(value, zerocon(type));
1474     return zerocon(type);
1475   }
1476 
1477   // Cast obj to not-null on this path, if there is no null_control.
1478   // (If there is a null_control, a non-null value may come back to haunt us.)
1479   if (type == T_OBJECT) {
1480     Node* cast = cast_not_null(value, false);
1481     if (null_control == nullptr || (*null_control) == top())
1482       replace_in_map(value, cast);
1483     value = cast;
1484   }
1485 
1486   return value;
1487 }
1488 
1489 //------------------------------cast_not_null----------------------------------
1490 // Cast obj to not-null on this path
1491 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1492   if (obj->is_InlineType()) {
1493     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1494     vt->as_InlineType()->set_is_init(_gvn);
1495     vt = _gvn.transform(vt);
1496     if (do_replace_in_map) {
1497       replace_in_map(obj, vt);
1498     }
1499     return vt;
1500   }
1501   const Type *t = _gvn.type(obj);
1502   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1503   // Object is already not-null?
1504   if( t == t_not_null ) return obj;
1505 
1506   Node* cast = new CastPPNode(control(), obj,t_not_null);
1507   cast = _gvn.transform( cast );
1508 
1509   // Scan for instances of 'obj' in the current JVM mapping.
1510   // These instances are known to be not-null after the test.
1511   if (do_replace_in_map)
1512     replace_in_map(obj, cast);
1513 
1514   return cast;                  // Return casted value
1515 }
1516 
1517 // Sometimes in intrinsics, we implicitly know an object is not null
1518 // (there's no actual null check) so we can cast it to not null. In
1519 // the course of optimizations, the input to the cast can become null.
1520 // In that case that data path will die and we need the control path
1521 // to become dead as well to keep the graph consistent. So we have to
1522 // add a check for null for which one branch can't be taken. It uses
1523 // an OpaqueNotNull node that will cause the check to be removed after loop
1524 // opts so the test goes away and the compiled code doesn't execute a
1525 // useless check.
1526 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1527   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1528     return value;
1529   }
1530   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1531   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1532   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1533   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1534   _gvn.set_type(iff, iff->Value(&_gvn));
1535   if (!tst->is_Con()) {
1536     record_for_igvn(iff);
1537   }
1538   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1539   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1540   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1541   C->root()->add_req(halt);
1542   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1543   set_control(if_t);
1544   return cast_not_null(value, do_replace_in_map);
1545 }
1546 
1547 
1548 //--------------------------replace_in_map-------------------------------------
1549 void GraphKit::replace_in_map(Node* old, Node* neww) {
1550   if (old == neww) {
1551     return;
1552   }
1553 
1554   map()->replace_edge(old, neww);
1555 
1556   // Note: This operation potentially replaces any edge
1557   // on the map.  This includes locals, stack, and monitors
1558   // of the current (innermost) JVM state.
1559 
1560   // don't let inconsistent types from profiling escape this
1561   // method
1562 
1563   const Type* told = _gvn.type(old);
1564   const Type* tnew = _gvn.type(neww);
1565 
1566   if (!tnew->higher_equal(told)) {
1567     return;
1568   }
1569 
1570   map()->record_replaced_node(old, neww);
1571 }
1572 
1573 
1574 //=============================================================================
1575 //--------------------------------memory---------------------------------------
1576 Node* GraphKit::memory(uint alias_idx) {
1577   MergeMemNode* mem = merged_memory();
1578   Node* p = mem->memory_at(alias_idx);
1579   assert(p != mem->empty_memory(), "empty");
1580   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1581   return p;
1582 }
1583 
1584 //-----------------------------reset_memory------------------------------------
1585 Node* GraphKit::reset_memory() {
1586   Node* mem = map()->memory();
1587   // do not use this node for any more parsing!
1588   debug_only( map()->set_memory((Node*)nullptr) );
1589   return _gvn.transform( mem );
1590 }
1591 
1592 //------------------------------set_all_memory---------------------------------
1593 void GraphKit::set_all_memory(Node* newmem) {
1594   Node* mergemem = MergeMemNode::make(newmem);
1595   gvn().set_type_bottom(mergemem);
1596   map()->set_memory(mergemem);
1597 }
1598 
1599 //------------------------------set_all_memory_call----------------------------
1600 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1601   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1602   set_all_memory(newmem);
1603 }
1604 
1605 //=============================================================================
1606 //
1607 // parser factory methods for MemNodes
1608 //
1609 // These are layered on top of the factory methods in LoadNode and StoreNode,
1610 // and integrate with the parser's memory state and _gvn engine.
1611 //
1612 
1613 // factory methods in "int adr_idx"
1614 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1615                           MemNode::MemOrd mo,
1616                           LoadNode::ControlDependency control_dependency,
1617                           bool require_atomic_access,
1618                           bool unaligned,
1619                           bool mismatched,
1620                           bool unsafe,
1621                           uint8_t barrier_data) {
1622   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1623   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1624   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1625   debug_only(adr_type = C->get_adr_type(adr_idx));
1626   Node* mem = memory(adr_idx);
1627   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1628   ld = _gvn.transform(ld);
1629 
1630   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1631     // Improve graph before escape analysis and boxing elimination.
1632     record_for_igvn(ld);
1633     if (ld->is_DecodeN()) {
1634       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1635       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1636       // a Phi). Recording such cases is still perfectly sound, but may be
1637       // unnecessary and result in some minor IGVN overhead.
1638       record_for_igvn(ld->in(1));
1639     }
1640   }
1641   return ld;
1642 }
1643 
1644 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1645                                 MemNode::MemOrd mo,
1646                                 bool require_atomic_access,
1647                                 bool unaligned,
1648                                 bool mismatched,
1649                                 bool unsafe,
1650                                 int barrier_data) {
1651   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1652   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1653   const TypePtr* adr_type = nullptr;
1654   debug_only(adr_type = C->get_adr_type(adr_idx));
1655   Node *mem = memory(adr_idx);
1656   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1657   if (unaligned) {
1658     st->as_Store()->set_unaligned_access();
1659   }
1660   if (mismatched) {
1661     st->as_Store()->set_mismatched_access();
1662   }
1663   if (unsafe) {
1664     st->as_Store()->set_unsafe_access();
1665   }
1666   st->as_Store()->set_barrier_data(barrier_data);
1667   st = _gvn.transform(st);
1668   set_memory(st, adr_idx);
1669   // Back-to-back stores can only remove intermediate store with DU info
1670   // so push on worklist for optimizer.
1671   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1672     record_for_igvn(st);
1673 
1674   return st;
1675 }
1676 
1677 Node* GraphKit::access_store_at(Node* obj,
1678                                 Node* adr,
1679                                 const TypePtr* adr_type,
1680                                 Node* val,
1681                                 const Type* val_type,
1682                                 BasicType bt,
1683                                 DecoratorSet decorators,
1684                                 bool safe_for_replace,
1685                                 const InlineTypeNode* vt) {
1686   // Transformation of a value which could be null pointer (CastPP #null)
1687   // could be delayed during Parse (for example, in adjust_map_after_if()).
1688   // Execute transformation here to avoid barrier generation in such case.
1689   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1690     val = _gvn.makecon(TypePtr::NULL_PTR);
1691   }
1692 
1693   if (stopped()) {
1694     return top(); // Dead path ?
1695   }
1696 
1697   assert(val != nullptr, "not dead path");
1698   if (val->is_InlineType()) {
1699     // Store to non-flat field. Buffer the inline type and make sure
1700     // the store is re-executed if the allocation triggers deoptimization.
1701     PreserveReexecuteState preexecs(this);
1702     jvms()->set_should_reexecute(true);
1703     val = val->as_InlineType()->buffer(this, safe_for_replace);
1704   }
1705 
1706   C2AccessValuePtr addr(adr, adr_type);
1707   C2AccessValue value(val, val_type);
1708   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1709   if (access.is_raw()) {
1710     return _barrier_set->BarrierSetC2::store_at(access, value);
1711   } else {
1712     return _barrier_set->store_at(access, value);
1713   }
1714 }
1715 
1716 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1717                                Node* adr,   // actual address to store val at
1718                                const TypePtr* adr_type,
1719                                const Type* val_type,
1720                                BasicType bt,
1721                                DecoratorSet decorators,
1722                                Node* ctl) {
1723   if (stopped()) {
1724     return top(); // Dead path ?
1725   }
1726 
1727   C2AccessValuePtr addr(adr, adr_type);
1728   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1729   if (access.is_raw()) {
1730     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1731   } else {
1732     return _barrier_set->load_at(access, val_type);
1733   }
1734 }
1735 
1736 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1737                             const Type* val_type,
1738                             BasicType bt,
1739                             DecoratorSet decorators) {
1740   if (stopped()) {
1741     return top(); // Dead path ?
1742   }
1743 
1744   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1745   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1746   if (access.is_raw()) {
1747     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1748   } else {
1749     return _barrier_set->load_at(access, val_type);
1750   }
1751 }
1752 
1753 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1754                                              Node* adr,
1755                                              const TypePtr* adr_type,
1756                                              int alias_idx,
1757                                              Node* expected_val,
1758                                              Node* new_val,
1759                                              const Type* value_type,
1760                                              BasicType bt,
1761                                              DecoratorSet decorators) {
1762   C2AccessValuePtr addr(adr, adr_type);
1763   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1764                         bt, obj, addr, alias_idx);
1765   if (access.is_raw()) {
1766     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1767   } else {
1768     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1769   }
1770 }
1771 
1772 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1773                                               Node* adr,
1774                                               const TypePtr* adr_type,
1775                                               int alias_idx,
1776                                               Node* expected_val,
1777                                               Node* new_val,
1778                                               const Type* value_type,
1779                                               BasicType bt,
1780                                               DecoratorSet decorators) {
1781   C2AccessValuePtr addr(adr, adr_type);
1782   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1783                         bt, obj, addr, alias_idx);
1784   if (access.is_raw()) {
1785     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1786   } else {
1787     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1788   }
1789 }
1790 
1791 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1792                                       Node* adr,
1793                                       const TypePtr* adr_type,
1794                                       int alias_idx,
1795                                       Node* new_val,
1796                                       const Type* value_type,
1797                                       BasicType bt,
1798                                       DecoratorSet decorators) {
1799   C2AccessValuePtr addr(adr, adr_type);
1800   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1801                         bt, obj, addr, alias_idx);
1802   if (access.is_raw()) {
1803     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1804   } else {
1805     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1806   }
1807 }
1808 
1809 Node* GraphKit::access_atomic_add_at(Node* obj,
1810                                      Node* adr,
1811                                      const TypePtr* adr_type,
1812                                      int alias_idx,
1813                                      Node* new_val,
1814                                      const Type* value_type,
1815                                      BasicType bt,
1816                                      DecoratorSet decorators) {
1817   C2AccessValuePtr addr(adr, adr_type);
1818   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1819   if (access.is_raw()) {
1820     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1821   } else {
1822     return _barrier_set->atomic_add_at(access, new_val, value_type);
1823   }
1824 }
1825 
1826 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1827   return _barrier_set->clone(this, src, dst, size, is_array);
1828 }
1829 
1830 //-------------------------array_element_address-------------------------
1831 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1832                                       const TypeInt* sizetype, Node* ctrl) {
1833   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1834   assert(!arytype->is_flat() || elembt == T_OBJECT, "element type of flat arrays are T_OBJECT");
1835   uint shift;
1836   if (arytype->is_flat() && arytype->klass_is_exact()) {
1837     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1838     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1839     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1840     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1841     // though we don't need the address node in this case and throw it away again.
1842     shift = arytype->flat_log_elem_size();
1843   } else {
1844     shift = exact_log2(type2aelembytes(elembt));
1845   }
1846   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1847 
1848   // short-circuit a common case (saves lots of confusing waste motion)
1849   jint idx_con = find_int_con(idx, -1);
1850   if (idx_con >= 0) {
1851     intptr_t offset = header + ((intptr_t)idx_con << shift);
1852     return basic_plus_adr(ary, offset);
1853   }
1854 
1855   // must be correct type for alignment purposes
1856   Node* base  = basic_plus_adr(ary, header);
1857   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1858   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1859   return basic_plus_adr(ary, base, scale);
1860 }
1861 
1862 //-------------------------load_array_element-------------------------
1863 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1864   const Type* elemtype = arytype->elem();
1865   BasicType elembt = elemtype->array_element_basic_type();
1866   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1867   if (elembt == T_NARROWOOP) {
1868     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1869   }
1870   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1871                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1872   return ld;
1873 }
1874 
1875 //-------------------------set_arguments_for_java_call-------------------------
1876 // Arguments (pre-popped from the stack) are taken from the JVMS.
1877 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1878   PreserveReexecuteState preexecs(this);
1879   if (EnableValhalla) {
1880     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1881     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1882     jvms()->set_should_reexecute(true);
1883     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1884     inc_sp(arg_size);
1885   }
1886   // Add the call arguments
1887   const TypeTuple* domain = call->tf()->domain_sig();
1888   uint nargs = domain->cnt();
1889   int arg_num = 0;
1890   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1891     Node* arg = argument(i-TypeFunc::Parms);
1892     const Type* t = domain->field_at(i);
1893     // TODO 8284443 A static call to a mismatched method should still be scalarized
1894     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1895       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1896       if (!arg->is_InlineType()) {
1897         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1898         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1899       }
1900       InlineTypeNode* vt = arg->as_InlineType();
1901       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1902       // If an inline type argument is passed as fields, attach the Method* to the call site
1903       // to be able to access the extended signature later via attached_method_before_pc().
1904       // For example, see CompiledMethod::preserve_callee_argument_oops().
1905       call->set_override_symbolic_info(true);
1906       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1907       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1908       C->dependencies()->assert_evol_method(call->method());
1909       arg_num++;
1910       continue;
1911     } else if (arg->is_InlineType()) {
1912       // Pass inline type argument via oop to callee
1913       InlineTypeNode* inline_type = arg->as_InlineType();
1914       const ciMethod* method = call->method();
1915       ciInstanceKlass* holder = method->holder();
1916       const bool is_receiver = (i == TypeFunc::Parms);
1917       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1918                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1919       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1920       bool must_init_buffer = true;
1921       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1922       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1923       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1924       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1925       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1926       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1927       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1928       // value class constructors which could have more fields to be initialized. Note that we do not need to
1929       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1930       // have not initialized any fields, yet (this is done completely by the other constructor call).
1931       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1932         must_init_buffer = false;
1933       }
1934       arg = inline_type->buffer(this, true, must_init_buffer);
1935     }
1936     if (t != Type::HALF) {
1937       arg_num++;
1938     }
1939     call->init_req(idx++, arg);
1940   }
1941 }
1942 
1943 //---------------------------set_edges_for_java_call---------------------------
1944 // Connect a newly created call into the current JVMS.
1945 // A return value node (if any) is returned from set_edges_for_java_call.
1946 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1947 
1948   // Add the predefined inputs:
1949   call->init_req( TypeFunc::Control, control() );
1950   call->init_req( TypeFunc::I_O    , i_o() );
1951   call->init_req( TypeFunc::Memory , reset_memory() );
1952   call->init_req( TypeFunc::FramePtr, frameptr() );
1953   call->init_req( TypeFunc::ReturnAdr, top() );
1954 
1955   add_safepoint_edges(call, must_throw);
1956 
1957   Node* xcall = _gvn.transform(call);
1958 
1959   if (xcall == top()) {
1960     set_control(top());
1961     return;
1962   }
1963   assert(xcall == call, "call identity is stable");
1964 
1965   // Re-use the current map to produce the result.
1966 
1967   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1968   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1969   set_all_memory_call(xcall, separate_io_proj);
1970 
1971   //return xcall;   // no need, caller already has it
1972 }
1973 
1974 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1975   if (stopped())  return top();  // maybe the call folded up?
1976 
1977   // Note:  Since any out-of-line call can produce an exception,
1978   // we always insert an I_O projection from the call into the result.
1979 
1980   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1981 
1982   if (separate_io_proj) {
1983     // The caller requested separate projections be used by the fall
1984     // through and exceptional paths, so replace the projections for
1985     // the fall through path.
1986     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1987     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1988   }
1989 
1990   // Capture the return value, if any.
1991   Node* ret;
1992   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1993     ret = top();
1994   } else if (call->tf()->returns_inline_type_as_fields()) {
1995     // Return of multiple values (inline type fields): we create a
1996     // InlineType node, each field is a projection from the call.
1997     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1998     uint base_input = TypeFunc::Parms;
1999     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2000   } else {
2001     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2002     ciType* t = call->method()->return_type();
2003     if (t->is_klass()) {
2004       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2005       if (type->is_inlinetypeptr()) {
2006         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
2007       }
2008     }
2009   }
2010 
2011   // We just called the constructor on a value type receiver. Reload it from the buffer
2012   ciMethod* method = call->method();
2013   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2014     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2015     if (inline_type_receiver != nullptr) {
2016       assert(inline_type_receiver->is_larval(), "must be larval");
2017       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2018       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2019                                                                inline_type_receiver->bottom_type()->inline_klass(), true);
2020       assert(!reloaded->is_larval(), "should not be larval anymore");
2021       replace_in_map(inline_type_receiver, reloaded);
2022     }
2023   }
2024 
2025   return ret;
2026 }
2027 
2028 //--------------------set_predefined_input_for_runtime_call--------------------
2029 // Reading and setting the memory state is way conservative here.
2030 // The real problem is that I am not doing real Type analysis on memory,
2031 // so I cannot distinguish card mark stores from other stores.  Across a GC
2032 // point the Store Barrier and the card mark memory has to agree.  I cannot
2033 // have a card mark store and its barrier split across the GC point from
2034 // either above or below.  Here I get that to happen by reading ALL of memory.
2035 // A better answer would be to separate out card marks from other memory.
2036 // For now, return the input memory state, so that it can be reused
2037 // after the call, if this call has restricted memory effects.
2038 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2039   // Set fixed predefined input arguments
2040   Node* memory = reset_memory();
2041   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2042   call->init_req( TypeFunc::Control,   control()  );
2043   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2044   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2045   call->init_req( TypeFunc::FramePtr,  frameptr() );
2046   call->init_req( TypeFunc::ReturnAdr, top()      );
2047   return memory;
2048 }
2049 
2050 //-------------------set_predefined_output_for_runtime_call--------------------
2051 // Set control and memory (not i_o) from the call.
2052 // If keep_mem is not null, use it for the output state,
2053 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2054 // If hook_mem is null, this call produces no memory effects at all.
2055 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2056 // then only that memory slice is taken from the call.
2057 // In the last case, we must put an appropriate memory barrier before
2058 // the call, so as to create the correct anti-dependencies on loads
2059 // preceding the call.
2060 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2061                                                       Node* keep_mem,
2062                                                       const TypePtr* hook_mem) {
2063   // no i/o
2064   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2065   if (keep_mem) {
2066     // First clone the existing memory state
2067     set_all_memory(keep_mem);
2068     if (hook_mem != nullptr) {
2069       // Make memory for the call
2070       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2071       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2072       // We also use hook_mem to extract specific effects from arraycopy stubs.
2073       set_memory(mem, hook_mem);
2074     }
2075     // ...else the call has NO memory effects.
2076 
2077     // Make sure the call advertises its memory effects precisely.
2078     // This lets us build accurate anti-dependences in gcm.cpp.
2079     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2080            "call node must be constructed correctly");
2081   } else {
2082     assert(hook_mem == nullptr, "");
2083     // This is not a "slow path" call; all memory comes from the call.
2084     set_all_memory_call(call);
2085   }
2086 }
2087 
2088 // Keep track of MergeMems feeding into other MergeMems
2089 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2090   if (!mem->is_MergeMem()) {
2091     return;
2092   }
2093   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2094     Node* use = i.get();
2095     if (use->is_MergeMem()) {
2096       wl.push(use);
2097     }
2098   }
2099 }
2100 
2101 // Replace the call with the current state of the kit.
2102 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2103   JVMState* ejvms = nullptr;
2104   if (has_exceptions()) {
2105     ejvms = transfer_exceptions_into_jvms();
2106   }
2107 
2108   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2109   ReplacedNodes replaced_nodes_exception;
2110   Node* ex_ctl = top();
2111 
2112   SafePointNode* final_state = stop();
2113 
2114   // Find all the needed outputs of this call
2115   CallProjections* callprojs = call->extract_projections(true, do_asserts);
2116 
2117   Unique_Node_List wl;
2118   Node* init_mem = call->in(TypeFunc::Memory);
2119   Node* final_mem = final_state->in(TypeFunc::Memory);
2120   Node* final_ctl = final_state->in(TypeFunc::Control);
2121   Node* final_io = final_state->in(TypeFunc::I_O);
2122 
2123   // Replace all the old call edges with the edges from the inlining result
2124   if (callprojs->fallthrough_catchproj != nullptr) {
2125     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2126   }
2127   if (callprojs->fallthrough_memproj != nullptr) {
2128     if (final_mem->is_MergeMem()) {
2129       // Parser's exits MergeMem was not transformed but may be optimized
2130       final_mem = _gvn.transform(final_mem);
2131     }
2132     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2133     add_mergemem_users_to_worklist(wl, final_mem);
2134   }
2135   if (callprojs->fallthrough_ioproj != nullptr) {
2136     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2137   }
2138 
2139   // Replace the result with the new result if it exists and is used
2140   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2141     // If the inlined code is dead, the result projections for an inline type returned as
2142     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2143     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2144            "unexpected number of results");
2145     C->gvn_replace_by(callprojs->resproj[0], result);
2146   }
2147 
2148   if (ejvms == nullptr) {
2149     // No exception edges to simply kill off those paths
2150     if (callprojs->catchall_catchproj != nullptr) {
2151       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2152     }
2153     if (callprojs->catchall_memproj != nullptr) {
2154       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2155     }
2156     if (callprojs->catchall_ioproj != nullptr) {
2157       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2158     }
2159     // Replace the old exception object with top
2160     if (callprojs->exobj != nullptr) {
2161       C->gvn_replace_by(callprojs->exobj, C->top());
2162     }
2163   } else {
2164     GraphKit ekit(ejvms);
2165 
2166     // Load my combined exception state into the kit, with all phis transformed:
2167     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2168     replaced_nodes_exception = ex_map->replaced_nodes();
2169 
2170     Node* ex_oop = ekit.use_exception_state(ex_map);
2171 
2172     if (callprojs->catchall_catchproj != nullptr) {
2173       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2174       ex_ctl = ekit.control();
2175     }
2176     if (callprojs->catchall_memproj != nullptr) {
2177       Node* ex_mem = ekit.reset_memory();
2178       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2179       add_mergemem_users_to_worklist(wl, ex_mem);
2180     }
2181     if (callprojs->catchall_ioproj != nullptr) {
2182       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2183     }
2184 
2185     // Replace the old exception object with the newly created one
2186     if (callprojs->exobj != nullptr) {
2187       C->gvn_replace_by(callprojs->exobj, ex_oop);
2188     }
2189   }
2190 
2191   // Disconnect the call from the graph
2192   call->disconnect_inputs(C);
2193   C->gvn_replace_by(call, C->top());
2194 
2195   // Clean up any MergeMems that feed other MergeMems since the
2196   // optimizer doesn't like that.
2197   while (wl.size() > 0) {
2198     _gvn.transform(wl.pop());
2199   }
2200 
2201   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2202     replaced_nodes.apply(C, final_ctl);
2203   }
2204   if (!ex_ctl->is_top() && do_replaced_nodes) {
2205     replaced_nodes_exception.apply(C, ex_ctl);
2206   }
2207 }
2208 
2209 
2210 //------------------------------increment_counter------------------------------
2211 // for statistics: increment a VM counter by 1
2212 
2213 void GraphKit::increment_counter(address counter_addr) {
2214   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2215   increment_counter(adr1);
2216 }
2217 
2218 void GraphKit::increment_counter(Node* counter_addr) {
2219   Node* ctrl = control();
2220   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2221   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2222   store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered);
2223 }
2224 
2225 
2226 //------------------------------uncommon_trap----------------------------------
2227 // Bail out to the interpreter in mid-method.  Implemented by calling the
2228 // uncommon_trap blob.  This helper function inserts a runtime call with the
2229 // right debug info.
2230 Node* GraphKit::uncommon_trap(int trap_request,
2231                              ciKlass* klass, const char* comment,
2232                              bool must_throw,
2233                              bool keep_exact_action) {
2234   if (failing_internal()) {
2235     stop();
2236   }
2237   if (stopped())  return nullptr; // trap reachable?
2238 
2239   // Note:  If ProfileTraps is true, and if a deopt. actually
2240   // occurs here, the runtime will make sure an MDO exists.  There is
2241   // no need to call method()->ensure_method_data() at this point.
2242 
2243   // Set the stack pointer to the right value for reexecution:
2244   set_sp(reexecute_sp());
2245 
2246 #ifdef ASSERT
2247   if (!must_throw) {
2248     // Make sure the stack has at least enough depth to execute
2249     // the current bytecode.
2250     int inputs, ignored_depth;
2251     if (compute_stack_effects(inputs, ignored_depth)) {
2252       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2253              Bytecodes::name(java_bc()), sp(), inputs);
2254     }
2255   }
2256 #endif
2257 
2258   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2259   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2260 
2261   switch (action) {
2262   case Deoptimization::Action_maybe_recompile:
2263   case Deoptimization::Action_reinterpret:
2264     // Temporary fix for 6529811 to allow virtual calls to be sure they
2265     // get the chance to go from mono->bi->mega
2266     if (!keep_exact_action &&
2267         Deoptimization::trap_request_index(trap_request) < 0 &&
2268         too_many_recompiles(reason)) {
2269       // This BCI is causing too many recompilations.
2270       if (C->log() != nullptr) {
2271         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2272                 Deoptimization::trap_reason_name(reason),
2273                 Deoptimization::trap_action_name(action));
2274       }
2275       action = Deoptimization::Action_none;
2276       trap_request = Deoptimization::make_trap_request(reason, action);
2277     } else {
2278       C->set_trap_can_recompile(true);
2279     }
2280     break;
2281   case Deoptimization::Action_make_not_entrant:
2282     C->set_trap_can_recompile(true);
2283     break;
2284   case Deoptimization::Action_none:
2285   case Deoptimization::Action_make_not_compilable:
2286     break;
2287   default:
2288 #ifdef ASSERT
2289     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2290 #endif
2291     break;
2292   }
2293 
2294   if (TraceOptoParse) {
2295     char buf[100];
2296     tty->print_cr("Uncommon trap %s at bci:%d",
2297                   Deoptimization::format_trap_request(buf, sizeof(buf),
2298                                                       trap_request), bci());
2299   }
2300 
2301   CompileLog* log = C->log();
2302   if (log != nullptr) {
2303     int kid = (klass == nullptr)? -1: log->identify(klass);
2304     log->begin_elem("uncommon_trap bci='%d'", bci());
2305     char buf[100];
2306     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2307                                                           trap_request));
2308     if (kid >= 0)         log->print(" klass='%d'", kid);
2309     if (comment != nullptr)  log->print(" comment='%s'", comment);
2310     log->end_elem();
2311   }
2312 
2313   // Make sure any guarding test views this path as very unlikely
2314   Node *i0 = control()->in(0);
2315   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2316     IfNode *iff = i0->as_If();
2317     float f = iff->_prob;   // Get prob
2318     if (control()->Opcode() == Op_IfTrue) {
2319       if (f > PROB_UNLIKELY_MAG(4))
2320         iff->_prob = PROB_MIN;
2321     } else {
2322       if (f < PROB_LIKELY_MAG(4))
2323         iff->_prob = PROB_MAX;
2324     }
2325   }
2326 
2327   // Clear out dead values from the debug info.
2328   kill_dead_locals();
2329 
2330   // Now insert the uncommon trap subroutine call
2331   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2332   const TypePtr* no_memory_effects = nullptr;
2333   // Pass the index of the class to be loaded
2334   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2335                                  (must_throw ? RC_MUST_THROW : 0),
2336                                  OptoRuntime::uncommon_trap_Type(),
2337                                  call_addr, "uncommon_trap", no_memory_effects,
2338                                  intcon(trap_request));
2339   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2340          "must extract request correctly from the graph");
2341   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2342 
2343   call->set_req(TypeFunc::ReturnAdr, returnadr());
2344   // The debug info is the only real input to this call.
2345 
2346   // Halt-and-catch fire here.  The above call should never return!
2347   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2348                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2349   _gvn.set_type_bottom(halt);
2350   root()->add_req(halt);
2351 
2352   stop_and_kill_map();
2353   return call;
2354 }
2355 
2356 
2357 //--------------------------just_allocated_object------------------------------
2358 // Report the object that was just allocated.
2359 // It must be the case that there are no intervening safepoints.
2360 // We use this to determine if an object is so "fresh" that
2361 // it does not require card marks.
2362 Node* GraphKit::just_allocated_object(Node* current_control) {
2363   Node* ctrl = current_control;
2364   // Object::<init> is invoked after allocation, most of invoke nodes
2365   // will be reduced, but a region node is kept in parse time, we check
2366   // the pattern and skip the region node if it degraded to a copy.
2367   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2368       ctrl->as_Region()->is_copy()) {
2369     ctrl = ctrl->as_Region()->is_copy();
2370   }
2371   if (C->recent_alloc_ctl() == ctrl) {
2372    return C->recent_alloc_obj();
2373   }
2374   return nullptr;
2375 }
2376 
2377 
2378 /**
2379  * Record profiling data exact_kls for Node n with the type system so
2380  * that it can propagate it (speculation)
2381  *
2382  * @param n          node that the type applies to
2383  * @param exact_kls  type from profiling
2384  * @param maybe_null did profiling see null?
2385  *
2386  * @return           node with improved type
2387  */
2388 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2389   const Type* current_type = _gvn.type(n);
2390   assert(UseTypeSpeculation, "type speculation must be on");
2391 
2392   const TypePtr* speculative = current_type->speculative();
2393 
2394   // Should the klass from the profile be recorded in the speculative type?
2395   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2396     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2397     const TypeOopPtr* xtype = tklass->as_instance_type();
2398     assert(xtype->klass_is_exact(), "Should be exact");
2399     // Any reason to believe n is not null (from this profiling or a previous one)?
2400     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2401     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2402     // record the new speculative type's depth
2403     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2404     speculative = speculative->with_inline_depth(jvms()->depth());
2405   } else if (current_type->would_improve_ptr(ptr_kind)) {
2406     // Profiling report that null was never seen so we can change the
2407     // speculative type to non null ptr.
2408     if (ptr_kind == ProfileAlwaysNull) {
2409       speculative = TypePtr::NULL_PTR;
2410     } else {
2411       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2412       const TypePtr* ptr = TypePtr::NOTNULL;
2413       if (speculative != nullptr) {
2414         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2415       } else {
2416         speculative = ptr;
2417       }
2418     }
2419   }
2420 
2421   if (speculative != current_type->speculative()) {
2422     // Build a type with a speculative type (what we think we know
2423     // about the type but will need a guard when we use it)
2424     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2425     // We're changing the type, we need a new CheckCast node to carry
2426     // the new type. The new type depends on the control: what
2427     // profiling tells us is only valid from here as far as we can
2428     // tell.
2429     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2430     cast = _gvn.transform(cast);
2431     replace_in_map(n, cast);
2432     n = cast;
2433   }
2434 
2435   return n;
2436 }
2437 
2438 /**
2439  * Record profiling data from receiver profiling at an invoke with the
2440  * type system so that it can propagate it (speculation)
2441  *
2442  * @param n  receiver node
2443  *
2444  * @return   node with improved type
2445  */
2446 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2447   if (!UseTypeSpeculation) {
2448     return n;
2449   }
2450   ciKlass* exact_kls = profile_has_unique_klass();
2451   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2452   if ((java_bc() == Bytecodes::_checkcast ||
2453        java_bc() == Bytecodes::_instanceof ||
2454        java_bc() == Bytecodes::_aastore) &&
2455       method()->method_data()->is_mature()) {
2456     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2457     if (data != nullptr) {
2458       if (java_bc() == Bytecodes::_aastore) {
2459         ciKlass* array_type = nullptr;
2460         ciKlass* element_type = nullptr;
2461         ProfilePtrKind element_ptr = ProfileMaybeNull;
2462         bool flat_array = true;
2463         bool null_free_array = true;
2464         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2465         exact_kls = element_type;
2466         ptr_kind = element_ptr;
2467       } else {
2468         if (!data->as_BitData()->null_seen()) {
2469           ptr_kind = ProfileNeverNull;
2470         } else {
2471           assert(data->is_ReceiverTypeData(), "bad profile data type");
2472           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2473           uint i = 0;
2474           for (; i < call->row_limit(); i++) {
2475             ciKlass* receiver = call->receiver(i);
2476             if (receiver != nullptr) {
2477               break;
2478             }
2479           }
2480           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2481         }
2482       }
2483     }
2484   }
2485   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2486 }
2487 
2488 /**
2489  * Record profiling data from argument profiling at an invoke with the
2490  * type system so that it can propagate it (speculation)
2491  *
2492  * @param dest_method  target method for the call
2493  * @param bc           what invoke bytecode is this?
2494  */
2495 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2496   if (!UseTypeSpeculation) {
2497     return;
2498   }
2499   const TypeFunc* tf    = TypeFunc::make(dest_method);
2500   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2501   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2502   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2503     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2504     if (is_reference_type(targ->basic_type())) {
2505       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2506       ciKlass* better_type = nullptr;
2507       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2508         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2509       }
2510       i++;
2511     }
2512   }
2513 }
2514 
2515 /**
2516  * Record profiling data from parameter profiling at an invoke with
2517  * the type system so that it can propagate it (speculation)
2518  */
2519 void GraphKit::record_profiled_parameters_for_speculation() {
2520   if (!UseTypeSpeculation) {
2521     return;
2522   }
2523   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2524     if (_gvn.type(local(i))->isa_oopptr()) {
2525       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2526       ciKlass* better_type = nullptr;
2527       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2528         record_profile_for_speculation(local(i), better_type, ptr_kind);
2529       }
2530       j++;
2531     }
2532   }
2533 }
2534 
2535 /**
2536  * Record profiling data from return value profiling at an invoke with
2537  * the type system so that it can propagate it (speculation)
2538  */
2539 void GraphKit::record_profiled_return_for_speculation() {
2540   if (!UseTypeSpeculation) {
2541     return;
2542   }
2543   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2544   ciKlass* better_type = nullptr;
2545   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2546     // If profiling reports a single type for the return value,
2547     // feed it to the type system so it can propagate it as a
2548     // speculative type
2549     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2550   }
2551 }
2552 
2553 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2554   if (Matcher::strict_fp_requires_explicit_rounding) {
2555     // (Note:  TypeFunc::make has a cache that makes this fast.)
2556     const TypeFunc* tf    = TypeFunc::make(dest_method);
2557     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2558     for (int j = 0; j < nargs; j++) {
2559       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2560       if (targ->basic_type() == T_DOUBLE) {
2561         // If any parameters are doubles, they must be rounded before
2562         // the call, dprecision_rounding does gvn.transform
2563         Node *arg = argument(j);
2564         arg = dprecision_rounding(arg);
2565         set_argument(j, arg);
2566       }
2567     }
2568   }
2569 }
2570 
2571 // rounding for strict float precision conformance
2572 Node* GraphKit::precision_rounding(Node* n) {
2573   if (Matcher::strict_fp_requires_explicit_rounding) {
2574 #ifdef IA32
2575     if (UseSSE == 0) {
2576       return _gvn.transform(new RoundFloatNode(nullptr, n));
2577     }
2578 #else
2579     Unimplemented();
2580 #endif // IA32
2581   }
2582   return n;
2583 }
2584 
2585 // rounding for strict double precision conformance
2586 Node* GraphKit::dprecision_rounding(Node *n) {
2587   if (Matcher::strict_fp_requires_explicit_rounding) {
2588 #ifdef IA32
2589     if (UseSSE < 2) {
2590       return _gvn.transform(new RoundDoubleNode(nullptr, n));
2591     }
2592 #else
2593     Unimplemented();
2594 #endif // IA32
2595   }
2596   return n;
2597 }
2598 
2599 //=============================================================================
2600 // Generate a fast path/slow path idiom.  Graph looks like:
2601 // [foo] indicates that 'foo' is a parameter
2602 //
2603 //              [in]     null
2604 //                 \    /
2605 //                  CmpP
2606 //                  Bool ne
2607 //                   If
2608 //                  /  \
2609 //              True    False-<2>
2610 //              / |
2611 //             /  cast_not_null
2612 //           Load  |    |   ^
2613 //        [fast_test]   |   |
2614 // gvn to   opt_test    |   |
2615 //          /    \      |  <1>
2616 //      True     False  |
2617 //        |         \\  |
2618 //   [slow_call]     \[fast_result]
2619 //    Ctl   Val       \      \
2620 //     |               \      \
2621 //    Catch       <1>   \      \
2622 //   /    \        ^     \      \
2623 //  Ex    No_Ex    |      \      \
2624 //  |       \   \  |       \ <2>  \
2625 //  ...      \  [slow_res] |  |    \   [null_result]
2626 //            \         \--+--+---  |  |
2627 //             \           | /    \ | /
2628 //              --------Region     Phi
2629 //
2630 //=============================================================================
2631 // Code is structured as a series of driver functions all called 'do_XXX' that
2632 // call a set of helper functions.  Helper functions first, then drivers.
2633 
2634 //------------------------------null_check_oop---------------------------------
2635 // Null check oop.  Set null-path control into Region in slot 3.
2636 // Make a cast-not-nullness use the other not-null control.  Return cast.
2637 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2638                                bool never_see_null,
2639                                bool safe_for_replace,
2640                                bool speculative) {
2641   // Initial null check taken path
2642   (*null_control) = top();
2643   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2644 
2645   // Generate uncommon_trap:
2646   if (never_see_null && (*null_control) != top()) {
2647     // If we see an unexpected null at a check-cast we record it and force a
2648     // recompile; the offending check-cast will be compiled to handle nulls.
2649     // If we see more than one offending BCI, then all checkcasts in the
2650     // method will be compiled to handle nulls.
2651     PreserveJVMState pjvms(this);
2652     set_control(*null_control);
2653     replace_in_map(value, null());
2654     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2655     uncommon_trap(reason,
2656                   Deoptimization::Action_make_not_entrant);
2657     (*null_control) = top();    // null path is dead
2658   }
2659   if ((*null_control) == top() && safe_for_replace) {
2660     replace_in_map(value, cast);
2661   }
2662 
2663   // Cast away null-ness on the result
2664   return cast;
2665 }
2666 
2667 //------------------------------opt_iff----------------------------------------
2668 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2669 // Return slow-path control.
2670 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2671   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2672 
2673   // Fast path taken; set region slot 2
2674   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2675   region->init_req(2,fast_taken); // Capture fast-control
2676 
2677   // Fast path not-taken, i.e. slow path
2678   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2679   return slow_taken;
2680 }
2681 
2682 //-----------------------------make_runtime_call-------------------------------
2683 Node* GraphKit::make_runtime_call(int flags,
2684                                   const TypeFunc* call_type, address call_addr,
2685                                   const char* call_name,
2686                                   const TypePtr* adr_type,
2687                                   // The following parms are all optional.
2688                                   // The first null ends the list.
2689                                   Node* parm0, Node* parm1,
2690                                   Node* parm2, Node* parm3,
2691                                   Node* parm4, Node* parm5,
2692                                   Node* parm6, Node* parm7) {
2693   assert(call_addr != nullptr, "must not call null targets");
2694 
2695   // Slow-path call
2696   bool is_leaf = !(flags & RC_NO_LEAF);
2697   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2698   if (call_name == nullptr) {
2699     assert(!is_leaf, "must supply name for leaf");
2700     call_name = OptoRuntime::stub_name(call_addr);
2701   }
2702   CallNode* call;
2703   if (!is_leaf) {
2704     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2705   } else if (flags & RC_NO_FP) {
2706     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2707   } else  if (flags & RC_VECTOR){
2708     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2709     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2710   } else {
2711     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2712   }
2713 
2714   // The following is similar to set_edges_for_java_call,
2715   // except that the memory effects of the call are restricted to AliasIdxRaw.
2716 
2717   // Slow path call has no side-effects, uses few values
2718   bool wide_in  = !(flags & RC_NARROW_MEM);
2719   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2720 
2721   Node* prev_mem = nullptr;
2722   if (wide_in) {
2723     prev_mem = set_predefined_input_for_runtime_call(call);
2724   } else {
2725     assert(!wide_out, "narrow in => narrow out");
2726     Node* narrow_mem = memory(adr_type);
2727     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2728   }
2729 
2730   // Hook each parm in order.  Stop looking at the first null.
2731   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2732   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2733   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2734   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2735   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2736   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2737   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2738   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2739   /* close each nested if ===> */  } } } } } } } }
2740   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2741 
2742   if (!is_leaf) {
2743     // Non-leaves can block and take safepoints:
2744     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2745   }
2746   // Non-leaves can throw exceptions:
2747   if (has_io) {
2748     call->set_req(TypeFunc::I_O, i_o());
2749   }
2750 
2751   if (flags & RC_UNCOMMON) {
2752     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2753     // (An "if" probability corresponds roughly to an unconditional count.
2754     // Sort of.)
2755     call->set_cnt(PROB_UNLIKELY_MAG(4));
2756   }
2757 
2758   Node* c = _gvn.transform(call);
2759   assert(c == call, "cannot disappear");
2760 
2761   if (wide_out) {
2762     // Slow path call has full side-effects.
2763     set_predefined_output_for_runtime_call(call);
2764   } else {
2765     // Slow path call has few side-effects, and/or sets few values.
2766     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2767   }
2768 
2769   if (has_io) {
2770     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2771   }
2772   return call;
2773 
2774 }
2775 
2776 // i2b
2777 Node* GraphKit::sign_extend_byte(Node* in) {
2778   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2779   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2780 }
2781 
2782 // i2s
2783 Node* GraphKit::sign_extend_short(Node* in) {
2784   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2785   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2786 }
2787 
2788 
2789 //------------------------------merge_memory-----------------------------------
2790 // Merge memory from one path into the current memory state.
2791 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2792   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2793     Node* old_slice = mms.force_memory();
2794     Node* new_slice = mms.memory2();
2795     if (old_slice != new_slice) {
2796       PhiNode* phi;
2797       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2798         if (mms.is_empty()) {
2799           // clone base memory Phi's inputs for this memory slice
2800           assert(old_slice == mms.base_memory(), "sanity");
2801           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2802           _gvn.set_type(phi, Type::MEMORY);
2803           for (uint i = 1; i < phi->req(); i++) {
2804             phi->init_req(i, old_slice->in(i));
2805           }
2806         } else {
2807           phi = old_slice->as_Phi(); // Phi was generated already
2808         }
2809       } else {
2810         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2811         _gvn.set_type(phi, Type::MEMORY);
2812       }
2813       phi->set_req(new_path, new_slice);
2814       mms.set_memory(phi);
2815     }
2816   }
2817 }
2818 
2819 //------------------------------make_slow_call_ex------------------------------
2820 // Make the exception handler hookups for the slow call
2821 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2822   if (stopped())  return;
2823 
2824   // Make a catch node with just two handlers:  fall-through and catch-all
2825   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2826   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2827   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2828   _gvn.set_type_bottom(norm);
2829   C->record_for_igvn(norm);
2830   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2831 
2832   { PreserveJVMState pjvms(this);
2833     set_control(excp);
2834     set_i_o(i_o);
2835 
2836     if (excp != top()) {
2837       if (deoptimize) {
2838         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2839         uncommon_trap(Deoptimization::Reason_unhandled,
2840                       Deoptimization::Action_none);
2841       } else {
2842         // Create an exception state also.
2843         // Use an exact type if the caller has a specific exception.
2844         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2845         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2846         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2847       }
2848     }
2849   }
2850 
2851   // Get the no-exception control from the CatchNode.
2852   set_control(norm);
2853 }
2854 
2855 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2856   Node* cmp = nullptr;
2857   switch(bt) {
2858   case T_INT: cmp = new CmpINode(in1, in2); break;
2859   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2860   default: fatal("unexpected comparison type %s", type2name(bt));
2861   }
2862   cmp = gvn.transform(cmp);
2863   Node* bol = gvn.transform(new BoolNode(cmp, test));
2864   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2865   gvn.transform(iff);
2866   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2867   return iff;
2868 }
2869 
2870 //-------------------------------gen_subtype_check-----------------------------
2871 // Generate a subtyping check.  Takes as input the subtype and supertype.
2872 // Returns 2 values: sets the default control() to the true path and returns
2873 // the false path.  Only reads invariant memory; sets no (visible) memory.
2874 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2875 // but that's not exposed to the optimizer.  This call also doesn't take in an
2876 // Object; if you wish to check an Object you need to load the Object's class
2877 // prior to coming here.
2878 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2879                                ciMethod* method, int bci) {
2880   Compile* C = gvn.C;
2881   if ((*ctrl)->is_top()) {
2882     return C->top();
2883   }
2884 
2885   // Fast check for identical types, perhaps identical constants.
2886   // The types can even be identical non-constants, in cases
2887   // involving Array.newInstance, Object.clone, etc.
2888   if (subklass == superklass)
2889     return C->top();             // false path is dead; no test needed.
2890 
2891   if (gvn.type(superklass)->singleton()) {
2892     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2893     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2894 
2895     // In the common case of an exact superklass, try to fold up the
2896     // test before generating code.  You may ask, why not just generate
2897     // the code and then let it fold up?  The answer is that the generated
2898     // code will necessarily include null checks, which do not always
2899     // completely fold away.  If they are also needless, then they turn
2900     // into a performance loss.  Example:
2901     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2902     // Here, the type of 'fa' is often exact, so the store check
2903     // of fa[1]=x will fold up, without testing the nullness of x.
2904     //
2905     // At macro expansion, we would have already folded the SubTypeCheckNode
2906     // being expanded here because we always perform the static sub type
2907     // check in SubTypeCheckNode::sub() regardless of whether
2908     // StressReflectiveCode is set or not. We can therefore skip this
2909     // static check when StressReflectiveCode is on.
2910     switch (C->static_subtype_check(superk, subk)) {
2911     case Compile::SSC_always_false:
2912       {
2913         Node* always_fail = *ctrl;
2914         *ctrl = gvn.C->top();
2915         return always_fail;
2916       }
2917     case Compile::SSC_always_true:
2918       return C->top();
2919     case Compile::SSC_easy_test:
2920       {
2921         // Just do a direct pointer compare and be done.
2922         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2923         *ctrl = gvn.transform(new IfTrueNode(iff));
2924         return gvn.transform(new IfFalseNode(iff));
2925       }
2926     case Compile::SSC_full_test:
2927       break;
2928     default:
2929       ShouldNotReachHere();
2930     }
2931   }
2932 
2933   // %%% Possible further optimization:  Even if the superklass is not exact,
2934   // if the subklass is the unique subtype of the superklass, the check
2935   // will always succeed.  We could leave a dependency behind to ensure this.
2936 
2937   // First load the super-klass's check-offset
2938   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2939   Node* m = C->immutable_memory();
2940   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2941   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2942   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2943   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2944   bool might_be_cache = (chk_off_con == cacheoff_con);
2945 
2946   // Load from the sub-klass's super-class display list, or a 1-word cache of
2947   // the secondary superclass list, or a failing value with a sentinel offset
2948   // if the super-klass is an interface or exceptionally deep in the Java
2949   // hierarchy and we have to scan the secondary superclass list the hard way.
2950   // Worst-case type is a little odd: null is allowed as a result (usually
2951   // klass loads can never produce a null).
2952   Node *chk_off_X = chk_off;
2953 #ifdef _LP64
2954   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2955 #endif
2956   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2957   // For some types like interfaces the following loadKlass is from a 1-word
2958   // cache which is mutable so can't use immutable memory.  Other
2959   // types load from the super-class display table which is immutable.
2960   Node *kmem = C->immutable_memory();
2961   // secondary_super_cache is not immutable but can be treated as such because:
2962   // - no ideal node writes to it in a way that could cause an
2963   //   incorrect/missed optimization of the following Load.
2964   // - it's a cache so, worse case, not reading the latest value
2965   //   wouldn't cause incorrect execution
2966   if (might_be_cache && mem != nullptr) {
2967     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2968   }
2969   Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2970 
2971   // Compile speed common case: ARE a subtype and we canNOT fail
2972   if (superklass == nkls) {
2973     return C->top();             // false path is dead; no test needed.
2974   }
2975 
2976   // Gather the various success & failures here
2977   RegionNode* r_not_subtype = new RegionNode(3);
2978   gvn.record_for_igvn(r_not_subtype);
2979   RegionNode* r_ok_subtype = new RegionNode(4);
2980   gvn.record_for_igvn(r_ok_subtype);
2981 
2982   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2983   // SubTypeCheck node
2984   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2985     ciCallProfile profile = method->call_profile_at_bci(bci);
2986     float total_prob = 0;
2987     for (int i = 0; profile.has_receiver(i); ++i) {
2988       float prob = profile.receiver_prob(i);
2989       total_prob += prob;
2990     }
2991     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2992       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2993       for (int i = 0; profile.has_receiver(i); ++i) {
2994         ciKlass* klass = profile.receiver(i);
2995         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2996         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2997         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2998           continue;
2999         }
3000         float prob = profile.receiver_prob(i);
3001         ConNode* klass_node = gvn.makecon(klass_t);
3002         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3003         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3004 
3005         if (result == Compile::SSC_always_true) {
3006           r_ok_subtype->add_req(iftrue);
3007         } else {
3008           assert(result == Compile::SSC_always_false, "");
3009           r_not_subtype->add_req(iftrue);
3010         }
3011         *ctrl = gvn.transform(new IfFalseNode(iff));
3012       }
3013     }
3014   }
3015 
3016   // See if we get an immediate positive hit.  Happens roughly 83% of the
3017   // time.  Test to see if the value loaded just previously from the subklass
3018   // is exactly the superklass.
3019   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
3020   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
3021   *ctrl = gvn.transform(new IfFalseNode(iff1));
3022 
3023   // Compile speed common case: Check for being deterministic right now.  If
3024   // chk_off is a constant and not equal to cacheoff then we are NOT a
3025   // subklass.  In this case we need exactly the 1 test above and we can
3026   // return those results immediately.
3027   if (!might_be_cache) {
3028     Node* not_subtype_ctrl = *ctrl;
3029     *ctrl = iftrue1; // We need exactly the 1 test above
3030     PhaseIterGVN* igvn = gvn.is_IterGVN();
3031     if (igvn != nullptr) {
3032       igvn->remove_globally_dead_node(r_ok_subtype);
3033       igvn->remove_globally_dead_node(r_not_subtype);
3034     }
3035     return not_subtype_ctrl;
3036   }
3037 
3038   r_ok_subtype->init_req(1, iftrue1);
3039 
3040   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3041   // is roughly 63% of the remaining cases).  Test to see if the loaded
3042   // check-offset points into the subklass display list or the 1-element
3043   // cache.  If it points to the display (and NOT the cache) and the display
3044   // missed then it's not a subtype.
3045   Node *cacheoff = gvn.intcon(cacheoff_con);
3046   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3047   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3048   *ctrl = gvn.transform(new IfFalseNode(iff2));
3049 
3050   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3051   // No performance impact (too rare) but allows sharing of secondary arrays
3052   // which has some footprint reduction.
3053   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3054   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3055   *ctrl = gvn.transform(new IfFalseNode(iff3));
3056 
3057   // -- Roads not taken here: --
3058   // We could also have chosen to perform the self-check at the beginning
3059   // of this code sequence, as the assembler does.  This would not pay off
3060   // the same way, since the optimizer, unlike the assembler, can perform
3061   // static type analysis to fold away many successful self-checks.
3062   // Non-foldable self checks work better here in second position, because
3063   // the initial primary superclass check subsumes a self-check for most
3064   // types.  An exception would be a secondary type like array-of-interface,
3065   // which does not appear in its own primary supertype display.
3066   // Finally, we could have chosen to move the self-check into the
3067   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3068   // dependent manner.  But it is worthwhile to have the check here,
3069   // where it can be perhaps be optimized.  The cost in code space is
3070   // small (register compare, branch).
3071 
3072   // Now do a linear scan of the secondary super-klass array.  Again, no real
3073   // performance impact (too rare) but it's gotta be done.
3074   // Since the code is rarely used, there is no penalty for moving it
3075   // out of line, and it can only improve I-cache density.
3076   // The decision to inline or out-of-line this final check is platform
3077   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3078   Node* psc = gvn.transform(
3079     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3080 
3081   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3082   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3083   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3084 
3085   // Return false path; set default control to true path.
3086   *ctrl = gvn.transform(r_ok_subtype);
3087   return gvn.transform(r_not_subtype);
3088 }
3089 
3090 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3091   const Type* sub_t = _gvn.type(obj_or_subklass);
3092   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3093     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3094     obj_or_subklass = makecon(sub_t);
3095   }
3096   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3097   if (expand_subtype_check) {
3098     MergeMemNode* mem = merged_memory();
3099     Node* ctrl = control();
3100     Node* subklass = obj_or_subklass;
3101     if (!sub_t->isa_klassptr()) {
3102       subklass = load_object_klass(obj_or_subklass);
3103     }
3104 
3105     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3106     set_control(ctrl);
3107     return n;
3108   }
3109 
3110   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3111   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3112   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3113   set_control(_gvn.transform(new IfTrueNode(iff)));
3114   return _gvn.transform(new IfFalseNode(iff));
3115 }
3116 
3117 // Profile-driven exact type check:
3118 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3119                                     float prob, Node* *casted_receiver) {
3120   assert(!klass->is_interface(), "no exact type check on interfaces");
3121   Node* fail = top();
3122   const Type* rec_t = _gvn.type(receiver);
3123   if (rec_t->is_inlinetypeptr()) {
3124     if (klass->equals(rec_t->inline_klass())) {
3125       (*casted_receiver) = receiver; // Always passes
3126     } else {
3127       (*casted_receiver) = top();    // Always fails
3128       fail = control();
3129       set_control(top());
3130     }
3131     return fail;
3132   }
3133   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3134   Node* recv_klass = load_object_klass(receiver);
3135   fail = type_check(recv_klass, tklass, prob);
3136 
3137   if (!stopped()) {
3138     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3139     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3140     assert(recv_xtype->klass_is_exact(), "");
3141 
3142     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3143       // Subsume downstream occurrences of receiver with a cast to
3144       // recv_xtype, since now we know what the type will be.
3145       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3146       Node* res = _gvn.transform(cast);
3147       if (recv_xtype->is_inlinetypeptr()) {
3148         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3149         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3150       }
3151       (*casted_receiver) = res;
3152       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3153       // (User must make the replace_in_map call.)
3154     }
3155   }
3156 
3157   return fail;
3158 }
3159 
3160 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3161                            float prob) {
3162   Node* want_klass = makecon(tklass);
3163   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3164   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3165   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3166   set_control(_gvn.transform(new IfTrueNode (iff)));
3167   Node* fail = _gvn.transform(new IfFalseNode(iff));
3168   return fail;
3169 }
3170 
3171 //------------------------------subtype_check_receiver-------------------------
3172 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3173                                        Node** casted_receiver) {
3174   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3175   Node* want_klass = makecon(tklass);
3176 
3177   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3178 
3179   // Ignore interface type information until interface types are properly tracked.
3180   if (!stopped() && !klass->is_interface()) {
3181     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3182     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3183     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3184       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3185       if (recv_type->is_inlinetypeptr()) {
3186         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3187       }
3188       (*casted_receiver) = cast;
3189     }
3190   }
3191 
3192   return slow_ctl;
3193 }
3194 
3195 //------------------------------seems_never_null-------------------------------
3196 // Use null_seen information if it is available from the profile.
3197 // If we see an unexpected null at a type check we record it and force a
3198 // recompile; the offending check will be recompiled to handle nulls.
3199 // If we see several offending BCIs, then all checks in the
3200 // method will be recompiled.
3201 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3202   speculating = !_gvn.type(obj)->speculative_maybe_null();
3203   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3204   if (UncommonNullCast               // Cutout for this technique
3205       && obj != null()               // And not the -Xcomp stupid case?
3206       && !too_many_traps(reason)
3207       ) {
3208     if (speculating) {
3209       return true;
3210     }
3211     if (data == nullptr)
3212       // Edge case:  no mature data.  Be optimistic here.
3213       return true;
3214     // If the profile has not seen a null, assume it won't happen.
3215     assert(java_bc() == Bytecodes::_checkcast ||
3216            java_bc() == Bytecodes::_instanceof ||
3217            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3218     return !data->as_BitData()->null_seen();
3219   }
3220   speculating = false;
3221   return false;
3222 }
3223 
3224 void GraphKit::guard_klass_being_initialized(Node* klass) {
3225   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3226   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3227   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3228                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3229                                     T_BYTE, MemNode::acquire);
3230   init_state = _gvn.transform(init_state);
3231 
3232   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3233 
3234   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3235   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3236 
3237   { BuildCutout unless(this, tst, PROB_MAX);
3238     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3239   }
3240 }
3241 
3242 void GraphKit::guard_init_thread(Node* klass) {
3243   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3244   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3245 
3246   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3247                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3248                                      T_ADDRESS, MemNode::unordered);
3249   init_thread = _gvn.transform(init_thread);
3250 
3251   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3252 
3253   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3254   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3255 
3256   { BuildCutout unless(this, tst, PROB_MAX);
3257     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3258   }
3259 }
3260 
3261 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3262   if (ik->is_being_initialized()) {
3263     if (C->needs_clinit_barrier(ik, context)) {
3264       Node* klass = makecon(TypeKlassPtr::make(ik));
3265       guard_klass_being_initialized(klass);
3266       guard_init_thread(klass);
3267       insert_mem_bar(Op_MemBarCPUOrder);
3268     }
3269   } else if (ik->is_initialized()) {
3270     return; // no barrier needed
3271   } else {
3272     uncommon_trap(Deoptimization::Reason_uninitialized,
3273                   Deoptimization::Action_reinterpret,
3274                   nullptr);
3275   }
3276 }
3277 
3278 //------------------------maybe_cast_profiled_receiver-------------------------
3279 // If the profile has seen exactly one type, narrow to exactly that type.
3280 // Subsequent type checks will always fold up.
3281 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3282                                              const TypeKlassPtr* require_klass,
3283                                              ciKlass* spec_klass,
3284                                              bool safe_for_replace) {
3285   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3286 
3287   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3288 
3289   // Make sure we haven't already deoptimized from this tactic.
3290   if (too_many_traps_or_recompiles(reason))
3291     return nullptr;
3292 
3293   // (No, this isn't a call, but it's enough like a virtual call
3294   // to use the same ciMethod accessor to get the profile info...)
3295   // If we have a speculative type use it instead of profiling (which
3296   // may not help us)
3297   ciKlass* exact_kls = spec_klass;
3298   if (exact_kls == nullptr) {
3299     if (java_bc() == Bytecodes::_aastore) {
3300       ciKlass* array_type = nullptr;
3301       ciKlass* element_type = nullptr;
3302       ProfilePtrKind element_ptr = ProfileMaybeNull;
3303       bool flat_array = true;
3304       bool null_free_array = true;
3305       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3306       exact_kls = element_type;
3307     } else {
3308       exact_kls = profile_has_unique_klass();
3309     }
3310   }
3311   if (exact_kls != nullptr) {// no cast failures here
3312     if (require_klass == nullptr ||
3313         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3314       // If we narrow the type to match what the type profile sees or
3315       // the speculative type, we can then remove the rest of the
3316       // cast.
3317       // This is a win, even if the exact_kls is very specific,
3318       // because downstream operations, such as method calls,
3319       // will often benefit from the sharper type.
3320       Node* exact_obj = not_null_obj; // will get updated in place...
3321       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3322                                             &exact_obj);
3323       { PreserveJVMState pjvms(this);
3324         set_control(slow_ctl);
3325         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3326       }
3327       if (safe_for_replace) {
3328         replace_in_map(not_null_obj, exact_obj);
3329       }
3330       return exact_obj;
3331     }
3332     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3333   }
3334 
3335   return nullptr;
3336 }
3337 
3338 /**
3339  * Cast obj to type and emit guard unless we had too many traps here
3340  * already
3341  *
3342  * @param obj       node being casted
3343  * @param type      type to cast the node to
3344  * @param not_null  true if we know node cannot be null
3345  */
3346 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3347                                         ciKlass* type,
3348                                         bool not_null) {
3349   if (stopped()) {
3350     return obj;
3351   }
3352 
3353   // type is null if profiling tells us this object is always null
3354   if (type != nullptr) {
3355     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3356     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3357 
3358     if (!too_many_traps_or_recompiles(null_reason) &&
3359         !too_many_traps_or_recompiles(class_reason)) {
3360       Node* not_null_obj = nullptr;
3361       // not_null is true if we know the object is not null and
3362       // there's no need for a null check
3363       if (!not_null) {
3364         Node* null_ctl = top();
3365         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3366         assert(null_ctl->is_top(), "no null control here");
3367       } else {
3368         not_null_obj = obj;
3369       }
3370 
3371       Node* exact_obj = not_null_obj;
3372       ciKlass* exact_kls = type;
3373       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3374                                             &exact_obj);
3375       {
3376         PreserveJVMState pjvms(this);
3377         set_control(slow_ctl);
3378         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3379       }
3380       replace_in_map(not_null_obj, exact_obj);
3381       obj = exact_obj;
3382     }
3383   } else {
3384     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3385       Node* exact_obj = null_assert(obj);
3386       replace_in_map(obj, exact_obj);
3387       obj = exact_obj;
3388     }
3389   }
3390   return obj;
3391 }
3392 
3393 //-------------------------------gen_instanceof--------------------------------
3394 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3395 // and the reflective instance-of call.
3396 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3397   kill_dead_locals();           // Benefit all the uncommon traps
3398   assert( !stopped(), "dead parse path should be checked in callers" );
3399   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3400          "must check for not-null not-dead klass in callers");
3401 
3402   // Make the merge point
3403   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3404   RegionNode* region = new RegionNode(PATH_LIMIT);
3405   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3406   C->set_has_split_ifs(true); // Has chance for split-if optimization
3407 
3408   ciProfileData* data = nullptr;
3409   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3410     data = method()->method_data()->bci_to_data(bci());
3411   }
3412   bool speculative_not_null = false;
3413   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3414                          && seems_never_null(obj, data, speculative_not_null));
3415 
3416   // Null check; get casted pointer; set region slot 3
3417   Node* null_ctl = top();
3418   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3419 
3420   // If not_null_obj is dead, only null-path is taken
3421   if (stopped()) {              // Doing instance-of on a null?
3422     set_control(null_ctl);
3423     return intcon(0);
3424   }
3425   region->init_req(_null_path, null_ctl);
3426   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3427   if (null_ctl == top()) {
3428     // Do this eagerly, so that pattern matches like is_diamond_phi
3429     // will work even during parsing.
3430     assert(_null_path == PATH_LIMIT-1, "delete last");
3431     region->del_req(_null_path);
3432     phi   ->del_req(_null_path);
3433   }
3434 
3435   // Do we know the type check always succeed?
3436   bool known_statically = false;
3437   if (_gvn.type(superklass)->singleton()) {
3438     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3439     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3440     if (subk != nullptr && subk->is_loaded()) {
3441       int static_res = C->static_subtype_check(superk, subk);
3442       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3443     }
3444   }
3445 
3446   if (!known_statically) {
3447     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3448     // We may not have profiling here or it may not help us. If we
3449     // have a speculative type use it to perform an exact cast.
3450     ciKlass* spec_obj_type = obj_type->speculative_type();
3451     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3452       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3453       if (stopped()) {            // Profile disagrees with this path.
3454         set_control(null_ctl);    // Null is the only remaining possibility.
3455         return intcon(0);
3456       }
3457       if (cast_obj != nullptr) {
3458         not_null_obj = cast_obj;
3459       }
3460     }
3461   }
3462 
3463   // Generate the subtype check
3464   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3465 
3466   // Plug in the success path to the general merge in slot 1.
3467   region->init_req(_obj_path, control());
3468   phi   ->init_req(_obj_path, intcon(1));
3469 
3470   // Plug in the failing path to the general merge in slot 2.
3471   region->init_req(_fail_path, not_subtype_ctrl);
3472   phi   ->init_req(_fail_path, intcon(0));
3473 
3474   // Return final merged results
3475   set_control( _gvn.transform(region) );
3476   record_for_igvn(region);
3477 
3478   // If we know the type check always succeeds then we don't use the
3479   // profiling data at this bytecode. Don't lose it, feed it to the
3480   // type system as a speculative type.
3481   if (safe_for_replace) {
3482     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3483     replace_in_map(obj, casted_obj);
3484   }
3485 
3486   return _gvn.transform(phi);
3487 }
3488 
3489 //-------------------------------gen_checkcast---------------------------------
3490 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3491 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3492 // uncommon-trap paths work.  Adjust stack after this call.
3493 // If failure_control is supplied and not null, it is filled in with
3494 // the control edge for the cast failure.  Otherwise, an appropriate
3495 // uncommon trap or exception is thrown.
3496 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3497   kill_dead_locals();           // Benefit all the uncommon traps
3498   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3499   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3500   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3501   bool safe_for_replace = (failure_control == nullptr);
3502   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3503 
3504   // Fast cutout:  Check the case that the cast is vacuously true.
3505   // This detects the common cases where the test will short-circuit
3506   // away completely.  We do this before we perform the null check,
3507   // because if the test is going to turn into zero code, we don't
3508   // want a residual null check left around.  (Causes a slowdown,
3509   // for example, in some objArray manipulations, such as a[i]=a[j].)
3510   if (improved_klass_ptr_type->singleton()) {
3511     const TypeKlassPtr* kptr = nullptr;
3512     const Type* t = _gvn.type(obj);
3513     if (t->isa_oop_ptr()) {
3514       kptr = t->is_oopptr()->as_klass_type();
3515     } else if (obj->is_InlineType()) {
3516       ciInlineKlass* vk = t->inline_klass();
3517       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3518     }
3519     if (kptr != nullptr) {
3520       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3521       case Compile::SSC_always_true:
3522         // If we know the type check always succeed then we don't use
3523         // the profiling data at this bytecode. Don't lose it, feed it
3524         // to the type system as a speculative type.
3525         obj = record_profiled_receiver_for_speculation(obj);
3526         if (null_free) {
3527           assert(safe_for_replace, "must be");
3528           obj = null_check(obj);
3529         }
3530         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3531         return obj;
3532       case Compile::SSC_always_false:
3533         if (null_free) {
3534           assert(safe_for_replace, "must be");
3535           obj = null_check(obj);
3536         }
3537         // It needs a null check because a null will *pass* the cast check.
3538         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {
3539           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3540           Deoptimization::DeoptReason reason = is_aastore ?
3541             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3542           builtin_throw(reason);
3543           return top();
3544         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3545           return null_assert(obj);
3546         }
3547         break; // Fall through to full check
3548       default:
3549         break;
3550       }
3551     }
3552   }
3553 
3554   ciProfileData* data = nullptr;
3555   if (failure_control == nullptr) {        // use MDO in regular case only
3556     assert(java_bc() == Bytecodes::_aastore ||
3557            java_bc() == Bytecodes::_checkcast,
3558            "interpreter profiles type checks only for these BCs");
3559     if (method()->method_data()->is_mature()) {
3560       data = method()->method_data()->bci_to_data(bci());
3561     }
3562   }
3563 
3564   // Make the merge point
3565   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3566   RegionNode* region = new RegionNode(PATH_LIMIT);
3567   Node*       phi    = new PhiNode(region, toop);
3568   _gvn.set_type(region, Type::CONTROL);
3569   _gvn.set_type(phi, toop);
3570 
3571   C->set_has_split_ifs(true); // Has chance for split-if optimization
3572 
3573   // Use null-cast information if it is available
3574   bool speculative_not_null = false;
3575   bool never_see_null = ((failure_control == nullptr)  // regular case only
3576                          && seems_never_null(obj, data, speculative_not_null));
3577 
3578   if (obj->is_InlineType()) {
3579     // Re-execute if buffering during triggers deoptimization
3580     PreserveReexecuteState preexecs(this);
3581     jvms()->set_should_reexecute(true);
3582     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3583   }
3584 
3585   // Null check; get casted pointer; set region slot 3
3586   Node* null_ctl = top();
3587   Node* not_null_obj = nullptr;
3588   if (null_free) {
3589     assert(safe_for_replace, "must be");
3590     not_null_obj = null_check(obj);
3591   } else {
3592     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3593   }
3594 
3595   // If not_null_obj is dead, only null-path is taken
3596   if (stopped()) {              // Doing instance-of on a null?
3597     set_control(null_ctl);
3598     if (toop->is_inlinetypeptr()) {
3599       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3600     }
3601     return null();
3602   }
3603   region->init_req(_null_path, null_ctl);
3604   phi   ->init_req(_null_path, null());  // Set null path value
3605   if (null_ctl == top()) {
3606     // Do this eagerly, so that pattern matches like is_diamond_phi
3607     // will work even during parsing.
3608     assert(_null_path == PATH_LIMIT-1, "delete last");
3609     region->del_req(_null_path);
3610     phi   ->del_req(_null_path);
3611   }
3612 
3613   Node* cast_obj = nullptr;
3614   if (improved_klass_ptr_type->klass_is_exact()) {
3615     // The following optimization tries to statically cast the speculative type of the object
3616     // (for example obtained during profiling) to the type of the superklass and then do a
3617     // dynamic check that the type of the object is what we expect. To work correctly
3618     // for checkcast and aastore the type of superklass should be exact.
3619     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3620     // We may not have profiling here or it may not help us. If we have
3621     // a speculative type use it to perform an exact cast.
3622     ciKlass* spec_obj_type = obj_type->speculative_type();
3623     if (spec_obj_type != nullptr || data != nullptr) {
3624       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3625       if (cast_obj != nullptr) {
3626         if (failure_control != nullptr) // failure is now impossible
3627           (*failure_control) = top();
3628         // adjust the type of the phi to the exact klass:
3629         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3630       }
3631     }
3632   }
3633 
3634   if (cast_obj == nullptr) {
3635     // Generate the subtype check
3636     Node* improved_superklass = superklass;
3637     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3638       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3639       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3640       // Additionally, the benefit would only be minor in non-constant cases.
3641       improved_superklass = makecon(improved_klass_ptr_type);
3642     }
3643     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3644     // Plug in success path into the merge
3645     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3646     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3647     if (failure_control == nullptr) {
3648       if (not_subtype_ctrl != top()) { // If failure is possible
3649         PreserveJVMState pjvms(this);
3650         set_control(not_subtype_ctrl);
3651         Node* obj_klass = nullptr;
3652         if (not_null_obj->is_InlineType()) {
3653           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3654         } else {
3655           obj_klass = load_object_klass(not_null_obj);
3656         }
3657         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3658         Deoptimization::DeoptReason reason = is_aastore ?
3659           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3660         builtin_throw(reason);
3661       }
3662     } else {
3663       (*failure_control) = not_subtype_ctrl;
3664     }
3665   }
3666 
3667   region->init_req(_obj_path, control());
3668   phi   ->init_req(_obj_path, cast_obj);
3669 
3670   // A merge of null or Casted-NotNull obj
3671   Node* res = _gvn.transform(phi);
3672 
3673   // Note I do NOT always 'replace_in_map(obj,result)' here.
3674   //  if( tk->klass()->can_be_primary_super()  )
3675     // This means that if I successfully store an Object into an array-of-String
3676     // I 'forget' that the Object is really now known to be a String.  I have to
3677     // do this because we don't have true union types for interfaces - if I store
3678     // a Baz into an array-of-Interface and then tell the optimizer it's an
3679     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3680     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3681   //  replace_in_map( obj, res );
3682 
3683   // Return final merged results
3684   set_control( _gvn.transform(region) );
3685   record_for_igvn(region);
3686 
3687   bool not_inline = !toop->can_be_inline_type();
3688   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3689   if (EnableValhalla && not_flat_in_array) {
3690     // Check if obj has been loaded from an array
3691     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3692     Node* array = nullptr;
3693     if (obj->isa_Load()) {
3694       Node* address = obj->in(MemNode::Address);
3695       if (address->isa_AddP()) {
3696         array = address->as_AddP()->in(AddPNode::Base);
3697       }
3698     } else if (obj->is_Phi()) {
3699       Node* region = obj->in(0);
3700       // TODO make this more robust (see JDK-8231346)
3701       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3702         IfNode* iff = region->in(2)->in(0)->isa_If();
3703         if (iff != nullptr) {
3704           iff->is_flat_array_check(&_gvn, &array);
3705         }
3706       }
3707     }
3708     if (array != nullptr) {
3709       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3710       if (ary_t != nullptr && !ary_t->is_flat()) {
3711         if (!ary_t->is_not_null_free() && not_inline) {
3712           // Casting array element to a non-inline-type, mark array as not null-free.
3713           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3714           replace_in_map(array, cast);
3715         } else if (!ary_t->is_not_flat()) {
3716           // Casting array element to a non-flat type, mark array as not flat.
3717           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3718           replace_in_map(array, cast);
3719         }
3720       }
3721     }
3722   }
3723 
3724   if (!stopped() && !res->is_InlineType()) {
3725     res = record_profiled_receiver_for_speculation(res);
3726     if (toop->is_inlinetypeptr()) {
3727       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3728       res = vt;
3729       if (safe_for_replace) {
3730         replace_in_map(obj, vt);
3731         replace_in_map(not_null_obj, vt);
3732         replace_in_map(res, vt);
3733       }
3734     }
3735   }
3736   return res;
3737 }
3738 
3739 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3740   // Load markword
3741   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3742   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3743   if (check_lock) {
3744     // Check if obj is locked
3745     Node* locked_bit = MakeConX(markWord::unlocked_value);
3746     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3747     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3748     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3749     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3750     _gvn.transform(iff);
3751     Node* locked_region = new RegionNode(3);
3752     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3753 
3754     // Unlocked: Use bits from mark word
3755     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3756     mark_phi->init_req(1, mark);
3757 
3758     // Locked: Load prototype header from klass
3759     set_control(_gvn.transform(new IfFalseNode(iff)));
3760     // Make loads control dependent to make sure they are only executed if array is locked
3761     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3762     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3763     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3764     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3765 
3766     locked_region->init_req(2, control());
3767     mark_phi->init_req(2, proto);
3768     set_control(_gvn.transform(locked_region));
3769     record_for_igvn(locked_region);
3770 
3771     mark = mark_phi;
3772   }
3773 
3774   // Now check if mark word bits are set
3775   Node* mask = MakeConX(mask_val);
3776   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3777   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3778   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3779   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3780 }
3781 
3782 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3783   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3784 }
3785 
3786 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3787   // We can't use immutable memory here because the mark word is mutable.
3788   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3789   // check is moved out of loops (mainly to enable loop unswitching).
3790   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3791   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3792   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3793 }
3794 
3795 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3796   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3797 }
3798 
3799 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3800 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3801   RegionNode* region = new RegionNode(3);
3802   Node* null_ctl = top();
3803   null_check_oop(val, &null_ctl);
3804   if (null_ctl != top()) {
3805     PreserveJVMState pjvms(this);
3806     set_control(null_ctl);
3807     {
3808       // Deoptimize if null-free array
3809       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3810       inc_sp(nargs);
3811       uncommon_trap(Deoptimization::Reason_null_check,
3812                     Deoptimization::Action_none);
3813     }
3814     region->init_req(1, control());
3815   }
3816   region->init_req(2, control());
3817   set_control(_gvn.transform(region));
3818   record_for_igvn(region);
3819   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3820     // Since we were just successfully storing null, the array can't be null free.
3821     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3822     ary_t = ary_t->cast_to_not_null_free();
3823     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3824     if (safe_for_replace) {
3825       replace_in_map(ary, cast);
3826     }
3827     ary = cast;
3828   }
3829   return ary;
3830 }
3831 
3832 //------------------------------next_monitor-----------------------------------
3833 // What number should be given to the next monitor?
3834 int GraphKit::next_monitor() {
3835   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3836   int next = current + C->sync_stack_slots();
3837   // Keep the toplevel high water mark current:
3838   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3839   return current;
3840 }
3841 
3842 //------------------------------insert_mem_bar---------------------------------
3843 // Memory barrier to avoid floating things around
3844 // The membar serves as a pinch point between both control and all memory slices.
3845 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3846   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3847   mb->init_req(TypeFunc::Control, control());
3848   mb->init_req(TypeFunc::Memory,  reset_memory());
3849   Node* membar = _gvn.transform(mb);
3850   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3851   set_all_memory_call(membar);
3852   return membar;
3853 }
3854 
3855 //-------------------------insert_mem_bar_volatile----------------------------
3856 // Memory barrier to avoid floating things around
3857 // The membar serves as a pinch point between both control and memory(alias_idx).
3858 // If you want to make a pinch point on all memory slices, do not use this
3859 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3860 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3861   // When Parse::do_put_xxx updates a volatile field, it appends a series
3862   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3863   // The first membar is on the same memory slice as the field store opcode.
3864   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3865   // All the other membars (for other volatile slices, including AliasIdxBot,
3866   // which stands for all unknown volatile slices) are control-dependent
3867   // on the first membar.  This prevents later volatile loads or stores
3868   // from sliding up past the just-emitted store.
3869 
3870   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3871   mb->set_req(TypeFunc::Control,control());
3872   if (alias_idx == Compile::AliasIdxBot) {
3873     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3874   } else {
3875     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3876     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3877   }
3878   Node* membar = _gvn.transform(mb);
3879   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3880   if (alias_idx == Compile::AliasIdxBot) {
3881     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3882   } else {
3883     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3884   }
3885   return membar;
3886 }
3887 
3888 //------------------------------shared_lock------------------------------------
3889 // Emit locking code.
3890 FastLockNode* GraphKit::shared_lock(Node* obj) {
3891   // bci is either a monitorenter bc or InvocationEntryBci
3892   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3893   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3894 
3895   if( !GenerateSynchronizationCode )
3896     return nullptr;                // Not locking things?
3897 
3898   if (stopped())                // Dead monitor?
3899     return nullptr;
3900 
3901   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3902 
3903   // Box the stack location
3904   Node* box = new BoxLockNode(next_monitor());
3905   // Check for bailout after new BoxLockNode
3906   if (failing()) { return nullptr; }
3907   box = _gvn.transform(box);
3908   Node* mem = reset_memory();
3909 
3910   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3911 
3912   // Add monitor to debug info for the slow path.  If we block inside the
3913   // slow path and de-opt, we need the monitor hanging around
3914   map()->push_monitor( flock );
3915 
3916   const TypeFunc *tf = LockNode::lock_type();
3917   LockNode *lock = new LockNode(C, tf);
3918 
3919   lock->init_req( TypeFunc::Control, control() );
3920   lock->init_req( TypeFunc::Memory , mem );
3921   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3922   lock->init_req( TypeFunc::FramePtr, frameptr() );
3923   lock->init_req( TypeFunc::ReturnAdr, top() );
3924 
3925   lock->init_req(TypeFunc::Parms + 0, obj);
3926   lock->init_req(TypeFunc::Parms + 1, box);
3927   lock->init_req(TypeFunc::Parms + 2, flock);
3928   add_safepoint_edges(lock);
3929 
3930   lock = _gvn.transform( lock )->as_Lock();
3931 
3932   // lock has no side-effects, sets few values
3933   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3934 
3935   insert_mem_bar(Op_MemBarAcquireLock);
3936 
3937   // Add this to the worklist so that the lock can be eliminated
3938   record_for_igvn(lock);
3939 
3940 #ifndef PRODUCT
3941   if (PrintLockStatistics) {
3942     // Update the counter for this lock.  Don't bother using an atomic
3943     // operation since we don't require absolute accuracy.
3944     lock->create_lock_counter(map()->jvms());
3945     increment_counter(lock->counter()->addr());
3946   }
3947 #endif
3948 
3949   return flock;
3950 }
3951 
3952 
3953 //------------------------------shared_unlock----------------------------------
3954 // Emit unlocking code.
3955 void GraphKit::shared_unlock(Node* box, Node* obj) {
3956   // bci is either a monitorenter bc or InvocationEntryBci
3957   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3958   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3959 
3960   if( !GenerateSynchronizationCode )
3961     return;
3962   if (stopped()) {               // Dead monitor?
3963     map()->pop_monitor();        // Kill monitor from debug info
3964     return;
3965   }
3966   assert(!obj->is_InlineType(), "should not unlock on inline type");
3967 
3968   // Memory barrier to avoid floating things down past the locked region
3969   insert_mem_bar(Op_MemBarReleaseLock);
3970 
3971   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3972   UnlockNode *unlock = new UnlockNode(C, tf);
3973 #ifdef ASSERT
3974   unlock->set_dbg_jvms(sync_jvms());
3975 #endif
3976   uint raw_idx = Compile::AliasIdxRaw;
3977   unlock->init_req( TypeFunc::Control, control() );
3978   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3979   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3980   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3981   unlock->init_req( TypeFunc::ReturnAdr, top() );
3982 
3983   unlock->init_req(TypeFunc::Parms + 0, obj);
3984   unlock->init_req(TypeFunc::Parms + 1, box);
3985   unlock = _gvn.transform(unlock)->as_Unlock();
3986 
3987   Node* mem = reset_memory();
3988 
3989   // unlock has no side-effects, sets few values
3990   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3991 
3992   // Kill monitor from debug info
3993   map()->pop_monitor( );
3994 }
3995 
3996 //-------------------------------get_layout_helper-----------------------------
3997 // If the given klass is a constant or known to be an array,
3998 // fetch the constant layout helper value into constant_value
3999 // and return null.  Otherwise, load the non-constant
4000 // layout helper value, and return the node which represents it.
4001 // This two-faced routine is useful because allocation sites
4002 // almost always feature constant types.
4003 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4004   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4005   if (!StressReflectiveCode && klass_t != nullptr) {
4006     bool xklass = klass_t->klass_is_exact();
4007     bool can_be_flat = false;
4008     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4009     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4010       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4011       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4012       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
4013     }
4014     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4015       jint lhelper;
4016       if (klass_t->is_flat()) {
4017         lhelper = ary_type->flat_layout_helper();
4018       } else if (klass_t->isa_aryklassptr()) {
4019         BasicType elem = ary_type->elem()->array_element_basic_type();
4020         if (is_reference_type(elem, true)) {
4021           elem = T_OBJECT;
4022         }
4023         lhelper = Klass::array_layout_helper(elem);
4024       } else {
4025         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4026       }
4027       if (lhelper != Klass::_lh_neutral_value) {
4028         constant_value = lhelper;
4029         return (Node*) nullptr;
4030       }
4031     }
4032   }
4033   constant_value = Klass::_lh_neutral_value;  // put in a known value
4034   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4035   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4036 }
4037 
4038 // We just put in an allocate/initialize with a big raw-memory effect.
4039 // Hook selected additional alias categories on the initialization.
4040 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4041                                 MergeMemNode* init_in_merge,
4042                                 Node* init_out_raw) {
4043   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4044   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4045 
4046   Node* prevmem = kit.memory(alias_idx);
4047   init_in_merge->set_memory_at(alias_idx, prevmem);
4048   if (init_out_raw != nullptr) {
4049     kit.set_memory(init_out_raw, alias_idx);
4050   }
4051 }
4052 
4053 //---------------------------set_output_for_allocation-------------------------
4054 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4055                                           const TypeOopPtr* oop_type,
4056                                           bool deoptimize_on_exception) {
4057   int rawidx = Compile::AliasIdxRaw;
4058   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4059   add_safepoint_edges(alloc);
4060   Node* allocx = _gvn.transform(alloc);
4061   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4062   // create memory projection for i_o
4063   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4064   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4065 
4066   // create a memory projection as for the normal control path
4067   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4068   set_memory(malloc, rawidx);
4069 
4070   // a normal slow-call doesn't change i_o, but an allocation does
4071   // we create a separate i_o projection for the normal control path
4072   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4073   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4074 
4075   // put in an initialization barrier
4076   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4077                                                  rawoop)->as_Initialize();
4078   assert(alloc->initialization() == init,  "2-way macro link must work");
4079   assert(init ->allocation()     == alloc, "2-way macro link must work");
4080   {
4081     // Extract memory strands which may participate in the new object's
4082     // initialization, and source them from the new InitializeNode.
4083     // This will allow us to observe initializations when they occur,
4084     // and link them properly (as a group) to the InitializeNode.
4085     assert(init->in(InitializeNode::Memory) == malloc, "");
4086     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4087     init->set_req(InitializeNode::Memory, minit_in);
4088     record_for_igvn(minit_in); // fold it up later, if possible
4089     _gvn.set_type(minit_in, Type::MEMORY);
4090     Node* minit_out = memory(rawidx);
4091     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4092     // Add an edge in the MergeMem for the header fields so an access
4093     // to one of those has correct memory state
4094     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4095     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4096     if (oop_type->isa_aryptr()) {
4097       const TypeAryPtr* arytype = oop_type->is_aryptr();
4098       if (arytype->is_flat()) {
4099         // Initially all flat array accesses share a single slice
4100         // but that changes after parsing. Prepare the memory graph so
4101         // it can optimize flat array accesses properly once they
4102         // don't share a single slice.
4103         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4104         C->set_flat_accesses_share_alias(false);
4105         ciInlineKlass* vk = arytype->elem()->inline_klass();
4106         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4107           ciField* field = vk->nonstatic_field_at(i);
4108           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4109             continue;  // do not bother to track really large numbers of fields
4110           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4111           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4112           int fieldidx = C->get_alias_index(adr_type, true);
4113           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4114           // can result in per flat array field Phis to be created which confuses the logic of
4115           // Compile::adjust_flat_array_access_aliases().
4116           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4117         }
4118         C->set_flat_accesses_share_alias(true);
4119         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4120       } else {
4121         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4122         int            elemidx  = C->get_alias_index(telemref);
4123         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4124       }
4125     } else if (oop_type->isa_instptr()) {
4126       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4127       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4128       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4129         ciField* field = ik->nonstatic_field_at(i);
4130         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4131           continue;  // do not bother to track really large numbers of fields
4132         // Find (or create) the alias category for this field:
4133         int fieldidx = C->alias_type(field)->index();
4134         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4135       }
4136     }
4137   }
4138 
4139   // Cast raw oop to the real thing...
4140   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4141   javaoop = _gvn.transform(javaoop);
4142   C->set_recent_alloc(control(), javaoop);
4143   assert(just_allocated_object(control()) == javaoop, "just allocated");
4144 
4145 #ifdef ASSERT
4146   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4147     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4148            "Ideal_allocation works");
4149     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4150            "Ideal_allocation works");
4151     if (alloc->is_AllocateArray()) {
4152       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4153              "Ideal_allocation works");
4154       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4155              "Ideal_allocation works");
4156     } else {
4157       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4158     }
4159   }
4160 #endif //ASSERT
4161 
4162   return javaoop;
4163 }
4164 
4165 //---------------------------new_instance--------------------------------------
4166 // This routine takes a klass_node which may be constant (for a static type)
4167 // or may be non-constant (for reflective code).  It will work equally well
4168 // for either, and the graph will fold nicely if the optimizer later reduces
4169 // the type to a constant.
4170 // The optional arguments are for specialized use by intrinsics:
4171 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4172 //  - If 'return_size_val', report the total object size to the caller.
4173 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4174 Node* GraphKit::new_instance(Node* klass_node,
4175                              Node* extra_slow_test,
4176                              Node* *return_size_val,
4177                              bool deoptimize_on_exception,
4178                              InlineTypeNode* inline_type_node) {
4179   // Compute size in doublewords
4180   // The size is always an integral number of doublewords, represented
4181   // as a positive bytewise size stored in the klass's layout_helper.
4182   // The layout_helper also encodes (in a low bit) the need for a slow path.
4183   jint  layout_con = Klass::_lh_neutral_value;
4184   Node* layout_val = get_layout_helper(klass_node, layout_con);
4185   bool  layout_is_con = (layout_val == nullptr);
4186 
4187   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4188   // Generate the initial go-slow test.  It's either ALWAYS (return a
4189   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4190   // case) a computed value derived from the layout_helper.
4191   Node* initial_slow_test = nullptr;
4192   if (layout_is_con) {
4193     assert(!StressReflectiveCode, "stress mode does not use these paths");
4194     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4195     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4196   } else {   // reflective case
4197     // This reflective path is used by Unsafe.allocateInstance.
4198     // (It may be stress-tested by specifying StressReflectiveCode.)
4199     // Basically, we want to get into the VM is there's an illegal argument.
4200     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4201     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4202     if (extra_slow_test != intcon(0)) {
4203       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4204     }
4205     // (Macro-expander will further convert this to a Bool, if necessary.)
4206   }
4207 
4208   // Find the size in bytes.  This is easy; it's the layout_helper.
4209   // The size value must be valid even if the slow path is taken.
4210   Node* size = nullptr;
4211   if (layout_is_con) {
4212     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4213   } else {   // reflective case
4214     // This reflective path is used by clone and Unsafe.allocateInstance.
4215     size = ConvI2X(layout_val);
4216 
4217     // Clear the low bits to extract layout_helper_size_in_bytes:
4218     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4219     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4220     size = _gvn.transform( new AndXNode(size, mask) );
4221   }
4222   if (return_size_val != nullptr) {
4223     (*return_size_val) = size;
4224   }
4225 
4226   // This is a precise notnull oop of the klass.
4227   // (Actually, it need not be precise if this is a reflective allocation.)
4228   // It's what we cast the result to.
4229   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4230   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4231   const TypeOopPtr* oop_type = tklass->as_instance_type();
4232 
4233   // Now generate allocation code
4234 
4235   // The entire memory state is needed for slow path of the allocation
4236   // since GC and deoptimization can happen.
4237   Node *mem = reset_memory();
4238   set_all_memory(mem); // Create new memory state
4239 
4240   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4241                                          control(), mem, i_o(),
4242                                          size, klass_node,
4243                                          initial_slow_test, inline_type_node);
4244 
4245   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4246 }
4247 
4248 //-------------------------------new_array-------------------------------------
4249 // helper for newarray and anewarray
4250 // The 'length' parameter is (obviously) the length of the array.
4251 // The optional arguments are for specialized use by intrinsics:
4252 //  - If 'return_size_val', report the non-padded array size (sum of header size
4253 //    and array body) to the caller.
4254 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4255 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4256                           Node* length,         // number of array elements
4257                           int   nargs,          // number of arguments to push back for uncommon trap
4258                           Node* *return_size_val,
4259                           bool deoptimize_on_exception) {
4260   jint  layout_con = Klass::_lh_neutral_value;
4261   Node* layout_val = get_layout_helper(klass_node, layout_con);
4262   bool  layout_is_con = (layout_val == nullptr);
4263 
4264   if (!layout_is_con && !StressReflectiveCode &&
4265       !too_many_traps(Deoptimization::Reason_class_check)) {
4266     // This is a reflective array creation site.
4267     // Optimistically assume that it is a subtype of Object[],
4268     // so that we can fold up all the address arithmetic.
4269     layout_con = Klass::array_layout_helper(T_OBJECT);
4270     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4271     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4272     { BuildCutout unless(this, bol_lh, PROB_MAX);
4273       inc_sp(nargs);
4274       uncommon_trap(Deoptimization::Reason_class_check,
4275                     Deoptimization::Action_maybe_recompile);
4276     }
4277     layout_val = nullptr;
4278     layout_is_con = true;
4279   }
4280 
4281   // Generate the initial go-slow test.  Make sure we do not overflow
4282   // if length is huge (near 2Gig) or negative!  We do not need
4283   // exact double-words here, just a close approximation of needed
4284   // double-words.  We can't add any offset or rounding bits, lest we
4285   // take a size -1 of bytes and make it positive.  Use an unsigned
4286   // compare, so negative sizes look hugely positive.
4287   int fast_size_limit = FastAllocateSizeLimit;
4288   if (layout_is_con) {
4289     assert(!StressReflectiveCode, "stress mode does not use these paths");
4290     // Increase the size limit if we have exact knowledge of array type.
4291     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4292     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4293   }
4294 
4295   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4296   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4297 
4298   // --- Size Computation ---
4299   // array_size = round_to_heap(array_header + (length << elem_shift));
4300   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4301   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4302   // The rounding mask is strength-reduced, if possible.
4303   int round_mask = MinObjAlignmentInBytes - 1;
4304   Node* header_size = nullptr;
4305   // (T_BYTE has the weakest alignment and size restrictions...)
4306   if (layout_is_con) {
4307     int       hsize  = Klass::layout_helper_header_size(layout_con);
4308     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4309     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4310     if ((round_mask & ~right_n_bits(eshift)) == 0)
4311       round_mask = 0;  // strength-reduce it if it goes away completely
4312     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4313     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4314     assert(header_size_min <= hsize, "generic minimum is smallest");
4315     header_size = intcon(hsize);
4316   } else {
4317     Node* hss   = intcon(Klass::_lh_header_size_shift);
4318     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4319     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4320     header_size = _gvn.transform(new AndINode(header_size, hsm));
4321   }
4322 
4323   Node* elem_shift = nullptr;
4324   if (layout_is_con) {
4325     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4326     if (eshift != 0)
4327       elem_shift = intcon(eshift);
4328   } else {
4329     // There is no need to mask or shift this value.
4330     // The semantics of LShiftINode include an implicit mask to 0x1F.
4331     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4332     elem_shift = layout_val;
4333   }
4334 
4335   // Transition to native address size for all offset calculations:
4336   Node* lengthx = ConvI2X(length);
4337   Node* headerx = ConvI2X(header_size);
4338 #ifdef _LP64
4339   { const TypeInt* tilen = _gvn.find_int_type(length);
4340     if (tilen != nullptr && tilen->_lo < 0) {
4341       // Add a manual constraint to a positive range.  Cf. array_element_address.
4342       jint size_max = fast_size_limit;
4343       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4344       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4345 
4346       // Only do a narrow I2L conversion if the range check passed.
4347       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4348       _gvn.transform(iff);
4349       RegionNode* region = new RegionNode(3);
4350       _gvn.set_type(region, Type::CONTROL);
4351       lengthx = new PhiNode(region, TypeLong::LONG);
4352       _gvn.set_type(lengthx, TypeLong::LONG);
4353 
4354       // Range check passed. Use ConvI2L node with narrow type.
4355       Node* passed = IfFalse(iff);
4356       region->init_req(1, passed);
4357       // Make I2L conversion control dependent to prevent it from
4358       // floating above the range check during loop optimizations.
4359       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4360 
4361       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4362       region->init_req(2, IfTrue(iff));
4363       lengthx->init_req(2, ConvI2X(length));
4364 
4365       set_control(region);
4366       record_for_igvn(region);
4367       record_for_igvn(lengthx);
4368     }
4369   }
4370 #endif
4371 
4372   // Combine header size and body size for the array copy part, then align (if
4373   // necessary) for the allocation part. This computation cannot overflow,
4374   // because it is used only in two places, one where the length is sharply
4375   // limited, and the other after a successful allocation.
4376   Node* abody = lengthx;
4377   if (elem_shift != nullptr) {
4378     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4379   }
4380   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4381 
4382   if (return_size_val != nullptr) {
4383     // This is the size
4384     (*return_size_val) = non_rounded_size;
4385   }
4386 
4387   Node* size = non_rounded_size;
4388   if (round_mask != 0) {
4389     Node* mask1 = MakeConX(round_mask);
4390     size = _gvn.transform(new AddXNode(size, mask1));
4391     Node* mask2 = MakeConX(~round_mask);
4392     size = _gvn.transform(new AndXNode(size, mask2));
4393   }
4394   // else if round_mask == 0, the size computation is self-rounding
4395 
4396   // Now generate allocation code
4397 
4398   // The entire memory state is needed for slow path of the allocation
4399   // since GC and deoptimization can happen.
4400   Node *mem = reset_memory();
4401   set_all_memory(mem); // Create new memory state
4402 
4403   if (initial_slow_test->is_Bool()) {
4404     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4405     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4406   }
4407 
4408   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4409   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4410   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4411 
4412   // Inline type array variants:
4413   // - null-ok:         ciObjArrayKlass  with is_elem_null_free() = false
4414   // - null-free:       ciObjArrayKlass  with is_elem_null_free() = true
4415   // - null-free, flat: ciFlatArrayKlass with is_elem_null_free() = true
4416   // Check if array is a null-free, non-flat inline type array
4417   // that needs to be initialized with the default inline type.
4418   Node* default_value = nullptr;
4419   Node* raw_default_value = nullptr;
4420   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4421     // Array type is known
4422     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4423       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4424       default_value = InlineTypeNode::default_oop(gvn(), vk);
4425       if (UseCompressedOops) {
4426         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4427         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4428         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4429         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4430         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4431       } else {
4432         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4433       }
4434     }
4435   }
4436 
4437   Node* valid_length_test = _gvn.intcon(1);
4438   if (ary_type->isa_aryptr()) {
4439     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4440     jint max = TypeAryPtr::max_array_length(bt);
4441     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4442     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4443   }
4444 
4445   // Create the AllocateArrayNode and its result projections
4446   AllocateArrayNode* alloc
4447     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4448                             control(), mem, i_o(),
4449                             size, klass_node,
4450                             initial_slow_test,
4451                             length, valid_length_test,
4452                             default_value, raw_default_value);
4453   // Cast to correct type.  Note that the klass_node may be constant or not,
4454   // and in the latter case the actual array type will be inexact also.
4455   // (This happens via a non-constant argument to inline_native_newArray.)
4456   // In any case, the value of klass_node provides the desired array type.
4457   const TypeInt* length_type = _gvn.find_int_type(length);
4458   if (ary_type->isa_aryptr() && length_type != nullptr) {
4459     // Try to get a better type than POS for the size
4460     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4461   }
4462 
4463   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4464 
4465   array_ideal_length(alloc, ary_type, true);
4466   return javaoop;
4467 }
4468 
4469 // The following "Ideal_foo" functions are placed here because they recognize
4470 // the graph shapes created by the functions immediately above.
4471 
4472 //---------------------------Ideal_allocation----------------------------------
4473 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4474 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4475   if (ptr == nullptr) {     // reduce dumb test in callers
4476     return nullptr;
4477   }
4478 
4479   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4480   ptr = bs->step_over_gc_barrier(ptr);
4481 
4482   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4483     ptr = ptr->in(1);
4484     if (ptr == nullptr) return nullptr;
4485   }
4486   // Return null for allocations with several casts:
4487   //   j.l.reflect.Array.newInstance(jobject, jint)
4488   //   Object.clone()
4489   // to keep more precise type from last cast.
4490   if (ptr->is_Proj()) {
4491     Node* allo = ptr->in(0);
4492     if (allo != nullptr && allo->is_Allocate()) {
4493       return allo->as_Allocate();
4494     }
4495   }
4496   // Report failure to match.
4497   return nullptr;
4498 }
4499 
4500 // Fancy version which also strips off an offset (and reports it to caller).
4501 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4502                                              intptr_t& offset) {
4503   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4504   if (base == nullptr)  return nullptr;
4505   return Ideal_allocation(base);
4506 }
4507 
4508 // Trace Initialize <- Proj[Parm] <- Allocate
4509 AllocateNode* InitializeNode::allocation() {
4510   Node* rawoop = in(InitializeNode::RawAddress);
4511   if (rawoop->is_Proj()) {
4512     Node* alloc = rawoop->in(0);
4513     if (alloc->is_Allocate()) {
4514       return alloc->as_Allocate();
4515     }
4516   }
4517   return nullptr;
4518 }
4519 
4520 // Trace Allocate -> Proj[Parm] -> Initialize
4521 InitializeNode* AllocateNode::initialization() {
4522   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4523   if (rawoop == nullptr)  return nullptr;
4524   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4525     Node* init = rawoop->fast_out(i);
4526     if (init->is_Initialize()) {
4527       assert(init->as_Initialize()->allocation() == this, "2-way link");
4528       return init->as_Initialize();
4529     }
4530   }
4531   return nullptr;
4532 }
4533 
4534 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4535 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4536   // Too many traps seen?
4537   if (too_many_traps(reason)) {
4538 #ifdef ASSERT
4539     if (TraceLoopPredicate) {
4540       int tc = C->trap_count(reason);
4541       tty->print("too many traps=%s tcount=%d in ",
4542                     Deoptimization::trap_reason_name(reason), tc);
4543       method()->print(); // which method has too many predicate traps
4544       tty->cr();
4545     }
4546 #endif
4547     // We cannot afford to take more traps here,
4548     // do not generate Parse Predicate.
4549     return;
4550   }
4551 
4552   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4553   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4554   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4555   {
4556     PreserveJVMState pjvms(this);
4557     set_control(if_false);
4558     inc_sp(nargs);
4559     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4560   }
4561   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4562   set_control(if_true);
4563 }
4564 
4565 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4566 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4567 void GraphKit::add_parse_predicates(int nargs) {
4568   if (UseLoopPredicate) {
4569     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4570   }
4571   if (UseProfiledLoopPredicate) {
4572     add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4573   }
4574   // Loop Limit Check Predicate should be near the loop.
4575   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4576 }
4577 
4578 void GraphKit::sync_kit(IdealKit& ideal) {
4579   set_all_memory(ideal.merged_memory());
4580   set_i_o(ideal.i_o());
4581   set_control(ideal.ctrl());
4582 }
4583 
4584 void GraphKit::final_sync(IdealKit& ideal) {
4585   // Final sync IdealKit and graphKit.
4586   sync_kit(ideal);
4587 }
4588 
4589 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4590   Node* len = load_array_length(load_String_value(str, set_ctrl));
4591   Node* coder = load_String_coder(str, set_ctrl);
4592   // Divide length by 2 if coder is UTF16
4593   return _gvn.transform(new RShiftINode(len, coder));
4594 }
4595 
4596 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4597   int value_offset = java_lang_String::value_offset();
4598   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4599                                                      false, nullptr, Type::Offset(0));
4600   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4601   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4602                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4603                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4604   Node* p = basic_plus_adr(str, str, value_offset);
4605   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4606                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4607   return load;
4608 }
4609 
4610 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4611   if (!CompactStrings) {
4612     return intcon(java_lang_String::CODER_UTF16);
4613   }
4614   int coder_offset = java_lang_String::coder_offset();
4615   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4616                                                      false, nullptr, Type::Offset(0));
4617   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4618 
4619   Node* p = basic_plus_adr(str, str, coder_offset);
4620   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4621                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4622   return load;
4623 }
4624 
4625 void GraphKit::store_String_value(Node* str, Node* value) {
4626   int value_offset = java_lang_String::value_offset();
4627   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4628                                                      false, nullptr, Type::Offset(0));
4629   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4630 
4631   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4632                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4633 }
4634 
4635 void GraphKit::store_String_coder(Node* str, Node* value) {
4636   int coder_offset = java_lang_String::coder_offset();
4637   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4638                                                      false, nullptr, Type::Offset(0));
4639   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4640 
4641   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4642                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4643 }
4644 
4645 // Capture src and dst memory state with a MergeMemNode
4646 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4647   if (src_type == dst_type) {
4648     // Types are equal, we don't need a MergeMemNode
4649     return memory(src_type);
4650   }
4651   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4652   record_for_igvn(merge); // fold it up later, if possible
4653   int src_idx = C->get_alias_index(src_type);
4654   int dst_idx = C->get_alias_index(dst_type);
4655   merge->set_memory_at(src_idx, memory(src_idx));
4656   merge->set_memory_at(dst_idx, memory(dst_idx));
4657   return merge;
4658 }
4659 
4660 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4661   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4662   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4663   // If input and output memory types differ, capture both states to preserve
4664   // the dependency between preceding and subsequent loads/stores.
4665   // For example, the following program:
4666   //  StoreB
4667   //  compress_string
4668   //  LoadB
4669   // has this memory graph (use->def):
4670   //  LoadB -> compress_string -> CharMem
4671   //             ... -> StoreB -> ByteMem
4672   // The intrinsic hides the dependency between LoadB and StoreB, causing
4673   // the load to read from memory not containing the result of the StoreB.
4674   // The correct memory graph should look like this:
4675   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4676   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4677   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4678   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4679   set_memory(res_mem, TypeAryPtr::BYTES);
4680   return str;
4681 }
4682 
4683 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4684   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4685   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4686   // Capture src and dst memory (see comment in 'compress_string').
4687   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4688   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4689   set_memory(_gvn.transform(str), dst_type);
4690 }
4691 
4692 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4693   /**
4694    * int i_char = start;
4695    * for (int i_byte = 0; i_byte < count; i_byte++) {
4696    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4697    * }
4698    */
4699   add_parse_predicates();
4700   C->set_has_loops(true);
4701 
4702   RegionNode* head = new RegionNode(3);
4703   head->init_req(1, control());
4704   gvn().set_type(head, Type::CONTROL);
4705   record_for_igvn(head);
4706 
4707   Node* i_byte = new PhiNode(head, TypeInt::INT);
4708   i_byte->init_req(1, intcon(0));
4709   gvn().set_type(i_byte, TypeInt::INT);
4710   record_for_igvn(i_byte);
4711 
4712   Node* i_char = new PhiNode(head, TypeInt::INT);
4713   i_char->init_req(1, start);
4714   gvn().set_type(i_char, TypeInt::INT);
4715   record_for_igvn(i_char);
4716 
4717   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4718   gvn().set_type(mem, Type::MEMORY);
4719   record_for_igvn(mem);
4720   set_control(head);
4721   set_memory(mem, TypeAryPtr::BYTES);
4722   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4723   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4724                              AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false,
4725                              false, true /* mismatched */);
4726 
4727   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4728   head->init_req(2, IfTrue(iff));
4729   mem->init_req(2, st);
4730   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4731   i_char->init_req(2, AddI(i_char, intcon(2)));
4732 
4733   set_control(IfFalse(iff));
4734   set_memory(st, TypeAryPtr::BYTES);
4735 }
4736 
4737 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4738   if (!field->is_constant()) {
4739     return nullptr; // Field not marked as constant.
4740   }
4741   ciInstance* holder = nullptr;
4742   if (!field->is_static()) {
4743     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4744     if (const_oop != nullptr && const_oop->is_instance()) {
4745       holder = const_oop->as_instance();
4746     }
4747   }
4748   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4749                                                         /*is_unsigned_load=*/false);
4750   if (con_type != nullptr) {
4751     Node* con = makecon(con_type);
4752     if (field->type()->is_inlinetype()) {
4753       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4754     } else if (con_type->is_inlinetypeptr()) {
4755       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4756     }
4757     return con;
4758   }
4759   return nullptr;
4760 }
4761 
4762 //---------------------------load_mirror_from_klass----------------------------
4763 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4764 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4765   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4766   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4767   // mirror = ((OopHandle)mirror)->resolve();
4768   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4769 }
4770 
4771 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4772   const Type* obj_type = obj->bottom_type();
4773   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4774   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4775     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4776     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4777     obj = casted_obj;
4778   }
4779   if (sig_type->is_inlinetypeptr()) {
4780     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null());
4781   }
4782   return obj;
4783 }