1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/register.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciInlineKlass.hpp" 28 #include "ci/ciObjArray.hpp" 29 #include "ci/ciUtilities.hpp" 30 #include "classfile/javaClasses.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/c2/barrierSetC2.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/flatArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/convertnode.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/inlinetypenode.hpp" 43 #include "opto/intrinsicnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/parse.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "utilities/bitMap.inline.hpp" 56 #include "utilities/growableArray.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 59 //----------------------------GraphKit----------------------------------------- 60 // Main utility constructor. 61 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn) 62 : Phase(Phase::Parser), 63 _env(C->env()), 64 _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()), 65 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 66 { 67 assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled"); 68 _exceptions = jvms->map()->next_exception(); 69 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 70 set_jvms(jvms); 71 #ifdef ASSERT 72 if (_gvn.is_IterGVN() != nullptr) { 73 assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used"); 74 // Save the initial size of _for_igvn worklist for verification (see ~GraphKit) 75 _worklist_size = _gvn.C->igvn_worklist()->size(); 76 } 77 #endif 78 } 79 80 // Private constructor for parser. 81 GraphKit::GraphKit() 82 : Phase(Phase::Parser), 83 _env(C->env()), 84 _gvn(*C->initial_gvn()), 85 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 86 { 87 _exceptions = nullptr; 88 set_map(nullptr); 89 DEBUG_ONLY(_sp = -99); 90 DEBUG_ONLY(set_bci(-99)); 91 } 92 93 94 95 //---------------------------clean_stack--------------------------------------- 96 // Clear away rubbish from the stack area of the JVM state. 97 // This destroys any arguments that may be waiting on the stack. 98 void GraphKit::clean_stack(int from_sp) { 99 SafePointNode* map = this->map(); 100 JVMState* jvms = this->jvms(); 101 int stk_size = jvms->stk_size(); 102 int stkoff = jvms->stkoff(); 103 Node* top = this->top(); 104 for (int i = from_sp; i < stk_size; i++) { 105 if (map->in(stkoff + i) != top) { 106 map->set_req(stkoff + i, top); 107 } 108 } 109 } 110 111 112 //--------------------------------sync_jvms----------------------------------- 113 // Make sure our current jvms agrees with our parse state. 114 JVMState* GraphKit::sync_jvms() const { 115 JVMState* jvms = this->jvms(); 116 jvms->set_bci(bci()); // Record the new bci in the JVMState 117 jvms->set_sp(sp()); // Record the new sp in the JVMState 118 assert(jvms_in_sync(), "jvms is now in sync"); 119 return jvms; 120 } 121 122 //--------------------------------sync_jvms_for_reexecute--------------------- 123 // Make sure our current jvms agrees with our parse state. This version 124 // uses the reexecute_sp for reexecuting bytecodes. 125 JVMState* GraphKit::sync_jvms_for_reexecute() { 126 JVMState* jvms = this->jvms(); 127 jvms->set_bci(bci()); // Record the new bci in the JVMState 128 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 129 return jvms; 130 } 131 132 #ifdef ASSERT 133 bool GraphKit::jvms_in_sync() const { 134 Parse* parse = is_Parse(); 135 if (parse == nullptr) { 136 if (bci() != jvms()->bci()) return false; 137 if (sp() != (int)jvms()->sp()) return false; 138 return true; 139 } 140 if (jvms()->method() != parse->method()) return false; 141 if (jvms()->bci() != parse->bci()) return false; 142 int jvms_sp = jvms()->sp(); 143 if (jvms_sp != parse->sp()) return false; 144 int jvms_depth = jvms()->depth(); 145 if (jvms_depth != parse->depth()) return false; 146 return true; 147 } 148 149 // Local helper checks for special internal merge points 150 // used to accumulate and merge exception states. 151 // They are marked by the region's in(0) edge being the map itself. 152 // Such merge points must never "escape" into the parser at large, 153 // until they have been handed to gvn.transform. 154 static bool is_hidden_merge(Node* reg) { 155 if (reg == nullptr) return false; 156 if (reg->is_Phi()) { 157 reg = reg->in(0); 158 if (reg == nullptr) return false; 159 } 160 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 161 } 162 163 void GraphKit::verify_map() const { 164 if (map() == nullptr) return; // null map is OK 165 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 166 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 167 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 168 } 169 170 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 171 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 172 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 173 } 174 #endif 175 176 //---------------------------stop_and_kill_map--------------------------------- 177 // Set _map to null, signalling a stop to further bytecode execution. 178 // First smash the current map's control to a constant, to mark it dead. 179 void GraphKit::stop_and_kill_map() { 180 SafePointNode* dead_map = stop(); 181 if (dead_map != nullptr) { 182 dead_map->disconnect_inputs(C); // Mark the map as killed. 183 assert(dead_map->is_killed(), "must be so marked"); 184 } 185 } 186 187 188 //--------------------------------stopped-------------------------------------- 189 // Tell if _map is null, or control is top. 190 bool GraphKit::stopped() { 191 if (map() == nullptr) return true; 192 else if (control() == top()) return true; 193 else return false; 194 } 195 196 197 //-----------------------------has_exception_handler---------------------------------- 198 // Tell if this method or any caller method has exception handlers. 199 bool GraphKit::has_exception_handler() { 200 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 201 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 202 return true; 203 } 204 } 205 return false; 206 } 207 208 //------------------------------save_ex_oop------------------------------------ 209 // Save an exception without blowing stack contents or other JVM state. 210 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 211 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 212 ex_map->add_req(ex_oop); 213 DEBUG_ONLY(verify_exception_state(ex_map)); 214 } 215 216 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 217 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 218 Node* ex_oop = ex_map->in(ex_map->req()-1); 219 if (clear_it) ex_map->del_req(ex_map->req()-1); 220 return ex_oop; 221 } 222 223 //-----------------------------saved_ex_oop------------------------------------ 224 // Recover a saved exception from its map. 225 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 226 return common_saved_ex_oop(ex_map, false); 227 } 228 229 //--------------------------clear_saved_ex_oop--------------------------------- 230 // Erase a previously saved exception from its map. 231 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 232 return common_saved_ex_oop(ex_map, true); 233 } 234 235 #ifdef ASSERT 236 //---------------------------has_saved_ex_oop---------------------------------- 237 // Erase a previously saved exception from its map. 238 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 239 return ex_map->req() == ex_map->jvms()->endoff()+1; 240 } 241 #endif 242 243 //-------------------------make_exception_state-------------------------------- 244 // Turn the current JVM state into an exception state, appending the ex_oop. 245 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 246 sync_jvms(); 247 SafePointNode* ex_map = stop(); // do not manipulate this map any more 248 set_saved_ex_oop(ex_map, ex_oop); 249 return ex_map; 250 } 251 252 253 //--------------------------add_exception_state-------------------------------- 254 // Add an exception to my list of exceptions. 255 void GraphKit::add_exception_state(SafePointNode* ex_map) { 256 if (ex_map == nullptr || ex_map->control() == top()) { 257 return; 258 } 259 #ifdef ASSERT 260 verify_exception_state(ex_map); 261 if (has_exceptions()) { 262 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 263 } 264 #endif 265 266 // If there is already an exception of exactly this type, merge with it. 267 // In particular, null-checks and other low-level exceptions common up here. 268 Node* ex_oop = saved_ex_oop(ex_map); 269 const Type* ex_type = _gvn.type(ex_oop); 270 if (ex_oop == top()) { 271 // No action needed. 272 return; 273 } 274 assert(ex_type->isa_instptr(), "exception must be an instance"); 275 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 276 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 277 // We check sp also because call bytecodes can generate exceptions 278 // both before and after arguments are popped! 279 if (ex_type2 == ex_type 280 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 281 combine_exception_states(ex_map, e2); 282 return; 283 } 284 } 285 286 // No pre-existing exception of the same type. Chain it on the list. 287 push_exception_state(ex_map); 288 } 289 290 //-----------------------add_exception_states_from----------------------------- 291 void GraphKit::add_exception_states_from(JVMState* jvms) { 292 SafePointNode* ex_map = jvms->map()->next_exception(); 293 if (ex_map != nullptr) { 294 jvms->map()->set_next_exception(nullptr); 295 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 296 next_map = ex_map->next_exception(); 297 ex_map->set_next_exception(nullptr); 298 add_exception_state(ex_map); 299 } 300 } 301 } 302 303 //-----------------------transfer_exceptions_into_jvms------------------------- 304 JVMState* GraphKit::transfer_exceptions_into_jvms() { 305 if (map() == nullptr) { 306 // We need a JVMS to carry the exceptions, but the map has gone away. 307 // Create a scratch JVMS, cloned from any of the exception states... 308 if (has_exceptions()) { 309 _map = _exceptions; 310 _map = clone_map(); 311 _map->set_next_exception(nullptr); 312 clear_saved_ex_oop(_map); 313 DEBUG_ONLY(verify_map()); 314 } else { 315 // ...or created from scratch 316 JVMState* jvms = new (C) JVMState(_method, nullptr); 317 jvms->set_bci(_bci); 318 jvms->set_sp(_sp); 319 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 320 set_jvms(jvms); 321 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 322 set_all_memory(top()); 323 while (map()->req() < jvms->endoff()) map()->add_req(top()); 324 } 325 // (This is a kludge, in case you didn't notice.) 326 set_control(top()); 327 } 328 JVMState* jvms = sync_jvms(); 329 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 330 jvms->map()->set_next_exception(_exceptions); 331 _exceptions = nullptr; // done with this set of exceptions 332 return jvms; 333 } 334 335 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 336 assert(is_hidden_merge(dstphi), "must be a special merge node"); 337 assert(is_hidden_merge(srcphi), "must be a special merge node"); 338 uint limit = srcphi->req(); 339 for (uint i = PhiNode::Input; i < limit; i++) { 340 dstphi->add_req(srcphi->in(i)); 341 } 342 } 343 static inline void add_one_req(Node* dstphi, Node* src) { 344 assert(is_hidden_merge(dstphi), "must be a special merge node"); 345 assert(!is_hidden_merge(src), "must not be a special merge node"); 346 dstphi->add_req(src); 347 } 348 349 //-----------------------combine_exception_states------------------------------ 350 // This helper function combines exception states by building phis on a 351 // specially marked state-merging region. These regions and phis are 352 // untransformed, and can build up gradually. The region is marked by 353 // having a control input of its exception map, rather than null. Such 354 // regions do not appear except in this function, and in use_exception_state. 355 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 356 if (failing_internal()) { 357 return; // dying anyway... 358 } 359 JVMState* ex_jvms = ex_map->_jvms; 360 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 361 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 362 // TODO 8325632 Re-enable 363 // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 364 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 365 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 366 assert(ex_map->req() == phi_map->req(), "matching maps"); 367 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 368 Node* hidden_merge_mark = root(); 369 Node* region = phi_map->control(); 370 MergeMemNode* phi_mem = phi_map->merged_memory(); 371 MergeMemNode* ex_mem = ex_map->merged_memory(); 372 if (region->in(0) != hidden_merge_mark) { 373 // The control input is not (yet) a specially-marked region in phi_map. 374 // Make it so, and build some phis. 375 region = new RegionNode(2); 376 _gvn.set_type(region, Type::CONTROL); 377 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 378 region->init_req(1, phi_map->control()); 379 phi_map->set_control(region); 380 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 381 record_for_igvn(io_phi); 382 _gvn.set_type(io_phi, Type::ABIO); 383 phi_map->set_i_o(io_phi); 384 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 385 Node* m = mms.memory(); 386 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 387 record_for_igvn(m_phi); 388 _gvn.set_type(m_phi, Type::MEMORY); 389 mms.set_memory(m_phi); 390 } 391 } 392 393 // Either or both of phi_map and ex_map might already be converted into phis. 394 Node* ex_control = ex_map->control(); 395 // if there is special marking on ex_map also, we add multiple edges from src 396 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 397 // how wide was the destination phi_map, originally? 398 uint orig_width = region->req(); 399 400 if (add_multiple) { 401 add_n_reqs(region, ex_control); 402 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 403 } else { 404 // ex_map has no merges, so we just add single edges everywhere 405 add_one_req(region, ex_control); 406 add_one_req(phi_map->i_o(), ex_map->i_o()); 407 } 408 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 409 if (mms.is_empty()) { 410 // get a copy of the base memory, and patch some inputs into it 411 const TypePtr* adr_type = mms.adr_type(C); 412 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 413 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 414 mms.set_memory(phi); 415 // Prepare to append interesting stuff onto the newly sliced phi: 416 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 417 } 418 // Append stuff from ex_map: 419 if (add_multiple) { 420 add_n_reqs(mms.memory(), mms.memory2()); 421 } else { 422 add_one_req(mms.memory(), mms.memory2()); 423 } 424 } 425 uint limit = ex_map->req(); 426 for (uint i = TypeFunc::Parms; i < limit; i++) { 427 // Skip everything in the JVMS after tos. (The ex_oop follows.) 428 if (i == tos) i = ex_jvms->monoff(); 429 Node* src = ex_map->in(i); 430 Node* dst = phi_map->in(i); 431 if (src != dst) { 432 PhiNode* phi; 433 if (dst->in(0) != region) { 434 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 435 record_for_igvn(phi); 436 _gvn.set_type(phi, phi->type()); 437 phi_map->set_req(i, dst); 438 // Prepare to append interesting stuff onto the new phi: 439 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 440 } else { 441 assert(dst->is_Phi(), "nobody else uses a hidden region"); 442 phi = dst->as_Phi(); 443 } 444 if (add_multiple && src->in(0) == ex_control) { 445 // Both are phis. 446 add_n_reqs(dst, src); 447 } else { 448 while (dst->req() < region->req()) add_one_req(dst, src); 449 } 450 const Type* srctype = _gvn.type(src); 451 if (phi->type() != srctype) { 452 const Type* dsttype = phi->type()->meet_speculative(srctype); 453 if (phi->type() != dsttype) { 454 phi->set_type(dsttype); 455 _gvn.set_type(phi, dsttype); 456 } 457 } 458 } 459 } 460 phi_map->merge_replaced_nodes_with(ex_map); 461 } 462 463 //--------------------------use_exception_state-------------------------------- 464 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 465 if (failing_internal()) { stop(); return top(); } 466 Node* region = phi_map->control(); 467 Node* hidden_merge_mark = root(); 468 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 469 Node* ex_oop = clear_saved_ex_oop(phi_map); 470 if (region->in(0) == hidden_merge_mark) { 471 // Special marking for internal ex-states. Process the phis now. 472 region->set_req(0, region); // now it's an ordinary region 473 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 474 // Note: Setting the jvms also sets the bci and sp. 475 set_control(_gvn.transform(region)); 476 uint tos = jvms()->stkoff() + sp(); 477 for (uint i = 1; i < tos; i++) { 478 Node* x = phi_map->in(i); 479 if (x->in(0) == region) { 480 assert(x->is_Phi(), "expected a special phi"); 481 phi_map->set_req(i, _gvn.transform(x)); 482 } 483 } 484 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 485 Node* x = mms.memory(); 486 if (x->in(0) == region) { 487 assert(x->is_Phi(), "nobody else uses a hidden region"); 488 mms.set_memory(_gvn.transform(x)); 489 } 490 } 491 if (ex_oop->in(0) == region) { 492 assert(ex_oop->is_Phi(), "expected a special phi"); 493 ex_oop = _gvn.transform(ex_oop); 494 } 495 } else { 496 set_jvms(phi_map->jvms()); 497 } 498 499 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 500 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 501 return ex_oop; 502 } 503 504 //---------------------------------java_bc------------------------------------- 505 Bytecodes::Code GraphKit::java_bc() const { 506 ciMethod* method = this->method(); 507 int bci = this->bci(); 508 if (method != nullptr && bci != InvocationEntryBci) 509 return method->java_code_at_bci(bci); 510 else 511 return Bytecodes::_illegal; 512 } 513 514 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 515 bool must_throw) { 516 // if the exception capability is set, then we will generate code 517 // to check the JavaThread.should_post_on_exceptions flag to see 518 // if we actually need to report exception events (for this 519 // thread). If we don't need to report exception events, we will 520 // take the normal fast path provided by add_exception_events. If 521 // exception event reporting is enabled for this thread, we will 522 // take the uncommon_trap in the BuildCutout below. 523 524 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 525 Node* jthread = _gvn.transform(new ThreadLocalNode()); 526 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 527 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 528 529 // Test the should_post_on_exceptions_flag vs. 0 530 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 531 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 532 533 // Branch to slow_path if should_post_on_exceptions_flag was true 534 { BuildCutout unless(this, tst, PROB_MAX); 535 // Do not try anything fancy if we're notifying the VM on every throw. 536 // Cf. case Bytecodes::_athrow in parse2.cpp. 537 uncommon_trap(reason, Deoptimization::Action_none, 538 (ciKlass*)nullptr, (char*)nullptr, must_throw); 539 } 540 541 } 542 543 //------------------------------builtin_throw---------------------------------- 544 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 545 builtin_throw(reason, builtin_throw_exception(reason), /*allow_too_many_traps*/ true); 546 } 547 548 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, 549 ciInstance* ex_obj, 550 bool allow_too_many_traps) { 551 // If this throw happens frequently, an uncommon trap might cause 552 // a performance pothole. If there is a local exception handler, 553 // and if this particular bytecode appears to be deoptimizing often, 554 // let us handle the throw inline, with a preconstructed instance. 555 // Note: If the deopt count has blown up, the uncommon trap 556 // runtime is going to flush this nmethod, not matter what. 557 if (is_builtin_throw_hot(reason)) { 558 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 559 // If the throw is local, we use a pre-existing instance and 560 // punt on the backtrace. This would lead to a missing backtrace 561 // (a repeat of 4292742) if the backtrace object is ever asked 562 // for its backtrace. 563 // Fixing this remaining case of 4292742 requires some flavor of 564 // escape analysis. Leave that for the future. 565 if (env()->jvmti_can_post_on_exceptions()) { 566 // check if we must post exception events, take uncommon trap if so 567 uncommon_trap_if_should_post_on_exceptions(reason, true /*must_throw*/); 568 // here if should_post_on_exceptions is false 569 // continue on with the normal codegen 570 } 571 572 // Cheat with a preallocated exception object. 573 if (C->log() != nullptr) 574 C->log()->elem("hot_throw preallocated='1' reason='%s'", 575 Deoptimization::trap_reason_name(reason)); 576 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 577 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 578 579 // Clear the detail message of the preallocated exception object. 580 // Weblogic sometimes mutates the detail message of exceptions 581 // using reflection. 582 int offset = java_lang_Throwable::get_detailMessage_offset(); 583 const TypePtr* adr_typ = ex_con->add_offset(offset); 584 585 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 586 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 587 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 588 589 if (!method()->has_exception_handlers()) { 590 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 591 // This prevents issues with exception handling and late inlining. 592 set_sp(0); 593 clean_stack(0); 594 } 595 596 add_exception_state(make_exception_state(ex_node)); 597 return; 598 } else if (builtin_throw_too_many_traps(reason, ex_obj)) { 599 // We cannot afford to take too many traps here. Suffer in the interpreter instead. 600 assert(allow_too_many_traps, "not allowed"); 601 if (C->log() != nullptr) { 602 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 603 Deoptimization::trap_reason_name(reason), 604 C->trap_count(reason)); 605 } 606 uncommon_trap(reason, Deoptimization::Action_none, 607 (ciKlass*) nullptr, (char*) nullptr, 608 true /*must_throw*/); 609 return; 610 } 611 } 612 613 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 614 // It won't be much cheaper than bailing to the interp., since we'll 615 // have to pass up all the debug-info, and the runtime will have to 616 // create the stack trace. 617 618 // Usual case: Bail to interpreter. 619 // Reserve the right to recompile if we haven't seen anything yet. 620 621 // "must_throw" prunes the JVM state to include only the stack, if there 622 // are no local exception handlers. This should cut down on register 623 // allocation time and code size, by drastically reducing the number 624 // of in-edges on the call to the uncommon trap. 625 uncommon_trap(reason, Deoptimization::Action_maybe_recompile, 626 (ciKlass*) nullptr, (char*) nullptr, 627 true /*must_throw*/); 628 } 629 630 bool GraphKit::is_builtin_throw_hot(Deoptimization::DeoptReason reason) { 631 // If this particular condition has not yet happened at this 632 // bytecode, then use the uncommon trap mechanism, and allow for 633 // a future recompilation if several traps occur here. 634 // If the throw is hot, try to use a more complicated inline mechanism 635 // which keeps execution inside the compiled code. 636 if (ProfileTraps) { 637 if (too_many_traps(reason)) { 638 return true; 639 } 640 // (If there is no MDO at all, assume it is early in 641 // execution, and that any deopts are part of the 642 // startup transient, and don't need to be remembered.) 643 644 // Also, if there is a local exception handler, treat all throws 645 // as hot if there has been at least one in this method. 646 if (C->trap_count(reason) != 0 && 647 method()->method_data()->trap_count(reason) != 0 && 648 has_exception_handler()) { 649 return true; 650 } 651 } 652 return false; 653 } 654 655 bool GraphKit::builtin_throw_too_many_traps(Deoptimization::DeoptReason reason, 656 ciInstance* ex_obj) { 657 if (is_builtin_throw_hot(reason)) { 658 if (method()->can_omit_stack_trace() && ex_obj != nullptr) { 659 return false; // no traps; throws preallocated exception instead 660 } 661 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 662 if (method()->method_data()->trap_recompiled_at(bci(), m) || 663 C->too_many_traps(reason)) { 664 return true; 665 } 666 } 667 return false; 668 } 669 670 ciInstance* GraphKit::builtin_throw_exception(Deoptimization::DeoptReason reason) const { 671 // Preallocated exception objects to use when we don't need the backtrace. 672 switch (reason) { 673 case Deoptimization::Reason_null_check: 674 return env()->NullPointerException_instance(); 675 case Deoptimization::Reason_div0_check: 676 return env()->ArithmeticException_instance(); 677 case Deoptimization::Reason_range_check: 678 return env()->ArrayIndexOutOfBoundsException_instance(); 679 case Deoptimization::Reason_class_check: 680 return env()->ClassCastException_instance(); 681 case Deoptimization::Reason_array_check: 682 return env()->ArrayStoreException_instance(); 683 default: 684 return nullptr; 685 } 686 } 687 688 //----------------------------PreserveJVMState--------------------------------- 689 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 690 DEBUG_ONLY(kit->verify_map()); 691 _kit = kit; 692 _map = kit->map(); // preserve the map 693 _sp = kit->sp(); 694 kit->set_map(clone_map ? kit->clone_map() : nullptr); 695 #ifdef ASSERT 696 _bci = kit->bci(); 697 Parse* parser = kit->is_Parse(); 698 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 699 _block = block; 700 #endif 701 } 702 PreserveJVMState::~PreserveJVMState() { 703 GraphKit* kit = _kit; 704 #ifdef ASSERT 705 assert(kit->bci() == _bci, "bci must not shift"); 706 Parse* parser = kit->is_Parse(); 707 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 708 assert(block == _block, "block must not shift"); 709 #endif 710 kit->set_map(_map); 711 kit->set_sp(_sp); 712 } 713 714 715 //-----------------------------BuildCutout------------------------------------- 716 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 717 : PreserveJVMState(kit) 718 { 719 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 720 SafePointNode* outer_map = _map; // preserved map is caller's 721 SafePointNode* inner_map = kit->map(); 722 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 723 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 724 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 725 } 726 BuildCutout::~BuildCutout() { 727 GraphKit* kit = _kit; 728 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 729 } 730 731 //---------------------------PreserveReexecuteState---------------------------- 732 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 733 assert(!kit->stopped(), "must call stopped() before"); 734 _kit = kit; 735 _sp = kit->sp(); 736 _reexecute = kit->jvms()->_reexecute; 737 } 738 PreserveReexecuteState::~PreserveReexecuteState() { 739 if (_kit->stopped()) return; 740 _kit->jvms()->_reexecute = _reexecute; 741 _kit->set_sp(_sp); 742 } 743 744 //------------------------------clone_map-------------------------------------- 745 // Implementation of PreserveJVMState 746 // 747 // Only clone_map(...) here. If this function is only used in the 748 // PreserveJVMState class we may want to get rid of this extra 749 // function eventually and do it all there. 750 751 SafePointNode* GraphKit::clone_map() { 752 if (map() == nullptr) return nullptr; 753 754 // Clone the memory edge first 755 Node* mem = MergeMemNode::make(map()->memory()); 756 gvn().set_type_bottom(mem); 757 758 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 759 JVMState* jvms = this->jvms(); 760 JVMState* clonejvms = jvms->clone_shallow(C); 761 clonemap->set_memory(mem); 762 clonemap->set_jvms(clonejvms); 763 clonejvms->set_map(clonemap); 764 record_for_igvn(clonemap); 765 gvn().set_type_bottom(clonemap); 766 return clonemap; 767 } 768 769 //-----------------------------destruct_map_clone------------------------------ 770 // 771 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 772 // to destruct/free/delete in the exact opposite order as clone_map(). 773 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 774 if (sfp == nullptr) return; 775 776 Node* mem = sfp->memory(); 777 JVMState* jvms = sfp->jvms(); 778 779 if (jvms != nullptr) { 780 delete jvms; 781 } 782 783 remove_for_igvn(sfp); 784 gvn().clear_type(sfp); 785 sfp->destruct(&_gvn); 786 787 if (mem != nullptr) { 788 gvn().clear_type(mem); 789 mem->destruct(&_gvn); 790 } 791 } 792 793 //-----------------------------set_map_clone----------------------------------- 794 void GraphKit::set_map_clone(SafePointNode* m) { 795 _map = m; 796 _map = clone_map(); 797 _map->set_next_exception(nullptr); 798 DEBUG_ONLY(verify_map()); 799 } 800 801 802 //----------------------------kill_dead_locals--------------------------------- 803 // Detect any locals which are known to be dead, and force them to top. 804 void GraphKit::kill_dead_locals() { 805 // Consult the liveness information for the locals. If any 806 // of them are unused, then they can be replaced by top(). This 807 // should help register allocation time and cut down on the size 808 // of the deoptimization information. 809 810 // This call is made from many of the bytecode handling 811 // subroutines called from the Big Switch in do_one_bytecode. 812 // Every bytecode which might include a slow path is responsible 813 // for killing its dead locals. The more consistent we 814 // are about killing deads, the fewer useless phis will be 815 // constructed for them at various merge points. 816 817 // bci can be -1 (InvocationEntryBci). We return the entry 818 // liveness for the method. 819 820 if (method() == nullptr || method()->code_size() == 0) { 821 // We are building a graph for a call to a native method. 822 // All locals are live. 823 return; 824 } 825 826 ResourceMark rm; 827 828 // Consult the liveness information for the locals. If any 829 // of them are unused, then they can be replaced by top(). This 830 // should help register allocation time and cut down on the size 831 // of the deoptimization information. 832 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 833 834 int len = (int)live_locals.size(); 835 assert(len <= jvms()->loc_size(), "too many live locals"); 836 for (int local = 0; local < len; local++) { 837 if (!live_locals.at(local)) { 838 set_local(local, top()); 839 } 840 } 841 } 842 843 #ifdef ASSERT 844 //-------------------------dead_locals_are_killed------------------------------ 845 // Return true if all dead locals are set to top in the map. 846 // Used to assert "clean" debug info at various points. 847 bool GraphKit::dead_locals_are_killed() { 848 if (method() == nullptr || method()->code_size() == 0) { 849 // No locals need to be dead, so all is as it should be. 850 return true; 851 } 852 853 // Make sure somebody called kill_dead_locals upstream. 854 ResourceMark rm; 855 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 856 if (jvms->loc_size() == 0) continue; // no locals to consult 857 SafePointNode* map = jvms->map(); 858 ciMethod* method = jvms->method(); 859 int bci = jvms->bci(); 860 if (jvms == this->jvms()) { 861 bci = this->bci(); // it might not yet be synched 862 } 863 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 864 int len = (int)live_locals.size(); 865 if (!live_locals.is_valid() || len == 0) 866 // This method is trivial, or is poisoned by a breakpoint. 867 return true; 868 assert(len == jvms->loc_size(), "live map consistent with locals map"); 869 for (int local = 0; local < len; local++) { 870 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 871 if (PrintMiscellaneous && (Verbose || WizardMode)) { 872 tty->print_cr("Zombie local %d: ", local); 873 jvms->dump(); 874 } 875 return false; 876 } 877 } 878 } 879 return true; 880 } 881 882 #endif //ASSERT 883 884 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 885 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 886 ciMethod* cur_method = jvms->method(); 887 int cur_bci = jvms->bci(); 888 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 889 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 890 return Interpreter::bytecode_should_reexecute(code) || 891 (is_anewarray && (code == Bytecodes::_multianewarray)); 892 // Reexecute _multianewarray bytecode which was replaced with 893 // sequence of [a]newarray. See Parse::do_multianewarray(). 894 // 895 // Note: interpreter should not have it set since this optimization 896 // is limited by dimensions and guarded by flag so in some cases 897 // multianewarray() runtime calls will be generated and 898 // the bytecode should not be reexecutes (stack will not be reset). 899 } else { 900 return false; 901 } 902 } 903 904 // Helper function for adding JVMState and debug information to node 905 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 906 // Add the safepoint edges to the call (or other safepoint). 907 908 // Make sure dead locals are set to top. This 909 // should help register allocation time and cut down on the size 910 // of the deoptimization information. 911 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 912 913 // Walk the inline list to fill in the correct set of JVMState's 914 // Also fill in the associated edges for each JVMState. 915 916 // If the bytecode needs to be reexecuted we need to put 917 // the arguments back on the stack. 918 const bool should_reexecute = jvms()->should_reexecute(); 919 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 920 921 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 922 // undefined if the bci is different. This is normal for Parse but it 923 // should not happen for LibraryCallKit because only one bci is processed. 924 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 925 "in LibraryCallKit the reexecute bit should not change"); 926 927 // If we are guaranteed to throw, we can prune everything but the 928 // input to the current bytecode. 929 bool can_prune_locals = false; 930 uint stack_slots_not_pruned = 0; 931 int inputs = 0, depth = 0; 932 if (must_throw) { 933 assert(method() == youngest_jvms->method(), "sanity"); 934 if (compute_stack_effects(inputs, depth)) { 935 can_prune_locals = true; 936 stack_slots_not_pruned = inputs; 937 } 938 } 939 940 if (env()->should_retain_local_variables()) { 941 // At any safepoint, this method can get breakpointed, which would 942 // then require an immediate deoptimization. 943 can_prune_locals = false; // do not prune locals 944 stack_slots_not_pruned = 0; 945 } 946 947 // do not scribble on the input jvms 948 JVMState* out_jvms = youngest_jvms->clone_deep(C); 949 call->set_jvms(out_jvms); // Start jvms list for call node 950 951 // For a known set of bytecodes, the interpreter should reexecute them if 952 // deoptimization happens. We set the reexecute state for them here 953 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 954 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 955 #ifdef ASSERT 956 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 957 assert(method() == youngest_jvms->method(), "sanity"); 958 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 959 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 960 #endif // ASSERT 961 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 962 } 963 964 // Presize the call: 965 DEBUG_ONLY(uint non_debug_edges = call->req()); 966 call->add_req_batch(top(), youngest_jvms->debug_depth()); 967 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 968 969 // Set up edges so that the call looks like this: 970 // Call [state:] ctl io mem fptr retadr 971 // [parms:] parm0 ... parmN 972 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 973 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 974 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 975 // Note that caller debug info precedes callee debug info. 976 977 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 978 uint debug_ptr = call->req(); 979 980 // Loop over the map input edges associated with jvms, add them 981 // to the call node, & reset all offsets to match call node array. 982 983 JVMState* callee_jvms = nullptr; 984 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 985 uint debug_end = debug_ptr; 986 uint debug_start = debug_ptr - in_jvms->debug_size(); 987 debug_ptr = debug_start; // back up the ptr 988 989 uint p = debug_start; // walks forward in [debug_start, debug_end) 990 uint j, k, l; 991 SafePointNode* in_map = in_jvms->map(); 992 out_jvms->set_map(call); 993 994 if (can_prune_locals) { 995 assert(in_jvms->method() == out_jvms->method(), "sanity"); 996 // If the current throw can reach an exception handler in this JVMS, 997 // then we must keep everything live that can reach that handler. 998 // As a quick and dirty approximation, we look for any handlers at all. 999 if (in_jvms->method()->has_exception_handlers()) { 1000 can_prune_locals = false; 1001 } 1002 } 1003 1004 // Add the Locals 1005 k = in_jvms->locoff(); 1006 l = in_jvms->loc_size(); 1007 out_jvms->set_locoff(p); 1008 if (!can_prune_locals) { 1009 for (j = 0; j < l; j++) { 1010 call->set_req(p++, in_map->in(k + j)); 1011 } 1012 } else { 1013 p += l; // already set to top above by add_req_batch 1014 } 1015 1016 // Add the Expression Stack 1017 k = in_jvms->stkoff(); 1018 l = in_jvms->sp(); 1019 out_jvms->set_stkoff(p); 1020 if (!can_prune_locals) { 1021 for (j = 0; j < l; j++) { 1022 call->set_req(p++, in_map->in(k + j)); 1023 } 1024 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 1025 // Divide stack into {S0,...,S1}, where S0 is set to top. 1026 uint s1 = stack_slots_not_pruned; 1027 stack_slots_not_pruned = 0; // for next iteration 1028 if (s1 > l) s1 = l; 1029 uint s0 = l - s1; 1030 p += s0; // skip the tops preinstalled by add_req_batch 1031 for (j = s0; j < l; j++) 1032 call->set_req(p++, in_map->in(k+j)); 1033 } else { 1034 p += l; // already set to top above by add_req_batch 1035 } 1036 1037 // Add the Monitors 1038 k = in_jvms->monoff(); 1039 l = in_jvms->mon_size(); 1040 out_jvms->set_monoff(p); 1041 for (j = 0; j < l; j++) 1042 call->set_req(p++, in_map->in(k+j)); 1043 1044 // Copy any scalar object fields. 1045 k = in_jvms->scloff(); 1046 l = in_jvms->scl_size(); 1047 out_jvms->set_scloff(p); 1048 for (j = 0; j < l; j++) 1049 call->set_req(p++, in_map->in(k+j)); 1050 1051 // Finish the new jvms. 1052 out_jvms->set_endoff(p); 1053 1054 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1055 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1056 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1057 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1058 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1059 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1060 1061 // Update the two tail pointers in parallel. 1062 callee_jvms = out_jvms; 1063 out_jvms = out_jvms->caller(); 1064 in_jvms = in_jvms->caller(); 1065 } 1066 1067 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1068 1069 // Test the correctness of JVMState::debug_xxx accessors: 1070 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1071 assert(call->jvms()->debug_end() == call->req(), ""); 1072 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1073 } 1074 1075 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1076 Bytecodes::Code code = java_bc(); 1077 if (code == Bytecodes::_wide) { 1078 code = method()->java_code_at_bci(bci() + 1); 1079 } 1080 1081 if (code != Bytecodes::_illegal) { 1082 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1083 } 1084 1085 auto rsize = [&]() { 1086 assert(code != Bytecodes::_illegal, "code is illegal!"); 1087 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1088 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1089 }; 1090 1091 switch (code) { 1092 case Bytecodes::_illegal: 1093 return false; 1094 1095 case Bytecodes::_ldc: 1096 case Bytecodes::_ldc_w: 1097 case Bytecodes::_ldc2_w: 1098 inputs = 0; 1099 break; 1100 1101 case Bytecodes::_dup: inputs = 1; break; 1102 case Bytecodes::_dup_x1: inputs = 2; break; 1103 case Bytecodes::_dup_x2: inputs = 3; break; 1104 case Bytecodes::_dup2: inputs = 2; break; 1105 case Bytecodes::_dup2_x1: inputs = 3; break; 1106 case Bytecodes::_dup2_x2: inputs = 4; break; 1107 case Bytecodes::_swap: inputs = 2; break; 1108 case Bytecodes::_arraylength: inputs = 1; break; 1109 1110 case Bytecodes::_getstatic: 1111 case Bytecodes::_putstatic: 1112 case Bytecodes::_getfield: 1113 case Bytecodes::_putfield: 1114 { 1115 bool ignored_will_link; 1116 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1117 int size = field->type()->size(); 1118 bool is_get = (depth >= 0), is_static = (depth & 1); 1119 inputs = (is_static ? 0 : 1); 1120 if (is_get) { 1121 depth = size - inputs; 1122 } else { 1123 inputs += size; // putxxx pops the value from the stack 1124 depth = - inputs; 1125 } 1126 } 1127 break; 1128 1129 case Bytecodes::_invokevirtual: 1130 case Bytecodes::_invokespecial: 1131 case Bytecodes::_invokestatic: 1132 case Bytecodes::_invokedynamic: 1133 case Bytecodes::_invokeinterface: 1134 { 1135 bool ignored_will_link; 1136 ciSignature* declared_signature = nullptr; 1137 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1138 assert(declared_signature != nullptr, "cannot be null"); 1139 inputs = declared_signature->arg_size_for_bc(code); 1140 int size = declared_signature->return_type()->size(); 1141 depth = size - inputs; 1142 } 1143 break; 1144 1145 case Bytecodes::_multianewarray: 1146 { 1147 ciBytecodeStream iter(method()); 1148 iter.reset_to_bci(bci()); 1149 iter.next(); 1150 inputs = iter.get_dimensions(); 1151 assert(rsize() == 1, ""); 1152 depth = 1 - inputs; 1153 } 1154 break; 1155 1156 case Bytecodes::_ireturn: 1157 case Bytecodes::_lreturn: 1158 case Bytecodes::_freturn: 1159 case Bytecodes::_dreturn: 1160 case Bytecodes::_areturn: 1161 assert(rsize() == -depth, ""); 1162 inputs = -depth; 1163 break; 1164 1165 case Bytecodes::_jsr: 1166 case Bytecodes::_jsr_w: 1167 inputs = 0; 1168 depth = 1; // S.B. depth=1, not zero 1169 break; 1170 1171 default: 1172 // bytecode produces a typed result 1173 inputs = rsize() - depth; 1174 assert(inputs >= 0, ""); 1175 break; 1176 } 1177 1178 #ifdef ASSERT 1179 // spot check 1180 int outputs = depth + inputs; 1181 assert(outputs >= 0, "sanity"); 1182 switch (code) { 1183 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1184 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1185 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1186 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1187 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1188 default: break; 1189 } 1190 #endif //ASSERT 1191 1192 return true; 1193 } 1194 1195 1196 1197 //------------------------------basic_plus_adr--------------------------------- 1198 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1199 // short-circuit a common case 1200 if (offset == intcon(0)) return ptr; 1201 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1202 } 1203 1204 Node* GraphKit::ConvI2L(Node* offset) { 1205 // short-circuit a common case 1206 jint offset_con = find_int_con(offset, Type::OffsetBot); 1207 if (offset_con != Type::OffsetBot) { 1208 return longcon((jlong) offset_con); 1209 } 1210 return _gvn.transform( new ConvI2LNode(offset)); 1211 } 1212 1213 Node* GraphKit::ConvI2UL(Node* offset) { 1214 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1215 if (offset_con != (juint) Type::OffsetBot) { 1216 return longcon((julong) offset_con); 1217 } 1218 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1219 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1220 return _gvn.transform( new AndLNode(conv, mask) ); 1221 } 1222 1223 Node* GraphKit::ConvL2I(Node* offset) { 1224 // short-circuit a common case 1225 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1226 if (offset_con != (jlong)Type::OffsetBot) { 1227 return intcon((int) offset_con); 1228 } 1229 return _gvn.transform( new ConvL2INode(offset)); 1230 } 1231 1232 //-------------------------load_object_klass----------------------------------- 1233 Node* GraphKit::load_object_klass(Node* obj) { 1234 // Special-case a fresh allocation to avoid building nodes: 1235 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1236 if (akls != nullptr) return akls; 1237 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1238 return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 1239 } 1240 1241 //-------------------------load_array_length----------------------------------- 1242 Node* GraphKit::load_array_length(Node* array) { 1243 // Special-case a fresh allocation to avoid building nodes: 1244 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1245 Node *alen; 1246 if (alloc == nullptr) { 1247 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1248 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1249 } else { 1250 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1251 } 1252 return alen; 1253 } 1254 1255 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1256 const TypeOopPtr* oop_type, 1257 bool replace_length_in_map) { 1258 Node* length = alloc->Ideal_length(); 1259 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1260 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1261 if (ccast != length) { 1262 // do not transform ccast here, it might convert to top node for 1263 // negative array length and break assumptions in parsing stage. 1264 _gvn.set_type_bottom(ccast); 1265 record_for_igvn(ccast); 1266 if (replace_length_in_map) { 1267 replace_in_map(length, ccast); 1268 } 1269 return ccast; 1270 } 1271 } 1272 return length; 1273 } 1274 1275 //------------------------------do_null_check---------------------------------- 1276 // Helper function to do a null pointer check. Returned value is 1277 // the incoming address with null casted away. You are allowed to use the 1278 // not-null value only if you are control dependent on the test. 1279 #ifndef PRODUCT 1280 extern uint explicit_null_checks_inserted, 1281 explicit_null_checks_elided; 1282 #endif 1283 Node* GraphKit::null_check_common(Node* value, BasicType type, 1284 // optional arguments for variations: 1285 bool assert_null, 1286 Node* *null_control, 1287 bool speculative, 1288 bool null_marker_check) { 1289 assert(!assert_null || null_control == nullptr, "not both at once"); 1290 if (stopped()) return top(); 1291 NOT_PRODUCT(explicit_null_checks_inserted++); 1292 1293 if (value->is_InlineType()) { 1294 // Null checking a scalarized but nullable inline type. Check the null marker 1295 // input instead of the oop input to avoid keeping buffer allocations alive. 1296 InlineTypeNode* vtptr = value->as_InlineType(); 1297 while (vtptr->get_oop()->is_InlineType()) { 1298 vtptr = vtptr->get_oop()->as_InlineType(); 1299 } 1300 null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true); 1301 if (stopped()) { 1302 return top(); 1303 } 1304 if (assert_null) { 1305 // TODO 8284443 Scalarize here (this currently leads to compilation bailouts) 1306 // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass()); 1307 // replace_in_map(value, vtptr); 1308 // return vtptr; 1309 replace_in_map(value, null()); 1310 return null(); 1311 } 1312 bool do_replace_in_map = (null_control == nullptr || (*null_control) == top()); 1313 return cast_not_null(value, do_replace_in_map); 1314 } 1315 1316 // Construct null check 1317 Node *chk = nullptr; 1318 switch(type) { 1319 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1320 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1321 case T_ARRAY : // fall through 1322 type = T_OBJECT; // simplify further tests 1323 case T_OBJECT : { 1324 const Type *t = _gvn.type( value ); 1325 1326 const TypeOopPtr* tp = t->isa_oopptr(); 1327 if (tp != nullptr && !tp->is_loaded() 1328 // Only for do_null_check, not any of its siblings: 1329 && !assert_null && null_control == nullptr) { 1330 // Usually, any field access or invocation on an unloaded oop type 1331 // will simply fail to link, since the statically linked class is 1332 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1333 // the static class is loaded but the sharper oop type is not. 1334 // Rather than checking for this obscure case in lots of places, 1335 // we simply observe that a null check on an unloaded class 1336 // will always be followed by a nonsense operation, so we 1337 // can just issue the uncommon trap here. 1338 // Our access to the unloaded class will only be correct 1339 // after it has been loaded and initialized, which requires 1340 // a trip through the interpreter. 1341 ciKlass* klass = tp->unloaded_klass(); 1342 #ifndef PRODUCT 1343 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1344 #endif 1345 uncommon_trap(Deoptimization::Reason_unloaded, 1346 Deoptimization::Action_reinterpret, 1347 klass, "!loaded"); 1348 return top(); 1349 } 1350 1351 if (assert_null) { 1352 // See if the type is contained in NULL_PTR. 1353 // If so, then the value is already null. 1354 if (t->higher_equal(TypePtr::NULL_PTR)) { 1355 NOT_PRODUCT(explicit_null_checks_elided++); 1356 return value; // Elided null assert quickly! 1357 } 1358 } else { 1359 // See if mixing in the null pointer changes type. 1360 // If so, then the null pointer was not allowed in the original 1361 // type. In other words, "value" was not-null. 1362 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1363 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1364 NOT_PRODUCT(explicit_null_checks_elided++); 1365 return value; // Elided null check quickly! 1366 } 1367 } 1368 chk = new CmpPNode( value, null() ); 1369 break; 1370 } 1371 1372 default: 1373 fatal("unexpected type: %s", type2name(type)); 1374 } 1375 assert(chk != nullptr, "sanity check"); 1376 chk = _gvn.transform(chk); 1377 1378 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1379 BoolNode *btst = new BoolNode( chk, btest); 1380 Node *tst = _gvn.transform( btst ); 1381 1382 //----------- 1383 // if peephole optimizations occurred, a prior test existed. 1384 // If a prior test existed, maybe it dominates as we can avoid this test. 1385 if (tst != btst && type == T_OBJECT) { 1386 // At this point we want to scan up the CFG to see if we can 1387 // find an identical test (and so avoid this test altogether). 1388 Node *cfg = control(); 1389 int depth = 0; 1390 while( depth < 16 ) { // Limit search depth for speed 1391 if( cfg->Opcode() == Op_IfTrue && 1392 cfg->in(0)->in(1) == tst ) { 1393 // Found prior test. Use "cast_not_null" to construct an identical 1394 // CastPP (and hence hash to) as already exists for the prior test. 1395 // Return that casted value. 1396 if (assert_null) { 1397 replace_in_map(value, null()); 1398 return null(); // do not issue the redundant test 1399 } 1400 Node *oldcontrol = control(); 1401 set_control(cfg); 1402 Node *res = cast_not_null(value); 1403 set_control(oldcontrol); 1404 NOT_PRODUCT(explicit_null_checks_elided++); 1405 return res; 1406 } 1407 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1408 if (cfg == nullptr) break; // Quit at region nodes 1409 depth++; 1410 } 1411 } 1412 1413 //----------- 1414 // Branch to failure if null 1415 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1416 Deoptimization::DeoptReason reason; 1417 if (assert_null) { 1418 reason = Deoptimization::reason_null_assert(speculative); 1419 } else if (type == T_OBJECT || null_marker_check) { 1420 reason = Deoptimization::reason_null_check(speculative); 1421 } else { 1422 reason = Deoptimization::Reason_div0_check; 1423 } 1424 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1425 // ciMethodData::has_trap_at will return a conservative -1 if any 1426 // must-be-null assertion has failed. This could cause performance 1427 // problems for a method after its first do_null_assert failure. 1428 // Consider using 'Reason_class_check' instead? 1429 1430 // To cause an implicit null check, we set the not-null probability 1431 // to the maximum (PROB_MAX). For an explicit check the probability 1432 // is set to a smaller value. 1433 if (null_control != nullptr || too_many_traps(reason)) { 1434 // probability is less likely 1435 ok_prob = PROB_LIKELY_MAG(3); 1436 } else if (!assert_null && 1437 (ImplicitNullCheckThreshold > 0) && 1438 method() != nullptr && 1439 (method()->method_data()->trap_count(reason) 1440 >= (uint)ImplicitNullCheckThreshold)) { 1441 ok_prob = PROB_LIKELY_MAG(3); 1442 } 1443 1444 if (null_control != nullptr) { 1445 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1446 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1447 set_control( _gvn.transform( new IfTrueNode(iff))); 1448 #ifndef PRODUCT 1449 if (null_true == top()) { 1450 explicit_null_checks_elided++; 1451 } 1452 #endif 1453 (*null_control) = null_true; 1454 } else { 1455 BuildCutout unless(this, tst, ok_prob); 1456 // Check for optimizer eliding test at parse time 1457 if (stopped()) { 1458 // Failure not possible; do not bother making uncommon trap. 1459 NOT_PRODUCT(explicit_null_checks_elided++); 1460 } else if (assert_null) { 1461 uncommon_trap(reason, 1462 Deoptimization::Action_make_not_entrant, 1463 nullptr, "assert_null"); 1464 } else { 1465 replace_in_map(value, zerocon(type)); 1466 builtin_throw(reason); 1467 } 1468 } 1469 1470 // Must throw exception, fall-thru not possible? 1471 if (stopped()) { 1472 return top(); // No result 1473 } 1474 1475 if (assert_null) { 1476 // Cast obj to null on this path. 1477 replace_in_map(value, zerocon(type)); 1478 return zerocon(type); 1479 } 1480 1481 // Cast obj to not-null on this path, if there is no null_control. 1482 // (If there is a null_control, a non-null value may come back to haunt us.) 1483 if (type == T_OBJECT) { 1484 Node* cast = cast_not_null(value, false); 1485 if (null_control == nullptr || (*null_control) == top()) 1486 replace_in_map(value, cast); 1487 value = cast; 1488 } 1489 1490 return value; 1491 } 1492 1493 //------------------------------cast_not_null---------------------------------- 1494 // Cast obj to not-null on this path 1495 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1496 if (obj->is_InlineType()) { 1497 Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map); 1498 vt->as_InlineType()->set_null_marker(_gvn); 1499 vt = _gvn.transform(vt); 1500 if (do_replace_in_map) { 1501 replace_in_map(obj, vt); 1502 } 1503 return vt; 1504 } 1505 const Type *t = _gvn.type(obj); 1506 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1507 // Object is already not-null? 1508 if( t == t_not_null ) return obj; 1509 1510 Node* cast = new CastPPNode(control(), obj,t_not_null); 1511 cast = _gvn.transform( cast ); 1512 1513 // Scan for instances of 'obj' in the current JVM mapping. 1514 // These instances are known to be not-null after the test. 1515 if (do_replace_in_map) 1516 replace_in_map(obj, cast); 1517 1518 return cast; // Return casted value 1519 } 1520 1521 Node* GraphKit::cast_to_non_larval(Node* obj) { 1522 const Type* obj_type = gvn().type(obj); 1523 if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) { 1524 return obj; 1525 } 1526 1527 Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass()); 1528 replace_in_map(obj, new_obj); 1529 return new_obj; 1530 } 1531 1532 // Sometimes in intrinsics, we implicitly know an object is not null 1533 // (there's no actual null check) so we can cast it to not null. In 1534 // the course of optimizations, the input to the cast can become null. 1535 // In that case that data path will die and we need the control path 1536 // to become dead as well to keep the graph consistent. So we have to 1537 // add a check for null for which one branch can't be taken. It uses 1538 // an OpaqueNotNull node that will cause the check to be removed after loop 1539 // opts so the test goes away and the compiled code doesn't execute a 1540 // useless check. 1541 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1542 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1543 return value; 1544 } 1545 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1546 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1547 Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst)); 1548 IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1549 _gvn.set_type(iff, iff->Value(&_gvn)); 1550 if (!tst->is_Con()) { 1551 record_for_igvn(iff); 1552 } 1553 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1554 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1555 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1556 C->root()->add_req(halt); 1557 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1558 set_control(if_t); 1559 return cast_not_null(value, do_replace_in_map); 1560 } 1561 1562 1563 //--------------------------replace_in_map------------------------------------- 1564 void GraphKit::replace_in_map(Node* old, Node* neww) { 1565 if (old == neww) { 1566 return; 1567 } 1568 1569 map()->replace_edge(old, neww); 1570 1571 // Note: This operation potentially replaces any edge 1572 // on the map. This includes locals, stack, and monitors 1573 // of the current (innermost) JVM state. 1574 1575 // don't let inconsistent types from profiling escape this 1576 // method 1577 1578 const Type* told = _gvn.type(old); 1579 const Type* tnew = _gvn.type(neww); 1580 1581 if (!tnew->higher_equal(told)) { 1582 return; 1583 } 1584 1585 map()->record_replaced_node(old, neww); 1586 } 1587 1588 1589 //============================================================================= 1590 //--------------------------------memory--------------------------------------- 1591 Node* GraphKit::memory(uint alias_idx) { 1592 MergeMemNode* mem = merged_memory(); 1593 Node* p = mem->memory_at(alias_idx); 1594 assert(p != mem->empty_memory(), "empty"); 1595 _gvn.set_type(p, Type::MEMORY); // must be mapped 1596 return p; 1597 } 1598 1599 //-----------------------------reset_memory------------------------------------ 1600 Node* GraphKit::reset_memory() { 1601 Node* mem = map()->memory(); 1602 // do not use this node for any more parsing! 1603 DEBUG_ONLY( map()->set_memory((Node*)nullptr) ); 1604 return _gvn.transform( mem ); 1605 } 1606 1607 //------------------------------set_all_memory--------------------------------- 1608 void GraphKit::set_all_memory(Node* newmem) { 1609 Node* mergemem = MergeMemNode::make(newmem); 1610 gvn().set_type_bottom(mergemem); 1611 map()->set_memory(mergemem); 1612 } 1613 1614 //------------------------------set_all_memory_call---------------------------- 1615 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1616 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1617 set_all_memory(newmem); 1618 } 1619 1620 //============================================================================= 1621 // 1622 // parser factory methods for MemNodes 1623 // 1624 // These are layered on top of the factory methods in LoadNode and StoreNode, 1625 // and integrate with the parser's memory state and _gvn engine. 1626 // 1627 1628 // factory methods in "int adr_idx" 1629 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1630 MemNode::MemOrd mo, 1631 LoadNode::ControlDependency control_dependency, 1632 bool require_atomic_access, 1633 bool unaligned, 1634 bool mismatched, 1635 bool unsafe, 1636 uint8_t barrier_data) { 1637 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1638 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1639 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1640 DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx)); 1641 Node* mem = memory(adr_idx); 1642 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1643 ld = _gvn.transform(ld); 1644 1645 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1646 // Improve graph before escape analysis and boxing elimination. 1647 record_for_igvn(ld); 1648 if (ld->is_DecodeN()) { 1649 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1650 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1651 // a Phi). Recording such cases is still perfectly sound, but may be 1652 // unnecessary and result in some minor IGVN overhead. 1653 record_for_igvn(ld->in(1)); 1654 } 1655 } 1656 return ld; 1657 } 1658 1659 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1660 MemNode::MemOrd mo, 1661 bool require_atomic_access, 1662 bool unaligned, 1663 bool mismatched, 1664 bool unsafe, 1665 int barrier_data) { 1666 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1667 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1668 const TypePtr* adr_type = nullptr; 1669 DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx)); 1670 Node *mem = memory(adr_idx); 1671 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1672 if (unaligned) { 1673 st->as_Store()->set_unaligned_access(); 1674 } 1675 if (mismatched) { 1676 st->as_Store()->set_mismatched_access(); 1677 } 1678 if (unsafe) { 1679 st->as_Store()->set_unsafe_access(); 1680 } 1681 st->as_Store()->set_barrier_data(barrier_data); 1682 st = _gvn.transform(st); 1683 set_memory(st, adr_idx); 1684 // Back-to-back stores can only remove intermediate store with DU info 1685 // so push on worklist for optimizer. 1686 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1687 record_for_igvn(st); 1688 1689 return st; 1690 } 1691 1692 Node* GraphKit::access_store_at(Node* obj, 1693 Node* adr, 1694 const TypePtr* adr_type, 1695 Node* val, 1696 const Type* val_type, 1697 BasicType bt, 1698 DecoratorSet decorators, 1699 bool safe_for_replace, 1700 const InlineTypeNode* vt) { 1701 // Transformation of a value which could be null pointer (CastPP #null) 1702 // could be delayed during Parse (for example, in adjust_map_after_if()). 1703 // Execute transformation here to avoid barrier generation in such case. 1704 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1705 val = _gvn.makecon(TypePtr::NULL_PTR); 1706 } 1707 1708 if (stopped()) { 1709 return top(); // Dead path ? 1710 } 1711 1712 assert(val != nullptr, "not dead path"); 1713 if (val->is_InlineType()) { 1714 // Store to non-flat field. Buffer the inline type and make sure 1715 // the store is re-executed if the allocation triggers deoptimization. 1716 PreserveReexecuteState preexecs(this); 1717 jvms()->set_should_reexecute(true); 1718 val = val->as_InlineType()->buffer(this, safe_for_replace); 1719 } 1720 1721 C2AccessValuePtr addr(adr, adr_type); 1722 C2AccessValue value(val, val_type); 1723 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt); 1724 if (access.is_raw()) { 1725 return _barrier_set->BarrierSetC2::store_at(access, value); 1726 } else { 1727 return _barrier_set->store_at(access, value); 1728 } 1729 } 1730 1731 Node* GraphKit::access_load_at(Node* obj, // containing obj 1732 Node* adr, // actual address to store val at 1733 const TypePtr* adr_type, 1734 const Type* val_type, 1735 BasicType bt, 1736 DecoratorSet decorators, 1737 Node* ctl) { 1738 if (stopped()) { 1739 return top(); // Dead path ? 1740 } 1741 1742 C2AccessValuePtr addr(adr, adr_type); 1743 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl); 1744 if (access.is_raw()) { 1745 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1746 } else { 1747 return _barrier_set->load_at(access, val_type); 1748 } 1749 } 1750 1751 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1752 const Type* val_type, 1753 BasicType bt, 1754 DecoratorSet decorators) { 1755 if (stopped()) { 1756 return top(); // Dead path ? 1757 } 1758 1759 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1760 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1761 if (access.is_raw()) { 1762 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1763 } else { 1764 return _barrier_set->load_at(access, val_type); 1765 } 1766 } 1767 1768 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1769 Node* adr, 1770 const TypePtr* adr_type, 1771 int alias_idx, 1772 Node* expected_val, 1773 Node* new_val, 1774 const Type* value_type, 1775 BasicType bt, 1776 DecoratorSet decorators) { 1777 C2AccessValuePtr addr(adr, adr_type); 1778 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1779 bt, obj, addr, alias_idx); 1780 if (access.is_raw()) { 1781 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1782 } else { 1783 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1784 } 1785 } 1786 1787 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1788 Node* adr, 1789 const TypePtr* adr_type, 1790 int alias_idx, 1791 Node* expected_val, 1792 Node* new_val, 1793 const Type* value_type, 1794 BasicType bt, 1795 DecoratorSet decorators) { 1796 C2AccessValuePtr addr(adr, adr_type); 1797 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1798 bt, obj, addr, alias_idx); 1799 if (access.is_raw()) { 1800 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1801 } else { 1802 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1803 } 1804 } 1805 1806 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1807 Node* adr, 1808 const TypePtr* adr_type, 1809 int alias_idx, 1810 Node* new_val, 1811 const Type* value_type, 1812 BasicType bt, 1813 DecoratorSet decorators) { 1814 C2AccessValuePtr addr(adr, adr_type); 1815 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1816 bt, obj, addr, alias_idx); 1817 if (access.is_raw()) { 1818 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1819 } else { 1820 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1821 } 1822 } 1823 1824 Node* GraphKit::access_atomic_add_at(Node* obj, 1825 Node* adr, 1826 const TypePtr* adr_type, 1827 int alias_idx, 1828 Node* new_val, 1829 const Type* value_type, 1830 BasicType bt, 1831 DecoratorSet decorators) { 1832 C2AccessValuePtr addr(adr, adr_type); 1833 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1834 if (access.is_raw()) { 1835 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1836 } else { 1837 return _barrier_set->atomic_add_at(access, new_val, value_type); 1838 } 1839 } 1840 1841 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1842 return _barrier_set->clone(this, src, dst, size, is_array); 1843 } 1844 1845 //-------------------------array_element_address------------------------- 1846 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1847 const TypeInt* sizetype, Node* ctrl) { 1848 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 1849 uint shift; 1850 if (arytype->is_flat() && arytype->klass_is_exact()) { 1851 // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different 1852 // value classes at runtime with a potentially different layout. The caller needs to fall back to call 1853 // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that 1854 // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even 1855 // though we don't need the address node in this case and throw it away again. 1856 shift = arytype->flat_log_elem_size(); 1857 } else { 1858 shift = exact_log2(type2aelembytes(elembt)); 1859 } 1860 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1861 1862 // short-circuit a common case (saves lots of confusing waste motion) 1863 jint idx_con = find_int_con(idx, -1); 1864 if (idx_con >= 0) { 1865 intptr_t offset = header + ((intptr_t)idx_con << shift); 1866 return basic_plus_adr(ary, offset); 1867 } 1868 1869 // must be correct type for alignment purposes 1870 Node* base = basic_plus_adr(ary, header); 1871 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1872 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1873 return basic_plus_adr(ary, base, scale); 1874 } 1875 1876 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) { 1877 assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8()); 1878 if (!vk->has_nullable_atomic_layout()) { 1879 // Element does not have a nullable flat layout, cannot be nullable 1880 is_null_free = true; 1881 } 1882 if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) { 1883 // Element does not have a null-free flat layout, cannot be null-free 1884 is_not_null_free = true; 1885 } 1886 if (is_null_free) { 1887 // TODO 8350865 Impossible type 1888 is_not_null_free = false; 1889 } 1890 1891 bool is_exact = is_null_free || is_not_null_free; 1892 ciArrayKlass* array_klass = ciArrayKlass::make(vk, is_null_free, is_atomic, true); 1893 assert(array_klass->is_elem_null_free() == is_null_free, "inconsistency"); 1894 assert(array_klass->is_elem_atomic() == is_atomic, "inconsistency"); 1895 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 1896 arytype = arytype->cast_to_exactness(is_exact); 1897 arytype = arytype->cast_to_not_null_free(is_not_null_free); 1898 assert(arytype->is_null_free() == is_null_free, "inconsistency"); 1899 assert(arytype->is_not_null_free() == is_not_null_free, "inconsistency"); 1900 assert(arytype->is_atomic() == is_atomic, "inconsistency"); 1901 return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency)); 1902 } 1903 1904 //-------------------------load_array_element------------------------- 1905 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1906 const Type* elemtype = arytype->elem(); 1907 BasicType elembt = elemtype->array_element_basic_type(); 1908 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1909 if (elembt == T_NARROWOOP) { 1910 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1911 } 1912 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1913 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1914 return ld; 1915 } 1916 1917 //-------------------------set_arguments_for_java_call------------------------- 1918 // Arguments (pre-popped from the stack) are taken from the JVMS. 1919 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) { 1920 PreserveReexecuteState preexecs(this); 1921 if (EnableValhalla) { 1922 // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization. 1923 // At this point, the call hasn't been executed yet, so we will only ever execute the call once. 1924 jvms()->set_should_reexecute(true); 1925 int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc()); 1926 inc_sp(arg_size); 1927 } 1928 // Add the call arguments 1929 const TypeTuple* domain = call->tf()->domain_sig(); 1930 uint nargs = domain->cnt(); 1931 int arg_num = 0; 1932 for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) { 1933 Node* arg = argument(i-TypeFunc::Parms); 1934 const Type* t = domain->field_at(i); 1935 // TODO 8284443 A static call to a mismatched method should still be scalarized 1936 if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) { 1937 // We don't pass inline type arguments by reference but instead pass each field of the inline type 1938 if (!arg->is_InlineType()) { 1939 assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type"); 1940 arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass()); 1941 } 1942 InlineTypeNode* vt = arg->as_InlineType(); 1943 vt->pass_fields(this, call, idx, true, !t->maybe_null()); 1944 // If an inline type argument is passed as fields, attach the Method* to the call site 1945 // to be able to access the extended signature later via attached_method_before_pc(). 1946 // For example, see CompiledMethod::preserve_callee_argument_oops(). 1947 call->set_override_symbolic_info(true); 1948 // Register an evol dependency on the callee method to make sure that this method is deoptimized and 1949 // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched. 1950 C->dependencies()->assert_evol_method(call->method()); 1951 arg_num++; 1952 continue; 1953 } else if (arg->is_InlineType()) { 1954 // Pass inline type argument via oop to callee 1955 arg = arg->as_InlineType()->buffer(this, true); 1956 } 1957 if (t != Type::HALF) { 1958 arg_num++; 1959 } 1960 call->init_req(idx++, arg); 1961 } 1962 } 1963 1964 //---------------------------set_edges_for_java_call--------------------------- 1965 // Connect a newly created call into the current JVMS. 1966 // A return value node (if any) is returned from set_edges_for_java_call. 1967 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1968 1969 // Add the predefined inputs: 1970 call->init_req( TypeFunc::Control, control() ); 1971 call->init_req( TypeFunc::I_O , i_o() ); 1972 call->init_req( TypeFunc::Memory , reset_memory() ); 1973 call->init_req( TypeFunc::FramePtr, frameptr() ); 1974 call->init_req( TypeFunc::ReturnAdr, top() ); 1975 1976 add_safepoint_edges(call, must_throw); 1977 1978 Node* xcall = _gvn.transform(call); 1979 1980 if (xcall == top()) { 1981 set_control(top()); 1982 return; 1983 } 1984 assert(xcall == call, "call identity is stable"); 1985 1986 // Re-use the current map to produce the result. 1987 1988 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1989 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1990 set_all_memory_call(xcall, separate_io_proj); 1991 1992 //return xcall; // no need, caller already has it 1993 } 1994 1995 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1996 if (stopped()) return top(); // maybe the call folded up? 1997 1998 // Note: Since any out-of-line call can produce an exception, 1999 // we always insert an I_O projection from the call into the result. 2000 2001 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 2002 2003 if (separate_io_proj) { 2004 // The caller requested separate projections be used by the fall 2005 // through and exceptional paths, so replace the projections for 2006 // the fall through path. 2007 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 2008 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 2009 } 2010 2011 // Capture the return value, if any. 2012 Node* ret; 2013 if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) { 2014 ret = top(); 2015 } else if (call->tf()->returns_inline_type_as_fields()) { 2016 // Return of multiple values (inline type fields): we create a 2017 // InlineType node, each field is a projection from the call. 2018 ciInlineKlass* vk = call->method()->return_type()->as_inline_klass(); 2019 uint base_input = TypeFunc::Parms; 2020 ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false); 2021 } else { 2022 ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 2023 ciType* t = call->method()->return_type(); 2024 if (!t->is_loaded() && InlineTypeReturnedAsFields) { 2025 // The return type is unloaded but the callee might later be C2 compiled and then return 2026 // in scalarized form when the return type is loaded. Handle this similar to what we do in 2027 // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer. 2028 // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop. 2029 IdealKit ideal(this); 2030 IdealVariable res(ideal); 2031 ideal.declarations_done(); 2032 ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); { 2033 // Return value is null 2034 ideal.set(res, ret); 2035 } ideal.else_(); { 2036 // Return value is non-null 2037 sync_kit(ideal); 2038 2039 // Change return type of call to scalarized return 2040 const TypeFunc* tf = call->_tf; 2041 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2042 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2043 call->_tf = new_tf; 2044 _gvn.set_type(call, call->Value(&_gvn)); 2045 _gvn.set_type(ret, ret->Value(&_gvn)); 2046 2047 Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 2048 OptoRuntime::store_inline_type_fields_Type(), 2049 StubRoutines::store_inline_type_fields_to_buf(), 2050 nullptr, TypePtr::BOTTOM, ret); 2051 2052 // We don't know how many values are returned. This assumes the 2053 // worst case, that all available registers are used. 2054 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2055 if (domain->field_at(i) == Type::HALF) { 2056 store_to_buf_call->init_req(i, top()); 2057 continue; 2058 } 2059 Node* proj =_gvn.transform(new ProjNode(call, i)); 2060 store_to_buf_call->init_req(i, proj); 2061 } 2062 make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false); 2063 2064 Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms)); 2065 const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL); 2066 buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type)); 2067 2068 ideal.set(res, buf); 2069 ideal.sync_kit(this); 2070 } ideal.end_if(); 2071 sync_kit(ideal); 2072 ret = _gvn.transform(ideal.value(res)); 2073 } 2074 if (t->is_klass()) { 2075 const Type* type = TypeOopPtr::make_from_klass(t->as_klass()); 2076 if (type->is_inlinetypeptr()) { 2077 ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass()); 2078 } 2079 } 2080 } 2081 2082 return ret; 2083 } 2084 2085 //--------------------set_predefined_input_for_runtime_call-------------------- 2086 // Reading and setting the memory state is way conservative here. 2087 // The real problem is that I am not doing real Type analysis on memory, 2088 // so I cannot distinguish card mark stores from other stores. Across a GC 2089 // point the Store Barrier and the card mark memory has to agree. I cannot 2090 // have a card mark store and its barrier split across the GC point from 2091 // either above or below. Here I get that to happen by reading ALL of memory. 2092 // A better answer would be to separate out card marks from other memory. 2093 // For now, return the input memory state, so that it can be reused 2094 // after the call, if this call has restricted memory effects. 2095 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 2096 // Set fixed predefined input arguments 2097 Node* memory = reset_memory(); 2098 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 2099 call->init_req( TypeFunc::Control, control() ); 2100 call->init_req( TypeFunc::I_O, top() ); // does no i/o 2101 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 2102 call->init_req( TypeFunc::FramePtr, frameptr() ); 2103 call->init_req( TypeFunc::ReturnAdr, top() ); 2104 return memory; 2105 } 2106 2107 //-------------------set_predefined_output_for_runtime_call-------------------- 2108 // Set control and memory (not i_o) from the call. 2109 // If keep_mem is not null, use it for the output state, 2110 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 2111 // If hook_mem is null, this call produces no memory effects at all. 2112 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 2113 // then only that memory slice is taken from the call. 2114 // In the last case, we must put an appropriate memory barrier before 2115 // the call, so as to create the correct anti-dependencies on loads 2116 // preceding the call. 2117 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 2118 Node* keep_mem, 2119 const TypePtr* hook_mem) { 2120 // no i/o 2121 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 2122 if (keep_mem) { 2123 // First clone the existing memory state 2124 set_all_memory(keep_mem); 2125 if (hook_mem != nullptr) { 2126 // Make memory for the call 2127 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 2128 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 2129 // We also use hook_mem to extract specific effects from arraycopy stubs. 2130 set_memory(mem, hook_mem); 2131 } 2132 // ...else the call has NO memory effects. 2133 2134 // Make sure the call advertises its memory effects precisely. 2135 // This lets us build accurate anti-dependences in gcm.cpp. 2136 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 2137 "call node must be constructed correctly"); 2138 } else { 2139 assert(hook_mem == nullptr, ""); 2140 // This is not a "slow path" call; all memory comes from the call. 2141 set_all_memory_call(call); 2142 } 2143 } 2144 2145 // Keep track of MergeMems feeding into other MergeMems 2146 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 2147 if (!mem->is_MergeMem()) { 2148 return; 2149 } 2150 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 2151 Node* use = i.get(); 2152 if (use->is_MergeMem()) { 2153 wl.push(use); 2154 } 2155 } 2156 } 2157 2158 // Replace the call with the current state of the kit. 2159 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) { 2160 JVMState* ejvms = nullptr; 2161 if (has_exceptions()) { 2162 ejvms = transfer_exceptions_into_jvms(); 2163 } 2164 2165 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 2166 ReplacedNodes replaced_nodes_exception; 2167 Node* ex_ctl = top(); 2168 2169 SafePointNode* final_state = stop(); 2170 2171 // Find all the needed outputs of this call 2172 CallProjections* callprojs = call->extract_projections(true, do_asserts); 2173 2174 Unique_Node_List wl; 2175 Node* init_mem = call->in(TypeFunc::Memory); 2176 Node* final_mem = final_state->in(TypeFunc::Memory); 2177 Node* final_ctl = final_state->in(TypeFunc::Control); 2178 Node* final_io = final_state->in(TypeFunc::I_O); 2179 2180 // Replace all the old call edges with the edges from the inlining result 2181 if (callprojs->fallthrough_catchproj != nullptr) { 2182 C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl); 2183 } 2184 if (callprojs->fallthrough_memproj != nullptr) { 2185 if (final_mem->is_MergeMem()) { 2186 // Parser's exits MergeMem was not transformed but may be optimized 2187 final_mem = _gvn.transform(final_mem); 2188 } 2189 C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem); 2190 add_mergemem_users_to_worklist(wl, final_mem); 2191 } 2192 if (callprojs->fallthrough_ioproj != nullptr) { 2193 C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io); 2194 } 2195 2196 // Replace the result with the new result if it exists and is used 2197 if (callprojs->resproj[0] != nullptr && result != nullptr) { 2198 // If the inlined code is dead, the result projections for an inline type returned as 2199 // fields have not been replaced. They will go away once the call is replaced by TOP below. 2200 assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()), 2201 "unexpected number of results"); 2202 C->gvn_replace_by(callprojs->resproj[0], result); 2203 } 2204 2205 if (ejvms == nullptr) { 2206 // No exception edges to simply kill off those paths 2207 if (callprojs->catchall_catchproj != nullptr) { 2208 C->gvn_replace_by(callprojs->catchall_catchproj, C->top()); 2209 } 2210 if (callprojs->catchall_memproj != nullptr) { 2211 C->gvn_replace_by(callprojs->catchall_memproj, C->top()); 2212 } 2213 if (callprojs->catchall_ioproj != nullptr) { 2214 C->gvn_replace_by(callprojs->catchall_ioproj, C->top()); 2215 } 2216 // Replace the old exception object with top 2217 if (callprojs->exobj != nullptr) { 2218 C->gvn_replace_by(callprojs->exobj, C->top()); 2219 } 2220 } else { 2221 GraphKit ekit(ejvms); 2222 2223 // Load my combined exception state into the kit, with all phis transformed: 2224 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 2225 replaced_nodes_exception = ex_map->replaced_nodes(); 2226 2227 Node* ex_oop = ekit.use_exception_state(ex_map); 2228 2229 if (callprojs->catchall_catchproj != nullptr) { 2230 C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control()); 2231 ex_ctl = ekit.control(); 2232 } 2233 if (callprojs->catchall_memproj != nullptr) { 2234 Node* ex_mem = ekit.reset_memory(); 2235 C->gvn_replace_by(callprojs->catchall_memproj, ex_mem); 2236 add_mergemem_users_to_worklist(wl, ex_mem); 2237 } 2238 if (callprojs->catchall_ioproj != nullptr) { 2239 C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o()); 2240 } 2241 2242 // Replace the old exception object with the newly created one 2243 if (callprojs->exobj != nullptr) { 2244 C->gvn_replace_by(callprojs->exobj, ex_oop); 2245 } 2246 } 2247 2248 // Disconnect the call from the graph 2249 call->disconnect_inputs(C); 2250 C->gvn_replace_by(call, C->top()); 2251 2252 // Clean up any MergeMems that feed other MergeMems since the 2253 // optimizer doesn't like that. 2254 while (wl.size() > 0) { 2255 _gvn.transform(wl.pop()); 2256 } 2257 2258 if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2259 replaced_nodes.apply(C, final_ctl); 2260 } 2261 if (!ex_ctl->is_top() && do_replaced_nodes) { 2262 replaced_nodes_exception.apply(C, ex_ctl); 2263 } 2264 } 2265 2266 2267 //------------------------------increment_counter------------------------------ 2268 // for statistics: increment a VM counter by 1 2269 2270 void GraphKit::increment_counter(address counter_addr) { 2271 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2272 increment_counter(adr1); 2273 } 2274 2275 void GraphKit::increment_counter(Node* counter_addr) { 2276 Node* ctrl = control(); 2277 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered); 2278 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2279 store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered); 2280 } 2281 2282 2283 //------------------------------uncommon_trap---------------------------------- 2284 // Bail out to the interpreter in mid-method. Implemented by calling the 2285 // uncommon_trap blob. This helper function inserts a runtime call with the 2286 // right debug info. 2287 Node* GraphKit::uncommon_trap(int trap_request, 2288 ciKlass* klass, const char* comment, 2289 bool must_throw, 2290 bool keep_exact_action) { 2291 if (failing_internal()) { 2292 stop(); 2293 } 2294 if (stopped()) return nullptr; // trap reachable? 2295 2296 // Note: If ProfileTraps is true, and if a deopt. actually 2297 // occurs here, the runtime will make sure an MDO exists. There is 2298 // no need to call method()->ensure_method_data() at this point. 2299 2300 // Set the stack pointer to the right value for reexecution: 2301 set_sp(reexecute_sp()); 2302 2303 #ifdef ASSERT 2304 if (!must_throw) { 2305 // Make sure the stack has at least enough depth to execute 2306 // the current bytecode. 2307 int inputs, ignored_depth; 2308 if (compute_stack_effects(inputs, ignored_depth)) { 2309 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2310 Bytecodes::name(java_bc()), sp(), inputs); 2311 } 2312 } 2313 #endif 2314 2315 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2316 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2317 2318 switch (action) { 2319 case Deoptimization::Action_maybe_recompile: 2320 case Deoptimization::Action_reinterpret: 2321 // Temporary fix for 6529811 to allow virtual calls to be sure they 2322 // get the chance to go from mono->bi->mega 2323 if (!keep_exact_action && 2324 Deoptimization::trap_request_index(trap_request) < 0 && 2325 too_many_recompiles(reason)) { 2326 // This BCI is causing too many recompilations. 2327 if (C->log() != nullptr) { 2328 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2329 Deoptimization::trap_reason_name(reason), 2330 Deoptimization::trap_action_name(action)); 2331 } 2332 action = Deoptimization::Action_none; 2333 trap_request = Deoptimization::make_trap_request(reason, action); 2334 } else { 2335 C->set_trap_can_recompile(true); 2336 } 2337 break; 2338 case Deoptimization::Action_make_not_entrant: 2339 C->set_trap_can_recompile(true); 2340 break; 2341 case Deoptimization::Action_none: 2342 case Deoptimization::Action_make_not_compilable: 2343 break; 2344 default: 2345 #ifdef ASSERT 2346 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2347 #endif 2348 break; 2349 } 2350 2351 if (TraceOptoParse) { 2352 char buf[100]; 2353 tty->print_cr("Uncommon trap %s at bci:%d", 2354 Deoptimization::format_trap_request(buf, sizeof(buf), 2355 trap_request), bci()); 2356 } 2357 2358 CompileLog* log = C->log(); 2359 if (log != nullptr) { 2360 int kid = (klass == nullptr)? -1: log->identify(klass); 2361 log->begin_elem("uncommon_trap bci='%d'", bci()); 2362 char buf[100]; 2363 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2364 trap_request)); 2365 if (kid >= 0) log->print(" klass='%d'", kid); 2366 if (comment != nullptr) log->print(" comment='%s'", comment); 2367 log->end_elem(); 2368 } 2369 2370 // Make sure any guarding test views this path as very unlikely 2371 Node *i0 = control()->in(0); 2372 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2373 IfNode *iff = i0->as_If(); 2374 float f = iff->_prob; // Get prob 2375 if (control()->Opcode() == Op_IfTrue) { 2376 if (f > PROB_UNLIKELY_MAG(4)) 2377 iff->_prob = PROB_MIN; 2378 } else { 2379 if (f < PROB_LIKELY_MAG(4)) 2380 iff->_prob = PROB_MAX; 2381 } 2382 } 2383 2384 // Clear out dead values from the debug info. 2385 kill_dead_locals(); 2386 2387 // Now insert the uncommon trap subroutine call 2388 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2389 const TypePtr* no_memory_effects = nullptr; 2390 // Pass the index of the class to be loaded 2391 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2392 (must_throw ? RC_MUST_THROW : 0), 2393 OptoRuntime::uncommon_trap_Type(), 2394 call_addr, "uncommon_trap", no_memory_effects, 2395 intcon(trap_request)); 2396 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2397 "must extract request correctly from the graph"); 2398 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2399 2400 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2401 // The debug info is the only real input to this call. 2402 2403 // Halt-and-catch fire here. The above call should never return! 2404 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2405 PRODUCT_ONLY(COMMA /*reachable*/false)); 2406 _gvn.set_type_bottom(halt); 2407 root()->add_req(halt); 2408 2409 stop_and_kill_map(); 2410 return call; 2411 } 2412 2413 2414 //--------------------------just_allocated_object------------------------------ 2415 // Report the object that was just allocated. 2416 // It must be the case that there are no intervening safepoints. 2417 // We use this to determine if an object is so "fresh" that 2418 // it does not require card marks. 2419 Node* GraphKit::just_allocated_object(Node* current_control) { 2420 Node* ctrl = current_control; 2421 // Object::<init> is invoked after allocation, most of invoke nodes 2422 // will be reduced, but a region node is kept in parse time, we check 2423 // the pattern and skip the region node if it degraded to a copy. 2424 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2425 ctrl->as_Region()->is_copy()) { 2426 ctrl = ctrl->as_Region()->is_copy(); 2427 } 2428 if (C->recent_alloc_ctl() == ctrl) { 2429 return C->recent_alloc_obj(); 2430 } 2431 return nullptr; 2432 } 2433 2434 2435 /** 2436 * Record profiling data exact_kls for Node n with the type system so 2437 * that it can propagate it (speculation) 2438 * 2439 * @param n node that the type applies to 2440 * @param exact_kls type from profiling 2441 * @param maybe_null did profiling see null? 2442 * 2443 * @return node with improved type 2444 */ 2445 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2446 const Type* current_type = _gvn.type(n); 2447 assert(UseTypeSpeculation, "type speculation must be on"); 2448 2449 const TypePtr* speculative = current_type->speculative(); 2450 2451 // Should the klass from the profile be recorded in the speculative type? 2452 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2453 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2454 const TypeOopPtr* xtype = tklass->as_instance_type(); 2455 assert(xtype->klass_is_exact(), "Should be exact"); 2456 // Any reason to believe n is not null (from this profiling or a previous one)? 2457 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2458 const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2459 // record the new speculative type's depth 2460 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2461 speculative = speculative->with_inline_depth(jvms()->depth()); 2462 } else if (current_type->would_improve_ptr(ptr_kind)) { 2463 // Profiling report that null was never seen so we can change the 2464 // speculative type to non null ptr. 2465 if (ptr_kind == ProfileAlwaysNull) { 2466 speculative = TypePtr::NULL_PTR; 2467 } else { 2468 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2469 const TypePtr* ptr = TypePtr::NOTNULL; 2470 if (speculative != nullptr) { 2471 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2472 } else { 2473 speculative = ptr; 2474 } 2475 } 2476 } 2477 2478 if (speculative != current_type->speculative()) { 2479 // Build a type with a speculative type (what we think we know 2480 // about the type but will need a guard when we use it) 2481 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); 2482 // We're changing the type, we need a new CheckCast node to carry 2483 // the new type. The new type depends on the control: what 2484 // profiling tells us is only valid from here as far as we can 2485 // tell. 2486 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2487 cast = _gvn.transform(cast); 2488 replace_in_map(n, cast); 2489 n = cast; 2490 } 2491 2492 return n; 2493 } 2494 2495 /** 2496 * Record profiling data from receiver profiling at an invoke with the 2497 * type system so that it can propagate it (speculation) 2498 * 2499 * @param n receiver node 2500 * 2501 * @return node with improved type 2502 */ 2503 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2504 if (!UseTypeSpeculation) { 2505 return n; 2506 } 2507 ciKlass* exact_kls = profile_has_unique_klass(); 2508 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2509 if ((java_bc() == Bytecodes::_checkcast || 2510 java_bc() == Bytecodes::_instanceof || 2511 java_bc() == Bytecodes::_aastore) && 2512 method()->method_data()->is_mature()) { 2513 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2514 if (data != nullptr) { 2515 if (java_bc() == Bytecodes::_aastore) { 2516 ciKlass* array_type = nullptr; 2517 ciKlass* element_type = nullptr; 2518 ProfilePtrKind element_ptr = ProfileMaybeNull; 2519 bool flat_array = true; 2520 bool null_free_array = true; 2521 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 2522 exact_kls = element_type; 2523 ptr_kind = element_ptr; 2524 } else { 2525 if (!data->as_BitData()->null_seen()) { 2526 ptr_kind = ProfileNeverNull; 2527 } else { 2528 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2529 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2530 uint i = 0; 2531 for (; i < call->row_limit(); i++) { 2532 ciKlass* receiver = call->receiver(i); 2533 if (receiver != nullptr) { 2534 break; 2535 } 2536 } 2537 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2538 } 2539 } 2540 } 2541 } 2542 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2543 } 2544 2545 /** 2546 * Record profiling data from argument profiling at an invoke with the 2547 * type system so that it can propagate it (speculation) 2548 * 2549 * @param dest_method target method for the call 2550 * @param bc what invoke bytecode is this? 2551 */ 2552 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2553 if (!UseTypeSpeculation) { 2554 return; 2555 } 2556 const TypeFunc* tf = TypeFunc::make(dest_method); 2557 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2558 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2559 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2560 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2561 if (is_reference_type(targ->basic_type())) { 2562 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2563 ciKlass* better_type = nullptr; 2564 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2565 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2566 } 2567 i++; 2568 } 2569 } 2570 } 2571 2572 /** 2573 * Record profiling data from parameter profiling at an invoke with 2574 * the type system so that it can propagate it (speculation) 2575 */ 2576 void GraphKit::record_profiled_parameters_for_speculation() { 2577 if (!UseTypeSpeculation) { 2578 return; 2579 } 2580 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2581 if (_gvn.type(local(i))->isa_oopptr()) { 2582 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2583 ciKlass* better_type = nullptr; 2584 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2585 record_profile_for_speculation(local(i), better_type, ptr_kind); 2586 } 2587 j++; 2588 } 2589 } 2590 } 2591 2592 /** 2593 * Record profiling data from return value profiling at an invoke with 2594 * the type system so that it can propagate it (speculation) 2595 */ 2596 void GraphKit::record_profiled_return_for_speculation() { 2597 if (!UseTypeSpeculation) { 2598 return; 2599 } 2600 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2601 ciKlass* better_type = nullptr; 2602 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2603 // If profiling reports a single type for the return value, 2604 // feed it to the type system so it can propagate it as a 2605 // speculative type 2606 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2607 } 2608 } 2609 2610 2611 //============================================================================= 2612 // Generate a fast path/slow path idiom. Graph looks like: 2613 // [foo] indicates that 'foo' is a parameter 2614 // 2615 // [in] null 2616 // \ / 2617 // CmpP 2618 // Bool ne 2619 // If 2620 // / \ 2621 // True False-<2> 2622 // / | 2623 // / cast_not_null 2624 // Load | | ^ 2625 // [fast_test] | | 2626 // gvn to opt_test | | 2627 // / \ | <1> 2628 // True False | 2629 // | \\ | 2630 // [slow_call] \[fast_result] 2631 // Ctl Val \ \ 2632 // | \ \ 2633 // Catch <1> \ \ 2634 // / \ ^ \ \ 2635 // Ex No_Ex | \ \ 2636 // | \ \ | \ <2> \ 2637 // ... \ [slow_res] | | \ [null_result] 2638 // \ \--+--+--- | | 2639 // \ | / \ | / 2640 // --------Region Phi 2641 // 2642 //============================================================================= 2643 // Code is structured as a series of driver functions all called 'do_XXX' that 2644 // call a set of helper functions. Helper functions first, then drivers. 2645 2646 //------------------------------null_check_oop--------------------------------- 2647 // Null check oop. Set null-path control into Region in slot 3. 2648 // Make a cast-not-nullness use the other not-null control. Return cast. 2649 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2650 bool never_see_null, 2651 bool safe_for_replace, 2652 bool speculative) { 2653 // Initial null check taken path 2654 (*null_control) = top(); 2655 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2656 2657 // Generate uncommon_trap: 2658 if (never_see_null && (*null_control) != top()) { 2659 // If we see an unexpected null at a check-cast we record it and force a 2660 // recompile; the offending check-cast will be compiled to handle nulls. 2661 // If we see more than one offending BCI, then all checkcasts in the 2662 // method will be compiled to handle nulls. 2663 PreserveJVMState pjvms(this); 2664 set_control(*null_control); 2665 replace_in_map(value, null()); 2666 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2667 uncommon_trap(reason, 2668 Deoptimization::Action_make_not_entrant); 2669 (*null_control) = top(); // null path is dead 2670 } 2671 if ((*null_control) == top() && safe_for_replace) { 2672 replace_in_map(value, cast); 2673 } 2674 2675 // Cast away null-ness on the result 2676 return cast; 2677 } 2678 2679 //------------------------------opt_iff---------------------------------------- 2680 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2681 // Return slow-path control. 2682 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2683 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2684 2685 // Fast path taken; set region slot 2 2686 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2687 region->init_req(2,fast_taken); // Capture fast-control 2688 2689 // Fast path not-taken, i.e. slow path 2690 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2691 return slow_taken; 2692 } 2693 2694 //-----------------------------make_runtime_call------------------------------- 2695 Node* GraphKit::make_runtime_call(int flags, 2696 const TypeFunc* call_type, address call_addr, 2697 const char* call_name, 2698 const TypePtr* adr_type, 2699 // The following parms are all optional. 2700 // The first null ends the list. 2701 Node* parm0, Node* parm1, 2702 Node* parm2, Node* parm3, 2703 Node* parm4, Node* parm5, 2704 Node* parm6, Node* parm7) { 2705 assert(call_addr != nullptr, "must not call null targets"); 2706 2707 // Slow-path call 2708 bool is_leaf = !(flags & RC_NO_LEAF); 2709 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2710 if (call_name == nullptr) { 2711 assert(!is_leaf, "must supply name for leaf"); 2712 call_name = OptoRuntime::stub_name(call_addr); 2713 } 2714 CallNode* call; 2715 if (!is_leaf) { 2716 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2717 } else if (flags & RC_NO_FP) { 2718 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2719 } else if (flags & RC_VECTOR){ 2720 uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2721 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2722 } else { 2723 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2724 } 2725 2726 // The following is similar to set_edges_for_java_call, 2727 // except that the memory effects of the call are restricted to AliasIdxRaw. 2728 2729 // Slow path call has no side-effects, uses few values 2730 bool wide_in = !(flags & RC_NARROW_MEM); 2731 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2732 2733 Node* prev_mem = nullptr; 2734 if (wide_in) { 2735 prev_mem = set_predefined_input_for_runtime_call(call); 2736 } else { 2737 assert(!wide_out, "narrow in => narrow out"); 2738 Node* narrow_mem = memory(adr_type); 2739 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2740 } 2741 2742 // Hook each parm in order. Stop looking at the first null. 2743 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2744 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2745 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2746 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2747 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2748 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2749 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2750 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2751 /* close each nested if ===> */ } } } } } } } } 2752 assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms"); 2753 2754 if (!is_leaf) { 2755 // Non-leaves can block and take safepoints: 2756 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2757 } 2758 // Non-leaves can throw exceptions: 2759 if (has_io) { 2760 call->set_req(TypeFunc::I_O, i_o()); 2761 } 2762 2763 if (flags & RC_UNCOMMON) { 2764 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2765 // (An "if" probability corresponds roughly to an unconditional count. 2766 // Sort of.) 2767 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2768 } 2769 2770 Node* c = _gvn.transform(call); 2771 assert(c == call, "cannot disappear"); 2772 2773 if (wide_out) { 2774 // Slow path call has full side-effects. 2775 set_predefined_output_for_runtime_call(call); 2776 } else { 2777 // Slow path call has few side-effects, and/or sets few values. 2778 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2779 } 2780 2781 if (has_io) { 2782 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2783 } 2784 return call; 2785 2786 } 2787 2788 // i2b 2789 Node* GraphKit::sign_extend_byte(Node* in) { 2790 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2791 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2792 } 2793 2794 // i2s 2795 Node* GraphKit::sign_extend_short(Node* in) { 2796 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2797 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2798 } 2799 2800 2801 //------------------------------merge_memory----------------------------------- 2802 // Merge memory from one path into the current memory state. 2803 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2804 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2805 Node* old_slice = mms.force_memory(); 2806 Node* new_slice = mms.memory2(); 2807 if (old_slice != new_slice) { 2808 PhiNode* phi; 2809 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2810 if (mms.is_empty()) { 2811 // clone base memory Phi's inputs for this memory slice 2812 assert(old_slice == mms.base_memory(), "sanity"); 2813 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2814 _gvn.set_type(phi, Type::MEMORY); 2815 for (uint i = 1; i < phi->req(); i++) { 2816 phi->init_req(i, old_slice->in(i)); 2817 } 2818 } else { 2819 phi = old_slice->as_Phi(); // Phi was generated already 2820 } 2821 } else { 2822 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2823 _gvn.set_type(phi, Type::MEMORY); 2824 } 2825 phi->set_req(new_path, new_slice); 2826 mms.set_memory(phi); 2827 } 2828 } 2829 } 2830 2831 //------------------------------make_slow_call_ex------------------------------ 2832 // Make the exception handler hookups for the slow call 2833 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2834 if (stopped()) return; 2835 2836 // Make a catch node with just two handlers: fall-through and catch-all 2837 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2838 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2839 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2840 _gvn.set_type_bottom(norm); 2841 C->record_for_igvn(norm); 2842 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2843 2844 { PreserveJVMState pjvms(this); 2845 set_control(excp); 2846 set_i_o(i_o); 2847 2848 if (excp != top()) { 2849 if (deoptimize) { 2850 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2851 uncommon_trap(Deoptimization::Reason_unhandled, 2852 Deoptimization::Action_none); 2853 } else { 2854 // Create an exception state also. 2855 // Use an exact type if the caller has a specific exception. 2856 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2857 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2858 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2859 } 2860 } 2861 } 2862 2863 // Get the no-exception control from the CatchNode. 2864 set_control(norm); 2865 } 2866 2867 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2868 Node* cmp = nullptr; 2869 switch(bt) { 2870 case T_INT: cmp = new CmpINode(in1, in2); break; 2871 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2872 default: fatal("unexpected comparison type %s", type2name(bt)); 2873 } 2874 cmp = gvn.transform(cmp); 2875 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2876 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2877 gvn.transform(iff); 2878 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2879 return iff; 2880 } 2881 2882 //-------------------------------gen_subtype_check----------------------------- 2883 // Generate a subtyping check. Takes as input the subtype and supertype. 2884 // Returns 2 values: sets the default control() to the true path and returns 2885 // the false path. Only reads invariant memory; sets no (visible) memory. 2886 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2887 // but that's not exposed to the optimizer. This call also doesn't take in an 2888 // Object; if you wish to check an Object you need to load the Object's class 2889 // prior to coming here. 2890 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2891 ciMethod* method, int bci) { 2892 Compile* C = gvn.C; 2893 if ((*ctrl)->is_top()) { 2894 return C->top(); 2895 } 2896 2897 const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr(); 2898 const TypeAryKlassPtr* ary_klass_t = klass_ptr_type->isa_aryklassptr(); 2899 Node* vm_superklass = superklass; 2900 // TODO 8366668 Compute the VM type here for when we do a direct pointer comparison 2901 if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) { 2902 ary_klass_t = ary_klass_t->get_vm_type(); 2903 vm_superklass = gvn.makecon(ary_klass_t); 2904 } 2905 2906 // Fast check for identical types, perhaps identical constants. 2907 // The types can even be identical non-constants, in cases 2908 // involving Array.newInstance, Object.clone, etc. 2909 if (subklass == superklass) 2910 return C->top(); // false path is dead; no test needed. 2911 2912 if (gvn.type(superklass)->singleton()) { 2913 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2914 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2915 2916 // In the common case of an exact superklass, try to fold up the 2917 // test before generating code. You may ask, why not just generate 2918 // the code and then let it fold up? The answer is that the generated 2919 // code will necessarily include null checks, which do not always 2920 // completely fold away. If they are also needless, then they turn 2921 // into a performance loss. Example: 2922 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2923 // Here, the type of 'fa' is often exact, so the store check 2924 // of fa[1]=x will fold up, without testing the nullness of x. 2925 // 2926 // At macro expansion, we would have already folded the SubTypeCheckNode 2927 // being expanded here because we always perform the static sub type 2928 // check in SubTypeCheckNode::sub() regardless of whether 2929 // StressReflectiveCode is set or not. We can therefore skip this 2930 // static check when StressReflectiveCode is on. 2931 switch (C->static_subtype_check(superk, subk)) { 2932 case Compile::SSC_always_false: 2933 { 2934 Node* always_fail = *ctrl; 2935 *ctrl = gvn.C->top(); 2936 return always_fail; 2937 } 2938 case Compile::SSC_always_true: 2939 return C->top(); 2940 case Compile::SSC_easy_test: 2941 { 2942 // Just do a direct pointer compare and be done. 2943 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2944 *ctrl = gvn.transform(new IfTrueNode(iff)); 2945 return gvn.transform(new IfFalseNode(iff)); 2946 } 2947 case Compile::SSC_full_test: 2948 break; 2949 default: 2950 ShouldNotReachHere(); 2951 } 2952 } 2953 2954 // %%% Possible further optimization: Even if the superklass is not exact, 2955 // if the subklass is the unique subtype of the superklass, the check 2956 // will always succeed. We could leave a dependency behind to ensure this. 2957 2958 // First load the super-klass's check-offset 2959 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2960 Node* m = C->immutable_memory(); 2961 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2962 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2963 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2964 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2965 // TODO 8366668 Re-enable. This breaks test/hotspot/jtreg/compiler/c2/irTests/ProfileAtTypeCheck.java 2966 bool might_be_cache = true;//(chk_off_con == cacheoff_con); 2967 2968 // Load from the sub-klass's super-class display list, or a 1-word cache of 2969 // the secondary superclass list, or a failing value with a sentinel offset 2970 // if the super-klass is an interface or exceptionally deep in the Java 2971 // hierarchy and we have to scan the secondary superclass list the hard way. 2972 // Worst-case type is a little odd: null is allowed as a result (usually 2973 // klass loads can never produce a null). 2974 Node *chk_off_X = chk_off; 2975 #ifdef _LP64 2976 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2977 #endif 2978 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2979 // For some types like interfaces the following loadKlass is from a 1-word 2980 // cache which is mutable so can't use immutable memory. Other 2981 // types load from the super-class display table which is immutable. 2982 Node *kmem = C->immutable_memory(); 2983 // secondary_super_cache is not immutable but can be treated as such because: 2984 // - no ideal node writes to it in a way that could cause an 2985 // incorrect/missed optimization of the following Load. 2986 // - it's a cache so, worse case, not reading the latest value 2987 // wouldn't cause incorrect execution 2988 if (might_be_cache && mem != nullptr) { 2989 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2990 } 2991 Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2992 2993 // Compile speed common case: ARE a subtype and we canNOT fail 2994 if (superklass == nkls) { 2995 return C->top(); // false path is dead; no test needed. 2996 } 2997 2998 // Gather the various success & failures here 2999 RegionNode* r_not_subtype = new RegionNode(3); 3000 gvn.record_for_igvn(r_not_subtype); 3001 RegionNode* r_ok_subtype = new RegionNode(4); 3002 gvn.record_for_igvn(r_ok_subtype); 3003 3004 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 3005 // SubTypeCheck node 3006 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 3007 ciCallProfile profile = method->call_profile_at_bci(bci); 3008 float total_prob = 0; 3009 for (int i = 0; profile.has_receiver(i); ++i) { 3010 float prob = profile.receiver_prob(i); 3011 total_prob += prob; 3012 } 3013 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 3014 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 3015 for (int i = 0; profile.has_receiver(i); ++i) { 3016 ciKlass* klass = profile.receiver(i); 3017 // TODO 8366668 Do we need adjustments here?? 3018 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 3019 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 3020 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 3021 continue; 3022 } 3023 float prob = profile.receiver_prob(i); 3024 ConNode* klass_node = gvn.makecon(klass_t); 3025 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 3026 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 3027 3028 if (result == Compile::SSC_always_true) { 3029 r_ok_subtype->add_req(iftrue); 3030 } else { 3031 assert(result == Compile::SSC_always_false, ""); 3032 r_not_subtype->add_req(iftrue); 3033 } 3034 *ctrl = gvn.transform(new IfFalseNode(iff)); 3035 } 3036 } 3037 } 3038 3039 // See if we get an immediate positive hit. Happens roughly 83% of the 3040 // time. Test to see if the value loaded just previously from the subklass 3041 // is exactly the superklass. 3042 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 3043 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 3044 *ctrl = gvn.transform(new IfFalseNode(iff1)); 3045 3046 // Compile speed common case: Check for being deterministic right now. If 3047 // chk_off is a constant and not equal to cacheoff then we are NOT a 3048 // subklass. In this case we need exactly the 1 test above and we can 3049 // return those results immediately. 3050 if (!might_be_cache) { 3051 Node* not_subtype_ctrl = *ctrl; 3052 *ctrl = iftrue1; // We need exactly the 1 test above 3053 PhaseIterGVN* igvn = gvn.is_IterGVN(); 3054 if (igvn != nullptr) { 3055 igvn->remove_globally_dead_node(r_ok_subtype); 3056 igvn->remove_globally_dead_node(r_not_subtype); 3057 } 3058 return not_subtype_ctrl; 3059 } 3060 3061 r_ok_subtype->init_req(1, iftrue1); 3062 3063 // Check for immediate negative hit. Happens roughly 11% of the time (which 3064 // is roughly 63% of the remaining cases). Test to see if the loaded 3065 // check-offset points into the subklass display list or the 1-element 3066 // cache. If it points to the display (and NOT the cache) and the display 3067 // missed then it's not a subtype. 3068 // TODO 8366668 Re-enable 3069 /* 3070 Node *cacheoff = gvn.intcon(cacheoff_con); 3071 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 3072 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 3073 *ctrl = gvn.transform(new IfFalseNode(iff2)); 3074 */ 3075 // Check for self. Very rare to get here, but it is taken 1/3 the time. 3076 // No performance impact (too rare) but allows sharing of secondary arrays 3077 // which has some footprint reduction. 3078 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 3079 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 3080 *ctrl = gvn.transform(new IfFalseNode(iff3)); 3081 3082 // -- Roads not taken here: -- 3083 // We could also have chosen to perform the self-check at the beginning 3084 // of this code sequence, as the assembler does. This would not pay off 3085 // the same way, since the optimizer, unlike the assembler, can perform 3086 // static type analysis to fold away many successful self-checks. 3087 // Non-foldable self checks work better here in second position, because 3088 // the initial primary superclass check subsumes a self-check for most 3089 // types. An exception would be a secondary type like array-of-interface, 3090 // which does not appear in its own primary supertype display. 3091 // Finally, we could have chosen to move the self-check into the 3092 // PartialSubtypeCheckNode, and from there out-of-line in a platform 3093 // dependent manner. But it is worthwhile to have the check here, 3094 // where it can be perhaps be optimized. The cost in code space is 3095 // small (register compare, branch). 3096 3097 // Now do a linear scan of the secondary super-klass array. Again, no real 3098 // performance impact (too rare) but it's gotta be done. 3099 // Since the code is rarely used, there is no penalty for moving it 3100 // out of line, and it can only improve I-cache density. 3101 // The decision to inline or out-of-line this final check is platform 3102 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 3103 Node* psc = gvn.transform( 3104 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 3105 3106 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 3107 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 3108 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 3109 3110 // Return false path; set default control to true path. 3111 *ctrl = gvn.transform(r_ok_subtype); 3112 return gvn.transform(r_not_subtype); 3113 } 3114 3115 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 3116 const Type* sub_t = _gvn.type(obj_or_subklass); 3117 if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) { 3118 sub_t = TypeKlassPtr::make(sub_t->inline_klass()); 3119 obj_or_subklass = makecon(sub_t); 3120 } 3121 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 3122 if (expand_subtype_check) { 3123 MergeMemNode* mem = merged_memory(); 3124 Node* ctrl = control(); 3125 Node* subklass = obj_or_subklass; 3126 if (!sub_t->isa_klassptr()) { 3127 subklass = load_object_klass(obj_or_subklass); 3128 } 3129 3130 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 3131 set_control(ctrl); 3132 return n; 3133 } 3134 3135 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 3136 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 3137 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 3138 set_control(_gvn.transform(new IfTrueNode(iff))); 3139 return _gvn.transform(new IfFalseNode(iff)); 3140 } 3141 3142 // Profile-driven exact type check: 3143 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 3144 float prob, Node* *casted_receiver) { 3145 assert(!klass->is_interface(), "no exact type check on interfaces"); 3146 Node* fail = top(); 3147 const Type* rec_t = _gvn.type(receiver); 3148 if (rec_t->is_inlinetypeptr()) { 3149 if (klass->equals(rec_t->inline_klass())) { 3150 (*casted_receiver) = receiver; // Always passes 3151 } else { 3152 (*casted_receiver) = top(); // Always fails 3153 fail = control(); 3154 set_control(top()); 3155 } 3156 return fail; 3157 } 3158 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 3159 const TypeAryKlassPtr* ary_klass_t = tklass->isa_aryklassptr(); 3160 // TODO 8366668 Compute the VM type 3161 if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) { 3162 tklass = ary_klass_t->get_vm_type(); 3163 } 3164 Node* recv_klass = load_object_klass(receiver); 3165 fail = type_check(recv_klass, tklass, prob); 3166 3167 if (!stopped()) { 3168 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3169 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 3170 assert(recv_xtype->klass_is_exact(), ""); 3171 3172 if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts 3173 // Subsume downstream occurrences of receiver with a cast to 3174 // recv_xtype, since now we know what the type will be. 3175 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 3176 Node* res = _gvn.transform(cast); 3177 if (recv_xtype->is_inlinetypeptr()) { 3178 assert(!gvn().type(res)->maybe_null(), "receiver should never be null"); 3179 res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass()); 3180 } 3181 (*casted_receiver) = res; 3182 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 3183 // (User must make the replace_in_map call.) 3184 } 3185 } 3186 3187 return fail; 3188 } 3189 3190 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass, 3191 float prob) { 3192 Node* want_klass = makecon(tklass); 3193 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 3194 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3195 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 3196 set_control(_gvn.transform(new IfTrueNode (iff))); 3197 Node* fail = _gvn.transform(new IfFalseNode(iff)); 3198 return fail; 3199 } 3200 3201 //------------------------------subtype_check_receiver------------------------- 3202 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 3203 Node** casted_receiver) { 3204 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 3205 Node* want_klass = makecon(tklass); 3206 3207 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 3208 3209 // Ignore interface type information until interface types are properly tracked. 3210 if (!stopped() && !klass->is_interface()) { 3211 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3212 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 3213 if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts 3214 Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type)); 3215 if (recv_type->is_inlinetypeptr()) { 3216 cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass()); 3217 } 3218 (*casted_receiver) = cast; 3219 } 3220 } 3221 3222 return slow_ctl; 3223 } 3224 3225 //------------------------------seems_never_null------------------------------- 3226 // Use null_seen information if it is available from the profile. 3227 // If we see an unexpected null at a type check we record it and force a 3228 // recompile; the offending check will be recompiled to handle nulls. 3229 // If we see several offending BCIs, then all checks in the 3230 // method will be recompiled. 3231 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 3232 speculating = !_gvn.type(obj)->speculative_maybe_null(); 3233 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 3234 if (UncommonNullCast // Cutout for this technique 3235 && obj != null() // And not the -Xcomp stupid case? 3236 && !too_many_traps(reason) 3237 ) { 3238 if (speculating) { 3239 return true; 3240 } 3241 if (data == nullptr) 3242 // Edge case: no mature data. Be optimistic here. 3243 return true; 3244 // If the profile has not seen a null, assume it won't happen. 3245 assert(java_bc() == Bytecodes::_checkcast || 3246 java_bc() == Bytecodes::_instanceof || 3247 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3248 return !data->as_BitData()->null_seen(); 3249 } 3250 speculating = false; 3251 return false; 3252 } 3253 3254 void GraphKit::guard_klass_being_initialized(Node* klass) { 3255 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3256 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3257 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3258 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3259 T_BYTE, MemNode::acquire); 3260 init_state = _gvn.transform(init_state); 3261 3262 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3263 3264 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3265 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3266 3267 { BuildCutout unless(this, tst, PROB_MAX); 3268 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3269 } 3270 } 3271 3272 void GraphKit::guard_init_thread(Node* klass) { 3273 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3274 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3275 3276 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3277 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3278 T_ADDRESS, MemNode::unordered); 3279 init_thread = _gvn.transform(init_thread); 3280 3281 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3282 3283 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3284 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3285 3286 { BuildCutout unless(this, tst, PROB_MAX); 3287 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3288 } 3289 } 3290 3291 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3292 if (ik->is_being_initialized()) { 3293 if (C->needs_clinit_barrier(ik, context)) { 3294 Node* klass = makecon(TypeKlassPtr::make(ik)); 3295 guard_klass_being_initialized(klass); 3296 guard_init_thread(klass); 3297 insert_mem_bar(Op_MemBarCPUOrder); 3298 } 3299 } else if (ik->is_initialized()) { 3300 return; // no barrier needed 3301 } else { 3302 uncommon_trap(Deoptimization::Reason_uninitialized, 3303 Deoptimization::Action_reinterpret, 3304 nullptr); 3305 } 3306 } 3307 3308 //------------------------maybe_cast_profiled_receiver------------------------- 3309 // If the profile has seen exactly one type, narrow to exactly that type. 3310 // Subsequent type checks will always fold up. 3311 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3312 const TypeKlassPtr* require_klass, 3313 ciKlass* spec_klass, 3314 bool safe_for_replace) { 3315 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3316 3317 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3318 3319 // Make sure we haven't already deoptimized from this tactic. 3320 if (too_many_traps_or_recompiles(reason)) 3321 return nullptr; 3322 3323 // (No, this isn't a call, but it's enough like a virtual call 3324 // to use the same ciMethod accessor to get the profile info...) 3325 // If we have a speculative type use it instead of profiling (which 3326 // may not help us) 3327 ciKlass* exact_kls = spec_klass; 3328 if (exact_kls == nullptr) { 3329 if (java_bc() == Bytecodes::_aastore) { 3330 ciKlass* array_type = nullptr; 3331 ciKlass* element_type = nullptr; 3332 ProfilePtrKind element_ptr = ProfileMaybeNull; 3333 bool flat_array = true; 3334 bool null_free_array = true; 3335 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 3336 exact_kls = element_type; 3337 } else { 3338 exact_kls = profile_has_unique_klass(); 3339 } 3340 } 3341 if (exact_kls != nullptr) {// no cast failures here 3342 if (require_klass == nullptr || 3343 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3344 // If we narrow the type to match what the type profile sees or 3345 // the speculative type, we can then remove the rest of the 3346 // cast. 3347 // This is a win, even if the exact_kls is very specific, 3348 // because downstream operations, such as method calls, 3349 // will often benefit from the sharper type. 3350 Node* exact_obj = not_null_obj; // will get updated in place... 3351 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3352 &exact_obj); 3353 { PreserveJVMState pjvms(this); 3354 set_control(slow_ctl); 3355 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3356 } 3357 if (safe_for_replace) { 3358 replace_in_map(not_null_obj, exact_obj); 3359 } 3360 return exact_obj; 3361 } 3362 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3363 } 3364 3365 return nullptr; 3366 } 3367 3368 /** 3369 * Cast obj to type and emit guard unless we had too many traps here 3370 * already 3371 * 3372 * @param obj node being casted 3373 * @param type type to cast the node to 3374 * @param not_null true if we know node cannot be null 3375 */ 3376 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3377 ciKlass* type, 3378 bool not_null) { 3379 if (stopped()) { 3380 return obj; 3381 } 3382 3383 // type is null if profiling tells us this object is always null 3384 if (type != nullptr) { 3385 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3386 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3387 3388 if (!too_many_traps_or_recompiles(null_reason) && 3389 !too_many_traps_or_recompiles(class_reason)) { 3390 Node* not_null_obj = nullptr; 3391 // not_null is true if we know the object is not null and 3392 // there's no need for a null check 3393 if (!not_null) { 3394 Node* null_ctl = top(); 3395 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3396 assert(null_ctl->is_top(), "no null control here"); 3397 } else { 3398 not_null_obj = obj; 3399 } 3400 3401 Node* exact_obj = not_null_obj; 3402 ciKlass* exact_kls = type; 3403 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3404 &exact_obj); 3405 { 3406 PreserveJVMState pjvms(this); 3407 set_control(slow_ctl); 3408 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3409 } 3410 replace_in_map(not_null_obj, exact_obj); 3411 obj = exact_obj; 3412 } 3413 } else { 3414 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3415 Node* exact_obj = null_assert(obj); 3416 replace_in_map(obj, exact_obj); 3417 obj = exact_obj; 3418 } 3419 } 3420 return obj; 3421 } 3422 3423 //-------------------------------gen_instanceof-------------------------------- 3424 // Generate an instance-of idiom. Used by both the instance-of bytecode 3425 // and the reflective instance-of call. 3426 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3427 kill_dead_locals(); // Benefit all the uncommon traps 3428 assert( !stopped(), "dead parse path should be checked in callers" ); 3429 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3430 "must check for not-null not-dead klass in callers"); 3431 3432 // Make the merge point 3433 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3434 RegionNode* region = new RegionNode(PATH_LIMIT); 3435 Node* phi = new PhiNode(region, TypeInt::BOOL); 3436 C->set_has_split_ifs(true); // Has chance for split-if optimization 3437 3438 ciProfileData* data = nullptr; 3439 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3440 data = method()->method_data()->bci_to_data(bci()); 3441 } 3442 bool speculative_not_null = false; 3443 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3444 && seems_never_null(obj, data, speculative_not_null)); 3445 3446 // Null check; get casted pointer; set region slot 3 3447 Node* null_ctl = top(); 3448 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3449 3450 // If not_null_obj is dead, only null-path is taken 3451 if (stopped()) { // Doing instance-of on a null? 3452 set_control(null_ctl); 3453 return intcon(0); 3454 } 3455 region->init_req(_null_path, null_ctl); 3456 phi ->init_req(_null_path, intcon(0)); // Set null path value 3457 if (null_ctl == top()) { 3458 // Do this eagerly, so that pattern matches like is_diamond_phi 3459 // will work even during parsing. 3460 assert(_null_path == PATH_LIMIT-1, "delete last"); 3461 region->del_req(_null_path); 3462 phi ->del_req(_null_path); 3463 } 3464 3465 // Do we know the type check always succeed? 3466 bool known_statically = false; 3467 if (_gvn.type(superklass)->singleton()) { 3468 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3469 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3470 if (subk != nullptr && subk->is_loaded()) { 3471 int static_res = C->static_subtype_check(superk, subk); 3472 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3473 } 3474 } 3475 3476 if (!known_statically) { 3477 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3478 // We may not have profiling here or it may not help us. If we 3479 // have a speculative type use it to perform an exact cast. 3480 ciKlass* spec_obj_type = obj_type->speculative_type(); 3481 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3482 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3483 if (stopped()) { // Profile disagrees with this path. 3484 set_control(null_ctl); // Null is the only remaining possibility. 3485 return intcon(0); 3486 } 3487 if (cast_obj != nullptr) { 3488 not_null_obj = cast_obj; 3489 } 3490 } 3491 } 3492 3493 // Generate the subtype check 3494 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3495 3496 // Plug in the success path to the general merge in slot 1. 3497 region->init_req(_obj_path, control()); 3498 phi ->init_req(_obj_path, intcon(1)); 3499 3500 // Plug in the failing path to the general merge in slot 2. 3501 region->init_req(_fail_path, not_subtype_ctrl); 3502 phi ->init_req(_fail_path, intcon(0)); 3503 3504 // Return final merged results 3505 set_control( _gvn.transform(region) ); 3506 record_for_igvn(region); 3507 3508 // If we know the type check always succeeds then we don't use the 3509 // profiling data at this bytecode. Don't lose it, feed it to the 3510 // type system as a speculative type. 3511 if (safe_for_replace) { 3512 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3513 replace_in_map(obj, casted_obj); 3514 } 3515 3516 return _gvn.transform(phi); 3517 } 3518 3519 //-------------------------------gen_checkcast--------------------------------- 3520 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3521 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3522 // uncommon-trap paths work. Adjust stack after this call. 3523 // If failure_control is supplied and not null, it is filled in with 3524 // the control edge for the cast failure. Otherwise, an appropriate 3525 // uncommon trap or exception is thrown. 3526 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) { 3527 kill_dead_locals(); // Benefit all the uncommon traps 3528 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3529 const Type* obj_type = _gvn.type(obj); 3530 if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) { 3531 // Special case: larval inline objects must not be scalarized. They are also generally not 3532 // allowed to participate in most operations except as the first operand of putfield, or as an 3533 // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being 3534 // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize 3535 // value objects in all other places. This special case comes from the limitation of the Java 3536 // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete 3537 // value type. We must do this first because C->static_subtype_check may do nothing when 3538 // StressReflectiveCode is set. 3539 return obj; 3540 } 3541 3542 // Else it must be a non-larval object 3543 obj = cast_to_non_larval(obj); 3544 3545 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3546 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3547 bool safe_for_replace = (failure_control == nullptr); 3548 assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer"); 3549 3550 // Fast cutout: Check the case that the cast is vacuously true. 3551 // This detects the common cases where the test will short-circuit 3552 // away completely. We do this before we perform the null check, 3553 // because if the test is going to turn into zero code, we don't 3554 // want a residual null check left around. (Causes a slowdown, 3555 // for example, in some objArray manipulations, such as a[i]=a[j].) 3556 if (improved_klass_ptr_type->singleton()) { 3557 const TypeKlassPtr* kptr = nullptr; 3558 if (obj_type->isa_oop_ptr()) { 3559 kptr = obj_type->is_oopptr()->as_klass_type(); 3560 } else if (obj->is_InlineType()) { 3561 ciInlineKlass* vk = obj_type->inline_klass(); 3562 kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0)); 3563 } 3564 3565 if (kptr != nullptr) { 3566 switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) { 3567 case Compile::SSC_always_true: 3568 // If we know the type check always succeed then we don't use 3569 // the profiling data at this bytecode. Don't lose it, feed it 3570 // to the type system as a speculative type. 3571 obj = record_profiled_receiver_for_speculation(obj); 3572 if (null_free) { 3573 assert(safe_for_replace, "must be"); 3574 obj = null_check(obj); 3575 } 3576 assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized"); 3577 return obj; 3578 case Compile::SSC_always_false: 3579 if (null_free) { 3580 assert(safe_for_replace, "must be"); 3581 obj = null_check(obj); 3582 } 3583 // It needs a null check because a null will *pass* the cast check. 3584 if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) { 3585 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3586 Deoptimization::DeoptReason reason = is_aastore ? 3587 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3588 builtin_throw(reason); 3589 return top(); 3590 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3591 return null_assert(obj); 3592 } 3593 break; // Fall through to full check 3594 default: 3595 break; 3596 } 3597 } 3598 } 3599 3600 ciProfileData* data = nullptr; 3601 if (failure_control == nullptr) { // use MDO in regular case only 3602 assert(java_bc() == Bytecodes::_aastore || 3603 java_bc() == Bytecodes::_checkcast, 3604 "interpreter profiles type checks only for these BCs"); 3605 if (method()->method_data()->is_mature()) { 3606 data = method()->method_data()->bci_to_data(bci()); 3607 } 3608 } 3609 3610 // Make the merge point 3611 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3612 RegionNode* region = new RegionNode(PATH_LIMIT); 3613 Node* phi = new PhiNode(region, toop); 3614 _gvn.set_type(region, Type::CONTROL); 3615 _gvn.set_type(phi, toop); 3616 3617 C->set_has_split_ifs(true); // Has chance for split-if optimization 3618 3619 // Use null-cast information if it is available 3620 bool speculative_not_null = false; 3621 bool never_see_null = ((failure_control == nullptr) // regular case only 3622 && seems_never_null(obj, data, speculative_not_null)); 3623 3624 if (obj->is_InlineType()) { 3625 // Re-execute if buffering during triggers deoptimization 3626 PreserveReexecuteState preexecs(this); 3627 jvms()->set_should_reexecute(true); 3628 obj = obj->as_InlineType()->buffer(this, safe_for_replace); 3629 } 3630 3631 // Null check; get casted pointer; set region slot 3 3632 Node* null_ctl = top(); 3633 Node* not_null_obj = nullptr; 3634 if (null_free) { 3635 assert(safe_for_replace, "must be"); 3636 not_null_obj = null_check(obj); 3637 } else { 3638 not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3639 } 3640 3641 // If not_null_obj is dead, only null-path is taken 3642 if (stopped()) { // Doing instance-of on a null? 3643 set_control(null_ctl); 3644 if (toop->is_inlinetypeptr()) { 3645 return InlineTypeNode::make_null(_gvn, toop->inline_klass()); 3646 } 3647 return null(); 3648 } 3649 region->init_req(_null_path, null_ctl); 3650 phi ->init_req(_null_path, null()); // Set null path value 3651 if (null_ctl == top()) { 3652 // Do this eagerly, so that pattern matches like is_diamond_phi 3653 // will work even during parsing. 3654 assert(_null_path == PATH_LIMIT-1, "delete last"); 3655 region->del_req(_null_path); 3656 phi ->del_req(_null_path); 3657 } 3658 3659 Node* cast_obj = nullptr; 3660 if (improved_klass_ptr_type->klass_is_exact()) { 3661 // The following optimization tries to statically cast the speculative type of the object 3662 // (for example obtained during profiling) to the type of the superklass and then do a 3663 // dynamic check that the type of the object is what we expect. To work correctly 3664 // for checkcast and aastore the type of superklass should be exact. 3665 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3666 // We may not have profiling here or it may not help us. If we have 3667 // a speculative type use it to perform an exact cast. 3668 ciKlass* spec_obj_type = obj_type->speculative_type(); 3669 if (spec_obj_type != nullptr || data != nullptr) { 3670 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3671 if (cast_obj != nullptr) { 3672 if (failure_control != nullptr) // failure is now impossible 3673 (*failure_control) = top(); 3674 // adjust the type of the phi to the exact klass: 3675 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3676 } 3677 } 3678 } 3679 3680 if (cast_obj == nullptr) { 3681 // Generate the subtype check 3682 Node* improved_superklass = superklass; 3683 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3684 // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up. 3685 // The other non-constant cases cannot be improved with a cast node here since they could be folded to top. 3686 // Additionally, the benefit would only be minor in non-constant cases. 3687 improved_superklass = makecon(improved_klass_ptr_type); 3688 } 3689 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3690 // Plug in success path into the merge 3691 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3692 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3693 if (failure_control == nullptr) { 3694 if (not_subtype_ctrl != top()) { // If failure is possible 3695 PreserveJVMState pjvms(this); 3696 set_control(not_subtype_ctrl); 3697 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3698 Deoptimization::DeoptReason reason = is_aastore ? 3699 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3700 builtin_throw(reason); 3701 } 3702 } else { 3703 (*failure_control) = not_subtype_ctrl; 3704 } 3705 } 3706 3707 region->init_req(_obj_path, control()); 3708 phi ->init_req(_obj_path, cast_obj); 3709 3710 // A merge of null or Casted-NotNull obj 3711 Node* res = _gvn.transform(phi); 3712 3713 // Note I do NOT always 'replace_in_map(obj,result)' here. 3714 // if( tk->klass()->can_be_primary_super() ) 3715 // This means that if I successfully store an Object into an array-of-String 3716 // I 'forget' that the Object is really now known to be a String. I have to 3717 // do this because we don't have true union types for interfaces - if I store 3718 // a Baz into an array-of-Interface and then tell the optimizer it's an 3719 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3720 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3721 // replace_in_map( obj, res ); 3722 3723 // Return final merged results 3724 set_control( _gvn.transform(region) ); 3725 record_for_igvn(region); 3726 3727 bool not_inline = !toop->can_be_inline_type(); 3728 bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array()); 3729 if (EnableValhalla && (not_inline || not_flat_in_array)) { 3730 // Check if obj has been loaded from an array 3731 obj = obj->isa_DecodeN() ? obj->in(1) : obj; 3732 Node* array = nullptr; 3733 if (obj->isa_Load()) { 3734 Node* address = obj->in(MemNode::Address); 3735 if (address->isa_AddP()) { 3736 array = address->as_AddP()->in(AddPNode::Base); 3737 } 3738 } else if (obj->is_Phi()) { 3739 Node* region = obj->in(0); 3740 // TODO make this more robust (see JDK-8231346) 3741 if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) { 3742 IfNode* iff = region->in(2)->in(0)->isa_If(); 3743 if (iff != nullptr) { 3744 iff->is_flat_array_check(&_gvn, &array); 3745 } 3746 } 3747 } 3748 if (array != nullptr) { 3749 const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr(); 3750 if (ary_t != nullptr) { 3751 if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) { 3752 // Casting array element to a non-inline-type, mark array as not null-free. 3753 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free())); 3754 replace_in_map(array, cast); 3755 array = cast; 3756 } 3757 if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) { 3758 // Casting array element to a non-flat-in-array type, mark array as not flat. 3759 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat())); 3760 replace_in_map(array, cast); 3761 array = cast; 3762 } 3763 } 3764 } 3765 } 3766 3767 if (!stopped() && !res->is_InlineType()) { 3768 res = record_profiled_receiver_for_speculation(res); 3769 if (toop->is_inlinetypeptr() && !maybe_larval) { 3770 Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass()); 3771 res = vt; 3772 if (safe_for_replace) { 3773 replace_in_map(obj, vt); 3774 replace_in_map(not_null_obj, vt); 3775 replace_in_map(res, vt); 3776 } 3777 } 3778 } 3779 return res; 3780 } 3781 3782 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) { 3783 // Load markword 3784 Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3785 Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3786 if (check_lock) { 3787 // Check if obj is locked 3788 Node* locked_bit = MakeConX(markWord::unlocked_value); 3789 locked_bit = _gvn.transform(new AndXNode(locked_bit, mark)); 3790 Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 3791 Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3792 IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN); 3793 _gvn.transform(iff); 3794 Node* locked_region = new RegionNode(3); 3795 Node* mark_phi = new PhiNode(locked_region, TypeX_X); 3796 3797 // Unlocked: Use bits from mark word 3798 locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff))); 3799 mark_phi->init_req(1, mark); 3800 3801 // Locked: Load prototype header from klass 3802 set_control(_gvn.transform(new IfFalseNode(iff))); 3803 // Make loads control dependent to make sure they are only executed if array is locked 3804 Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 3805 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 3806 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 3807 Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 3808 3809 locked_region->init_req(2, control()); 3810 mark_phi->init_req(2, proto); 3811 set_control(_gvn.transform(locked_region)); 3812 record_for_igvn(locked_region); 3813 3814 mark = mark_phi; 3815 } 3816 3817 // Now check if mark word bits are set 3818 Node* mask = MakeConX(mask_val); 3819 Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask)); 3820 record_for_igvn(masked); // Give it a chance to be optimized out by IGVN 3821 Node* cmp = _gvn.transform(new CmpXNode(masked, mask)); 3822 return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne)); 3823 } 3824 3825 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) { 3826 return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false); 3827 } 3828 3829 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) { 3830 // We can't use immutable memory here because the mark word is mutable. 3831 // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the 3832 // check is moved out of loops (mainly to enable loop unswitching). 3833 Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass)); 3834 record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN 3835 return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne)); 3836 } 3837 3838 Node* GraphKit::null_free_array_test(Node* array, bool null_free) { 3839 return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free); 3840 } 3841 3842 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) { 3843 assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat"); 3844 3845 // TODO 8350865 Add a stress flag to always access atomic if layout exists? 3846 if (!vk->has_non_atomic_layout()) { 3847 return intcon(1); // Always atomic 3848 } else if (!vk->has_atomic_layout()) { 3849 return intcon(0); // Never atomic 3850 } 3851 3852 Node* array_klass = load_object_klass(array); 3853 int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset()); 3854 Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset); 3855 Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered); 3856 Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT))); 3857 return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3858 } 3859 3860 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null 3861 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) { 3862 RegionNode* region = new RegionNode(3); 3863 Node* null_ctl = top(); 3864 null_check_oop(val, &null_ctl); 3865 if (null_ctl != top()) { 3866 PreserveJVMState pjvms(this); 3867 set_control(null_ctl); 3868 { 3869 // Deoptimize if null-free array 3870 BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX); 3871 inc_sp(nargs); 3872 uncommon_trap(Deoptimization::Reason_null_check, 3873 Deoptimization::Action_none); 3874 } 3875 region->init_req(1, control()); 3876 } 3877 region->init_req(2, control()); 3878 set_control(_gvn.transform(region)); 3879 record_for_igvn(region); 3880 if (_gvn.type(val) == TypePtr::NULL_PTR) { 3881 // Since we were just successfully storing null, the array can't be null free. 3882 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 3883 ary_t = ary_t->cast_to_not_null_free(); 3884 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 3885 if (safe_for_replace) { 3886 replace_in_map(ary, cast); 3887 } 3888 ary = cast; 3889 } 3890 return ary; 3891 } 3892 3893 //------------------------------next_monitor----------------------------------- 3894 // What number should be given to the next monitor? 3895 int GraphKit::next_monitor() { 3896 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3897 int next = current + C->sync_stack_slots(); 3898 // Keep the toplevel high water mark current: 3899 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3900 return current; 3901 } 3902 3903 //------------------------------insert_mem_bar--------------------------------- 3904 // Memory barrier to avoid floating things around 3905 // The membar serves as a pinch point between both control and all memory slices. 3906 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3907 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3908 mb->init_req(TypeFunc::Control, control()); 3909 mb->init_req(TypeFunc::Memory, reset_memory()); 3910 Node* membar = _gvn.transform(mb); 3911 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3912 set_all_memory_call(membar); 3913 return membar; 3914 } 3915 3916 //-------------------------insert_mem_bar_volatile---------------------------- 3917 // Memory barrier to avoid floating things around 3918 // The membar serves as a pinch point between both control and memory(alias_idx). 3919 // If you want to make a pinch point on all memory slices, do not use this 3920 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3921 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3922 // When Parse::do_put_xxx updates a volatile field, it appends a series 3923 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3924 // The first membar is on the same memory slice as the field store opcode. 3925 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3926 // All the other membars (for other volatile slices, including AliasIdxBot, 3927 // which stands for all unknown volatile slices) are control-dependent 3928 // on the first membar. This prevents later volatile loads or stores 3929 // from sliding up past the just-emitted store. 3930 3931 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3932 mb->set_req(TypeFunc::Control,control()); 3933 if (alias_idx == Compile::AliasIdxBot) { 3934 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3935 } else { 3936 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3937 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3938 } 3939 Node* membar = _gvn.transform(mb); 3940 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3941 if (alias_idx == Compile::AliasIdxBot) { 3942 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3943 } else { 3944 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3945 } 3946 return membar; 3947 } 3948 3949 //------------------------------shared_lock------------------------------------ 3950 // Emit locking code. 3951 FastLockNode* GraphKit::shared_lock(Node* obj) { 3952 // bci is either a monitorenter bc or InvocationEntryBci 3953 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3954 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3955 3956 if( !GenerateSynchronizationCode ) 3957 return nullptr; // Not locking things? 3958 3959 if (stopped()) // Dead monitor? 3960 return nullptr; 3961 3962 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3963 3964 // Box the stack location 3965 Node* box = new BoxLockNode(next_monitor()); 3966 // Check for bailout after new BoxLockNode 3967 if (failing()) { return nullptr; } 3968 box = _gvn.transform(box); 3969 Node* mem = reset_memory(); 3970 3971 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3972 3973 // Add monitor to debug info for the slow path. If we block inside the 3974 // slow path and de-opt, we need the monitor hanging around 3975 map()->push_monitor( flock ); 3976 3977 const TypeFunc *tf = LockNode::lock_type(); 3978 LockNode *lock = new LockNode(C, tf); 3979 3980 lock->init_req( TypeFunc::Control, control() ); 3981 lock->init_req( TypeFunc::Memory , mem ); 3982 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3983 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3984 lock->init_req( TypeFunc::ReturnAdr, top() ); 3985 3986 lock->init_req(TypeFunc::Parms + 0, obj); 3987 lock->init_req(TypeFunc::Parms + 1, box); 3988 lock->init_req(TypeFunc::Parms + 2, flock); 3989 add_safepoint_edges(lock); 3990 3991 lock = _gvn.transform( lock )->as_Lock(); 3992 3993 // lock has no side-effects, sets few values 3994 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3995 3996 insert_mem_bar(Op_MemBarAcquireLock); 3997 3998 // Add this to the worklist so that the lock can be eliminated 3999 record_for_igvn(lock); 4000 4001 #ifndef PRODUCT 4002 if (PrintLockStatistics) { 4003 // Update the counter for this lock. Don't bother using an atomic 4004 // operation since we don't require absolute accuracy. 4005 lock->create_lock_counter(map()->jvms()); 4006 increment_counter(lock->counter()->addr()); 4007 } 4008 #endif 4009 4010 return flock; 4011 } 4012 4013 4014 //------------------------------shared_unlock---------------------------------- 4015 // Emit unlocking code. 4016 void GraphKit::shared_unlock(Node* box, Node* obj) { 4017 // bci is either a monitorenter bc or InvocationEntryBci 4018 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 4019 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 4020 4021 if( !GenerateSynchronizationCode ) 4022 return; 4023 if (stopped()) { // Dead monitor? 4024 map()->pop_monitor(); // Kill monitor from debug info 4025 return; 4026 } 4027 assert(!obj->is_InlineType(), "should not unlock on inline type"); 4028 4029 // Memory barrier to avoid floating things down past the locked region 4030 insert_mem_bar(Op_MemBarReleaseLock); 4031 4032 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 4033 UnlockNode *unlock = new UnlockNode(C, tf); 4034 #ifdef ASSERT 4035 unlock->set_dbg_jvms(sync_jvms()); 4036 #endif 4037 uint raw_idx = Compile::AliasIdxRaw; 4038 unlock->init_req( TypeFunc::Control, control() ); 4039 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 4040 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 4041 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 4042 unlock->init_req( TypeFunc::ReturnAdr, top() ); 4043 4044 unlock->init_req(TypeFunc::Parms + 0, obj); 4045 unlock->init_req(TypeFunc::Parms + 1, box); 4046 unlock = _gvn.transform(unlock)->as_Unlock(); 4047 4048 Node* mem = reset_memory(); 4049 4050 // unlock has no side-effects, sets few values 4051 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 4052 4053 // Kill monitor from debug info 4054 map()->pop_monitor( ); 4055 } 4056 4057 //-------------------------------get_layout_helper----------------------------- 4058 // If the given klass is a constant or known to be an array, 4059 // fetch the constant layout helper value into constant_value 4060 // and return null. Otherwise, load the non-constant 4061 // layout helper value, and return the node which represents it. 4062 // This two-faced routine is useful because allocation sites 4063 // almost always feature constant types. 4064 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 4065 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 4066 if (!StressReflectiveCode && klass_t != nullptr) { 4067 bool xklass = klass_t->klass_is_exact(); 4068 bool can_be_flat = false; 4069 const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr(); 4070 if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) { 4071 // Don't constant fold if the runtime type might be a flat array but the static type is not. 4072 const TypeOopPtr* elem = ary_type->elem()->make_oopptr(); 4073 can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array()); 4074 } 4075 if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) { 4076 jint lhelper; 4077 if (klass_t->is_flat()) { 4078 lhelper = ary_type->flat_layout_helper(); 4079 } else if (klass_t->isa_aryklassptr()) { 4080 BasicType elem = ary_type->elem()->array_element_basic_type(); 4081 if (is_reference_type(elem, true)) { 4082 elem = T_OBJECT; 4083 } 4084 lhelper = Klass::array_layout_helper(elem); 4085 } else { 4086 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 4087 } 4088 if (lhelper != Klass::_lh_neutral_value) { 4089 constant_value = lhelper; 4090 return (Node*) nullptr; 4091 } 4092 } 4093 } 4094 constant_value = Klass::_lh_neutral_value; // put in a known value 4095 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 4096 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 4097 } 4098 4099 // We just put in an allocate/initialize with a big raw-memory effect. 4100 // Hook selected additional alias categories on the initialization. 4101 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 4102 MergeMemNode* init_in_merge, 4103 Node* init_out_raw) { 4104 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 4105 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 4106 4107 Node* prevmem = kit.memory(alias_idx); 4108 init_in_merge->set_memory_at(alias_idx, prevmem); 4109 if (init_out_raw != nullptr) { 4110 kit.set_memory(init_out_raw, alias_idx); 4111 } 4112 } 4113 4114 //---------------------------set_output_for_allocation------------------------- 4115 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 4116 const TypeOopPtr* oop_type, 4117 bool deoptimize_on_exception) { 4118 int rawidx = Compile::AliasIdxRaw; 4119 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 4120 add_safepoint_edges(alloc); 4121 Node* allocx = _gvn.transform(alloc); 4122 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 4123 // create memory projection for i_o 4124 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 4125 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 4126 4127 // create a memory projection as for the normal control path 4128 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 4129 set_memory(malloc, rawidx); 4130 4131 // a normal slow-call doesn't change i_o, but an allocation does 4132 // we create a separate i_o projection for the normal control path 4133 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 4134 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 4135 4136 // put in an initialization barrier 4137 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 4138 rawoop)->as_Initialize(); 4139 assert(alloc->initialization() == init, "2-way macro link must work"); 4140 assert(init ->allocation() == alloc, "2-way macro link must work"); 4141 { 4142 // Extract memory strands which may participate in the new object's 4143 // initialization, and source them from the new InitializeNode. 4144 // This will allow us to observe initializations when they occur, 4145 // and link them properly (as a group) to the InitializeNode. 4146 assert(init->in(InitializeNode::Memory) == malloc, ""); 4147 MergeMemNode* minit_in = MergeMemNode::make(malloc); 4148 init->set_req(InitializeNode::Memory, minit_in); 4149 record_for_igvn(minit_in); // fold it up later, if possible 4150 _gvn.set_type(minit_in, Type::MEMORY); 4151 Node* minit_out = memory(rawidx); 4152 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 4153 // Add an edge in the MergeMem for the header fields so an access 4154 // to one of those has correct memory state 4155 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 4156 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 4157 if (oop_type->isa_aryptr()) { 4158 const TypeAryPtr* arytype = oop_type->is_aryptr(); 4159 if (arytype->is_flat()) { 4160 // Initially all flat array accesses share a single slice 4161 // but that changes after parsing. Prepare the memory graph so 4162 // it can optimize flat array accesses properly once they 4163 // don't share a single slice. 4164 assert(C->flat_accesses_share_alias(), "should be set at parse time"); 4165 C->set_flat_accesses_share_alias(false); 4166 ciInlineKlass* vk = arytype->elem()->inline_klass(); 4167 for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { 4168 ciField* field = vk->nonstatic_field_at(i); 4169 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4170 continue; // do not bother to track really large numbers of fields 4171 int off_in_vt = field->offset_in_bytes() - vk->payload_offset(); 4172 const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot); 4173 int fieldidx = C->get_alias_index(adr_type, true); 4174 // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node 4175 // can result in per flat array field Phis to be created which confuses the logic of 4176 // Compile::adjust_flat_array_access_aliases(). 4177 hook_memory_on_init(*this, fieldidx, minit_in, nullptr); 4178 } 4179 C->set_flat_accesses_share_alias(true); 4180 hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out); 4181 } else { 4182 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 4183 int elemidx = C->get_alias_index(telemref); 4184 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 4185 } 4186 } else if (oop_type->isa_instptr()) { 4187 set_memory(minit_out, C->get_alias_index(oop_type)); // mark word 4188 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 4189 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 4190 ciField* field = ik->nonstatic_field_at(i); 4191 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4192 continue; // do not bother to track really large numbers of fields 4193 // Find (or create) the alias category for this field: 4194 int fieldidx = C->alias_type(field)->index(); 4195 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 4196 } 4197 } 4198 } 4199 4200 // Cast raw oop to the real thing... 4201 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 4202 javaoop = _gvn.transform(javaoop); 4203 C->set_recent_alloc(control(), javaoop); 4204 assert(just_allocated_object(control()) == javaoop, "just allocated"); 4205 4206 #ifdef ASSERT 4207 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 4208 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 4209 "Ideal_allocation works"); 4210 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 4211 "Ideal_allocation works"); 4212 if (alloc->is_AllocateArray()) { 4213 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 4214 "Ideal_allocation works"); 4215 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 4216 "Ideal_allocation works"); 4217 } else { 4218 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 4219 } 4220 } 4221 #endif //ASSERT 4222 4223 return javaoop; 4224 } 4225 4226 //---------------------------new_instance-------------------------------------- 4227 // This routine takes a klass_node which may be constant (for a static type) 4228 // or may be non-constant (for reflective code). It will work equally well 4229 // for either, and the graph will fold nicely if the optimizer later reduces 4230 // the type to a constant. 4231 // The optional arguments are for specialized use by intrinsics: 4232 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 4233 // - If 'return_size_val', report the total object size to the caller. 4234 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4235 Node* GraphKit::new_instance(Node* klass_node, 4236 Node* extra_slow_test, 4237 Node* *return_size_val, 4238 bool deoptimize_on_exception, 4239 InlineTypeNode* inline_type_node) { 4240 // Compute size in doublewords 4241 // The size is always an integral number of doublewords, represented 4242 // as a positive bytewise size stored in the klass's layout_helper. 4243 // The layout_helper also encodes (in a low bit) the need for a slow path. 4244 jint layout_con = Klass::_lh_neutral_value; 4245 Node* layout_val = get_layout_helper(klass_node, layout_con); 4246 bool layout_is_con = (layout_val == nullptr); 4247 4248 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 4249 // Generate the initial go-slow test. It's either ALWAYS (return a 4250 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 4251 // case) a computed value derived from the layout_helper. 4252 Node* initial_slow_test = nullptr; 4253 if (layout_is_con) { 4254 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4255 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 4256 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 4257 } else { // reflective case 4258 // This reflective path is used by Unsafe.allocateInstance. 4259 // (It may be stress-tested by specifying StressReflectiveCode.) 4260 // Basically, we want to get into the VM is there's an illegal argument. 4261 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 4262 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 4263 if (extra_slow_test != intcon(0)) { 4264 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 4265 } 4266 // (Macro-expander will further convert this to a Bool, if necessary.) 4267 } 4268 4269 // Find the size in bytes. This is easy; it's the layout_helper. 4270 // The size value must be valid even if the slow path is taken. 4271 Node* size = nullptr; 4272 if (layout_is_con) { 4273 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 4274 } else { // reflective case 4275 // This reflective path is used by clone and Unsafe.allocateInstance. 4276 size = ConvI2X(layout_val); 4277 4278 // Clear the low bits to extract layout_helper_size_in_bytes: 4279 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 4280 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 4281 size = _gvn.transform( new AndXNode(size, mask) ); 4282 } 4283 if (return_size_val != nullptr) { 4284 (*return_size_val) = size; 4285 } 4286 4287 // This is a precise notnull oop of the klass. 4288 // (Actually, it need not be precise if this is a reflective allocation.) 4289 // It's what we cast the result to. 4290 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 4291 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 4292 const TypeOopPtr* oop_type = tklass->as_instance_type(); 4293 4294 // Now generate allocation code 4295 4296 // The entire memory state is needed for slow path of the allocation 4297 // since GC and deoptimization can happen. 4298 Node *mem = reset_memory(); 4299 set_all_memory(mem); // Create new memory state 4300 4301 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 4302 control(), mem, i_o(), 4303 size, klass_node, 4304 initial_slow_test, inline_type_node); 4305 4306 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 4307 } 4308 4309 //-------------------------------new_array------------------------------------- 4310 // helper for newarray and anewarray 4311 // The 'length' parameter is (obviously) the length of the array. 4312 // The optional arguments are for specialized use by intrinsics: 4313 // - If 'return_size_val', report the non-padded array size (sum of header size 4314 // and array body) to the caller. 4315 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4316 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 4317 Node* length, // number of array elements 4318 int nargs, // number of arguments to push back for uncommon trap 4319 Node* *return_size_val, 4320 bool deoptimize_on_exception, 4321 Node* init_val) { 4322 jint layout_con = Klass::_lh_neutral_value; 4323 Node* layout_val = get_layout_helper(klass_node, layout_con); 4324 bool layout_is_con = (layout_val == nullptr); 4325 4326 if (!layout_is_con && !StressReflectiveCode && 4327 !too_many_traps(Deoptimization::Reason_class_check)) { 4328 // This is a reflective array creation site. 4329 // Optimistically assume that it is a subtype of Object[], 4330 // so that we can fold up all the address arithmetic. 4331 layout_con = Klass::array_layout_helper(T_OBJECT); 4332 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 4333 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 4334 { BuildCutout unless(this, bol_lh, PROB_MAX); 4335 inc_sp(nargs); 4336 uncommon_trap(Deoptimization::Reason_class_check, 4337 Deoptimization::Action_maybe_recompile); 4338 } 4339 layout_val = nullptr; 4340 layout_is_con = true; 4341 } 4342 4343 // Generate the initial go-slow test. Make sure we do not overflow 4344 // if length is huge (near 2Gig) or negative! We do not need 4345 // exact double-words here, just a close approximation of needed 4346 // double-words. We can't add any offset or rounding bits, lest we 4347 // take a size -1 of bytes and make it positive. Use an unsigned 4348 // compare, so negative sizes look hugely positive. 4349 int fast_size_limit = FastAllocateSizeLimit; 4350 if (layout_is_con) { 4351 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4352 // Increase the size limit if we have exact knowledge of array type. 4353 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 4354 fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0); 4355 } 4356 4357 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 4358 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 4359 4360 // --- Size Computation --- 4361 // array_size = round_to_heap(array_header + (length << elem_shift)); 4362 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 4363 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 4364 // The rounding mask is strength-reduced, if possible. 4365 int round_mask = MinObjAlignmentInBytes - 1; 4366 Node* header_size = nullptr; 4367 // (T_BYTE has the weakest alignment and size restrictions...) 4368 if (layout_is_con) { 4369 int hsize = Klass::layout_helper_header_size(layout_con); 4370 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4371 bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con); 4372 if ((round_mask & ~right_n_bits(eshift)) == 0) 4373 round_mask = 0; // strength-reduce it if it goes away completely 4374 assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 4375 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 4376 assert(header_size_min <= hsize, "generic minimum is smallest"); 4377 header_size = intcon(hsize); 4378 } else { 4379 Node* hss = intcon(Klass::_lh_header_size_shift); 4380 Node* hsm = intcon(Klass::_lh_header_size_mask); 4381 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 4382 header_size = _gvn.transform(new AndINode(header_size, hsm)); 4383 } 4384 4385 Node* elem_shift = nullptr; 4386 if (layout_is_con) { 4387 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4388 if (eshift != 0) 4389 elem_shift = intcon(eshift); 4390 } else { 4391 // There is no need to mask or shift this value. 4392 // The semantics of LShiftINode include an implicit mask to 0x1F. 4393 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 4394 elem_shift = layout_val; 4395 } 4396 4397 // Transition to native address size for all offset calculations: 4398 Node* lengthx = ConvI2X(length); 4399 Node* headerx = ConvI2X(header_size); 4400 #ifdef _LP64 4401 { const TypeInt* tilen = _gvn.find_int_type(length); 4402 if (tilen != nullptr && tilen->_lo < 0) { 4403 // Add a manual constraint to a positive range. Cf. array_element_address. 4404 jint size_max = fast_size_limit; 4405 if (size_max > tilen->_hi && tilen->_hi >= 0) { 4406 size_max = tilen->_hi; 4407 } 4408 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 4409 4410 // Only do a narrow I2L conversion if the range check passed. 4411 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 4412 _gvn.transform(iff); 4413 RegionNode* region = new RegionNode(3); 4414 _gvn.set_type(region, Type::CONTROL); 4415 lengthx = new PhiNode(region, TypeLong::LONG); 4416 _gvn.set_type(lengthx, TypeLong::LONG); 4417 4418 // Range check passed. Use ConvI2L node with narrow type. 4419 Node* passed = IfFalse(iff); 4420 region->init_req(1, passed); 4421 // Make I2L conversion control dependent to prevent it from 4422 // floating above the range check during loop optimizations. 4423 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 4424 4425 // Range check failed. Use ConvI2L with wide type because length may be invalid. 4426 region->init_req(2, IfTrue(iff)); 4427 lengthx->init_req(2, ConvI2X(length)); 4428 4429 set_control(region); 4430 record_for_igvn(region); 4431 record_for_igvn(lengthx); 4432 } 4433 } 4434 #endif 4435 4436 // Combine header size and body size for the array copy part, then align (if 4437 // necessary) for the allocation part. This computation cannot overflow, 4438 // because it is used only in two places, one where the length is sharply 4439 // limited, and the other after a successful allocation. 4440 Node* abody = lengthx; 4441 if (elem_shift != nullptr) { 4442 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 4443 } 4444 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 4445 4446 if (return_size_val != nullptr) { 4447 // This is the size 4448 (*return_size_val) = non_rounded_size; 4449 } 4450 4451 Node* size = non_rounded_size; 4452 if (round_mask != 0) { 4453 Node* mask1 = MakeConX(round_mask); 4454 size = _gvn.transform(new AddXNode(size, mask1)); 4455 Node* mask2 = MakeConX(~round_mask); 4456 size = _gvn.transform(new AndXNode(size, mask2)); 4457 } 4458 // else if round_mask == 0, the size computation is self-rounding 4459 4460 // Now generate allocation code 4461 4462 // The entire memory state is needed for slow path of the allocation 4463 // since GC and deoptimization can happen. 4464 Node *mem = reset_memory(); 4465 set_all_memory(mem); // Create new memory state 4466 4467 if (initial_slow_test->is_Bool()) { 4468 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 4469 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 4470 } 4471 4472 const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr(); 4473 const TypeOopPtr* ary_type = ary_klass->as_instance_type(); 4474 4475 Node* raw_init_value = nullptr; 4476 if (init_val != nullptr) { 4477 // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays 4478 if (ary_type->is_flat()) { 4479 initial_slow_test = intcon(1); 4480 } 4481 4482 if (UseCompressedOops) { 4483 // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops 4484 init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop())); 4485 Node* lower = _gvn.transform(new CastP2XNode(control(), init_val)); 4486 Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32))); 4487 raw_init_value = _gvn.transform(new OrLNode(lower, upper)); 4488 } else { 4489 raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val)); 4490 } 4491 } 4492 4493 Node* valid_length_test = _gvn.intcon(1); 4494 if (ary_type->isa_aryptr()) { 4495 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 4496 jint max = TypeAryPtr::max_array_length(bt); 4497 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 4498 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 4499 } 4500 4501 // Create the AllocateArrayNode and its result projections 4502 AllocateArrayNode* alloc 4503 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 4504 control(), mem, i_o(), 4505 size, klass_node, 4506 initial_slow_test, 4507 length, valid_length_test, 4508 init_val, raw_init_value); 4509 // Cast to correct type. Note that the klass_node may be constant or not, 4510 // and in the latter case the actual array type will be inexact also. 4511 // (This happens via a non-constant argument to inline_native_newArray.) 4512 // In any case, the value of klass_node provides the desired array type. 4513 const TypeInt* length_type = _gvn.find_int_type(length); 4514 if (ary_type->isa_aryptr() && length_type != nullptr) { 4515 // Try to get a better type than POS for the size 4516 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4517 } 4518 4519 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 4520 4521 array_ideal_length(alloc, ary_type, true); 4522 return javaoop; 4523 } 4524 4525 // The following "Ideal_foo" functions are placed here because they recognize 4526 // the graph shapes created by the functions immediately above. 4527 4528 //---------------------------Ideal_allocation---------------------------------- 4529 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 4530 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 4531 if (ptr == nullptr) { // reduce dumb test in callers 4532 return nullptr; 4533 } 4534 4535 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4536 ptr = bs->step_over_gc_barrier(ptr); 4537 4538 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 4539 ptr = ptr->in(1); 4540 if (ptr == nullptr) return nullptr; 4541 } 4542 // Return null for allocations with several casts: 4543 // j.l.reflect.Array.newInstance(jobject, jint) 4544 // Object.clone() 4545 // to keep more precise type from last cast. 4546 if (ptr->is_Proj()) { 4547 Node* allo = ptr->in(0); 4548 if (allo != nullptr && allo->is_Allocate()) { 4549 return allo->as_Allocate(); 4550 } 4551 } 4552 // Report failure to match. 4553 return nullptr; 4554 } 4555 4556 // Fancy version which also strips off an offset (and reports it to caller). 4557 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4558 intptr_t& offset) { 4559 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4560 if (base == nullptr) return nullptr; 4561 return Ideal_allocation(base); 4562 } 4563 4564 // Trace Initialize <- Proj[Parm] <- Allocate 4565 AllocateNode* InitializeNode::allocation() { 4566 Node* rawoop = in(InitializeNode::RawAddress); 4567 if (rawoop->is_Proj()) { 4568 Node* alloc = rawoop->in(0); 4569 if (alloc->is_Allocate()) { 4570 return alloc->as_Allocate(); 4571 } 4572 } 4573 return nullptr; 4574 } 4575 4576 // Trace Allocate -> Proj[Parm] -> Initialize 4577 InitializeNode* AllocateNode::initialization() { 4578 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4579 if (rawoop == nullptr) return nullptr; 4580 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4581 Node* init = rawoop->fast_out(i); 4582 if (init->is_Initialize()) { 4583 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4584 return init->as_Initialize(); 4585 } 4586 } 4587 return nullptr; 4588 } 4589 4590 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4591 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4592 // Too many traps seen? 4593 if (too_many_traps(reason)) { 4594 #ifdef ASSERT 4595 if (TraceLoopPredicate) { 4596 int tc = C->trap_count(reason); 4597 tty->print("too many traps=%s tcount=%d in ", 4598 Deoptimization::trap_reason_name(reason), tc); 4599 method()->print(); // which method has too many predicate traps 4600 tty->cr(); 4601 } 4602 #endif 4603 // We cannot afford to take more traps here, 4604 // do not generate Parse Predicate. 4605 return; 4606 } 4607 4608 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4609 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4610 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4611 { 4612 PreserveJVMState pjvms(this); 4613 set_control(if_false); 4614 inc_sp(nargs); 4615 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4616 } 4617 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4618 set_control(if_true); 4619 } 4620 4621 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4622 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4623 void GraphKit::add_parse_predicates(int nargs) { 4624 if (UseLoopPredicate) { 4625 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4626 if (UseProfiledLoopPredicate) { 4627 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4628 } 4629 } 4630 add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs); 4631 // Loop Limit Check Predicate should be near the loop. 4632 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4633 } 4634 4635 void GraphKit::sync_kit(IdealKit& ideal) { 4636 set_all_memory(ideal.merged_memory()); 4637 set_i_o(ideal.i_o()); 4638 set_control(ideal.ctrl()); 4639 } 4640 4641 void GraphKit::final_sync(IdealKit& ideal) { 4642 // Final sync IdealKit and graphKit. 4643 sync_kit(ideal); 4644 } 4645 4646 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4647 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4648 Node* coder = load_String_coder(str, set_ctrl); 4649 // Divide length by 2 if coder is UTF16 4650 return _gvn.transform(new RShiftINode(len, coder)); 4651 } 4652 4653 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4654 int value_offset = java_lang_String::value_offset(); 4655 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4656 false, nullptr, Type::Offset(0)); 4657 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4658 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4659 TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true), 4660 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); 4661 Node* p = basic_plus_adr(str, str, value_offset); 4662 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4663 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4664 return load; 4665 } 4666 4667 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4668 if (!CompactStrings) { 4669 return intcon(java_lang_String::CODER_UTF16); 4670 } 4671 int coder_offset = java_lang_String::coder_offset(); 4672 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4673 false, nullptr, Type::Offset(0)); 4674 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4675 4676 Node* p = basic_plus_adr(str, str, coder_offset); 4677 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4678 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4679 return load; 4680 } 4681 4682 void GraphKit::store_String_value(Node* str, Node* value) { 4683 int value_offset = java_lang_String::value_offset(); 4684 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4685 false, nullptr, Type::Offset(0)); 4686 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4687 4688 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4689 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4690 } 4691 4692 void GraphKit::store_String_coder(Node* str, Node* value) { 4693 int coder_offset = java_lang_String::coder_offset(); 4694 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4695 false, nullptr, Type::Offset(0)); 4696 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4697 4698 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4699 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4700 } 4701 4702 // Capture src and dst memory state with a MergeMemNode 4703 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4704 if (src_type == dst_type) { 4705 // Types are equal, we don't need a MergeMemNode 4706 return memory(src_type); 4707 } 4708 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4709 record_for_igvn(merge); // fold it up later, if possible 4710 int src_idx = C->get_alias_index(src_type); 4711 int dst_idx = C->get_alias_index(dst_type); 4712 merge->set_memory_at(src_idx, memory(src_idx)); 4713 merge->set_memory_at(dst_idx, memory(dst_idx)); 4714 return merge; 4715 } 4716 4717 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4718 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4719 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4720 // If input and output memory types differ, capture both states to preserve 4721 // the dependency between preceding and subsequent loads/stores. 4722 // For example, the following program: 4723 // StoreB 4724 // compress_string 4725 // LoadB 4726 // has this memory graph (use->def): 4727 // LoadB -> compress_string -> CharMem 4728 // ... -> StoreB -> ByteMem 4729 // The intrinsic hides the dependency between LoadB and StoreB, causing 4730 // the load to read from memory not containing the result of the StoreB. 4731 // The correct memory graph should look like this: 4732 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4733 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4734 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4735 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4736 set_memory(res_mem, TypeAryPtr::BYTES); 4737 return str; 4738 } 4739 4740 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4741 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4742 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4743 // Capture src and dst memory (see comment in 'compress_string'). 4744 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4745 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4746 set_memory(_gvn.transform(str), dst_type); 4747 } 4748 4749 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4750 /** 4751 * int i_char = start; 4752 * for (int i_byte = 0; i_byte < count; i_byte++) { 4753 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4754 * } 4755 */ 4756 add_parse_predicates(); 4757 C->set_has_loops(true); 4758 4759 RegionNode* head = new RegionNode(3); 4760 head->init_req(1, control()); 4761 gvn().set_type(head, Type::CONTROL); 4762 record_for_igvn(head); 4763 4764 Node* i_byte = new PhiNode(head, TypeInt::INT); 4765 i_byte->init_req(1, intcon(0)); 4766 gvn().set_type(i_byte, TypeInt::INT); 4767 record_for_igvn(i_byte); 4768 4769 Node* i_char = new PhiNode(head, TypeInt::INT); 4770 i_char->init_req(1, start); 4771 gvn().set_type(i_char, TypeInt::INT); 4772 record_for_igvn(i_char); 4773 4774 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4775 gvn().set_type(mem, Type::MEMORY); 4776 record_for_igvn(mem); 4777 set_control(head); 4778 set_memory(mem, TypeAryPtr::BYTES); 4779 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4780 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4781 AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false, 4782 false, true /* mismatched */); 4783 4784 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4785 head->init_req(2, IfTrue(iff)); 4786 mem->init_req(2, st); 4787 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4788 i_char->init_req(2, AddI(i_char, intcon(2))); 4789 4790 set_control(IfFalse(iff)); 4791 set_memory(st, TypeAryPtr::BYTES); 4792 } 4793 4794 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4795 if (!field->is_constant()) { 4796 return nullptr; // Field not marked as constant. 4797 } 4798 ciInstance* holder = nullptr; 4799 if (!field->is_static()) { 4800 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4801 if (const_oop != nullptr && const_oop->is_instance()) { 4802 holder = const_oop->as_instance(); 4803 } 4804 } 4805 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4806 /*is_unsigned_load=*/false); 4807 if (con_type != nullptr) { 4808 Node* con = makecon(con_type); 4809 if (field->type()->is_inlinetype()) { 4810 con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass()); 4811 } else if (con_type->is_inlinetypeptr()) { 4812 con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass()); 4813 } 4814 return con; 4815 } 4816 return nullptr; 4817 } 4818 4819 //---------------------------load_mirror_from_klass---------------------------- 4820 // Given a klass oop, load its java mirror (a java.lang.Class oop). 4821 Node* GraphKit::load_mirror_from_klass(Node* klass) { 4822 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 4823 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4824 // mirror = ((OopHandle)mirror)->resolve(); 4825 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 4826 } 4827 4828 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4829 const Type* obj_type = obj->bottom_type(); 4830 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4831 if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4832 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4833 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4834 obj = casted_obj; 4835 } 4836 if (sig_type->is_inlinetypeptr()) { 4837 obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass()); 4838 } 4839 return obj; 4840 }