1 /*
   2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_exception_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_exception_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing())  return;  // dying anyway...
 356   JVMState* ex_jvms = ex_map->_jvms;
 357   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 358   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 359   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 360   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 361   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 362   assert(ex_map->req() == phi_map->req(), "matching maps");
 363   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 364   Node*         hidden_merge_mark = root();
 365   Node*         region  = phi_map->control();
 366   MergeMemNode* phi_mem = phi_map->merged_memory();
 367   MergeMemNode* ex_mem  = ex_map->merged_memory();
 368   if (region->in(0) != hidden_merge_mark) {
 369     // The control input is not (yet) a specially-marked region in phi_map.
 370     // Make it so, and build some phis.
 371     region = new RegionNode(2);
 372     _gvn.set_type(region, Type::CONTROL);
 373     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 374     region->init_req(1, phi_map->control());
 375     phi_map->set_control(region);
 376     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 377     record_for_igvn(io_phi);
 378     _gvn.set_type(io_phi, Type::ABIO);
 379     phi_map->set_i_o(io_phi);
 380     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 381       Node* m = mms.memory();
 382       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 383       record_for_igvn(m_phi);
 384       _gvn.set_type(m_phi, Type::MEMORY);
 385       mms.set_memory(m_phi);
 386     }
 387   }
 388 
 389   // Either or both of phi_map and ex_map might already be converted into phis.
 390   Node* ex_control = ex_map->control();
 391   // if there is special marking on ex_map also, we add multiple edges from src
 392   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 393   // how wide was the destination phi_map, originally?
 394   uint orig_width = region->req();
 395 
 396   if (add_multiple) {
 397     add_n_reqs(region, ex_control);
 398     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 399   } else {
 400     // ex_map has no merges, so we just add single edges everywhere
 401     add_one_req(region, ex_control);
 402     add_one_req(phi_map->i_o(), ex_map->i_o());
 403   }
 404   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 405     if (mms.is_empty()) {
 406       // get a copy of the base memory, and patch some inputs into it
 407       const TypePtr* adr_type = mms.adr_type(C);
 408       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 409       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 410       mms.set_memory(phi);
 411       // Prepare to append interesting stuff onto the newly sliced phi:
 412       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 413     }
 414     // Append stuff from ex_map:
 415     if (add_multiple) {
 416       add_n_reqs(mms.memory(), mms.memory2());
 417     } else {
 418       add_one_req(mms.memory(), mms.memory2());
 419     }
 420   }
 421   uint limit = ex_map->req();
 422   for (uint i = TypeFunc::Parms; i < limit; i++) {
 423     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 424     if (i == tos)  i = ex_jvms->monoff();
 425     Node* src = ex_map->in(i);
 426     Node* dst = phi_map->in(i);
 427     if (src != dst) {
 428       PhiNode* phi;
 429       if (dst->in(0) != region) {
 430         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 431         record_for_igvn(phi);
 432         _gvn.set_type(phi, phi->type());
 433         phi_map->set_req(i, dst);
 434         // Prepare to append interesting stuff onto the new phi:
 435         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 436       } else {
 437         assert(dst->is_Phi(), "nobody else uses a hidden region");
 438         phi = dst->as_Phi();
 439       }
 440       if (add_multiple && src->in(0) == ex_control) {
 441         // Both are phis.
 442         add_n_reqs(dst, src);
 443       } else {
 444         while (dst->req() < region->req())  add_one_req(dst, src);
 445       }
 446       const Type* srctype = _gvn.type(src);
 447       if (phi->type() != srctype) {
 448         const Type* dsttype = phi->type()->meet_speculative(srctype);
 449         if (phi->type() != dsttype) {
 450           phi->set_type(dsttype);
 451           _gvn.set_type(phi, dsttype);
 452         }
 453       }
 454     }
 455   }
 456   phi_map->merge_replaced_nodes_with(ex_map);
 457 }
 458 
 459 //--------------------------use_exception_state--------------------------------
 460 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 461   if (failing()) { stop(); return top(); }
 462   Node* region = phi_map->control();
 463   Node* hidden_merge_mark = root();
 464   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 465   Node* ex_oop = clear_saved_ex_oop(phi_map);
 466   if (region->in(0) == hidden_merge_mark) {
 467     // Special marking for internal ex-states.  Process the phis now.
 468     region->set_req(0, region);  // now it's an ordinary region
 469     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 470     // Note: Setting the jvms also sets the bci and sp.
 471     set_control(_gvn.transform(region));
 472     uint tos = jvms()->stkoff() + sp();
 473     for (uint i = 1; i < tos; i++) {
 474       Node* x = phi_map->in(i);
 475       if (x->in(0) == region) {
 476         assert(x->is_Phi(), "expected a special phi");
 477         phi_map->set_req(i, _gvn.transform(x));
 478       }
 479     }
 480     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 481       Node* x = mms.memory();
 482       if (x->in(0) == region) {
 483         assert(x->is_Phi(), "nobody else uses a hidden region");
 484         mms.set_memory(_gvn.transform(x));
 485       }
 486     }
 487     if (ex_oop->in(0) == region) {
 488       assert(ex_oop->is_Phi(), "expected a special phi");
 489       ex_oop = _gvn.transform(ex_oop);
 490     }
 491   } else {
 492     set_jvms(phi_map->jvms());
 493   }
 494 
 495   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 496   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 497   return ex_oop;
 498 }
 499 
 500 //---------------------------------java_bc-------------------------------------
 501 Bytecodes::Code GraphKit::java_bc() const {
 502   ciMethod* method = this->method();
 503   int       bci    = this->bci();
 504   if (method != nullptr && bci != InvocationEntryBci)
 505     return method->java_code_at_bci(bci);
 506   else
 507     return Bytecodes::_illegal;
 508 }
 509 
 510 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 511                                                           bool must_throw) {
 512     // if the exception capability is set, then we will generate code
 513     // to check the JavaThread.should_post_on_exceptions flag to see
 514     // if we actually need to report exception events (for this
 515     // thread).  If we don't need to report exception events, we will
 516     // take the normal fast path provided by add_exception_events.  If
 517     // exception event reporting is enabled for this thread, we will
 518     // take the uncommon_trap in the BuildCutout below.
 519 
 520     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 521     Node* jthread = _gvn.transform(new ThreadLocalNode());
 522     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 523     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 524 
 525     // Test the should_post_on_exceptions_flag vs. 0
 526     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 527     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 528 
 529     // Branch to slow_path if should_post_on_exceptions_flag was true
 530     { BuildCutout unless(this, tst, PROB_MAX);
 531       // Do not try anything fancy if we're notifying the VM on every throw.
 532       // Cf. case Bytecodes::_athrow in parse2.cpp.
 533       uncommon_trap(reason, Deoptimization::Action_none,
 534                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 535     }
 536 
 537 }
 538 
 539 //------------------------------builtin_throw----------------------------------
 540 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 541   bool must_throw = true;
 542 
 543   // If this particular condition has not yet happened at this
 544   // bytecode, then use the uncommon trap mechanism, and allow for
 545   // a future recompilation if several traps occur here.
 546   // If the throw is hot, try to use a more complicated inline mechanism
 547   // which keeps execution inside the compiled code.
 548   bool treat_throw_as_hot = false;
 549   ciMethodData* md = method()->method_data();
 550 
 551   if (ProfileTraps) {
 552     if (too_many_traps(reason)) {
 553       treat_throw_as_hot = true;
 554     }
 555     // (If there is no MDO at all, assume it is early in
 556     // execution, and that any deopts are part of the
 557     // startup transient, and don't need to be remembered.)
 558 
 559     // Also, if there is a local exception handler, treat all throws
 560     // as hot if there has been at least one in this method.
 561     if (C->trap_count(reason) != 0
 562         && method()->method_data()->trap_count(reason) != 0
 563         && has_exception_handler()) {
 564         treat_throw_as_hot = true;
 565     }
 566   }
 567 
 568   // If this throw happens frequently, an uncommon trap might cause
 569   // a performance pothole.  If there is a local exception handler,
 570   // and if this particular bytecode appears to be deoptimizing often,
 571   // let us handle the throw inline, with a preconstructed instance.
 572   // Note:   If the deopt count has blown up, the uncommon trap
 573   // runtime is going to flush this nmethod, not matter what.
 574   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 575     // If the throw is local, we use a pre-existing instance and
 576     // punt on the backtrace.  This would lead to a missing backtrace
 577     // (a repeat of 4292742) if the backtrace object is ever asked
 578     // for its backtrace.
 579     // Fixing this remaining case of 4292742 requires some flavor of
 580     // escape analysis.  Leave that for the future.
 581     ciInstance* ex_obj = nullptr;
 582     switch (reason) {
 583     case Deoptimization::Reason_null_check:
 584       ex_obj = env()->NullPointerException_instance();
 585       break;
 586     case Deoptimization::Reason_div0_check:
 587       ex_obj = env()->ArithmeticException_instance();
 588       break;
 589     case Deoptimization::Reason_range_check:
 590       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 591       break;
 592     case Deoptimization::Reason_class_check:
 593       ex_obj = env()->ClassCastException_instance();
 594       break;
 595     case Deoptimization::Reason_array_check:
 596       ex_obj = env()->ArrayStoreException_instance();
 597       break;
 598     default:
 599       break;
 600     }
 601     if (failing()) { stop(); return; }  // exception allocation might fail
 602     if (ex_obj != nullptr) {
 603       if (env()->jvmti_can_post_on_exceptions()) {
 604         // check if we must post exception events, take uncommon trap if so
 605         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 606         // here if should_post_on_exceptions is false
 607         // continue on with the normal codegen
 608       }
 609 
 610       // Cheat with a preallocated exception object.
 611       if (C->log() != nullptr)
 612         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 613                        Deoptimization::trap_reason_name(reason));
 614       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 615       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 616 
 617       // Clear the detail message of the preallocated exception object.
 618       // Weblogic sometimes mutates the detail message of exceptions
 619       // using reflection.
 620       int offset = java_lang_Throwable::get_detailMessage_offset();
 621       const TypePtr* adr_typ = ex_con->add_offset(offset);
 622 
 623       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 624       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 625       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 626 
 627       if (!method()->has_exception_handlers()) {
 628         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 629         // This prevents issues with exception handling and late inlining.
 630         set_sp(0);
 631         clean_stack(0);
 632       }
 633 
 634       add_exception_state(make_exception_state(ex_node));
 635       return;
 636     }
 637   }
 638 
 639   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 640   // It won't be much cheaper than bailing to the interp., since we'll
 641   // have to pass up all the debug-info, and the runtime will have to
 642   // create the stack trace.
 643 
 644   // Usual case:  Bail to interpreter.
 645   // Reserve the right to recompile if we haven't seen anything yet.
 646 
 647   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 648   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 649   if (treat_throw_as_hot
 650       && (method()->method_data()->trap_recompiled_at(bci(), m)
 651           || C->too_many_traps(reason))) {
 652     // We cannot afford to take more traps here.  Suffer in the interpreter.
 653     if (C->log() != nullptr)
 654       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 655                      Deoptimization::trap_reason_name(reason),
 656                      C->trap_count(reason));
 657     action = Deoptimization::Action_none;
 658   }
 659 
 660   // "must_throw" prunes the JVM state to include only the stack, if there
 661   // are no local exception handlers.  This should cut down on register
 662   // allocation time and code size, by drastically reducing the number
 663   // of in-edges on the call to the uncommon trap.
 664 
 665   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 666 }
 667 
 668 
 669 //----------------------------PreserveJVMState---------------------------------
 670 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 671   debug_only(kit->verify_map());
 672   _kit    = kit;
 673   _map    = kit->map();   // preserve the map
 674   _sp     = kit->sp();
 675   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 676 #ifdef ASSERT
 677   _bci    = kit->bci();
 678   Parse* parser = kit->is_Parse();
 679   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 680   _block  = block;
 681 #endif
 682 }
 683 PreserveJVMState::~PreserveJVMState() {
 684   GraphKit* kit = _kit;
 685 #ifdef ASSERT
 686   assert(kit->bci() == _bci, "bci must not shift");
 687   Parse* parser = kit->is_Parse();
 688   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 689   assert(block == _block,    "block must not shift");
 690 #endif
 691   kit->set_map(_map);
 692   kit->set_sp(_sp);
 693 }
 694 
 695 
 696 //-----------------------------BuildCutout-------------------------------------
 697 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 698   : PreserveJVMState(kit)
 699 {
 700   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 701   SafePointNode* outer_map = _map;   // preserved map is caller's
 702   SafePointNode* inner_map = kit->map();
 703   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 704   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 705   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 706 }
 707 BuildCutout::~BuildCutout() {
 708   GraphKit* kit = _kit;
 709   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 710 }
 711 
 712 //---------------------------PreserveReexecuteState----------------------------
 713 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 714   assert(!kit->stopped(), "must call stopped() before");
 715   _kit    =    kit;
 716   _sp     =    kit->sp();
 717   _reexecute = kit->jvms()->_reexecute;
 718 }
 719 PreserveReexecuteState::~PreserveReexecuteState() {
 720   if (_kit->stopped()) return;
 721   _kit->jvms()->_reexecute = _reexecute;
 722   _kit->set_sp(_sp);
 723 }
 724 
 725 //------------------------------clone_map--------------------------------------
 726 // Implementation of PreserveJVMState
 727 //
 728 // Only clone_map(...) here. If this function is only used in the
 729 // PreserveJVMState class we may want to get rid of this extra
 730 // function eventually and do it all there.
 731 
 732 SafePointNode* GraphKit::clone_map() {
 733   if (map() == nullptr)  return nullptr;
 734 
 735   // Clone the memory edge first
 736   Node* mem = MergeMemNode::make(map()->memory());
 737   gvn().set_type_bottom(mem);
 738 
 739   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 740   JVMState* jvms = this->jvms();
 741   JVMState* clonejvms = jvms->clone_shallow(C);
 742   clonemap->set_memory(mem);
 743   clonemap->set_jvms(clonejvms);
 744   clonejvms->set_map(clonemap);
 745   record_for_igvn(clonemap);
 746   gvn().set_type_bottom(clonemap);
 747   return clonemap;
 748 }
 749 
 750 //-----------------------------destruct_map_clone------------------------------
 751 //
 752 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 753 // to destruct/free/delete in the exact opposite order as clone_map().
 754 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 755   if (sfp == nullptr) return;
 756 
 757   Node* mem = sfp->memory();
 758   JVMState* jvms = sfp->jvms();
 759 
 760   if (jvms != nullptr) {
 761     delete jvms;
 762   }
 763 
 764   remove_for_igvn(sfp);
 765   gvn().clear_type(sfp);
 766   sfp->destruct(&_gvn);
 767 
 768   if (mem != nullptr) {
 769     gvn().clear_type(mem);
 770     mem->destruct(&_gvn);
 771   }
 772 }
 773 
 774 //-----------------------------set_map_clone-----------------------------------
 775 void GraphKit::set_map_clone(SafePointNode* m) {
 776   _map = m;
 777   _map = clone_map();
 778   _map->set_next_exception(nullptr);
 779   debug_only(verify_map());
 780 }
 781 
 782 
 783 //----------------------------kill_dead_locals---------------------------------
 784 // Detect any locals which are known to be dead, and force them to top.
 785 void GraphKit::kill_dead_locals() {
 786   // Consult the liveness information for the locals.  If any
 787   // of them are unused, then they can be replaced by top().  This
 788   // should help register allocation time and cut down on the size
 789   // of the deoptimization information.
 790 
 791   // This call is made from many of the bytecode handling
 792   // subroutines called from the Big Switch in do_one_bytecode.
 793   // Every bytecode which might include a slow path is responsible
 794   // for killing its dead locals.  The more consistent we
 795   // are about killing deads, the fewer useless phis will be
 796   // constructed for them at various merge points.
 797 
 798   // bci can be -1 (InvocationEntryBci).  We return the entry
 799   // liveness for the method.
 800 
 801   if (method() == nullptr || method()->code_size() == 0) {
 802     // We are building a graph for a call to a native method.
 803     // All locals are live.
 804     return;
 805   }
 806 
 807   ResourceMark rm;
 808 
 809   // Consult the liveness information for the locals.  If any
 810   // of them are unused, then they can be replaced by top().  This
 811   // should help register allocation time and cut down on the size
 812   // of the deoptimization information.
 813   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 814 
 815   int len = (int)live_locals.size();
 816   assert(len <= jvms()->loc_size(), "too many live locals");
 817   for (int local = 0; local < len; local++) {
 818     if (!live_locals.at(local)) {
 819       set_local(local, top());
 820     }
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 //-------------------------dead_locals_are_killed------------------------------
 826 // Return true if all dead locals are set to top in the map.
 827 // Used to assert "clean" debug info at various points.
 828 bool GraphKit::dead_locals_are_killed() {
 829   if (method() == nullptr || method()->code_size() == 0) {
 830     // No locals need to be dead, so all is as it should be.
 831     return true;
 832   }
 833 
 834   // Make sure somebody called kill_dead_locals upstream.
 835   ResourceMark rm;
 836   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 837     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 838     SafePointNode* map = jvms->map();
 839     ciMethod* method = jvms->method();
 840     int       bci    = jvms->bci();
 841     if (jvms == this->jvms()) {
 842       bci = this->bci();  // it might not yet be synched
 843     }
 844     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 845     int len = (int)live_locals.size();
 846     if (!live_locals.is_valid() || len == 0)
 847       // This method is trivial, or is poisoned by a breakpoint.
 848       return true;
 849     assert(len == jvms->loc_size(), "live map consistent with locals map");
 850     for (int local = 0; local < len; local++) {
 851       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 893 
 894   // Walk the inline list to fill in the correct set of JVMState's
 895   // Also fill in the associated edges for each JVMState.
 896 
 897   // If the bytecode needs to be reexecuted we need to put
 898   // the arguments back on the stack.
 899   const bool should_reexecute = jvms()->should_reexecute();
 900   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 901 
 902   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 903   // undefined if the bci is different.  This is normal for Parse but it
 904   // should not happen for LibraryCallKit because only one bci is processed.
 905   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 906          "in LibraryCallKit the reexecute bit should not change");
 907 
 908   // If we are guaranteed to throw, we can prune everything but the
 909   // input to the current bytecode.
 910   bool can_prune_locals = false;
 911   uint stack_slots_not_pruned = 0;
 912   int inputs = 0, depth = 0;
 913   if (must_throw) {
 914     assert(method() == youngest_jvms->method(), "sanity");
 915     if (compute_stack_effects(inputs, depth)) {
 916       can_prune_locals = true;
 917       stack_slots_not_pruned = inputs;
 918     }
 919   }
 920 
 921   if (env()->should_retain_local_variables()) {
 922     // At any safepoint, this method can get breakpointed, which would
 923     // then require an immediate deoptimization.
 924     can_prune_locals = false;  // do not prune locals
 925     stack_slots_not_pruned = 0;
 926   }
 927 
 928   // do not scribble on the input jvms
 929   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 930   call->set_jvms(out_jvms); // Start jvms list for call node
 931 
 932   // For a known set of bytecodes, the interpreter should reexecute them if
 933   // deoptimization happens. We set the reexecute state for them here
 934   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 935       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 936 #ifdef ASSERT
 937     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 938     assert(method() == youngest_jvms->method(), "sanity");
 939     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 940     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 941 #endif // ASSERT
 942     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 943   }
 944 
 945   // Presize the call:
 946   DEBUG_ONLY(uint non_debug_edges = call->req());
 947   call->add_req_batch(top(), youngest_jvms->debug_depth());
 948   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 949 
 950   // Set up edges so that the call looks like this:
 951   //  Call [state:] ctl io mem fptr retadr
 952   //       [parms:] parm0 ... parmN
 953   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 954   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 955   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   // Note that caller debug info precedes callee debug info.
 957 
 958   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 959   uint debug_ptr = call->req();
 960 
 961   // Loop over the map input edges associated with jvms, add them
 962   // to the call node, & reset all offsets to match call node array.
 963 
 964   JVMState* callee_jvms = nullptr;
 965   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 966     uint debug_end   = debug_ptr;
 967     uint debug_start = debug_ptr - in_jvms->debug_size();
 968     debug_ptr = debug_start;  // back up the ptr
 969 
 970     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 971     uint j, k, l;
 972     SafePointNode* in_map = in_jvms->map();
 973     out_jvms->set_map(call);
 974 
 975     if (can_prune_locals) {
 976       assert(in_jvms->method() == out_jvms->method(), "sanity");
 977       // If the current throw can reach an exception handler in this JVMS,
 978       // then we must keep everything live that can reach that handler.
 979       // As a quick and dirty approximation, we look for any handlers at all.
 980       if (in_jvms->method()->has_exception_handlers()) {
 981         can_prune_locals = false;
 982       }
 983     }
 984 
 985     // Add the Locals
 986     k = in_jvms->locoff();
 987     l = in_jvms->loc_size();
 988     out_jvms->set_locoff(p);
 989     if (!can_prune_locals) {
 990       for (j = 0; j < l; j++) {
 991         Node* val = in_map->in(k + j);
 992         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 993         if (val->is_InlineType() && val->isa_InlineType()->is_larval() && callee_jvms != nullptr &&
 994             callee_jvms->method()->is_object_constructor() && callee_jvms->method()->holder()->is_inlinetype() && val == in_map->argument(in_jvms, 0)) {
 995           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 996         }
 997         call->set_req(p++, val);
 998       }
 999     } else {
1000       p += l;  // already set to top above by add_req_batch
1001     }
1002 
1003     // Add the Expression Stack
1004     k = in_jvms->stkoff();
1005     l = in_jvms->sp();
1006     out_jvms->set_stkoff(p);
1007     if (!can_prune_locals) {
1008       for (j = 0; j < l; j++) {
1009         Node* val = in_map->in(k + j);
1010         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1011         if (val->is_InlineType() && val->isa_InlineType()->is_larval() && callee_jvms != nullptr &&
1012             callee_jvms->method()->is_object_constructor() && callee_jvms->method()->holder()->is_inlinetype() && val == in_map->argument(in_jvms, 0)) {
1013           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1014         }
1015         call->set_req(p++, val);
1016       }
1017     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1018       // Divide stack into {S0,...,S1}, where S0 is set to top.
1019       uint s1 = stack_slots_not_pruned;
1020       stack_slots_not_pruned = 0;  // for next iteration
1021       if (s1 > l)  s1 = l;
1022       uint s0 = l - s1;
1023       p += s0;  // skip the tops preinstalled by add_req_batch
1024       for (j = s0; j < l; j++)
1025         call->set_req(p++, in_map->in(k+j));
1026     } else {
1027       p += l;  // already set to top above by add_req_batch
1028     }
1029 
1030     // Add the Monitors
1031     k = in_jvms->monoff();
1032     l = in_jvms->mon_size();
1033     out_jvms->set_monoff(p);
1034     for (j = 0; j < l; j++)
1035       call->set_req(p++, in_map->in(k+j));
1036 
1037     // Copy any scalar object fields.
1038     k = in_jvms->scloff();
1039     l = in_jvms->scl_size();
1040     out_jvms->set_scloff(p);
1041     for (j = 0; j < l; j++)
1042       call->set_req(p++, in_map->in(k+j));
1043 
1044     // Finish the new jvms.
1045     out_jvms->set_endoff(p);
1046 
1047     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1048     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1049     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1050     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1051     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1052     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1053 
1054     // Update the two tail pointers in parallel.
1055     callee_jvms = out_jvms;
1056     out_jvms = out_jvms->caller();
1057     in_jvms  = in_jvms->caller();
1058   }
1059 
1060   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1061 
1062   // Test the correctness of JVMState::debug_xxx accessors:
1063   assert(call->jvms()->debug_start() == non_debug_edges, "");
1064   assert(call->jvms()->debug_end()   == call->req(), "");
1065   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1066 }
1067 
1068 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1069   Bytecodes::Code code = java_bc();
1070   if (code == Bytecodes::_wide) {
1071     code = method()->java_code_at_bci(bci() + 1);
1072   }
1073 
1074   if (code != Bytecodes::_illegal) {
1075     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1076   }
1077 
1078   auto rsize = [&]() {
1079     assert(code != Bytecodes::_illegal, "code is illegal!");
1080     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1081     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1082   };
1083 
1084   switch (code) {
1085   case Bytecodes::_illegal:
1086     return false;
1087 
1088   case Bytecodes::_ldc:
1089   case Bytecodes::_ldc_w:
1090   case Bytecodes::_ldc2_w:
1091     inputs = 0;
1092     break;
1093 
1094   case Bytecodes::_dup:         inputs = 1;  break;
1095   case Bytecodes::_dup_x1:      inputs = 2;  break;
1096   case Bytecodes::_dup_x2:      inputs = 3;  break;
1097   case Bytecodes::_dup2:        inputs = 2;  break;
1098   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1099   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1100   case Bytecodes::_swap:        inputs = 2;  break;
1101   case Bytecodes::_arraylength: inputs = 1;  break;
1102 
1103   case Bytecodes::_getstatic:
1104   case Bytecodes::_putstatic:
1105   case Bytecodes::_getfield:
1106   case Bytecodes::_putfield:
1107     {
1108       bool ignored_will_link;
1109       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1110       int      size  = field->type()->size();
1111       bool is_get = (depth >= 0), is_static = (depth & 1);
1112       inputs = (is_static ? 0 : 1);
1113       if (is_get) {
1114         depth = size - inputs;
1115       } else {
1116         inputs += size;        // putxxx pops the value from the stack
1117         depth = - inputs;
1118       }
1119     }
1120     break;
1121 
1122   case Bytecodes::_invokevirtual:
1123   case Bytecodes::_invokespecial:
1124   case Bytecodes::_invokestatic:
1125   case Bytecodes::_invokedynamic:
1126   case Bytecodes::_invokeinterface:
1127     {
1128       bool ignored_will_link;
1129       ciSignature* declared_signature = nullptr;
1130       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1131       assert(declared_signature != nullptr, "cannot be null");
1132       inputs   = declared_signature->arg_size_for_bc(code);
1133       int size = declared_signature->return_type()->size();
1134       depth = size - inputs;
1135     }
1136     break;
1137 
1138   case Bytecodes::_multianewarray:
1139     {
1140       ciBytecodeStream iter(method());
1141       iter.reset_to_bci(bci());
1142       iter.next();
1143       inputs = iter.get_dimensions();
1144       assert(rsize() == 1, "");
1145       depth = 1 - inputs;
1146     }
1147     break;
1148 
1149   case Bytecodes::_ireturn:
1150   case Bytecodes::_lreturn:
1151   case Bytecodes::_freturn:
1152   case Bytecodes::_dreturn:
1153   case Bytecodes::_areturn:
1154     assert(rsize() == -depth, "");
1155     inputs = -depth;
1156     break;
1157 
1158   case Bytecodes::_jsr:
1159   case Bytecodes::_jsr_w:
1160     inputs = 0;
1161     depth  = 1;                  // S.B. depth=1, not zero
1162     break;
1163 
1164   default:
1165     // bytecode produces a typed result
1166     inputs = rsize() - depth;
1167     assert(inputs >= 0, "");
1168     break;
1169   }
1170 
1171 #ifdef ASSERT
1172   // spot check
1173   int outputs = depth + inputs;
1174   assert(outputs >= 0, "sanity");
1175   switch (code) {
1176   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1177   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1178   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1179   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1180   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1181   default:                    break;
1182   }
1183 #endif //ASSERT
1184 
1185   return true;
1186 }
1187 
1188 
1189 
1190 //------------------------------basic_plus_adr---------------------------------
1191 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1192   // short-circuit a common case
1193   if (offset == intcon(0))  return ptr;
1194   return _gvn.transform( new AddPNode(base, ptr, offset) );
1195 }
1196 
1197 Node* GraphKit::ConvI2L(Node* offset) {
1198   // short-circuit a common case
1199   jint offset_con = find_int_con(offset, Type::OffsetBot);
1200   if (offset_con != Type::OffsetBot) {
1201     return longcon((jlong) offset_con);
1202   }
1203   return _gvn.transform( new ConvI2LNode(offset));
1204 }
1205 
1206 Node* GraphKit::ConvI2UL(Node* offset) {
1207   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1208   if (offset_con != (juint) Type::OffsetBot) {
1209     return longcon((julong) offset_con);
1210   }
1211   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1212   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1213   return _gvn.transform( new AndLNode(conv, mask) );
1214 }
1215 
1216 Node* GraphKit::ConvL2I(Node* offset) {
1217   // short-circuit a common case
1218   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1219   if (offset_con != (jlong)Type::OffsetBot) {
1220     return intcon((int) offset_con);
1221   }
1222   return _gvn.transform( new ConvL2INode(offset));
1223 }
1224 
1225 //-------------------------load_object_klass-----------------------------------
1226 Node* GraphKit::load_object_klass(Node* obj) {
1227   // Special-case a fresh allocation to avoid building nodes:
1228   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1229   if (akls != nullptr)  return akls;
1230   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1231   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1232 }
1233 
1234 //-------------------------load_array_length-----------------------------------
1235 Node* GraphKit::load_array_length(Node* array) {
1236   // Special-case a fresh allocation to avoid building nodes:
1237   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1238   Node *alen;
1239   if (alloc == nullptr) {
1240     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1241     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1242   } else {
1243     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1244   }
1245   return alen;
1246 }
1247 
1248 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1249                                    const TypeOopPtr* oop_type,
1250                                    bool replace_length_in_map) {
1251   Node* length = alloc->Ideal_length();
1252   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1253     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1254     if (ccast != length) {
1255       // do not transform ccast here, it might convert to top node for
1256       // negative array length and break assumptions in parsing stage.
1257       _gvn.set_type_bottom(ccast);
1258       record_for_igvn(ccast);
1259       if (replace_length_in_map) {
1260         replace_in_map(length, ccast);
1261       }
1262       return ccast;
1263     }
1264   }
1265   return length;
1266 }
1267 
1268 //------------------------------do_null_check----------------------------------
1269 // Helper function to do a null pointer check.  Returned value is
1270 // the incoming address with null casted away.  You are allowed to use the
1271 // not-null value only if you are control dependent on the test.
1272 #ifndef PRODUCT
1273 extern uint explicit_null_checks_inserted,
1274             explicit_null_checks_elided;
1275 #endif
1276 Node* GraphKit::null_check_common(Node* value, BasicType type,
1277                                   // optional arguments for variations:
1278                                   bool assert_null,
1279                                   Node* *null_control,
1280                                   bool speculative,
1281                                   bool is_init_check) {
1282   assert(!assert_null || null_control == nullptr, "not both at once");
1283   if (stopped())  return top();
1284   NOT_PRODUCT(explicit_null_checks_inserted++);
1285 
1286   if (value->is_InlineType()) {
1287     // Null checking a scalarized but nullable inline type. Check the IsInit
1288     // input instead of the oop input to avoid keeping buffer allocations alive.
1289     InlineTypeNode* vtptr = value->as_InlineType();
1290     while (vtptr->get_oop()->is_InlineType()) {
1291       vtptr = vtptr->get_oop()->as_InlineType();
1292     }
1293     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1294     if (stopped()) {
1295       return top();
1296     }
1297     if (assert_null) {
1298       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1299       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1300       // replace_in_map(value, vtptr);
1301       // return vtptr;
1302       return null();
1303     }
1304     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1305     return cast_not_null(value, do_replace_in_map);
1306   }
1307 
1308   // Construct null check
1309   Node *chk = nullptr;
1310   switch(type) {
1311     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1312     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1313     case T_ARRAY  : // fall through
1314       type = T_OBJECT;  // simplify further tests
1315     case T_OBJECT : {
1316       const Type *t = _gvn.type( value );
1317 
1318       const TypeOopPtr* tp = t->isa_oopptr();
1319       if (tp != nullptr && !tp->is_loaded()
1320           // Only for do_null_check, not any of its siblings:
1321           && !assert_null && null_control == nullptr) {
1322         // Usually, any field access or invocation on an unloaded oop type
1323         // will simply fail to link, since the statically linked class is
1324         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1325         // the static class is loaded but the sharper oop type is not.
1326         // Rather than checking for this obscure case in lots of places,
1327         // we simply observe that a null check on an unloaded class
1328         // will always be followed by a nonsense operation, so we
1329         // can just issue the uncommon trap here.
1330         // Our access to the unloaded class will only be correct
1331         // after it has been loaded and initialized, which requires
1332         // a trip through the interpreter.
1333         ciKlass* klass = tp->unloaded_klass();
1334 #ifndef PRODUCT
1335         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1336 #endif
1337         uncommon_trap(Deoptimization::Reason_unloaded,
1338                       Deoptimization::Action_reinterpret,
1339                       klass, "!loaded");
1340         return top();
1341       }
1342 
1343       if (assert_null) {
1344         // See if the type is contained in NULL_PTR.
1345         // If so, then the value is already null.
1346         if (t->higher_equal(TypePtr::NULL_PTR)) {
1347           NOT_PRODUCT(explicit_null_checks_elided++);
1348           return value;           // Elided null assert quickly!
1349         }
1350       } else {
1351         // See if mixing in the null pointer changes type.
1352         // If so, then the null pointer was not allowed in the original
1353         // type.  In other words, "value" was not-null.
1354         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1355           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1356           NOT_PRODUCT(explicit_null_checks_elided++);
1357           return value;           // Elided null check quickly!
1358         }
1359       }
1360       chk = new CmpPNode( value, null() );
1361       break;
1362     }
1363 
1364     default:
1365       fatal("unexpected type: %s", type2name(type));
1366   }
1367   assert(chk != nullptr, "sanity check");
1368   chk = _gvn.transform(chk);
1369 
1370   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1371   BoolNode *btst = new BoolNode( chk, btest);
1372   Node   *tst = _gvn.transform( btst );
1373 
1374   //-----------
1375   // if peephole optimizations occurred, a prior test existed.
1376   // If a prior test existed, maybe it dominates as we can avoid this test.
1377   if (tst != btst && type == T_OBJECT) {
1378     // At this point we want to scan up the CFG to see if we can
1379     // find an identical test (and so avoid this test altogether).
1380     Node *cfg = control();
1381     int depth = 0;
1382     while( depth < 16 ) {       // Limit search depth for speed
1383       if( cfg->Opcode() == Op_IfTrue &&
1384           cfg->in(0)->in(1) == tst ) {
1385         // Found prior test.  Use "cast_not_null" to construct an identical
1386         // CastPP (and hence hash to) as already exists for the prior test.
1387         // Return that casted value.
1388         if (assert_null) {
1389           replace_in_map(value, null());
1390           return null();  // do not issue the redundant test
1391         }
1392         Node *oldcontrol = control();
1393         set_control(cfg);
1394         Node *res = cast_not_null(value);
1395         set_control(oldcontrol);
1396         NOT_PRODUCT(explicit_null_checks_elided++);
1397         return res;
1398       }
1399       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1400       if (cfg == nullptr)  break;  // Quit at region nodes
1401       depth++;
1402     }
1403   }
1404 
1405   //-----------
1406   // Branch to failure if null
1407   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1408   Deoptimization::DeoptReason reason;
1409   if (assert_null) {
1410     reason = Deoptimization::reason_null_assert(speculative);
1411   } else if (type == T_OBJECT || is_init_check) {
1412     reason = Deoptimization::reason_null_check(speculative);
1413   } else {
1414     reason = Deoptimization::Reason_div0_check;
1415   }
1416   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1417   // ciMethodData::has_trap_at will return a conservative -1 if any
1418   // must-be-null assertion has failed.  This could cause performance
1419   // problems for a method after its first do_null_assert failure.
1420   // Consider using 'Reason_class_check' instead?
1421 
1422   // To cause an implicit null check, we set the not-null probability
1423   // to the maximum (PROB_MAX).  For an explicit check the probability
1424   // is set to a smaller value.
1425   if (null_control != nullptr || too_many_traps(reason)) {
1426     // probability is less likely
1427     ok_prob =  PROB_LIKELY_MAG(3);
1428   } else if (!assert_null &&
1429              (ImplicitNullCheckThreshold > 0) &&
1430              method() != nullptr &&
1431              (method()->method_data()->trap_count(reason)
1432               >= (uint)ImplicitNullCheckThreshold)) {
1433     ok_prob =  PROB_LIKELY_MAG(3);
1434   }
1435 
1436   if (null_control != nullptr) {
1437     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1438     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1439     set_control(      _gvn.transform( new IfTrueNode(iff)));
1440 #ifndef PRODUCT
1441     if (null_true == top()) {
1442       explicit_null_checks_elided++;
1443     }
1444 #endif
1445     (*null_control) = null_true;
1446   } else {
1447     BuildCutout unless(this, tst, ok_prob);
1448     // Check for optimizer eliding test at parse time
1449     if (stopped()) {
1450       // Failure not possible; do not bother making uncommon trap.
1451       NOT_PRODUCT(explicit_null_checks_elided++);
1452     } else if (assert_null) {
1453       uncommon_trap(reason,
1454                     Deoptimization::Action_make_not_entrant,
1455                     nullptr, "assert_null");
1456     } else {
1457       replace_in_map(value, zerocon(type));
1458       builtin_throw(reason);
1459     }
1460   }
1461 
1462   // Must throw exception, fall-thru not possible?
1463   if (stopped()) {
1464     return top();               // No result
1465   }
1466 
1467   if (assert_null) {
1468     // Cast obj to null on this path.
1469     replace_in_map(value, zerocon(type));
1470     return zerocon(type);
1471   }
1472 
1473   // Cast obj to not-null on this path, if there is no null_control.
1474   // (If there is a null_control, a non-null value may come back to haunt us.)
1475   if (type == T_OBJECT) {
1476     Node* cast = cast_not_null(value, false);
1477     if (null_control == nullptr || (*null_control) == top())
1478       replace_in_map(value, cast);
1479     value = cast;
1480   }
1481 
1482   return value;
1483 }
1484 
1485 //------------------------------cast_not_null----------------------------------
1486 // Cast obj to not-null on this path
1487 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1488   if (obj->is_InlineType()) {
1489     // TODO 8325106 Can we avoid cloning?
1490     Node* vt = obj->clone();
1491     vt->as_InlineType()->set_is_init(_gvn);
1492     vt = _gvn.transform(vt);
1493     if (do_replace_in_map) {
1494       replace_in_map(obj, vt);
1495     }
1496     return vt;
1497   }
1498   const Type *t = _gvn.type(obj);
1499   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1500   // Object is already not-null?
1501   if( t == t_not_null ) return obj;
1502 
1503   Node* cast = new CastPPNode(control(), obj,t_not_null);
1504   cast = _gvn.transform( cast );
1505 
1506   // Scan for instances of 'obj' in the current JVM mapping.
1507   // These instances are known to be not-null after the test.
1508   if (do_replace_in_map)
1509     replace_in_map(obj, cast);
1510 
1511   return cast;                  // Return casted value
1512 }
1513 
1514 // Sometimes in intrinsics, we implicitly know an object is not null
1515 // (there's no actual null check) so we can cast it to not null. In
1516 // the course of optimizations, the input to the cast can become null.
1517 // In that case that data path will die and we need the control path
1518 // to become dead as well to keep the graph consistent. So we have to
1519 // add a check for null for which one branch can't be taken. It uses
1520 // an Opaque4 node that will cause the check to be removed after loop
1521 // opts so the test goes away and the compiled code doesn't execute a
1522 // useless check.
1523 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1524   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1525     return value;
1526   }
1527   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1528   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1529   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1530   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1531   _gvn.set_type(iff, iff->Value(&_gvn));
1532   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1533   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1534   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1535   C->root()->add_req(halt);
1536   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1537   set_control(if_t);
1538   return cast_not_null(value, do_replace_in_map);
1539 }
1540 
1541 
1542 //--------------------------replace_in_map-------------------------------------
1543 void GraphKit::replace_in_map(Node* old, Node* neww) {
1544   if (old == neww) {
1545     return;
1546   }
1547 
1548   map()->replace_edge(old, neww);
1549 
1550   // Note: This operation potentially replaces any edge
1551   // on the map.  This includes locals, stack, and monitors
1552   // of the current (innermost) JVM state.
1553 
1554   // don't let inconsistent types from profiling escape this
1555   // method
1556 
1557   const Type* told = _gvn.type(old);
1558   const Type* tnew = _gvn.type(neww);
1559 
1560   if (!tnew->higher_equal(told)) {
1561     return;
1562   }
1563 
1564   map()->record_replaced_node(old, neww);
1565 }
1566 
1567 
1568 //=============================================================================
1569 //--------------------------------memory---------------------------------------
1570 Node* GraphKit::memory(uint alias_idx) {
1571   MergeMemNode* mem = merged_memory();
1572   Node* p = mem->memory_at(alias_idx);
1573   assert(p != mem->empty_memory(), "empty");
1574   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1575   return p;
1576 }
1577 
1578 //-----------------------------reset_memory------------------------------------
1579 Node* GraphKit::reset_memory() {
1580   Node* mem = map()->memory();
1581   // do not use this node for any more parsing!
1582   debug_only( map()->set_memory((Node*)nullptr) );
1583   return _gvn.transform( mem );
1584 }
1585 
1586 //------------------------------set_all_memory---------------------------------
1587 void GraphKit::set_all_memory(Node* newmem) {
1588   Node* mergemem = MergeMemNode::make(newmem);
1589   gvn().set_type_bottom(mergemem);
1590   map()->set_memory(mergemem);
1591 }
1592 
1593 //------------------------------set_all_memory_call----------------------------
1594 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1595   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1596   set_all_memory(newmem);
1597 }
1598 
1599 //=============================================================================
1600 //
1601 // parser factory methods for MemNodes
1602 //
1603 // These are layered on top of the factory methods in LoadNode and StoreNode,
1604 // and integrate with the parser's memory state and _gvn engine.
1605 //
1606 
1607 // factory methods in "int adr_idx"
1608 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1609                           int adr_idx,
1610                           MemNode::MemOrd mo,
1611                           LoadNode::ControlDependency control_dependency,
1612                           bool require_atomic_access,
1613                           bool unaligned,
1614                           bool mismatched,
1615                           bool unsafe,
1616                           uint8_t barrier_data) {
1617   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1618   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1619   debug_only(adr_type = C->get_adr_type(adr_idx));
1620   Node* mem = memory(adr_idx);
1621   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1622   ld = _gvn.transform(ld);
1623 
1624   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1625     // Improve graph before escape analysis and boxing elimination.
1626     record_for_igvn(ld);
1627     if (ld->is_DecodeN()) {
1628       // Also record the actual load (LoadN) in case ld is DecodeN
1629       assert(ld->in(1)->Opcode() == Op_LoadN, "Assumption invalid: input to DecodeN is not LoadN");
1630       record_for_igvn(ld->in(1));
1631     }
1632   }
1633   return ld;
1634 }
1635 
1636 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1637                                 int adr_idx,
1638                                 MemNode::MemOrd mo,
1639                                 bool require_atomic_access,
1640                                 bool unaligned,
1641                                 bool mismatched,
1642                                 bool unsafe,
1643                                 int barrier_data) {
1644   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1645   const TypePtr* adr_type = nullptr;
1646   debug_only(adr_type = C->get_adr_type(adr_idx));
1647   Node *mem = memory(adr_idx);
1648   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1649   if (unaligned) {
1650     st->as_Store()->set_unaligned_access();
1651   }
1652   if (mismatched) {
1653     st->as_Store()->set_mismatched_access();
1654   }
1655   if (unsafe) {
1656     st->as_Store()->set_unsafe_access();
1657   }
1658   st->as_Store()->set_barrier_data(barrier_data);
1659   st = _gvn.transform(st);
1660   set_memory(st, adr_idx);
1661   // Back-to-back stores can only remove intermediate store with DU info
1662   // so push on worklist for optimizer.
1663   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1664     record_for_igvn(st);
1665 
1666   return st;
1667 }
1668 
1669 Node* GraphKit::access_store_at(Node* obj,
1670                                 Node* adr,
1671                                 const TypePtr* adr_type,
1672                                 Node* val,
1673                                 const Type* val_type,
1674                                 BasicType bt,
1675                                 DecoratorSet decorators,
1676                                 bool safe_for_replace) {
1677   // Transformation of a value which could be null pointer (CastPP #null)
1678   // could be delayed during Parse (for example, in adjust_map_after_if()).
1679   // Execute transformation here to avoid barrier generation in such case.
1680   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1681     val = _gvn.makecon(TypePtr::NULL_PTR);
1682   }
1683 
1684   if (stopped()) {
1685     return top(); // Dead path ?
1686   }
1687 
1688   assert(val != nullptr, "not dead path");
1689   if (val->is_InlineType()) {
1690     // Store to non-flat field. Buffer the inline type and make sure
1691     // the store is re-executed if the allocation triggers deoptimization.
1692     PreserveReexecuteState preexecs(this);
1693     jvms()->set_should_reexecute(true);
1694     val = val->as_InlineType()->buffer(this, safe_for_replace);
1695   }
1696 
1697   C2AccessValuePtr addr(adr, adr_type);
1698   C2AccessValue value(val, val_type);
1699   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1700   if (access.is_raw()) {
1701     return _barrier_set->BarrierSetC2::store_at(access, value);
1702   } else {
1703     return _barrier_set->store_at(access, value);
1704   }
1705 }
1706 
1707 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1708                                Node* adr,   // actual address to store val at
1709                                const TypePtr* adr_type,
1710                                const Type* val_type,
1711                                BasicType bt,
1712                                DecoratorSet decorators,
1713                                Node* ctl) {
1714   if (stopped()) {
1715     return top(); // Dead path ?
1716   }
1717 
1718   C2AccessValuePtr addr(adr, adr_type);
1719   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1720   if (access.is_raw()) {
1721     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1722   } else {
1723     return _barrier_set->load_at(access, val_type);
1724   }
1725 }
1726 
1727 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1728                             const Type* val_type,
1729                             BasicType bt,
1730                             DecoratorSet decorators) {
1731   if (stopped()) {
1732     return top(); // Dead path ?
1733   }
1734 
1735   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1736   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1737   if (access.is_raw()) {
1738     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1739   } else {
1740     return _barrier_set->load_at(access, val_type);
1741   }
1742 }
1743 
1744 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1745                                              Node* adr,
1746                                              const TypePtr* adr_type,
1747                                              int alias_idx,
1748                                              Node* expected_val,
1749                                              Node* new_val,
1750                                              const Type* value_type,
1751                                              BasicType bt,
1752                                              DecoratorSet decorators) {
1753   C2AccessValuePtr addr(adr, adr_type);
1754   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1755                         bt, obj, addr, alias_idx);
1756   if (access.is_raw()) {
1757     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1758   } else {
1759     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1760   }
1761 }
1762 
1763 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1764                                               Node* adr,
1765                                               const TypePtr* adr_type,
1766                                               int alias_idx,
1767                                               Node* expected_val,
1768                                               Node* new_val,
1769                                               const Type* value_type,
1770                                               BasicType bt,
1771                                               DecoratorSet decorators) {
1772   C2AccessValuePtr addr(adr, adr_type);
1773   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1774                         bt, obj, addr, alias_idx);
1775   if (access.is_raw()) {
1776     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1777   } else {
1778     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1779   }
1780 }
1781 
1782 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1783                                       Node* adr,
1784                                       const TypePtr* adr_type,
1785                                       int alias_idx,
1786                                       Node* new_val,
1787                                       const Type* value_type,
1788                                       BasicType bt,
1789                                       DecoratorSet decorators) {
1790   C2AccessValuePtr addr(adr, adr_type);
1791   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1792                         bt, obj, addr, alias_idx);
1793   if (access.is_raw()) {
1794     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1795   } else {
1796     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1797   }
1798 }
1799 
1800 Node* GraphKit::access_atomic_add_at(Node* obj,
1801                                      Node* adr,
1802                                      const TypePtr* adr_type,
1803                                      int alias_idx,
1804                                      Node* new_val,
1805                                      const Type* value_type,
1806                                      BasicType bt,
1807                                      DecoratorSet decorators) {
1808   C2AccessValuePtr addr(adr, adr_type);
1809   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1810   if (access.is_raw()) {
1811     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1812   } else {
1813     return _barrier_set->atomic_add_at(access, new_val, value_type);
1814   }
1815 }
1816 
1817 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1818   return _barrier_set->clone(this, src, dst, size, is_array);
1819 }
1820 
1821 //-------------------------array_element_address-------------------------
1822 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1823                                       const TypeInt* sizetype, Node* ctrl) {
1824   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1825   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1826   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1827 
1828   // short-circuit a common case (saves lots of confusing waste motion)
1829   jint idx_con = find_int_con(idx, -1);
1830   if (idx_con >= 0) {
1831     intptr_t offset = header + ((intptr_t)idx_con << shift);
1832     return basic_plus_adr(ary, offset);
1833   }
1834 
1835   // must be correct type for alignment purposes
1836   Node* base  = basic_plus_adr(ary, header);
1837   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1838   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1839   return basic_plus_adr(ary, base, scale);
1840 }
1841 
1842 //-------------------------load_array_element-------------------------
1843 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1844   const Type* elemtype = arytype->elem();
1845   BasicType elembt = elemtype->array_element_basic_type();
1846   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1847   if (elembt == T_NARROWOOP) {
1848     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1849   }
1850   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1851                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1852   return ld;
1853 }
1854 
1855 //-------------------------set_arguments_for_java_call-------------------------
1856 // Arguments (pre-popped from the stack) are taken from the JVMS.
1857 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1858   PreserveReexecuteState preexecs(this);
1859   if (EnableValhalla) {
1860     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1861     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1862     jvms()->set_should_reexecute(true);
1863     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1864     inc_sp(arg_size);
1865   }
1866   // Add the call arguments
1867   const TypeTuple* domain = call->tf()->domain_sig();
1868   uint nargs = domain->cnt();
1869   int arg_num = 0;
1870   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1871     Node* arg = argument(i-TypeFunc::Parms);
1872     const Type* t = domain->field_at(i);
1873     // TODO 8284443 A static call to a mismatched method should still be scalarized
1874     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1875       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1876       if (!arg->is_InlineType()) {
1877         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1878         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1879       }
1880       InlineTypeNode* vt = arg->as_InlineType();
1881       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1882       // If an inline type argument is passed as fields, attach the Method* to the call site
1883       // to be able to access the extended signature later via attached_method_before_pc().
1884       // For example, see CompiledMethod::preserve_callee_argument_oops().
1885       call->set_override_symbolic_info(true);
1886       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1887       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1888       C->dependencies()->assert_evol_method(call->method());
1889       arg_num++;
1890       continue;
1891     } else if (arg->is_InlineType()) {
1892       // Pass inline type argument via oop to callee
1893       arg = arg->as_InlineType()->buffer(this);
1894     }
1895     if (t != Type::HALF) {
1896       arg_num++;
1897     }
1898     call->init_req(idx++, arg);
1899   }
1900 }
1901 
1902 //---------------------------set_edges_for_java_call---------------------------
1903 // Connect a newly created call into the current JVMS.
1904 // A return value node (if any) is returned from set_edges_for_java_call.
1905 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1906 
1907   // Add the predefined inputs:
1908   call->init_req( TypeFunc::Control, control() );
1909   call->init_req( TypeFunc::I_O    , i_o() );
1910   call->init_req( TypeFunc::Memory , reset_memory() );
1911   call->init_req( TypeFunc::FramePtr, frameptr() );
1912   call->init_req( TypeFunc::ReturnAdr, top() );
1913 
1914   add_safepoint_edges(call, must_throw);
1915 
1916   Node* xcall = _gvn.transform(call);
1917 
1918   if (xcall == top()) {
1919     set_control(top());
1920     return;
1921   }
1922   assert(xcall == call, "call identity is stable");
1923 
1924   // Re-use the current map to produce the result.
1925 
1926   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1927   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1928   set_all_memory_call(xcall, separate_io_proj);
1929 
1930   //return xcall;   // no need, caller already has it
1931 }
1932 
1933 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1934   if (stopped())  return top();  // maybe the call folded up?
1935 
1936   // Note:  Since any out-of-line call can produce an exception,
1937   // we always insert an I_O projection from the call into the result.
1938 
1939   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1940 
1941   if (separate_io_proj) {
1942     // The caller requested separate projections be used by the fall
1943     // through and exceptional paths, so replace the projections for
1944     // the fall through path.
1945     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1946     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1947   }
1948 
1949   // Capture the return value, if any.
1950   Node* ret;
1951   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1952     ret = top();
1953   } else if (call->tf()->returns_inline_type_as_fields()) {
1954     // Return of multiple values (inline type fields): we create a
1955     // InlineType node, each field is a projection from the call.
1956     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1957     uint base_input = TypeFunc::Parms;
1958     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
1959   } else {
1960     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1961     ciType* t = call->method()->return_type();
1962     if (t->is_klass()) {
1963       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
1964       if (type->is_inlinetypeptr()) {
1965         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
1966       }
1967     }
1968   }
1969 
1970   // We just called the constructor on a value type receiver. Reload it from the buffer
1971   if (call->method()->is_object_constructor() && call->method()->holder()->is_inlinetype()) {
1972     InlineTypeNode* receiver = call->in(TypeFunc::Parms)->as_InlineType();
1973     assert(receiver->is_larval(), "must be larval");
1974     assert(receiver->is_allocated(&gvn()), "larval must be buffered");
1975     InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, receiver->get_oop(), receiver->bottom_type()->inline_klass(), true);
1976     assert(!reloaded->is_larval(), "should not be larval anymore");
1977     replace_in_map(receiver, reloaded);
1978   }
1979 
1980   return ret;
1981 }
1982 
1983 //--------------------set_predefined_input_for_runtime_call--------------------
1984 // Reading and setting the memory state is way conservative here.
1985 // The real problem is that I am not doing real Type analysis on memory,
1986 // so I cannot distinguish card mark stores from other stores.  Across a GC
1987 // point the Store Barrier and the card mark memory has to agree.  I cannot
1988 // have a card mark store and its barrier split across the GC point from
1989 // either above or below.  Here I get that to happen by reading ALL of memory.
1990 // A better answer would be to separate out card marks from other memory.
1991 // For now, return the input memory state, so that it can be reused
1992 // after the call, if this call has restricted memory effects.
1993 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1994   // Set fixed predefined input arguments
1995   Node* memory = reset_memory();
1996   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1997   call->init_req( TypeFunc::Control,   control()  );
1998   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1999   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2000   call->init_req( TypeFunc::FramePtr,  frameptr() );
2001   call->init_req( TypeFunc::ReturnAdr, top()      );
2002   return memory;
2003 }
2004 
2005 //-------------------set_predefined_output_for_runtime_call--------------------
2006 // Set control and memory (not i_o) from the call.
2007 // If keep_mem is not null, use it for the output state,
2008 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2009 // If hook_mem is null, this call produces no memory effects at all.
2010 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2011 // then only that memory slice is taken from the call.
2012 // In the last case, we must put an appropriate memory barrier before
2013 // the call, so as to create the correct anti-dependencies on loads
2014 // preceding the call.
2015 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2016                                                       Node* keep_mem,
2017                                                       const TypePtr* hook_mem) {
2018   // no i/o
2019   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2020   if (keep_mem) {
2021     // First clone the existing memory state
2022     set_all_memory(keep_mem);
2023     if (hook_mem != nullptr) {
2024       // Make memory for the call
2025       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2026       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2027       // We also use hook_mem to extract specific effects from arraycopy stubs.
2028       set_memory(mem, hook_mem);
2029     }
2030     // ...else the call has NO memory effects.
2031 
2032     // Make sure the call advertises its memory effects precisely.
2033     // This lets us build accurate anti-dependences in gcm.cpp.
2034     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2035            "call node must be constructed correctly");
2036   } else {
2037     assert(hook_mem == nullptr, "");
2038     // This is not a "slow path" call; all memory comes from the call.
2039     set_all_memory_call(call);
2040   }
2041 }
2042 
2043 // Keep track of MergeMems feeding into other MergeMems
2044 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2045   if (!mem->is_MergeMem()) {
2046     return;
2047   }
2048   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2049     Node* use = i.get();
2050     if (use->is_MergeMem()) {
2051       wl.push(use);
2052     }
2053   }
2054 }
2055 
2056 // Replace the call with the current state of the kit.
2057 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2058   JVMState* ejvms = nullptr;
2059   if (has_exceptions()) {
2060     ejvms = transfer_exceptions_into_jvms();
2061   }
2062 
2063   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2064   ReplacedNodes replaced_nodes_exception;
2065   Node* ex_ctl = top();
2066 
2067   SafePointNode* final_state = stop();
2068 
2069   // Find all the needed outputs of this call
2070   CallProjections* callprojs = call->extract_projections(true);
2071 
2072   Unique_Node_List wl;
2073   Node* init_mem = call->in(TypeFunc::Memory);
2074   Node* final_mem = final_state->in(TypeFunc::Memory);
2075   Node* final_ctl = final_state->in(TypeFunc::Control);
2076   Node* final_io = final_state->in(TypeFunc::I_O);
2077 
2078   // Replace all the old call edges with the edges from the inlining result
2079   if (callprojs->fallthrough_catchproj != nullptr) {
2080     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2081   }
2082   if (callprojs->fallthrough_memproj != nullptr) {
2083     if (final_mem->is_MergeMem()) {
2084       // Parser's exits MergeMem was not transformed but may be optimized
2085       final_mem = _gvn.transform(final_mem);
2086     }
2087     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2088     add_mergemem_users_to_worklist(wl, final_mem);
2089   }
2090   if (callprojs->fallthrough_ioproj != nullptr) {
2091     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2092   }
2093 
2094   // Replace the result with the new result if it exists and is used
2095   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2096     // If the inlined code is dead, the result projections for an inline type returned as
2097     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2098     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2099            "unexpected number of results");
2100     C->gvn_replace_by(callprojs->resproj[0], result);
2101   }
2102 
2103   if (ejvms == nullptr) {
2104     // No exception edges to simply kill off those paths
2105     if (callprojs->catchall_catchproj != nullptr) {
2106       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2107     }
2108     if (callprojs->catchall_memproj != nullptr) {
2109       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2110     }
2111     if (callprojs->catchall_ioproj != nullptr) {
2112       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2113     }
2114     // Replace the old exception object with top
2115     if (callprojs->exobj != nullptr) {
2116       C->gvn_replace_by(callprojs->exobj, C->top());
2117     }
2118   } else {
2119     GraphKit ekit(ejvms);
2120 
2121     // Load my combined exception state into the kit, with all phis transformed:
2122     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2123     replaced_nodes_exception = ex_map->replaced_nodes();
2124 
2125     Node* ex_oop = ekit.use_exception_state(ex_map);
2126 
2127     if (callprojs->catchall_catchproj != nullptr) {
2128       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2129       ex_ctl = ekit.control();
2130     }
2131     if (callprojs->catchall_memproj != nullptr) {
2132       Node* ex_mem = ekit.reset_memory();
2133       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2134       add_mergemem_users_to_worklist(wl, ex_mem);
2135     }
2136     if (callprojs->catchall_ioproj != nullptr) {
2137       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2138     }
2139 
2140     // Replace the old exception object with the newly created one
2141     if (callprojs->exobj != nullptr) {
2142       C->gvn_replace_by(callprojs->exobj, ex_oop);
2143     }
2144   }
2145 
2146   // Disconnect the call from the graph
2147   call->disconnect_inputs(C);
2148   C->gvn_replace_by(call, C->top());
2149 
2150   // Clean up any MergeMems that feed other MergeMems since the
2151   // optimizer doesn't like that.
2152   while (wl.size() > 0) {
2153     _gvn.transform(wl.pop());
2154   }
2155 
2156   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2157     replaced_nodes.apply(C, final_ctl);
2158   }
2159   if (!ex_ctl->is_top() && do_replaced_nodes) {
2160     replaced_nodes_exception.apply(C, ex_ctl);
2161   }
2162 }
2163 
2164 
2165 //------------------------------increment_counter------------------------------
2166 // for statistics: increment a VM counter by 1
2167 
2168 void GraphKit::increment_counter(address counter_addr) {
2169   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2170   increment_counter(adr1);
2171 }
2172 
2173 void GraphKit::increment_counter(Node* counter_addr) {
2174   int adr_type = Compile::AliasIdxRaw;
2175   Node* ctrl = control();
2176   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2177   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2178   store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered);
2179 }
2180 
2181 
2182 //------------------------------uncommon_trap----------------------------------
2183 // Bail out to the interpreter in mid-method.  Implemented by calling the
2184 // uncommon_trap blob.  This helper function inserts a runtime call with the
2185 // right debug info.
2186 Node* GraphKit::uncommon_trap(int trap_request,
2187                              ciKlass* klass, const char* comment,
2188                              bool must_throw,
2189                              bool keep_exact_action) {
2190   if (failing())  stop();
2191   if (stopped())  return nullptr; // trap reachable?
2192 
2193   // Note:  If ProfileTraps is true, and if a deopt. actually
2194   // occurs here, the runtime will make sure an MDO exists.  There is
2195   // no need to call method()->ensure_method_data() at this point.
2196 
2197   // Set the stack pointer to the right value for reexecution:
2198   set_sp(reexecute_sp());
2199 
2200 #ifdef ASSERT
2201   if (!must_throw) {
2202     // Make sure the stack has at least enough depth to execute
2203     // the current bytecode.
2204     int inputs, ignored_depth;
2205     if (compute_stack_effects(inputs, ignored_depth)) {
2206       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2207              Bytecodes::name(java_bc()), sp(), inputs);
2208     }
2209   }
2210 #endif
2211 
2212   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2213   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2214 
2215   switch (action) {
2216   case Deoptimization::Action_maybe_recompile:
2217   case Deoptimization::Action_reinterpret:
2218     // Temporary fix for 6529811 to allow virtual calls to be sure they
2219     // get the chance to go from mono->bi->mega
2220     if (!keep_exact_action &&
2221         Deoptimization::trap_request_index(trap_request) < 0 &&
2222         too_many_recompiles(reason)) {
2223       // This BCI is causing too many recompilations.
2224       if (C->log() != nullptr) {
2225         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2226                 Deoptimization::trap_reason_name(reason),
2227                 Deoptimization::trap_action_name(action));
2228       }
2229       action = Deoptimization::Action_none;
2230       trap_request = Deoptimization::make_trap_request(reason, action);
2231     } else {
2232       C->set_trap_can_recompile(true);
2233     }
2234     break;
2235   case Deoptimization::Action_make_not_entrant:
2236     C->set_trap_can_recompile(true);
2237     break;
2238   case Deoptimization::Action_none:
2239   case Deoptimization::Action_make_not_compilable:
2240     break;
2241   default:
2242 #ifdef ASSERT
2243     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2244 #endif
2245     break;
2246   }
2247 
2248   if (TraceOptoParse) {
2249     char buf[100];
2250     tty->print_cr("Uncommon trap %s at bci:%d",
2251                   Deoptimization::format_trap_request(buf, sizeof(buf),
2252                                                       trap_request), bci());
2253   }
2254 
2255   CompileLog* log = C->log();
2256   if (log != nullptr) {
2257     int kid = (klass == nullptr)? -1: log->identify(klass);
2258     log->begin_elem("uncommon_trap bci='%d'", bci());
2259     char buf[100];
2260     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2261                                                           trap_request));
2262     if (kid >= 0)         log->print(" klass='%d'", kid);
2263     if (comment != nullptr)  log->print(" comment='%s'", comment);
2264     log->end_elem();
2265   }
2266 
2267   // Make sure any guarding test views this path as very unlikely
2268   Node *i0 = control()->in(0);
2269   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2270     IfNode *iff = i0->as_If();
2271     float f = iff->_prob;   // Get prob
2272     if (control()->Opcode() == Op_IfTrue) {
2273       if (f > PROB_UNLIKELY_MAG(4))
2274         iff->_prob = PROB_MIN;
2275     } else {
2276       if (f < PROB_LIKELY_MAG(4))
2277         iff->_prob = PROB_MAX;
2278     }
2279   }
2280 
2281   // Clear out dead values from the debug info.
2282   kill_dead_locals();
2283 
2284   // Now insert the uncommon trap subroutine call
2285   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2286   const TypePtr* no_memory_effects = nullptr;
2287   // Pass the index of the class to be loaded
2288   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2289                                  (must_throw ? RC_MUST_THROW : 0),
2290                                  OptoRuntime::uncommon_trap_Type(),
2291                                  call_addr, "uncommon_trap", no_memory_effects,
2292                                  intcon(trap_request));
2293   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2294          "must extract request correctly from the graph");
2295   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2296 
2297   call->set_req(TypeFunc::ReturnAdr, returnadr());
2298   // The debug info is the only real input to this call.
2299 
2300   // Halt-and-catch fire here.  The above call should never return!
2301   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2302                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2303   _gvn.set_type_bottom(halt);
2304   root()->add_req(halt);
2305 
2306   stop_and_kill_map();
2307   return call;
2308 }
2309 
2310 
2311 //--------------------------just_allocated_object------------------------------
2312 // Report the object that was just allocated.
2313 // It must be the case that there are no intervening safepoints.
2314 // We use this to determine if an object is so "fresh" that
2315 // it does not require card marks.
2316 Node* GraphKit::just_allocated_object(Node* current_control) {
2317   Node* ctrl = current_control;
2318   // Object::<init> is invoked after allocation, most of invoke nodes
2319   // will be reduced, but a region node is kept in parse time, we check
2320   // the pattern and skip the region node if it degraded to a copy.
2321   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2322       ctrl->as_Region()->is_copy()) {
2323     ctrl = ctrl->as_Region()->is_copy();
2324   }
2325   if (C->recent_alloc_ctl() == ctrl) {
2326    return C->recent_alloc_obj();
2327   }
2328   return nullptr;
2329 }
2330 
2331 
2332 /**
2333  * Record profiling data exact_kls for Node n with the type system so
2334  * that it can propagate it (speculation)
2335  *
2336  * @param n          node that the type applies to
2337  * @param exact_kls  type from profiling
2338  * @param maybe_null did profiling see null?
2339  *
2340  * @return           node with improved type
2341  */
2342 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2343   const Type* current_type = _gvn.type(n);
2344   assert(UseTypeSpeculation, "type speculation must be on");
2345 
2346   const TypePtr* speculative = current_type->speculative();
2347 
2348   // Should the klass from the profile be recorded in the speculative type?
2349   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2350     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2351     const TypeOopPtr* xtype = tklass->as_instance_type();
2352     assert(xtype->klass_is_exact(), "Should be exact");
2353     // Any reason to believe n is not null (from this profiling or a previous one)?
2354     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2355     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2356     // record the new speculative type's depth
2357     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2358     speculative = speculative->with_inline_depth(jvms()->depth());
2359   } else if (current_type->would_improve_ptr(ptr_kind)) {
2360     // Profiling report that null was never seen so we can change the
2361     // speculative type to non null ptr.
2362     if (ptr_kind == ProfileAlwaysNull) {
2363       speculative = TypePtr::NULL_PTR;
2364     } else {
2365       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2366       const TypePtr* ptr = TypePtr::NOTNULL;
2367       if (speculative != nullptr) {
2368         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2369       } else {
2370         speculative = ptr;
2371       }
2372     }
2373   }
2374 
2375   if (speculative != current_type->speculative()) {
2376     // Build a type with a speculative type (what we think we know
2377     // about the type but will need a guard when we use it)
2378     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2379     // We're changing the type, we need a new CheckCast node to carry
2380     // the new type. The new type depends on the control: what
2381     // profiling tells us is only valid from here as far as we can
2382     // tell.
2383     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2384     cast = _gvn.transform(cast);
2385     replace_in_map(n, cast);
2386     n = cast;
2387   }
2388 
2389   return n;
2390 }
2391 
2392 /**
2393  * Record profiling data from receiver profiling at an invoke with the
2394  * type system so that it can propagate it (speculation)
2395  *
2396  * @param n  receiver node
2397  *
2398  * @return   node with improved type
2399  */
2400 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2401   if (!UseTypeSpeculation) {
2402     return n;
2403   }
2404   ciKlass* exact_kls = profile_has_unique_klass();
2405   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2406   if ((java_bc() == Bytecodes::_checkcast ||
2407        java_bc() == Bytecodes::_instanceof ||
2408        java_bc() == Bytecodes::_aastore) &&
2409       method()->method_data()->is_mature()) {
2410     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2411     if (data != nullptr) {
2412       if (java_bc() == Bytecodes::_aastore) {
2413         ciKlass* array_type = nullptr;
2414         ciKlass* element_type = nullptr;
2415         ProfilePtrKind element_ptr = ProfileMaybeNull;
2416         bool flat_array = true;
2417         bool null_free_array = true;
2418         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2419         exact_kls = element_type;
2420         ptr_kind = element_ptr;
2421       } else {
2422         if (!data->as_BitData()->null_seen()) {
2423           ptr_kind = ProfileNeverNull;
2424         } else {
2425           assert(data->is_ReceiverTypeData(), "bad profile data type");
2426           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2427           uint i = 0;
2428           for (; i < call->row_limit(); i++) {
2429             ciKlass* receiver = call->receiver(i);
2430             if (receiver != nullptr) {
2431               break;
2432             }
2433           }
2434           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2435         }
2436       }
2437     }
2438   }
2439   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2440 }
2441 
2442 /**
2443  * Record profiling data from argument profiling at an invoke with the
2444  * type system so that it can propagate it (speculation)
2445  *
2446  * @param dest_method  target method for the call
2447  * @param bc           what invoke bytecode is this?
2448  */
2449 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2450   if (!UseTypeSpeculation) {
2451     return;
2452   }
2453   const TypeFunc* tf    = TypeFunc::make(dest_method);
2454   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2455   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2456   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2457     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2458     if (is_reference_type(targ->basic_type())) {
2459       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2460       ciKlass* better_type = nullptr;
2461       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2462         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2463       }
2464       i++;
2465     }
2466   }
2467 }
2468 
2469 /**
2470  * Record profiling data from parameter profiling at an invoke with
2471  * the type system so that it can propagate it (speculation)
2472  */
2473 void GraphKit::record_profiled_parameters_for_speculation() {
2474   if (!UseTypeSpeculation) {
2475     return;
2476   }
2477   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2478     if (_gvn.type(local(i))->isa_oopptr()) {
2479       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2480       ciKlass* better_type = nullptr;
2481       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2482         record_profile_for_speculation(local(i), better_type, ptr_kind);
2483       }
2484       j++;
2485     }
2486   }
2487 }
2488 
2489 /**
2490  * Record profiling data from return value profiling at an invoke with
2491  * the type system so that it can propagate it (speculation)
2492  */
2493 void GraphKit::record_profiled_return_for_speculation() {
2494   if (!UseTypeSpeculation) {
2495     return;
2496   }
2497   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2498   ciKlass* better_type = nullptr;
2499   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2500     // If profiling reports a single type for the return value,
2501     // feed it to the type system so it can propagate it as a
2502     // speculative type
2503     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2504   }
2505 }
2506 
2507 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2508   if (Matcher::strict_fp_requires_explicit_rounding) {
2509     // (Note:  TypeFunc::make has a cache that makes this fast.)
2510     const TypeFunc* tf    = TypeFunc::make(dest_method);
2511     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2512     for (int j = 0; j < nargs; j++) {
2513       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2514       if (targ->basic_type() == T_DOUBLE) {
2515         // If any parameters are doubles, they must be rounded before
2516         // the call, dprecision_rounding does gvn.transform
2517         Node *arg = argument(j);
2518         arg = dprecision_rounding(arg);
2519         set_argument(j, arg);
2520       }
2521     }
2522   }
2523 }
2524 
2525 // rounding for strict float precision conformance
2526 Node* GraphKit::precision_rounding(Node* n) {
2527   if (Matcher::strict_fp_requires_explicit_rounding) {
2528 #ifdef IA32
2529     if (UseSSE == 0) {
2530       return _gvn.transform(new RoundFloatNode(0, n));
2531     }
2532 #else
2533     Unimplemented();
2534 #endif // IA32
2535   }
2536   return n;
2537 }
2538 
2539 // rounding for strict double precision conformance
2540 Node* GraphKit::dprecision_rounding(Node *n) {
2541   if (Matcher::strict_fp_requires_explicit_rounding) {
2542 #ifdef IA32
2543     if (UseSSE < 2) {
2544       return _gvn.transform(new RoundDoubleNode(0, n));
2545     }
2546 #else
2547     Unimplemented();
2548 #endif // IA32
2549   }
2550   return n;
2551 }
2552 
2553 //=============================================================================
2554 // Generate a fast path/slow path idiom.  Graph looks like:
2555 // [foo] indicates that 'foo' is a parameter
2556 //
2557 //              [in]     null
2558 //                 \    /
2559 //                  CmpP
2560 //                  Bool ne
2561 //                   If
2562 //                  /  \
2563 //              True    False-<2>
2564 //              / |
2565 //             /  cast_not_null
2566 //           Load  |    |   ^
2567 //        [fast_test]   |   |
2568 // gvn to   opt_test    |   |
2569 //          /    \      |  <1>
2570 //      True     False  |
2571 //        |         \\  |
2572 //   [slow_call]     \[fast_result]
2573 //    Ctl   Val       \      \
2574 //     |               \      \
2575 //    Catch       <1>   \      \
2576 //   /    \        ^     \      \
2577 //  Ex    No_Ex    |      \      \
2578 //  |       \   \  |       \ <2>  \
2579 //  ...      \  [slow_res] |  |    \   [null_result]
2580 //            \         \--+--+---  |  |
2581 //             \           | /    \ | /
2582 //              --------Region     Phi
2583 //
2584 //=============================================================================
2585 // Code is structured as a series of driver functions all called 'do_XXX' that
2586 // call a set of helper functions.  Helper functions first, then drivers.
2587 
2588 //------------------------------null_check_oop---------------------------------
2589 // Null check oop.  Set null-path control into Region in slot 3.
2590 // Make a cast-not-nullness use the other not-null control.  Return cast.
2591 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2592                                bool never_see_null,
2593                                bool safe_for_replace,
2594                                bool speculative) {
2595   // Initial null check taken path
2596   (*null_control) = top();
2597   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2598 
2599   // Generate uncommon_trap:
2600   if (never_see_null && (*null_control) != top()) {
2601     // If we see an unexpected null at a check-cast we record it and force a
2602     // recompile; the offending check-cast will be compiled to handle nulls.
2603     // If we see more than one offending BCI, then all checkcasts in the
2604     // method will be compiled to handle nulls.
2605     PreserveJVMState pjvms(this);
2606     set_control(*null_control);
2607     replace_in_map(value, null());
2608     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2609     uncommon_trap(reason,
2610                   Deoptimization::Action_make_not_entrant);
2611     (*null_control) = top();    // null path is dead
2612   }
2613   if ((*null_control) == top() && safe_for_replace) {
2614     replace_in_map(value, cast);
2615   }
2616 
2617   // Cast away null-ness on the result
2618   return cast;
2619 }
2620 
2621 //------------------------------opt_iff----------------------------------------
2622 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2623 // Return slow-path control.
2624 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2625   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2626 
2627   // Fast path taken; set region slot 2
2628   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2629   region->init_req(2,fast_taken); // Capture fast-control
2630 
2631   // Fast path not-taken, i.e. slow path
2632   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2633   return slow_taken;
2634 }
2635 
2636 //-----------------------------make_runtime_call-------------------------------
2637 Node* GraphKit::make_runtime_call(int flags,
2638                                   const TypeFunc* call_type, address call_addr,
2639                                   const char* call_name,
2640                                   const TypePtr* adr_type,
2641                                   // The following parms are all optional.
2642                                   // The first null ends the list.
2643                                   Node* parm0, Node* parm1,
2644                                   Node* parm2, Node* parm3,
2645                                   Node* parm4, Node* parm5,
2646                                   Node* parm6, Node* parm7) {
2647   assert(call_addr != nullptr, "must not call null targets");
2648 
2649   // Slow-path call
2650   bool is_leaf = !(flags & RC_NO_LEAF);
2651   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2652   if (call_name == nullptr) {
2653     assert(!is_leaf, "must supply name for leaf");
2654     call_name = OptoRuntime::stub_name(call_addr);
2655   }
2656   CallNode* call;
2657   if (!is_leaf) {
2658     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2659   } else if (flags & RC_NO_FP) {
2660     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2661   } else  if (flags & RC_VECTOR){
2662     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2663     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2664   } else {
2665     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2666   }
2667 
2668   // The following is similar to set_edges_for_java_call,
2669   // except that the memory effects of the call are restricted to AliasIdxRaw.
2670 
2671   // Slow path call has no side-effects, uses few values
2672   bool wide_in  = !(flags & RC_NARROW_MEM);
2673   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2674 
2675   Node* prev_mem = nullptr;
2676   if (wide_in) {
2677     prev_mem = set_predefined_input_for_runtime_call(call);
2678   } else {
2679     assert(!wide_out, "narrow in => narrow out");
2680     Node* narrow_mem = memory(adr_type);
2681     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2682   }
2683 
2684   // Hook each parm in order.  Stop looking at the first null.
2685   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2686   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2687   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2688   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2689   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2690   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2691   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2692   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2693   /* close each nested if ===> */  } } } } } } } }
2694   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2695 
2696   if (!is_leaf) {
2697     // Non-leaves can block and take safepoints:
2698     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2699   }
2700   // Non-leaves can throw exceptions:
2701   if (has_io) {
2702     call->set_req(TypeFunc::I_O, i_o());
2703   }
2704 
2705   if (flags & RC_UNCOMMON) {
2706     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2707     // (An "if" probability corresponds roughly to an unconditional count.
2708     // Sort of.)
2709     call->set_cnt(PROB_UNLIKELY_MAG(4));
2710   }
2711 
2712   Node* c = _gvn.transform(call);
2713   assert(c == call, "cannot disappear");
2714 
2715   if (wide_out) {
2716     // Slow path call has full side-effects.
2717     set_predefined_output_for_runtime_call(call);
2718   } else {
2719     // Slow path call has few side-effects, and/or sets few values.
2720     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2721   }
2722 
2723   if (has_io) {
2724     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2725   }
2726   return call;
2727 
2728 }
2729 
2730 // i2b
2731 Node* GraphKit::sign_extend_byte(Node* in) {
2732   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2733   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2734 }
2735 
2736 // i2s
2737 Node* GraphKit::sign_extend_short(Node* in) {
2738   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2739   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2740 }
2741 
2742 
2743 //------------------------------merge_memory-----------------------------------
2744 // Merge memory from one path into the current memory state.
2745 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2746   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2747     Node* old_slice = mms.force_memory();
2748     Node* new_slice = mms.memory2();
2749     if (old_slice != new_slice) {
2750       PhiNode* phi;
2751       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2752         if (mms.is_empty()) {
2753           // clone base memory Phi's inputs for this memory slice
2754           assert(old_slice == mms.base_memory(), "sanity");
2755           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2756           _gvn.set_type(phi, Type::MEMORY);
2757           for (uint i = 1; i < phi->req(); i++) {
2758             phi->init_req(i, old_slice->in(i));
2759           }
2760         } else {
2761           phi = old_slice->as_Phi(); // Phi was generated already
2762         }
2763       } else {
2764         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2765         _gvn.set_type(phi, Type::MEMORY);
2766       }
2767       phi->set_req(new_path, new_slice);
2768       mms.set_memory(phi);
2769     }
2770   }
2771 }
2772 
2773 //------------------------------make_slow_call_ex------------------------------
2774 // Make the exception handler hookups for the slow call
2775 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2776   if (stopped())  return;
2777 
2778   // Make a catch node with just two handlers:  fall-through and catch-all
2779   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2780   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2781   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2782   _gvn.set_type_bottom(norm);
2783   C->record_for_igvn(norm);
2784   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2785 
2786   { PreserveJVMState pjvms(this);
2787     set_control(excp);
2788     set_i_o(i_o);
2789 
2790     if (excp != top()) {
2791       if (deoptimize) {
2792         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2793         uncommon_trap(Deoptimization::Reason_unhandled,
2794                       Deoptimization::Action_none);
2795       } else {
2796         // Create an exception state also.
2797         // Use an exact type if the caller has a specific exception.
2798         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2799         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2800         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2801       }
2802     }
2803   }
2804 
2805   // Get the no-exception control from the CatchNode.
2806   set_control(norm);
2807 }
2808 
2809 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2810   Node* cmp = nullptr;
2811   switch(bt) {
2812   case T_INT: cmp = new CmpINode(in1, in2); break;
2813   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2814   default: fatal("unexpected comparison type %s", type2name(bt));
2815   }
2816   cmp = gvn.transform(cmp);
2817   Node* bol = gvn.transform(new BoolNode(cmp, test));
2818   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2819   gvn.transform(iff);
2820   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2821   return iff;
2822 }
2823 
2824 //-------------------------------gen_subtype_check-----------------------------
2825 // Generate a subtyping check.  Takes as input the subtype and supertype.
2826 // Returns 2 values: sets the default control() to the true path and returns
2827 // the false path.  Only reads invariant memory; sets no (visible) memory.
2828 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2829 // but that's not exposed to the optimizer.  This call also doesn't take in an
2830 // Object; if you wish to check an Object you need to load the Object's class
2831 // prior to coming here.
2832 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2833                                ciMethod* method, int bci) {
2834   Compile* C = gvn.C;
2835   if ((*ctrl)->is_top()) {
2836     return C->top();
2837   }
2838 
2839   // Fast check for identical types, perhaps identical constants.
2840   // The types can even be identical non-constants, in cases
2841   // involving Array.newInstance, Object.clone, etc.
2842   if (subklass == superklass)
2843     return C->top();             // false path is dead; no test needed.
2844 
2845   if (gvn.type(superklass)->singleton()) {
2846     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2847     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2848 
2849     // In the common case of an exact superklass, try to fold up the
2850     // test before generating code.  You may ask, why not just generate
2851     // the code and then let it fold up?  The answer is that the generated
2852     // code will necessarily include null checks, which do not always
2853     // completely fold away.  If they are also needless, then they turn
2854     // into a performance loss.  Example:
2855     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2856     // Here, the type of 'fa' is often exact, so the store check
2857     // of fa[1]=x will fold up, without testing the nullness of x.
2858     switch (C->static_subtype_check(superk, subk)) {
2859     case Compile::SSC_always_false:
2860       {
2861         Node* always_fail = *ctrl;
2862         *ctrl = gvn.C->top();
2863         return always_fail;
2864       }
2865     case Compile::SSC_always_true:
2866       return C->top();
2867     case Compile::SSC_easy_test:
2868       {
2869         // Just do a direct pointer compare and be done.
2870         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2871         *ctrl = gvn.transform(new IfTrueNode(iff));
2872         return gvn.transform(new IfFalseNode(iff));
2873       }
2874     case Compile::SSC_full_test:
2875       break;
2876     default:
2877       ShouldNotReachHere();
2878     }
2879   }
2880 
2881   // %%% Possible further optimization:  Even if the superklass is not exact,
2882   // if the subklass is the unique subtype of the superklass, the check
2883   // will always succeed.  We could leave a dependency behind to ensure this.
2884 
2885   // First load the super-klass's check-offset
2886   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2887   Node* m = C->immutable_memory();
2888   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2889   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2890   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2891   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2892   bool might_be_cache = (chk_off_con == cacheoff_con);
2893 
2894   // Load from the sub-klass's super-class display list, or a 1-word cache of
2895   // the secondary superclass list, or a failing value with a sentinel offset
2896   // if the super-klass is an interface or exceptionally deep in the Java
2897   // hierarchy and we have to scan the secondary superclass list the hard way.
2898   // Worst-case type is a little odd: null is allowed as a result (usually
2899   // klass loads can never produce a null).
2900   Node *chk_off_X = chk_off;
2901 #ifdef _LP64
2902   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2903 #endif
2904   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2905   // For some types like interfaces the following loadKlass is from a 1-word
2906   // cache which is mutable so can't use immutable memory.  Other
2907   // types load from the super-class display table which is immutable.
2908   Node *kmem = C->immutable_memory();
2909   // secondary_super_cache is not immutable but can be treated as such because:
2910   // - no ideal node writes to it in a way that could cause an
2911   //   incorrect/missed optimization of the following Load.
2912   // - it's a cache so, worse case, not reading the latest value
2913   //   wouldn't cause incorrect execution
2914   if (might_be_cache && mem != nullptr) {
2915     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2916   }
2917   Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2918 
2919   // Compile speed common case: ARE a subtype and we canNOT fail
2920   if (superklass == nkls) {
2921     return C->top();             // false path is dead; no test needed.
2922   }
2923 
2924   // Gather the various success & failures here
2925   RegionNode* r_not_subtype = new RegionNode(3);
2926   gvn.record_for_igvn(r_not_subtype);
2927   RegionNode* r_ok_subtype = new RegionNode(4);
2928   gvn.record_for_igvn(r_ok_subtype);
2929 
2930   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2931   // SubTypeCheck node
2932   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2933     ciCallProfile profile = method->call_profile_at_bci(bci);
2934     float total_prob = 0;
2935     for (int i = 0; profile.has_receiver(i); ++i) {
2936       float prob = profile.receiver_prob(i);
2937       total_prob += prob;
2938     }
2939     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2940       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2941       for (int i = 0; profile.has_receiver(i); ++i) {
2942         ciKlass* klass = profile.receiver(i);
2943         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2944         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2945         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2946           continue;
2947         }
2948         float prob = profile.receiver_prob(i);
2949         ConNode* klass_node = gvn.makecon(klass_t);
2950         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2951         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2952 
2953         if (result == Compile::SSC_always_true) {
2954           r_ok_subtype->add_req(iftrue);
2955         } else {
2956           assert(result == Compile::SSC_always_false, "");
2957           r_not_subtype->add_req(iftrue);
2958         }
2959         *ctrl = gvn.transform(new IfFalseNode(iff));
2960       }
2961     }
2962   }
2963 
2964   // See if we get an immediate positive hit.  Happens roughly 83% of the
2965   // time.  Test to see if the value loaded just previously from the subklass
2966   // is exactly the superklass.
2967   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2968   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2969   *ctrl = gvn.transform(new IfFalseNode(iff1));
2970 
2971   // Compile speed common case: Check for being deterministic right now.  If
2972   // chk_off is a constant and not equal to cacheoff then we are NOT a
2973   // subklass.  In this case we need exactly the 1 test above and we can
2974   // return those results immediately.
2975   if (!might_be_cache) {
2976     Node* not_subtype_ctrl = *ctrl;
2977     *ctrl = iftrue1; // We need exactly the 1 test above
2978     PhaseIterGVN* igvn = gvn.is_IterGVN();
2979     if (igvn != nullptr) {
2980       igvn->remove_globally_dead_node(r_ok_subtype);
2981       igvn->remove_globally_dead_node(r_not_subtype);
2982     }
2983     return not_subtype_ctrl;
2984   }
2985 
2986   r_ok_subtype->init_req(1, iftrue1);
2987 
2988   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2989   // is roughly 63% of the remaining cases).  Test to see if the loaded
2990   // check-offset points into the subklass display list or the 1-element
2991   // cache.  If it points to the display (and NOT the cache) and the display
2992   // missed then it's not a subtype.
2993   Node *cacheoff = gvn.intcon(cacheoff_con);
2994   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2995   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2996   *ctrl = gvn.transform(new IfFalseNode(iff2));
2997 
2998   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2999   // No performance impact (too rare) but allows sharing of secondary arrays
3000   // which has some footprint reduction.
3001   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3002   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3003   *ctrl = gvn.transform(new IfFalseNode(iff3));
3004 
3005   // -- Roads not taken here: --
3006   // We could also have chosen to perform the self-check at the beginning
3007   // of this code sequence, as the assembler does.  This would not pay off
3008   // the same way, since the optimizer, unlike the assembler, can perform
3009   // static type analysis to fold away many successful self-checks.
3010   // Non-foldable self checks work better here in second position, because
3011   // the initial primary superclass check subsumes a self-check for most
3012   // types.  An exception would be a secondary type like array-of-interface,
3013   // which does not appear in its own primary supertype display.
3014   // Finally, we could have chosen to move the self-check into the
3015   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3016   // dependent manner.  But it is worthwhile to have the check here,
3017   // where it can be perhaps be optimized.  The cost in code space is
3018   // small (register compare, branch).
3019 
3020   // Now do a linear scan of the secondary super-klass array.  Again, no real
3021   // performance impact (too rare) but it's gotta be done.
3022   // Since the code is rarely used, there is no penalty for moving it
3023   // out of line, and it can only improve I-cache density.
3024   // The decision to inline or out-of-line this final check is platform
3025   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3026   Node* psc = gvn.transform(
3027     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3028 
3029   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3030   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3031   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3032 
3033   // Return false path; set default control to true path.
3034   *ctrl = gvn.transform(r_ok_subtype);
3035   return gvn.transform(r_not_subtype);
3036 }
3037 
3038 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3039   const Type* sub_t = _gvn.type(obj_or_subklass);
3040   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3041     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3042     obj_or_subklass = makecon(sub_t);
3043   }
3044   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
3045                               ExpandSubTypeCheckAtParseTime; // forced expansion
3046   if (expand_subtype_check) {
3047     MergeMemNode* mem = merged_memory();
3048     Node* ctrl = control();
3049     Node* subklass = obj_or_subklass;
3050     if (!sub_t->isa_klassptr()) {
3051       subklass = load_object_klass(obj_or_subklass);
3052     }
3053 
3054     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3055     set_control(ctrl);
3056     return n;
3057   }
3058 
3059   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3060   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3061   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3062   set_control(_gvn.transform(new IfTrueNode(iff)));
3063   return _gvn.transform(new IfFalseNode(iff));
3064 }
3065 
3066 // Profile-driven exact type check:
3067 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3068                                     float prob, Node* *casted_receiver) {
3069   assert(!klass->is_interface(), "no exact type check on interfaces");
3070   Node* fail = top();
3071   const Type* rec_t = _gvn.type(receiver);
3072   if (rec_t->is_inlinetypeptr()) {
3073     if (klass->equals(rec_t->inline_klass())) {
3074       (*casted_receiver) = receiver; // Always passes
3075     } else {
3076       (*casted_receiver) = top();    // Always fails
3077       fail = control();
3078       set_control(top());
3079     }
3080     return fail;
3081   }
3082   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3083   Node* recv_klass = load_object_klass(receiver);
3084   fail = type_check(recv_klass, tklass, prob);
3085 
3086   if (!stopped()) {
3087     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3088     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3089     assert(recv_xtype->klass_is_exact(), "");
3090 
3091     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3092       // Subsume downstream occurrences of receiver with a cast to
3093       // recv_xtype, since now we know what the type will be.
3094       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3095       Node* res = _gvn.transform(cast);
3096       if (recv_xtype->is_inlinetypeptr()) {
3097         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3098         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3099       }
3100       (*casted_receiver) = res;
3101       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3102       // (User must make the replace_in_map call.)
3103     }
3104   }
3105 
3106   return fail;
3107 }
3108 
3109 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3110                            float prob) {
3111   Node* want_klass = makecon(tklass);
3112   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3113   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3114   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3115   set_control(_gvn.transform(new IfTrueNode (iff)));
3116   Node* fail = _gvn.transform(new IfFalseNode(iff));
3117   return fail;
3118 }
3119 
3120 //------------------------------subtype_check_receiver-------------------------
3121 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3122                                        Node** casted_receiver) {
3123   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3124   Node* want_klass = makecon(tklass);
3125 
3126   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3127 
3128   // Ignore interface type information until interface types are properly tracked.
3129   if (!stopped() && !klass->is_interface()) {
3130     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3131     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3132     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3133       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3134       if (recv_type->is_inlinetypeptr()) {
3135         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3136       }
3137       (*casted_receiver) = cast;
3138     }
3139   }
3140 
3141   return slow_ctl;
3142 }
3143 
3144 //------------------------------seems_never_null-------------------------------
3145 // Use null_seen information if it is available from the profile.
3146 // If we see an unexpected null at a type check we record it and force a
3147 // recompile; the offending check will be recompiled to handle nulls.
3148 // If we see several offending BCIs, then all checks in the
3149 // method will be recompiled.
3150 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3151   speculating = !_gvn.type(obj)->speculative_maybe_null();
3152   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3153   if (UncommonNullCast               // Cutout for this technique
3154       && obj != null()               // And not the -Xcomp stupid case?
3155       && !too_many_traps(reason)
3156       ) {
3157     if (speculating) {
3158       return true;
3159     }
3160     if (data == nullptr)
3161       // Edge case:  no mature data.  Be optimistic here.
3162       return true;
3163     // If the profile has not seen a null, assume it won't happen.
3164     assert(java_bc() == Bytecodes::_checkcast ||
3165            java_bc() == Bytecodes::_instanceof ||
3166            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3167     return !data->as_BitData()->null_seen();
3168   }
3169   speculating = false;
3170   return false;
3171 }
3172 
3173 void GraphKit::guard_klass_being_initialized(Node* klass) {
3174   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3175   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3176   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3177                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3178                                     T_BYTE, MemNode::unordered);
3179   init_state = _gvn.transform(init_state);
3180 
3181   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3182 
3183   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3184   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3185 
3186   { BuildCutout unless(this, tst, PROB_MAX);
3187     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3188   }
3189 }
3190 
3191 void GraphKit::guard_init_thread(Node* klass) {
3192   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3193   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3194 
3195   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3196                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3197                                      T_ADDRESS, MemNode::unordered);
3198   init_thread = _gvn.transform(init_thread);
3199 
3200   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3201 
3202   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3203   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3204 
3205   { BuildCutout unless(this, tst, PROB_MAX);
3206     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3207   }
3208 }
3209 
3210 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3211   if (ik->is_being_initialized()) {
3212     if (C->needs_clinit_barrier(ik, context)) {
3213       Node* klass = makecon(TypeKlassPtr::make(ik));
3214       guard_klass_being_initialized(klass);
3215       guard_init_thread(klass);
3216       insert_mem_bar(Op_MemBarCPUOrder);
3217     }
3218   } else if (ik->is_initialized()) {
3219     return; // no barrier needed
3220   } else {
3221     uncommon_trap(Deoptimization::Reason_uninitialized,
3222                   Deoptimization::Action_reinterpret,
3223                   nullptr);
3224   }
3225 }
3226 
3227 //------------------------maybe_cast_profiled_receiver-------------------------
3228 // If the profile has seen exactly one type, narrow to exactly that type.
3229 // Subsequent type checks will always fold up.
3230 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3231                                              const TypeKlassPtr* require_klass,
3232                                              ciKlass* spec_klass,
3233                                              bool safe_for_replace) {
3234   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3235 
3236   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3237 
3238   // Make sure we haven't already deoptimized from this tactic.
3239   if (too_many_traps_or_recompiles(reason))
3240     return nullptr;
3241 
3242   // (No, this isn't a call, but it's enough like a virtual call
3243   // to use the same ciMethod accessor to get the profile info...)
3244   // If we have a speculative type use it instead of profiling (which
3245   // may not help us)
3246   ciKlass* exact_kls = spec_klass;
3247   if (exact_kls == nullptr) {
3248     if (java_bc() == Bytecodes::_aastore) {
3249       ciKlass* array_type = nullptr;
3250       ciKlass* element_type = nullptr;
3251       ProfilePtrKind element_ptr = ProfileMaybeNull;
3252       bool flat_array = true;
3253       bool null_free_array = true;
3254       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3255       exact_kls = element_type;
3256     } else {
3257       exact_kls = profile_has_unique_klass();
3258     }
3259   }
3260   if (exact_kls != nullptr) {// no cast failures here
3261     if (require_klass == nullptr ||
3262         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3263       // If we narrow the type to match what the type profile sees or
3264       // the speculative type, we can then remove the rest of the
3265       // cast.
3266       // This is a win, even if the exact_kls is very specific,
3267       // because downstream operations, such as method calls,
3268       // will often benefit from the sharper type.
3269       Node* exact_obj = not_null_obj; // will get updated in place...
3270       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3271                                             &exact_obj);
3272       { PreserveJVMState pjvms(this);
3273         set_control(slow_ctl);
3274         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3275       }
3276       if (safe_for_replace) {
3277         replace_in_map(not_null_obj, exact_obj);
3278       }
3279       return exact_obj;
3280     }
3281     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3282   }
3283 
3284   return nullptr;
3285 }
3286 
3287 /**
3288  * Cast obj to type and emit guard unless we had too many traps here
3289  * already
3290  *
3291  * @param obj       node being casted
3292  * @param type      type to cast the node to
3293  * @param not_null  true if we know node cannot be null
3294  */
3295 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3296                                         ciKlass* type,
3297                                         bool not_null) {
3298   if (stopped()) {
3299     return obj;
3300   }
3301 
3302   // type is null if profiling tells us this object is always null
3303   if (type != nullptr) {
3304     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3305     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3306 
3307     if (!too_many_traps_or_recompiles(null_reason) &&
3308         !too_many_traps_or_recompiles(class_reason)) {
3309       Node* not_null_obj = nullptr;
3310       // not_null is true if we know the object is not null and
3311       // there's no need for a null check
3312       if (!not_null) {
3313         Node* null_ctl = top();
3314         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3315         assert(null_ctl->is_top(), "no null control here");
3316       } else {
3317         not_null_obj = obj;
3318       }
3319 
3320       Node* exact_obj = not_null_obj;
3321       ciKlass* exact_kls = type;
3322       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3323                                             &exact_obj);
3324       {
3325         PreserveJVMState pjvms(this);
3326         set_control(slow_ctl);
3327         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3328       }
3329       replace_in_map(not_null_obj, exact_obj);
3330       obj = exact_obj;
3331     }
3332   } else {
3333     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3334       Node* exact_obj = null_assert(obj);
3335       replace_in_map(obj, exact_obj);
3336       obj = exact_obj;
3337     }
3338   }
3339   return obj;
3340 }
3341 
3342 //-------------------------------gen_instanceof--------------------------------
3343 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3344 // and the reflective instance-of call.
3345 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3346   kill_dead_locals();           // Benefit all the uncommon traps
3347   assert( !stopped(), "dead parse path should be checked in callers" );
3348   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3349          "must check for not-null not-dead klass in callers");
3350 
3351   // Make the merge point
3352   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3353   RegionNode* region = new RegionNode(PATH_LIMIT);
3354   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3355   C->set_has_split_ifs(true); // Has chance for split-if optimization
3356 
3357   ciProfileData* data = nullptr;
3358   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3359     data = method()->method_data()->bci_to_data(bci());
3360   }
3361   bool speculative_not_null = false;
3362   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3363                          && seems_never_null(obj, data, speculative_not_null));
3364 
3365   // Null check; get casted pointer; set region slot 3
3366   Node* null_ctl = top();
3367   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3368 
3369   // If not_null_obj is dead, only null-path is taken
3370   if (stopped()) {              // Doing instance-of on a null?
3371     set_control(null_ctl);
3372     return intcon(0);
3373   }
3374   region->init_req(_null_path, null_ctl);
3375   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3376   if (null_ctl == top()) {
3377     // Do this eagerly, so that pattern matches like is_diamond_phi
3378     // will work even during parsing.
3379     assert(_null_path == PATH_LIMIT-1, "delete last");
3380     region->del_req(_null_path);
3381     phi   ->del_req(_null_path);
3382   }
3383 
3384   // Do we know the type check always succeed?
3385   bool known_statically = false;
3386   if (_gvn.type(superklass)->singleton()) {
3387     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3388     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3389     if (subk != nullptr && subk->is_loaded()) {
3390       int static_res = C->static_subtype_check(superk, subk);
3391       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3392     }
3393   }
3394 
3395   if (!known_statically) {
3396     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3397     // We may not have profiling here or it may not help us. If we
3398     // have a speculative type use it to perform an exact cast.
3399     ciKlass* spec_obj_type = obj_type->speculative_type();
3400     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3401       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3402       if (stopped()) {            // Profile disagrees with this path.
3403         set_control(null_ctl);    // Null is the only remaining possibility.
3404         return intcon(0);
3405       }
3406       if (cast_obj != nullptr) {
3407         not_null_obj = cast_obj;
3408       }
3409     }
3410   }
3411 
3412   // Generate the subtype check
3413   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3414 
3415   // Plug in the success path to the general merge in slot 1.
3416   region->init_req(_obj_path, control());
3417   phi   ->init_req(_obj_path, intcon(1));
3418 
3419   // Plug in the failing path to the general merge in slot 2.
3420   region->init_req(_fail_path, not_subtype_ctrl);
3421   phi   ->init_req(_fail_path, intcon(0));
3422 
3423   // Return final merged results
3424   set_control( _gvn.transform(region) );
3425   record_for_igvn(region);
3426 
3427   // If we know the type check always succeeds then we don't use the
3428   // profiling data at this bytecode. Don't lose it, feed it to the
3429   // type system as a speculative type.
3430   if (safe_for_replace) {
3431     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3432     replace_in_map(obj, casted_obj);
3433   }
3434 
3435   return _gvn.transform(phi);
3436 }
3437 
3438 //-------------------------------gen_checkcast---------------------------------
3439 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3440 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3441 // uncommon-trap paths work.  Adjust stack after this call.
3442 // If failure_control is supplied and not null, it is filled in with
3443 // the control edge for the cast failure.  Otherwise, an appropriate
3444 // uncommon trap or exception is thrown.
3445 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3446   kill_dead_locals();           // Benefit all the uncommon traps
3447   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3448   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3449   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3450   bool safe_for_replace = (failure_control == nullptr);
3451   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3452 
3453   // Fast cutout:  Check the case that the cast is vacuously true.
3454   // This detects the common cases where the test will short-circuit
3455   // away completely.  We do this before we perform the null check,
3456   // because if the test is going to turn into zero code, we don't
3457   // want a residual null check left around.  (Causes a slowdown,
3458   // for example, in some objArray manipulations, such as a[i]=a[j].)
3459   if (improved_klass_ptr_type->singleton()) {
3460     const TypeKlassPtr* kptr = nullptr;
3461     const Type* t = _gvn.type(obj);
3462     if (t->isa_oop_ptr()) {
3463       kptr = t->is_oopptr()->as_klass_type();
3464     } else if (obj->is_InlineType()) {
3465       ciInlineKlass* vk = t->inline_klass();
3466       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3467     }
3468     if (kptr != nullptr) {
3469       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3470       case Compile::SSC_always_true:
3471         // If we know the type check always succeed then we don't use
3472         // the profiling data at this bytecode. Don't lose it, feed it
3473         // to the type system as a speculative type.
3474         obj = record_profiled_receiver_for_speculation(obj);
3475         if (null_free) {
3476           assert(safe_for_replace, "must be");
3477           obj = null_check(obj);
3478         }
3479         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3480         return obj;
3481       case Compile::SSC_always_false:
3482         if (null_free) {
3483           assert(safe_for_replace, "must be");
3484           obj = null_check(obj);
3485         }
3486         // It needs a null check because a null will *pass* the cast check.
3487         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {
3488           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3489           Deoptimization::DeoptReason reason = is_aastore ?
3490             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3491           builtin_throw(reason);
3492           return top();
3493         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3494           return null_assert(obj);
3495         }
3496         break; // Fall through to full check
3497       default:
3498         break;
3499       }
3500     }
3501   }
3502 
3503   ciProfileData* data = nullptr;
3504   if (failure_control == nullptr) {        // use MDO in regular case only
3505     assert(java_bc() == Bytecodes::_aastore ||
3506            java_bc() == Bytecodes::_checkcast,
3507            "interpreter profiles type checks only for these BCs");
3508     if (method()->method_data()->is_mature()) {
3509       data = method()->method_data()->bci_to_data(bci());
3510     }
3511   }
3512 
3513   // Make the merge point
3514   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3515   RegionNode* region = new RegionNode(PATH_LIMIT);
3516   Node*       phi    = new PhiNode(region, toop);
3517   _gvn.set_type(region, Type::CONTROL);
3518   _gvn.set_type(phi, toop);
3519 
3520   C->set_has_split_ifs(true); // Has chance for split-if optimization
3521 
3522   // Use null-cast information if it is available
3523   bool speculative_not_null = false;
3524   bool never_see_null = ((failure_control == nullptr)  // regular case only
3525                          && seems_never_null(obj, data, speculative_not_null));
3526 
3527   if (obj->is_InlineType()) {
3528     // Re-execute if buffering during triggers deoptimization
3529     PreserveReexecuteState preexecs(this);
3530     jvms()->set_should_reexecute(true);
3531     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3532   }
3533 
3534   // Null check; get casted pointer; set region slot 3
3535   Node* null_ctl = top();
3536   Node* not_null_obj = nullptr;
3537   if (null_free) {
3538     assert(safe_for_replace, "must be");
3539     not_null_obj = null_check(obj);
3540   } else {
3541     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3542   }
3543 
3544   // If not_null_obj is dead, only null-path is taken
3545   if (stopped()) {              // Doing instance-of on a null?
3546     set_control(null_ctl);
3547     if (toop->is_inlinetypeptr()) {
3548       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3549     }
3550     return null();
3551   }
3552   region->init_req(_null_path, null_ctl);
3553   phi   ->init_req(_null_path, null());  // Set null path value
3554   if (null_ctl == top()) {
3555     // Do this eagerly, so that pattern matches like is_diamond_phi
3556     // will work even during parsing.
3557     assert(_null_path == PATH_LIMIT-1, "delete last");
3558     region->del_req(_null_path);
3559     phi   ->del_req(_null_path);
3560   }
3561 
3562   Node* cast_obj = nullptr;
3563   if (improved_klass_ptr_type->klass_is_exact()) {
3564     // The following optimization tries to statically cast the speculative type of the object
3565     // (for example obtained during profiling) to the type of the superklass and then do a
3566     // dynamic check that the type of the object is what we expect. To work correctly
3567     // for checkcast and aastore the type of superklass should be exact.
3568     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3569     // We may not have profiling here or it may not help us. If we have
3570     // a speculative type use it to perform an exact cast.
3571     ciKlass* spec_obj_type = obj_type->speculative_type();
3572     if (spec_obj_type != nullptr || data != nullptr) {
3573       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3574       if (cast_obj != nullptr) {
3575         if (failure_control != nullptr) // failure is now impossible
3576           (*failure_control) = top();
3577         // adjust the type of the phi to the exact klass:
3578         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3579       }
3580     }
3581   }
3582 
3583   if (cast_obj == nullptr) {
3584     // Generate the subtype check
3585     Node* improved_superklass = superklass;
3586     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3587       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3588       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3589       // Additionally, the benefit would only be minor in non-constant cases.
3590       improved_superklass = makecon(improved_klass_ptr_type);
3591     }
3592     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3593     // Plug in success path into the merge
3594     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3595     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3596     if (failure_control == nullptr) {
3597       if (not_subtype_ctrl != top()) { // If failure is possible
3598         PreserveJVMState pjvms(this);
3599         set_control(not_subtype_ctrl);
3600         Node* obj_klass = nullptr;
3601         if (not_null_obj->is_InlineType()) {
3602           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3603         } else {
3604           obj_klass = load_object_klass(not_null_obj);
3605         }
3606         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3607         Deoptimization::DeoptReason reason = is_aastore ?
3608           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3609         builtin_throw(reason);
3610       }
3611     } else {
3612       (*failure_control) = not_subtype_ctrl;
3613     }
3614   }
3615 
3616   region->init_req(_obj_path, control());
3617   phi   ->init_req(_obj_path, cast_obj);
3618 
3619   // A merge of null or Casted-NotNull obj
3620   Node* res = _gvn.transform(phi);
3621 
3622   // Note I do NOT always 'replace_in_map(obj,result)' here.
3623   //  if( tk->klass()->can_be_primary_super()  )
3624     // This means that if I successfully store an Object into an array-of-String
3625     // I 'forget' that the Object is really now known to be a String.  I have to
3626     // do this because we don't have true union types for interfaces - if I store
3627     // a Baz into an array-of-Interface and then tell the optimizer it's an
3628     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3629     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3630   //  replace_in_map( obj, res );
3631 
3632   // Return final merged results
3633   set_control( _gvn.transform(region) );
3634   record_for_igvn(region);
3635 
3636   bool not_inline = !toop->can_be_inline_type();
3637   bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3638   if (EnableValhalla && not_flat_in_array) {
3639     // Check if obj has been loaded from an array
3640     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3641     Node* array = nullptr;
3642     if (obj->isa_Load()) {
3643       Node* address = obj->in(MemNode::Address);
3644       if (address->isa_AddP()) {
3645         array = address->as_AddP()->in(AddPNode::Base);
3646       }
3647     } else if (obj->is_Phi()) {
3648       Node* region = obj->in(0);
3649       // TODO make this more robust (see JDK-8231346)
3650       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3651         IfNode* iff = region->in(2)->in(0)->isa_If();
3652         if (iff != nullptr) {
3653           iff->is_flat_array_check(&_gvn, &array);
3654         }
3655       }
3656     }
3657     if (array != nullptr) {
3658       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3659       if (ary_t != nullptr && !ary_t->is_flat()) {
3660         if (!ary_t->is_not_null_free() && not_inline) {
3661           // Casting array element to a non-inline-type, mark array as not null-free.
3662           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3663           replace_in_map(array, cast);
3664         } else if (!ary_t->is_not_flat()) {
3665           // Casting array element to a non-flat type, mark array as not flat.
3666           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3667           replace_in_map(array, cast);
3668         }
3669       }
3670     }
3671   }
3672 
3673   if (!stopped() && !res->is_InlineType()) {
3674     res = record_profiled_receiver_for_speculation(res);
3675     if (toop->is_inlinetypeptr()) {
3676       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3677       res = vt;
3678       if (safe_for_replace) {
3679         replace_in_map(obj, vt);
3680         replace_in_map(not_null_obj, vt);
3681         replace_in_map(res, vt);
3682       }
3683     }
3684   }
3685   return res;
3686 }
3687 
3688 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3689   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3690   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3691   Node* mask = MakeConX(markWord::inline_type_pattern);
3692   Node* masked = _gvn.transform(new AndXNode(mark, mask));
3693   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3694   return _gvn.transform(new BoolNode(cmp, is_inline ? BoolTest::eq : BoolTest::ne));
3695 }
3696 
3697 Node* GraphKit::array_lh_test(Node* klass, jint mask, jint val, bool eq) {
3698   Node* lh_adr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
3699   // Make sure to use immutable memory here to enable hoisting the check out of loops
3700   Node* lh_val = _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), lh_adr, lh_adr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
3701   Node* masked = _gvn.transform(new AndINode(lh_val, intcon(mask)));
3702   Node* cmp = _gvn.transform(new CmpINode(masked, intcon(val)));
3703   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3704 }
3705 
3706 // TODO 8325106 With JEP 401, flatness is not a property of the Class anymore.
3707 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3708   // We can't use immutable memory here because the mark word is mutable.
3709   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3710   // check is moved out of loops (mainly to enable loop unswitching).
3711   Node* mem = UseArrayMarkWordCheck ? memory(Compile::AliasIdxRaw) : immutable_memory();
3712   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, mem, array_or_klass));
3713   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3714   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3715 }
3716 
3717 Node* GraphKit::null_free_array_test(Node* klass, bool null_free) {
3718   return array_lh_test(klass, Klass::_lh_null_free_array_bit_inplace, 0, !null_free);
3719 }
3720 
3721 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3722 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3723   RegionNode* region = new RegionNode(3);
3724   Node* null_ctl = top();
3725   null_check_oop(val, &null_ctl);
3726   if (null_ctl != top()) {
3727     PreserveJVMState pjvms(this);
3728     set_control(null_ctl);
3729     {
3730       // Deoptimize if null-free array
3731       BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX);
3732       inc_sp(nargs);
3733       uncommon_trap(Deoptimization::Reason_null_check,
3734                     Deoptimization::Action_none);
3735     }
3736     region->init_req(1, control());
3737   }
3738   region->init_req(2, control());
3739   set_control(_gvn.transform(region));
3740   record_for_igvn(region);
3741   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3742     // Since we were just successfully storing null, the array can't be null free.
3743     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3744     ary_t = ary_t->cast_to_not_null_free();
3745     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3746     if (safe_for_replace) {
3747       replace_in_map(ary, cast);
3748     }
3749     ary = cast;
3750   }
3751   return ary;
3752 }
3753 
3754 //------------------------------next_monitor-----------------------------------
3755 // What number should be given to the next monitor?
3756 int GraphKit::next_monitor() {
3757   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3758   int next = current + C->sync_stack_slots();
3759   // Keep the toplevel high water mark current:
3760   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3761   return current;
3762 }
3763 
3764 //------------------------------insert_mem_bar---------------------------------
3765 // Memory barrier to avoid floating things around
3766 // The membar serves as a pinch point between both control and all memory slices.
3767 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3768   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3769   mb->init_req(TypeFunc::Control, control());
3770   mb->init_req(TypeFunc::Memory,  reset_memory());
3771   Node* membar = _gvn.transform(mb);
3772   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3773   set_all_memory_call(membar);
3774   return membar;
3775 }
3776 
3777 //-------------------------insert_mem_bar_volatile----------------------------
3778 // Memory barrier to avoid floating things around
3779 // The membar serves as a pinch point between both control and memory(alias_idx).
3780 // If you want to make a pinch point on all memory slices, do not use this
3781 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3782 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3783   // When Parse::do_put_xxx updates a volatile field, it appends a series
3784   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3785   // The first membar is on the same memory slice as the field store opcode.
3786   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3787   // All the other membars (for other volatile slices, including AliasIdxBot,
3788   // which stands for all unknown volatile slices) are control-dependent
3789   // on the first membar.  This prevents later volatile loads or stores
3790   // from sliding up past the just-emitted store.
3791 
3792   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3793   mb->set_req(TypeFunc::Control,control());
3794   if (alias_idx == Compile::AliasIdxBot) {
3795     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3796   } else {
3797     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3798     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3799   }
3800   Node* membar = _gvn.transform(mb);
3801   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3802   if (alias_idx == Compile::AliasIdxBot) {
3803     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3804   } else {
3805     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3806   }
3807   return membar;
3808 }
3809 
3810 //------------------------------shared_lock------------------------------------
3811 // Emit locking code.
3812 FastLockNode* GraphKit::shared_lock(Node* obj) {
3813   // bci is either a monitorenter bc or InvocationEntryBci
3814   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3815   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3816 
3817   if( !GenerateSynchronizationCode )
3818     return nullptr;                // Not locking things?
3819 
3820   if (stopped())                // Dead monitor?
3821     return nullptr;
3822 
3823   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3824 
3825   // Box the stack location
3826   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3827   Node* mem = reset_memory();
3828 
3829   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3830 
3831   // Create the rtm counters for this fast lock if needed.
3832   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3833 
3834   // Add monitor to debug info for the slow path.  If we block inside the
3835   // slow path and de-opt, we need the monitor hanging around
3836   map()->push_monitor( flock );
3837 
3838   const TypeFunc *tf = LockNode::lock_type();
3839   LockNode *lock = new LockNode(C, tf);
3840 
3841   lock->init_req( TypeFunc::Control, control() );
3842   lock->init_req( TypeFunc::Memory , mem );
3843   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3844   lock->init_req( TypeFunc::FramePtr, frameptr() );
3845   lock->init_req( TypeFunc::ReturnAdr, top() );
3846 
3847   lock->init_req(TypeFunc::Parms + 0, obj);
3848   lock->init_req(TypeFunc::Parms + 1, box);
3849   lock->init_req(TypeFunc::Parms + 2, flock);
3850   add_safepoint_edges(lock);
3851 
3852   lock = _gvn.transform( lock )->as_Lock();
3853 
3854   // lock has no side-effects, sets few values
3855   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3856 
3857   insert_mem_bar(Op_MemBarAcquireLock);
3858 
3859   // Add this to the worklist so that the lock can be eliminated
3860   record_for_igvn(lock);
3861 
3862 #ifndef PRODUCT
3863   if (PrintLockStatistics) {
3864     // Update the counter for this lock.  Don't bother using an atomic
3865     // operation since we don't require absolute accuracy.
3866     lock->create_lock_counter(map()->jvms());
3867     increment_counter(lock->counter()->addr());
3868   }
3869 #endif
3870 
3871   return flock;
3872 }
3873 
3874 
3875 //------------------------------shared_unlock----------------------------------
3876 // Emit unlocking code.
3877 void GraphKit::shared_unlock(Node* box, Node* obj) {
3878   // bci is either a monitorenter bc or InvocationEntryBci
3879   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3880   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3881 
3882   if( !GenerateSynchronizationCode )
3883     return;
3884   if (stopped()) {               // Dead monitor?
3885     map()->pop_monitor();        // Kill monitor from debug info
3886     return;
3887   }
3888   assert(!obj->is_InlineType(), "should not unlock on inline type");
3889 
3890   // Memory barrier to avoid floating things down past the locked region
3891   insert_mem_bar(Op_MemBarReleaseLock);
3892 
3893   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3894   UnlockNode *unlock = new UnlockNode(C, tf);
3895 #ifdef ASSERT
3896   unlock->set_dbg_jvms(sync_jvms());
3897 #endif
3898   uint raw_idx = Compile::AliasIdxRaw;
3899   unlock->init_req( TypeFunc::Control, control() );
3900   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3901   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3902   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3903   unlock->init_req( TypeFunc::ReturnAdr, top() );
3904 
3905   unlock->init_req(TypeFunc::Parms + 0, obj);
3906   unlock->init_req(TypeFunc::Parms + 1, box);
3907   unlock = _gvn.transform(unlock)->as_Unlock();
3908 
3909   Node* mem = reset_memory();
3910 
3911   // unlock has no side-effects, sets few values
3912   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3913 
3914   // Kill monitor from debug info
3915   map()->pop_monitor( );
3916 }
3917 
3918 //-------------------------------get_layout_helper-----------------------------
3919 // If the given klass is a constant or known to be an array,
3920 // fetch the constant layout helper value into constant_value
3921 // and return null.  Otherwise, load the non-constant
3922 // layout helper value, and return the node which represents it.
3923 // This two-faced routine is useful because allocation sites
3924 // almost always feature constant types.
3925 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3926   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3927   if (!StressReflectiveCode && klass_t != nullptr) {
3928     bool xklass = klass_t->klass_is_exact();
3929     bool can_be_flat = false;
3930     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3931     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3932       // TODO 8325106 Fix comment
3933       // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3934       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3935       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
3936     }
3937     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3938       jint lhelper;
3939       if (klass_t->is_flat()) {
3940         lhelper = ary_type->flat_layout_helper();
3941       } else if (klass_t->isa_aryklassptr()) {
3942         BasicType elem = ary_type->elem()->array_element_basic_type();
3943         if (is_reference_type(elem, true)) {
3944           elem = T_OBJECT;
3945         }
3946         lhelper = Klass::array_layout_helper(elem);
3947       } else {
3948         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3949       }
3950       if (lhelper != Klass::_lh_neutral_value) {
3951         constant_value = lhelper;
3952         return (Node*) nullptr;
3953       }
3954     }
3955   }
3956   constant_value = Klass::_lh_neutral_value;  // put in a known value
3957   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3958   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3959 }
3960 
3961 // We just put in an allocate/initialize with a big raw-memory effect.
3962 // Hook selected additional alias categories on the initialization.
3963 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3964                                 MergeMemNode* init_in_merge,
3965                                 Node* init_out_raw) {
3966   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3967   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3968 
3969   Node* prevmem = kit.memory(alias_idx);
3970   init_in_merge->set_memory_at(alias_idx, prevmem);
3971   if (init_out_raw != nullptr) {
3972     kit.set_memory(init_out_raw, alias_idx);
3973   }
3974 }
3975 
3976 //---------------------------set_output_for_allocation-------------------------
3977 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3978                                           const TypeOopPtr* oop_type,
3979                                           bool deoptimize_on_exception) {
3980   int rawidx = Compile::AliasIdxRaw;
3981   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3982   add_safepoint_edges(alloc);
3983   Node* allocx = _gvn.transform(alloc);
3984   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3985   // create memory projection for i_o
3986   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3987   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3988 
3989   // create a memory projection as for the normal control path
3990   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3991   set_memory(malloc, rawidx);
3992 
3993   // a normal slow-call doesn't change i_o, but an allocation does
3994   // we create a separate i_o projection for the normal control path
3995   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3996   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3997 
3998   // put in an initialization barrier
3999   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4000                                                  rawoop)->as_Initialize();
4001   assert(alloc->initialization() == init,  "2-way macro link must work");
4002   assert(init ->allocation()     == alloc, "2-way macro link must work");
4003   {
4004     // Extract memory strands which may participate in the new object's
4005     // initialization, and source them from the new InitializeNode.
4006     // This will allow us to observe initializations when they occur,
4007     // and link them properly (as a group) to the InitializeNode.
4008     assert(init->in(InitializeNode::Memory) == malloc, "");
4009     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4010     init->set_req(InitializeNode::Memory, minit_in);
4011     record_for_igvn(minit_in); // fold it up later, if possible
4012     _gvn.set_type(minit_in, Type::MEMORY);
4013     Node* minit_out = memory(rawidx);
4014     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4015     // Add an edge in the MergeMem for the header fields so an access
4016     // to one of those has correct memory state
4017     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4018     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4019     if (oop_type->isa_aryptr()) {
4020       const TypeAryPtr* arytype = oop_type->is_aryptr();
4021       if (arytype->is_flat()) {
4022         // Initially all flat array accesses share a single slice
4023         // but that changes after parsing. Prepare the memory graph so
4024         // it can optimize flat array accesses properly once they
4025         // don't share a single slice.
4026         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4027         C->set_flat_accesses_share_alias(false);
4028         ciInlineKlass* vk = arytype->elem()->inline_klass();
4029         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4030           ciField* field = vk->nonstatic_field_at(i);
4031           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4032             continue;  // do not bother to track really large numbers of fields
4033           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
4034           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4035           int fieldidx = C->get_alias_index(adr_type, true);
4036           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4037           // can result in per flat array field Phis to be created which confuses the logic of
4038           // Compile::adjust_flat_array_access_aliases().
4039           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4040         }
4041         C->set_flat_accesses_share_alias(true);
4042         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4043       } else {
4044         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4045         int            elemidx  = C->get_alias_index(telemref);
4046         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4047       }
4048     } else if (oop_type->isa_instptr()) {
4049       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4050       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4051       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4052         ciField* field = ik->nonstatic_field_at(i);
4053         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4054           continue;  // do not bother to track really large numbers of fields
4055         // Find (or create) the alias category for this field:
4056         int fieldidx = C->alias_type(field)->index();
4057         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4058       }
4059     }
4060   }
4061 
4062   // Cast raw oop to the real thing...
4063   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4064   javaoop = _gvn.transform(javaoop);
4065   C->set_recent_alloc(control(), javaoop);
4066   assert(just_allocated_object(control()) == javaoop, "just allocated");
4067 
4068 #ifdef ASSERT
4069   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4070     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4071            "Ideal_allocation works");
4072     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4073            "Ideal_allocation works");
4074     if (alloc->is_AllocateArray()) {
4075       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4076              "Ideal_allocation works");
4077       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4078              "Ideal_allocation works");
4079     } else {
4080       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4081     }
4082   }
4083 #endif //ASSERT
4084 
4085   return javaoop;
4086 }
4087 
4088 //---------------------------new_instance--------------------------------------
4089 // This routine takes a klass_node which may be constant (for a static type)
4090 // or may be non-constant (for reflective code).  It will work equally well
4091 // for either, and the graph will fold nicely if the optimizer later reduces
4092 // the type to a constant.
4093 // The optional arguments are for specialized use by intrinsics:
4094 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4095 //  - If 'return_size_val', report the total object size to the caller.
4096 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4097 Node* GraphKit::new_instance(Node* klass_node,
4098                              Node* extra_slow_test,
4099                              Node* *return_size_val,
4100                              bool deoptimize_on_exception,
4101                              InlineTypeNode* inline_type_node) {
4102   // Compute size in doublewords
4103   // The size is always an integral number of doublewords, represented
4104   // as a positive bytewise size stored in the klass's layout_helper.
4105   // The layout_helper also encodes (in a low bit) the need for a slow path.
4106   jint  layout_con = Klass::_lh_neutral_value;
4107   Node* layout_val = get_layout_helper(klass_node, layout_con);
4108   bool  layout_is_con = (layout_val == nullptr);
4109 
4110   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4111   // Generate the initial go-slow test.  It's either ALWAYS (return a
4112   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4113   // case) a computed value derived from the layout_helper.
4114   Node* initial_slow_test = nullptr;
4115   if (layout_is_con) {
4116     assert(!StressReflectiveCode, "stress mode does not use these paths");
4117     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4118     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4119   } else {   // reflective case
4120     // This reflective path is used by Unsafe.allocateInstance.
4121     // (It may be stress-tested by specifying StressReflectiveCode.)
4122     // Basically, we want to get into the VM is there's an illegal argument.
4123     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4124     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4125     if (extra_slow_test != intcon(0)) {
4126       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4127     }
4128     // (Macro-expander will further convert this to a Bool, if necessary.)
4129   }
4130 
4131   // Find the size in bytes.  This is easy; it's the layout_helper.
4132   // The size value must be valid even if the slow path is taken.
4133   Node* size = nullptr;
4134   if (layout_is_con) {
4135     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4136   } else {   // reflective case
4137     // This reflective path is used by clone and Unsafe.allocateInstance.
4138     size = ConvI2X(layout_val);
4139 
4140     // Clear the low bits to extract layout_helper_size_in_bytes:
4141     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4142     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4143     size = _gvn.transform( new AndXNode(size, mask) );
4144   }
4145   if (return_size_val != nullptr) {
4146     (*return_size_val) = size;
4147   }
4148 
4149   // This is a precise notnull oop of the klass.
4150   // (Actually, it need not be precise if this is a reflective allocation.)
4151   // It's what we cast the result to.
4152   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4153   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4154   const TypeOopPtr* oop_type = tklass->as_instance_type();
4155 
4156   // Now generate allocation code
4157 
4158   // The entire memory state is needed for slow path of the allocation
4159   // since GC and deoptimization can happen.
4160   Node *mem = reset_memory();
4161   set_all_memory(mem); // Create new memory state
4162 
4163   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4164                                          control(), mem, i_o(),
4165                                          size, klass_node,
4166                                          initial_slow_test, inline_type_node);
4167 
4168   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4169 }
4170 
4171 //-------------------------------new_array-------------------------------------
4172 // helper for newarray and anewarray
4173 // The 'length' parameter is (obviously) the length of the array.
4174 // The optional arguments are for specialized use by intrinsics:
4175 //  - If 'return_size_val', report the non-padded array size (sum of header size
4176 //    and array body) to the caller.
4177 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4178 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4179                           Node* length,         // number of array elements
4180                           int   nargs,          // number of arguments to push back for uncommon trap
4181                           Node* *return_size_val,
4182                           bool deoptimize_on_exception) {
4183   jint  layout_con = Klass::_lh_neutral_value;
4184   Node* layout_val = get_layout_helper(klass_node, layout_con);
4185   bool  layout_is_con = (layout_val == nullptr);
4186 
4187   if (!layout_is_con && !StressReflectiveCode &&
4188       !too_many_traps(Deoptimization::Reason_class_check)) {
4189     // This is a reflective array creation site.
4190     // Optimistically assume that it is a subtype of Object[],
4191     // so that we can fold up all the address arithmetic.
4192     layout_con = Klass::array_layout_helper(T_OBJECT);
4193     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4194     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4195     { BuildCutout unless(this, bol_lh, PROB_MAX);
4196       inc_sp(nargs);
4197       uncommon_trap(Deoptimization::Reason_class_check,
4198                     Deoptimization::Action_maybe_recompile);
4199     }
4200     layout_val = nullptr;
4201     layout_is_con = true;
4202   }
4203 
4204   // Generate the initial go-slow test.  Make sure we do not overflow
4205   // if length is huge (near 2Gig) or negative!  We do not need
4206   // exact double-words here, just a close approximation of needed
4207   // double-words.  We can't add any offset or rounding bits, lest we
4208   // take a size -1 of bytes and make it positive.  Use an unsigned
4209   // compare, so negative sizes look hugely positive.
4210   int fast_size_limit = FastAllocateSizeLimit;
4211   if (layout_is_con) {
4212     assert(!StressReflectiveCode, "stress mode does not use these paths");
4213     // Increase the size limit if we have exact knowledge of array type.
4214     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4215     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4216   }
4217 
4218   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4219   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4220 
4221   // --- Size Computation ---
4222   // array_size = round_to_heap(array_header + (length << elem_shift));
4223   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4224   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4225   // The rounding mask is strength-reduced, if possible.
4226   int round_mask = MinObjAlignmentInBytes - 1;
4227   Node* header_size = nullptr;
4228   // (T_BYTE has the weakest alignment and size restrictions...)
4229   if (layout_is_con) {
4230     int       hsize  = Klass::layout_helper_header_size(layout_con);
4231     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4232     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4233     if ((round_mask & ~right_n_bits(eshift)) == 0)
4234       round_mask = 0;  // strength-reduce it if it goes away completely
4235     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4236     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4237     assert(header_size_min <= hsize, "generic minimum is smallest");
4238     header_size = intcon(hsize);
4239   } else {
4240     Node* hss   = intcon(Klass::_lh_header_size_shift);
4241     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4242     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4243     header_size = _gvn.transform(new AndINode(header_size, hsm));
4244   }
4245 
4246   Node* elem_shift = nullptr;
4247   if (layout_is_con) {
4248     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4249     if (eshift != 0)
4250       elem_shift = intcon(eshift);
4251   } else {
4252     // There is no need to mask or shift this value.
4253     // The semantics of LShiftINode include an implicit mask to 0x1F.
4254     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4255     elem_shift = layout_val;
4256   }
4257 
4258   // Transition to native address size for all offset calculations:
4259   Node* lengthx = ConvI2X(length);
4260   Node* headerx = ConvI2X(header_size);
4261 #ifdef _LP64
4262   { const TypeInt* tilen = _gvn.find_int_type(length);
4263     if (tilen != nullptr && tilen->_lo < 0) {
4264       // Add a manual constraint to a positive range.  Cf. array_element_address.
4265       jint size_max = fast_size_limit;
4266       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4267       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4268 
4269       // Only do a narrow I2L conversion if the range check passed.
4270       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4271       _gvn.transform(iff);
4272       RegionNode* region = new RegionNode(3);
4273       _gvn.set_type(region, Type::CONTROL);
4274       lengthx = new PhiNode(region, TypeLong::LONG);
4275       _gvn.set_type(lengthx, TypeLong::LONG);
4276 
4277       // Range check passed. Use ConvI2L node with narrow type.
4278       Node* passed = IfFalse(iff);
4279       region->init_req(1, passed);
4280       // Make I2L conversion control dependent to prevent it from
4281       // floating above the range check during loop optimizations.
4282       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4283 
4284       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4285       region->init_req(2, IfTrue(iff));
4286       lengthx->init_req(2, ConvI2X(length));
4287 
4288       set_control(region);
4289       record_for_igvn(region);
4290       record_for_igvn(lengthx);
4291     }
4292   }
4293 #endif
4294 
4295   // Combine header size and body size for the array copy part, then align (if
4296   // necessary) for the allocation part. This computation cannot overflow,
4297   // because it is used only in two places, one where the length is sharply
4298   // limited, and the other after a successful allocation.
4299   Node* abody = lengthx;
4300   if (elem_shift != nullptr) {
4301     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4302   }
4303   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4304 
4305   if (return_size_val != nullptr) {
4306     // This is the size
4307     (*return_size_val) = non_rounded_size;
4308   }
4309 
4310   Node* size = non_rounded_size;
4311   if (round_mask != 0) {
4312     Node* mask1 = MakeConX(round_mask);
4313     size = _gvn.transform(new AddXNode(size, mask1));
4314     Node* mask2 = MakeConX(~round_mask);
4315     size = _gvn.transform(new AndXNode(size, mask2));
4316   }
4317   // else if round_mask == 0, the size computation is self-rounding
4318 
4319   // Now generate allocation code
4320 
4321   // The entire memory state is needed for slow path of the allocation
4322   // since GC and deoptimization can happen.
4323   Node *mem = reset_memory();
4324   set_all_memory(mem); // Create new memory state
4325 
4326   if (initial_slow_test->is_Bool()) {
4327     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4328     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4329   }
4330 
4331   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4332   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4333   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4334 
4335   // TODO 8325106 Fix comment
4336   // Inline type array variants:
4337   // - null-ok:              MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4338   // - null-free:            MyValue.val[] (ciObjArrayKlass "[QMyValue")
4339   // - null-free, flat     : MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4340   // Check if array is a null-free, non-flat inline type array
4341   // that needs to be initialized with the default inline type.
4342   Node* default_value = nullptr;
4343   Node* raw_default_value = nullptr;
4344   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4345     // Array type is known
4346     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4347       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4348       default_value = InlineTypeNode::default_oop(gvn(), vk);
4349       if (UseCompressedOops) {
4350         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4351         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4352         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4353         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4354         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4355       } else {
4356         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4357       }
4358     }
4359   }
4360 
4361   Node* valid_length_test = _gvn.intcon(1);
4362   if (ary_type->isa_aryptr()) {
4363     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4364     jint max = TypeAryPtr::max_array_length(bt);
4365     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4366     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4367   }
4368 
4369   // Create the AllocateArrayNode and its result projections
4370   AllocateArrayNode* alloc
4371     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4372                             control(), mem, i_o(),
4373                             size, klass_node,
4374                             initial_slow_test,
4375                             length, valid_length_test,
4376                             default_value, raw_default_value);
4377   // Cast to correct type.  Note that the klass_node may be constant or not,
4378   // and in the latter case the actual array type will be inexact also.
4379   // (This happens via a non-constant argument to inline_native_newArray.)
4380   // In any case, the value of klass_node provides the desired array type.
4381   const TypeInt* length_type = _gvn.find_int_type(length);
4382   if (ary_type->isa_aryptr() && length_type != nullptr) {
4383     // Try to get a better type than POS for the size
4384     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4385   }
4386 
4387   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4388 
4389   array_ideal_length(alloc, ary_type, true);
4390   return javaoop;
4391 }
4392 
4393 // The following "Ideal_foo" functions are placed here because they recognize
4394 // the graph shapes created by the functions immediately above.
4395 
4396 //---------------------------Ideal_allocation----------------------------------
4397 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4398 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4399   if (ptr == nullptr) {     // reduce dumb test in callers
4400     return nullptr;
4401   }
4402 
4403   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4404   ptr = bs->step_over_gc_barrier(ptr);
4405 
4406   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4407     ptr = ptr->in(1);
4408     if (ptr == nullptr) return nullptr;
4409   }
4410   // Return null for allocations with several casts:
4411   //   j.l.reflect.Array.newInstance(jobject, jint)
4412   //   Object.clone()
4413   // to keep more precise type from last cast.
4414   if (ptr->is_Proj()) {
4415     Node* allo = ptr->in(0);
4416     if (allo != nullptr && allo->is_Allocate()) {
4417       return allo->as_Allocate();
4418     }
4419   }
4420   // Report failure to match.
4421   return nullptr;
4422 }
4423 
4424 // Fancy version which also strips off an offset (and reports it to caller).
4425 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4426                                              intptr_t& offset) {
4427   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4428   if (base == nullptr)  return nullptr;
4429   return Ideal_allocation(base);
4430 }
4431 
4432 // Trace Initialize <- Proj[Parm] <- Allocate
4433 AllocateNode* InitializeNode::allocation() {
4434   Node* rawoop = in(InitializeNode::RawAddress);
4435   if (rawoop->is_Proj()) {
4436     Node* alloc = rawoop->in(0);
4437     if (alloc->is_Allocate()) {
4438       return alloc->as_Allocate();
4439     }
4440   }
4441   return nullptr;
4442 }
4443 
4444 // Trace Allocate -> Proj[Parm] -> Initialize
4445 InitializeNode* AllocateNode::initialization() {
4446   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4447   if (rawoop == nullptr)  return nullptr;
4448   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4449     Node* init = rawoop->fast_out(i);
4450     if (init->is_Initialize()) {
4451       assert(init->as_Initialize()->allocation() == this, "2-way link");
4452       return init->as_Initialize();
4453     }
4454   }
4455   return nullptr;
4456 }
4457 
4458 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4459 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4460   // Too many traps seen?
4461   if (too_many_traps(reason)) {
4462 #ifdef ASSERT
4463     if (TraceLoopPredicate) {
4464       int tc = C->trap_count(reason);
4465       tty->print("too many traps=%s tcount=%d in ",
4466                     Deoptimization::trap_reason_name(reason), tc);
4467       method()->print(); // which method has too many predicate traps
4468       tty->cr();
4469     }
4470 #endif
4471     // We cannot afford to take more traps here,
4472     // do not generate Parse Predicate.
4473     return;
4474   }
4475 
4476   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4477   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4478   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4479   {
4480     PreserveJVMState pjvms(this);
4481     set_control(if_false);
4482     inc_sp(nargs);
4483     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4484   }
4485   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4486   set_control(if_true);
4487 }
4488 
4489 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4490 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4491 void GraphKit::add_parse_predicates(int nargs) {
4492   if (UseLoopPredicate) {
4493     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4494   }
4495   if (UseProfiledLoopPredicate) {
4496     add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4497   }
4498   // Loop Limit Check Predicate should be near the loop.
4499   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4500 }
4501 
4502 void GraphKit::sync_kit(IdealKit& ideal) {
4503   set_all_memory(ideal.merged_memory());
4504   set_i_o(ideal.i_o());
4505   set_control(ideal.ctrl());
4506 }
4507 
4508 void GraphKit::final_sync(IdealKit& ideal) {
4509   // Final sync IdealKit and graphKit.
4510   sync_kit(ideal);
4511 }
4512 
4513 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4514   Node* len = load_array_length(load_String_value(str, set_ctrl));
4515   Node* coder = load_String_coder(str, set_ctrl);
4516   // Divide length by 2 if coder is UTF16
4517   return _gvn.transform(new RShiftINode(len, coder));
4518 }
4519 
4520 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4521   int value_offset = java_lang_String::value_offset();
4522   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4523                                                      false, nullptr, Type::Offset(0));
4524   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4525   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4526                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4527                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4528   Node* p = basic_plus_adr(str, str, value_offset);
4529   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4530                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4531   return load;
4532 }
4533 
4534 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4535   if (!CompactStrings) {
4536     return intcon(java_lang_String::CODER_UTF16);
4537   }
4538   int coder_offset = java_lang_String::coder_offset();
4539   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4540                                                      false, nullptr, Type::Offset(0));
4541   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4542 
4543   Node* p = basic_plus_adr(str, str, coder_offset);
4544   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4545                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4546   return load;
4547 }
4548 
4549 void GraphKit::store_String_value(Node* str, Node* value) {
4550   int value_offset = java_lang_String::value_offset();
4551   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4552                                                      false, nullptr, Type::Offset(0));
4553   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4554 
4555   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4556                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4557 }
4558 
4559 void GraphKit::store_String_coder(Node* str, Node* value) {
4560   int coder_offset = java_lang_String::coder_offset();
4561   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4562                                                      false, nullptr, Type::Offset(0));
4563   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4564 
4565   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4566                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4567 }
4568 
4569 // Capture src and dst memory state with a MergeMemNode
4570 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4571   if (src_type == dst_type) {
4572     // Types are equal, we don't need a MergeMemNode
4573     return memory(src_type);
4574   }
4575   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4576   record_for_igvn(merge); // fold it up later, if possible
4577   int src_idx = C->get_alias_index(src_type);
4578   int dst_idx = C->get_alias_index(dst_type);
4579   merge->set_memory_at(src_idx, memory(src_idx));
4580   merge->set_memory_at(dst_idx, memory(dst_idx));
4581   return merge;
4582 }
4583 
4584 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4585   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4586   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4587   // If input and output memory types differ, capture both states to preserve
4588   // the dependency between preceding and subsequent loads/stores.
4589   // For example, the following program:
4590   //  StoreB
4591   //  compress_string
4592   //  LoadB
4593   // has this memory graph (use->def):
4594   //  LoadB -> compress_string -> CharMem
4595   //             ... -> StoreB -> ByteMem
4596   // The intrinsic hides the dependency between LoadB and StoreB, causing
4597   // the load to read from memory not containing the result of the StoreB.
4598   // The correct memory graph should look like this:
4599   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4600   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4601   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4602   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4603   set_memory(res_mem, TypeAryPtr::BYTES);
4604   return str;
4605 }
4606 
4607 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4608   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4609   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4610   // Capture src and dst memory (see comment in 'compress_string').
4611   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4612   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4613   set_memory(_gvn.transform(str), dst_type);
4614 }
4615 
4616 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4617   /**
4618    * int i_char = start;
4619    * for (int i_byte = 0; i_byte < count; i_byte++) {
4620    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4621    * }
4622    */
4623   add_parse_predicates();
4624   C->set_has_loops(true);
4625 
4626   RegionNode* head = new RegionNode(3);
4627   head->init_req(1, control());
4628   gvn().set_type(head, Type::CONTROL);
4629   record_for_igvn(head);
4630 
4631   Node* i_byte = new PhiNode(head, TypeInt::INT);
4632   i_byte->init_req(1, intcon(0));
4633   gvn().set_type(i_byte, TypeInt::INT);
4634   record_for_igvn(i_byte);
4635 
4636   Node* i_char = new PhiNode(head, TypeInt::INT);
4637   i_char->init_req(1, start);
4638   gvn().set_type(i_char, TypeInt::INT);
4639   record_for_igvn(i_char);
4640 
4641   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4642   gvn().set_type(mem, Type::MEMORY);
4643   record_for_igvn(mem);
4644   set_control(head);
4645   set_memory(mem, TypeAryPtr::BYTES);
4646   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4647   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4648                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4649                              false, false, true /* mismatched */);
4650 
4651   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4652   head->init_req(2, IfTrue(iff));
4653   mem->init_req(2, st);
4654   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4655   i_char->init_req(2, AddI(i_char, intcon(2)));
4656 
4657   set_control(IfFalse(iff));
4658   set_memory(st, TypeAryPtr::BYTES);
4659 }
4660 
4661 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4662   if (!field->is_constant()) {
4663     return nullptr; // Field not marked as constant.
4664   }
4665   ciInstance* holder = nullptr;
4666   if (!field->is_static()) {
4667     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4668     if (const_oop != nullptr && const_oop->is_instance()) {
4669       holder = const_oop->as_instance();
4670     }
4671   }
4672   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4673                                                         /*is_unsigned_load=*/false);
4674   if (con_type != nullptr) {
4675     Node* con = makecon(con_type);
4676     if (field->type()->is_inlinetype()) {
4677       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4678     } else if (con_type->is_inlinetypeptr()) {
4679       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4680     }
4681     return con;
4682   }
4683   return nullptr;
4684 }
4685 
4686 //---------------------------load_mirror_from_klass----------------------------
4687 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4688 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4689   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4690   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4691   // mirror = ((OopHandle)mirror)->resolve();
4692   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4693 }