1 /*
   2  * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.
  97 void GraphKit::clean_stack(int from_sp) {
  98   SafePointNode* map      = this->map();
  99   JVMState*      jvms     = this->jvms();
 100   int            stk_size = jvms->stk_size();
 101   int            stkoff   = jvms->stkoff();
 102   Node*          top      = this->top();
 103   for (int i = from_sp; i < stk_size; i++) {
 104     if (map->in(stkoff + i) != top) {
 105       map->set_req(stkoff + i, top);
 106     }
 107   }
 108 }
 109 
 110 
 111 //--------------------------------sync_jvms-----------------------------------
 112 // Make sure our current jvms agrees with our parse state.
 113 JVMState* GraphKit::sync_jvms() const {
 114   JVMState* jvms = this->jvms();
 115   jvms->set_bci(bci());       // Record the new bci in the JVMState
 116   jvms->set_sp(sp());         // Record the new sp in the JVMState
 117   assert(jvms_in_sync(), "jvms is now in sync");
 118   return jvms;
 119 }
 120 
 121 //--------------------------------sync_jvms_for_reexecute---------------------
 122 // Make sure our current jvms agrees with our parse state.  This version
 123 // uses the reexecute_sp for reexecuting bytecodes.
 124 JVMState* GraphKit::sync_jvms_for_reexecute() {
 125   JVMState* jvms = this->jvms();
 126   jvms->set_bci(bci());          // Record the new bci in the JVMState
 127   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 128   return jvms;
 129 }
 130 
 131 #ifdef ASSERT
 132 bool GraphKit::jvms_in_sync() const {
 133   Parse* parse = is_Parse();
 134   if (parse == nullptr) {
 135     if (bci() !=      jvms()->bci())          return false;
 136     if (sp()  != (int)jvms()->sp())           return false;
 137     return true;
 138   }
 139   if (jvms()->method() != parse->method())    return false;
 140   if (jvms()->bci()    != parse->bci())       return false;
 141   int jvms_sp = jvms()->sp();
 142   if (jvms_sp          != parse->sp())        return false;
 143   int jvms_depth = jvms()->depth();
 144   if (jvms_depth       != parse->depth())     return false;
 145   return true;
 146 }
 147 
 148 // Local helper checks for special internal merge points
 149 // used to accumulate and merge exception states.
 150 // They are marked by the region's in(0) edge being the map itself.
 151 // Such merge points must never "escape" into the parser at large,
 152 // until they have been handed to gvn.transform.
 153 static bool is_hidden_merge(Node* reg) {
 154   if (reg == nullptr)  return false;
 155   if (reg->is_Phi()) {
 156     reg = reg->in(0);
 157     if (reg == nullptr)  return false;
 158   }
 159   return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
 160 }
 161 
 162 void GraphKit::verify_map() const {
 163   if (map() == nullptr)  return;  // null map is OK
 164   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 165   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 166   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 167 }
 168 
 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 170   assert(ex_map->next_exception() == nullptr, "not already part of a chain");
 171   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 172 }
 173 #endif
 174 
 175 //---------------------------stop_and_kill_map---------------------------------
 176 // Set _map to null, signalling a stop to further bytecode execution.
 177 // First smash the current map's control to a constant, to mark it dead.
 178 void GraphKit::stop_and_kill_map() {
 179   SafePointNode* dead_map = stop();
 180   if (dead_map != nullptr) {
 181     dead_map->disconnect_inputs(C); // Mark the map as killed.
 182     assert(dead_map->is_killed(), "must be so marked");
 183   }
 184 }
 185 
 186 
 187 //--------------------------------stopped--------------------------------------
 188 // Tell if _map is null, or control is top.
 189 bool GraphKit::stopped() {
 190   if (map() == nullptr)        return true;
 191   else if (control() == top()) return true;
 192   else                         return false;
 193 }
 194 
 195 
 196 //-----------------------------has_exception_handler----------------------------------
 197 // Tell if this method or any caller method has exception handlers.
 198 bool GraphKit::has_exception_handler() {
 199   for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
 200     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 201       return true;
 202     }
 203   }
 204   return false;
 205 }
 206 
 207 //------------------------------save_ex_oop------------------------------------
 208 // Save an exception without blowing stack contents or other JVM state.
 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 210   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 211   ex_map->add_req(ex_oop);
 212   debug_only(verify_exception_state(ex_map));
 213 }
 214 
 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 216   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 217   Node* ex_oop = ex_map->in(ex_map->req()-1);
 218   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 219   return ex_oop;
 220 }
 221 
 222 //-----------------------------saved_ex_oop------------------------------------
 223 // Recover a saved exception from its map.
 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 225   return common_saved_ex_oop(ex_map, false);
 226 }
 227 
 228 //--------------------------clear_saved_ex_oop---------------------------------
 229 // Erase a previously saved exception from its map.
 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 231   return common_saved_ex_oop(ex_map, true);
 232 }
 233 
 234 #ifdef ASSERT
 235 //---------------------------has_saved_ex_oop----------------------------------
 236 // Erase a previously saved exception from its map.
 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 238   return ex_map->req() == ex_map->jvms()->endoff()+1;
 239 }
 240 #endif
 241 
 242 //-------------------------make_exception_state--------------------------------
 243 // Turn the current JVM state into an exception state, appending the ex_oop.
 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 245   sync_jvms();
 246   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 247   set_saved_ex_oop(ex_map, ex_oop);
 248   return ex_map;
 249 }
 250 
 251 
 252 //--------------------------add_exception_state--------------------------------
 253 // Add an exception to my list of exceptions.
 254 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 255   if (ex_map == nullptr || ex_map->control() == top()) {
 256     return;
 257   }
 258 #ifdef ASSERT
 259   verify_exception_state(ex_map);
 260   if (has_exceptions()) {
 261     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 262   }
 263 #endif
 264 
 265   // If there is already an exception of exactly this type, merge with it.
 266   // In particular, null-checks and other low-level exceptions common up here.
 267   Node*       ex_oop  = saved_ex_oop(ex_map);
 268   const Type* ex_type = _gvn.type(ex_oop);
 269   if (ex_oop == top()) {
 270     // No action needed.
 271     return;
 272   }
 273   assert(ex_type->isa_instptr(), "exception must be an instance");
 274   for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
 275     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 276     // We check sp also because call bytecodes can generate exceptions
 277     // both before and after arguments are popped!
 278     if (ex_type2 == ex_type
 279         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 280       combine_exception_states(ex_map, e2);
 281       return;
 282     }
 283   }
 284 
 285   // No pre-existing exception of the same type.  Chain it on the list.
 286   push_exception_state(ex_map);
 287 }
 288 
 289 //-----------------------add_exception_states_from-----------------------------
 290 void GraphKit::add_exception_states_from(JVMState* jvms) {
 291   SafePointNode* ex_map = jvms->map()->next_exception();
 292   if (ex_map != nullptr) {
 293     jvms->map()->set_next_exception(nullptr);
 294     for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
 295       next_map = ex_map->next_exception();
 296       ex_map->set_next_exception(nullptr);
 297       add_exception_state(ex_map);
 298     }
 299   }
 300 }
 301 
 302 //-----------------------transfer_exceptions_into_jvms-------------------------
 303 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 304   if (map() == nullptr) {
 305     // We need a JVMS to carry the exceptions, but the map has gone away.
 306     // Create a scratch JVMS, cloned from any of the exception states...
 307     if (has_exceptions()) {
 308       _map = _exceptions;
 309       _map = clone_map();
 310       _map->set_next_exception(nullptr);
 311       clear_saved_ex_oop(_map);
 312       debug_only(verify_map());
 313     } else {
 314       // ...or created from scratch
 315       JVMState* jvms = new (C) JVMState(_method, nullptr);
 316       jvms->set_bci(_bci);
 317       jvms->set_sp(_sp);
 318       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 319       set_jvms(jvms);
 320       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 321       set_all_memory(top());
 322       while (map()->req() < jvms->endoff())  map()->add_req(top());
 323     }
 324     // (This is a kludge, in case you didn't notice.)
 325     set_control(top());
 326   }
 327   JVMState* jvms = sync_jvms();
 328   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 329   jvms->map()->set_next_exception(_exceptions);
 330   _exceptions = nullptr;   // done with this set of exceptions
 331   return jvms;
 332 }
 333 
 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(is_hidden_merge(srcphi), "must be a special merge node");
 337   uint limit = srcphi->req();
 338   for (uint i = PhiNode::Input; i < limit; i++) {
 339     dstphi->add_req(srcphi->in(i));
 340   }
 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing())  return;  // dying anyway...
 356   JVMState* ex_jvms = ex_map->_jvms;
 357   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 358   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 359   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 360   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 361   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 362   assert(ex_map->req() == phi_map->req(), "matching maps");
 363   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 364   Node*         hidden_merge_mark = root();
 365   Node*         region  = phi_map->control();
 366   MergeMemNode* phi_mem = phi_map->merged_memory();
 367   MergeMemNode* ex_mem  = ex_map->merged_memory();
 368   if (region->in(0) != hidden_merge_mark) {
 369     // The control input is not (yet) a specially-marked region in phi_map.
 370     // Make it so, and build some phis.
 371     region = new RegionNode(2);
 372     _gvn.set_type(region, Type::CONTROL);
 373     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 374     region->init_req(1, phi_map->control());
 375     phi_map->set_control(region);
 376     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 377     record_for_igvn(io_phi);
 378     _gvn.set_type(io_phi, Type::ABIO);
 379     phi_map->set_i_o(io_phi);
 380     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 381       Node* m = mms.memory();
 382       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 383       record_for_igvn(m_phi);
 384       _gvn.set_type(m_phi, Type::MEMORY);
 385       mms.set_memory(m_phi);
 386     }
 387   }
 388 
 389   // Either or both of phi_map and ex_map might already be converted into phis.
 390   Node* ex_control = ex_map->control();
 391   // if there is special marking on ex_map also, we add multiple edges from src
 392   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 393   // how wide was the destination phi_map, originally?
 394   uint orig_width = region->req();
 395 
 396   if (add_multiple) {
 397     add_n_reqs(region, ex_control);
 398     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 399   } else {
 400     // ex_map has no merges, so we just add single edges everywhere
 401     add_one_req(region, ex_control);
 402     add_one_req(phi_map->i_o(), ex_map->i_o());
 403   }
 404   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 405     if (mms.is_empty()) {
 406       // get a copy of the base memory, and patch some inputs into it
 407       const TypePtr* adr_type = mms.adr_type(C);
 408       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 409       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 410       mms.set_memory(phi);
 411       // Prepare to append interesting stuff onto the newly sliced phi:
 412       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 413     }
 414     // Append stuff from ex_map:
 415     if (add_multiple) {
 416       add_n_reqs(mms.memory(), mms.memory2());
 417     } else {
 418       add_one_req(mms.memory(), mms.memory2());
 419     }
 420   }
 421   uint limit = ex_map->req();
 422   for (uint i = TypeFunc::Parms; i < limit; i++) {
 423     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 424     if (i == tos)  i = ex_jvms->monoff();
 425     Node* src = ex_map->in(i);
 426     Node* dst = phi_map->in(i);
 427     if (src != dst) {
 428       PhiNode* phi;
 429       if (dst->in(0) != region) {
 430         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 431         record_for_igvn(phi);
 432         _gvn.set_type(phi, phi->type());
 433         phi_map->set_req(i, dst);
 434         // Prepare to append interesting stuff onto the new phi:
 435         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 436       } else {
 437         assert(dst->is_Phi(), "nobody else uses a hidden region");
 438         phi = dst->as_Phi();
 439       }
 440       if (add_multiple && src->in(0) == ex_control) {
 441         // Both are phis.
 442         add_n_reqs(dst, src);
 443       } else {
 444         while (dst->req() < region->req())  add_one_req(dst, src);
 445       }
 446       const Type* srctype = _gvn.type(src);
 447       if (phi->type() != srctype) {
 448         const Type* dsttype = phi->type()->meet_speculative(srctype);
 449         if (phi->type() != dsttype) {
 450           phi->set_type(dsttype);
 451           _gvn.set_type(phi, dsttype);
 452         }
 453       }
 454     }
 455   }
 456   phi_map->merge_replaced_nodes_with(ex_map);
 457 }
 458 
 459 //--------------------------use_exception_state--------------------------------
 460 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 461   if (failing()) { stop(); return top(); }
 462   Node* region = phi_map->control();
 463   Node* hidden_merge_mark = root();
 464   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 465   Node* ex_oop = clear_saved_ex_oop(phi_map);
 466   if (region->in(0) == hidden_merge_mark) {
 467     // Special marking for internal ex-states.  Process the phis now.
 468     region->set_req(0, region);  // now it's an ordinary region
 469     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 470     // Note: Setting the jvms also sets the bci and sp.
 471     set_control(_gvn.transform(region));
 472     uint tos = jvms()->stkoff() + sp();
 473     for (uint i = 1; i < tos; i++) {
 474       Node* x = phi_map->in(i);
 475       if (x->in(0) == region) {
 476         assert(x->is_Phi(), "expected a special phi");
 477         phi_map->set_req(i, _gvn.transform(x));
 478       }
 479     }
 480     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 481       Node* x = mms.memory();
 482       if (x->in(0) == region) {
 483         assert(x->is_Phi(), "nobody else uses a hidden region");
 484         mms.set_memory(_gvn.transform(x));
 485       }
 486     }
 487     if (ex_oop->in(0) == region) {
 488       assert(ex_oop->is_Phi(), "expected a special phi");
 489       ex_oop = _gvn.transform(ex_oop);
 490     }
 491   } else {
 492     set_jvms(phi_map->jvms());
 493   }
 494 
 495   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 496   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 497   return ex_oop;
 498 }
 499 
 500 //---------------------------------java_bc-------------------------------------
 501 Bytecodes::Code GraphKit::java_bc() const {
 502   ciMethod* method = this->method();
 503   int       bci    = this->bci();
 504   if (method != nullptr && bci != InvocationEntryBci)
 505     return method->java_code_at_bci(bci);
 506   else
 507     return Bytecodes::_illegal;
 508 }
 509 
 510 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 511                                                           bool must_throw) {
 512     // if the exception capability is set, then we will generate code
 513     // to check the JavaThread.should_post_on_exceptions flag to see
 514     // if we actually need to report exception events (for this
 515     // thread).  If we don't need to report exception events, we will
 516     // take the normal fast path provided by add_exception_events.  If
 517     // exception event reporting is enabled for this thread, we will
 518     // take the uncommon_trap in the BuildCutout below.
 519 
 520     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 521     Node* jthread = _gvn.transform(new ThreadLocalNode());
 522     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 523     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 524 
 525     // Test the should_post_on_exceptions_flag vs. 0
 526     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 527     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 528 
 529     // Branch to slow_path if should_post_on_exceptions_flag was true
 530     { BuildCutout unless(this, tst, PROB_MAX);
 531       // Do not try anything fancy if we're notifying the VM on every throw.
 532       // Cf. case Bytecodes::_athrow in parse2.cpp.
 533       uncommon_trap(reason, Deoptimization::Action_none,
 534                     (ciKlass*)nullptr, (char*)nullptr, must_throw);
 535     }
 536 
 537 }
 538 
 539 //------------------------------builtin_throw----------------------------------
 540 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
 541   bool must_throw = true;
 542 
 543   // If this particular condition has not yet happened at this
 544   // bytecode, then use the uncommon trap mechanism, and allow for
 545   // a future recompilation if several traps occur here.
 546   // If the throw is hot, try to use a more complicated inline mechanism
 547   // which keeps execution inside the compiled code.
 548   bool treat_throw_as_hot = false;
 549   ciMethodData* md = method()->method_data();
 550 
 551   if (ProfileTraps) {
 552     if (too_many_traps(reason)) {
 553       treat_throw_as_hot = true;
 554     }
 555     // (If there is no MDO at all, assume it is early in
 556     // execution, and that any deopts are part of the
 557     // startup transient, and don't need to be remembered.)
 558 
 559     // Also, if there is a local exception handler, treat all throws
 560     // as hot if there has been at least one in this method.
 561     if (C->trap_count(reason) != 0
 562         && method()->method_data()->trap_count(reason) != 0
 563         && has_exception_handler()) {
 564         treat_throw_as_hot = true;
 565     }
 566   }
 567 
 568   // If this throw happens frequently, an uncommon trap might cause
 569   // a performance pothole.  If there is a local exception handler,
 570   // and if this particular bytecode appears to be deoptimizing often,
 571   // let us handle the throw inline, with a preconstructed instance.
 572   // Note:   If the deopt count has blown up, the uncommon trap
 573   // runtime is going to flush this nmethod, not matter what.
 574   if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
 575     // If the throw is local, we use a pre-existing instance and
 576     // punt on the backtrace.  This would lead to a missing backtrace
 577     // (a repeat of 4292742) if the backtrace object is ever asked
 578     // for its backtrace.
 579     // Fixing this remaining case of 4292742 requires some flavor of
 580     // escape analysis.  Leave that for the future.
 581     ciInstance* ex_obj = nullptr;
 582     switch (reason) {
 583     case Deoptimization::Reason_null_check:
 584       ex_obj = env()->NullPointerException_instance();
 585       break;
 586     case Deoptimization::Reason_div0_check:
 587       ex_obj = env()->ArithmeticException_instance();
 588       break;
 589     case Deoptimization::Reason_range_check:
 590       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 591       break;
 592     case Deoptimization::Reason_class_check:
 593       ex_obj = env()->ClassCastException_instance();
 594       break;
 595     case Deoptimization::Reason_array_check:
 596       ex_obj = env()->ArrayStoreException_instance();
 597       break;
 598     default:
 599       break;
 600     }
 601     if (failing()) { stop(); return; }  // exception allocation might fail
 602     if (ex_obj != nullptr) {
 603       if (env()->jvmti_can_post_on_exceptions()) {
 604         // check if we must post exception events, take uncommon trap if so
 605         uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 606         // here if should_post_on_exceptions is false
 607         // continue on with the normal codegen
 608       }
 609 
 610       // Cheat with a preallocated exception object.
 611       if (C->log() != nullptr)
 612         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 613                        Deoptimization::trap_reason_name(reason));
 614       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 615       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 616 
 617       // Clear the detail message of the preallocated exception object.
 618       // Weblogic sometimes mutates the detail message of exceptions
 619       // using reflection.
 620       int offset = java_lang_Throwable::get_detailMessage_offset();
 621       const TypePtr* adr_typ = ex_con->add_offset(offset);
 622 
 623       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 624       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 625       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 626 
 627       if (!method()->has_exception_handlers()) {
 628         // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
 629         // This prevents issues with exception handling and late inlining.
 630         set_sp(0);
 631         clean_stack(0);
 632       }
 633 
 634       add_exception_state(make_exception_state(ex_node));
 635       return;
 636     }
 637   }
 638 
 639   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 640   // It won't be much cheaper than bailing to the interp., since we'll
 641   // have to pass up all the debug-info, and the runtime will have to
 642   // create the stack trace.
 643 
 644   // Usual case:  Bail to interpreter.
 645   // Reserve the right to recompile if we haven't seen anything yet.
 646 
 647   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
 648   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 649   if (treat_throw_as_hot
 650       && (method()->method_data()->trap_recompiled_at(bci(), m)
 651           || C->too_many_traps(reason))) {
 652     // We cannot afford to take more traps here.  Suffer in the interpreter.
 653     if (C->log() != nullptr)
 654       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 655                      Deoptimization::trap_reason_name(reason),
 656                      C->trap_count(reason));
 657     action = Deoptimization::Action_none;
 658   }
 659 
 660   // "must_throw" prunes the JVM state to include only the stack, if there
 661   // are no local exception handlers.  This should cut down on register
 662   // allocation time and code size, by drastically reducing the number
 663   // of in-edges on the call to the uncommon trap.
 664 
 665   uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
 666 }
 667 
 668 
 669 //----------------------------PreserveJVMState---------------------------------
 670 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 671   debug_only(kit->verify_map());
 672   _kit    = kit;
 673   _map    = kit->map();   // preserve the map
 674   _sp     = kit->sp();
 675   kit->set_map(clone_map ? kit->clone_map() : nullptr);
 676 #ifdef ASSERT
 677   _bci    = kit->bci();
 678   Parse* parser = kit->is_Parse();
 679   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 680   _block  = block;
 681 #endif
 682 }
 683 PreserveJVMState::~PreserveJVMState() {
 684   GraphKit* kit = _kit;
 685 #ifdef ASSERT
 686   assert(kit->bci() == _bci, "bci must not shift");
 687   Parse* parser = kit->is_Parse();
 688   int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
 689   assert(block == _block,    "block must not shift");
 690 #endif
 691   kit->set_map(_map);
 692   kit->set_sp(_sp);
 693 }
 694 
 695 
 696 //-----------------------------BuildCutout-------------------------------------
 697 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 698   : PreserveJVMState(kit)
 699 {
 700   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 701   SafePointNode* outer_map = _map;   // preserved map is caller's
 702   SafePointNode* inner_map = kit->map();
 703   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 704   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 705   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 706 }
 707 BuildCutout::~BuildCutout() {
 708   GraphKit* kit = _kit;
 709   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 710 }
 711 
 712 //---------------------------PreserveReexecuteState----------------------------
 713 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 714   assert(!kit->stopped(), "must call stopped() before");
 715   _kit    =    kit;
 716   _sp     =    kit->sp();
 717   _reexecute = kit->jvms()->_reexecute;
 718 }
 719 PreserveReexecuteState::~PreserveReexecuteState() {
 720   if (_kit->stopped()) return;
 721   _kit->jvms()->_reexecute = _reexecute;
 722   _kit->set_sp(_sp);
 723 }
 724 
 725 //------------------------------clone_map--------------------------------------
 726 // Implementation of PreserveJVMState
 727 //
 728 // Only clone_map(...) here. If this function is only used in the
 729 // PreserveJVMState class we may want to get rid of this extra
 730 // function eventually and do it all there.
 731 
 732 SafePointNode* GraphKit::clone_map() {
 733   if (map() == nullptr)  return nullptr;
 734 
 735   // Clone the memory edge first
 736   Node* mem = MergeMemNode::make(map()->memory());
 737   gvn().set_type_bottom(mem);
 738 
 739   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 740   JVMState* jvms = this->jvms();
 741   JVMState* clonejvms = jvms->clone_shallow(C);
 742   clonemap->set_memory(mem);
 743   clonemap->set_jvms(clonejvms);
 744   clonejvms->set_map(clonemap);
 745   record_for_igvn(clonemap);
 746   gvn().set_type_bottom(clonemap);
 747   return clonemap;
 748 }
 749 
 750 //-----------------------------destruct_map_clone------------------------------
 751 //
 752 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need
 753 // to destruct/free/delete in the exact opposite order as clone_map().
 754 void GraphKit::destruct_map_clone(SafePointNode* sfp) {
 755   if (sfp == nullptr) return;
 756 
 757   Node* mem = sfp->memory();
 758   JVMState* jvms = sfp->jvms();
 759 
 760   if (jvms != nullptr) {
 761     delete jvms;
 762   }
 763 
 764   remove_for_igvn(sfp);
 765   gvn().clear_type(sfp);
 766   sfp->destruct(&_gvn);
 767 
 768   if (mem != nullptr) {
 769     gvn().clear_type(mem);
 770     mem->destruct(&_gvn);
 771   }
 772 }
 773 
 774 //-----------------------------set_map_clone-----------------------------------
 775 void GraphKit::set_map_clone(SafePointNode* m) {
 776   _map = m;
 777   _map = clone_map();
 778   _map->set_next_exception(nullptr);
 779   debug_only(verify_map());
 780 }
 781 
 782 
 783 //----------------------------kill_dead_locals---------------------------------
 784 // Detect any locals which are known to be dead, and force them to top.
 785 void GraphKit::kill_dead_locals() {
 786   // Consult the liveness information for the locals.  If any
 787   // of them are unused, then they can be replaced by top().  This
 788   // should help register allocation time and cut down on the size
 789   // of the deoptimization information.
 790 
 791   // This call is made from many of the bytecode handling
 792   // subroutines called from the Big Switch in do_one_bytecode.
 793   // Every bytecode which might include a slow path is responsible
 794   // for killing its dead locals.  The more consistent we
 795   // are about killing deads, the fewer useless phis will be
 796   // constructed for them at various merge points.
 797 
 798   // bci can be -1 (InvocationEntryBci).  We return the entry
 799   // liveness for the method.
 800 
 801   if (method() == nullptr || method()->code_size() == 0) {
 802     // We are building a graph for a call to a native method.
 803     // All locals are live.
 804     return;
 805   }
 806 
 807   ResourceMark rm;
 808 
 809   // Consult the liveness information for the locals.  If any
 810   // of them are unused, then they can be replaced by top().  This
 811   // should help register allocation time and cut down on the size
 812   // of the deoptimization information.
 813   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 814 
 815   int len = (int)live_locals.size();
 816   assert(len <= jvms()->loc_size(), "too many live locals");
 817   for (int local = 0; local < len; local++) {
 818     if (!live_locals.at(local)) {
 819       set_local(local, top());
 820     }
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 //-------------------------dead_locals_are_killed------------------------------
 826 // Return true if all dead locals are set to top in the map.
 827 // Used to assert "clean" debug info at various points.
 828 bool GraphKit::dead_locals_are_killed() {
 829   if (method() == nullptr || method()->code_size() == 0) {
 830     // No locals need to be dead, so all is as it should be.
 831     return true;
 832   }
 833 
 834   // Make sure somebody called kill_dead_locals upstream.
 835   ResourceMark rm;
 836   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
 837     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 838     SafePointNode* map = jvms->map();
 839     ciMethod* method = jvms->method();
 840     int       bci    = jvms->bci();
 841     if (jvms == this->jvms()) {
 842       bci = this->bci();  // it might not yet be synched
 843     }
 844     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 845     int len = (int)live_locals.size();
 846     if (!live_locals.is_valid() || len == 0)
 847       // This method is trivial, or is poisoned by a breakpoint.
 848       return true;
 849     assert(len == jvms->loc_size(), "live map consistent with locals map");
 850     for (int local = 0; local < len; local++) {
 851       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 893 
 894   // Walk the inline list to fill in the correct set of JVMState's
 895   // Also fill in the associated edges for each JVMState.
 896 
 897   // If the bytecode needs to be reexecuted we need to put
 898   // the arguments back on the stack.
 899   const bool should_reexecute = jvms()->should_reexecute();
 900   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 901 
 902   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 903   // undefined if the bci is different.  This is normal for Parse but it
 904   // should not happen for LibraryCallKit because only one bci is processed.
 905   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 906          "in LibraryCallKit the reexecute bit should not change");
 907 
 908   // If we are guaranteed to throw, we can prune everything but the
 909   // input to the current bytecode.
 910   bool can_prune_locals = false;
 911   uint stack_slots_not_pruned = 0;
 912   int inputs = 0, depth = 0;
 913   if (must_throw) {
 914     assert(method() == youngest_jvms->method(), "sanity");
 915     if (compute_stack_effects(inputs, depth)) {
 916       can_prune_locals = true;
 917       stack_slots_not_pruned = inputs;
 918     }
 919   }
 920 
 921   if (env()->should_retain_local_variables()) {
 922     // At any safepoint, this method can get breakpointed, which would
 923     // then require an immediate deoptimization.
 924     can_prune_locals = false;  // do not prune locals
 925     stack_slots_not_pruned = 0;
 926   }
 927 
 928   // do not scribble on the input jvms
 929   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 930   call->set_jvms(out_jvms); // Start jvms list for call node
 931 
 932   // For a known set of bytecodes, the interpreter should reexecute them if
 933   // deoptimization happens. We set the reexecute state for them here
 934   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 935       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 936 #ifdef ASSERT
 937     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 938     assert(method() == youngest_jvms->method(), "sanity");
 939     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 940     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 941 #endif // ASSERT
 942     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 943   }
 944 
 945   // Presize the call:
 946   DEBUG_ONLY(uint non_debug_edges = call->req());
 947   call->add_req_batch(top(), youngest_jvms->debug_depth());
 948   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 949 
 950   // Set up edges so that the call looks like this:
 951   //  Call [state:] ctl io mem fptr retadr
 952   //       [parms:] parm0 ... parmN
 953   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 954   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 955   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   // Note that caller debug info precedes callee debug info.
 957 
 958   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 959   uint debug_ptr = call->req();
 960 
 961   // Loop over the map input edges associated with jvms, add them
 962   // to the call node, & reset all offsets to match call node array.
 963 
 964   JVMState* callee_jvms = nullptr;
 965   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 966     uint debug_end   = debug_ptr;
 967     uint debug_start = debug_ptr - in_jvms->debug_size();
 968     debug_ptr = debug_start;  // back up the ptr
 969 
 970     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 971     uint j, k, l;
 972     SafePointNode* in_map = in_jvms->map();
 973     out_jvms->set_map(call);
 974 
 975     if (can_prune_locals) {
 976       assert(in_jvms->method() == out_jvms->method(), "sanity");
 977       // If the current throw can reach an exception handler in this JVMS,
 978       // then we must keep everything live that can reach that handler.
 979       // As a quick and dirty approximation, we look for any handlers at all.
 980       if (in_jvms->method()->has_exception_handlers()) {
 981         can_prune_locals = false;
 982       }
 983     }
 984 
 985     // Add the Locals
 986     k = in_jvms->locoff();
 987     l = in_jvms->loc_size();
 988     out_jvms->set_locoff(p);
 989     if (!can_prune_locals) {
 990       for (j = 0; j < l; j++) {
 991         Node* val = in_map->in(k + j);
 992         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 993         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 994             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 995             val->bottom_type()->is_inlinetypeptr()) {
 996           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 997         }
 998         call->set_req(p++, val);
 999       }
1000     } else {
1001       p += l;  // already set to top above by add_req_batch
1002     }
1003 
1004     // Add the Expression Stack
1005     k = in_jvms->stkoff();
1006     l = in_jvms->sp();
1007     out_jvms->set_stkoff(p);
1008     if (!can_prune_locals) {
1009       for (j = 0; j < l; j++) {
1010         Node* val = in_map->in(k + j);
1011         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1012         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1013             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1014             val->bottom_type()->is_inlinetypeptr()) {
1015           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1016         }
1017         call->set_req(p++, val);
1018       }
1019     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1020       // Divide stack into {S0,...,S1}, where S0 is set to top.
1021       uint s1 = stack_slots_not_pruned;
1022       stack_slots_not_pruned = 0;  // for next iteration
1023       if (s1 > l)  s1 = l;
1024       uint s0 = l - s1;
1025       p += s0;  // skip the tops preinstalled by add_req_batch
1026       for (j = s0; j < l; j++)
1027         call->set_req(p++, in_map->in(k+j));
1028     } else {
1029       p += l;  // already set to top above by add_req_batch
1030     }
1031 
1032     // Add the Monitors
1033     k = in_jvms->monoff();
1034     l = in_jvms->mon_size();
1035     out_jvms->set_monoff(p);
1036     for (j = 0; j < l; j++)
1037       call->set_req(p++, in_map->in(k+j));
1038 
1039     // Copy any scalar object fields.
1040     k = in_jvms->scloff();
1041     l = in_jvms->scl_size();
1042     out_jvms->set_scloff(p);
1043     for (j = 0; j < l; j++)
1044       call->set_req(p++, in_map->in(k+j));
1045 
1046     // Finish the new jvms.
1047     out_jvms->set_endoff(p);
1048 
1049     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1050     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1051     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1052     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1053     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1054     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1055 
1056     // Update the two tail pointers in parallel.
1057     callee_jvms = out_jvms;
1058     out_jvms = out_jvms->caller();
1059     in_jvms  = in_jvms->caller();
1060   }
1061 
1062   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1063 
1064   // Test the correctness of JVMState::debug_xxx accessors:
1065   assert(call->jvms()->debug_start() == non_debug_edges, "");
1066   assert(call->jvms()->debug_end()   == call->req(), "");
1067   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1068 }
1069 
1070 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1071   Bytecodes::Code code = java_bc();
1072   if (code == Bytecodes::_wide) {
1073     code = method()->java_code_at_bci(bci() + 1);
1074   }
1075 
1076   if (code != Bytecodes::_illegal) {
1077     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1078   }
1079 
1080   auto rsize = [&]() {
1081     assert(code != Bytecodes::_illegal, "code is illegal!");
1082     BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1083     return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1084   };
1085 
1086   switch (code) {
1087   case Bytecodes::_illegal:
1088     return false;
1089 
1090   case Bytecodes::_ldc:
1091   case Bytecodes::_ldc_w:
1092   case Bytecodes::_ldc2_w:
1093     inputs = 0;
1094     break;
1095 
1096   case Bytecodes::_dup:         inputs = 1;  break;
1097   case Bytecodes::_dup_x1:      inputs = 2;  break;
1098   case Bytecodes::_dup_x2:      inputs = 3;  break;
1099   case Bytecodes::_dup2:        inputs = 2;  break;
1100   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1101   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1102   case Bytecodes::_swap:        inputs = 2;  break;
1103   case Bytecodes::_arraylength: inputs = 1;  break;
1104 
1105   case Bytecodes::_getstatic:
1106   case Bytecodes::_putstatic:
1107   case Bytecodes::_getfield:
1108   case Bytecodes::_putfield:
1109     {
1110       bool ignored_will_link;
1111       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1112       int      size  = field->type()->size();
1113       bool is_get = (depth >= 0), is_static = (depth & 1);
1114       inputs = (is_static ? 0 : 1);
1115       if (is_get) {
1116         depth = size - inputs;
1117       } else {
1118         inputs += size;        // putxxx pops the value from the stack
1119         depth = - inputs;
1120       }
1121     }
1122     break;
1123 
1124   case Bytecodes::_invokevirtual:
1125   case Bytecodes::_invokespecial:
1126   case Bytecodes::_invokestatic:
1127   case Bytecodes::_invokedynamic:
1128   case Bytecodes::_invokeinterface:
1129     {
1130       bool ignored_will_link;
1131       ciSignature* declared_signature = nullptr;
1132       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1133       assert(declared_signature != nullptr, "cannot be null");
1134       inputs   = declared_signature->arg_size_for_bc(code);
1135       int size = declared_signature->return_type()->size();
1136       depth = size - inputs;
1137     }
1138     break;
1139 
1140   case Bytecodes::_multianewarray:
1141     {
1142       ciBytecodeStream iter(method());
1143       iter.reset_to_bci(bci());
1144       iter.next();
1145       inputs = iter.get_dimensions();
1146       assert(rsize() == 1, "");
1147       depth = 1 - inputs;
1148     }
1149     break;
1150 
1151   case Bytecodes::_ireturn:
1152   case Bytecodes::_lreturn:
1153   case Bytecodes::_freturn:
1154   case Bytecodes::_dreturn:
1155   case Bytecodes::_areturn:
1156     assert(rsize() == -depth, "");
1157     inputs = -depth;
1158     break;
1159 
1160   case Bytecodes::_jsr:
1161   case Bytecodes::_jsr_w:
1162     inputs = 0;
1163     depth  = 1;                  // S.B. depth=1, not zero
1164     break;
1165 
1166   default:
1167     // bytecode produces a typed result
1168     inputs = rsize() - depth;
1169     assert(inputs >= 0, "");
1170     break;
1171   }
1172 
1173 #ifdef ASSERT
1174   // spot check
1175   int outputs = depth + inputs;
1176   assert(outputs >= 0, "sanity");
1177   switch (code) {
1178   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1179   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1180   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1181   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1182   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1183   default:                    break;
1184   }
1185 #endif //ASSERT
1186 
1187   return true;
1188 }
1189 
1190 
1191 
1192 //------------------------------basic_plus_adr---------------------------------
1193 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1194   // short-circuit a common case
1195   if (offset == intcon(0))  return ptr;
1196   return _gvn.transform( new AddPNode(base, ptr, offset) );
1197 }
1198 
1199 Node* GraphKit::ConvI2L(Node* offset) {
1200   // short-circuit a common case
1201   jint offset_con = find_int_con(offset, Type::OffsetBot);
1202   if (offset_con != Type::OffsetBot) {
1203     return longcon((jlong) offset_con);
1204   }
1205   return _gvn.transform( new ConvI2LNode(offset));
1206 }
1207 
1208 Node* GraphKit::ConvI2UL(Node* offset) {
1209   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1210   if (offset_con != (juint) Type::OffsetBot) {
1211     return longcon((julong) offset_con);
1212   }
1213   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1214   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1215   return _gvn.transform( new AndLNode(conv, mask) );
1216 }
1217 
1218 Node* GraphKit::ConvL2I(Node* offset) {
1219   // short-circuit a common case
1220   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1221   if (offset_con != (jlong)Type::OffsetBot) {
1222     return intcon((int) offset_con);
1223   }
1224   return _gvn.transform( new ConvL2INode(offset));
1225 }
1226 
1227 //-------------------------load_object_klass-----------------------------------
1228 Node* GraphKit::load_object_klass(Node* obj) {
1229   // Special-case a fresh allocation to avoid building nodes:
1230   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1231   if (akls != nullptr)  return akls;
1232   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1233   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1234 }
1235 
1236 //-------------------------load_array_length-----------------------------------
1237 Node* GraphKit::load_array_length(Node* array) {
1238   // Special-case a fresh allocation to avoid building nodes:
1239   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1240   Node *alen;
1241   if (alloc == nullptr) {
1242     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1243     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1244   } else {
1245     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1246   }
1247   return alen;
1248 }
1249 
1250 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1251                                    const TypeOopPtr* oop_type,
1252                                    bool replace_length_in_map) {
1253   Node* length = alloc->Ideal_length();
1254   if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1255     Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1256     if (ccast != length) {
1257       // do not transform ccast here, it might convert to top node for
1258       // negative array length and break assumptions in parsing stage.
1259       _gvn.set_type_bottom(ccast);
1260       record_for_igvn(ccast);
1261       if (replace_length_in_map) {
1262         replace_in_map(length, ccast);
1263       }
1264       return ccast;
1265     }
1266   }
1267   return length;
1268 }
1269 
1270 //------------------------------do_null_check----------------------------------
1271 // Helper function to do a null pointer check.  Returned value is
1272 // the incoming address with null casted away.  You are allowed to use the
1273 // not-null value only if you are control dependent on the test.
1274 #ifndef PRODUCT
1275 extern uint explicit_null_checks_inserted,
1276             explicit_null_checks_elided;
1277 #endif
1278 Node* GraphKit::null_check_common(Node* value, BasicType type,
1279                                   // optional arguments for variations:
1280                                   bool assert_null,
1281                                   Node* *null_control,
1282                                   bool speculative,
1283                                   bool is_init_check) {
1284   assert(!assert_null || null_control == nullptr, "not both at once");
1285   if (stopped())  return top();
1286   NOT_PRODUCT(explicit_null_checks_inserted++);
1287 
1288   if (value->is_InlineType()) {
1289     // Null checking a scalarized but nullable inline type. Check the IsInit
1290     // input instead of the oop input to avoid keeping buffer allocations alive.
1291     InlineTypeNode* vtptr = value->as_InlineType();
1292     while (vtptr->get_oop()->is_InlineType()) {
1293       vtptr = vtptr->get_oop()->as_InlineType();
1294     }
1295     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1296     if (stopped()) {
1297       return top();
1298     }
1299     if (assert_null) {
1300       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1301       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1302       // replace_in_map(value, vtptr);
1303       // return vtptr;
1304       replace_in_map(value, null());
1305       return null();
1306     }
1307     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1308     return cast_not_null(value, do_replace_in_map);
1309   }
1310 
1311   // Construct null check
1312   Node *chk = nullptr;
1313   switch(type) {
1314     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1315     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1316     case T_ARRAY  : // fall through
1317       type = T_OBJECT;  // simplify further tests
1318     case T_OBJECT : {
1319       const Type *t = _gvn.type( value );
1320 
1321       const TypeOopPtr* tp = t->isa_oopptr();
1322       if (tp != nullptr && !tp->is_loaded()
1323           // Only for do_null_check, not any of its siblings:
1324           && !assert_null && null_control == nullptr) {
1325         // Usually, any field access or invocation on an unloaded oop type
1326         // will simply fail to link, since the statically linked class is
1327         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1328         // the static class is loaded but the sharper oop type is not.
1329         // Rather than checking for this obscure case in lots of places,
1330         // we simply observe that a null check on an unloaded class
1331         // will always be followed by a nonsense operation, so we
1332         // can just issue the uncommon trap here.
1333         // Our access to the unloaded class will only be correct
1334         // after it has been loaded and initialized, which requires
1335         // a trip through the interpreter.
1336         ciKlass* klass = tp->unloaded_klass();
1337 #ifndef PRODUCT
1338         if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1339 #endif
1340         uncommon_trap(Deoptimization::Reason_unloaded,
1341                       Deoptimization::Action_reinterpret,
1342                       klass, "!loaded");
1343         return top();
1344       }
1345 
1346       if (assert_null) {
1347         // See if the type is contained in NULL_PTR.
1348         // If so, then the value is already null.
1349         if (t->higher_equal(TypePtr::NULL_PTR)) {
1350           NOT_PRODUCT(explicit_null_checks_elided++);
1351           return value;           // Elided null assert quickly!
1352         }
1353       } else {
1354         // See if mixing in the null pointer changes type.
1355         // If so, then the null pointer was not allowed in the original
1356         // type.  In other words, "value" was not-null.
1357         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1358           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1359           NOT_PRODUCT(explicit_null_checks_elided++);
1360           return value;           // Elided null check quickly!
1361         }
1362       }
1363       chk = new CmpPNode( value, null() );
1364       break;
1365     }
1366 
1367     default:
1368       fatal("unexpected type: %s", type2name(type));
1369   }
1370   assert(chk != nullptr, "sanity check");
1371   chk = _gvn.transform(chk);
1372 
1373   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1374   BoolNode *btst = new BoolNode( chk, btest);
1375   Node   *tst = _gvn.transform( btst );
1376 
1377   //-----------
1378   // if peephole optimizations occurred, a prior test existed.
1379   // If a prior test existed, maybe it dominates as we can avoid this test.
1380   if (tst != btst && type == T_OBJECT) {
1381     // At this point we want to scan up the CFG to see if we can
1382     // find an identical test (and so avoid this test altogether).
1383     Node *cfg = control();
1384     int depth = 0;
1385     while( depth < 16 ) {       // Limit search depth for speed
1386       if( cfg->Opcode() == Op_IfTrue &&
1387           cfg->in(0)->in(1) == tst ) {
1388         // Found prior test.  Use "cast_not_null" to construct an identical
1389         // CastPP (and hence hash to) as already exists for the prior test.
1390         // Return that casted value.
1391         if (assert_null) {
1392           replace_in_map(value, null());
1393           return null();  // do not issue the redundant test
1394         }
1395         Node *oldcontrol = control();
1396         set_control(cfg);
1397         Node *res = cast_not_null(value);
1398         set_control(oldcontrol);
1399         NOT_PRODUCT(explicit_null_checks_elided++);
1400         return res;
1401       }
1402       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1403       if (cfg == nullptr)  break;  // Quit at region nodes
1404       depth++;
1405     }
1406   }
1407 
1408   //-----------
1409   // Branch to failure if null
1410   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1411   Deoptimization::DeoptReason reason;
1412   if (assert_null) {
1413     reason = Deoptimization::reason_null_assert(speculative);
1414   } else if (type == T_OBJECT || is_init_check) {
1415     reason = Deoptimization::reason_null_check(speculative);
1416   } else {
1417     reason = Deoptimization::Reason_div0_check;
1418   }
1419   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1420   // ciMethodData::has_trap_at will return a conservative -1 if any
1421   // must-be-null assertion has failed.  This could cause performance
1422   // problems for a method after its first do_null_assert failure.
1423   // Consider using 'Reason_class_check' instead?
1424 
1425   // To cause an implicit null check, we set the not-null probability
1426   // to the maximum (PROB_MAX).  For an explicit check the probability
1427   // is set to a smaller value.
1428   if (null_control != nullptr || too_many_traps(reason)) {
1429     // probability is less likely
1430     ok_prob =  PROB_LIKELY_MAG(3);
1431   } else if (!assert_null &&
1432              (ImplicitNullCheckThreshold > 0) &&
1433              method() != nullptr &&
1434              (method()->method_data()->trap_count(reason)
1435               >= (uint)ImplicitNullCheckThreshold)) {
1436     ok_prob =  PROB_LIKELY_MAG(3);
1437   }
1438 
1439   if (null_control != nullptr) {
1440     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1441     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1442     set_control(      _gvn.transform( new IfTrueNode(iff)));
1443 #ifndef PRODUCT
1444     if (null_true == top()) {
1445       explicit_null_checks_elided++;
1446     }
1447 #endif
1448     (*null_control) = null_true;
1449   } else {
1450     BuildCutout unless(this, tst, ok_prob);
1451     // Check for optimizer eliding test at parse time
1452     if (stopped()) {
1453       // Failure not possible; do not bother making uncommon trap.
1454       NOT_PRODUCT(explicit_null_checks_elided++);
1455     } else if (assert_null) {
1456       uncommon_trap(reason,
1457                     Deoptimization::Action_make_not_entrant,
1458                     nullptr, "assert_null");
1459     } else {
1460       replace_in_map(value, zerocon(type));
1461       builtin_throw(reason);
1462     }
1463   }
1464 
1465   // Must throw exception, fall-thru not possible?
1466   if (stopped()) {
1467     return top();               // No result
1468   }
1469 
1470   if (assert_null) {
1471     // Cast obj to null on this path.
1472     replace_in_map(value, zerocon(type));
1473     return zerocon(type);
1474   }
1475 
1476   // Cast obj to not-null on this path, if there is no null_control.
1477   // (If there is a null_control, a non-null value may come back to haunt us.)
1478   if (type == T_OBJECT) {
1479     Node* cast = cast_not_null(value, false);
1480     if (null_control == nullptr || (*null_control) == top())
1481       replace_in_map(value, cast);
1482     value = cast;
1483   }
1484 
1485   return value;
1486 }
1487 
1488 //------------------------------cast_not_null----------------------------------
1489 // Cast obj to not-null on this path
1490 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1491   if (obj->is_InlineType()) {
1492     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1493     vt->as_InlineType()->set_is_init(_gvn);
1494     vt = _gvn.transform(vt);
1495     if (do_replace_in_map) {
1496       replace_in_map(obj, vt);
1497     }
1498     return vt;
1499   }
1500   const Type *t = _gvn.type(obj);
1501   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1502   // Object is already not-null?
1503   if( t == t_not_null ) return obj;
1504 
1505   Node* cast = new CastPPNode(control(), obj,t_not_null);
1506   cast = _gvn.transform( cast );
1507 
1508   // Scan for instances of 'obj' in the current JVM mapping.
1509   // These instances are known to be not-null after the test.
1510   if (do_replace_in_map)
1511     replace_in_map(obj, cast);
1512 
1513   return cast;                  // Return casted value
1514 }
1515 
1516 // Sometimes in intrinsics, we implicitly know an object is not null
1517 // (there's no actual null check) so we can cast it to not null. In
1518 // the course of optimizations, the input to the cast can become null.
1519 // In that case that data path will die and we need the control path
1520 // to become dead as well to keep the graph consistent. So we have to
1521 // add a check for null for which one branch can't be taken. It uses
1522 // an Opaque4 node that will cause the check to be removed after loop
1523 // opts so the test goes away and the compiled code doesn't execute a
1524 // useless check.
1525 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1526   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1527     return value;
1528   }
1529   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1530   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1531   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1532   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1533   _gvn.set_type(iff, iff->Value(&_gvn));
1534   if (!tst->is_Con()) {
1535     record_for_igvn(iff);
1536   }
1537   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1538   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1539   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1540   C->root()->add_req(halt);
1541   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1542   set_control(if_t);
1543   return cast_not_null(value, do_replace_in_map);
1544 }
1545 
1546 
1547 //--------------------------replace_in_map-------------------------------------
1548 void GraphKit::replace_in_map(Node* old, Node* neww) {
1549   if (old == neww) {
1550     return;
1551   }
1552 
1553   map()->replace_edge(old, neww);
1554 
1555   // Note: This operation potentially replaces any edge
1556   // on the map.  This includes locals, stack, and monitors
1557   // of the current (innermost) JVM state.
1558 
1559   // don't let inconsistent types from profiling escape this
1560   // method
1561 
1562   const Type* told = _gvn.type(old);
1563   const Type* tnew = _gvn.type(neww);
1564 
1565   if (!tnew->higher_equal(told)) {
1566     return;
1567   }
1568 
1569   map()->record_replaced_node(old, neww);
1570 }
1571 
1572 
1573 //=============================================================================
1574 //--------------------------------memory---------------------------------------
1575 Node* GraphKit::memory(uint alias_idx) {
1576   MergeMemNode* mem = merged_memory();
1577   Node* p = mem->memory_at(alias_idx);
1578   assert(p != mem->empty_memory(), "empty");
1579   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1580   return p;
1581 }
1582 
1583 //-----------------------------reset_memory------------------------------------
1584 Node* GraphKit::reset_memory() {
1585   Node* mem = map()->memory();
1586   // do not use this node for any more parsing!
1587   debug_only( map()->set_memory((Node*)nullptr) );
1588   return _gvn.transform( mem );
1589 }
1590 
1591 //------------------------------set_all_memory---------------------------------
1592 void GraphKit::set_all_memory(Node* newmem) {
1593   Node* mergemem = MergeMemNode::make(newmem);
1594   gvn().set_type_bottom(mergemem);
1595   map()->set_memory(mergemem);
1596 }
1597 
1598 //------------------------------set_all_memory_call----------------------------
1599 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1600   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1601   set_all_memory(newmem);
1602 }
1603 
1604 //=============================================================================
1605 //
1606 // parser factory methods for MemNodes
1607 //
1608 // These are layered on top of the factory methods in LoadNode and StoreNode,
1609 // and integrate with the parser's memory state and _gvn engine.
1610 //
1611 
1612 // factory methods in "int adr_idx"
1613 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1614                           int adr_idx,
1615                           MemNode::MemOrd mo,
1616                           LoadNode::ControlDependency control_dependency,
1617                           bool require_atomic_access,
1618                           bool unaligned,
1619                           bool mismatched,
1620                           bool unsafe,
1621                           uint8_t barrier_data) {
1622   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1623   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1624   debug_only(adr_type = C->get_adr_type(adr_idx));
1625   Node* mem = memory(adr_idx);
1626   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1627   ld = _gvn.transform(ld);
1628 
1629   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1630     // Improve graph before escape analysis and boxing elimination.
1631     record_for_igvn(ld);
1632     if (ld->is_DecodeN()) {
1633       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1634       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1635       // a Phi). Recording such cases is still perfectly sound, but may be
1636       // unnecessary and result in some minor IGVN overhead.
1637       record_for_igvn(ld->in(1));
1638     }
1639   }
1640   return ld;
1641 }
1642 
1643 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1644                                 int adr_idx,
1645                                 MemNode::MemOrd mo,
1646                                 bool require_atomic_access,
1647                                 bool unaligned,
1648                                 bool mismatched,
1649                                 bool unsafe,
1650                                 int barrier_data) {
1651   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1652   const TypePtr* adr_type = nullptr;
1653   debug_only(adr_type = C->get_adr_type(adr_idx));
1654   Node *mem = memory(adr_idx);
1655   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1656   if (unaligned) {
1657     st->as_Store()->set_unaligned_access();
1658   }
1659   if (mismatched) {
1660     st->as_Store()->set_mismatched_access();
1661   }
1662   if (unsafe) {
1663     st->as_Store()->set_unsafe_access();
1664   }
1665   st->as_Store()->set_barrier_data(barrier_data);
1666   st = _gvn.transform(st);
1667   set_memory(st, adr_idx);
1668   // Back-to-back stores can only remove intermediate store with DU info
1669   // so push on worklist for optimizer.
1670   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1671     record_for_igvn(st);
1672 
1673   return st;
1674 }
1675 
1676 Node* GraphKit::access_store_at(Node* obj,
1677                                 Node* adr,
1678                                 const TypePtr* adr_type,
1679                                 Node* val,
1680                                 const Type* val_type,
1681                                 BasicType bt,
1682                                 DecoratorSet decorators,
1683                                 bool safe_for_replace) {
1684   // Transformation of a value which could be null pointer (CastPP #null)
1685   // could be delayed during Parse (for example, in adjust_map_after_if()).
1686   // Execute transformation here to avoid barrier generation in such case.
1687   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1688     val = _gvn.makecon(TypePtr::NULL_PTR);
1689   }
1690 
1691   if (stopped()) {
1692     return top(); // Dead path ?
1693   }
1694 
1695   assert(val != nullptr, "not dead path");
1696   if (val->is_InlineType()) {
1697     // Store to non-flat field. Buffer the inline type and make sure
1698     // the store is re-executed if the allocation triggers deoptimization.
1699     PreserveReexecuteState preexecs(this);
1700     jvms()->set_should_reexecute(true);
1701     val = val->as_InlineType()->buffer(this, safe_for_replace);
1702   }
1703 
1704   C2AccessValuePtr addr(adr, adr_type);
1705   C2AccessValue value(val, val_type);
1706   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1707   if (access.is_raw()) {
1708     return _barrier_set->BarrierSetC2::store_at(access, value);
1709   } else {
1710     return _barrier_set->store_at(access, value);
1711   }
1712 }
1713 
1714 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1715                                Node* adr,   // actual address to store val at
1716                                const TypePtr* adr_type,
1717                                const Type* val_type,
1718                                BasicType bt,
1719                                DecoratorSet decorators,
1720                                Node* ctl) {
1721   if (stopped()) {
1722     return top(); // Dead path ?
1723   }
1724 
1725   C2AccessValuePtr addr(adr, adr_type);
1726   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1727   if (access.is_raw()) {
1728     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1729   } else {
1730     return _barrier_set->load_at(access, val_type);
1731   }
1732 }
1733 
1734 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1735                             const Type* val_type,
1736                             BasicType bt,
1737                             DecoratorSet decorators) {
1738   if (stopped()) {
1739     return top(); // Dead path ?
1740   }
1741 
1742   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1743   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1744   if (access.is_raw()) {
1745     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1746   } else {
1747     return _barrier_set->load_at(access, val_type);
1748   }
1749 }
1750 
1751 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1752                                              Node* adr,
1753                                              const TypePtr* adr_type,
1754                                              int alias_idx,
1755                                              Node* expected_val,
1756                                              Node* new_val,
1757                                              const Type* value_type,
1758                                              BasicType bt,
1759                                              DecoratorSet decorators) {
1760   C2AccessValuePtr addr(adr, adr_type);
1761   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1762                         bt, obj, addr, alias_idx);
1763   if (access.is_raw()) {
1764     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1765   } else {
1766     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1767   }
1768 }
1769 
1770 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1771                                               Node* adr,
1772                                               const TypePtr* adr_type,
1773                                               int alias_idx,
1774                                               Node* expected_val,
1775                                               Node* new_val,
1776                                               const Type* value_type,
1777                                               BasicType bt,
1778                                               DecoratorSet decorators) {
1779   C2AccessValuePtr addr(adr, adr_type);
1780   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1781                         bt, obj, addr, alias_idx);
1782   if (access.is_raw()) {
1783     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1784   } else {
1785     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1786   }
1787 }
1788 
1789 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1790                                       Node* adr,
1791                                       const TypePtr* adr_type,
1792                                       int alias_idx,
1793                                       Node* new_val,
1794                                       const Type* value_type,
1795                                       BasicType bt,
1796                                       DecoratorSet decorators) {
1797   C2AccessValuePtr addr(adr, adr_type);
1798   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1799                         bt, obj, addr, alias_idx);
1800   if (access.is_raw()) {
1801     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1802   } else {
1803     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1804   }
1805 }
1806 
1807 Node* GraphKit::access_atomic_add_at(Node* obj,
1808                                      Node* adr,
1809                                      const TypePtr* adr_type,
1810                                      int alias_idx,
1811                                      Node* new_val,
1812                                      const Type* value_type,
1813                                      BasicType bt,
1814                                      DecoratorSet decorators) {
1815   C2AccessValuePtr addr(adr, adr_type);
1816   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1817   if (access.is_raw()) {
1818     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1819   } else {
1820     return _barrier_set->atomic_add_at(access, new_val, value_type);
1821   }
1822 }
1823 
1824 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1825   return _barrier_set->clone(this, src, dst, size, is_array);
1826 }
1827 
1828 //-------------------------array_element_address-------------------------
1829 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1830                                       const TypeInt* sizetype, Node* ctrl) {
1831   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1832   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1833   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1834 
1835   // short-circuit a common case (saves lots of confusing waste motion)
1836   jint idx_con = find_int_con(idx, -1);
1837   if (idx_con >= 0) {
1838     intptr_t offset = header + ((intptr_t)idx_con << shift);
1839     return basic_plus_adr(ary, offset);
1840   }
1841 
1842   // must be correct type for alignment purposes
1843   Node* base  = basic_plus_adr(ary, header);
1844   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1845   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1846   return basic_plus_adr(ary, base, scale);
1847 }
1848 
1849 //-------------------------load_array_element-------------------------
1850 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1851   const Type* elemtype = arytype->elem();
1852   BasicType elembt = elemtype->array_element_basic_type();
1853   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1854   if (elembt == T_NARROWOOP) {
1855     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1856   }
1857   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1858                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1859   return ld;
1860 }
1861 
1862 //-------------------------set_arguments_for_java_call-------------------------
1863 // Arguments (pre-popped from the stack) are taken from the JVMS.
1864 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1865   PreserveReexecuteState preexecs(this);
1866   if (EnableValhalla) {
1867     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1868     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1869     jvms()->set_should_reexecute(true);
1870     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1871     inc_sp(arg_size);
1872   }
1873   // Add the call arguments
1874   const TypeTuple* domain = call->tf()->domain_sig();
1875   uint nargs = domain->cnt();
1876   int arg_num = 0;
1877   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1878     Node* arg = argument(i-TypeFunc::Parms);
1879     const Type* t = domain->field_at(i);
1880     // TODO 8284443 A static call to a mismatched method should still be scalarized
1881     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1882       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1883       if (!arg->is_InlineType()) {
1884         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1885         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1886       }
1887       InlineTypeNode* vt = arg->as_InlineType();
1888       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1889       // If an inline type argument is passed as fields, attach the Method* to the call site
1890       // to be able to access the extended signature later via attached_method_before_pc().
1891       // For example, see CompiledMethod::preserve_callee_argument_oops().
1892       call->set_override_symbolic_info(true);
1893       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1894       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1895       C->dependencies()->assert_evol_method(call->method());
1896       arg_num++;
1897       continue;
1898     } else if (arg->is_InlineType()) {
1899       // Pass inline type argument via oop to callee
1900       InlineTypeNode* inline_type = arg->as_InlineType();
1901       const ciMethod* method = call->method();
1902       ciInstanceKlass* holder = method->holder();
1903       const bool is_receiver = (i == TypeFunc::Parms);
1904       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1905                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1906       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1907       bool must_init_buffer = true;
1908       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1909       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1910       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1911       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1912       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1913       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1914       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1915       // value class constructors which could have more fields to be initialized. Note that we do not need to
1916       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1917       // have not initialized any fields, yet (this is done completely by the other constructor call).
1918       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1919         must_init_buffer = false;
1920       }
1921       arg = inline_type->buffer(this, true, must_init_buffer);
1922     }
1923     if (t != Type::HALF) {
1924       arg_num++;
1925     }
1926     call->init_req(idx++, arg);
1927   }
1928 }
1929 
1930 //---------------------------set_edges_for_java_call---------------------------
1931 // Connect a newly created call into the current JVMS.
1932 // A return value node (if any) is returned from set_edges_for_java_call.
1933 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1934 
1935   // Add the predefined inputs:
1936   call->init_req( TypeFunc::Control, control() );
1937   call->init_req( TypeFunc::I_O    , i_o() );
1938   call->init_req( TypeFunc::Memory , reset_memory() );
1939   call->init_req( TypeFunc::FramePtr, frameptr() );
1940   call->init_req( TypeFunc::ReturnAdr, top() );
1941 
1942   add_safepoint_edges(call, must_throw);
1943 
1944   Node* xcall = _gvn.transform(call);
1945 
1946   if (xcall == top()) {
1947     set_control(top());
1948     return;
1949   }
1950   assert(xcall == call, "call identity is stable");
1951 
1952   // Re-use the current map to produce the result.
1953 
1954   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1955   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1956   set_all_memory_call(xcall, separate_io_proj);
1957 
1958   //return xcall;   // no need, caller already has it
1959 }
1960 
1961 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1962   if (stopped())  return top();  // maybe the call folded up?
1963 
1964   // Note:  Since any out-of-line call can produce an exception,
1965   // we always insert an I_O projection from the call into the result.
1966 
1967   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1968 
1969   if (separate_io_proj) {
1970     // The caller requested separate projections be used by the fall
1971     // through and exceptional paths, so replace the projections for
1972     // the fall through path.
1973     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1974     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1975   }
1976 
1977   // Capture the return value, if any.
1978   Node* ret;
1979   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1980     ret = top();
1981   } else if (call->tf()->returns_inline_type_as_fields()) {
1982     // Return of multiple values (inline type fields): we create a
1983     // InlineType node, each field is a projection from the call.
1984     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1985     uint base_input = TypeFunc::Parms;
1986     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
1987   } else {
1988     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1989     ciType* t = call->method()->return_type();
1990     if (t->is_klass()) {
1991       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
1992       if (type->is_inlinetypeptr()) {
1993         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
1994       }
1995     }
1996   }
1997 
1998   // We just called the constructor on a value type receiver. Reload it from the buffer
1999   ciMethod* method = call->method();
2000   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2001     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2002     if (inline_type_receiver != nullptr) {
2003       assert(inline_type_receiver->is_larval(), "must be larval");
2004       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2005       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2006                                                                inline_type_receiver->bottom_type()->inline_klass(), true);
2007       assert(!reloaded->is_larval(), "should not be larval anymore");
2008       replace_in_map(inline_type_receiver, reloaded);
2009     }
2010   }
2011 
2012   return ret;
2013 }
2014 
2015 //--------------------set_predefined_input_for_runtime_call--------------------
2016 // Reading and setting the memory state is way conservative here.
2017 // The real problem is that I am not doing real Type analysis on memory,
2018 // so I cannot distinguish card mark stores from other stores.  Across a GC
2019 // point the Store Barrier and the card mark memory has to agree.  I cannot
2020 // have a card mark store and its barrier split across the GC point from
2021 // either above or below.  Here I get that to happen by reading ALL of memory.
2022 // A better answer would be to separate out card marks from other memory.
2023 // For now, return the input memory state, so that it can be reused
2024 // after the call, if this call has restricted memory effects.
2025 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2026   // Set fixed predefined input arguments
2027   Node* memory = reset_memory();
2028   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2029   call->init_req( TypeFunc::Control,   control()  );
2030   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2031   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
2032   call->init_req( TypeFunc::FramePtr,  frameptr() );
2033   call->init_req( TypeFunc::ReturnAdr, top()      );
2034   return memory;
2035 }
2036 
2037 //-------------------set_predefined_output_for_runtime_call--------------------
2038 // Set control and memory (not i_o) from the call.
2039 // If keep_mem is not null, use it for the output state,
2040 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
2041 // If hook_mem is null, this call produces no memory effects at all.
2042 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
2043 // then only that memory slice is taken from the call.
2044 // In the last case, we must put an appropriate memory barrier before
2045 // the call, so as to create the correct anti-dependencies on loads
2046 // preceding the call.
2047 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
2048                                                       Node* keep_mem,
2049                                                       const TypePtr* hook_mem) {
2050   // no i/o
2051   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
2052   if (keep_mem) {
2053     // First clone the existing memory state
2054     set_all_memory(keep_mem);
2055     if (hook_mem != nullptr) {
2056       // Make memory for the call
2057       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
2058       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
2059       // We also use hook_mem to extract specific effects from arraycopy stubs.
2060       set_memory(mem, hook_mem);
2061     }
2062     // ...else the call has NO memory effects.
2063 
2064     // Make sure the call advertises its memory effects precisely.
2065     // This lets us build accurate anti-dependences in gcm.cpp.
2066     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
2067            "call node must be constructed correctly");
2068   } else {
2069     assert(hook_mem == nullptr, "");
2070     // This is not a "slow path" call; all memory comes from the call.
2071     set_all_memory_call(call);
2072   }
2073 }
2074 
2075 // Keep track of MergeMems feeding into other MergeMems
2076 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
2077   if (!mem->is_MergeMem()) {
2078     return;
2079   }
2080   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
2081     Node* use = i.get();
2082     if (use->is_MergeMem()) {
2083       wl.push(use);
2084     }
2085   }
2086 }
2087 
2088 // Replace the call with the current state of the kit.
2089 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2090   JVMState* ejvms = nullptr;
2091   if (has_exceptions()) {
2092     ejvms = transfer_exceptions_into_jvms();
2093   }
2094 
2095   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2096   ReplacedNodes replaced_nodes_exception;
2097   Node* ex_ctl = top();
2098 
2099   SafePointNode* final_state = stop();
2100 
2101   // Find all the needed outputs of this call
2102   CallProjections* callprojs = call->extract_projections(true);
2103 
2104   Unique_Node_List wl;
2105   Node* init_mem = call->in(TypeFunc::Memory);
2106   Node* final_mem = final_state->in(TypeFunc::Memory);
2107   Node* final_ctl = final_state->in(TypeFunc::Control);
2108   Node* final_io = final_state->in(TypeFunc::I_O);
2109 
2110   // Replace all the old call edges with the edges from the inlining result
2111   if (callprojs->fallthrough_catchproj != nullptr) {
2112     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2113   }
2114   if (callprojs->fallthrough_memproj != nullptr) {
2115     if (final_mem->is_MergeMem()) {
2116       // Parser's exits MergeMem was not transformed but may be optimized
2117       final_mem = _gvn.transform(final_mem);
2118     }
2119     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2120     add_mergemem_users_to_worklist(wl, final_mem);
2121   }
2122   if (callprojs->fallthrough_ioproj != nullptr) {
2123     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2124   }
2125 
2126   // Replace the result with the new result if it exists and is used
2127   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2128     // If the inlined code is dead, the result projections for an inline type returned as
2129     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2130     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2131            "unexpected number of results");
2132     C->gvn_replace_by(callprojs->resproj[0], result);
2133   }
2134 
2135   if (ejvms == nullptr) {
2136     // No exception edges to simply kill off those paths
2137     if (callprojs->catchall_catchproj != nullptr) {
2138       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2139     }
2140     if (callprojs->catchall_memproj != nullptr) {
2141       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2142     }
2143     if (callprojs->catchall_ioproj != nullptr) {
2144       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2145     }
2146     // Replace the old exception object with top
2147     if (callprojs->exobj != nullptr) {
2148       C->gvn_replace_by(callprojs->exobj, C->top());
2149     }
2150   } else {
2151     GraphKit ekit(ejvms);
2152 
2153     // Load my combined exception state into the kit, with all phis transformed:
2154     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2155     replaced_nodes_exception = ex_map->replaced_nodes();
2156 
2157     Node* ex_oop = ekit.use_exception_state(ex_map);
2158 
2159     if (callprojs->catchall_catchproj != nullptr) {
2160       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2161       ex_ctl = ekit.control();
2162     }
2163     if (callprojs->catchall_memproj != nullptr) {
2164       Node* ex_mem = ekit.reset_memory();
2165       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2166       add_mergemem_users_to_worklist(wl, ex_mem);
2167     }
2168     if (callprojs->catchall_ioproj != nullptr) {
2169       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2170     }
2171 
2172     // Replace the old exception object with the newly created one
2173     if (callprojs->exobj != nullptr) {
2174       C->gvn_replace_by(callprojs->exobj, ex_oop);
2175     }
2176   }
2177 
2178   // Disconnect the call from the graph
2179   call->disconnect_inputs(C);
2180   C->gvn_replace_by(call, C->top());
2181 
2182   // Clean up any MergeMems that feed other MergeMems since the
2183   // optimizer doesn't like that.
2184   while (wl.size() > 0) {
2185     _gvn.transform(wl.pop());
2186   }
2187 
2188   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2189     replaced_nodes.apply(C, final_ctl);
2190   }
2191   if (!ex_ctl->is_top() && do_replaced_nodes) {
2192     replaced_nodes_exception.apply(C, ex_ctl);
2193   }
2194 }
2195 
2196 
2197 //------------------------------increment_counter------------------------------
2198 // for statistics: increment a VM counter by 1
2199 
2200 void GraphKit::increment_counter(address counter_addr) {
2201   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2202   increment_counter(adr1);
2203 }
2204 
2205 void GraphKit::increment_counter(Node* counter_addr) {
2206   int adr_type = Compile::AliasIdxRaw;
2207   Node* ctrl = control();
2208   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2209   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2210   store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered);
2211 }
2212 
2213 
2214 //------------------------------uncommon_trap----------------------------------
2215 // Bail out to the interpreter in mid-method.  Implemented by calling the
2216 // uncommon_trap blob.  This helper function inserts a runtime call with the
2217 // right debug info.
2218 Node* GraphKit::uncommon_trap(int trap_request,
2219                              ciKlass* klass, const char* comment,
2220                              bool must_throw,
2221                              bool keep_exact_action) {
2222   if (failing())  stop();
2223   if (stopped())  return nullptr; // trap reachable?
2224 
2225   // Note:  If ProfileTraps is true, and if a deopt. actually
2226   // occurs here, the runtime will make sure an MDO exists.  There is
2227   // no need to call method()->ensure_method_data() at this point.
2228 
2229   // Set the stack pointer to the right value for reexecution:
2230   set_sp(reexecute_sp());
2231 
2232 #ifdef ASSERT
2233   if (!must_throw) {
2234     // Make sure the stack has at least enough depth to execute
2235     // the current bytecode.
2236     int inputs, ignored_depth;
2237     if (compute_stack_effects(inputs, ignored_depth)) {
2238       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2239              Bytecodes::name(java_bc()), sp(), inputs);
2240     }
2241   }
2242 #endif
2243 
2244   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2245   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2246 
2247   switch (action) {
2248   case Deoptimization::Action_maybe_recompile:
2249   case Deoptimization::Action_reinterpret:
2250     // Temporary fix for 6529811 to allow virtual calls to be sure they
2251     // get the chance to go from mono->bi->mega
2252     if (!keep_exact_action &&
2253         Deoptimization::trap_request_index(trap_request) < 0 &&
2254         too_many_recompiles(reason)) {
2255       // This BCI is causing too many recompilations.
2256       if (C->log() != nullptr) {
2257         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2258                 Deoptimization::trap_reason_name(reason),
2259                 Deoptimization::trap_action_name(action));
2260       }
2261       action = Deoptimization::Action_none;
2262       trap_request = Deoptimization::make_trap_request(reason, action);
2263     } else {
2264       C->set_trap_can_recompile(true);
2265     }
2266     break;
2267   case Deoptimization::Action_make_not_entrant:
2268     C->set_trap_can_recompile(true);
2269     break;
2270   case Deoptimization::Action_none:
2271   case Deoptimization::Action_make_not_compilable:
2272     break;
2273   default:
2274 #ifdef ASSERT
2275     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2276 #endif
2277     break;
2278   }
2279 
2280   if (TraceOptoParse) {
2281     char buf[100];
2282     tty->print_cr("Uncommon trap %s at bci:%d",
2283                   Deoptimization::format_trap_request(buf, sizeof(buf),
2284                                                       trap_request), bci());
2285   }
2286 
2287   CompileLog* log = C->log();
2288   if (log != nullptr) {
2289     int kid = (klass == nullptr)? -1: log->identify(klass);
2290     log->begin_elem("uncommon_trap bci='%d'", bci());
2291     char buf[100];
2292     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2293                                                           trap_request));
2294     if (kid >= 0)         log->print(" klass='%d'", kid);
2295     if (comment != nullptr)  log->print(" comment='%s'", comment);
2296     log->end_elem();
2297   }
2298 
2299   // Make sure any guarding test views this path as very unlikely
2300   Node *i0 = control()->in(0);
2301   if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2302     IfNode *iff = i0->as_If();
2303     float f = iff->_prob;   // Get prob
2304     if (control()->Opcode() == Op_IfTrue) {
2305       if (f > PROB_UNLIKELY_MAG(4))
2306         iff->_prob = PROB_MIN;
2307     } else {
2308       if (f < PROB_LIKELY_MAG(4))
2309         iff->_prob = PROB_MAX;
2310     }
2311   }
2312 
2313   // Clear out dead values from the debug info.
2314   kill_dead_locals();
2315 
2316   // Now insert the uncommon trap subroutine call
2317   address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
2318   const TypePtr* no_memory_effects = nullptr;
2319   // Pass the index of the class to be loaded
2320   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2321                                  (must_throw ? RC_MUST_THROW : 0),
2322                                  OptoRuntime::uncommon_trap_Type(),
2323                                  call_addr, "uncommon_trap", no_memory_effects,
2324                                  intcon(trap_request));
2325   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2326          "must extract request correctly from the graph");
2327   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2328 
2329   call->set_req(TypeFunc::ReturnAdr, returnadr());
2330   // The debug info is the only real input to this call.
2331 
2332   // Halt-and-catch fire here.  The above call should never return!
2333   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2334                                                        PRODUCT_ONLY(COMMA /*reachable*/false));
2335   _gvn.set_type_bottom(halt);
2336   root()->add_req(halt);
2337 
2338   stop_and_kill_map();
2339   return call;
2340 }
2341 
2342 
2343 //--------------------------just_allocated_object------------------------------
2344 // Report the object that was just allocated.
2345 // It must be the case that there are no intervening safepoints.
2346 // We use this to determine if an object is so "fresh" that
2347 // it does not require card marks.
2348 Node* GraphKit::just_allocated_object(Node* current_control) {
2349   Node* ctrl = current_control;
2350   // Object::<init> is invoked after allocation, most of invoke nodes
2351   // will be reduced, but a region node is kept in parse time, we check
2352   // the pattern and skip the region node if it degraded to a copy.
2353   if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2354       ctrl->as_Region()->is_copy()) {
2355     ctrl = ctrl->as_Region()->is_copy();
2356   }
2357   if (C->recent_alloc_ctl() == ctrl) {
2358    return C->recent_alloc_obj();
2359   }
2360   return nullptr;
2361 }
2362 
2363 
2364 /**
2365  * Record profiling data exact_kls for Node n with the type system so
2366  * that it can propagate it (speculation)
2367  *
2368  * @param n          node that the type applies to
2369  * @param exact_kls  type from profiling
2370  * @param maybe_null did profiling see null?
2371  *
2372  * @return           node with improved type
2373  */
2374 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2375   const Type* current_type = _gvn.type(n);
2376   assert(UseTypeSpeculation, "type speculation must be on");
2377 
2378   const TypePtr* speculative = current_type->speculative();
2379 
2380   // Should the klass from the profile be recorded in the speculative type?
2381   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2382     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2383     const TypeOopPtr* xtype = tklass->as_instance_type();
2384     assert(xtype->klass_is_exact(), "Should be exact");
2385     // Any reason to believe n is not null (from this profiling or a previous one)?
2386     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2387     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2388     // record the new speculative type's depth
2389     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2390     speculative = speculative->with_inline_depth(jvms()->depth());
2391   } else if (current_type->would_improve_ptr(ptr_kind)) {
2392     // Profiling report that null was never seen so we can change the
2393     // speculative type to non null ptr.
2394     if (ptr_kind == ProfileAlwaysNull) {
2395       speculative = TypePtr::NULL_PTR;
2396     } else {
2397       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2398       const TypePtr* ptr = TypePtr::NOTNULL;
2399       if (speculative != nullptr) {
2400         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2401       } else {
2402         speculative = ptr;
2403       }
2404     }
2405   }
2406 
2407   if (speculative != current_type->speculative()) {
2408     // Build a type with a speculative type (what we think we know
2409     // about the type but will need a guard when we use it)
2410     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2411     // We're changing the type, we need a new CheckCast node to carry
2412     // the new type. The new type depends on the control: what
2413     // profiling tells us is only valid from here as far as we can
2414     // tell.
2415     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2416     cast = _gvn.transform(cast);
2417     replace_in_map(n, cast);
2418     n = cast;
2419   }
2420 
2421   return n;
2422 }
2423 
2424 /**
2425  * Record profiling data from receiver profiling at an invoke with the
2426  * type system so that it can propagate it (speculation)
2427  *
2428  * @param n  receiver node
2429  *
2430  * @return   node with improved type
2431  */
2432 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2433   if (!UseTypeSpeculation) {
2434     return n;
2435   }
2436   ciKlass* exact_kls = profile_has_unique_klass();
2437   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2438   if ((java_bc() == Bytecodes::_checkcast ||
2439        java_bc() == Bytecodes::_instanceof ||
2440        java_bc() == Bytecodes::_aastore) &&
2441       method()->method_data()->is_mature()) {
2442     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2443     if (data != nullptr) {
2444       if (java_bc() == Bytecodes::_aastore) {
2445         ciKlass* array_type = nullptr;
2446         ciKlass* element_type = nullptr;
2447         ProfilePtrKind element_ptr = ProfileMaybeNull;
2448         bool flat_array = true;
2449         bool null_free_array = true;
2450         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2451         exact_kls = element_type;
2452         ptr_kind = element_ptr;
2453       } else {
2454         if (!data->as_BitData()->null_seen()) {
2455           ptr_kind = ProfileNeverNull;
2456         } else {
2457           assert(data->is_ReceiverTypeData(), "bad profile data type");
2458           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2459           uint i = 0;
2460           for (; i < call->row_limit(); i++) {
2461             ciKlass* receiver = call->receiver(i);
2462             if (receiver != nullptr) {
2463               break;
2464             }
2465           }
2466           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2467         }
2468       }
2469     }
2470   }
2471   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2472 }
2473 
2474 /**
2475  * Record profiling data from argument profiling at an invoke with the
2476  * type system so that it can propagate it (speculation)
2477  *
2478  * @param dest_method  target method for the call
2479  * @param bc           what invoke bytecode is this?
2480  */
2481 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2482   if (!UseTypeSpeculation) {
2483     return;
2484   }
2485   const TypeFunc* tf    = TypeFunc::make(dest_method);
2486   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2487   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2488   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2489     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2490     if (is_reference_type(targ->basic_type())) {
2491       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2492       ciKlass* better_type = nullptr;
2493       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2494         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2495       }
2496       i++;
2497     }
2498   }
2499 }
2500 
2501 /**
2502  * Record profiling data from parameter profiling at an invoke with
2503  * the type system so that it can propagate it (speculation)
2504  */
2505 void GraphKit::record_profiled_parameters_for_speculation() {
2506   if (!UseTypeSpeculation) {
2507     return;
2508   }
2509   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2510     if (_gvn.type(local(i))->isa_oopptr()) {
2511       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2512       ciKlass* better_type = nullptr;
2513       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2514         record_profile_for_speculation(local(i), better_type, ptr_kind);
2515       }
2516       j++;
2517     }
2518   }
2519 }
2520 
2521 /**
2522  * Record profiling data from return value profiling at an invoke with
2523  * the type system so that it can propagate it (speculation)
2524  */
2525 void GraphKit::record_profiled_return_for_speculation() {
2526   if (!UseTypeSpeculation) {
2527     return;
2528   }
2529   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2530   ciKlass* better_type = nullptr;
2531   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2532     // If profiling reports a single type for the return value,
2533     // feed it to the type system so it can propagate it as a
2534     // speculative type
2535     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2536   }
2537 }
2538 
2539 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2540   if (Matcher::strict_fp_requires_explicit_rounding) {
2541     // (Note:  TypeFunc::make has a cache that makes this fast.)
2542     const TypeFunc* tf    = TypeFunc::make(dest_method);
2543     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2544     for (int j = 0; j < nargs; j++) {
2545       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2546       if (targ->basic_type() == T_DOUBLE) {
2547         // If any parameters are doubles, they must be rounded before
2548         // the call, dprecision_rounding does gvn.transform
2549         Node *arg = argument(j);
2550         arg = dprecision_rounding(arg);
2551         set_argument(j, arg);
2552       }
2553     }
2554   }
2555 }
2556 
2557 // rounding for strict float precision conformance
2558 Node* GraphKit::precision_rounding(Node* n) {
2559   if (Matcher::strict_fp_requires_explicit_rounding) {
2560 #ifdef IA32
2561     if (UseSSE == 0) {
2562       return _gvn.transform(new RoundFloatNode(nullptr, n));
2563     }
2564 #else
2565     Unimplemented();
2566 #endif // IA32
2567   }
2568   return n;
2569 }
2570 
2571 // rounding for strict double precision conformance
2572 Node* GraphKit::dprecision_rounding(Node *n) {
2573   if (Matcher::strict_fp_requires_explicit_rounding) {
2574 #ifdef IA32
2575     if (UseSSE < 2) {
2576       return _gvn.transform(new RoundDoubleNode(nullptr, n));
2577     }
2578 #else
2579     Unimplemented();
2580 #endif // IA32
2581   }
2582   return n;
2583 }
2584 
2585 //=============================================================================
2586 // Generate a fast path/slow path idiom.  Graph looks like:
2587 // [foo] indicates that 'foo' is a parameter
2588 //
2589 //              [in]     null
2590 //                 \    /
2591 //                  CmpP
2592 //                  Bool ne
2593 //                   If
2594 //                  /  \
2595 //              True    False-<2>
2596 //              / |
2597 //             /  cast_not_null
2598 //           Load  |    |   ^
2599 //        [fast_test]   |   |
2600 // gvn to   opt_test    |   |
2601 //          /    \      |  <1>
2602 //      True     False  |
2603 //        |         \\  |
2604 //   [slow_call]     \[fast_result]
2605 //    Ctl   Val       \      \
2606 //     |               \      \
2607 //    Catch       <1>   \      \
2608 //   /    \        ^     \      \
2609 //  Ex    No_Ex    |      \      \
2610 //  |       \   \  |       \ <2>  \
2611 //  ...      \  [slow_res] |  |    \   [null_result]
2612 //            \         \--+--+---  |  |
2613 //             \           | /    \ | /
2614 //              --------Region     Phi
2615 //
2616 //=============================================================================
2617 // Code is structured as a series of driver functions all called 'do_XXX' that
2618 // call a set of helper functions.  Helper functions first, then drivers.
2619 
2620 //------------------------------null_check_oop---------------------------------
2621 // Null check oop.  Set null-path control into Region in slot 3.
2622 // Make a cast-not-nullness use the other not-null control.  Return cast.
2623 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2624                                bool never_see_null,
2625                                bool safe_for_replace,
2626                                bool speculative) {
2627   // Initial null check taken path
2628   (*null_control) = top();
2629   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2630 
2631   // Generate uncommon_trap:
2632   if (never_see_null && (*null_control) != top()) {
2633     // If we see an unexpected null at a check-cast we record it and force a
2634     // recompile; the offending check-cast will be compiled to handle nulls.
2635     // If we see more than one offending BCI, then all checkcasts in the
2636     // method will be compiled to handle nulls.
2637     PreserveJVMState pjvms(this);
2638     set_control(*null_control);
2639     replace_in_map(value, null());
2640     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2641     uncommon_trap(reason,
2642                   Deoptimization::Action_make_not_entrant);
2643     (*null_control) = top();    // null path is dead
2644   }
2645   if ((*null_control) == top() && safe_for_replace) {
2646     replace_in_map(value, cast);
2647   }
2648 
2649   // Cast away null-ness on the result
2650   return cast;
2651 }
2652 
2653 //------------------------------opt_iff----------------------------------------
2654 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2655 // Return slow-path control.
2656 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2657   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2658 
2659   // Fast path taken; set region slot 2
2660   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2661   region->init_req(2,fast_taken); // Capture fast-control
2662 
2663   // Fast path not-taken, i.e. slow path
2664   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2665   return slow_taken;
2666 }
2667 
2668 //-----------------------------make_runtime_call-------------------------------
2669 Node* GraphKit::make_runtime_call(int flags,
2670                                   const TypeFunc* call_type, address call_addr,
2671                                   const char* call_name,
2672                                   const TypePtr* adr_type,
2673                                   // The following parms are all optional.
2674                                   // The first null ends the list.
2675                                   Node* parm0, Node* parm1,
2676                                   Node* parm2, Node* parm3,
2677                                   Node* parm4, Node* parm5,
2678                                   Node* parm6, Node* parm7) {
2679   assert(call_addr != nullptr, "must not call null targets");
2680 
2681   // Slow-path call
2682   bool is_leaf = !(flags & RC_NO_LEAF);
2683   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2684   if (call_name == nullptr) {
2685     assert(!is_leaf, "must supply name for leaf");
2686     call_name = OptoRuntime::stub_name(call_addr);
2687   }
2688   CallNode* call;
2689   if (!is_leaf) {
2690     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2691   } else if (flags & RC_NO_FP) {
2692     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2693   } else  if (flags & RC_VECTOR){
2694     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2695     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2696   } else {
2697     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2698   }
2699 
2700   // The following is similar to set_edges_for_java_call,
2701   // except that the memory effects of the call are restricted to AliasIdxRaw.
2702 
2703   // Slow path call has no side-effects, uses few values
2704   bool wide_in  = !(flags & RC_NARROW_MEM);
2705   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2706 
2707   Node* prev_mem = nullptr;
2708   if (wide_in) {
2709     prev_mem = set_predefined_input_for_runtime_call(call);
2710   } else {
2711     assert(!wide_out, "narrow in => narrow out");
2712     Node* narrow_mem = memory(adr_type);
2713     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2714   }
2715 
2716   // Hook each parm in order.  Stop looking at the first null.
2717   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2718   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2719   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2720   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2721   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2722   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2723   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2724   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2725   /* close each nested if ===> */  } } } } } } } }
2726   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2727 
2728   if (!is_leaf) {
2729     // Non-leaves can block and take safepoints:
2730     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2731   }
2732   // Non-leaves can throw exceptions:
2733   if (has_io) {
2734     call->set_req(TypeFunc::I_O, i_o());
2735   }
2736 
2737   if (flags & RC_UNCOMMON) {
2738     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2739     // (An "if" probability corresponds roughly to an unconditional count.
2740     // Sort of.)
2741     call->set_cnt(PROB_UNLIKELY_MAG(4));
2742   }
2743 
2744   Node* c = _gvn.transform(call);
2745   assert(c == call, "cannot disappear");
2746 
2747   if (wide_out) {
2748     // Slow path call has full side-effects.
2749     set_predefined_output_for_runtime_call(call);
2750   } else {
2751     // Slow path call has few side-effects, and/or sets few values.
2752     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2753   }
2754 
2755   if (has_io) {
2756     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2757   }
2758   return call;
2759 
2760 }
2761 
2762 // i2b
2763 Node* GraphKit::sign_extend_byte(Node* in) {
2764   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2765   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2766 }
2767 
2768 // i2s
2769 Node* GraphKit::sign_extend_short(Node* in) {
2770   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2771   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2772 }
2773 
2774 
2775 //------------------------------merge_memory-----------------------------------
2776 // Merge memory from one path into the current memory state.
2777 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2778   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2779     Node* old_slice = mms.force_memory();
2780     Node* new_slice = mms.memory2();
2781     if (old_slice != new_slice) {
2782       PhiNode* phi;
2783       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2784         if (mms.is_empty()) {
2785           // clone base memory Phi's inputs for this memory slice
2786           assert(old_slice == mms.base_memory(), "sanity");
2787           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2788           _gvn.set_type(phi, Type::MEMORY);
2789           for (uint i = 1; i < phi->req(); i++) {
2790             phi->init_req(i, old_slice->in(i));
2791           }
2792         } else {
2793           phi = old_slice->as_Phi(); // Phi was generated already
2794         }
2795       } else {
2796         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2797         _gvn.set_type(phi, Type::MEMORY);
2798       }
2799       phi->set_req(new_path, new_slice);
2800       mms.set_memory(phi);
2801     }
2802   }
2803 }
2804 
2805 //------------------------------make_slow_call_ex------------------------------
2806 // Make the exception handler hookups for the slow call
2807 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2808   if (stopped())  return;
2809 
2810   // Make a catch node with just two handlers:  fall-through and catch-all
2811   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2812   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2813   Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2814   _gvn.set_type_bottom(norm);
2815   C->record_for_igvn(norm);
2816   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2817 
2818   { PreserveJVMState pjvms(this);
2819     set_control(excp);
2820     set_i_o(i_o);
2821 
2822     if (excp != top()) {
2823       if (deoptimize) {
2824         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2825         uncommon_trap(Deoptimization::Reason_unhandled,
2826                       Deoptimization::Action_none);
2827       } else {
2828         // Create an exception state also.
2829         // Use an exact type if the caller has a specific exception.
2830         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2831         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2832         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2833       }
2834     }
2835   }
2836 
2837   // Get the no-exception control from the CatchNode.
2838   set_control(norm);
2839 }
2840 
2841 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2842   Node* cmp = nullptr;
2843   switch(bt) {
2844   case T_INT: cmp = new CmpINode(in1, in2); break;
2845   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2846   default: fatal("unexpected comparison type %s", type2name(bt));
2847   }
2848   cmp = gvn.transform(cmp);
2849   Node* bol = gvn.transform(new BoolNode(cmp, test));
2850   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2851   gvn.transform(iff);
2852   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2853   return iff;
2854 }
2855 
2856 //-------------------------------gen_subtype_check-----------------------------
2857 // Generate a subtyping check.  Takes as input the subtype and supertype.
2858 // Returns 2 values: sets the default control() to the true path and returns
2859 // the false path.  Only reads invariant memory; sets no (visible) memory.
2860 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2861 // but that's not exposed to the optimizer.  This call also doesn't take in an
2862 // Object; if you wish to check an Object you need to load the Object's class
2863 // prior to coming here.
2864 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2865                                ciMethod* method, int bci) {
2866   Compile* C = gvn.C;
2867   if ((*ctrl)->is_top()) {
2868     return C->top();
2869   }
2870 
2871   // Fast check for identical types, perhaps identical constants.
2872   // The types can even be identical non-constants, in cases
2873   // involving Array.newInstance, Object.clone, etc.
2874   if (subklass == superklass)
2875     return C->top();             // false path is dead; no test needed.
2876 
2877   if (gvn.type(superklass)->singleton()) {
2878     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2879     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2880 
2881     // In the common case of an exact superklass, try to fold up the
2882     // test before generating code.  You may ask, why not just generate
2883     // the code and then let it fold up?  The answer is that the generated
2884     // code will necessarily include null checks, which do not always
2885     // completely fold away.  If they are also needless, then they turn
2886     // into a performance loss.  Example:
2887     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2888     // Here, the type of 'fa' is often exact, so the store check
2889     // of fa[1]=x will fold up, without testing the nullness of x.
2890     //
2891     // At macro expansion, we would have already folded the SubTypeCheckNode
2892     // being expanded here because we always perform the static sub type
2893     // check in SubTypeCheckNode::sub() regardless of whether
2894     // StressReflectiveCode is set or not. We can therefore skip this
2895     // static check when StressReflectiveCode is on.
2896     switch (C->static_subtype_check(superk, subk)) {
2897     case Compile::SSC_always_false:
2898       {
2899         Node* always_fail = *ctrl;
2900         *ctrl = gvn.C->top();
2901         return always_fail;
2902       }
2903     case Compile::SSC_always_true:
2904       return C->top();
2905     case Compile::SSC_easy_test:
2906       {
2907         // Just do a direct pointer compare and be done.
2908         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2909         *ctrl = gvn.transform(new IfTrueNode(iff));
2910         return gvn.transform(new IfFalseNode(iff));
2911       }
2912     case Compile::SSC_full_test:
2913       break;
2914     default:
2915       ShouldNotReachHere();
2916     }
2917   }
2918 
2919   // %%% Possible further optimization:  Even if the superklass is not exact,
2920   // if the subklass is the unique subtype of the superklass, the check
2921   // will always succeed.  We could leave a dependency behind to ensure this.
2922 
2923   // First load the super-klass's check-offset
2924   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2925   Node* m = C->immutable_memory();
2926   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2927   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2928   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2929   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2930   bool might_be_cache = (chk_off_con == cacheoff_con);
2931 
2932   // Load from the sub-klass's super-class display list, or a 1-word cache of
2933   // the secondary superclass list, or a failing value with a sentinel offset
2934   // if the super-klass is an interface or exceptionally deep in the Java
2935   // hierarchy and we have to scan the secondary superclass list the hard way.
2936   // Worst-case type is a little odd: null is allowed as a result (usually
2937   // klass loads can never produce a null).
2938   Node *chk_off_X = chk_off;
2939 #ifdef _LP64
2940   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2941 #endif
2942   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2943   // For some types like interfaces the following loadKlass is from a 1-word
2944   // cache which is mutable so can't use immutable memory.  Other
2945   // types load from the super-class display table which is immutable.
2946   Node *kmem = C->immutable_memory();
2947   // secondary_super_cache is not immutable but can be treated as such because:
2948   // - no ideal node writes to it in a way that could cause an
2949   //   incorrect/missed optimization of the following Load.
2950   // - it's a cache so, worse case, not reading the latest value
2951   //   wouldn't cause incorrect execution
2952   if (might_be_cache && mem != nullptr) {
2953     kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2954   }
2955   Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2956 
2957   // Compile speed common case: ARE a subtype and we canNOT fail
2958   if (superklass == nkls) {
2959     return C->top();             // false path is dead; no test needed.
2960   }
2961 
2962   // Gather the various success & failures here
2963   RegionNode* r_not_subtype = new RegionNode(3);
2964   gvn.record_for_igvn(r_not_subtype);
2965   RegionNode* r_ok_subtype = new RegionNode(4);
2966   gvn.record_for_igvn(r_ok_subtype);
2967 
2968   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2969   // SubTypeCheck node
2970   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2971     ciCallProfile profile = method->call_profile_at_bci(bci);
2972     float total_prob = 0;
2973     for (int i = 0; profile.has_receiver(i); ++i) {
2974       float prob = profile.receiver_prob(i);
2975       total_prob += prob;
2976     }
2977     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2978       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2979       for (int i = 0; profile.has_receiver(i); ++i) {
2980         ciKlass* klass = profile.receiver(i);
2981         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2982         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2983         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2984           continue;
2985         }
2986         float prob = profile.receiver_prob(i);
2987         ConNode* klass_node = gvn.makecon(klass_t);
2988         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2989         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2990 
2991         if (result == Compile::SSC_always_true) {
2992           r_ok_subtype->add_req(iftrue);
2993         } else {
2994           assert(result == Compile::SSC_always_false, "");
2995           r_not_subtype->add_req(iftrue);
2996         }
2997         *ctrl = gvn.transform(new IfFalseNode(iff));
2998       }
2999     }
3000   }
3001 
3002   // See if we get an immediate positive hit.  Happens roughly 83% of the
3003   // time.  Test to see if the value loaded just previously from the subklass
3004   // is exactly the superklass.
3005   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
3006   Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
3007   *ctrl = gvn.transform(new IfFalseNode(iff1));
3008 
3009   // Compile speed common case: Check for being deterministic right now.  If
3010   // chk_off is a constant and not equal to cacheoff then we are NOT a
3011   // subklass.  In this case we need exactly the 1 test above and we can
3012   // return those results immediately.
3013   if (!might_be_cache) {
3014     Node* not_subtype_ctrl = *ctrl;
3015     *ctrl = iftrue1; // We need exactly the 1 test above
3016     PhaseIterGVN* igvn = gvn.is_IterGVN();
3017     if (igvn != nullptr) {
3018       igvn->remove_globally_dead_node(r_ok_subtype);
3019       igvn->remove_globally_dead_node(r_not_subtype);
3020     }
3021     return not_subtype_ctrl;
3022   }
3023 
3024   r_ok_subtype->init_req(1, iftrue1);
3025 
3026   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3027   // is roughly 63% of the remaining cases).  Test to see if the loaded
3028   // check-offset points into the subklass display list or the 1-element
3029   // cache.  If it points to the display (and NOT the cache) and the display
3030   // missed then it's not a subtype.
3031   Node *cacheoff = gvn.intcon(cacheoff_con);
3032   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3033   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3034   *ctrl = gvn.transform(new IfFalseNode(iff2));
3035 
3036   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3037   // No performance impact (too rare) but allows sharing of secondary arrays
3038   // which has some footprint reduction.
3039   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3040   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3041   *ctrl = gvn.transform(new IfFalseNode(iff3));
3042 
3043   // -- Roads not taken here: --
3044   // We could also have chosen to perform the self-check at the beginning
3045   // of this code sequence, as the assembler does.  This would not pay off
3046   // the same way, since the optimizer, unlike the assembler, can perform
3047   // static type analysis to fold away many successful self-checks.
3048   // Non-foldable self checks work better here in second position, because
3049   // the initial primary superclass check subsumes a self-check for most
3050   // types.  An exception would be a secondary type like array-of-interface,
3051   // which does not appear in its own primary supertype display.
3052   // Finally, we could have chosen to move the self-check into the
3053   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3054   // dependent manner.  But it is worthwhile to have the check here,
3055   // where it can be perhaps be optimized.  The cost in code space is
3056   // small (register compare, branch).
3057 
3058   // Now do a linear scan of the secondary super-klass array.  Again, no real
3059   // performance impact (too rare) but it's gotta be done.
3060   // Since the code is rarely used, there is no penalty for moving it
3061   // out of line, and it can only improve I-cache density.
3062   // The decision to inline or out-of-line this final check is platform
3063   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3064   Node* psc = gvn.transform(
3065     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3066 
3067   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3068   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3069   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3070 
3071   // Return false path; set default control to true path.
3072   *ctrl = gvn.transform(r_ok_subtype);
3073   return gvn.transform(r_not_subtype);
3074 }
3075 
3076 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3077   const Type* sub_t = _gvn.type(obj_or_subklass);
3078   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3079     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3080     obj_or_subklass = makecon(sub_t);
3081   }
3082   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3083   if (expand_subtype_check) {
3084     MergeMemNode* mem = merged_memory();
3085     Node* ctrl = control();
3086     Node* subklass = obj_or_subklass;
3087     if (!sub_t->isa_klassptr()) {
3088       subklass = load_object_klass(obj_or_subklass);
3089     }
3090 
3091     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3092     set_control(ctrl);
3093     return n;
3094   }
3095 
3096   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3097   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3098   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3099   set_control(_gvn.transform(new IfTrueNode(iff)));
3100   return _gvn.transform(new IfFalseNode(iff));
3101 }
3102 
3103 // Profile-driven exact type check:
3104 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3105                                     float prob, Node* *casted_receiver) {
3106   assert(!klass->is_interface(), "no exact type check on interfaces");
3107   Node* fail = top();
3108   const Type* rec_t = _gvn.type(receiver);
3109   if (rec_t->is_inlinetypeptr()) {
3110     if (klass->equals(rec_t->inline_klass())) {
3111       (*casted_receiver) = receiver; // Always passes
3112     } else {
3113       (*casted_receiver) = top();    // Always fails
3114       fail = control();
3115       set_control(top());
3116     }
3117     return fail;
3118   }
3119   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3120   Node* recv_klass = load_object_klass(receiver);
3121   fail = type_check(recv_klass, tklass, prob);
3122 
3123   if (!stopped()) {
3124     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3125     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3126     assert(recv_xtype->klass_is_exact(), "");
3127 
3128     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3129       // Subsume downstream occurrences of receiver with a cast to
3130       // recv_xtype, since now we know what the type will be.
3131       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3132       Node* res = _gvn.transform(cast);
3133       if (recv_xtype->is_inlinetypeptr()) {
3134         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3135         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3136       }
3137       (*casted_receiver) = res;
3138       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3139       // (User must make the replace_in_map call.)
3140     }
3141   }
3142 
3143   return fail;
3144 }
3145 
3146 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3147                            float prob) {
3148   Node* want_klass = makecon(tklass);
3149   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3150   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3151   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3152   set_control(_gvn.transform(new IfTrueNode (iff)));
3153   Node* fail = _gvn.transform(new IfFalseNode(iff));
3154   return fail;
3155 }
3156 
3157 //------------------------------subtype_check_receiver-------------------------
3158 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3159                                        Node** casted_receiver) {
3160   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3161   Node* want_klass = makecon(tklass);
3162 
3163   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3164 
3165   // Ignore interface type information until interface types are properly tracked.
3166   if (!stopped() && !klass->is_interface()) {
3167     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3168     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3169     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3170       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3171       if (recv_type->is_inlinetypeptr()) {
3172         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3173       }
3174       (*casted_receiver) = cast;
3175     }
3176   }
3177 
3178   return slow_ctl;
3179 }
3180 
3181 //------------------------------seems_never_null-------------------------------
3182 // Use null_seen information if it is available from the profile.
3183 // If we see an unexpected null at a type check we record it and force a
3184 // recompile; the offending check will be recompiled to handle nulls.
3185 // If we see several offending BCIs, then all checks in the
3186 // method will be recompiled.
3187 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3188   speculating = !_gvn.type(obj)->speculative_maybe_null();
3189   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3190   if (UncommonNullCast               // Cutout for this technique
3191       && obj != null()               // And not the -Xcomp stupid case?
3192       && !too_many_traps(reason)
3193       ) {
3194     if (speculating) {
3195       return true;
3196     }
3197     if (data == nullptr)
3198       // Edge case:  no mature data.  Be optimistic here.
3199       return true;
3200     // If the profile has not seen a null, assume it won't happen.
3201     assert(java_bc() == Bytecodes::_checkcast ||
3202            java_bc() == Bytecodes::_instanceof ||
3203            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3204     return !data->as_BitData()->null_seen();
3205   }
3206   speculating = false;
3207   return false;
3208 }
3209 
3210 void GraphKit::guard_klass_being_initialized(Node* klass) {
3211   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3212   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3213   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3214                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3215                                     T_BYTE, MemNode::unordered);
3216   init_state = _gvn.transform(init_state);
3217 
3218   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3219 
3220   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3221   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3222 
3223   { BuildCutout unless(this, tst, PROB_MAX);
3224     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3225   }
3226 }
3227 
3228 void GraphKit::guard_init_thread(Node* klass) {
3229   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3230   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3231 
3232   Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3233                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3234                                      T_ADDRESS, MemNode::unordered);
3235   init_thread = _gvn.transform(init_thread);
3236 
3237   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3238 
3239   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3240   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3241 
3242   { BuildCutout unless(this, tst, PROB_MAX);
3243     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3244   }
3245 }
3246 
3247 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3248   if (ik->is_being_initialized()) {
3249     if (C->needs_clinit_barrier(ik, context)) {
3250       Node* klass = makecon(TypeKlassPtr::make(ik));
3251       guard_klass_being_initialized(klass);
3252       guard_init_thread(klass);
3253       insert_mem_bar(Op_MemBarCPUOrder);
3254     }
3255   } else if (ik->is_initialized()) {
3256     return; // no barrier needed
3257   } else {
3258     uncommon_trap(Deoptimization::Reason_uninitialized,
3259                   Deoptimization::Action_reinterpret,
3260                   nullptr);
3261   }
3262 }
3263 
3264 //------------------------maybe_cast_profiled_receiver-------------------------
3265 // If the profile has seen exactly one type, narrow to exactly that type.
3266 // Subsequent type checks will always fold up.
3267 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3268                                              const TypeKlassPtr* require_klass,
3269                                              ciKlass* spec_klass,
3270                                              bool safe_for_replace) {
3271   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3272 
3273   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3274 
3275   // Make sure we haven't already deoptimized from this tactic.
3276   if (too_many_traps_or_recompiles(reason))
3277     return nullptr;
3278 
3279   // (No, this isn't a call, but it's enough like a virtual call
3280   // to use the same ciMethod accessor to get the profile info...)
3281   // If we have a speculative type use it instead of profiling (which
3282   // may not help us)
3283   ciKlass* exact_kls = spec_klass;
3284   if (exact_kls == nullptr) {
3285     if (java_bc() == Bytecodes::_aastore) {
3286       ciKlass* array_type = nullptr;
3287       ciKlass* element_type = nullptr;
3288       ProfilePtrKind element_ptr = ProfileMaybeNull;
3289       bool flat_array = true;
3290       bool null_free_array = true;
3291       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3292       exact_kls = element_type;
3293     } else {
3294       exact_kls = profile_has_unique_klass();
3295     }
3296   }
3297   if (exact_kls != nullptr) {// no cast failures here
3298     if (require_klass == nullptr ||
3299         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3300       // If we narrow the type to match what the type profile sees or
3301       // the speculative type, we can then remove the rest of the
3302       // cast.
3303       // This is a win, even if the exact_kls is very specific,
3304       // because downstream operations, such as method calls,
3305       // will often benefit from the sharper type.
3306       Node* exact_obj = not_null_obj; // will get updated in place...
3307       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3308                                             &exact_obj);
3309       { PreserveJVMState pjvms(this);
3310         set_control(slow_ctl);
3311         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3312       }
3313       if (safe_for_replace) {
3314         replace_in_map(not_null_obj, exact_obj);
3315       }
3316       return exact_obj;
3317     }
3318     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3319   }
3320 
3321   return nullptr;
3322 }
3323 
3324 /**
3325  * Cast obj to type and emit guard unless we had too many traps here
3326  * already
3327  *
3328  * @param obj       node being casted
3329  * @param type      type to cast the node to
3330  * @param not_null  true if we know node cannot be null
3331  */
3332 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3333                                         ciKlass* type,
3334                                         bool not_null) {
3335   if (stopped()) {
3336     return obj;
3337   }
3338 
3339   // type is null if profiling tells us this object is always null
3340   if (type != nullptr) {
3341     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3342     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3343 
3344     if (!too_many_traps_or_recompiles(null_reason) &&
3345         !too_many_traps_or_recompiles(class_reason)) {
3346       Node* not_null_obj = nullptr;
3347       // not_null is true if we know the object is not null and
3348       // there's no need for a null check
3349       if (!not_null) {
3350         Node* null_ctl = top();
3351         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3352         assert(null_ctl->is_top(), "no null control here");
3353       } else {
3354         not_null_obj = obj;
3355       }
3356 
3357       Node* exact_obj = not_null_obj;
3358       ciKlass* exact_kls = type;
3359       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3360                                             &exact_obj);
3361       {
3362         PreserveJVMState pjvms(this);
3363         set_control(slow_ctl);
3364         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3365       }
3366       replace_in_map(not_null_obj, exact_obj);
3367       obj = exact_obj;
3368     }
3369   } else {
3370     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3371       Node* exact_obj = null_assert(obj);
3372       replace_in_map(obj, exact_obj);
3373       obj = exact_obj;
3374     }
3375   }
3376   return obj;
3377 }
3378 
3379 //-------------------------------gen_instanceof--------------------------------
3380 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3381 // and the reflective instance-of call.
3382 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3383   kill_dead_locals();           // Benefit all the uncommon traps
3384   assert( !stopped(), "dead parse path should be checked in callers" );
3385   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3386          "must check for not-null not-dead klass in callers");
3387 
3388   // Make the merge point
3389   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3390   RegionNode* region = new RegionNode(PATH_LIMIT);
3391   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3392   C->set_has_split_ifs(true); // Has chance for split-if optimization
3393 
3394   ciProfileData* data = nullptr;
3395   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3396     data = method()->method_data()->bci_to_data(bci());
3397   }
3398   bool speculative_not_null = false;
3399   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3400                          && seems_never_null(obj, data, speculative_not_null));
3401 
3402   // Null check; get casted pointer; set region slot 3
3403   Node* null_ctl = top();
3404   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3405 
3406   // If not_null_obj is dead, only null-path is taken
3407   if (stopped()) {              // Doing instance-of on a null?
3408     set_control(null_ctl);
3409     return intcon(0);
3410   }
3411   region->init_req(_null_path, null_ctl);
3412   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3413   if (null_ctl == top()) {
3414     // Do this eagerly, so that pattern matches like is_diamond_phi
3415     // will work even during parsing.
3416     assert(_null_path == PATH_LIMIT-1, "delete last");
3417     region->del_req(_null_path);
3418     phi   ->del_req(_null_path);
3419   }
3420 
3421   // Do we know the type check always succeed?
3422   bool known_statically = false;
3423   if (_gvn.type(superklass)->singleton()) {
3424     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3425     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3426     if (subk != nullptr && subk->is_loaded()) {
3427       int static_res = C->static_subtype_check(superk, subk);
3428       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3429     }
3430   }
3431 
3432   if (!known_statically) {
3433     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3434     // We may not have profiling here or it may not help us. If we
3435     // have a speculative type use it to perform an exact cast.
3436     ciKlass* spec_obj_type = obj_type->speculative_type();
3437     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3438       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3439       if (stopped()) {            // Profile disagrees with this path.
3440         set_control(null_ctl);    // Null is the only remaining possibility.
3441         return intcon(0);
3442       }
3443       if (cast_obj != nullptr) {
3444         not_null_obj = cast_obj;
3445       }
3446     }
3447   }
3448 
3449   // Generate the subtype check
3450   Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3451 
3452   // Plug in the success path to the general merge in slot 1.
3453   region->init_req(_obj_path, control());
3454   phi   ->init_req(_obj_path, intcon(1));
3455 
3456   // Plug in the failing path to the general merge in slot 2.
3457   region->init_req(_fail_path, not_subtype_ctrl);
3458   phi   ->init_req(_fail_path, intcon(0));
3459 
3460   // Return final merged results
3461   set_control( _gvn.transform(region) );
3462   record_for_igvn(region);
3463 
3464   // If we know the type check always succeeds then we don't use the
3465   // profiling data at this bytecode. Don't lose it, feed it to the
3466   // type system as a speculative type.
3467   if (safe_for_replace) {
3468     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3469     replace_in_map(obj, casted_obj);
3470   }
3471 
3472   return _gvn.transform(phi);
3473 }
3474 
3475 //-------------------------------gen_checkcast---------------------------------
3476 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3477 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3478 // uncommon-trap paths work.  Adjust stack after this call.
3479 // If failure_control is supplied and not null, it is filled in with
3480 // the control edge for the cast failure.  Otherwise, an appropriate
3481 // uncommon trap or exception is thrown.
3482 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3483   kill_dead_locals();           // Benefit all the uncommon traps
3484   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3485   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3486   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3487   bool safe_for_replace = (failure_control == nullptr);
3488   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3489 
3490   // Fast cutout:  Check the case that the cast is vacuously true.
3491   // This detects the common cases where the test will short-circuit
3492   // away completely.  We do this before we perform the null check,
3493   // because if the test is going to turn into zero code, we don't
3494   // want a residual null check left around.  (Causes a slowdown,
3495   // for example, in some objArray manipulations, such as a[i]=a[j].)
3496   if (improved_klass_ptr_type->singleton()) {
3497     const TypeKlassPtr* kptr = nullptr;
3498     const Type* t = _gvn.type(obj);
3499     if (t->isa_oop_ptr()) {
3500       kptr = t->is_oopptr()->as_klass_type();
3501     } else if (obj->is_InlineType()) {
3502       ciInlineKlass* vk = t->inline_klass();
3503       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3504     }
3505     if (kptr != nullptr) {
3506       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3507       case Compile::SSC_always_true:
3508         // If we know the type check always succeed then we don't use
3509         // the profiling data at this bytecode. Don't lose it, feed it
3510         // to the type system as a speculative type.
3511         obj = record_profiled_receiver_for_speculation(obj);
3512         if (null_free) {
3513           assert(safe_for_replace, "must be");
3514           obj = null_check(obj);
3515         }
3516         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3517         return obj;
3518       case Compile::SSC_always_false:
3519         if (null_free) {
3520           assert(safe_for_replace, "must be");
3521           obj = null_check(obj);
3522         }
3523         // It needs a null check because a null will *pass* the cast check.
3524         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {
3525           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3526           Deoptimization::DeoptReason reason = is_aastore ?
3527             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3528           builtin_throw(reason);
3529           return top();
3530         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3531           return null_assert(obj);
3532         }
3533         break; // Fall through to full check
3534       default:
3535         break;
3536       }
3537     }
3538   }
3539 
3540   ciProfileData* data = nullptr;
3541   if (failure_control == nullptr) {        // use MDO in regular case only
3542     assert(java_bc() == Bytecodes::_aastore ||
3543            java_bc() == Bytecodes::_checkcast,
3544            "interpreter profiles type checks only for these BCs");
3545     if (method()->method_data()->is_mature()) {
3546       data = method()->method_data()->bci_to_data(bci());
3547     }
3548   }
3549 
3550   // Make the merge point
3551   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3552   RegionNode* region = new RegionNode(PATH_LIMIT);
3553   Node*       phi    = new PhiNode(region, toop);
3554   _gvn.set_type(region, Type::CONTROL);
3555   _gvn.set_type(phi, toop);
3556 
3557   C->set_has_split_ifs(true); // Has chance for split-if optimization
3558 
3559   // Use null-cast information if it is available
3560   bool speculative_not_null = false;
3561   bool never_see_null = ((failure_control == nullptr)  // regular case only
3562                          && seems_never_null(obj, data, speculative_not_null));
3563 
3564   if (obj->is_InlineType()) {
3565     // Re-execute if buffering during triggers deoptimization
3566     PreserveReexecuteState preexecs(this);
3567     jvms()->set_should_reexecute(true);
3568     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3569   }
3570 
3571   // Null check; get casted pointer; set region slot 3
3572   Node* null_ctl = top();
3573   Node* not_null_obj = nullptr;
3574   if (null_free) {
3575     assert(safe_for_replace, "must be");
3576     not_null_obj = null_check(obj);
3577   } else {
3578     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3579   }
3580 
3581   // If not_null_obj is dead, only null-path is taken
3582   if (stopped()) {              // Doing instance-of on a null?
3583     set_control(null_ctl);
3584     if (toop->is_inlinetypeptr()) {
3585       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3586     }
3587     return null();
3588   }
3589   region->init_req(_null_path, null_ctl);
3590   phi   ->init_req(_null_path, null());  // Set null path value
3591   if (null_ctl == top()) {
3592     // Do this eagerly, so that pattern matches like is_diamond_phi
3593     // will work even during parsing.
3594     assert(_null_path == PATH_LIMIT-1, "delete last");
3595     region->del_req(_null_path);
3596     phi   ->del_req(_null_path);
3597   }
3598 
3599   Node* cast_obj = nullptr;
3600   if (improved_klass_ptr_type->klass_is_exact()) {
3601     // The following optimization tries to statically cast the speculative type of the object
3602     // (for example obtained during profiling) to the type of the superklass and then do a
3603     // dynamic check that the type of the object is what we expect. To work correctly
3604     // for checkcast and aastore the type of superklass should be exact.
3605     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3606     // We may not have profiling here or it may not help us. If we have
3607     // a speculative type use it to perform an exact cast.
3608     ciKlass* spec_obj_type = obj_type->speculative_type();
3609     if (spec_obj_type != nullptr || data != nullptr) {
3610       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3611       if (cast_obj != nullptr) {
3612         if (failure_control != nullptr) // failure is now impossible
3613           (*failure_control) = top();
3614         // adjust the type of the phi to the exact klass:
3615         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3616       }
3617     }
3618   }
3619 
3620   if (cast_obj == nullptr) {
3621     // Generate the subtype check
3622     Node* improved_superklass = superklass;
3623     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3624       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3625       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3626       // Additionally, the benefit would only be minor in non-constant cases.
3627       improved_superklass = makecon(improved_klass_ptr_type);
3628     }
3629     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3630     // Plug in success path into the merge
3631     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3632     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3633     if (failure_control == nullptr) {
3634       if (not_subtype_ctrl != top()) { // If failure is possible
3635         PreserveJVMState pjvms(this);
3636         set_control(not_subtype_ctrl);
3637         Node* obj_klass = nullptr;
3638         if (not_null_obj->is_InlineType()) {
3639           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3640         } else {
3641           obj_klass = load_object_klass(not_null_obj);
3642         }
3643         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3644         Deoptimization::DeoptReason reason = is_aastore ?
3645           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3646         builtin_throw(reason);
3647       }
3648     } else {
3649       (*failure_control) = not_subtype_ctrl;
3650     }
3651   }
3652 
3653   region->init_req(_obj_path, control());
3654   phi   ->init_req(_obj_path, cast_obj);
3655 
3656   // A merge of null or Casted-NotNull obj
3657   Node* res = _gvn.transform(phi);
3658 
3659   // Note I do NOT always 'replace_in_map(obj,result)' here.
3660   //  if( tk->klass()->can_be_primary_super()  )
3661     // This means that if I successfully store an Object into an array-of-String
3662     // I 'forget' that the Object is really now known to be a String.  I have to
3663     // do this because we don't have true union types for interfaces - if I store
3664     // a Baz into an array-of-Interface and then tell the optimizer it's an
3665     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3666     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3667   //  replace_in_map( obj, res );
3668 
3669   // Return final merged results
3670   set_control( _gvn.transform(region) );
3671   record_for_igvn(region);
3672 
3673   bool not_inline = !toop->can_be_inline_type();
3674   bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3675   if (EnableValhalla && not_flat_in_array) {
3676     // Check if obj has been loaded from an array
3677     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3678     Node* array = nullptr;
3679     if (obj->isa_Load()) {
3680       Node* address = obj->in(MemNode::Address);
3681       if (address->isa_AddP()) {
3682         array = address->as_AddP()->in(AddPNode::Base);
3683       }
3684     } else if (obj->is_Phi()) {
3685       Node* region = obj->in(0);
3686       // TODO make this more robust (see JDK-8231346)
3687       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3688         IfNode* iff = region->in(2)->in(0)->isa_If();
3689         if (iff != nullptr) {
3690           iff->is_flat_array_check(&_gvn, &array);
3691         }
3692       }
3693     }
3694     if (array != nullptr) {
3695       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3696       if (ary_t != nullptr && !ary_t->is_flat()) {
3697         if (!ary_t->is_not_null_free() && not_inline) {
3698           // Casting array element to a non-inline-type, mark array as not null-free.
3699           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3700           replace_in_map(array, cast);
3701         } else if (!ary_t->is_not_flat()) {
3702           // Casting array element to a non-flat type, mark array as not flat.
3703           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3704           replace_in_map(array, cast);
3705         }
3706       }
3707     }
3708   }
3709 
3710   if (!stopped() && !res->is_InlineType()) {
3711     res = record_profiled_receiver_for_speculation(res);
3712     if (toop->is_inlinetypeptr()) {
3713       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3714       res = vt;
3715       if (safe_for_replace) {
3716         replace_in_map(obj, vt);
3717         replace_in_map(not_null_obj, vt);
3718         replace_in_map(res, vt);
3719       }
3720     }
3721   }
3722   return res;
3723 }
3724 
3725 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3726   // Load markword
3727   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3728   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3729   if (check_lock) {
3730     // Check if obj is locked
3731     Node* locked_bit = MakeConX(markWord::unlocked_value);
3732     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3733     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3734     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3735     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3736     _gvn.transform(iff);
3737     Node* locked_region = new RegionNode(3);
3738     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3739 
3740     // Unlocked: Use bits from mark word
3741     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3742     mark_phi->init_req(1, mark);
3743 
3744     // Locked: Load prototype header from klass
3745     set_control(_gvn.transform(new IfFalseNode(iff)));
3746     // Make loads control dependent to make sure they are only executed if array is locked
3747     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3748     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3749     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3750     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3751 
3752     locked_region->init_req(2, control());
3753     mark_phi->init_req(2, proto);
3754     set_control(_gvn.transform(locked_region));
3755     record_for_igvn(locked_region);
3756 
3757     mark = mark_phi;
3758   }
3759 
3760   // Now check if mark word bits are set
3761   Node* mask = MakeConX(mask_val);
3762   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3763   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3764   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3765   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3766 }
3767 
3768 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3769   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3770 }
3771 
3772 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3773   // We can't use immutable memory here because the mark word is mutable.
3774   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3775   // check is moved out of loops (mainly to enable loop unswitching).
3776   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3777   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3778   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3779 }
3780 
3781 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3782   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3783 }
3784 
3785 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3786 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3787   RegionNode* region = new RegionNode(3);
3788   Node* null_ctl = top();
3789   null_check_oop(val, &null_ctl);
3790   if (null_ctl != top()) {
3791     PreserveJVMState pjvms(this);
3792     set_control(null_ctl);
3793     {
3794       // Deoptimize if null-free array
3795       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3796       inc_sp(nargs);
3797       uncommon_trap(Deoptimization::Reason_null_check,
3798                     Deoptimization::Action_none);
3799     }
3800     region->init_req(1, control());
3801   }
3802   region->init_req(2, control());
3803   set_control(_gvn.transform(region));
3804   record_for_igvn(region);
3805   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3806     // Since we were just successfully storing null, the array can't be null free.
3807     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3808     ary_t = ary_t->cast_to_not_null_free();
3809     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3810     if (safe_for_replace) {
3811       replace_in_map(ary, cast);
3812     }
3813     ary = cast;
3814   }
3815   return ary;
3816 }
3817 
3818 //------------------------------next_monitor-----------------------------------
3819 // What number should be given to the next monitor?
3820 int GraphKit::next_monitor() {
3821   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3822   int next = current + C->sync_stack_slots();
3823   // Keep the toplevel high water mark current:
3824   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3825   return current;
3826 }
3827 
3828 //------------------------------insert_mem_bar---------------------------------
3829 // Memory barrier to avoid floating things around
3830 // The membar serves as a pinch point between both control and all memory slices.
3831 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3832   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3833   mb->init_req(TypeFunc::Control, control());
3834   mb->init_req(TypeFunc::Memory,  reset_memory());
3835   Node* membar = _gvn.transform(mb);
3836   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3837   set_all_memory_call(membar);
3838   return membar;
3839 }
3840 
3841 //-------------------------insert_mem_bar_volatile----------------------------
3842 // Memory barrier to avoid floating things around
3843 // The membar serves as a pinch point between both control and memory(alias_idx).
3844 // If you want to make a pinch point on all memory slices, do not use this
3845 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3846 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3847   // When Parse::do_put_xxx updates a volatile field, it appends a series
3848   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3849   // The first membar is on the same memory slice as the field store opcode.
3850   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3851   // All the other membars (for other volatile slices, including AliasIdxBot,
3852   // which stands for all unknown volatile slices) are control-dependent
3853   // on the first membar.  This prevents later volatile loads or stores
3854   // from sliding up past the just-emitted store.
3855 
3856   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3857   mb->set_req(TypeFunc::Control,control());
3858   if (alias_idx == Compile::AliasIdxBot) {
3859     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3860   } else {
3861     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3862     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3863   }
3864   Node* membar = _gvn.transform(mb);
3865   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3866   if (alias_idx == Compile::AliasIdxBot) {
3867     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3868   } else {
3869     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3870   }
3871   return membar;
3872 }
3873 
3874 //------------------------------shared_lock------------------------------------
3875 // Emit locking code.
3876 FastLockNode* GraphKit::shared_lock(Node* obj) {
3877   // bci is either a monitorenter bc or InvocationEntryBci
3878   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3879   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3880 
3881   if( !GenerateSynchronizationCode )
3882     return nullptr;                // Not locking things?
3883 
3884   if (stopped())                // Dead monitor?
3885     return nullptr;
3886 
3887   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3888 
3889   // Box the stack location
3890   Node* box = new BoxLockNode(next_monitor());
3891   // Check for bailout after new BoxLockNode
3892   if (failing()) { return nullptr; }
3893   box = _gvn.transform(box);
3894   Node* mem = reset_memory();
3895 
3896   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3897 
3898   // Add monitor to debug info for the slow path.  If we block inside the
3899   // slow path and de-opt, we need the monitor hanging around
3900   map()->push_monitor( flock );
3901 
3902   const TypeFunc *tf = LockNode::lock_type();
3903   LockNode *lock = new LockNode(C, tf);
3904 
3905   lock->init_req( TypeFunc::Control, control() );
3906   lock->init_req( TypeFunc::Memory , mem );
3907   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3908   lock->init_req( TypeFunc::FramePtr, frameptr() );
3909   lock->init_req( TypeFunc::ReturnAdr, top() );
3910 
3911   lock->init_req(TypeFunc::Parms + 0, obj);
3912   lock->init_req(TypeFunc::Parms + 1, box);
3913   lock->init_req(TypeFunc::Parms + 2, flock);
3914   add_safepoint_edges(lock);
3915 
3916   lock = _gvn.transform( lock )->as_Lock();
3917 
3918   // lock has no side-effects, sets few values
3919   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3920 
3921   insert_mem_bar(Op_MemBarAcquireLock);
3922 
3923   // Add this to the worklist so that the lock can be eliminated
3924   record_for_igvn(lock);
3925 
3926 #ifndef PRODUCT
3927   if (PrintLockStatistics) {
3928     // Update the counter for this lock.  Don't bother using an atomic
3929     // operation since we don't require absolute accuracy.
3930     lock->create_lock_counter(map()->jvms());
3931     increment_counter(lock->counter()->addr());
3932   }
3933 #endif
3934 
3935   return flock;
3936 }
3937 
3938 
3939 //------------------------------shared_unlock----------------------------------
3940 // Emit unlocking code.
3941 void GraphKit::shared_unlock(Node* box, Node* obj) {
3942   // bci is either a monitorenter bc or InvocationEntryBci
3943   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3944   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3945 
3946   if( !GenerateSynchronizationCode )
3947     return;
3948   if (stopped()) {               // Dead monitor?
3949     map()->pop_monitor();        // Kill monitor from debug info
3950     return;
3951   }
3952   assert(!obj->is_InlineType(), "should not unlock on inline type");
3953 
3954   // Memory barrier to avoid floating things down past the locked region
3955   insert_mem_bar(Op_MemBarReleaseLock);
3956 
3957   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3958   UnlockNode *unlock = new UnlockNode(C, tf);
3959 #ifdef ASSERT
3960   unlock->set_dbg_jvms(sync_jvms());
3961 #endif
3962   uint raw_idx = Compile::AliasIdxRaw;
3963   unlock->init_req( TypeFunc::Control, control() );
3964   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3965   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3966   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3967   unlock->init_req( TypeFunc::ReturnAdr, top() );
3968 
3969   unlock->init_req(TypeFunc::Parms + 0, obj);
3970   unlock->init_req(TypeFunc::Parms + 1, box);
3971   unlock = _gvn.transform(unlock)->as_Unlock();
3972 
3973   Node* mem = reset_memory();
3974 
3975   // unlock has no side-effects, sets few values
3976   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3977 
3978   // Kill monitor from debug info
3979   map()->pop_monitor( );
3980 }
3981 
3982 //-------------------------------get_layout_helper-----------------------------
3983 // If the given klass is a constant or known to be an array,
3984 // fetch the constant layout helper value into constant_value
3985 // and return null.  Otherwise, load the non-constant
3986 // layout helper value, and return the node which represents it.
3987 // This two-faced routine is useful because allocation sites
3988 // almost always feature constant types.
3989 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3990   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3991   if (!StressReflectiveCode && klass_t != nullptr) {
3992     bool xklass = klass_t->klass_is_exact();
3993     bool can_be_flat = false;
3994     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3995     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3996       // Don't constant fold if the runtime type might be a flat array but the static type is not.
3997       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3998       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
3999     }
4000     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4001       jint lhelper;
4002       if (klass_t->is_flat()) {
4003         lhelper = ary_type->flat_layout_helper();
4004       } else if (klass_t->isa_aryklassptr()) {
4005         BasicType elem = ary_type->elem()->array_element_basic_type();
4006         if (is_reference_type(elem, true)) {
4007           elem = T_OBJECT;
4008         }
4009         lhelper = Klass::array_layout_helper(elem);
4010       } else {
4011         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4012       }
4013       if (lhelper != Klass::_lh_neutral_value) {
4014         constant_value = lhelper;
4015         return (Node*) nullptr;
4016       }
4017     }
4018   }
4019   constant_value = Klass::_lh_neutral_value;  // put in a known value
4020   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4021   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4022 }
4023 
4024 // We just put in an allocate/initialize with a big raw-memory effect.
4025 // Hook selected additional alias categories on the initialization.
4026 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4027                                 MergeMemNode* init_in_merge,
4028                                 Node* init_out_raw) {
4029   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4030   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4031 
4032   Node* prevmem = kit.memory(alias_idx);
4033   init_in_merge->set_memory_at(alias_idx, prevmem);
4034   if (init_out_raw != nullptr) {
4035     kit.set_memory(init_out_raw, alias_idx);
4036   }
4037 }
4038 
4039 //---------------------------set_output_for_allocation-------------------------
4040 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4041                                           const TypeOopPtr* oop_type,
4042                                           bool deoptimize_on_exception) {
4043   int rawidx = Compile::AliasIdxRaw;
4044   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4045   add_safepoint_edges(alloc);
4046   Node* allocx = _gvn.transform(alloc);
4047   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4048   // create memory projection for i_o
4049   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4050   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4051 
4052   // create a memory projection as for the normal control path
4053   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4054   set_memory(malloc, rawidx);
4055 
4056   // a normal slow-call doesn't change i_o, but an allocation does
4057   // we create a separate i_o projection for the normal control path
4058   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4059   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4060 
4061   // put in an initialization barrier
4062   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4063                                                  rawoop)->as_Initialize();
4064   assert(alloc->initialization() == init,  "2-way macro link must work");
4065   assert(init ->allocation()     == alloc, "2-way macro link must work");
4066   {
4067     // Extract memory strands which may participate in the new object's
4068     // initialization, and source them from the new InitializeNode.
4069     // This will allow us to observe initializations when they occur,
4070     // and link them properly (as a group) to the InitializeNode.
4071     assert(init->in(InitializeNode::Memory) == malloc, "");
4072     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4073     init->set_req(InitializeNode::Memory, minit_in);
4074     record_for_igvn(minit_in); // fold it up later, if possible
4075     _gvn.set_type(minit_in, Type::MEMORY);
4076     Node* minit_out = memory(rawidx);
4077     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4078     // Add an edge in the MergeMem for the header fields so an access
4079     // to one of those has correct memory state
4080     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4081     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4082     if (oop_type->isa_aryptr()) {
4083       const TypeAryPtr* arytype = oop_type->is_aryptr();
4084       if (arytype->is_flat()) {
4085         // Initially all flat array accesses share a single slice
4086         // but that changes after parsing. Prepare the memory graph so
4087         // it can optimize flat array accesses properly once they
4088         // don't share a single slice.
4089         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4090         C->set_flat_accesses_share_alias(false);
4091         ciInlineKlass* vk = arytype->elem()->inline_klass();
4092         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4093           ciField* field = vk->nonstatic_field_at(i);
4094           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4095             continue;  // do not bother to track really large numbers of fields
4096           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
4097           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4098           int fieldidx = C->get_alias_index(adr_type, true);
4099           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4100           // can result in per flat array field Phis to be created which confuses the logic of
4101           // Compile::adjust_flat_array_access_aliases().
4102           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4103         }
4104         C->set_flat_accesses_share_alias(true);
4105         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4106       } else {
4107         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4108         int            elemidx  = C->get_alias_index(telemref);
4109         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4110       }
4111     } else if (oop_type->isa_instptr()) {
4112       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4113       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4114       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4115         ciField* field = ik->nonstatic_field_at(i);
4116         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4117           continue;  // do not bother to track really large numbers of fields
4118         // Find (or create) the alias category for this field:
4119         int fieldidx = C->alias_type(field)->index();
4120         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4121       }
4122     }
4123   }
4124 
4125   // Cast raw oop to the real thing...
4126   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4127   javaoop = _gvn.transform(javaoop);
4128   C->set_recent_alloc(control(), javaoop);
4129   assert(just_allocated_object(control()) == javaoop, "just allocated");
4130 
4131 #ifdef ASSERT
4132   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
4133     assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
4134            "Ideal_allocation works");
4135     assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
4136            "Ideal_allocation works");
4137     if (alloc->is_AllocateArray()) {
4138       assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
4139              "Ideal_allocation works");
4140       assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
4141              "Ideal_allocation works");
4142     } else {
4143       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4144     }
4145   }
4146 #endif //ASSERT
4147 
4148   return javaoop;
4149 }
4150 
4151 //---------------------------new_instance--------------------------------------
4152 // This routine takes a klass_node which may be constant (for a static type)
4153 // or may be non-constant (for reflective code).  It will work equally well
4154 // for either, and the graph will fold nicely if the optimizer later reduces
4155 // the type to a constant.
4156 // The optional arguments are for specialized use by intrinsics:
4157 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4158 //  - If 'return_size_val', report the total object size to the caller.
4159 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4160 Node* GraphKit::new_instance(Node* klass_node,
4161                              Node* extra_slow_test,
4162                              Node* *return_size_val,
4163                              bool deoptimize_on_exception,
4164                              InlineTypeNode* inline_type_node) {
4165   // Compute size in doublewords
4166   // The size is always an integral number of doublewords, represented
4167   // as a positive bytewise size stored in the klass's layout_helper.
4168   // The layout_helper also encodes (in a low bit) the need for a slow path.
4169   jint  layout_con = Klass::_lh_neutral_value;
4170   Node* layout_val = get_layout_helper(klass_node, layout_con);
4171   bool  layout_is_con = (layout_val == nullptr);
4172 
4173   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4174   // Generate the initial go-slow test.  It's either ALWAYS (return a
4175   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4176   // case) a computed value derived from the layout_helper.
4177   Node* initial_slow_test = nullptr;
4178   if (layout_is_con) {
4179     assert(!StressReflectiveCode, "stress mode does not use these paths");
4180     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4181     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4182   } else {   // reflective case
4183     // This reflective path is used by Unsafe.allocateInstance.
4184     // (It may be stress-tested by specifying StressReflectiveCode.)
4185     // Basically, we want to get into the VM is there's an illegal argument.
4186     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4187     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4188     if (extra_slow_test != intcon(0)) {
4189       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4190     }
4191     // (Macro-expander will further convert this to a Bool, if necessary.)
4192   }
4193 
4194   // Find the size in bytes.  This is easy; it's the layout_helper.
4195   // The size value must be valid even if the slow path is taken.
4196   Node* size = nullptr;
4197   if (layout_is_con) {
4198     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
4199   } else {   // reflective case
4200     // This reflective path is used by clone and Unsafe.allocateInstance.
4201     size = ConvI2X(layout_val);
4202 
4203     // Clear the low bits to extract layout_helper_size_in_bytes:
4204     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4205     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4206     size = _gvn.transform( new AndXNode(size, mask) );
4207   }
4208   if (return_size_val != nullptr) {
4209     (*return_size_val) = size;
4210   }
4211 
4212   // This is a precise notnull oop of the klass.
4213   // (Actually, it need not be precise if this is a reflective allocation.)
4214   // It's what we cast the result to.
4215   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4216   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4217   const TypeOopPtr* oop_type = tklass->as_instance_type();
4218 
4219   // Now generate allocation code
4220 
4221   // The entire memory state is needed for slow path of the allocation
4222   // since GC and deoptimization can happen.
4223   Node *mem = reset_memory();
4224   set_all_memory(mem); // Create new memory state
4225 
4226   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4227                                          control(), mem, i_o(),
4228                                          size, klass_node,
4229                                          initial_slow_test, inline_type_node);
4230 
4231   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4232 }
4233 
4234 //-------------------------------new_array-------------------------------------
4235 // helper for newarray and anewarray
4236 // The 'length' parameter is (obviously) the length of the array.
4237 // The optional arguments are for specialized use by intrinsics:
4238 //  - If 'return_size_val', report the non-padded array size (sum of header size
4239 //    and array body) to the caller.
4240 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4241 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4242                           Node* length,         // number of array elements
4243                           int   nargs,          // number of arguments to push back for uncommon trap
4244                           Node* *return_size_val,
4245                           bool deoptimize_on_exception) {
4246   jint  layout_con = Klass::_lh_neutral_value;
4247   Node* layout_val = get_layout_helper(klass_node, layout_con);
4248   bool  layout_is_con = (layout_val == nullptr);
4249 
4250   if (!layout_is_con && !StressReflectiveCode &&
4251       !too_many_traps(Deoptimization::Reason_class_check)) {
4252     // This is a reflective array creation site.
4253     // Optimistically assume that it is a subtype of Object[],
4254     // so that we can fold up all the address arithmetic.
4255     layout_con = Klass::array_layout_helper(T_OBJECT);
4256     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4257     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4258     { BuildCutout unless(this, bol_lh, PROB_MAX);
4259       inc_sp(nargs);
4260       uncommon_trap(Deoptimization::Reason_class_check,
4261                     Deoptimization::Action_maybe_recompile);
4262     }
4263     layout_val = nullptr;
4264     layout_is_con = true;
4265   }
4266 
4267   // Generate the initial go-slow test.  Make sure we do not overflow
4268   // if length is huge (near 2Gig) or negative!  We do not need
4269   // exact double-words here, just a close approximation of needed
4270   // double-words.  We can't add any offset or rounding bits, lest we
4271   // take a size -1 of bytes and make it positive.  Use an unsigned
4272   // compare, so negative sizes look hugely positive.
4273   int fast_size_limit = FastAllocateSizeLimit;
4274   if (layout_is_con) {
4275     assert(!StressReflectiveCode, "stress mode does not use these paths");
4276     // Increase the size limit if we have exact knowledge of array type.
4277     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4278     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4279   }
4280 
4281   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4282   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4283 
4284   // --- Size Computation ---
4285   // array_size = round_to_heap(array_header + (length << elem_shift));
4286   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4287   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4288   // The rounding mask is strength-reduced, if possible.
4289   int round_mask = MinObjAlignmentInBytes - 1;
4290   Node* header_size = nullptr;
4291   // (T_BYTE has the weakest alignment and size restrictions...)
4292   if (layout_is_con) {
4293     int       hsize  = Klass::layout_helper_header_size(layout_con);
4294     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4295     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4296     if ((round_mask & ~right_n_bits(eshift)) == 0)
4297       round_mask = 0;  // strength-reduce it if it goes away completely
4298     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4299     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4300     assert(header_size_min <= hsize, "generic minimum is smallest");
4301     header_size = intcon(hsize);
4302   } else {
4303     Node* hss   = intcon(Klass::_lh_header_size_shift);
4304     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4305     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4306     header_size = _gvn.transform(new AndINode(header_size, hsm));
4307   }
4308 
4309   Node* elem_shift = nullptr;
4310   if (layout_is_con) {
4311     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4312     if (eshift != 0)
4313       elem_shift = intcon(eshift);
4314   } else {
4315     // There is no need to mask or shift this value.
4316     // The semantics of LShiftINode include an implicit mask to 0x1F.
4317     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4318     elem_shift = layout_val;
4319   }
4320 
4321   // Transition to native address size for all offset calculations:
4322   Node* lengthx = ConvI2X(length);
4323   Node* headerx = ConvI2X(header_size);
4324 #ifdef _LP64
4325   { const TypeInt* tilen = _gvn.find_int_type(length);
4326     if (tilen != nullptr && tilen->_lo < 0) {
4327       // Add a manual constraint to a positive range.  Cf. array_element_address.
4328       jint size_max = fast_size_limit;
4329       if (size_max > tilen->_hi)  size_max = tilen->_hi;
4330       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
4331 
4332       // Only do a narrow I2L conversion if the range check passed.
4333       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
4334       _gvn.transform(iff);
4335       RegionNode* region = new RegionNode(3);
4336       _gvn.set_type(region, Type::CONTROL);
4337       lengthx = new PhiNode(region, TypeLong::LONG);
4338       _gvn.set_type(lengthx, TypeLong::LONG);
4339 
4340       // Range check passed. Use ConvI2L node with narrow type.
4341       Node* passed = IfFalse(iff);
4342       region->init_req(1, passed);
4343       // Make I2L conversion control dependent to prevent it from
4344       // floating above the range check during loop optimizations.
4345       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
4346 
4347       // Range check failed. Use ConvI2L with wide type because length may be invalid.
4348       region->init_req(2, IfTrue(iff));
4349       lengthx->init_req(2, ConvI2X(length));
4350 
4351       set_control(region);
4352       record_for_igvn(region);
4353       record_for_igvn(lengthx);
4354     }
4355   }
4356 #endif
4357 
4358   // Combine header size and body size for the array copy part, then align (if
4359   // necessary) for the allocation part. This computation cannot overflow,
4360   // because it is used only in two places, one where the length is sharply
4361   // limited, and the other after a successful allocation.
4362   Node* abody = lengthx;
4363   if (elem_shift != nullptr) {
4364     abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
4365   }
4366   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4367 
4368   if (return_size_val != nullptr) {
4369     // This is the size
4370     (*return_size_val) = non_rounded_size;
4371   }
4372 
4373   Node* size = non_rounded_size;
4374   if (round_mask != 0) {
4375     Node* mask1 = MakeConX(round_mask);
4376     size = _gvn.transform(new AddXNode(size, mask1));
4377     Node* mask2 = MakeConX(~round_mask);
4378     size = _gvn.transform(new AndXNode(size, mask2));
4379   }
4380   // else if round_mask == 0, the size computation is self-rounding
4381 
4382   // Now generate allocation code
4383 
4384   // The entire memory state is needed for slow path of the allocation
4385   // since GC and deoptimization can happen.
4386   Node *mem = reset_memory();
4387   set_all_memory(mem); // Create new memory state
4388 
4389   if (initial_slow_test->is_Bool()) {
4390     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4391     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4392   }
4393 
4394   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4395   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4396   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4397 
4398   // Inline type array variants:
4399   // - null-ok:         ciObjArrayKlass  with is_elem_null_free() = false
4400   // - null-free:       ciObjArrayKlass  with is_elem_null_free() = true
4401   // - null-free, flat: ciFlatArrayKlass with is_elem_null_free() = true
4402   // Check if array is a null-free, non-flat inline type array
4403   // that needs to be initialized with the default inline type.
4404   Node* default_value = nullptr;
4405   Node* raw_default_value = nullptr;
4406   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4407     // Array type is known
4408     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4409       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4410       default_value = InlineTypeNode::default_oop(gvn(), vk);
4411       if (UseCompressedOops) {
4412         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4413         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4414         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4415         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4416         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4417       } else {
4418         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4419       }
4420     }
4421   }
4422 
4423   Node* valid_length_test = _gvn.intcon(1);
4424   if (ary_type->isa_aryptr()) {
4425     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4426     jint max = TypeAryPtr::max_array_length(bt);
4427     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4428     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4429   }
4430 
4431   // Create the AllocateArrayNode and its result projections
4432   AllocateArrayNode* alloc
4433     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4434                             control(), mem, i_o(),
4435                             size, klass_node,
4436                             initial_slow_test,
4437                             length, valid_length_test,
4438                             default_value, raw_default_value);
4439   // Cast to correct type.  Note that the klass_node may be constant or not,
4440   // and in the latter case the actual array type will be inexact also.
4441   // (This happens via a non-constant argument to inline_native_newArray.)
4442   // In any case, the value of klass_node provides the desired array type.
4443   const TypeInt* length_type = _gvn.find_int_type(length);
4444   if (ary_type->isa_aryptr() && length_type != nullptr) {
4445     // Try to get a better type than POS for the size
4446     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4447   }
4448 
4449   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4450 
4451   array_ideal_length(alloc, ary_type, true);
4452   return javaoop;
4453 }
4454 
4455 // The following "Ideal_foo" functions are placed here because they recognize
4456 // the graph shapes created by the functions immediately above.
4457 
4458 //---------------------------Ideal_allocation----------------------------------
4459 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4460 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
4461   if (ptr == nullptr) {     // reduce dumb test in callers
4462     return nullptr;
4463   }
4464 
4465   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4466   ptr = bs->step_over_gc_barrier(ptr);
4467 
4468   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4469     ptr = ptr->in(1);
4470     if (ptr == nullptr) return nullptr;
4471   }
4472   // Return null for allocations with several casts:
4473   //   j.l.reflect.Array.newInstance(jobject, jint)
4474   //   Object.clone()
4475   // to keep more precise type from last cast.
4476   if (ptr->is_Proj()) {
4477     Node* allo = ptr->in(0);
4478     if (allo != nullptr && allo->is_Allocate()) {
4479       return allo->as_Allocate();
4480     }
4481   }
4482   // Report failure to match.
4483   return nullptr;
4484 }
4485 
4486 // Fancy version which also strips off an offset (and reports it to caller).
4487 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4488                                              intptr_t& offset) {
4489   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4490   if (base == nullptr)  return nullptr;
4491   return Ideal_allocation(base);
4492 }
4493 
4494 // Trace Initialize <- Proj[Parm] <- Allocate
4495 AllocateNode* InitializeNode::allocation() {
4496   Node* rawoop = in(InitializeNode::RawAddress);
4497   if (rawoop->is_Proj()) {
4498     Node* alloc = rawoop->in(0);
4499     if (alloc->is_Allocate()) {
4500       return alloc->as_Allocate();
4501     }
4502   }
4503   return nullptr;
4504 }
4505 
4506 // Trace Allocate -> Proj[Parm] -> Initialize
4507 InitializeNode* AllocateNode::initialization() {
4508   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4509   if (rawoop == nullptr)  return nullptr;
4510   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4511     Node* init = rawoop->fast_out(i);
4512     if (init->is_Initialize()) {
4513       assert(init->as_Initialize()->allocation() == this, "2-way link");
4514       return init->as_Initialize();
4515     }
4516   }
4517   return nullptr;
4518 }
4519 
4520 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4521 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4522   // Too many traps seen?
4523   if (too_many_traps(reason)) {
4524 #ifdef ASSERT
4525     if (TraceLoopPredicate) {
4526       int tc = C->trap_count(reason);
4527       tty->print("too many traps=%s tcount=%d in ",
4528                     Deoptimization::trap_reason_name(reason), tc);
4529       method()->print(); // which method has too many predicate traps
4530       tty->cr();
4531     }
4532 #endif
4533     // We cannot afford to take more traps here,
4534     // do not generate Parse Predicate.
4535     return;
4536   }
4537 
4538   ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4539   _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4540   Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4541   {
4542     PreserveJVMState pjvms(this);
4543     set_control(if_false);
4544     inc_sp(nargs);
4545     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4546   }
4547   Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4548   set_control(if_true);
4549 }
4550 
4551 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4552 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4553 void GraphKit::add_parse_predicates(int nargs) {
4554   if (UseLoopPredicate) {
4555     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4556   }
4557   if (UseProfiledLoopPredicate) {
4558     add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4559   }
4560   // Loop Limit Check Predicate should be near the loop.
4561   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4562 }
4563 
4564 void GraphKit::sync_kit(IdealKit& ideal) {
4565   set_all_memory(ideal.merged_memory());
4566   set_i_o(ideal.i_o());
4567   set_control(ideal.ctrl());
4568 }
4569 
4570 void GraphKit::final_sync(IdealKit& ideal) {
4571   // Final sync IdealKit and graphKit.
4572   sync_kit(ideal);
4573 }
4574 
4575 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4576   Node* len = load_array_length(load_String_value(str, set_ctrl));
4577   Node* coder = load_String_coder(str, set_ctrl);
4578   // Divide length by 2 if coder is UTF16
4579   return _gvn.transform(new RShiftINode(len, coder));
4580 }
4581 
4582 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4583   int value_offset = java_lang_String::value_offset();
4584   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4585                                                      false, nullptr, Type::Offset(0));
4586   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4587   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4588                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4589                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4590   Node* p = basic_plus_adr(str, str, value_offset);
4591   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4592                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4593   return load;
4594 }
4595 
4596 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4597   if (!CompactStrings) {
4598     return intcon(java_lang_String::CODER_UTF16);
4599   }
4600   int coder_offset = java_lang_String::coder_offset();
4601   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4602                                                      false, nullptr, Type::Offset(0));
4603   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4604 
4605   Node* p = basic_plus_adr(str, str, coder_offset);
4606   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4607                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4608   return load;
4609 }
4610 
4611 void GraphKit::store_String_value(Node* str, Node* value) {
4612   int value_offset = java_lang_String::value_offset();
4613   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4614                                                      false, nullptr, Type::Offset(0));
4615   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4616 
4617   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4618                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4619 }
4620 
4621 void GraphKit::store_String_coder(Node* str, Node* value) {
4622   int coder_offset = java_lang_String::coder_offset();
4623   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4624                                                      false, nullptr, Type::Offset(0));
4625   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4626 
4627   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4628                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4629 }
4630 
4631 // Capture src and dst memory state with a MergeMemNode
4632 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4633   if (src_type == dst_type) {
4634     // Types are equal, we don't need a MergeMemNode
4635     return memory(src_type);
4636   }
4637   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4638   record_for_igvn(merge); // fold it up later, if possible
4639   int src_idx = C->get_alias_index(src_type);
4640   int dst_idx = C->get_alias_index(dst_type);
4641   merge->set_memory_at(src_idx, memory(src_idx));
4642   merge->set_memory_at(dst_idx, memory(dst_idx));
4643   return merge;
4644 }
4645 
4646 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4647   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4648   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4649   // If input and output memory types differ, capture both states to preserve
4650   // the dependency between preceding and subsequent loads/stores.
4651   // For example, the following program:
4652   //  StoreB
4653   //  compress_string
4654   //  LoadB
4655   // has this memory graph (use->def):
4656   //  LoadB -> compress_string -> CharMem
4657   //             ... -> StoreB -> ByteMem
4658   // The intrinsic hides the dependency between LoadB and StoreB, causing
4659   // the load to read from memory not containing the result of the StoreB.
4660   // The correct memory graph should look like this:
4661   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4662   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4663   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4664   Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4665   set_memory(res_mem, TypeAryPtr::BYTES);
4666   return str;
4667 }
4668 
4669 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4670   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4671   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4672   // Capture src and dst memory (see comment in 'compress_string').
4673   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4674   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4675   set_memory(_gvn.transform(str), dst_type);
4676 }
4677 
4678 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4679   /**
4680    * int i_char = start;
4681    * for (int i_byte = 0; i_byte < count; i_byte++) {
4682    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4683    * }
4684    */
4685   add_parse_predicates();
4686   C->set_has_loops(true);
4687 
4688   RegionNode* head = new RegionNode(3);
4689   head->init_req(1, control());
4690   gvn().set_type(head, Type::CONTROL);
4691   record_for_igvn(head);
4692 
4693   Node* i_byte = new PhiNode(head, TypeInt::INT);
4694   i_byte->init_req(1, intcon(0));
4695   gvn().set_type(i_byte, TypeInt::INT);
4696   record_for_igvn(i_byte);
4697 
4698   Node* i_char = new PhiNode(head, TypeInt::INT);
4699   i_char->init_req(1, start);
4700   gvn().set_type(i_char, TypeInt::INT);
4701   record_for_igvn(i_char);
4702 
4703   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4704   gvn().set_type(mem, Type::MEMORY);
4705   record_for_igvn(mem);
4706   set_control(head);
4707   set_memory(mem, TypeAryPtr::BYTES);
4708   Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4709   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4710                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4711                              false, false, true /* mismatched */);
4712 
4713   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4714   head->init_req(2, IfTrue(iff));
4715   mem->init_req(2, st);
4716   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4717   i_char->init_req(2, AddI(i_char, intcon(2)));
4718 
4719   set_control(IfFalse(iff));
4720   set_memory(st, TypeAryPtr::BYTES);
4721 }
4722 
4723 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4724   if (!field->is_constant()) {
4725     return nullptr; // Field not marked as constant.
4726   }
4727   ciInstance* holder = nullptr;
4728   if (!field->is_static()) {
4729     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4730     if (const_oop != nullptr && const_oop->is_instance()) {
4731       holder = const_oop->as_instance();
4732     }
4733   }
4734   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4735                                                         /*is_unsigned_load=*/false);
4736   if (con_type != nullptr) {
4737     Node* con = makecon(con_type);
4738     if (field->type()->is_inlinetype()) {
4739       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4740     } else if (con_type->is_inlinetypeptr()) {
4741       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4742     }
4743     return con;
4744   }
4745   return nullptr;
4746 }
4747 
4748 //---------------------------load_mirror_from_klass----------------------------
4749 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4750 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4751   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4752   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4753   // mirror = ((OopHandle)mirror)->resolve();
4754   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4755 }
4756 
4757 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4758   const Type* obj_type = obj->bottom_type();
4759   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4760   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4761     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4762     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4763     obj = casted_obj;
4764   }
4765   if (sig_type->is_inlinetypeptr()) {
4766     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null());
4767   }
4768   return obj;
4769 }